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Abstract

Modern clinical systems require the storage and transmission of large amount of ECG

signals. Efficient data compression is needed in order to reduce the amount of data. In

ECG signal compression algorithms, the aim is to reach maximum compression ratio,

while keeping the relevant diagnostic information in the reconstructed signal.

In this work, an ECG compression algorithm is presented which is based on optimum

quantization of Discrete Cosine Transform coefficients. DCT is applied on the residual

signals that are obtained after subtracting the standard reference signal from period

normalized and dc removed beats. For optimum quantization of the DCT coefficients,

the optimum quantization and threshold vectors are generated using Lagrange

multipliers so that the entropy of the quantized coefficients are minimized at a target

d'istortion. The quantized coefficients are lossless encoded by arithmetic encoding after

following some steps. The compressed signal consists of arithmetic encoded bits along

with some additional bits that are necessary for the decompression process. For

measuring the distortion introduced by lossy compression, Percent Root mean square

Distortion (PRD and PRD2) have been used. The amount of compression is measured

by Compression Ratio (CR) and Compressed Data Rate (CDR).

The proposed compressor is designed for low values of PRD / PRD2. For low PRO /

PRD2 high compression ratio and low compressed data rate have been achieved. The

compression algorithm have been applied to channel MLII of 40 records of MlT-BIH

Arrhythmia Database (360 Hz sampling frequency and 11 bits/sample quantizeI'

resolution), which consists of large and varied ECG signals. A compression rate of

approximately 291 bits/second and compression ratio of 13.7: I has been achieved with

a very good reconstructed signal quality (PRD=3.0%). For 6.5% PRD2, 20.1: I

compression ratio and 196 bits/sec compressed data rate has been found. The proposed

compression algorithm has been found to have the best performances at any PRD /

PRD2. These performances are better than other compression algorithms found in the

literature.
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Chapter 1

Introduction

1.1 Background
As a diagnosis tool of cardiac diseases, the J2-channel (or leads) electrocardiogram

(ECG) is a very important physiological sigJJa1. An ECG signal can be captured by

putting several eleCirodes at particular positiuns on the body. It is used to describe the

voltage variations of cardiac rhythm. With different combinations of electrode pairs,

different ECG channels can be obtained. The J2-lead ECG, including 3 standard leads

and 6 chest leads, are used by a doctor to ,;:heck the heart problem of a patient. To

facilitate the processing of the signal, it is ofu;D digitized. Possible processing tas"s for

digitized ECG signals are compression, transmission, encryption, error correction, etc.

In this dissertation, it is aimed at the technique of ECG compression.

A typical electrocardiogram monitoring de"ice generates massive volume of digital

data. Depending on the intended application ~'Jr the data, the sampling rate ranges from

125 to 500 Hz. Each data sample may be dignized to a 8 bit to 12 bit binary number.

Even at the lowest sampling rate in the r:;;:nge and as'suming just one sensor that

generates 8 bit data, we would accumulate BeG data at a rate of 7.5 KB per minute or

450 KB per hour. At the other extreme (12 ser,sors generating 12 bit values at 500 Hz),

data is generated at a rate of540 KB per m;m::ce or more than 30 MB per hour.

The online storage and transmission of Cj~jtal ECG signals are useful in many

applications, including the Holter recording """d telemedicine. The Holter recorder is a

mobile ECG online measurement set and a ",cording medical device widely used in

hospitals and clinics. It is usually carried by '" patient over 24 hours. Therefore, it must

record a long duration of ECG data. The huge amount of data becomes a problem whe"
the storage space is very limited. We can eiEbe,. increase the storage memory, which is

costly, or have an ECG compression techniqoe with high compression ratio to solve the
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problem. In addition, for the application of telemedicine, ECG compression is also

necessary.

Telemedicine is a very important topic in the area of biomedical engineering. It uses

modern telecommunication techniques and allows the doctors to monitor a pat;ent's

condition or consult with other doctors in a long distance based on wire or wireless

systems. In this case, in general, not only the ECG signal but also other biomedical

signals have to be transmitted simultaneously, these include electromyogram (EM G),

electroencephalogram (EEG), ultrasound, X-ray, computed tomography(CT), magnetic

resonance image (MRI), etc. Thus a biomedical signal compression technique,

including ECG compression, is needed for reducing the amount of data to meet the

constraint of very limited bandwidth.

So an efficient ECG compressor is needed in order to reduce the huge volume data; in

practice, this may be done only with lossy compression techniques (which allow

reconstruction error). With lossless compressors, high compression ratios can L;)t be

achieved. In ECG signal compression algorithms the goal is to achieve a minimum

information rate, while retaining the relevant diagnostic information as much as

possible in the reconstructed signal.

In the past, many schemes have been presented for compression of ECG data. ECG

compression methods have been mainly classified into three major categories[1 ],[2]:

direct data compression (DOC), transformation compression (TC), and parameter

extraction compression (PEC). DOC methods are based on their detection of

redundancies on direct analysis of the actual signal samples to provide the compression.

The DOC schemes are AZTEC, TP, CORTES, Fan, SAPA, SAlES, SLOPE algorithm,

CORNER algorithm, DPCM, ADPCM, Entropy Coding such as Huffman coding and

Arithmetic coding. In the TC methods, the original samples are subjected to a (linear)

transformation and the compression is performed in the new domain. Fourier

Transform, Walsh Transform, Cosinc Transform, KLT and Wavelet Transform are /'\( )
examples of transformation compression. While, PEC is an irreversible process with(" ,1
which a particular characteristic or parameter of the signal is extracted. The extracted "/

o

~>"~
,~\ J

~"
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parameter (e.g. measurement of the probability distribution) is subsequently utilized for

the classification based on a priori knowledge of the signal features. ANN, Long-Term

Prediction, Vector Quantization etc are included in PEe. The Existing techniques can

reduce the bandwidth significantly. A brief summary of the previous significant works

in this field has been given here:

The AZTEC algorithm was developed by Cox et al. [8] was a popular ECG

compression algorithm. 10:1 compression ratio has been achieved (for 500 Hz sampled

ECG with 12 bit resolution) but the distortion is significantly high. The P and T waves

are affected very much. The reconstructed signal has poor fidelity mainly because of

the discontinuity of the waves (step like quantization). A modified AZTEC algorithm

was proposed in [9] where the quality of the reconstruction was improved.

The Turning Point [11] algorithm reduces one data sample from the consecutive two

samples. The CR is fixed at 2: I.

CORTES algorithm [12] is a hybrid of the AZTEC and TP algorithms. It applies the

AZTEC algorithm to the lower frequency regions and TP to the high frequency rE,sions

(QRS complexes). The typical pcrformances are compression ratio of 5:1 and PRO of

7%. The sampling frequency is 200 Hz, and the quantization is 12 bit.

Fan and SAPA [14] algorithms are both based on first order intcrpolation [1] and have

the same performance. In this method, the reconstructed signal looks like a broken line.

The fidelity of the reconstructed signal becomes poorer as the CR is increased. Typical

performances are a compression ratio of3:1 and a PRO of4%. The sampling frequency

is 250 Hz, and the quantization is 12 bit.

The SAlES algorithm [15] combines the AZTEC and Fan compression techniques and

the reportcd performances are a CR of 5.9:1 for PRO of 16.3% where the sampling

frcquency is 166 Hz and quantization resolution is 10 bit.
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The SLOPE algorithm [16] delimits linear segments of different lengths and different

slopes of the ECG signal.

The CORNER algorithm [17] was applied on MIT-8IH database (sampling frequency

360 Hz andquantizer resolution 11 bit) and average bit rate of 0.79 bits per sample was

achieved for SNR of27 dB.

Several ECG compression algorithms based on DPCM have been presented in the

literature [18, 19, 20]. Some of them use the DPCM as minor part of the o"erall

compression scheme. In the method of [19], compression is done by two step DPCM

and the quasiperiodic characteristic of thc ECG signal has been exploited to reduce the

variance of thc prediction error. In another important work [20] the compression was

performed by average beat subtraction and the average bit rate was 174 bps.

Entropy coding is generally used for loss less data compression. Two popular entropy

coding algorithms are Huffman coding and arithmetic coding. They are being

implemented for loss less compression at the last step of lossy compression of ECG

signals.

Many efficient ECG compression methods based on beat codebook have been

presented in the literature. In the method of adaptive compression of ECG [22], the

residual signal (which 'has been found after subtracting the selected beat of the code

book from the current beat) is quantized adaptively. The achieved but rate was 193.3

bps with PRD between 4.33% and 19.3%.

In the Long-Term Prediction (LTP) model [2], thc prediction of the nthsample is made

using samples of past beats and the LTP residual signal is quantized. The performance

of the algorithm are: bit rate 71 and 6S0 bps with PRD2 between 10% and 1%.

The ASEC algorithm [6] is based on analysis by synthesis coding. The incoming beat is

segmcnted into P, QRS and T sections which are then coded separately. The b~at is

matched with the code book, LTP coding is done using the chosen codeword to

C',
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produce the predicted signal, and the residual signal undergoes STP coding and

adaptive quantization to produce the coded signal. Bit rate of approximately 100 bps

has been achieved with a good reconstructed signal quality (PR02 below 8%).

Many orthogonal transform compression algorithms for ECG signals have been

presented in the last thirty years, such as the Fourier Transform, Walsh Transform [25],

Cosine Transform [26], and Karhunen-Loeve Transform (KL T) [27]. The typical

performances of the transform methods are compression ratio between 3: I to 12: I. In

the recent years, many ECG compression algorithms have been proposed based on the

Wavelet Transform (WT) [28], [29]. The reported performances are compression ratio

from 13.5:1 to 22.9:1 with the corresponding PRO between 5.5% and 13.3%.

In the OCT based ECG compression methods, the signal is portioned into blocks, each

block is OCT transformed and the coefficients are thresholded and quantized either by

unique threshold and quantization value or by threshold and quantization vector. The

quantized coefficients are sometimes loss less encoded by entropy coding. ]n the work

of [34], a constant threshold value is applied for all coefficients where the quantization

value is fixed at 1. Varying threshold, CR and distortion is controlled. The CAB/2-0

OCT [3 I] uses a unique quantization step size for all coefficients. In [30], the values of

the quantization vector grows linearly. Varying the inclination of the line segment

controls the CR and distortion. ]n the optimized quantization of OCT coefficients

method [38], the block size was taken 64, and optimum quantization and threshold

vectors were for minimization of entropy and distortion.

However, the seriousness of the problem can be relieved further significantly if we

have a morc efficicnt ECG data compression technique that is capable of reducing the

amount of data as much as possible while preserving the necessary signal quality for

cardiac diagnosis.

1.2 The Objective of This Research

As transform methods usually achieve higher comprcssion ratios and are insensitive to

noise existing in original ECG signal, wc prefcrred a transform based compression
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method for ECG signal. Discrete Cosine Transform based compression is being used in

various fields including the ECG compression for better decorrelation and energy

compaction properties. So we intend to propose an efficient ECG compression

algorithm in this dissertation which is based on the deviation of ECG signal from a

standard reference using OCT. The signal energy concentrated. in a few transform

coefficients helped us to improve the compression ratio.

1.3 Organization of the Thesis

Chapter 1 is an introductory chapter. It contains the background and motivation of ECG

compression, objective and outline of the proposed algorithm and organization of this

thesis.

A discussion about the human heart, electrical conduction system of the heart, and

electrocardiogram is presented in the chapter 2.

Chapter 3 reviews some ECG data compression methods that have been reported in the

literature. This chapter also presents distortion and compression measures that are

integral part of the compression methods.

The proposed compression algorithm is described in the chapter 4. It also includes the.

decompression algorithm, bit allocation and compression measure of the compressed

signal.

Chapter 5 includes the results of the proposed compression algorithm and compares the

performance with some other methods.

Chapter 6 contains a summary, conclusions, and recommendations for continuation.



Chapter 2

The Heart and the ECG Signal

2.1 The Heart

2.1.1 Anatomy and Physiology of the Heart
The heart, whose sole purpose is to circulate blood through the circulatory system (the

blood vessels of the body), consists of fouf. hollow chambers (Figure 2.1) [39]. The

upper two chambers, the right and left atria, are thin-walled; the lower two, the right and

left ventricles are thick-walled and muscular. The walls of the ventricles are composed

of three layers of tissue: the innermost thin layer is called the endocardium; the middle

thick, muscular layer, the myocardium; and the outermost thin layer, the epicardium.

The walls of the left ventricle are more muscular and about three times thicker than

those of the right ventricle.

The atrial walls are also composed of three layers of tissue like those of the ventricles,

but the middle muscular layer is much thinner. The two atria form the base of the heaI1;

the ventricles form the apex of the heart.

The interatrial septum (a thin membranous wall) separates the two atria, and a thicker,

more muscular wall, the interventricular septum, separates the two ventricles. The two

septa, in effect, divide the heart into two pumping systems, the right heart and the left

heart, cach one consisting of an atrium and a ventricle.

The right heart pumps blood into the pulmonary circulation (the blood vessels within

the lungs and those carrying blood to and from the lungs). The left heart pumps blood

into the systemic circulation (the blood vessels in the rest of the body and those carrying

blood to and from the body).
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The right atrium receives unoxygenated blood from the body via two of the body's

largest veins (the superior vena cava and inferior vena cava) and from the heart itself by

way of the coronary sinus. The blood is delivered to the right ventricle through the

tricuspid valve. The right ventricle then pumps the unoxygenated blood through the

pulmonic valve and into the lungs via the pulmonary artery. In the lungs, the blood

picks up oxygen and releases excess carbon dioxide.

interventricular
septum

RlG~\
HEART

right atrium

interatrial
septum

right ventricle

base of the heart
LEFT
HEART

left atrium

left ventricle

endocardium

myocardium

epicardium

Figure 2.1. Anatomy of the heart

The left atrium receives the newly oxygenated blood from the lungs via the pulmonary

veins and delivers it to the left ventricle through the mitral valve. The left ventricle then

pumps the oxygenated blood out through the aortic valve and into the aorta, the largest

artery in the body. From the aorta, the blood is distributed throughout the body where

the blood releases oxygen to the cells and collects carbon dioxide from them.

The heart performs its pumping action over and over in a rhythmic sequence. First, the

atria relax (atrial diastole), allowing the blood to pour in from the body and lungs. As

the atria fill with blood, the atrial pressure rises above that in the ventricles, forcing the
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tricuspid and mitral valves to open and allowing the blood to empty rapidly into the

relaxed ventricles. Then the atria contract (atrial systole), filling the ventricles to

capacity.

Following the contraction of the atria, the pressures in the atria and ventricles equalize,

and the tricuspid and mitral valves begin to close. Then, the ventricles contract

vigorously, causing the ventricular pressure to rise sharply. The tricuspid and mitral

valves close completely, and the aortic and pulmonic valves snap open, allowing the

blood to be ejected forcefully into the pulmonary and systemic circulations.

Meanwhile, the atria are again relaxing and filling with blood. As soon as the ventricles

empty of blood and begin to relax, the ventricular pressure falls, the aOliic and pulmonic

valves shut tightly, the tricuspid and mitral valves opcn, and the rhythmic cardiac

sequence begins anew.

The period from the opening of the aortic and pulmonic valves to their closing, during

which the ventricles contract and empty of blood, is called ventricular systole. The

following period from the closure of the aortic and pulmonic valves to their reopening,

during which the ventricles relax and fill with blood, is called ventricular diastole. The

sequence of one ventricular systole followed by a ventricular diastole is called the

cardiac cycle, commonly defined as the period from the beginning of one heart beat to

the beginning of the next.

2.1.2 Electrical Conduction System of the Heart

The electrical conduction system of the heart (figure 2.2) is composed of the following

structures: • Sinoatrial (SA) node .• Internodal atrial conduction tracts and the interatrial

conduction tract (Bachmann's bundle) .• Atrioventricular (AY) junction consisting of

the atrioventricular (AY) node and bundle of His .• Right bundle branch, left bundle

branch, and left anterior and posterior fascicles .• Purkinje network.

The prime function of the electrical conduction system of the heart is to transmit minute

electrical impulses from the SA node (where they are normally generated) to the atria

and ventricles, causing them to contract (Figure 2.2).
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sinoatrial (SA) node

interatrial conduction tract
(Bavhmann's bundle)

internodal atrial conduction tracts

atrioventricular (AV) node

bundle of His

left bundle branch

left posterior fascicle

left anterior fascicle

right bundle branch

Purkinje fibers

Figure 2,2, Electrical conduction system

The SA node lies in the wall of the right atrium near the inlet of the superior vena cava,

lt consists of pacemaker cells that generate electrical impulses automatically and

regularly.

The three internodal atrial conduction tracts, running through the walls of the right

atrium between the SA node and the AV node, conduct the electrical impulses rapidly

from the SA node to the AV node in about 0.03 second. The interatrial conduction tract

(Bachmann's bundle), a branch of one of the internodal atrial conduction tracts, extends

across the atria, conducting the electrical impulses from the SA node to the left atrium.

