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ABSTRACT

The theories and properties of the conventional hexagonal lattice Photonic Crystal Fiber

(PCF) are well established and their worth in different applications in fiber optics is also

well accepted. On the other hand, the newly introduced equiangular spiral PCF is yet to

be investigated thoroughly. In this thesis, the optical mode of the PCF structure is

determined by using full vectorial finite element method (FEM) based software

‘COMSOL Multiphysics’ and different properties of ES-PCF are calculated therefrom.

Different useful designs like dispersion compensating ES-PCF, highly birefringent ES-

PCF, bend insensitive single mode ES-PCF with large effective area have been

obtained. To be specific, an ES-PCF is designed having flat negative dispersion profile

with average dispersion around −396 ps/nm-km and dispersion variation of only 10.4

ps/nm-km for residual dispersion compensation of the fiber optic communication link

over the wavelength range 1350 nm to 1675 nm. Also, a similar  design has been

developed that exhibits a very high birefringence of 0.0278 as well as flat negative

dispersion profile. Next, liquid crystal infiltration in some air holes in the core is

exploited to achieve a completely single polarization dispersion compensating fiber

having average dispersion −259 ps/nm-km with dispersion variation of only 4.58 ps/nm-

km over the same wavelength range. Moreover, a new circular lattice air hole PCF (C-

PCF) has been proposed for both WDM transmission and fiber to the home application.

The C-PCF exhibits single modedness along with very low bending loss for the

fundamental mode and effective area as high as 260 µm2 for WDM application which is

higher than the previously reported values in the literatures. Apart from the above

works, a modified bend loss formula for step index fibers has been developed and

verified in this thesis. Also, this modified formula applies well, though in a limited

range for PCFs, in predicting bending loss. The works in this thesis is believed to be a

gateway for the future research on ES-PCF and PCFs with irregular lattice structures.
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CHAPTER 1 
INTRODUCTION 

 

Optical fibers have undergone an evolution in its structure since they were first introduced 
in the beginning of 1970s as step index fibers. Photonic crystal fibers (PCFs) are a special 
type of optical fiber. Pioneered by the research group of Philip St. J. Russell in the 1990s, 
the development of photonic crystal fibers and the exploration of the great variety of 
possible applications have attracted huge interest. PCFs guide light by two mechanisms. 
One is the modified total internal reflection that utilizes its microstructured cladding 
arrangement and solid core [1] and the other is the photonic band gap mechanism in PCFs 
having hollow cores [2]. Optical fibers have a very broad range of applications, where they 
serve many purposes, such as simply transporting light from a source to some other device, 
transmitting optically encoded data, sensing temperature or strain in some environment, 
generating and amplifying laser light. These properties can be more easily achieved in 
PCFs as these fibers offer many degrees of freedom in their design than those of 
conventional optical fibers. The numerous structural parameters can be tailored to obtain 
desirable values of dispersion, birefringence, confinement loss bending loss etc for 
particular applications.  This phenomenon has made this one of the most active fields of 
current optics research.  
 

1.1 Basic Principles of PCF   
 

In order to form a guided mode in an optical fiber, it is necessary to introduce light into the 
core with a value of β, that is the component of the propagation constant along the fiber 
axis, which cannot propagate in the cladding. The highest β value that can exist in an 
infinite homogeneous medium with refractive index n is, β = nk, k being the free-space 
propagation constant. A two-dimensional photonic crystal, like any other material, is 
characterized by a maximum value of β which can propagate. At a particular wavelength, 
this corresponds to the fundamental mode of an infinite slab of the material, and this value, 
βeff defines the effective refractive index neff of the material in the way, kneffeff =β . 

1.1.1 Modified total internal reflection 
 

It is possible to use a two-dimensional photonic crystal as a fiber cladding, by choosing a 
core material with a higher refractive index than the cladding effective index. An example 
of this kind of structures is the PCF with a silica solid core surrounded by a photonic crystal 
cladding with a triangular lattice of air-holes, shown in Fig. 1.1. These fibers, also known as 
index-guiding PCFs, guide light through a form of total internal reflection (TIR), called 
modified TIR. However, they have a number of properties which vary from those of 
conventional optical fibers. 
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Fig. 1.1 A frequently used triangular lattice solid-core photonic crystal fiber design.  
 

holes, where the central hole is missing. The gray area indicates silica, and the white circles 
indicate air holes with typical dimensions of a few micrometers.  
 

1.1.2 Endlessly single-mode property 
 

As already stated, the first solid-core PCF, shown in Fig. 1.1, which consisted of a 
triangular lattice of air-holes with a diameter d of about 300 nm and a hole-to-hole spacing 
Λ of 2.3 µm, did not ever seem to become multi-mode in the experiments, even for short 
wavelengths. In fact, the guided mode always had a single strong central lobe filling the 
core [2].  
 
Russell has explained that this particular endlessly single-mode behavior can be understood 
by viewing the air-hole lattice as a modal filter or “sieve” [2]. Since light is evanescent in 
air, the air-holes act like strong barriers, so they are the “wire mesh” of the sieve. The field 
of the fundamental mode, which fits into the silica core with a single lobe of diameter 
between zeros slightly equal to 2Λ, is the “grain of rice” which cannot escape through the 
wire mesh, being the silica gaps between the air-holes belonging to the first ring around the 
core too narrow. On the contrary, the lobe dimensions for the higher-order modes are 
smaller, so they can slip between the gaps. When the ratio d/Λ, that is the air-filling fraction 
of the photonic crystal cladding, increases, successive higher-order modes become trapped 
[2]. A proper geometry design of the fiber cross-section thus guarantees that only the 
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fundamental mode is guided. More detailed studies of the properties of triangular PCFs 
have shown that this occurs for d/Λ < 0.4 [3]-[4].  
 

By exploiting this property, it it possible to design very large-mode area fibers, which can 
be successfully employed for high-power delivery, amplifiers, and lasers. Moreover, by 
doping the core in order to slightly reduce its refractive index, light guiding can be turned 
off completely at wavelengths shorter than a certain threshold value. 
 

1.1.3 Photonic bandgap guidance 
 

Optical fiber designs completely different form the traditional ones result from the fact that 
the photonic crystal cladding have gaps in the ranges of the supported modal index β/k 
where there are no propagating modes. These are the PBGs of the crystal, which are similar 
to the two-dimensional bandgaps which characterize planar lightwave circuits, but in this 
case they have propagation with a non-zero value of β. It is important to underline that gaps 
can appear for values of modal index both greater and smaller than unity, enabling the 
formation of hollow-core fibers with bandgap material as a cladding, as reported in Fig. 1.2. 
These fibers, which cannot be made using conventional optics, are related to Bragg fibers, 
since they do not rely on TIR to guide light. In fact, in order to guide light by TIR, it is 
necessary a lower-index cladding material surrounding the core, but there are no suitable 
low-loss materials with a refractive index lower than air at optical frequencies [1]. The first 
PCF which exploited the PBG effect to guide light was reported in 1998 [2]-[5], and it is 
shown in Fig. 1.3. Notice that its core is formed by an additional air-hole in a honeycomb 
lattice. This PCF could only guide light in silica, that is in the higher-index material.  
 