The AV node lies partly in the right side of the interatrial septum in front of the opening

of the coronary sinus and partly in the upper part of the interventricular septum above

the base of the tricuspid valve. The primary function of the AV node is to relay the

electrical impulses from the atria into the ventricles in an orderly and timely way. A ring

of fibrous tissue insulates the reminder of the atria from the ventricles, prcventing

electrical impulses from entering the ventricles except through the AV node.

•
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The electrical impulses slow as they travel through the AV node, taking about 0.06 to

0.12 second to reach the bundle of His. The delay is such that the atria can contract and

empty, and the ventricles fill before they are stimulated to contract.

The bundle of His lies in the upper part of the interventricular septum, connecting the

AV node with the two bundle branches. Once the electrical impulses enter the bundle of

His, they travel more rapidly on their way to the bundle branches, taking 0.03 to 0.05

second.

The right bundle branch and the left common bundle branch arise from the bundle of

His, straddle the interventricular septum, and continue down both sides of the septum.

The left common bundle branch further divides into two major divisions: the left

anterior fascicle and the left posterior fascicle. The bundle branches and their fascicles

subdivide into smaller and smaller branches, the smallest ones connecting with the

Purkinje network, an intricate web of tiny Purkinje fibers spread widely throughout the

ventricles beneath the endocardium. The ends of the Purkinje fibers finally terminate at

the myocardial cells. The bundle of His, the right and left bundle branches, and the

Purkinje network are also known as the His-Purkinje system of the ventricles.

The electrical impulses travel very rapidly to the Purkinje network through the bundle

branches in less than 0.01 second. All in all, it normally takes the electrical impulses

less than 0.2 second to travel from the SA node to the Purkinje network in the

ventricles.

2.2 The Electrocardiogram

2.2.1 Electdcal Basis of the Electrocardiogram

The electrocardiogram (ECG) is a graphic record of the changes in magnitude and

direction of the electrical activity, or, more specifically, the electric current, that is

generated by the depolarization and repolarization of the atria and ventricles (Figure

2.3). This electrical activity is readily detected by electrodes attached to the skin. But

neither the electrical activity that results from the generation and transmission of

( .
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electrical impulses which are too feeble to be detected by skin electrodes nor the

mechanical contractions and relaxations of the atria and ventricles (which do not

generate electrical activity) appear in the electrocardiogram.

____ /\ ATRIAL
DEPOLARIZATION

P wave

Ta wave
~------

I,\
---_/\, ~----

QRS complex

T wave

P QRS T

Figure 2.3 - Electrical basis of the ECG

ATRIAL
REPOLARIZATION

VENTRICULAR
DEPOLARIZATION

VENTRICULAR
REPOLARIZATION

2.2.2 Components of the Electrocardiogram
After the electric current generated by depolarization and repolarization of the atria and

ventricles is detected by electrodes, it is amplified, displayed on an oscilloscope,

recorded on ECG paper, or stored in memory. The electric current generated by atrial

depolarization is recorded as the P wave, and that generated by ventricular

depolarization is recorded as the Q, R, and S waves: the QRS complex. Atrial

repolarization is recorded as the atrial T wave (Ta), and ventricular repolarization, as the

ventricular T wave, or simply, the T wave. Because atrial repolarization normally

occurs during ventricular depolarization, the atrial T wave is buried or hidden in the

QRS complex.



-: 13

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex and

the T wave (Figure 2.4).

QRS
complex

Twave

R

R -R interval

P
wave

,,
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Figure 2.4 - Components of the ECG.

The sections of the ECG between the waves and complexes are called segments and

intervals: the PR segment, the ST segment, the TP segment, the PR interval, the QT

interval, and the R-R interval. Intervals include waves and complexes, whereas

segments do not.

When electrical activity of the heart is not being detected, the ECG is a straight, flat line

- the isoelectric line or baseline.

2.2.3 ECG paper
The paper used in recording electrocardiograms has a grid to permit the measurement of

time in seconds and amplitude in millimeters along the horizontal lines and voltage

(amplitude) in millimeters along the vertical lines (Figure 2.5).

The grid consists of intersecting dark and light vel1ical and horizontal lines that form

large and small squares. When the ECG is recorded at the standard paper speed of 25

mm/sec:

• The dark vertical lines are 0.20 second (5 mm) apart.
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• The light vertical lines are 0.04 second (I mm) apart.

• The dark horizontal lines are 5-mm apalt (0.5 mY) .

• The light horizontal lines are I-mm apart (0.1 mY).
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Figure 2.5 - ECG paper

Conventionally, the sensitivity of the ECG machine is adjusted, i.e., calibrated so that 1

mY electrical signal (referred to the electrode) produces a 10-mm deflection on the

ECG.

2.2.4 ECG Leads

An ECG lead is a record (spatial sampling) of the electrical activity generated by the

heart that is sensed by either one of two ways: (I) two discrete electrodes of opposite

polarity or (2) one discrete positive electrode and an "indifferent," zero reference point.

A lead composed of two discrete electrodes of opposite polarity is called a bipolar lead;

a lead composed of a single discrete positive electrode and a zero reference point is a

unipolar lead.

Depending on the ECG lead being recorded, the positive electrode may be attached to

the right or left arm, the left leg, or one of several locations on the anterior chest wall.
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The negative electrode is usually attached to an opposite arm or leg or to a reference

point made by connecting the limb electrodes together.

For a detailed analysis of the heart's electrical activity, usually in the hospital setting, an

ECG recorded from 12 separate leads (the 12-lead ECG) is used. The 12-lead ECG is

also used in the prehospital phase of emergency care in certain advanced life support

services to diagnose acute myocardial infraction and to help in the identification of

certain arrhythmias. A 12-lead ECG consists of three standard (bipolar) limb leads

(leads I, II, and Ill) (Figure 2.6), Three augmented (unipolar) leads (leads aVR, aVL,

and aVF) (figure 2.7), and six precordial (unipolar) leads (VI, V2, V3, V4, Vs, and V6)

(Figure 2.8).

When monitoring the heart solely for arrhythmias, a single ECG lead, such as the

standard limb lead II, is commonly used, especially in the prehospital phase of

emergency care.

•
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Figure 2.6 - The standard (bipolar) limb leads I, II, and Ill.
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Figure 2.8 - Precordial (unipolar) leads,
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Chapter 3

Review of Some ECG Compression Methods

3.1 Introduction
A Large Variety of techniques for ECG compression has been proposed and published

over the last thirty years. These techniques have become essential in a large variety of

applications, from diagnosis through supervision and monitoring applications.

In general, compression techniques may be divided into two: errorless methods and

methods that produce reconstruction errors. In most ECG applications, the errorless

methods do not provide sufficient compression, and hence errors are to be expected in

practical ECG compression systems. ECG compression methods have been mainly

classified into three major categories [1], [2]: direct data compression, transformation

methods, and parametric techniques. This classification is not accurate and some

compression algorithms may be classified into two or more categories. In the direct

methods, the samples of the signal are directly handled to provide the compression. In

the transformation methods, the original samples are subjected to a (Iinear)

transformation and the compression is performed in the new domain. In the parametric

methods, a preprocessor is employed to extract some features that are later used to

reconstruct the signal.

Two important related parts of the compression methods to evaluate the performance

are the measurement of quality and compression. So, before reviewing some

compression methods, they are discussed below.

3.2 Distortion Measures
One of the most difficult problems in ECG compression applications and reconstruction

is defining the error criterion. Thc purpose of the compression system is to remove

redundancy, the' irrclevant information (which does not contain diagnostic information
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in the ECG case). Consequently the error criterion has to be defined such that it will

measure the ability of the reconstructed signal to preserve the relevant information.

Such a criterion has been defined in the past as "diagnostability" [3]. A similar problem

exists in synthesized speech signals, in which the criterion "intelligibility" has been

defined [4]. Today the accepted way to examine diagnostability is to get cardiologists'

evaluations of the system's performance. This solution is good for getting evaluations of

coders' performances, but it can not be used as a tool for designing ECG coders and

certainly, can not be used as an integral part of the compression algorithm.

In most ECG compression algorithms, the Percent Root-mean-square Difference (PRO)

measure is employed:

PRD=

N 2
I(x(n)-x(n))
,,=1 x 100

N

Ix' (n)
n==]

(3.1)

where x (n) is the original signal, x (n) is the reconstructed signal, and N is the length

of the window over which the PRD is calculated. As this measure is very sensitive to

the DC level of the original signal, a second definition of the PRO that overcomes this

problem is sometimes used

PRD2=

N 2
I(x(n)-x(n))
,,-I xlOO

N ,

I(x(n)-xf
11==1

(3.2)

where x is the average value ofthe original signal.

Despite their widely accepted use as distOliion measures, PRD and PRD2 do not i
indicate precisely the quality of the reconstruction [5]. In other words, a low value of

these measures does not guarantee total preservation of the essential features of the

original record and the decompressed signal has also to be evaluated by visual

inspection. Recently, a new ECG distortion measure, called Weighted Diagnostic

Distortion (WDD), has been introduced [6]. WDD, which is based on PQRST

diagnostic features, secms wcll correlated with cardiologists' perception, but it is

expensive to calculate [5].
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In the literature, there are some other error measures for comparing original and

reconstructed ECG signals [7], such as the Root Mean Square error (RMSE):

RMSE=

N 2

I(x(n)-i(n))

N

(3.3)

Another distortion measure is the Signal to Noise Ratio, which is expressed as:

[
i(x(n)-x)' ]

SNR = 1010g ~,,=l __

~(x(n)-i(n))'

where x is the average value of the original signal.

(3.4)

A Maximum amplitude error or Peak Error (MAX or PEl, is also an error measure,

which is expressed as:

MAX =m~x\lx(n)-i(n)l) (3.5)

All these error measures have many disadvantages, which all result in poor diagnostic

relevance. For example, base line drift in the reconstructed signal causes a non-zero

value in all these error measures, but this distortion has no diagnostic meaning.

Furthermore, every segment of the beat has a different diagnostic meaning and

significance. A given distortion in one segment does not necessarily have the same

weight as the same distortion in another segment. For example, in many patients' ECG,

the ST segment is much more diagnostically significant than the TP segment.

3.3 Compl"ession Measures
Many problems exist in the definition of compression measure. These problems mostly

derive from the lack of uniformity (no standardization) in the test conditions of the

various algorithms in respect of sampling frequencies and quantization levels. The size

of compression is olien measured by the Compression Ratio (CR) which is defined as

the ratio between the number of bits to represent the original signal and the n'l1l11berof

bits to represent the compressed signal.
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CR = total number of bits to represent the original ECG signal (3.6)
total number of bits to represent the compressed ECG signal

The problem is that every algorithm is fed with an ECG signal that has a different

sampling frequency and a different number of quantization levels; thus, the bit rate of

the original signal is not standard. Some attempts were made in the past to define

standards for sampling frequency and quantization, but these standards were not

implemented and the algorithms' developers still use rates and quantizers that are

convenient to them.

In the literature, some authors use the number of bits transmitted per sample of the

compressed signal as a measure of information rate. This measure removes the

dependency on the quantizeI' resolution, but the dependence on the sampling frequency

remams.

Another way is using the number of bits transmitted per second which is expressed as

compressed data rate (CDR).

CDR = total number of bits to represent the compressed ECG signal
duration of original ECG signal in sec

total number of bits to represent the compressed ECG signal
=
number of samples of original ECG signal/sampling frequency

(3.7)

This measure removes the dependence on the quantizeI' resolution as well as the

dependence on the sampling frequency.

3.4 Direct Methods

Direct data compression methods rely on prediction or interpolation algorithms which

try to diminish redundancy in a sequence of data by looking at successive neighboring

samples. Prediction algorithms employ a priori knowledge of previous samples, whereas

interpolation algorithms use a priori knowledge of both previous and future samples. In

consideration of the algorithmic structure of present ECG data reduction methods, direct

data compression schemes can be classified into three categories: tolerance-comparison

data compression methods, data compression by a differential pulse code modulation
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(OPCM) techniques, and entropy coding techniques. In the first category a present error

threshold is utilized to discard data samples; the higher the present error threshold the

higher the data compression with lower recovered signal fidelity will result. The OPCM

techniques attempt to diminish signal redundancy by using intersample correlation. The

entropy coding techniques reduce signal redundancy whenever the quantized signal

amplitudes have a nOlllllliform probability distribution.

3.4.1 Tolerance-Comparison Data Compression Techniques

In this section, some of the known tolerance-comparison ECG compression algorithms

wi II introduced.

3.4.1.1 The AZTEC (Amplitude Zone Time Epoch Coding) Technique

The AZTEC algorithm was originally developed by Cox et al. [8] for preprocessing

real-time ECG's for rhythm analysis. It has become a popular data reduction algorithm

for ECG monitors and databases with an achieved compression ratio of 10: 1 (500 Hz

sampled ECG with 12 bit resolution). However, the reconstructed signal demonstrates

significant discontinuities and distortion (PRO of about 28%). In particular, most of the

signal distortion occurs in the reconstruction of the P and T waves due to their slowly

varying slopes.

The AZTEC algorithm converts raw ECG sample points into plateaus and slopes. The

AZTEC plateaus (horizontal lines) are produced by utilizing the zero-order

interpolation. The stored values for each platcau are the amplitude value of the line and

its length (the number of samples with which the line can be interpolated within

aperture E. The production of an AZTEC slope starts when the number of samples

needed to form a plateau is less than three. The slope is saved whenever a plateau of

three samples or more can be formed. The stored valued of the slope are the duration

(number of samples of the slope) and the final elevation (amplitude of last sample

point). Even though thc AZTEC provides a high data reduction ratio, the reconstructed

signal has poor fidelity mainly becausc of the discontinuity (step-like quantization) of

the wavcs. A significant improvement in thc shape, while smoothing thc discontinuity,

is achieved by using a smoothing filter, but this improvcmcnt causes higher error.
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A modified AZTEC algorithm was proposed in [9], in which the threshold EO is not

constant and is a function of the temporary changes in the signal properties. A data

compression ratio comparable to that of the original AZTEC algorithm was achieved

and signal reconstruction was improved (by means of PRD).

In another algorithm [10], vector quantization was used along with the m-AZTEC to

produce a multi-lead ECG data compressor. This approach yielded a compression ratio

of 8.6: 1.

3.4.1.2 The Turning Point Technique

The turning point (TP) data reduction algorithm [II] was developed for the purpose of

reducing the sampling frequency of an ECG signal from 200 to 100 Hz .

The algorithm processes three data points at a time: a reference point (Xo) and two

consecutive data points (XI and X2). Either XI or X2 is to be retained. This depends on

which point preserves the slope of the original three points. In this method, only the

amplitudes are to be stored but not their locations. Therefore, local error results.

The compression ratio IS a fixed 2: I, the sampling frequency is 200 Hz and the

quantization is 12 bit.

3.4.1.3 The Coordinate Reduction Time Encoding System (CORTES)

CORTES algorithm [12] is a hybrid of the AZTEC and TP algorithms. In this algorithm,

the ability of the TP is exploited to track the fast changes in the signal, and the ability of

the AZTEC is exploited to compress effectively isoelectric rcgions. CORTES applies

the TP algorithm to the high frequency regions (QRS complexes), whereas it applies the

AZTEC algorithm to the lower frequency regions and to the isoelectric regions of the

ECG signal.

The typical performances are compression ratio of 5:1 and PRD of 7%. The sampling

frequency is 200 Hz, and the quantization is 12 bit.
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3.4.1.4 Fan and SAPA Techniques

Fan and Scan-Along Polygonal Approximation (SAPA) algorithms, are both based on

first-order interpolation [I]. The Fan algorithm was tested on ECG signals in the 1960's

by Gardenhire, and further description was reported in recent reports [13] of the Fan

method. In this method, the compressor searches for the most distant sample (on the

time axis), such that if a line is drawn between it and the last stored sample, the local

error along the line will be lower than a specific error tolerance - 1;. The location and the

amplitude of this sample are stored, and this process recurs. In this method, the

reconstructed signal looks like a broken line, and its fidelity depends on the error

threshold (1;). The greater the threshold is, the better the compression ratio, but the

reconstructed signal has poorer fidelity.

The Scan-Along Polygonal Approximation (SAPA) techniques [14] are based on a

similar idea to the Fan algorithm, and have similar performances. The SAPA2

algorithm, one of the three SAPA algorithms, showed the best results.

Typical performances are a compression ratio of 3: 1 and a PRD of 4%. The sampling

frequency is 250 Hz, and the quantization is 12 bit.

3.4.1.5 SAlES: Slope Adaptive Interpolation Encoding Scheme

The SAlES algorithm [15] combines the AZTEC and Fan compression techniques. It

employs the AZTEC's slope compression technique in encoding the QRS-complex, and

utilizes the Fan technique for encoding the low-frequency waves of the ECG (the

isoelectric, P, and T waves).

The rep0l1ed performances are a compression ratio of 5.9: I and a PRD of 16.3%. The

sampling frequency is 166 I-Iz, and the quantization is 10 bit.

3.4.1.6 The SLOPE Algorithm

The SLOPE algorithm [16] attempts to delimit linear segments of different lengths and

different slopes in the ECG signal. It considers some adjacent samples as a vector, and

this vector is extended if the coming samples fall in a fan spanned by this vector and a

(
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threshold angle; otherwise, it is delimited as a linear segment. Similar to the SAPA and

Fan algorithms, the SLOPE reconstructed signal looked like as continuous broken line.

The reported performances were: average bit rate of 190 bps "while still maintaining

clinically significant information". The results were given for a database sampled at 120

Hz and quantized at 8 bits.

3.4.1.7 The CORNER Algorithm

The CORNER algorithm [17] selects "corner points" by using the curvature of a sample

a'ld its displacement from an encoded linear segment as criteria. The curvature is

estimated using the second-order difference signal.

The reported performances were average bit rate of 0.79 bits per sample with SNR of27

dB. The database used to evaluate the method was the MIT -B1H database, which has a

sampling frequency of 360 Hz and 11 bit quantizeI' resolution.

3.4.2 Data Compression by Differential Pulse Code Modulation

(DPCM)

Some algorithms for ECG compression based on DPCM have been presented in the

literature. Some of them use the DPCM as minor part of the over-all compression

scheme. The basic idea behind the DPCM is that the error (residual) between the actual

sample and the estimated sample value:

r(n) = x(n)-x(n) (3.8)

is quantized and transmitted or stored. The reconstruction error is mainly caused by the

amplitude quantization noise of the quantized residual.

The performances of DPCM coders as a linear predictors for a compression system for

ECG signals were tested by Ruttiman and Pipberger [18]. In their research some

important conclusions were reached: (a) increasing thc predictor order beyond 2 does

not improve performance, (b) the prediction coefficients are barely changed as a

function of time and, therefore, there is no use of Adaptive DPCM (ADPCM). Huffman
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coding was combined with this compressor, and the reported performances were not

significantly different from the performances of other direct compression methods. The

database used has a sampling frequency of 500 Hz and 8 bit quantization. The

compression ratio is about 7.8: 1 with PRD of 3.5%.

In other work which was performed by I-lsia [19], an attempt was made to exploit the

quasi-periodic characteristic of the ECG signal to reduce the variance of the prediction

error. The algorithm processes every cycle (beat) of the heart separately with two-stage

DPCM. In the first stage, the prediction error (residual) of the current heartbeat is

calculated r(n) by DPCM with a third order linear predictor. In the second stage, the

residual of the previous beat is subtracted from the residual of the current one, and the

difference e(n) is encoded with entropy code. Figure 3.1 shows this compressor.

input
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Detection

x(n)

3rd order
predictor

+

x(n)

r(n)
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Predictor

+
+

P( n)
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Figme 3.1 : Compression by two-step DPCM

The performances of the algorithm are compressIOn ratio of 2: I without any

reconstruction error.

Another important work was made by Hamilton PS & Tompkins WJ [20]. In their

compression algorithm, the current heartbeat is subtracted from an average beat, the

residual is first differenced and then Huffman encoded (Figure 3.2).

Using quantization step sizes of 35 fLY and a sampling frequency of 100 Hz, the

compressor is reported to have produced average data rates of 174 bits per second for

the 24 hI' MIT-BIH arrhythmia databasc.
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Figure 3.2: Compression by Average Beat Subtraction

3.4.3 Entropy Coding and its Application in ECG Compression

3.4.3.1 Entropy Coding

A Discrete Memoryless Source (OMS) coding system produces a symbol every T,

second. Each symbol is selected from a finite alphabet of symbols x; ; i = 1,2,...,L,

occurring with probabilities p(x;},i = 1,2, ...,L. The entropy of the OMS in bits per

source symbol is
I.

H(x) = - 2> (x;) log, p(x;}:s; log, L
;=1

(3.9)

where equality holds when the symbols are equally probable. The average number of

bits per source symbol is H (x) and the source rate in bits per second is defined as

H(x)
R=-- (3.10)

In a coder that fits one set of N bits for every symbol (fixed-length code words), the

number of bits required for symbol coding is

N = Ilog, Ll (3.11 )

When the source symbols are not equally probable, a more efficient encoding method is

to use variable-length codewords. An example of such encoding is the Morse code. In

the Morse code, the letters that occur 1110refrequently are assigned short code words and

those that occur infrequently arc assigned long code words. Following this general

phi losophy, we may use the probabi lities of occurrence of the different source letters in

•
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the selection of the code words. The problem is to devise a method for selecting and

assigning the code words to source letters. This type of encoding is called entropy

coding.

Two popular algorithms for this kind of coding are Huffman and Arithmetic coding.

3.4.3.1.1 Huffman Coding

A commonly used method for data compression is Huffman coding [21]. It produces

best code when the probabilities of the symbols are negative powers of 2. The method

starts by building a list of all the alphabet symbols in descending order of their

probabilities. It then constructs a tree, with a symbol at every leaf, from the bottom up.

This is done in steps, where at each step the two symbols with smallest probabilities are

selected, added to the top of the partial tree, deleted from the list, and replaced with an

auxiliary symbol representing both of them. When the list is reduced to just one

auxiliary symbol (representing the entire alphabet), the tree is complete. The tree is then

traversed to determine the codes of the symbols. This is best illustrated by an example.
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0.2 0.2

(1,1 0.4

o.:J 0.2

(1,,, 0.1

114 0.1

o
(1,1 0.4

(a) (b)

Figure 3.3: Huffman Codes

Given five symbols with probabilities as shown in Figure 3.3a, they are paired in the

following order:

I. 04 is combined with as and both are replaced by the combined symbol

045, whose probability is 0.2.
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2. There are now four symbols left, aI, with probability 0.4, and a2, a3, and

a45, with probabilities 0.2 each. We arbitrarily select a3 and a45,

combine them and replace them with the auxiliary symbol a345, whose

probability is 0.4,

3. Three symbols al'e now left, aI, a2, and a345, with probabilities 0.4, 0.2,

and 0.4, respectively. We arbitrarily sclect a2 and a345, combine them

and replace them with the auxiliary symbol a2345, whose probability is

0.6.

4. Finally, we combine the two rema1l1111gsymbols, al and a2345, and

replace them with a12345 with probability 1.

The tree is now complete. It is shown in Figure 3.3a "lying on its side" with the root on

the right and the five leaves on the left. To assign the codes, we arbitrarily assign a bit

of I to the top edge, and a bit of 0 to the bottom edge, of every pair of edges. This

results in the codes 0, 10, J 11, 1101, and I 100. The assignments of bits to the edges is

arbitrary. The average size of this code is 0.4 xl + 0.2 x 2 + 0.2 x 3+ 0.1 x 4 + 0.1 x 4 = 2.2

bits/symbol, but even more importantly, the Huffman code is not unique. Some of the

steps above were chosen arbitrarily, since there were more than two symbols with

smallest probabilities. Figure 3.3b shows how the same five symbols can be combined

differently to obtain a different Huffman code (11, 0 I, 00, 101, and 100). The average

size of this code is 0.4 x 2 + 0.2 x 2 + 0.2 x 2 + 0.1 x 3 +O.Ix 3 = 2.2 bits/symbol, the same

as the previous code.

3.4.3.1.2 Arithmetic Coding

The Huffman method is simple, efficient, and produces the best codes for the individual

data symbols. Howevcr, it produces ideal variable-size codes (codes whose average size

equals the entropy) is when the symbols have probabilities of occurrence that are

negative powers of 2 (i.e., numbers such as 1/2, 1/4, or 1/8). This is because the

Huffman method assigns a code with an integral number of bits to each symbol in the

alphabet. Information theory shows that a symbol with probability 0.4 should ideally be

assigned a 1.32-bit code, since -log2 0.4 '" 1.32. The Huffman method, however,

normally assigns such a symbol a code of I or 2 bits. Arithmetic coding overcomes the
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problem of assigning integer codes to the individual symbols by assigning one

(normally long) code to the entire input file. The method starts with a certain interval, it

reads the input file symbol by symbol, and uses the probability of each symbol to

narrow the interval. Specifying a narrower interval requires more bits, so the number

constructed by the algorithm grows continuously. To achieve compression, the

algorithm is designed such that a high-probability symbol narrows the interval less than

a low-probability symbol, with the result that high-probability symbols contribute fewer

bits to the output. An interval can be specified by its lower and upper limits or by one

limit and width. The output of arithmetic coding is interpreted as a number in the range

[0, I). [The notation [a,b) means the range of real numbers from a to b, including a but

not including b. The range is "closed" at a and "open" at b.] Thus the code 9746509 is

be interpreted as 0.9746509, although the 0. part is not included in the output file.

The first step is to calculate, or at least to estimate, the frequencies of occurrence of

each symbol. For best results, the exact frequencies are calculated by reading the entire

input file in the first pass of a two-pass compression job. However, if the program can

get good estimates of the frequencies from a different source, the first pass may be

omitted.

With this example in mind, it should be easy to understand the following rules, which

summarize the main steps of arithmetic coding:

1. Start by defining the "current interval" as [0, 1).

2. Repeat the following two steps for each symbol s in the input stream:

2.1. Divide the current interval into subintervals whose sizes are

proportional to the symbols' probabilities.

2.2. Select the subinterval for s and define it as the new current

interval.

3. When the entire input stream has been processed in this way, the output

should be any number that uniquely identifies the current interval (i.e.,

any number inside the current interval).

For each symbol processed, the current interval gets smaller, so it takes more bits to

express it, but the point is that the final output is a single number and does not consist of
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codes for the individual symbols. The average code size can be obtained by dividing the

size of the output (in bits) by the size of the input (in symbols).

The following example shows the compression steps for the short string

"SWISS MISS". Table 3.1 shows the information prepared in the first step (the

statistical model of the data). The five symbols appearing in the input may be arranged

in any order. For each symbol, its frequency is first counted, followed by its probability

of occurrence (the frequency divided by the string size, 10). The range [0, 1) is then

divided among the symbols, in any order, with each symbol getting a chunk, or a

subrange, equal in size to its probability. Thus "S" gets the subrange [0.5, 1.0) (of size

0.5), whereas the subrange of "I" is of size 0.2 [0.2, 0.4). The cumulative frequencies

column is used by the decoding algorithm.

Char Freg Prob. Range CumFreg
Total CumFreq~ 10

S 5 SilO ~ 0.5 [0.5, 1.0) 5
W ] IIlO~O.I [0.4,0.5) 4
] 2 2110 ~ 0.2 [0.2,0.4) 2
M I 1/10= 0.1 [0.], 0.2) ]

] 1/10=0.] [0.0,0.1) 0

Table 3.1: Frequencies and Probabilities of Five Symbols.

The symbols and frequencies in Table 3. I are written on the output stream before any of

the bits of the compressed code. This table will be the first thing input by the decoder.

The encoding process starts by defining two variables, Low and High, and setting them

to 0 and], respectively. They define an interval [Low, High). As symbols are being

input and processed, the values of Low and High are moved closer together, to narrow

the interval. After processing the first symbol "S", Low and High are updated to 0.5 and

1, respectively. The resulting code for the entire input stream will be a number in this

range (0.5 :s Code < 1.0). The rest ofthc input strcam will determine precisely where, in

the interval [0.5. I), the final co.de will lie. A good way to understand the process is to

imagine that the new interval [0.5, I) is divided among the five symbols of our alphabet

using the same proportions as for the original interval [0. I). The result is the five

subintervals [0.5, 0.55), [0.55, 0.60), [0.60, 0.70), [0.70, 0.75), and [0.75, 1.0). When
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the next symbol W is input, the third of those subintervals is selected, and is again

divided into five subsubintervals. As more symbols are being input and processed, Low

and High are being updated according to

NewH igh :=0 IdLow+Rangex HighRange(X);

NewLow:=O IdLow+Rangex LowRange(X);

where Range=OldHigh-OldLow and LowRange(X), HighRange(X) indicate the low

and high limits of the range of symbol X, respectively. In the example above, the second

input symbol is W, so we update Low: = 0.5 + (1.0 - 0.5)x0.4 = 0.70, High: = 0.5 +

(1.0-0.5) xO.5 = 0.75. The new interval [0.70, 0.75) covers the stretch [40%,50%) of

the subrange of S. Table 3.2 shows all the steps involved in coding the string

"SWISS_MISS". The final code is the final value of Low, 0.71753375, of which only

the eight digits 71753375 need be written on the output stream.

The decoder works in the opposite way. It starts by inputting the symbols and their

ranges, and reconstructing Table 3.1 It then inputs the rest of the code. The first digit is

"7", so the decoder immediately knows that the entire code is a number of the form

0.7 ..... This number is inside the subrange [0.5, I) of S, so the first symbol is S. The

decoder then eliminates the effect of symbol S from the code by subtracting the lower

limit 0.5 of S and dividing by the width of the subrange of S (0.5). The result is

0.43506~5, which tells the decoder that the next symbol is W (since the subrange of W

is [0.4, 0.5)).

To eliminate the effect of symbol X from the code, the decoder performs the operation

Code:=(Code-LowRange(X))/Range, where Range is the width of the subrange of X.

Table 3.3 summarizes the steps for decoding our example string.



Char.

s

w

s

s

M

s

s

L
H
L
H
L
H
L
H
L
H
L
H
L
I-I
L
H
L
I-I
L
H

The calculation of low and high

0.0 + (1.0 - 0.0) x 0.5 = 0.5
0.0 + (1.0 - 0.0) x 1.0 = 1.0
0.5 + (1.0 - 0.5) x 0.4 = 0.70
0.5 + (1.0 - 0.5) x 0.5 = 0.75
0.7 + (0.75 - 0.70) x 0.2 = 0.71
0.7 + (0.75 - 0.70) x 0.4 = 0.72
0.71 + (0.72 - 0.71) x 0.5 = 0.715
0.71 + (0.72 - 0.71) x 1.0 = 0.72
0.715 + (0.72 - 0.715) x 0.5 = 0.7175
0.715 + (0.72 - 0.715) x 1.0 = 0.72
0.7175 + (0.72 - 0.7175) x 0.0 = 0.7175
0.7175 + (0.72 - 0.7175) x 0.1 = 0.71775
0.7175 + (0.71775 - 0.7175) x 0.1 = 0.717525
0.7175 + (0.71775 - 0.7175) x 0.2 = 0.717550
0.717525 + (0.71755 - 0.717525) x 0.2 = 0.717530
0.717525 + (0.71755 - 0.717525) x 0.4 = 0.717535
0.717530 + (0.717535 - 0.717530) x 0.5 = 0.7175325
0.717530 + (0.717535 - 0.717530) x 1.0 = 0.717535
0.7175325 + (0.717535 - 0.7175325) x 0.5 = 0.71753375
0.7175325 + (0.717535 - 0.7175325) x 1.0 = 0.717535

Table 3.2: The Process of Arithmetic Encoding.
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Char. .
S
W
1
S
S

M
I
S
S

Code-low
0.71753375 - 0.5
0.4350675 - 0.4
0.350675 - 0.2
0.753375 - 0.5
0.50675 - 0.5
0.0135 -0
0.135 - 0.1
0.35 - 0.2
0.75 - 0.5
0.5 - 0.5

Range
=0.21753375/0.5
= 0.0350675 /0.1
= 0.150675 /0.2
= 0.253375 /0.5
= 0.00675 /0.5
= 0.0135 /0.1
=0.035 /0.1
=0.15 /0.2
= 0.25 /0.5
= 0 /0.5

= 0.4350675
= 0.350675
= 0.753375
= 0.50675
=0.0135
=0.135
= 0.35
= 0.75
= 0.5
=0

Table 3.3: The Process of Arithmetic Decoding.
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3.4.3.2 Entropy Coding of ECG's
Huffman coding has been implemented as part of some ECG DPCM coders and other

coders. In the DPCM coders, like those discussed in the previous section, the residual

was mapped into variable length codewords instead of fixed length ones. The residual in

those DPCM coders, has a non-uniform distribution and therefore, a better compression

ratio could be achieved. Recently Arithmetic coding is also being used for loss less

compression at the last step of lossy compression.

3.5 Parametric Methods
Although most of the reported ECG compression algorithms belong to the direct data

techniques and transformation techniques, more and more ECG compression algorithms

bas.ed on parametric techniques have been proposed in recent years. Some of these

algorithms are hybrids of direct and parametric techniques or transformation and

parametric techniques. The compression algorithms based on parametric techniques

require a preprocessing stage, which is sometimes heavy in the sense of calculation, but

this is not a problem for computers today.

3.5.1 Beat Code book
In the recent years, many ECG compression algorithms based on a Beat Codebook have

been presented. This group of algorithms is found to be very efficient in ECG

compression because it exploits the quasi-periodic nature of ECG signals. In this

method, the redundancy, which exists in the form of correlation between beats

(complexes), is reduced by matching a beat from a beat codebook to the currently

processed beat. All algorithms belong to this group have a QRS detector stage to locate

and segment every beat.