 
 

Fig. 1.2 Microscope picture of a fabricated hollow-core triangular PCF. 
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Fig. 1.3 Schematic of the cross-section of the first photonic bandgap PCF with a 
honeycomb air-hole lattice. 

 

Hollow-core guidance had to wait until 1999, when the PCF fabrication technology had 
advanced to the point where larger air-filling fractions, required to achieve a PBG for air-
guiding, became possible [2]. Notice that an air-guided mode must have β/k < 1, since 
thiscondition guarantees that light is free to propagate and form a mode within the hollow 
core, while being unable to escape into the cladding. The first hollow-core PCF, reported in 
Fig. 1.2, had a simple triangular lattice of air-holes, and the core was formed by removing 
seven capillaries in the center of the fiber cross-section. By producing a relatively large 
core, the chances of finding a guided mode were improved. When white light is launched 
into the fiber core, colored modes are transmitted, thus indicating that light guiding exists 
only in restricted wavelength ranges, which coincide with the photonic bandgaps [2]. 
 

1.1.4 Properties and applications of PCFs 
 

Due to the huge variety of air-holes arrangements, PCFs offer a wide possibility to control 
the refractive index contrast between the core and the photonic crystal cladding and, as a 
consequence, novel and unique optical properties. Since PCFs provide new or improved 
features, beyond what conventional optical fibers offer, they are finding an increasing 
number of applications in ever-widening areas of science and technology.  
 

1.1.5 Solid core fibers 
 

Index-guiding PCFs, with a solid glass region within a lattice of air-holes, offer a lot of new 
opportunities, not only for applications related to fundamental fiber optics. These 
opportunities are related to some special properties of the photonic crystal cladding, which 
are due to the large refractive index contrast and the two-dimensional nature of the 
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microstructure, thus affecting the birefringence, the dispersion, the smallest attainable core 
size, the number of guided modes and the numerical aperture and the birefringence.  
 

1.1.6 Highly birefringent fibers 
 

Birefringent fibers, where the two orthogonally polarized modes carried in a single-mode 
fiber propagate at different rates, are used to maintain polarization states in optical devices 
and subsystems. The guided modes become birefringent if the core microstructure is 
deliberately made twofold symmetric, for example, by introducing capillaries with different 
wall thicknesses above and below the core. By slightly changing the air-hole geometry, it is 
possible to produce levels of birefringence that exceed the performance of conventional 
exceed the performance of conventional birefringent fiber by an order of magnitude. It is 
important to underline that, unlike traditional polarization maintaining fibers, such as bow 
 

 
 

Fig. 1.4 Microscope picture of (a) the cross-section and (b) the core region of a highly 
birefringent triangular PCF. 

 
tie, elliptical-core or Panda, which contain at least two different glasses, each one with a 
different thermal expansion coefficient, the birefringence obtainable with PCFs is highly 
insensitive to temperature, which is an important feature in many applications. An example 
of the cross-section of a highly birefringent PCF is reported in Fig. 1.4. 
 

1.1.7 Dispersion tailoring 
 

The tendency for different light wavelengths to travel at different speeds is a crucial factor 
in the telecommunication system design. A sequence of short light pulses carries the 
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digitized information. Each of these is formed from a spread of wavelengths and, as a result 
of chromatic dispersion, it broadens as it travels, thus obscuring the signal. The magnitude 
of the dispersion changes with the wavelength, passing through zero at 1.3 µm in 
conventional optical fibers. In PCFs, the dispersion can be controlled and tailored with 
unprecedented freedom. In fact, due to the high refractive index difference between silica 
and air, and to the flexibility of changing air-hole sizes and patterns, a much broader range 
of dispersion behaviors can be obtained with PCFs than with standard fibers. For example, 
as the air-holes get larger, the PCF core becomes more and more isolated, until it resembles 
an isolated strand of silica glass suspended by six thin webs of glass, as it is shown in Fig. 
1.5. If the whole structure is made very small, the zero-dispersion wavelength can be 
shifted to the visible, since the group velocity dispersion is radically affected by pure  

 
 

 
 

Fig. 1.5 Microscope picture of (a) the cross-section and (b) the core region of a highly 
nonlinear PCF. 

 

waveguide dispersion. On the contrary, very flat dispersion curves can be obtained in 
certain wavelength ranges in PCFs with small air-holes, that is with low air-filling fraction. 
As an example, a dispersion-flattened triangular PCF with seven air hole rings, 
characterized by Λ = 2.5 µm and d = 0.5 µm, has been presented in [6]. 
 

1.1.8 Ultrahigh nonlinearities 
 

An attractive property of solid-core PCFs is that effective index contrasts much higher than 
in conventional optical fibers can be obtained by making large air-holes, or by reducing the 
core dimension, so that the light is forced into the silica core. In this way a strong 
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confinement of the guided-mode can be reached, thus leading to enhanced nonlinear effects, 
due to the high field intensity in the core. Moreover, a lot of nonlinear experiments require 
specific dispersion properties of the fibers. As a consequence, PCFs can be successfully 
exploited to realize nonlinear fiber devices, with a proper dispersion, and this is presently 
one of their most important applications. An important example is the so-called 
supercontinuum generation, that is the formation of broad continuous spectra by the 
propagation of high power pulses through nonlinear media. The term supercontinuum does 
not indicate a specific phenomenon, but rather a plethora of nonlinear effects, which, in 
combination, lead to extreme spectral broadening. The determining factors for 
supercontinuum generation are the dispersion of the nonlinear medium relative to the 
pumping wavelength, the pulse length and the peak power. Since the nonlinear effects 
involved in the spectral broadening are highly dependent on the medium dispersion, a 
proper design of the dispersion properties can significantly reduce the power requirements. 
The widest spectra, in fact, can be obtained when the pump pulses are launched close to the 
zero dispersion wavelength of the nonlinear media. 
 