In the work of [22], average-beat templates are subtracted from the ECG signal. The

residual (which has reduced variance) is quantized adaptively, first differenced, and

Huffman encoded. The coded residual signal is stored along with the beat type (two

bits) and the beat arrival time. This compression algorithm was tested with the MIT-

BIH database, and the achieved bit rate was 193.3 bps, with PRD between 4.33% and

19.3%, depends on the tested signal.

c
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Nave and Cohen [2] used a Long-Term Prediction (LTP) model, where the prediction of

the nth sample is made using samples of past beats. The LTP residual signal was

quantized and further compressed using the Huffman code (Figure 3.4)

input LPF& X(II) LTP d (II) Entropy c (n)

ECG ND and Coding
Residual

Codebook
Encoding

CodeWord
Matching

LTP a LTP a,

Analysis Coefficients
Quantization

a
Locations I\.L

a lag BeatEndPoints Vector

Estimation Detection Encoding

Figure 3.4; ECG Compression based on Long Term Prediction

The compression ratio depends on the number of the residual quantizer levels, which is

determined prior to compression execution. For each cycle (beat) a number of

parameters are to be stored (transmitted): the index of the chosen beat codeword, the

quantized LTP coefficients, the beat locations vector, the quantizer range, and the coded

residual (optionally).

The algorithm was tested on a local ECG database, which has a sampling frequency of

250 Hz and quantization of 10 bits/sample. The performances of the algorithm were; bit

rate between 71 and 650 bps with PRO between 10% and I% respectively.

3.5.2 Analysis by Synthesis ECG Compressor (ASEC)

The ASEC algorithm [6] is based on analysis by synthesis coding, and consists of a beat

codebook, long and short-term predictors, and an adaptive residual quantizer. Fig. 3.5

shows the general scheme of the ASEC.

•
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Figure 3.5: General scheme of the ASEC. Huffman coding (which was not

implemented) can improve the results by approximately 10%

The ECG signal is first classified into one of two types: 1. Regular PQRST complex

ECG signal (the lower branch), or to 2. Irregular ECG signal (the upper branch), such as

ventricular fibrillation (VF) and ventricular tachycardia (VT). These irregular signals, in

general are less probable than the regular PQRST signal. Because the irregular signals

have no PQRST elements, they are not encoded like the regular ECG signal. Here, only

the compression algorithm of regular PQRST ECG signals is described. The ASEC

algorithm consists of three main subsystems: I) preprocessing, 2) coding: codebook

matching and long-term prediction (LTP), residue coding, error analysis, and 3)

decoding. The ECG signal is processed beat by beat. The incoming beat is segmented

into three time regions (P, QRS and T sections), which are then coded separately. The

beat is matched with the codebook to find the best matching stored beat ("codeword").

LTP coding is performed using the chosen codeword to produce the LTP estimated

(predicted) signal x(n). The difference between the original signal x(n) and the LTP

estimated signal x(n) is defined as the residue. The residue undergoes STP coding and

adaptive quantization to produce the coded signal. Prior to transmission, the signal to be

transmitted is decoded, and the qual ity of thc reconstructed signal is tested (by means of

WOO or PRO measure). The residual signal is rc-encoded with higher bit rate till the
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quality of thc rcconstructed signal IS satisfied (below a predetermined distortion

threshold).
A mean compression rate of approximately 100 bits/s (compression ratio of about 30: 1)

has been achieved with a good reconstructed signal quality (PR02 below 8%).

3.6 Transformation Methods
Transformation techniques have generally been used in vector cardiography or

multilead ECG compression and require preprocessing of the input signal by a linear

orthogonal transformation and encoding of the output (expansion coefficients) using an

appropriate error criterion. For signal reconstruction, an inverse transformation is

carried out and the ECG signal is recovered with some error.

Many orthogonal transform compression algorithms for ECG signals have been

presented in the last thirty years, such as the Fourier Transform, Walsh Transform [25],

Cosine Transform [26], and Karhunen-Loeve Transform (KL T) [27]. The typical

performances of the transform methods are compression ratio between 3: 1 to 12: 1.

In the recent years, many ECG compression algorithms have been proposed based on

the Wavelet Transform (WT) [28], [29]. The rep0l1ed performances are compression

ratio from 13.5:1 to 22.9:1 with the corresponding PRO between 5.5% and 13.3%.

3.6.1 Wavelet Transform Based Compression

The wavelet transform is a time scale representation that has been used successfully in a

broad range of applications, including ECG, audio, still and moving picture

compression. The wavelet decomposes a signal j(t) into a weighted sum of basis

functions, where the basis functions are dilated and translated versions of a prototype

function If/ called the mother wavelet. Dilation is accomplished by multiplying I by

some scaling factor s' where v E Z . Translation is accomplished by considering all the

integral shifts of If/. Putting this together gives the wavelct decomposition of a signal,

J(I) = I I C"If/(s't - k),
\' !illile k finite

kEZ (3.12)
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With s fixed, the value v controls the scale at which the signal is analyzed by '1/. If v is

large, low-frequency characteristics of the signal are analyzed, conversely, if v is small,

high-frequency characteristics of the signal are analyzed. Thus the wavelet

decomposition allows us to view the signal at various frequency bands. s is fixed to 2,

so the wavelet decomposition acts like a cascaded octave bandpass filter.

A wide variety of functions can be chosen as the mother wavelet v/, provided that

00f 'I/(t)dt = O. Here for example '1/ is chosen to be Daubechie's W6 wavelet.

The coefficients C,kare computed by means of the forward wavelet transform, which can

be accomplished by convolving the signalflt) with the basis function '1/" (t), where

(3.13)

The multiplication 2"/2 is needed to make the bases orthonormal.

The compression algorithm is as follows, The ECG signal is split into blocks of size N,

where N is a power of 2 (this is a requirement imposed by the W6 wavelet). The

blocking allows compression to be done in real time, as the ECG data is collected. Each

block is compressed separately, by the following steps [45]:

1. The forward wavelet transform is applied to each block, generating N

coefficients C,k.

2. All coefficients with magnitude less than some threshold Tare set to zero.

3. The remaining nonzero coefficients are quantized using the operation

C,', =lc" /2,/2 +0.5 J (3.14)

4. The block of quantized coefficients C,., is then run length encoded.

5. The run length encoded block is entropy encoded using an adaptive

arithmetic encoder.

The amount of compression achieved is controlled by the threshold value T - the higher

the threshold, the higher the compression ratio.
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The ECG data is recovered by inverting steps 5, 4, 3 and 1 of the compression

algorithm.

3.6.2 DCT and DCT -Based Compression.

Oue to better decorrelation and energy compaction properties and to the existence of

efficient algorithms for computation, Cosine [32] transform has been widely

investigated for data compression. The OCT, for example, has been used for ECG

[30,31,34,35], image [32,36,37], video [32], and audio [32] compression.

3.6.2.1 The One-Dimensional DCT

The most common OCT definition of a 1-0 sequence ben] of length N is

E[m]~(~ rC,,~b[n]Cos[(2n;;mff].

m ~O, 1,... , N-I

Similarly, the inverse transformation is defined as

b[] (
2 )/2 IN-I B[] [(2n+l)mff]n = - en m cos ,
N.' 2N

1110;0

n~O,I,...,N-l

In both equations (I) and (2) Cm is defined as

C
m

~ {(1/ 2)1/2 for 111~ 0
I for m;t 0

(3.15)

(3.16)

The coefficient E[O], which is directly related to the average value of the time-domain

block, is often called the DC coefficient, and the remaining coefficients are called AC

{:!, [(2n + 1)1I1ff] . .
coefficients. The plot of f,;; cos 2N for N ~ 8 and varYll1g values of 111 IS

shown in Figure 3.6.
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The first the top-left waveform (m = 0) renders a constant (DC) value, whereas, all other

waveforms (m = 1, 2, ... , 7) give waveforms at progressively increasing frequencies.

These waveforms are called the cosine basis jill1ction. These basis functions are

orthogonal. Orthogonal waveforms are independent, that is, none of the basis functions

can be represented as a combination of other basis functions.

Figure 3.6: One dimensional cosine basis function

If the input sequence has more than N sample points then it can be divided into sub

sequences of length Nand DCT can be applied to these chunks independently. Here, a

very important point to note is that in each such computation, the values of the basis

function points will not change. Only the values of b[n] will change in each sub-

sequence. This is a very important property, since it shows that the basis functions can

be pre-computed offline and then multiplied with the sub-sequences. This reduces the

number of mathematical operations (i.e., multiplications and additions) thereby

rendering computation efficiency.
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3.6.2.2 DCT Based Compression

There are normally 4 general steps in a OCT-based compression of a data sequence x:

1. Partition of x in Nb consecutive blocks bi, i=O, I, ... , Nb-I, each one with Lb

samples;

2. OCT computation for each block;

3. Quantization of the OCT coefficients;

4. Lossless encoding of the quantized OCT coefficients.

The type-II OCT (OCT-1I) [32] is commonly used for data compression due to its

greater capacity to concentrate the signal energy in few transform coefficients. Let bi[n],

n =0,1, ... , Lb-l, represent the Lb values in block bi; the one-dimensional OCT-1I of this

block generates a transformed block Bi constituted by a sequence of Lb coefficients

B,[m], m =0,1, ... , LvI, given by:

B,[m] =UJ' c'"~ b,[n]cOf2n;~~mff J
m =0, I, ..., Lb-l

where

c'" = 1 for 1:Sm :SLb -1 and Co = (I /2t'

The DCT can be seen as a one-to-one mapping for N point vectors between the time and

the frequency domains [37]. Given B" b, can be recovered by applying the inverse

OCT-II:

b[ ]-(2J"' ~ B[] [(2n+l)mff]in - L...JCm I m cos ---- ,
Lh ",=0 2Lb

n=O, I, ...,Lb-l

(3.18)

To quantize B" one can use a quantization vector, q. Each element q[n], n =0, 1,... , Lb-I,

of q is a positive integer in a specified interval and represents the quantization step size

for the coefficient B,[n]. The elements B,[n] of the quantized OCT block B, are

obtained by the following operation:

B,[n] =B,[n]//q[n], (3.19)
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n=O, 1, ... , Lb-1

;=0, 1, ... ,Nb-l

where II represents division followed by rounding to the nearest integer. In a work about

image compression, Ratnakar [36] showed that it is possible to achieve a considerable

gain in the,fR, for a fixed distortion, by using thresholding. If t[n], n =0, 1, ... , Lb-l are

the elements of the threshold vector, t, the elements of B, are now given by:

- { 0,B,[n] = .
BJn]/1 q[n],

11=0, 1, , Lb-l

;=0,1, ,Nb-l

if IB,[I1]1 < t[l1]
otherwise

(3.20)

With or without thresholding, the dequantization, performed during the decompression

process to find an approximation to the original coefficients, consists simply in the

multiplication of each quantized coefficient by the correspondent component of q. For

most DCT-based compressors, the quantization is the only lossy operation involved.

The definition of q and t has a strong impact in CR and distortion [36]. A low quality

quantization can lead to low compression ratios associated with high distortions. The

intrinsic difficulties to define q and t, though, have led to the utilization of very simple

quantization strategies in the DCT based ECG compressors reported in the literature.

Ahmed et al. [34], for example, uses a unique threshold value to for all coefficients.

Coefficients with estimated variances less than to are quantized to zero. All elements of

the quantization vector are equal to I. Varying to controls the CR and the distortion. The

CAB/2-D DCT [31] uses a unique quantization step size for all coefficients. This value

is defined to minimize the squared mean error between the original and the

reconstructed signal, for a given CR, under the condition of having the same

quantization step size for all coefficients. As pointed out by Lee and Buckley [31], the

good resulting compression ratios are principally due to a .2-D approach, that

simultaneously explores the correlation between consecutive samples and consecutive

beats of the signal, rather than.to the quantization strategy. Poel [30] uses a q vector

whose components are values from a line segment. The value of q[O] is fixed at I and

the next values grow linearly up to the value of q[Lb-I]. Varying the inclination of the

line segment controls the CR and the distortion. Thc loss less encoding of the quantized
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DCT coefficients generally involves run length encoding, because the quantization

normally generates many null values, followed by an entropy encoder [31].

Batista, Melcher and Carvalho [38] developed a method where the ECG signal was

partitioned into blocks of 64 samples and DCT was applied to those blocks.The

coefficients were quantized and thresholded by the optimum q and t vectors which were

defined in a way so that the entropy of the quantized coefficients were minimized for a

given distortion. The dc coefficients were differentially encoded. Then all the

coefficients were resized in the limit of -128 to 127 and encoded by arithmetic

encoding. The method was applied on the first two minutes of both channels of the 48

records of the MIT-BlH Arrhythmia Database. Average compression ratios of 6.2,7.9,

9.3 and 10.9 were achieved for PRDs equal to 1.5%,2.0%,2.5% and 3.0% respectively.

In our present work, we followed their method [38] of defining the optimum q and t

vectors. So the scheme of generation of these vectors is described in the next chapter.



Chapter 4

The Proposed Method

4.1 Introduction
This papet presents an ECG compressor based on optimized quantization of Discrete

Cosine Transform (DCT) coefficients. The ECG to be compressed is partitioned into

beats and a standard reference signal is subtracted from the period normalized beats.

Then DCT is applied on the blocks of residual signal and each DCT block is quantized

using a quantization and a threshold vector that are specifically defined for that signal.

These vectors are defined, via Lagrange multipliers, so that the estimated entropy is

minimized for a given distortion in the reconstructed residual signals. The optimization

method presented in this paper is an adaptation for ECG of a technique previously used

for image compression [36]. The quantized coefficients are clipped within a specified

range, and the zeros are coded by run length encoding. In the last step of the compressor,

the quantized coefficients are coded by arithmetic coder. The Percent Root-Mean-Square

Difference (PRD) has been adopted as a measure of the distortion introduced by the

compressor.

The ECG signals on which the proposed compression algorithm has been applied for

evaluation are taken from the MIT-BIH Arrhythmia Database where the sampling rate is

360 Hz and sample resolution is 11 bits/sample. The figures 4.4 to 4.19 presented in the

description of the compression algorithm are related to the steps of compression of the

'first 3.5 minutes of the ECG signal of record 100, channel MLiI.

4.2 Compression Algorithm:

The proposed compression algorithm can be divided into pre-processing stage and

encoding stage. The pre-processing stage is also divided into the first and second pre-

processing stages. The figures 4.1 to 4.3 shows the block diagrams of the compression

algorithm.

.'".r
'C, "
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4.2.1 The First Pre-processing Stage

At first, the ECG signal is partitioned into its periods or beats. A beat is defined as the

signal between two R waves. The R waves are detected by the algorithm described in the

appendix-A. As ECG signal is quasiperiodic, the lengths of the partitioned blocks (beats)

are not equal. The dc components of the beats are also different. The partitioned beats

with unequal beat dlll'ations are shown in the figure 4.4.

200

'"0
100 -

50

o.

I

_'",._. __ J,_, .,_._,.. •• _.l ..•."..•.._.-. ..__.....•_.-1 __ ••• __ ••• __ ••••• _ •• ' ••.•••
200 250 300 350

Figure 4.4 : The partitioned unnonnalized beats of ECG signal

These partitioned beats are then period normalized. The dc variations are also removed.

For this purpose the partitioned blocks are OCT transformed. The dc coefficients are

removed by assigning zeros. Then the first 270 OCT coefficients are taken from the

OCT coefficient blocks. If any OCT coefficient block contains less than 270

coefficients, then the blank coefficients arc filled with zeros. Then the blocks of 270

OCT coefficients are mCT transformed. These operations make the beats of ECG signal

of equal length (270 samples which is the standard period) with zero dc components.

This is shown in figure 4.5.
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Figure 4.5 : The period normalized beats ofECGsignal having zero de component.

After averaging and rounding these normalized periods, we get the standard reference

signal (figure 4.6). This is stored in the vector R.

250

200

150

100

50.

o

i

\

\

-50 !

o 50 100 150
,

zoo 250

Figure 4.6 : The standard reference Signal

The duration of the beats that are segmented from the original ECG signal are stored in

the vector p, which is shown in the figure 4.7. The removed dc coefficients are shown in

the figure 4.8. These dc coefficients are rounded after dividing by 10, and the difference

of them are stored in the vector 111. It is shown in the figure 4.9.
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Figure 4.7: The vector p (beat durations of the ECG signal)
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Figure 4.8: DC coefficients of the beats.
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Figure 4.9: The vector 11/
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4.2.2 The Second Pre-processing Stage

Figure 4.2 shows the second pre-processing stage where the optimum quantization and

threshold vectors arc generated. The reference signal is subtracted from the period

normalized beats to get blocks of residual signal of equal length (270 samples). The

residual signals are shown in figure 4.10.

100

eo
'\

60

40 -

20 -
,
i

0-

-20 "

-40 "

-60

-80 -

-"100
L- ~__~_L ..L__~_.".__._._._._. .J._~ ,._._ __l ~ __

o 50 100 150 200 250

Figure 4.10 : The residual signals

OCT is then applied to these residual signals. The first 170 OCT coefficients are stored

for the encod ing stage.

The first 170 OCT coefficients are considered for quantization and thresholding

operation. Rest of the coefficients arc assumed to be zero. Let Nb be the total number of

beats, B; be the /h vector of 170 OCT coefficients (i.e, first 170 OCT coefficients

corresponding to the residual signal of i'h beat).