1.1.9 Large mode area fibers 
 

By changing the geometric characteristics of the fiber cross-section, it is possible to design 
PCFs with completely different properties, that is with large effective area. The typical 
cross-section of this kind of fibers, called large mode area (LMA) PCFs, consists of a 
triangular lattice of air-holes where the core is defined by a missing air-hole. An example of 
a triangular PCF is reported in Fig. 1.1. The PCF core diameter can be defined as d = 2Λ-d, 
which corresponds to the distance between opposite air-hole edges in the core region. When 
d/Λ < 0.42, the triangular PCF is endlessly single mode, that is, single mode at any 
wavelength [3]-[4]. In this condition it is the core size or the pitch that determines the zero-
dispersion wavelength λ, the mode field diameter (MFD) and the numerical aperture (NA) 
of the fiber. LMA PCFs are usually exploited for high-power applications, since fiber 
damage and nonlinear limitations are drastically reduced. In particular, LMA fibers are 
currently used for applications at short wavelengths, that is in ultraviolet (UV) and visible 
bands, like the generation and delivery of high-power optical beams for laser welding and 
machining, optical lasers, and amplifiers, providing significant advantages with respect to 
traditional optical fibers [3]. 
 

1.1.10 Hollow core fibers 
 

Hollow core PCFs have great potential, since they exhibit low nonlinearity [2] and high 
damage threshold [7]-[9], thanks to the air-guiding in the hollow core and the resulting 
small overlap between silica and the propagating mode. As a consequence, they are good 
candidates for future telecommunication transmission systems.  
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Another application, perhaps closer to fruition, which can successfully exploit these 
advantages offered by air-guiding PCFs, is the delivery of high-power continuous wave 
(CW), nanosecond and sub-picosecond laser beams, which are useful for marking, 
machining and welding, laser-Doppler velocimetry, laser surgery, and THz generation [10]. 
In fact, optical fibers would be the most suitable delivery means for many applications, but 
at present they are unusable, due to the fiber damage and the negative nonlinear effects 
caused by the high optical powers and energies, as well as to the fiber group-velocity 
dispersion, which disperses the short pulses [10]. These limitations can be substantially 
relieved by considering hollow-core fibers [10]. Moreover, air-guiding PCFs are suitable 
for nonlinear optical processes in gases, which require high intensities at low power, long 
interaction lengths and good-quality transverse beam profiles. Finally, the delivery of solid 
particles down a fiber by using optical radiation pressure has been demonstrated [2].  
 

1.1.11 Loss mechanism 
 

The most important factor for any optical fiber technology is loss. Losses in conventional 
optical fibers have been reduced over the last 30 years, and further improvement is unlikely 
to be reached. The minimum loss in fused silica, which is around 1550 nm, is slightly less 
than 0.2 dB/km. This limit is important, since it sets the amplifier spacing in long-haul 
communications systems, and thus is a major cost of a long-haul transmission system [1]. 
 

The optical loss αdB, measured in dB/km, of PCFs with a sufficiently reduced confinement 
loss, can be expressed as  
 

αdB = 
4λ

A
+ B + αOH + αIR,                                                        (1.1) 

 
being A, B, αOH  and αIR the Rayleigh scattering coefficient, the imperfection loss, and OH 
and infrared absorption losses, respectively. At the present time the losses in PCFs are 
dominated by OH absorption loss and imperfection loss [11]. 
Losses in hollow-core fibers are limited by the same mechanisms as in conventional fibers 
and in index-guiding PCFs, that is absorption, Rayleigh scattering, confinement loss, bend 
loss, and variations in the fiber structure along the length. However, there is the possibility 
to reduce them below the levels found in conventional optical fibers, since the majority of 
the light travels in the hollow core, in which scattering and absorption could be very low. 
 

1.1.12 Confinement Loss 
 

In both solid-core and hollow-core PCFs it is necessary to consider another contribution to 
the losses, that is the leakage or confinement losses. These are due to the finite number of 
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air-holes which can be made in the fiber cross section. As a consequence, all the PCF 
guided modes are leaky For example, in solid-core PCFs light is confined within a core 
region by the air-holes. Light will move away from the core if the confinement provided by 
the air-holes is inadequate. This means that it is important to design such aspects of the 
PCF structure as air-hole diameter and hole-to-hole spacing, or pitch, in order to realize 
low-loss PCFs. In particular, the ratio between the air-hole diameter and the pitch must be 
designed to be large enough to confine light into the core. On the other hand, a large value 
of the ratio makes the PCF multi-mode. However, by properly designing the structure, the 
confinement loss of single-mode PCFs can be reduced to a negligible level. Recently, 
several analyses have been performed in order to find the guidelines to design both index-
guiding PCFs and PBG-based fibers with negligible leakage losses [12]-[14]. It has been 
demonstrated a strong dependence of the confinement losses on the number of air-hole 
rings, especially for fibers with high air-filling fraction. In particular, leakage losses can be 
significantly reduced by increasing the ring number [12]. Finally, simulation results have 
shown that in PBG fibers the leakage loss dependence on the number of air-hole rings is 
much weaker than in index-guiding PCFs, whereas the confinement losses exhibit a strong 
dependence on the position of the localized state inside the PBG [14]. 
 

The leakage loss of solid core PCFs, calculated according to the following formula, quickly 
decreases when the air-hole ring number or the air-hole diameter increases.  

Confinement Loss = α
λ

π
)10ln(

40     [dB/m],                                (1.2)  

 
where α is the imaginary part of the complex effective index. The reduction rate of the 
confinement loss increases in the same way with these geometric parameters. As expected, 
the loss decreases with larger Λ values for a fixed d/Λ. In this case, Λ and d are scaled in 
the same way, so a larger pitch corresponds to a larger silica core size and, as a 
consequence, to a higher field confinement. Since the field becomes less confined, the 
leakage loss increases with the wavelength. Moreover, the ring number affects the 
wavelength dependence, which is weaker for few air-hole rings [12].  

 

1.1.13 Bending loss 
 

As already stated, an alternative route to fabricate LMA fibers is offered by PCFs, which 
can be designed to be endlessly single-mode, unlike conventional fibers that exhibit a cut-
off wavelength below which higher-order modes are supported. As for standard optical 
fibers, the practical achievable mode area in PCFs is limited by the macrobending loss [15]-
[17]. Conventional fibers suffer additional loss if bent more tightly than a certain critical 
radius. For wavelengths longer than a certain value, that is the “long-wavelength bend loss 
edge,” all guidance is effectively lost. The same behavior is observed also in PCFs, which 
show even a “short-wavelength bend loss edge” [18], caused by bend-induced coupling 
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from the fundamental to the higher-order modes, which leak out of the core. In fact, at short 
wavelengths the guided mode is mainly confined into the silica [18] and when λ<<Λ the 
field can escape through the interstitial space between the neighboring air-holes. As a 
consequence, the fiber becomes more sensitive to bending. By considering triangular PCFs, 
shown in Fig. 1.1, a large air-filling fraction, that is a high d/Λ value, results in a better 
resistance to the bending loss, whereas the hole-to-hole spacing Λ roughly determines the 
position of the minimum of the bending loss curve, which roughly occurs at Λ/2 [16]. Since 
LMA PCFs are generally designed with Λ > 7-8 µm, the standard telecommunication 
window falls in the short-wavelength edge. In spite of that, it has been demonstrated that 
LMA PCFs exhibit bending losses comparable with those of similarly sized conventional 
fibers at 1550 nm [15]. Moreover, it has been experimentally shown that PCFs optimized 
for visible applications are more robust towards bending at any of the wavelengths from 
400 to 1000 nm compared to a conventional fiber which is single-mode at the visible 
wavelengths [19]. PCFs with larger relative air-hole diameters, that is with higher d/Λ, are 
less sensitive to bending loss. However, the demand for single-mode operation and the need 
for large-mode size limits the increase of d/Λ, and other solutions must be adopted. 

 

1.2    Fabrication Technology of PCFs 

1.2.1 Stack and draw (SaD) technique 

Fabrication of PCF, like the standard stack and draw (SaD) technique for conventional fiber 
fabrication, starts with a fiber preform. PCF preforms are formed by stacking a number of 
capillary silica tubes and rods to form the desired air/silica structure. This way of creating 
the preform allows a high level of design flexibility as both the core size and shape as well 
as the index profile throughout the cladding region can be controlled. When the desired 
preform has been constructed, it is drawn to a fiber in a conventional high-temperature 
drawing tower and hair-thin photonic crystal fibers are readily produced in kilometer 
lengths. Through careful process control, the air holes retain their arrangement all through 
the drawing process and even fibers with very complex designs and high air filling can be 
produced. Finally, the fibers are coated to provide a protective standard jacket that allows 
robust handling of the fibers. The final fibers are comparable to standard fiber in both 
robustness and physical dimensions and can be both striped and cleaved using standard 
tools. Though it seems that SaD is not suitable for the fabrication of more complex PCFs 
(like equiangular spiral PCFs) [20] other than hexagonal lattice PCFs, a technique has been 
proposed in [21] to adapt the standard SaD for complex structures. 
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Fig. 1.6 (a) Sketch of extrusion process and (b) extrusion die concepts with equal and 
different size feed holes for a target preform structure having 60 holes (4 rings), white filled 

circles are blocking elements, black and red circles are feed holes.   

 

1.2.2    Extrusion and filling technology 

In this sub-section, a method of realizing complex PCF structures is presented. 

Extrusion of complex performs: 

The successful realization of a range of Micro structured optical fiber (MOF) depends on 
the use of complex air/glass structures within the fiber cross-section. Stacking, drilling and 
casting techniques have been used to fabricate structured preforms. These techniques all 
have limitations in the number of transverse features, hole shapes and configurations that 
can be achieved. A promising alternative technique is billet extrusion, which has been 
shown to be a versatile, reproducible single-step approach to fabrication of soft glass and 
polymer preforms with up to 12 holes. In [22], a new die design concept has been presented 
along with advances in the extrusion process control, which together overcome these issues 
to allow the first demonstration of truly complex extruded glass preforms. The flow of 
material within the die is explored for a range of structures and materials, and the efficacy 
of the extruded preforms for low-loss fiber fabrication is demonstrated. In Fig. 1.6, the 
overall process has been shown. This new die design allows great flexibility in the selection 
of the size, shape and distribution of the feed holes, which provides control of the material 
flow through the die in a manner that is truly scalable, reconfigurable, easily understood 
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and thus optimized. The die design also offers independent control of the hole shape and 
configuration within a preform for the first time. 

 

Filling technology for multi-material PCF devices: 

The optical properties of silica-air photonic crystal fiber (PCF) can be radically altered by 
filling its hollow channels with materials such as metals, polymers or semiconductors. 
Various different techniques have been used previously, including high-pressure chemical 
vapor deposition and pumping in of molten metal at high pressure. Chemical routes have 
the drawback that the end products of the reaction remain in the channels, often adversely 
affecting the optical properties. Filling with pure molten material does not suffer from this 
disadvantage, so that structures of high optical quality can readily be produced. In [23], the 
optical properties of PCFs in which one, two or more holes, adjacent to the core, are filled 
with semiconductors, glasses or metals by using a pressure cell technique have been 
reported. In Fig. 1.7, SEM image of fabricated a filled channel of PCF has been shown. 
This filling procedure allows the core mode to interact strongly with the material of the 
wire, leading to a strong modification of the light transmission.  

 

 
 

Fig. 1.7 Scanning-electron-micrograph image of a cleaved end-face of a germanium-filled 
endlessly single  mode PCF. Germanium wire is on the right side (dwire  = 1.6 µm). 
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1.2.3    Sol-gel technique for fabricating irregular shaped PCF 

Microstructured fibers possess an array of air columns embedded within a silica matrix, 
which extend along the z axis of the fiber. Several methods have been developed for the 
fabrication of microstructured fibers including the stack and draw of glass capillaries, sol-
gel casting, prefrom drilling, extrusion, and even out gassing of a porous preform during 
draw. All of the aforementioned methods have various advantages and tradeoffs in terms of 
ease of fabrication, cost, design flexibility, material contamination, and precision. Here, we 
like to introduce the sol-gel casting technology towards the fabrication of irregular shaped 
microstructured optical fibers. The sol-gel casting technique was originally developed for 
the production of large jacket tubes for optical fiber preforms and has been modified for the 
fabrication of microstructured fiber [24]. A number of microstructured fibers fabricated 
using the sol-gel casting method, are shown in Fig. 1.8. 

A mold containing an array of mandrel elements is assembled and then filled with colloidal 
silica dispersed at high pH with an average particle size of 40 nanometers. The pH is 
lowered causing the sol to gel. At the wet gel stage, the mandrel elements are removed, 
leaving air columns within the gel body. The gel body is then treated thermo chemically to 
remove water, organic and transition metal contaminants. The dried porous gel body is then 
sintered near 1600° C into viscous glass and subsequently drawn into fiber. The air holes 
are pressurized during draw to obtain the desired size and air-fill fraction. To maintain 
uniformity along the length of the preform, the mandrels are individually tensioned and the 
positioning and spacing is inspected and recorded with a digital camera. The 
aforementioned process is graphically represented in Fig. 1.9. 

As a casting method, the sol-gel technique can fabricate any structure, which can be 
assembled into a mold. The hole size, shape and spacing may all be adjusted independently. 
By comparison, stack and draw methods are limited to closest-packed geometries such as 
triangular or honeycomb lattices and cannot easily generate circular patterns such as the 
one shown in Fig. 1.8 (d). Drilling methods allow adjustment of both the hole size and 
spacing, but are generally limited to a small number of holes and restricted to circular 
shapes. Furthermore, drilling of preforms leads to roughened surfaces along the air hole so 
that extra steps of etching and polishing of the inner surfaces are desired. Extrusion 
techniques provide design freedom, but are typically limited to soft glasses for which the 
material loss values are exceedingly high. Several designs such as fibers for higher 
nonlinearity, dispersion flattened designs require independent spacing, hole size or even 
noncircular holes. The sol-gel casting method provides additional design flexibility that will 
be necessary for such fibers. Sol-gel casting is not without its own set of challenges. The 
mandrel elements are removed during the wet gel stage, while the gel body is still fragile. 
Removal of the mandrels at this stage places strain on the gel and for gel bodies with air-fill  
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Fig. 1.8  Cross-sectional images of sol-gel derived microstructured fibers. The dark regions 
correspond  to air columns while the bright regions are silica. a) endlessly single-moded 
design, b) high delta, highly nonlinear fiber, c) dual core structure and  d) circular core 

microstructured fiber.   