B is to be thresholded and quantized using the optimum threshold vector t and

quantization vector q. Thresholding and quantization are necessary for the minimization

of entropy and reducing allocation of bits for the values. Thresholding generates a lot of

zeros and quantization limits the values in a shorter range. To get the optimum t and q

vcctors, the following tasks are done. For all the nIh coefficients, q[n] = 1,2,3, ... ,32

and t[n] = q[n]/2, q[n]/2+0.25, q[n]/2+0.5, ... , 32 are tested for quantization and

thresholding operation, where n = 1,2,3, ... , 170. Let B be the quantized coefficients.

•



, { 0,BJn] =
round(B,[n]/ q[n]),

if IB,[n]1 < 1[12]
otherwise

50

(4.1 )

12 = 1, 2, 3, , J 70

i = 1,2,3, ,Nb

The mean squared error introduced by the quantization of coefficient number 12 is given

by,
N.

J "" '
D,,(q[n],I[n]) = Ii L. (E,[n] - q[n]B,[n])'

h ;=1

12= 1,2,3, ,170

(4.2)

Considering that, due to the quantization and thresholding process, a value v arises N,,(v)

times in the coefficient number 12 of the Nb quantized blocks. Then the entropy

H,,(q[n],I[n]) of the coefficient number 12, measured over all quantized DCT blocks is

given by,

where

H,,(q[n],I[n]) = - LP,,(V) log, p,,(v)

p,,(v) = N~V)
h

(4.3)

(4.4 )

As a result, for thresholding and quantization of the n'h coefficient, we get D.H curves.

D.H curves for the 2"d DCT coefficient are shown in the figure 4.11.

Then for a target distortion, we get the desired optimum q[n] and 1[12] by minimization of

Lagrangian J",

J" = H,,(q[n],t[n])+ A"D,,(q[n],t[n]),

12 = 1,2,3, ..... ,170

(4.5)

where ,I is the Lagrange multiplier. The value of ,I is given by the negative slope of the

line joining the two points on the convex hull supporting the D.H graph at target

distortion. Figure 4.12 shows how A is found frol11 the D.H curve. q is a part of the

compressed signal. Figure 4.13, 4.14, 4.15 and 4.16 shows the q and t vectors for PRDs

1.5%,2.0%,2.5% and 3.0% respectively.
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Figure 4.11 : Points of D-H found after the test of thresholding and quantization process of the

2'" DCT coefficient. The circles are the points 011 the inner convex hull.
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Figure 4.12 : The procedure of getting the value of Ie from the points of D-H
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Quantization vector for PRO = 1.5%

20 40 60 80 100 120 140 160

Threshold vector for PRO = 1.5%

4

3

2

1

0
20 40 60 80 100 120 140 160

Figure 4.13 ; Quantization and threshold vectors for PRD= 1.5%, record 100/MLII

Quantization vector for PRO = 2.0%

0
20 40 60 80 100 120 140 160

Threshold vector for PRO = 2.0%

8 . . . . . - . . . . . ......... . ................ . . . . .. . ...

Figure 4.14 ; Quantization and threshold vectors for PRD=2.0%, record 100/MLII
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Quantization vector for PRO = 2.5%

10

20 40 60
Threshold vector for PRO = 2.5%

140 160

12
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8

6

4

2

o 20 40 60 80 100 120 140 160
'Figure 4. I 5 : Quantization and threshold vectors for PRD=2.5%, record 100/MLII

Quantization vector for PRO = 3.0%

15

Threshold vector for PRO = 3.0%

140 160

20 40 60 80 100 120 140 160
Figure 4. I 6 : Quantization and threshold vectors ror PRD=3.0%, record 100/MLII
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4.2.3 Encoding Stage

After defining the optimum quantization and threshold vectors q and I, the quantization

of the first 170 OCT coefficients B is performed using q and I, and the quantized

coefficients B is produced. Some simple processing is done on the quantized coefficient

blocks and the vector s is generated containing values -31 to 31. s is then lossless

compressed by arithmetic encoding and comp is produced which is a stream of binary

numbers. Two overheads are also generated before arithmetic coding. They are counl

table of the values and length afthe sequence (i.e, length of the s vector).

The processing on the quantized DCT coefficients are shown in the figure 4.17 and

explained here. Maximum values in B are between -29 to 29. For a value v<-29, v is

replaced by -30 in B, and the value -(v+30) is stored in the vector uf. Similarly a value

v>29 is replaced by 30 in B, and (v-30) is stored in vector u2.

s
t

\'alues less than -29

values greater than '29r----------------------------------------~ 0l number of consecutive zeros r
I r---------------* C

~-------------------------------------------+
I
I
I
I
I
I

quantized
cocrticicnts

limiting the
v(lilies between
-29 to 29

joining the
quantized blocks
aner removing
the last
consecutive zeros

rUll lC',ngth
encoding
or zeros

processed
quantized
DCT
coefficient::>

Figure 4.17 : The processing on the quantized coefficients

After every last nonzero quantized DCTcoefficient ofB" a value -31 takes place which

indicates the end of the /', block. Omitting the last consecutive zeros (zeros after -31),

all the blocks are joined together in a single vector s.

There are many zeros in s for. thrcshold and quantization process. These zeros arc

reduced by run length encoding. If there are more than 9 consecutive zeros, then a value

31 takes place for them in the s vector, and the value (number of consecutive zeros -10)

is stored in a vector r.

~.

~,
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. All the values of 111,111 and r vectors are positive numbers. The vector II is rewritten in

the vector 111', where 5 bits are allocated for each vector element. So the values of 111

are broken down into 5 bits as follows. A value v ~ 31 is represented as a sequence of c

numbers of 31, where c is the greatest integer such that 31 x c ~ v, followed by the value

equal to v-3Ixc. For example, the value 66 in 111 would be represented as (31, 31, 4)

in 111'. Similarly the vectors 112 and r are rewritten. in the vectors 112' and r' where 5

bits are allocated for each vector element. Figures 4.18 and 4.19 show the vectors rand

1" respectively.

vector r
60

50
40

60

50

.<V
<Vo

50 100

.0

150 200
vector element number

Figure 4.18 : The vector r

vector r .

250 300

50 100 150 200 250
vector element number

Figure 4.19 : The vector r'

300 350

'.
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4.3 Bit Allocation and Compression Measure

The compressed signal is composed of the vectors comp, Ill', 112', r', m,p, reference

signal (the R vector), quantization vector q, dc coefficient corresponding to the first beat,

, count table of the symbols for arithmetic coding, length of the sequence which is to be

coded by arithmetic encoding.

As the elements of q are limited to integer values between I and 32, allocating 5 bits for

each element of the optimum q vector, it occupies 170x5=850 bits in the compressed

file. Using 16 bits to represent the number of occurrences of the symbols in s, the count

table occupies 63x 16= I008 bits. Allocating 10 bits for each element, R vectOl takes

270x I0=2700 bits. 10 and 30 bits are allocated for first dc coefficient and signal length

respectively. Thus 4598 bits are fixed irrespective to the duration of the ECG signal. If

the length of the ECG signal is large, then these fixed bits do not change the

compression ratio. The compression ratio actually depends on the vectors comp, Ill',

112', r', mandp only.

The vector m contains the information about the dc coefficients. 8 bits are allocated for

each element of m where the values may range from -128 to 127.

The vector p contains the beat durations. 10 bits are allocated for each element of p so

that the values may range from 0 to 1023.

5 bits are allocated for each element of the vectors Ill', 112'and r' to range the values

from 0 to 31.

So the compression ratio can be represented as

b 1'('('

Compression Ratio (CR) = '''K, ,
hwnlP + bill + hp + hr, + bill' + bill'

and the compressed data rate can be measured as

(4.6)

b +b +b +b,+b .+b .
Compressed Data Rate (CDR) = _."""E. m I' ' "I ,,2 (4.7)

101";; 1:'(.'(;
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where, b,,"IC(,(; = bits requircd to represent the original ECG signal

= length ( ECG signal) x 11

b,,,,,,,p = length ( comp) x 1

b", = length ( m ) x 8
b" = length (p) x 10

b,. = length ( y' ) x 5

b,,1' = length ( 1I1') x 5

b",. = length ( 1I2') x 5

!,," ICCG = duration of ECG signal in sec

= length ( ECG signal) / 360

4.4 Decompression Algorithm

Dccompression is performed in the reverse order.

Using the count table and signal length, the arithmetic coded signal comp is arithmetic

decoded and the vector s is produced.

From the vectors 1I1', ,1I2' and y', 1/1, 1I2 and r vectors are reproduced respectively.

In the place of 31, consecutive zeros are replaced. The number of consecutive zeros are

found from the vector y where the numbers are added with 10.

The numbers greater than 29 and less than -29 in s are represented by the numbers 30

and -30 respectively, and are recovered with the help of the vectors 1I1 and 1/2.

The last consecutive zeros of each quantized DCT coefficient block were replaced by the

number -31. So these numbers (-31) arc replaced by zeros such that the length of the

quantized DCT blocks become 170. Then the blocks are separated and B is reproduced.

The quantized coefficients of Bare multiplicd by the quantization vector If and we get

c.



C;[n]= Bj [ n]x q [n]

59

(4.8)

n = I, 2, , 170

i= 1,2, , Nb

The coefficients of C are increased to 270 where the first 170 coefficients are unchanged

and the remaining coefficients are zeros.

C is then meT transformed and the residual signals are created. These residual signals

are added with the standard reference signal (the R vector) and we get the period

normalized beats of270 samples.

Again these normalized beats are DCT transformed. The dc coefficients are replaced that

are reproduced from the vector m. The numbers of coefficients are changed according to

the vector p. Then these DCT coefficient blocks are mCT transformed and finally the

decoded / reconstructed signal .isgenerated.

\



Chapter 5

Results

5.1 Database Used for Compression

The database used in this work is a collection of files from the MIT-BIH Arrhythmia

Database CD-ROM (third edition). The CD-ROM contains several hundred ECG

recordings, over two hundred hours in all. Individual recordings contain one to three

signals and range from 20 seconds to nearly 24 hours in length; most have two signals,

are about 30 minutes long, and are annotated beat-by-beat. About one-sixth of the disk is

occupied by the MIT-BIH Arrhythmia Database, which is fully annotated. The disk also

contains nine additional EeG databases, and samples of several other databases of ECGs

and other physiologic signals. The disk is written in ISO 9660 format.

The recordings (ECG signals) are found in eleven directories on the disk. One of them

(the 'mitdb' directory) is the M1T-BIH Arrhythmia Database, which has been used in

this work. The directory consists of 48 annotated records, obtained from 47 subjects

studied by the Arrhythmia Laboratory of Beth Israel Hospital in Boston between 1975

and 1979. About 60% of the records were obtained from inpatients. The database

contains 23 records (the' 100 series') chosen at random from a set of over 4000 24-hour

Holter tapes, and 25 records (the '200 series') selected from the same set to include a

variety ofrare but clinically important phenomena that would not be well-represented by

a small random sample. Each record in this directory is slightly over 30 minl':es in

length. Each signal file contains two channels of ECG signals. Thesc ECG signals were

sampled at 360 Hz and quantizar resolution is II bits/sample. To each signal file a header

file and a reference annotation file are attachcd. The header files include information

about the leads used, the patient's age, scx, and medications. The reference annotation

files include beat, rhythm, and signal quality annotations.
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5.2 Results of Simulation

To assess the performance of the proposed method, we used the beats of the first two

minutes of MLiI channel of 40 records of the MIT-BIH Arrhythmia Database. The

records are 100, 101, 103, 105, 106, 107, III, 112, 113, 114, 115, 116, 117, 118, 119,

121,122,123,124,201,202,205,208,209,210,212,213, 214, 215, 217, 219 220,

221, 222, 223, 230, 231, 232, 233 and 234. We determ ined the optimum q and t vectors

for each test signal and for target PRD (equation 3.1) levels of 1.5%,2.0%,2.5% and

3.0% and PRD2 (equation 3.2) levels of 2.0%, 3.5%, 5.0% and 6.5% within 0.04

tolerance. In all cases, the real PRD or PRD2 resulting from the compression /

decompression process was within the desired range. After determining the optimum q

and t vectors, the signals were compressed and the compressions are measured in CR

(equation 4.6) and CDR (equation 4.7).

Table 5.1 shows the resulting compression ratio and compressed data rate (in bit per sec)

obtained for the test set for each PRD value. In the cases where PRD could not reach to

the desired range, the spaces are kept blank. The average CR and CDR achieved :~ very

much convincing.

Table 5.1 : CR and CDR of the test signals at 1.5%,2.0%,2.5% and 3.0% PRD

Record
PRD=I.5% PRD=2.0% PRD=2.5% PRD=3.0%

CR CDR CR CDR CR CDR CR CDR

100/MLII 7.3 539 10.4 382 13.1 302 16.2 244

101/MLII 6.9 576 9.1 437 11.6 343 14.5 273

103/MLII 7.4 536 10.5 1377 13.8 285 16.7 238

105/MLII 6.8 583 9.4 421 12.0 329 14.8 269

106/MLII 3.5 1136 5.0 800 6.0 665 6.9 567

107/MLII 10.5 376 13.9 285 18.7 211 22.4 177

111/MLII 5.3 748 8.1 489 10.7 370 13.7 290

112/MLII 29.1 136 42.4 93 60.3 66 83.5 47

113/MLII 5.3 742 7.5 527 9.7 409 11.4 348

114/MLII 8.2 484 11.2 353 13.9 285
- -

115/MLII 12.7 313 16.9 235 21.3 87 25.0 158
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116/MLII 12.2 324 16.2 244 2004 194 23.5 169

117/MLII 29 137 44.3 90 60.2 66 76.5 52

118/MLII 15.1 262 19.8 200 24.2 164 29.0 137

119/MLII 9.1 435 11.2 355 12.7 311 13.8 286

121/MLII 35.9 110 55.1 72 99.0 40 108.2 37

I 22/MLII 16.7 237 23.7 167 3304 119 44.3 89

123/MLII 14.9 267 19.8 200 23.3 170 27.7 143

I24/MLII 22.8 173 30.8 129 38.6 103 47.9 83

201/MLII 4.8 831 6.5 611 8.6 460 10.6 372

202/MLII 8.7 453 13.7 290 18.6 213- -

205/MLII 12.7 313 17.5 226 24.1 164 30.7 129

208/MLIJ 5.2 759 6.2 631 704 531 8.3 472

209/MLII 4.0 983 5.5 725 7.1 558 9.0 442

210/MLII 404 892 6.6 604 8.6 458 10.3 387

212/MLII 4.6 861 6.6 598 8.3 473 9.5 415

213/MLIJ 10.6 372 12.8 309 15.1 262 17.8 223

214/MLII 6.6 602 8.3 476 9.7 408 1104 349

215/MLII 4.0 992 SA 728 6.7 595 7.7 514

217/MLII 8.6 460 11.6 343 14.1 280 16.6 239

219/MLII 9.0 441 10.9 364 12.7 31 I 14.9 265.

220/MLII 10.8 366 15.2 260 20.5 193 25.5 156

221/MLII 4.3 925 5.7 696 7.2 544 8.3 482

222/MLII 4.6 867 5.9 674- - - -

223/MLII 15.7 253 19.8 200 24.8 159 30.3 131

230/MLII 7.1 558 904 420 11A 349 13.0 304

231/MLII 4.9 813 6.9 577 8.2 485 9.3 428

232/MLII - - - 4.1 963- - -

233/MLII 6.7 592 7.9 501 904 423 10.5 381

234/MLII 7.3 538 11.3 351 14.9 267 18.7 212

Average 704 533 904 423 12.2 325 13.7 291

Figures 5.1 (a) shows the compression ratios and (b) shows the compressed data rates of

the test records at PRD = 3.0%.
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Figure 5.1 : (a) Compression Ratios and (b) Compressed Data Rates found at PRD ~ 3.0%
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Table 5.2 shows the compression ratio and compressed data rate obtained for the test set

for each PRD2 value. The spaces are kept blank in the cases where PRD2 could not

reach to the desired range.

Table 5.2: CR and CDR of the test signals at 2.0%, 3.5%, 5.0% and 6.5% PRD2

PRD2=2.0% PRD2=3.5% PRD2=5.0% PRD2=6.5%

Record CR CDR CR CDR CR CDR CR CDR.

(bps) (bps) (bps) (bps)

100/MLII 3.9 1010 8.2 483 12.1 328 16.6 239

101/MLII 6.7 594 11.5 345 17.2 230 25.0 161

103/MLII 8.3 477 15.7 253 25.1 158 40.8 97

105/MLII 7.4 542 13.8 288 22.0 180 37.6 105

106/MLll 3.5 1136 5.0 800 6.0 665 6.9 567

107/MLII 13.2 299 24.6 161 - - - -

11l/MLII 6.0 659 13.4 296 19.9 199 26.6 149

112/MLII 5.5 719 14.3 278 22.7 174 30.3 131

113/MLII 7.3 545 12.4 320 18.5 214 26.5 149

. 114/MLII 8.2 486 16.6 238 25.5 155 40.7 97

115/MLII 9.1 434 16.2 245 22.9 172 30.9 128

116/MLII 8.3 479 15.0 263 21.7 183 29.0 136

117/MLII - - 13.8 287 24.3 163 35.1 113

118/MLII 8.3 477 14.6 271 20.0 195 24.9 158

I 19/MLII 7.2 544 9.8 404 12.7 312 14.8 270

121/MLII 8.3 476 20.9 189 33.3 119 49.5 80

122/MLII 8.7 455 14.3 277 21.5 184 32.3 123

123/MLII. 7.2 547 13.2 299 18.6 213 22.6 176

124/MLII 12.3 321 21.7 182 32.2 123 40.4 98

20l/MLII 4.7 834 9.0 440 12.8 310 16.9 234

202/MLII 5.5 716 16.8 236 29.0 136 44.4 89

205/MLII 5.8 679 14.1 280 21.2 187 30.5 130

208/MLII 6.2 635 9.0 439 11.9 333 14.1 281



65

209/MLII 4.4 890 8.7 454 12.6 314 16.4 241

210/MLII 5.7 694 10.4 384 15.7 252 21.7 183

212/MLII 6.5 606 10.0 395 13.3 298 17.1 231

213/MLII 11.7 338 17.5 227 23.5 168 - -

214/MLII 8.1 485 11.9 334 17.4 227 23.5 169

215/MLII 4.9 813 7.9 500 10.6 372 13.2 299

2l7/MLII 11.2 353 19.3 205 29.5 134 - -

219/MLII 7.7 514 10.9 363 14.7 270 17.5 226

220/MLII 6.3 626 12.4 320 19.6 202 27.0 146

221/MLII 5.0 790 8.1 491 10.8 367 13.5 294

222/MLII 5.3 743 8.4 471 11.1 357
- -

223/MLII 12.2 325 20.1 197 30.0 132 37.0 107

230/MLII 8.9 441 13.8 286 18.2 217 21.4 185

231/MLII 5.4 731 9.0 440 11.3 350 13.8 287

232/MLII - - 3.9 1004 7.2 551- -

233/MLII 7.7 515 11.0 360 13.5 294 - -

234/MLII 10.7 368 19.6 202 31.1 127 49.0 80

Average 6.8 583 11.7 338 15.0 260 20.1 196

Figures 5.2 (a) shows the compression ratios and (b) shows the compressed data rates of

the test records at PRD2 = 6.5%.

Figure 5.3 (a) and (b) presents the plot of average compression ratio and average

compressed data rate at PROs 1.5%,2.0%,2.5% and 3.0%, (c) and (d) presents the plot

of average compression ratio and average compressed data rate at PROs 2.0%, 3.5%,

5.0% and 6.5%.

We also tested the performance of the compressor on the full duration (approximately 30

minutes) of record 100/MLII for PRO = 7.0%. The resulting compression ratio and

compressed data rate are 54.8: I and 79 bps respectively. For a given target PRD, our

implementation of the proposed method took approximately 25 min to compress 30 min

signal.
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Figure 5.3: (a) Average Compression Ratio and (b) Average Compressed Data Rate at

PRO 1.5%,2.0%,2.5% ancl3.0%, (e) Average Compression Ratio and

(d) Average Compressed Data Rate at PRD2 2.0%,3.5%,5.0% and 6.5%.

The processing was performed by the software MATLAB on a 2.4 GHz Intel Celeron

running Windows XI'. This time includes the reading of the signals from the hard disk,

the definition of the optimum q and I vectors for the target PRD, and the compression of

the signal.
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Figure 5.4 presents a single cycle of record 100/MLII from the MIT/BIH Arrhythmia

Database, and the reconstructed signal for PRD equal to 2.5% and CR equal to 13.1,

allowing detailed analysis of the distortions in important regions of the signal.
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Figure 5.4 : Detail of (a) record 100/MLII and (b) reconstructed signal

for PRO =2.5%, CR =13.1

Figures 5.5-5.11 allow visual assessment of the quality of the reconstruction at various

distortion levels for some larger sections of ECG traces with different characteristics.

Figure 5.5 presents 9 seconds of record 100/MLII from the MIT/BIH Arrhythmia

Database, and the reconstructed signal for PRD equal to 1.5%, 2.0%, 2.5% and 3.0%.

Figures 5.6-5.11 show 7- sec sections from channel MLII of records 112, 121, 124,205,

222 and 232 respectively, and the reconstructed signals and reconstructed errors for PRD

equal to 6.5%. These traces indicate an excellent preservation of QRS complexes and of

all important signal features. Figure 5.10 shows the performance of the compressor in

the presence of severe noise.
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Figure 5,6: (a) 7 second seclion of record 112/ MLlI, (b) reconstructed signal for PRD2 ~ 6,5%,

PRD ~ 1,6%, CR ~ 30.3, CDR ~ 131 bps, (c) residual signal.
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Figure 5.7: (a) 7 second section of record 121 / MLII, (b) reconstructed signal for PRD2 ~ 6.5%,

PRD = ] .9%, CR = 49.5, CDR = 80 bps, (c) residual signal.
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Figure 5.8; (a) 7 second section ofrecord 124/ MLiI, (b) reconstructed signal for PRD2 = 6.5%,

PRD = 2.7%, CR = 40.4, CDR ~98 bps, (c) residual signal.
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original ECG signal taken from record 205/ MLiI
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Figure 5.9: (a) 7 second section of record 205/ MLII, (b) reconstructed signal for PRD2 = 6.5%,

PRD = 3.1%, CR = 30.5, CDR = 130 bps, (c) residual signal.
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original ECG signal taken from record 232 f MLiI
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,



76

5.3 Comparison with Other Methods

Table 5.3 presents the comparison ofthe performance of the proposed method with some

well known ECG compressors. The PROs and CRs are obtained from the corresponding

literatures. Fixing the CRs, the PROs of those methods and the proposed method are

compared in this table. Table 5.4 compares the CRs for fixed PROs. We could not

compare our method with other methods for high PROs as we designed our compressor

for low PRO. Numbers marked by , are PR02 values. It can be seen from these tables

thal our proposed method can compress ECG data better than the mentioned methods.

Table 5.3 : Comparison of the proposed method with other methods. for fixed compression ratio

From literature PRO ('Yo)
Compression

Compressor
Proposed

Ratio
Compressor Compressor

1.5 1.2 6.2

Optimized quantization of OCT 2.0 1.6 7.9

coefficients [38] 2.5 2.0 9.3

3.0 2.3 10.9

Mean-shape vector quantizer [40] 4.1 2.8 13.1

Wavelet compression by set partitioning 1.2 0.8 4.0

in hierarchical trees [42] 3.0 2.1 10.0

Peak selection and OCT [43] 3.0 1.0 5.3

Sub-band compressor! FI6B FIR filter
2.8' 2.2' 7.3

[41 ]

AZTEC [6] 15.5' 2.0' 6.9

Scancalong polygonal approximation [6] 9.6' 2.0' 6.9

Long term prediction [6] 7.3' 2.0' 6.9

Analysis by synthesis
4.0' 2.0' 6.9

compressor/ASECPRo [6]

3.3' 1.4" 4.6
Gold washing adaptive vector quantization

6.3' 2.8' 9.4
/wavelet transform [44]

8.2" 3.8' 12.4



Table 5.4 : Comparison of the proposed method with other methods for fixed PRD
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From literature Compression Ratio

PRO (%) Proposed
Compressor Compressor

Compressor

1.5 6.2 7.4

Optimized quantization of OCT coefficients 2.0 7.9 9.4

[38] 2.5 9.3 12.2

3.0 10.9 13.7

Mean-shape vector quantizer [40] 4.1 13.1 16.7

Wavelet compression by set partitioning in 1.2 4.0 6.0

hierarchical trees [42] 3.0 10.0 13.7

Peak selection and OCT [43] 3.0 5.3 13.7

Sub-band compressor/ FI6B FIR filter [41] 2.8' 7.3 9.4

Long term prediction [6] 7.3' 6.9 22.4

Analysis by synthesis compressor/ASECI'RD
4.0' 6.9 12.8

[6]

Gold washing adaptive vector quantization 3.33 4.6 11.0

/wavelet transform [44] 6.3' 9.4 19.4

a PRD2



Chapter 6

Conclusion

6.1 Findings

In this thesis, we presented an effective ECG compression method based on discrete

cosine transform of the deviation of the ECG beats from a standard reference beat. The

residual beats contain less variations than the period normalized de removed beats. So

when we applied OCT on those residual beats, the magnitude of the high frequency OCT

coefficients became smaller. OCT concentrated the energy of the residual beats in the

first few low frequency coefficients. We applied carefully designed quantization strategy

to quantize the OCT coefficients. It minimized the entropy of the quantized coefficients

at any target distortion. This kind of strategy has been applied before mainly to image

compression. Our results show that this quantization strategy has been successfully

adopted for ECG signals. The strategy adopted here defines a unique instance of the q

and t vectors for each signal. In our work we generated optimum quantization and

threshold vectors for small PRO (max 3.0% PRO and 6.5% PRD2 ).

To keep the quantized coefficients in a defined shorter range, we resized them. It was

helpful for lossless arithmetic encoding. After removing the last consecutive zeros from

all the quantized blocks, we joined them in a single vector and the zeros inside the vector

were reduced by run length encoding. The vector was then arithmetic encoded. These

operations helped us to compress the data significantly. The side informations were also

kept in some vectors which were also resized. It was useful to allocate less number of

bits for the elements of those vectors thereby improve the compression ratio.

For the evaluation of performance of our proposed method, we ran our compressor over

the first two minutes of channel MLll of 40 records of the MIT-BIH Arrhythmia

Database. Results show that it is capable of achieving good CR values with low

distortion. We presented 7-second sections of six records for visual assessment of the
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quality of the reconstruction at 6.5% PR02. These traces present different characteristics

and indicate an excellent preservation of all important signal features.

We also compared our method with some other well known ECG compressors. Our

method compared favourably with the other compressors, producing considerably small

PRO (or PR02) for a given CR. Since a very simple coding scheme was employed in the

last step of our algorithm, it is clear that the good CRxPRO compromise achieved is

mainly due to the careful quantization strategy adopted. Taking large number of

coefficients into consideration (first170 from 270) for quantization for the compression

process also helped us to get better results.

Although the method performs better, the main disadvantage is, it cannot be

implemented for online ECG data compression. The reasons are given here. For

generating the standard reference signal and residual signals, the whole ECG signal must

be partitioned at first. The optimum quantization and threshold vectors are defined after

applying OCT to all the residual signals and then those OCT coefficient blocks are

thresholded and quantized. It is impossible to follow this procedure in online

compression technique. Resizing the values of the quantized blocks, removing the last

consecutive zeros, run length encoding of the inner zeros and then arithmetic encoding-

all these tasks must be done in offline operation. Being an offline technique, it requires

much time to compress a long duration ofECGsignal.

Another disadvantage of this method is that it compress only the signal between the first

and last identified QRS complexes. Rest of the signals cannot be compressed as they are

not classified as beats. If any QRS complex is not identified, the resulting beat contains

more samples of data, and the reconstructed beat becomes smoother than other beats for

limited number of OCT coefficients.
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6.2 Future Perspeetive

We can extend our technique in 2-0 OCT for future continuation. Combining the

quantization strategy used here with a 2-0 approach similar to that used in CAB/2-0

OCT might result in. good compression gains as there exists a good correlation between

the adjacent samples and adjacent beats. Taking a fixed number of period normalized

beats, 2-0 OCT can be applied on it, and after zigzag scanning the OCT coefficients, the

optimum quantization and threshold vector can be generated as we have done in this

thesis. The quantized coefficients can be encoded in the similar way as shown here.

C:.



Appendix-A: QRS Detection Algorithm

An ECG beat is defined as the signal sample from one R-wave to the next. Figure A.I

shows the block diagram of the QRS detection algorithm.

original
ECG
signal

T1

delay

differentia tor

Figure A.l: Block diagram of QRS detection algorithm

search
peaks ••• detected

peaks

At first the ECG signal is passed through a linear phase bandpass filter (4 hz to 40 hz)

for smoothing operation and reducing base line shifting. The impulse response,

magnitude response and the phase response of the bandpass filter is shown in the figure

A.2 and A.3. The group delay of the filter is 150.

Differentiation of the filtered signal provides the slope information of QRS complexes.

Since there are quick rise and fall times of the QRS complex in the ECG signals, the

derivative makes it easier to detect the time of occurrence of the QRS complexes. The

transfer function of the five-point differentiation equation is given by

(
1 ) _, _H(z)= "8 (-z "-2z 1+2zl+z') (A.I)

The absolute value of the output of derivative filter can be found by the following

operation

yen) = ~x(n)2 (A.2)

•
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Figure A.2 : Impulse response of the bandpass filter
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Figure A.3 : (a)The magnitude and (b) phase response of the bandpass filter
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This absolute valued signal is then passed through a moving average filter which

produces high value at the region of QRScomplex. The window size has to be taken

properly, neither so wide that merges the QRS complex and T wave together, nor so

narrow that produces several peaks in the integration waveform. It is calculated from

the equation below

yen) = (~ )[x(n -(N -I)) + x(n- (N - 2))+ + ~(n)] (A.3)

where N is the width of the integration window. This thesis takes N as 18.

As seen in figure A.I, the algorithm sets two thresholds T, and T2 to make decisions

T, is set 40 for the filtered ECG, and T2 is set 7 for the signals produced by the moving

window integration. The thresholded filtered signal is then delayed by 10 samples and

a logical 'and' operation is performed with the thresholded moving squared average

signal. As a result, possible location of peaks of the original ECG signal is found.

These locations are delayed byl60 samples from the original ECG. Searching in these

regions, we get the peaks. If there are more than one peak in the vicinity of 50 samples,

the highest peak is considered from those.

The sequences of the QRS detection algorithm is shown in figure AA where the ECG

signal is taken from the record 106/MLII of MIT-BIH arrhythmia database. Figures

A.5 to A.13 shows parts of ECG signals and their detected peaks of channel MLII of

records 107, 115, 117, 121, 124, 215, 220, 22] and 233 of MIT-BlH arrhythmia

database.
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Figure A.4 : The sequences of peak detection of the ECG signal taken from the record
106 (MUI) ofMIT-BIH arrhythmia database.



Detected peaks of the original ECG signal taken from record 107/MLII
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Figure A.S: Detected peaks of the original ECG signal taken from record 107/MLII

Detected peaks of the original ECG signal taken from record 115/MLII
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Figure A.6: Detected peaks of the original ECG signal taken from record 11S/MLII

Detected peaks of the original ECG signal taken from record 117/MLII
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Figure A.7: Detected peaks of the original EeG signal taken from record 117/MLII
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Detected peaks of the original EGG signal taken from record 121/MLII
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Figure A.8: Detected peaks of the original ECG signal taken from record 121/MLII

Detected peaks of the original EGG signal taken from record 124/MLII
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Figure A.9: Detected peaks of the original ECG signal taken from record 124/MLII

Detected peaks of the original ECG signal taken from record 215/MLII
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Figure A.I 0: Detected peaks of the original ECG signal taken from record 215/MLII



Detected peaks of the original ECG signal taken from record 220/MLII
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Figure A. t 1: Detected peaks of the original ECG signal taken from record 220/MLIt

Detected peaks of the original ECG signal taken from record 221/MLII
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Figure A.12: Detected peaks of the original ECG signal taken from record 221/MLII
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Figure A.13: Detected peaks of the original ECG signal taken from record 233/MLII



Appendix-B: MATLAB Programs

dc

clear

PATH= 'D:\Saiful\ECG_CD\cd\mitdb'; % path, where data are saved

ATRFILE= '100.atr'; % attributes-file in binary format

HEADERFILE= 'lOO.hea'; % header-file in text format

DATAFILE= '100.dat'; % data-file

SAMPLES2READ=7S600; % 2.1 minute

% number of samples to be read% in case of more than one signal: 2*SAMPLES2READ

samples are read

%------ LOAD HEADERDATA --------------------------------------------------

fprintf(l,'\\n$> WORKING ON %s ... \n', HEADERFILE);

signalh= fullfile(PATH, HEADERFILE);

fid 1=fopen(signaih, 'r');

z= fgetl(fid1);

A-; sscanf(z, '%*5 %d %d %d',[l,3]);

nosig= A(l); % number of signals

sfreq=A(2); % sample rate of data

clear A;

for k= 1: nosig

z= fgetl(fid1);

A= sscanf(z, ',%*s %d %d %d %d %d',[l,S]);

dformat(k)= A(l); % format; here only 212 is allowed

gain(k)= A(2); % number of integers per mV

bitres(k)= A(3); % bitresolution

zerovalue(k)=A(4); % integer value of ECGzero point

firstvalue(k)= A(S); % first integer value of signal

%(to test for errors)

end;

fclose(fid1);

clear A;



0/0 sign-bit

% sign-bit

otherwise

%------ LOAD BINARY DATA --------------------------------------------------

if dformat~= [212,212),

error{'this script does not apply binary formats different to 212.');

end;

signald= fullfile(PATH, DATAFILE); % data in format 212

fid2=fopen(sig nald, 'r');

A= fread(fid2, [3, SAMPLES2READ], 'uint8')';

% matrix with 3 rows, each 8 bits long, = 2*12bit

fclose(fid2);

M2H= bitshift(A(:,2), -4);

M1H= bitand(A(:,2), 15);

PRL=bitshift(bitand (A(: ,2) ,8),9);

PRR=bitshift(bitand(A(:, 2), 128), 5);

M( : , 1)= bitshift(M1H,8)+ A(:,l)-PRL;

M( : ,2)= bitshift(M2H,8)+ A(:,3)-PRR;

if M(l,:) ~= firstvalue,

error('inconsistency in the first bit values');

end;

switch nosig

case 2

M( : , 1)= (M( : , 1)- zerovalue(l));

M( : , 2)= (M( : , 2)- zerovalue(2));

TIME=(O: (SAMPLES2READ-l))/sfreq ;

case 1

M( : , 1)= (M( : , 1)- zerovalue(l));

M( : ,2)= (M( : , 2)- zerovalue(l));

M=M';

M(l)=[];

sM=size(M);

sM=sM(2)+1;

M(sM)=O;

M;:;M';

TIM E=(O: 2*(SAMPLES2READ )-1 )/sfreq;

% this case did not appear up to now!