 

fractions >25%, cracking of the gel body is common and lowers the overall yield. 
Numerous microstructured fiber designs such as hollow core photonic band gap fibers or 
highly nonlinear fibers require air-fill fractions near 90%. To fabricate fibers with high air-
fill fractions, the low air-fill fraction glass preforms are etched with HF uniformly along the 
length of the preform. An example of using HF etching to increase the air fill-fraction of a 
preform is shown in Fig. 1.10. Additionally, the air-fill fraction may be increased by 
pressurizing the air holes during draw. The larger design freedom, low-cost starting  
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Fig. 1.9  Schematic representation of sol gel fabrication technique. 

 

 

Fig. 1.10  Cross sectional images of a sol-gel derived microstructured prefrom before (a) 
and after (b) HF etching.  The air-fill fraction in the cladding was increased from 46% up to 

78%. 
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materials, dimensional precision, low material contamination and the ability to scale up to 
large preforms (> 10 km of fiber) makes this fabrication method an attractive approach 
towards high performance, low-cost microstructured fiber. 
 

Before entering the main discussion containing the works done in this thesis, it is worth 
presenting a review on the literature of the related works reported in the past. As PCFs have 
a number of parameters which can be tuned over a large range, it is possible to control the 
contrast between core and cladding refractive indices. As a consequence, novel and unique 
optical properties may result. In order to increase the number of parameters that can be 
tuned to achieve desirable properties, arrangement of the cladding air holes other than the 
hexagonal one have been reported [20]. Here, an equiangular spiral (ES) design has been 
proposed to achieve ultrahigh nonlinearity. It is to be noted that we can alter only three 
parameters in hexagonal lattice PCF: pitch, Λ, cladding air hole diameter, d and number of 
air hole rings, N in the cladding. On the other hand, in ES-PCF, we have more than three 
parameters to alter. 

 

1.3    Literature Review 

1.3.1    Literature on Bend Loss Formula 
 

After [20], not much work has been done on ES-PCF. In order to assess its applicability in 
optical fiber communication systems, a further investigation on its characteristic properties 
needs to be carried out. With this view, the primary goal of this thesis is to obtain useful 
properties using ES-PCF through numerical analysis. Before entering the numerical 
analysis, a modification of the renowned bend loss formula, originally developed for step 
index fibers proposed by Marcuse [25], is suggested. This modified formula improves the 
bend loss estimation in step index fibers and it is applicable equally well for PCFs. Finally, 
a novel quasi-PCF is proposed which is different from both hexagonal lattice PCF and ES-
PCF and its worth is shown through a number of applications. 

Various theoretical methods exist to predict curvature loss in optical waveguides. The usual 
approach is to use a simplified formula introduced by Marcuse [25], applicable to weakly 
guided waveguides, including most optical fibers, for sufficiently large radii of curvature. 
This formula agrees well with experiment for single-mode fiber, after adjustments are made 
for bend-induced stress [26]. However, for multimode fiber it can be quite inaccurate [27] 
as it overestimates bend loss at a large amount. Other analytical bend loss formulae are 
similarly limited, in that none are known to reliably predict bend loss in multimode fibers. 
This has become a significant problem with the development of the coiled multimode fiber 
amplifier [28], which uses bend loss to strip out the higher order fiber modes, and thereby 
achieve single-mode, large mode area operation. Optimizing these devices, and 
understanding their ultimate limitations, requires that mode-dependent bend loss be 
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predicted accurately. A modification of Marcuse’s simplified bend loss formula is 
suggested by Schermer [27] but it underestimates the bend loss at a similar large amount 
for multimode fibers. Though the authors identified the reason behind this, the remedy 
against requires a simulated data which weakens the justification of using an analytical 
formula. Thus, a formula for predicting bend loss for multimode fibers having greater 
accuracy is worth developing.  

 

1.3.2    Evolution of Equiangular Spiral (ES) PCF 

As numerous air holes are arranged in the cladding of PCFs, it is possible to obtain a tightly 
confined optical mode with small effective area and large nonlinearity which coupled with 
flat, anomalous dispersion has led to successful broadband supercontinuum generation 
(SCG) in hexagonal lattice PCFs (H-PCFs) [29]. In order to achieve even larger 
nonlinearity, ES-PCF was coined by Agrawal et. al. in 2009 [20]. Fig. 1.11 shows the air 
hole pattern in H-PCF and ES-PCF. In ES-PCF, the cladding air hole pattern mimics the 
“spira mirabilis” [equiangular spiral (ES)] and appears in nature in nautilus shells and 
sunflower heads. It leads to efficient feature growth/packing of seeds and the growth of this 
type of curve does not alter the shape of the curve. In the ES-PCF, each arm of air holes 
forms a single ES of radius ro, angular increment θ, and the radius of 

 

               

 

                 (a)                                                                           (b) 

Fig. 1.11 Air hole arrangements in the cladding of (a) a hexagonal lattice PCF, (b) an 
equiangular spiral PCF. 
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each air hole is fixed at r. In the ES, the radii drawn at any equal intervals of θ are in a 
geometric progression; therefore, the pitch (distance between air holes) in a ring increases 
with the ring number. 

One can have an intuitive idea from Fig. 1.11(b) that it is possible to obtain a more tightly 
confined optical mode in the core region with the help of the compact air hole arrangement 
of ES-PCF than that of H-PCF. This unique feature is exploited in [20] to achieve a very 
high nonlinearity higher than those of [29].  

After this work, nothing much is reported on ES-PCF in the literature. A detailed analysis 
of other characteristics of ES-PCF such as: dispersion profile, singlemodedness, 
birefringence, confinement loss, bending properties etc may worth some value. With this 
motivation behind, most of the works of this thesis are related to ES-PCF. 

 

1.3.3    Some Recent Works on Photonic Crystal Fibers 

In this section, some recent developments and applications of H-PCFs are discussed. Based 
on the discussion, the objectives of the thesis will be stated.  

 

Residual dispersion compensation 

The PCFs have several characteristics that permit their use as an excellent transmission 
medium for short and large distances. A long-haul optical fiber transmission system 
requires small but nonzero flattened dispersion characteristics [30]. So, a dispersion 
management scheme should be there to nullify the accumulated positive dispersion in the 
system. For this purpose, a fiber having a large negative dispersion called dispersion 
compensating fiber (DCF) has to be introduced as a part of the communication system [31]-
[33]. A flat negative dispersion of about −98.3 ps/nm-km with absolute dispersion variation 
of about 1.1 ps/nm-km was reported over S+C+L wavelength bands in [33]. The design in 
[31] exhibits ultraflattened negative dispersion over S+C+L+U wavelength bands and 
average dispersion of about −179 ps/nm-km with an absolute dispersion variation of 2.1 
ps/nm-km over 1480 nm to 1675 nm (195 nm bandwidth). More recently, a genetic 
algorithm based optimization technique has been reported in [28] to achieve a flattened 
negative dispersion over E+S+C+L+U wavelength bands with an average dispersion of 
−212 ps/nm-km with a dispersion variation of 11 ps/nm-km by employing a small Ge-
doped core at the center. All these analyses are done on the microstructured fiber with 
hexagonal-lattice of air holes. But, the polarization issue was not considered anywhere. 
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Liquid crystal infiltrated PCFs  

Nematic liquid crystals are anisotropic materials consisting of rod-like molecules whose 
axis coincides with the anisotropy’s optical axis. When confined in closed cylindrical 
cavities in the absence of external stimuli, the liquid crystal’s director distribution is 
determined by the physics of elastic theory and the anchoring conditions at the cavity’s 
surface [34]. Under the application of a static electric field the director’s orientation can be 
controlled, since the liquid crystal molecules tend to align their axis according to the 
applied field. In an alternative approach, the properties of nematic liquid crystals can be 
tuned thermally owing to the dependence of the refractive index values on temperature. In 
[35], the authors proposed and theoretically analyze a novel photonic crystal-liquid crystal 
(PC-LC) core fiber design. The fiber consists of a triangular lattice of air holes opened in an 
optical glass enhanced by a hollow cylindrical core filled by common nematic liquid 
crystal, thus embodying both the design tailoring advantages of common holey fibers and 
the intrinsic controllable anisotropy of the liquid crystal material. The fiber’s 
characteristics, namely modal dispersion curves, birefringence and modal intensity profiles 
are studied for a uniform distribution of the nematic director. Though this particular 
director orientation is in a sense ideal, it can be thought as the limiting orientation of more 
realistic patterns, and, in addition, it demonstrates the salient points for this special class of 
fibers. It is verified that the fiber can function in a single-mode/single-polarization 
operation (selectively HEx or HEy), it can exhibit high- or low-birefringence, or switch 
between on-off states, depending on the structural design. 

 

Mode degeneration in bent PCFs 

In many practical applications, PCFs encounter bends, twists, and stress. It is well known 
that when a fiber is bent, the modal field shifts in the outward direction and suffers from 
radiation loss. One of the main disadvantages suffered by standard silica fiber has been that 
significant bending loss arises due to the low index contrast between the core and the 
cladding when compared to that of a PCF. However, sometimes the need for a small 
bending radius may be unavoidable in a specific optical waveguide: on the other hand, 
bending effects have also been exploited to design functional devices such as ring 
resonators, arrayed waveguide filters, optical delay lines, S-bend attenuators, to suppress 
higher order modes etc. [36]-[38]. Similarly, efforts have also been expended to better 
understand the behavior of bent PCFs [39]. The authors in [40] report on the variation of 
the key modal parameters in PCFs that arises from the change in the coupling between the 
fundamental core mode and the localized cladding mode across the air holes. 
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Bend insensitive single mode PCFs with large effective area 

The high leakage loss of a bent PCF can be minimized to an acceptable level by 
appropriately choosing the air hole diameters. But, apart from low bending loss, other two 
conditions are to be met simultaneously for practical applications [41]. These are, the 
higher order modes which are usually unavoidable in a low bending loss PCF, should be 
suppressed and the effective mode area of the fundamental mode of the PCF should be very 
close to that of a typical single mode fiber (SMF) to minimize the splice loss. This is a 
challenge to meet these three conditions simultaneously as they are usually conflicting. 
However, several such designs have been reported in the literatures [42]-[45] for hexagonal 
lattice PCFs.  

 

1.4    Objectives of the Thesis 

The simplified bend loss formula developed by Marcuse overestimates the bend loss 
slightly in single mode fibers and largely in multimode fibers. An improvement of the 
formula has been proposed in [27], but it underestimates the bend loss especially for large 
mode area fibers. Not much work has been done after this to improve the accuracy of the 
formula especially for PCFs.  

1.     The objective of this thesis is to improve the accuracy of bend loss calculations for 
conventional step index (SI) fibers. The estimated bend losses will be compared to the 
simulated and experimental results to validate its accuracy. Finally, the technique will be 
applied to the newly designed ES-PCF. 

2.    As indicated in [46], a central air hole in the PCF structure is useful to shift the 
dispersion curve up and down. Also, the large number of variables that can be altered in an 
ES-PCF may help in achieving a flat large negative dispersion profile over a wide 
wavelength range. With this motivation behind, an ES-PCF with central air holes will be 
proposed to achieve a very large negative flat dispersion profile even more negative than 
those of cited over the telecommunication wavelength bands.  

3.     Infiltrating liquid crystal in the air holes of a PCF results interesting phenomena such 
as single polarization or high birefringence [35]. Exploiting this technique in ES-PCF, a 
single polarization fiber will be designed to achieve large negative dispersion profile with a 
flatness more than the reported ones.  

4.     When a fiber is bent, the index distribution of the core and cladding is altered that can 
be determine by the technique of conformal mapping [27]. It can be shown that there exists 
some cladding modes confined between the air hole rings in the cladding in a bent PCF. 
Though the analysis of mode degeneration between the fundamental core mode and a 
cladding mode is carried out in [40] for H-PCFs, a detailed analysis of the bending 
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properties especially the cladding modes on ES-PCFs are yet to be done. In this paper, the 
ES-PCF will be investigated to observe the coupling between fundamental core mode and 
cladding mode. 

5.     Bend insensitive single mode fibers with large effective modal area are necessary for 
fiber to the home applications [44], for high speed WDM communications [42] and in fiber 
lasers where even larger effective area is needed to handle high power with reduced 
nonlinearity [45]. As most of the fibers reported for these applications are based on 
triangular lattice PCFs (H-PCFs), this thesis concentrates on finding a bend insensitive 
single mode ES-PCF with large effective area. Also, there is a subsidiary target of 
developing a new design of circularly arranged air hole PCF for the same applications.  