0/0 here M has to be sorted!!!

disp('Sorting algorithm for more than 2 signals not programmed yet!');

end;

clear A M1H M2H PRRPRL;

fprintf(l,'\\n$> LOADING DATA FINISHED \n');

P=M(:,l);

Q=M(:,2);

89

C:.\" "\



O/o-----------------------------------------~-------------------
Y~P'; % ECG data

%-------------------------------------------------------------
plot(Y);

clear DATAFILE HEADERFILE M P PATH Q SAMPLES2READ ...

TIME ans bitres dformat fid1 fid2 firstvaiue ...

gain k nosig sfreq signald signalh z zerovalue

save('w_ Y.mat');

%% NEXT---7 sOl.m

s01.m
clear all;

de;

load w_Y;

Lb~270;

%-----------------------------------------

90

[b,Nb,avgl] ~PARTITIONING(Y, 75600) ;

%-----------------------------------------
R~ round(su m( b)/(Nb));

clear RR ;

RR~repmat(R,Nb, 1);

b1~b-RR ;

B~dct(b1')' ;

%------------------------------------------
hold on;

grid on;

plot(b','b') ;

plot(b1','g');

plot (R,'r');

%-------------------------------------------
clear R RR Y avgl b1

save ( 'w_sOl.mat' );

%%% NEXT ---> Entropy_and_Distortion.m

clear ali

load w_s01;

Lb1~170;

%75600 samples from Y

%%% R: Standard Reference
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Qmax=32;

Tmax=32;

Tiner=0.25;

T=length( 0.5 : Tiner: Tmax );

D= 20*ones(Qmax, T, Lb1);

H=20*ones(Qmax, T,Lb1);

%--------------------------------------------------
for k=1:Lb1

for q=l:Qmax

e(l,:)=B(:,k)';

1=0;

%%% D(q,t,k) H(q,t,k)

for t = q(2 : Tiner: Tmax,

1=1+1;

e1=abs(e);

e2=find(e1<t);

e(e2)=0;

eh=round(e(q);

CC=( B(:,k)-q*eh(l,:)');

CCC=CC*CC;

D(q,l, k) = (ones( 1,Nb) *CCC)(Nb;

eh1=sort(eh);

H(q,l,k)=O;

5=1;

while( s~=Nb+l )

a=eh1(s);

Nv=length(find(eh1(s: Nb) ==a));

Pv=Nv(Nb;

H(q, I,k) = H(q, l,k)-Pv*log2(Pv);

s=s+Nv;
end

end % t

end % q

end % k

clear B T fid1 fid2 i kin r1 e1 sum x Pv flag T a eh eh1 e Pv Nv n s r1 e1 k q t iCC CCC e2;

save ('w_Entropy _and_Distortion. mat');

%NEXT--->s02.m



s02.m
de;

clear all

load w_Entropy_and_Distortion;

Arr2 ~zeros(2, 5, Lb1);

for k~2:Lb1,

x=O;

for q~l:Qmax,

I~O;

for t~ q/2 : Tiner: Tmax,

x=x+l;

1~1+1;

Array(l,x)~H(q,l,k); % x

Array(2,x)~D(q,l,k); % y

end °/oO/at

end %%q

j ~ convhull( Array(l,:), Array(2,:)) ;

%%% x~Array(l,:); % H

%%% y~Array(2,: ); % 0

%%% j ~ eonvhull( x, V); % eonvhull( H, D);

XX(l,:)~Array(l,j); % H

XX(2,: )~Array(2,j); % D

plot(Array(1,:),Array(2,:),'b+'); grid on;

XX~XX';

XX~sortrows(XX);

hoid on;

clear Array;

Array(:, l)~XX(: ,2);

Array( :,2) ~XX(:, 1);
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M~Array(1,2);

L~length(find(Array( :,2)~ ~M));

x~length(Array');

Dis~min(Array(l: L,1));

P~min(fi nd(Array( 1: L,1)~~Dis));

%% lowest entropy.

%% number of lowest entropy.

%% lowest distortion for lowest entropy.

°/0% lowest position of lowest

%% distortion for lowest entropy.



refslope;O;

change=l;
y;l;
stnumber;y+ 1;

n4:::1;

Arr2(1,n4,k);Dis;

Arr2(2, n4, k) ;Array(y,2);

0/00/0 lowest entropy position.

%% starting point from which slope will be calculated.

%% Arr2 is the array of selected points.

%0/0 H
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%% H

%% D

while( (stnumber~;x+1)&(change;;1) ),

change=O;

for n3=stnumber:x,
if Array(y,2)~;Array(n3,2),

slope_yn3;( Array(y,1)-Array(n3, 1) )/( Array(y,2)-Array(n3,2) ) ;

if(slope_yn3 < refslope),

refslope;slope_yn3 ;

xl=n3;

change=!;

end

end

end %-n3

If change;;l,

n4;n4+1;

y=xl;

Arr2( 1,n4,k);Array(y, 1);

Arr2(2, n4, k) ;Array(y,2);

refslope;O;

stnumber=y+l;

end

end %while

plot(Arr2(2,:, k) ,Arr2( 1,: ,k), 'r-' ,Arr2( 2, :, k) ,Arr2( 1,:, k), 'ro');

clear Array XXX XX;

end %k

clear Array Dis L M P change j k I n3 n4 ...

q refslope slope_yn3 stnumber t x xl y ;

save ('w_s02.mat');

°/0%0/00/0 NEXT--->s03,m

-



s03.m
clear

load w_s02;

(optimum q, t and Encoding)
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%TD=1.37 % PRD=1.5

%TD=3.6 % PRD=2

%TD=6.52 % PRD=2.5

%TD=10.25 % PRD=3

%TD=13.85 % PRD=3.5

TarD= TD*ones( 1, Lb 1);

clear Arr3;

for k= 1: Lb1,

Arr3(:, :,k)=Arr2(:,: ,k)';

end

%-----------------------------------------------------------------------------------------------
for k=2:Lb1

L=length(Arr3(: ,1,k»;

P= max( fi nd (Arr3(:, 2, k) = = max(Arr3(: ,2, k)));

if (TarD(k»=Arr3(1,1,k))

lamda (k) = (Arr3( 1, 1, k)-Arr3(2, 1, k) )/(Arr3( 1, 2, k)-Arr3(2, 2, k»)- 50;

elseif (TarD(k)<Arr3(P,1,k»

lamda(k)=O;

else

for n=1:L-1

if (Arr3( n, 1, k) >TarD(k) )&(Ta rD(k) > =Arr3(n +1, 1,k))

lamda (k) = (Arr3( n, 1, k)-Arr3( n +1, 1, k) )/(Arr3( n,2, k)-Arr3( n + 1,2, k»;

end

end

end

end

clear n k P L Arr3 ;

%------------------------------------------------------------------------------------------------
clear qO to a;



qO~10*ones( 1,Lbl);

to~20*ones( 1,Lbl);

tq(l,:)~to;

tq(2,:)~qO;

for k~2:Lbl

clear J ;

x=O;

for q~l:Qmax,

I~O;

for t~ q/2 : Tiner: Tmax,

1~I+l;

x==x+li

J( 1,x) ~ D(q, I,k)-lamda(k)*H( q, I,k);

J(2,x)~q;

J(3,x)~t;

end %%t

end %%q

p~min(find(J( 1,:) ~ ~ min(J (1,:))));

qO(k)~J(2,p);

to(k)~J(3,p);

a(k)~J(l,p);

tq(l,k)~to(k);

tq(2,k)~qO(k);
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end °/oO/ok
%----------------------------------------------------------------------------------------------

clear k x I q t P J a K Q Arr2 Arr3 D H Nb TarD lamda

save ('w_qOto.mat');

%%% NEXT---> s04.m

s04.m
clear all;

load w_Y;

load w_qOto;

0/0-------------------------------------------;-------------------------------------------------
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Yl=Y(1:75600); %% 3.5 minutes

[b, Nb,s 1,C61, y2] = PARTITIONING_1 (Yl);

% b :- normalized beats

% sl :- DC coefficients

% y2 :- beat lengths

% Nb:- number of beats

% C61: - sample number of starting of the first beat

O/o--------------------------------------------~--------------------------------------------------

R= rou nd(su m( b)/( Nb)); %% R :- Reference Signal

RR= repmat( R,Nb, 1);

b1=b-RR;

B=dct(b1')' ;

%% bi;- residual signals

%% B :- OCT transform of residual signals

%-----------------------------------------------------------------------------------------------

[Bh] =THRESHOLDING_a nd_QUANTIZATION(B,qO, to, Lb1, Nb);

%% Bh :- Quantized 170 OCT coefficients

%-----------------------------------------------------------------------------------------------

g=10;

sl =round(sl/g);

%0/0 de coefficients are quantized by.10

Lb1=170;

Bh1=Bh(: ,2: Lb1);

y6 =REMOVING_ TAIL_ZER05(Lb1-1,Nb, Bh1);

%% y6 contains 23.5 , last consecutive Os are replaced by 23.5

n=find(y6= =23.5);

%% n1= find(y6 <= -30)

%% y6(n1) + 29 %% values < -29

%% find(y6 >= 30) %% also for 23.5

%% n2 includes n

%% y6(n1) - 29 %% values> 29

%% 30

%% -30

ZZ2 =y6( n2)- maxall;

y6(n2)=(maxall+ 1);

y6(n1)=-(maxail+l);

maxail=2g;

n1 =find(y6<-maxail);

ZZl=y6(n1)+maxall;

n2=find(y6>maxall) ;

.,



y6(n)~-31; %%-31 for replacing last consecutive Os.
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ZZI~-1 *ZZI;
%-------------------- run length encoding of zeros -----------------------------------------

cz;::10i %% cz:- max allowable consecutive zeros

[y6,All]~ RUN_LENGTH_ENCODING(y6,ez);

%% All:- number of consecutive zeros> 10

[SAll]~SEG( All-I0,31);

[SZZI]~SEG( ZZI,31);

[SZZ2]~SEG( ZZ2,31);

%-- ---- - - ---- ----- --- a rith matic coding -- - - -- - - --- -- - - - - ------ - --- - ------ ----- --- -- -- -- - - - ---

[eomp,eounts_y6, L_y6] ~ARITHMATIC_ENCODING(y6);

clear RR Y b bl All B Bh Bhl LAll LPpr LZZI LZZ2 Lb Lbl ...

Ppr Qmax TD Tiner Tmax YYYYYZZI ZZ2 ez ...

9 maxall n nl n2 to tq y6 y6_1

save w_compression.mat

sOS.m (Decoding)
clear all;

load w_compression;

y6 r~ a rith deeo (co mp, co unts_y6, L_y6) -32;

Allr~invSEG(SAll,31)+ 10;

ZZ 1r~ invSEG( SZZ 1, 31);

ZZ2r~invSEG(SZZ2,31) ;

cz=10;

% mum of consecutive zeros> 10

% values < -29

% values> 29

[y6 r] ~ RUN_LENGTH_D ECODING(y6r ,A11 r, ez);

ZZlr~ -ZZlr;

nr~find(y6r~~-31);

nlr~find(y6r~ ~-30);

n2r~find(y6r~ ~30);

y6r(nlr)~y6r(nlr)+ZZlr +1;

y6r(n2r)~y6r(n2r)+ZZ2r -1;

%% for -30

%% for +30

,
. ,



y6r(nr)=23.5; %°/0 for -31
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Lbl=170;

Bhlr=JOINING_ TAIL_ZEROS(Lbl-l,Nb, y6r);

Bhlr= [zer05( Nb, 1) ,Bh lr];

Lb=270;

Bhr=zero5(Nb,Lb);

Bhr(:, 1: Lbl)=Bhlr;

for k=l:Lbl,

Bhr(: ,k)=qO(k)*Bhr( :,k);

end

Br=Bhr;

RR=repmat(R,Nb,I);

br=idct(Br')';

br=br+RR;

br=dct(br')' ;

c6r=cum5um([C61, y2]);

g=10;

51=51 *9;

slr=sl;

%----------------------------------------------------------------------------------------------

cll=Nb+l;

cl0=650 ;

52r=zero5(cll-l,cl0) ;

52r(: ,1: Lb)=br(:,:);

52r(:,I)=51r(I,:)' ;

forx=l:cll-l,

Ypr( c6r(x): c6r(x+ 1)-1) = idct(52r(x, 1: y2(x)));

end

LENGTH=c6r( length( c6r) )-C61;



[PRD,PRD2] ~ PERCENT_ROOT_MEAN_SQUARE_D1ST(Ypr,C61, LENGTH,Yl)

Yplr~Ypr(C61: C61 +LENGTH-2);

Y1r~Yl(C61: C61 +LENGTH-2);

LSZZl ~length(SZZI);

LSZZ2~length(SZZ2);

LSA11 ~ length(SA11);

LsI ~length(sl);

Ly2~length(y2);

%- - --- - - - ---- - - - - - -- - - -- - --- - Comp ressi 0n Ra tio --- ---- -- - -- --- -- - -- - - - - - - - - -- - - -- --- --- ---

CR~LENGTH*l1/( length(comp) +Lsl *8 +Ly2*10 + LSZZI *5 +LSZZ2*5 +LSA11 *5)

%--------------------------- Compressed Data Rate ----------------------------------------

CDR~ ( length(eomp) +Lsl *8 +Ly2*10 + LSZZI *5 +LSZZ2*5 +LSA11 *5)

/( length(Yp lr)/360)

PARTITIONING.m
function [b,Nb,avgl]~PARTITIONING(Y, n_samples)

Ml~300;

As~80;

n~O:(Ml-l);

wel~0.0222*pi; % 4 hz

we2~0.2222*pi;% 40 hz

hd ~ideaUp(we2, MI)-idea Up(wel,M 1);

beta~0.1102*(As-8. 7)+ 10;

w_kai ~ ka iser(M l,beta)';

h~hd. *w_kai;

Yfilt~filter( h, 1,Y);

clear As beta db grd mag n pha w w_kai weI we2 hd
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y2=diff(c6) ;

%---- -- ----------- --- Getti ng the de riv ati ves - - -- -- - --- -- --- -- --- - - - - -- -- -- - - - ----- - - -- --------

A=[l 20 -2 -1];

A=A./8;

B=[l];

ydev=filter(A, B,Yfilt);

%--------------------- Getting the absolute value ---------------------------------------------

ydev_abs = abs(ydev);

0/0--------------------- moving average filteri ng ----------------------------------------------

N=18;

A=ones( 1,N)./N;

8=1;

mov _avrg_sq r=fiiter(A, B,ydev _abs);

thresh_may _avgr _sqr=rnov _avrg_sqr;

th resh_mov _avg r_sq r( find(th resh_mov _avg r_sq r< 7)) = 0;

thresh_ Yfilt=Yfilt;

thresh_ Yfiit(find(thresh_ Yfiit<40)) = 0;

A= [zeros( 1, 10), thresh_ Yfilt]&[ thresh_mov _avgr _sqr,zeros( 1, 10)];

possible_peak_positions= [A,zeros( 1, 150)];

Y1=[zeros(1, 10+ 150),Y];

[a7] = fi ndpeaks( possible_pea k_positions, Yl);

c6=a7-10-150;

BB=c6;

if c6(1)<0,

c6=c6(2: length(BB));

end

%-------------------------------------------------------------------------------------------------
%%% c6: time of peaks

%%% y2: durations
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c10=650 ;

cll=length(c6) ;

avgl=round(sum(y2)/length(y2)) ;

Lb=270;

b=zeros(cll-1,Lb) ;

°/0%% c10: max duration

%%% ell: number of peaks

%%% avgl: avg length



s2=zeras(cp-1,c10) ;

far x=1:cll-1 ,

s2(x,1:y2(x))=dct(Y(c6(x):c6(x+1)-1) ) ;

end

s2(:,1)=0;

b(:,: )=s2(:, 1: Lb);

Nb=c11-1;

b=idct(b')';

%piat(b','b');

PARTITIONING_10m
fu nctian [b,Nb,sl,C61, y2] =PARTITIONING_1 (Y)