 

1.5    Scope of the Thesis 
 

This thesis dissertation is arranged in the following manner: chapter one (this chapter) is 
composed of the basic principles of light propagation in PCFs. Also, Review of literature of 
the recently reported works on PCF especially on spiral PCF and objective of this thesis 
have been presented in this chapter. Chapter two is composed of the full vectorial Finite 
Element Method (FEM) adopted to obtain the optical mode of the PCF numerically. 
Development of a modified bend loss formula will be depicted in chapter three. Chapter 
four consists of the step by step design and analysis procedure to obtain some useful 
characteristics using primarily spiral PCF and also a novel circular lattice PCF. Finally, 
chapter five contains the concluding remarks. 

 



CHAPTER 2 
FULL VECTORIAL FINITE ELEMENT METHOD 

Photonic crystal fibers (PCFs) which are characterized by a cladding of air capillaries most 
commonly arranged in a triangular lattice, have been a key topic of research in the field of 
optical fiber communication. The form of the central defect core is responsible for the 
PCF’s light guiding mechanism: index guiding in the case of a solid core, or band gap-
guiding when low-index or hollow cores are used. Numerical software plays an important 
role in the design of waveguides and fibers. For a fiber cross section, even the simplest 
shape is difficult and cumbersome to deal with analytically. As this thesis is concentrated 
on index guiding PCF, the methodology of simulating the different characteristics of PCF 
will be discussed here. 
 

Though the silica glass (SiO2) fiber is forming the backbone of modern communication 
systems now a days, other materials have been used too as the background of PCF in this 
thesis, to obtain useful properties like flat and large negative dispersion profile, high 
birefringence, low bending loss, large effective modal area etc. The refractive index of the 
core, n1 is taken as the index of pure material or it may be higher when doped with some 
other material at a certain molar fraction. The cladding consists of a number of air holes 
with a background of core material. The effective index of the cladding, n2 determined as 
the fundamental space filling mode [47] is lower than n1 ensuring that there is at least one 
confined mode for a single mode PCF and more than one mode for a multimode PCF. For a 
confined mode, there is no energy flow in the radial direction, thus the wave must be 
evanescent in the radial direction in the cladding. This is true only if the effective index of 
the confined mode, neff is greater than n2. On the other hand, the wave cannot be radially 
evanescent in the core region. Thus,  n1 > neff > n2. The waves are more confined when neff 
is close to the upper limit in this interval. The refractive indices change with the change in 
wavelength. These different values of indices at different wavelengths are obtained from 
the corresponding Sellmeier equation. The radius of the cladding is chosen to be large 
enough so that the field of confined modes is zero at the exterior boundaries. 
 

The optical mode analysis is made on a cross-section in the x-y plane of the fiber. The wave 
propagates in the z- direction and has the form 

)(),(),,,( ztjeyxHtzyxH βω −=                                        (2.1) 

where ω is the angular frequency and β the propagation constant. An eigenvalue equation 

for the magnetic field, H  is derived from Helmholtz equation 

0)( 22 =−×∇×∇ − HkHn o                                              (2.2) 

which is solved for the eigenvalue λ = −jβ. 
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As boundary condition along the outside of the cladding, the magnetic field is set to zero. 
As the amplitude of the field decays rapidly as a function of the radius of the cladding this 
is a valid boundary condition. 

2.1 Formulation in Detail 

The Electric field intensity, E  and the Magnetic field intensity, H  associated with the fiber 
to be simulated can be written as, 

)(),(),,,( ztjeyxEtzyxE βω −=                                               (2.3) 

   )(),(),,,( ztjeyxHtzyxH βω −=                                              (2.4) 

The constant β in the exponential is the propagation constant. In those cases where β is a 
complex number, we can define the attenuation constant α = −Im(β), which expresses how 

the wave decreases, ze α− . 
 

The following formulations are derived from Maxwell-Ampère’s and Faraday’s laws: 

EjH ωε=×∇                                                         (2.5) 

  HjE ωµ−=×∇                                                       (2.6) 

These equations are used in the perpendicular electromagnetic waves application mode in 

the software COMSOL Multiphysics [48]. Here, λ = βδ jz −−  is calculated as the 

eigenvalue.  
 

The derivation in the following section assumes that the eigenvalue is a complex number 
with the real part equal to zero, λ = −jβ. All occurrences of jβ or -β2 can be replaced with 

βδ jz + or ( βδ jz + )2. This is only a simplification to make the expressions easier to read.  

Perpendicular hybrid-mode waves treats the case of transversal fields and inhomogeneous 
materials. The formulation for perpendicular hybrid-mode waves is shown below: 
 

Here, we let εrct and µrt denote the 2-by-2 tensors in the transversal xy-plane,  
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µ                                  (2.7) 

 

Here, εrct and µrt are the complex relative permittivity and permeability in the transversal xy-

plane. Now, the magnetic field intensity, H can be expressed as, 
 

( ) ztzyx HzHHzHyHxzyxH +=++=,,                                   (2.8) 
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Here, tH is the transverse component of the magnetic field intensity,H . 
 

From Maxwell’s equations,  
 

0. =∇ B                                                                    (2.9) 

 

Here, B  is the magnetic flux density. Expressing equation (2.9) in terms of magnetic field 

intensity,H , we get, 

 

0. =−∇ zrzztrtt HjH βµµ                                                (2.10) 

 

Now, equation (2.2) can be expressed as,  

0)( 21 =−×∇×∇ − HkH rorc µε                                             (2.11) 

 

Here, εrc is the complex permittivity and µr is the real part of the complex permeability. We 
get the following equation from (2.11) using (2.8), 
 

( ) 0)( 22
0

1 =−−∇−×∇×∇ −
trctrtztrctttrczzt HkHjH εβµβεε                     (2.12) 

 

Now, substituting equation (2.10) into equation (2.12) we get, 
 

( ) ( ) 0.)( 22
0

11 =−−∇∇−×∇×∇ −−
trctrttrttrzztrctttrczzt HkHH εβµµµεε              (2.13) 

 

We can solve this equation as an eigenvalue problem both for λ = −jß and λ = −jω. In the 
first case it becomes an eigenmode problem and in the second case it becomes an 
eigenfrequency problem. For this thesis, eigenmode problem is of interest.  
 

2.1.1    Use of hybrid edge-nodal triangular elements 
 

Various elements are being developed to solve different microwave and optical problems 
through FEM. The hybrid type edge/nodal triangular as well as rectangular elements are 
such special elements, and have found a great deal of practical applications for hybrid mode 
analysis. In this work, we used triangular type hybrid element which is composed of edge 
and nodal elements, where edge elements model the transverse field ensuring tangential 
continuity along the element interfaces and nodal elements model the axial fields. As the 
edge elements assign the degrees of freedom to the edges, they allow the field to change its 
direction abruptly and thus are capable of modeling the field properly at sharp edges at 



25 
 

which singularity occurs. With hybrid elements, the FEM overcomes all the shortcomings, 
that clouded many of the analyses before. 
 