Lb=270;

M1=300;

As=80;

n=0:(M1-1);

wc1=0.0222*pi; % 4 hz

wc2=0.2222*pi;% 40 hz

hd= ideaUp(wc2, Ml)-idea Up(wc1,M 1);

beta=O, 1102*(As-8. 7)+ 10;

w_ka i= kaiser( M1,beta)';

h=hd. *w_kai;

Yfilt=fi Iter( h, 1,Y);

clear As beta db grd mag n pha w w_kai wc1 wc2 hd

%- - - --- - - -- - - - - Getti ng the deriva t ives - -- - - -- - -- -- -- - - - -- ---- -- - - - -- - - - - -- - -- - - - -- - -- - - ------

A=[l 20 -2 -1];

A=A.j8;

B=[l];

ydev=filter(A,B, Yfilt);

0/0 --------------------- Getting the absolute value -------------------------------------

ydev_abs = abs(ydev);
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•



C61=c6{l);

y2=diff(c6) ;

y22=[C61,y2];

0/0%% s3 : variation of durations

0/0 --------------------- moving average filtering ---------------------------------------

N=18;

A=ones(l,N).(N;

6=1;

mov _avrg_sq r= fi Ite r{ A, 8, yd ev_a bs);

thresh_mov _avgr _sqr=mov _avrg_sqr;

thresh_mov _avg r_sq r(fi nd (thresh_mov _avgr _sq r< 7)) =0;

thresh_ Yfilt=Yfilt;

thresh_ Yfilt{find(thresh_ Yfilt<40)) =0;

A=[zeros{ 1, 10), thresh_ Yfilt]&[thresh_mov _avg r_sq r,zeros( 1, 10)];

possible_pea k_positions= [A,zeros( 1, 150)];

Y1=[zeros{l, 10+ 150),Y];

[a 7] = findpea ks( possi ble_peak_positions, Y1);

c6=a7-10-150;

8B=c6;

if c6(1)<0,

c6=c6{2: length{8B));

end

0/0--------------------------------------------------------------------------------------------
0/0%% e6 : time of peaks

%%% C61 :c6(1)

0/0%% y2 : durations

c10=650- ; 0/0%% c10: max duration

cll=length(c6) ; %%% ell: number of peaks

avgl=round(sum{y2)jlength{y2)); %%% avgl: avg length

b=zeros{cll-1,Lb) ;

s3=y2-avgl;

s2=zeros{cll-1,clO) ;

for x=1:cll-1 ,

s2(x,1:y2(x))=dct(Y(c6(x):c6(x+1)-1) ) ;

end
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sl( 1,: )=s2{:, 1)';

sl=round{sl); 0/0%% sl : de coefficients



s4=diff(sl);

511=sl(1);

s44=[511,s4];

52(:,1)=0 ;

%s3(1 :avgl) =52(1 :avgl);

b(:,: )=s2(:, 1: Lb);

Nb=c11-1;

b=idct(b')';

plot(b','b') ;

ideal_lp.m
function hd = ideaUp(wc,M)

alpha=(M-l)/2;

n=0:(M-1);

m= n - alpha + eps;

hd =sin(wc*m).((pi*m);

findpeaks.m
function[a8]= findpeaks(s,ss);

%%% s4 : change of de coefficients

%%0/0511 : first DC (oeff
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% s : peaks (possible location of peaks)

% 55 : Y (original ECG signal)

a1=(diff(s)] ;

a2=find(a1==1)+1 ;

a3=find(a1==-1) ;

a4=length(a2);

for x=1:a4,

as(x) = max(ss( a2(x): a3(x)));

a6(x) = max(find( ssea2(x): a3(x)) = =a S(x)));

a7 (x) =a 2(x) +a6(x)-1;

end

y=l;

a8(y)=a7(1);



for x=2:length(a7),

if a7(x)-aB(y)<120,

if ss(a7(x))>ss(aB(y)),

aB(y)=a7(x);

end

else

y=y+1;

aB(y)=a7(x);

end

end

TH RESH OLDI N G_a nd_ QUANTIZATION. m
function [Bh] =THRESHOLDING_and_QUANTIZA nON (B,qO, to,Lb, Nb)

fork=l:Lb

Bh(: ,k)=B(: ,k)/qO(k);

end

% --------------------------------------------------------------------------------------------

for i=l:Nb

fork=l:Lb

if abs(B(i,k))<tO(k)

Bh(i,k)=O;

eise

Bh(i,k)=round(Bh(i,k)) ;

end %%if

end %%k

end %%i

REMOVING_ TAIL_ZEROS.m
function [V] = REMOVING_TAIL_ZEROS(Lb,Nb,B)

A=reshape(B',Lb*Nb,l)' ;

n=l;

for x=l:Nb

i=find(B(x,:));

I=max([l,i]);

y( 1,n: n+I) = [B(x, 1: 1),23.5];

n=n+1+1;

end
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function [b] = JOINING_TAIL_ZEROS(Lb,Nb,y)

p=[O,find(y= =23.5)];

a=diff(p);

b=zeros(Nb,Lb);

for x=l:Nb,

b(x,l: a(x)-l) =y( 1,p(x) + 1: p(x+ 1)-1);

end

function [y6,All]= RUN_LENGTH_ENCODING(y6,cz);

%% here cz :; 10

Fseq=y6;

L=length(Fseq);

A2=find(Fseq);

A1=zeros(1,L);
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A1(A2)=1;

A3=[A1,1];

A4=[l,A1];

A5=A4-A3;

A6=find(A5== 1);

A7=find(A5==-1);

A8=A7-A6;

A9=A8-cz;

A10=find(A9> =0);

All=A8(A10);

A12=A6(A10)-1;

A13=A7(A10);

s=[l,A13];

e=[A12,L];

%% Number of consecutive Os >;;; cz Os

Ls=length(s);

LPpr=length( Fseq)-su m(A11) + length(A 11);

Ppr=31 *ones(1,LPpr);

~\
\ .lS



en=-l;

for x= 1:Ls,

st=en+2j

en=st+e(x)-s(x) ;

Ppr(st:en)=Fseq(s(x):e(x)) ;

end
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clear y6;

y6=(Ppr]; 0/0 *** y6 : sequence after RLE

function (y6_1] = RUN_LENGTH_DECODING(y6,A11,cz);

L= length(y6) +su m(A11 )-length(A11);

Fseq=zeros( 1, L);

y6=(1,y6,1];

Ly6=length(y6);

P1=zeros(1,L+2);

Z=find(y6= =31);

s=(l,Z+l];

e=(Z-1,Ly6];

Ls=length(s);

st( 1) =s( 1);

en(l)=e(l);

P1(st( 1): en( 1)) =y6(s( 1): e( 1));

for x=2:Ls,

st(x)=en(x-1)+A11(x-1)+ 1;

en (x) =st(x) +e(x)-s(x);

P1(st(x): en(x)) =y6( s(x): e(x));

end ,

Fseq( 1, 1: L)=P1(1,2: L+ 1);

y6_1=Fseq;



SEG.m
function [E]=SEG( A,max)

% here max;;: 31
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B=fix(A/max);

C=rem(A,max) ;

F=find(B);

G=B(F);

H=C(F);

E=[O];

% number of max

% remainder

m=l;

for x= 1: length(A),

if A(x»max-1,

E=[ E, max*ones(l,G(m) , H(m) ];

m=m+l;

else

E=[ E , A(x) ];

end

end

E=E( 2:length(E) );

invSEG.m
function [B]=invSEG(E,max)

B=find([O 0 0]==1);

if length(E»=l,

n=2; m=l; B=E(l);

L=length(E);

while n<=L,

c=max;

while (E(n-l)==max)&(n<=L)

B(m)=c+E(n) ;

c=B(m) ;

n=n+l ;

end
while (E(n-1)~=max)&(n<=L)

m=m+l ;

B(m)=E(n) ;

n=n+l i

end

•,



end

end

ARITHMATIC_ENCODING.m
function [comp,counts_y6,L_y6] ;ARITH MATICENCODING(y6)

y6;y6+31+1;

L_y6;length(y6);

el_y6;1 :63;

L_el_y6; length( el_y6);

for j; 1: L_el_y6

counts_y6( 1,j) ;length(find(y6( 1, :); ;el_y6( 1,j)))

end

counts_y6(find( counts_y6; ;0)); 1;

com p;a rithenco( y6 ,cou nts_ y6);

Ypl_l ; Yp_l(C61:C61+LENGTH-2);

Yl_l ; Yl(C61:C61+LENGTH-2);

Yl_lavg ; sum(Yl_l)/length(Yl_l);

PRD2 ; 100*sqrt(( sum«(Yl_l-Ypl_l),"2) )/( sum((Yl_l-Yl_lavg),"2) ));

PRD; 100*sqrt( sum((Yl_l-Ypl_l),"2) )/( sum«(Yl_l),"2) ));

108



References

[I] Jalaleddine SM, Hutchens CG, Strattan RD & Coberly WA. "ECG data
compression techniques - a unified approach", IEEE Trans. on BME; vol. 37
(4), pp. 329-343, 1990. '

[2] Nave G & Cohen A. "ECG compression using long term prediction", IEEE
Trans. On BM£.; vol. 40 (9), pp. 877-885, 1993.

[3] Cohen A, Poluta PM & Scott-Millar R. "Compression of ECG signals using
vector quantization", Proc. of the IEEE-90 S. A. Symposium on
Communications and Signal Proc., COMSIG-90; pp. 45-54, 1990.

[4] Kleijn WB & Paliwal KK. "Speech Coding and Synthesis", Amsterdam:
Elsevier, 1995.

[5] Zigel Y, Cohen A. "On the optimal distortion measure for ECG compression",
"EMBEC '99, Vienna; pp. 1618-19, November 1999

[6] Zigel Y, Cohen A, Abu-Ful A, Wagshal A, Katz A. "Analysis by synthesis ECG
signal compression", Computers in Cardiology; vol. 24, pp. 279-92, 1997.

[7] Ishijima M. "Fundamentals of the decision of optimum factors in the ECG data
compression", IEICE Trans. In! and Sys.; E76-D (12), pp. 1398-1403, 1993.

[8] Cox JR, Nolle FM, Fozzard HA & Oliver CG. "AZTEC, a preprocessing
program for real time ECG rhythm analysis", IEEE Trans. on BME; vol. 15, pp.
128-129, 1968.

[9] Furht B & Perez A. "An adaptive real-time ECG compression algorithm with
variable threshold", IEEE Trans. on BME; vol. 35, pp. 489-494, 1988.

[10] Mammen CP & Ramamurthi B. "Vector quantization for compression of
multichannel ECG", IEEE Trans. on EME; vol. 37 (9), pp. 821-825, 1990.

[11] Mueller We. "Arrhythmia detection program for an ambulatory ECG monitor",
Biomed. Sci. Instrument.; vol. 14, pp. 81-85,1978.

',.

[12] Abenstein Jp & Tompkins WJ. "A new data reduction algorithm for real time
ECG analysis", IEEE Trans. on EME; vol. 29, pp. 43-48, 1982.

[13] Pollard AE & Barr RC. "Adaptive sampling of intra-cellular and extracellular
cardiac potentials with the fan method", Med. and BioI. Eng. and Comp.; vol.
25, pp. 261-269,1987.



110

[14] Ishijima M, Shin SB, Hostetter GH & Sklansky J. "Scan along polygon
approximation for data compression of electrocardiograms", IEEE Trans. on
BME; vol. 30, pp. 723-729,1983.

[15] Jalaleddine SM, Hutchens CG. "SAlES - A new ECG data compression
algorithm", J. a/Clinical Eng.; vol. 15 (I), pp. 45-51, 1990.

[16] Tai SC. "SLOPE - a real time ECG data compression", Med. and BioI. Eng. And
Comp.;vol. 29, pp. 175-179, 1991.

[17] Tai Sc. "ECG data compression by corner detection", Med. and Bioi. Eng. and
Camp.; vol. 30, pp. 584-590, 1992.

[18] Ruttiman VE & Pipberger HV. "Compression of the ECG by prediction or
interpolation and entropy encoding", IEEE Trans. on BME; vol. 26, pp. 613-
623, 1979.

[19] Hsia PW. "Electrocardiographic data compression using precoding consecutive
QRS information", IEEE Trans. on BME; vol. 36, pp. 465-468, 1989.

[20] Hamilton PS & Tompkins WJ. "Compression of the ambulatory ECG by
average beat subtraction and residual differencing", IEEE Trans. on BME; vol.
38, pp. 253-259, 1991.

[21] Huffman DA. "A method for the construction of minimum redundancy coders",
Froc. IRE; vol.40, pp. 1098-1101, 1952.

[22] Hamilton PS. "Adaptive compression of the ambulatory electrocardiogram",
Biomedicallnst. and Tech.; pp. 56-63, January 1993.

[23] Iwata A, Nagasaka Y & Suzumura N. "Data compression of ECG using
neura1network for digital holter monitor", IEEE Eng. in Med. and Biola. Mag.;
pp. 53-57, September 1990.

[24] Hamilton DJ, Thomson DC & Sandham WA. "ANN compression of
morphologically similar ECG complexes", Med. and BioI. Eng. and Camp.; vol.
33, pp. 841-843, 1995.

[25] Kuklinsky WS. "Fast Walsh transform data compression algorithm for ECG
applications", Med. and Bioi. Eng. and Camp.; vol. 21, pp. 465-473, 1983.

[26] Ahmed N, Milne P, Harris S. "Electrocardiographic data compression via
orthogonal transforms", JEEE Transactions on Biomedical Engineering; vol.
22(6), pp. 484-7, 1975.



III

[27] Womble ME, Hallidat JS, Mitter SK, Lancaster MC & Triebvasser JH. "Data
compression for storing and transmitting ECGsNCGs", Proc. IEEE; vol. 65, pp.
702-706, 1977.

[28] Chen J, Itoh S & Hashimoto T. "ECG data compression by using wavelet
transform",IEICE Trans. In! andSys.; E76-D (12), pp. 1454-1461, 1993.

[29] Ramakrishnan AG & Supratim S. "ECG coding by wavelet-based linear
prediction", IEEE Trans. on BME; vol. 44 (12), 1997.

[30] PoeI J. "Compressa-o de sinais de eletrocardiograma", Master Thesis, Mestrado
em Engenharia Biome'dica, NETEB/UFPB, Joa-o Pessoa, May 1999.

[31] Lee H, Buckley K. "ECG data compression using cut and align beats approach
and 2-D transforms", IEEE Transactions on Biomedical Engineering; vol. 46(5),
pp. 556--64, 1999.

[32] Rao K, Yip P. "Discrete cosine transform-algorithms, advantages,
applications", San Diego: Academic Press; 1990.

[33] Strang G, Nguyen T. "Wavelets and filter banks", Wellesley: Wellesley-
Cambridge Press; 1996.

[34] Ahmed N, Milne P, Harris S. "Electrocardiographic data compression via
orthogonal transforms", IEEE Transactions on Biomedical Engineering; vol.
22(6), pp. 484-7,1975.

[35] Zou F, Gallagher R. "ECG data compression with wavelet and discrete cosine
transforms", Biomed Sci Instrum; vol. 30, pp. 57-62, 1994.

[36] Ratnakar V. "Quality-controlled lossy image compression", Ph.D. Thesis,
University of Wisconsin, Madison, 1997.

[37] Wallace G. "The JPEG still picture compression standard", Communications of
the ACM; vol. 34(4), pp. 30--44, 1991.

[38] Batista LV, Melcher EU, Carvalho LC. "Compression of ECG signals by
optimized quantization of discrete cosine transform coefficients", Medical
Engineering & Physics,Elsevier; vol. 23 pp. 127-134, 200 J

[39] Huszar RJ. "Basic Dysrhythmias: interpretation & management", 2nd ed. St.
. Louis, Missouri: Mosby Lifeline; 1994.

[40] Cardenas-Barreras J, Lorenzo-Ginori J. "Mean-shape vector quantizer for ECG
signal compression", IEEE Transactions on Biomedical Engineering ;voIA6(1),
pp. 62-70, 1999.



j

112

[41] Husoy J, Gjerde T. "Computationally efficient sub-band coding of ECG
signals", Med Eng Phys; vol. 18(2), pp. 132-42, 1996.

[42] Lu Z, Kim D, Pearlman W. "Wavelet compression of ECG signals by set
partitioning in hierarchical trees algorithm", IEEE Transactions on Biomedical
Engineering; vo1. 47(7), pp. 849-56, 2000.

[43] Batista LV, Melcher EU, Carvalho LC. "An ECG compression method using
peak selection and discrete cosine transform (in Portuguese)", Brazilian Journal
of Biomedical Engineering; vol. 16(1), pp. 39-48, 2000.

[44] Miaou S, Yen H. "Quality driven gold washing adaptive vector quantizaiion and
its application to ECG data compression", IEEE Transactions on Biomedical
Engineering; vo1. 47(2), pp. 209-18, 2000.

[45] Michael L Hilton. "Wavelet and wavelet packet compression of
electrocardiograms", Technical Report TR9505, Dept of computer Science, The
University of South Carolina, Columbia


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123