A hybrid edge-nodal triangular element which is used in our calculation is shown in Fig. 

2.1. Here the edge element has three tangential unknowns, 1tφ  to 3tφ , and a nodal 

(conventional Lagrange) element has three axial unknowns, 1zφ  to 3zφ . They are combined 
to form an element as shown in Fig. 2.1(c) and is used in our analysis.  
 

           
(a) Edge element                           (b) Nodal element 

 

 
(c) Edge-nodal element 

 

Fig. 2.1 Hybrid edge-nodal triangular element. 

 
2.2 Boundary and Interface Conditions 
 

The interior boundaries of the cross-sectional geometry of the PCF are set at continuity 
boundary conditions. The outermost boundary of the cross-section is set at perfect electric 

conductor boundary condition when solving for magnetic field intensity, H . Perfect 

magnetic conductor boundary condition is used when solving for electric field, E . This is a 
valid boundary condition as the radius of the geometry is chosen large enough for the 
electric or magnetic field to decay to zero. 
 
 
2.2.1  Perfect magnetic conductor 

The perfect magnetic conductor boundary condition, 

0=× Hn  

Φz3 

Φz1 
Φz2 

Φz3 

Φz1 Φz2 

Φt1 

Φt2 
Φt3 

Φt1 

Φt2 Φt3 
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sets the tangential component of the magnetic field to zero at the boundary. Also, it implies 

that,  0. =Dn  for a perfect magnetic conductor. 

2.2.2  Perfect electric conductor 
 

The perfect magnetic conductor boundary condition, 

0=× En  

sets the tangential component of the electric field to zero at the boundary. Also, it implies 

that,  0. =Bn  for a perfect electric conductor. 

2.2.3  Continuity 
 
The continuity boundary condition, 

( ) 021 =−× HHn  

( ) 021 =−× EEn  

is the natural boundary condition ensuring continuity of the tangential components of the 
electric and magnetic fields. 

2.2.4  Perfectly Matched Layer (PML) 
 

A perfectly matched layer is an artificial boundary condition implying perfect absorption of 
incident field. This boundary condition is required for approximating infinite zone beyond 
the waveguide outer edge to a finite domain of numerical analysis. Effect of PML on 
numerical solutions obtained will be more prominent when confinement of field in the PCF 
is weak. This layer can also be utilized to find out the complex part of effective index. 
 

There are several different PML formulations. However, all PML’s essentially act as a 
lossy material. The lossy material, or lossy layer, is used to absorb the fields traveling away 
from the interior of the grid. The PML is anisotropic and constructed in such a way that 
there is no loss in the direction tangential to the interface between the lossless region and 
the PML. However, in the PML there is always loss in the direction normal to the interface. 
 

The PML was originally proposed by J. P. Berenger in 1994 [49]. In that original work he 
split each field component into two separate parts. The actual field components were the 
sum of these two parts but by splitting the field Berenger could create an (non-physical) 
anisotropic medium with the necessary phase velocity and conductivity to eliminate 
reflections at an interface between a PML and non-PML region.  
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Arguably the best PML formulation today is the Convolutional-PML (CPML). CPML 
constructs the PML from an anisotropic, dispersive material. CPML does not require the 
fields to be split and can be implemented in a relatively straightforward manner. 
 
The PML region can be viewed as a perfect absorber with a certain magnitude of 
conductivity. However, the optimized conductivity is calculated from certain sets of 
equations.  In our work, we have considered cylindrical PML available in the commercial 
software.   
 
 

 
 
 

Fig. 2.2 PML region surrounding the waveguide structure.   
 
 

Formulation of wave equations in the PML region can be done after rigorous analysis, 
 

EsjwnHn 2=×  

HsjwEn 0µ−=×  

00
2

11
µ

σ
ε

σ
w

j
wn

js me −=−=                                           (2.14) 

 
Where, 
E: Electric Field  
H: Magnetic Field 

eσ   and mσ : Electric and magnetic conductivities of PML, respectively.    

 
e  is the thickness of the PML layer which is ideally a multiple of the operating wavelength. 
To avoid numerical reflection, conductivity in the PML region is graded to a peak value 
rather than an abrupt rise as shown in Fig. 2.2. 
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Fig. 2.3 Grading of PML conductivity. 

 
 

PML parameter s becomes, 

 

                            (2.15) 
 
where R is the reflection coefficient of electromagnetic field from the interface to be 
minimized. For a perfectly matched condition to secure zero reflection from the interface, 
we can write, 
 

                                                        (2.16) 
 

Now reflection coefficient is defined as below [50], 
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From this, maximum conductivity is defined as below, 
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2

1 0
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εσ                                              (2.18) 

 
Here, m is the order of polynomial for grading conductivity. These equations imply that, a 
minimum reflection will occur for a maximum conductivity. However, numerical error 
terms imply that there is an optimum magnitude of reflection for accurate propagation 
constant. A stable value of complex effective index can be obtained by altering the 
thickness of PML and distance of PML from centre of the PCF. 



CHAPTER 3 
BEND LOSS FORMULA FOR OPTICAL FIBERS 

 

In many practical applications, optical fibers encounter bends and twists. It is also well 
known that when a fiber is bent, the modal field shifts in the outward direction and suffers 
from radiation loss. 

To study arbitrary bends in PCFs, various methods are used. Among them conformal 
transformation [27] is the most famous. In this transformation, a curved dielectric 
waveguide is converted to its equivalent straight one with a modified index profile. The 
coordinate transformation maps the refractive index profile of a bent optical fiber n(x,y) to 
its equivalent straight optical fiber’s refractive index neq(x,y) using the following formula, 

]1)[,(),(
R

x
yxnyxneq +=                                                              (3.1) 

Here, R is the radius of the curvature and x is the distance from the center of the 
waveguide. This equation is valid for the range x≪ R, which is well within the ranges 
considered in this paper. When a waveguide is bent, change in the refractive index due to 
the stress-optic effect should also be taken into account. This can be done by replacing the 

bending radius R by effective bend radius, Reff where, 
R

Reff  = 1.28 [27]. Thus, Eqn. (3.1) 

can be rewritten as, 

]1)[,(),(
eff

eq R

x
yxnyxn +=                                              (3.2) 

 

3.1    Simplified Bend Loss Formula 

The simplified bend loss formula (the word ‘simplified’ indicates that this formula is a 
simplified form of a more complex one) for step index optical fibers reported by Marcuse 
is as follows, 
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Here, a is the core radius, 2α is the power loss coefficient, κ and γ are the field decay rates 
in the core and cladding defined as, 
 

22
zcorek βκ −=

                                                  (3.4) 
22
cladz k−= βγ

                                                   (3.5) 
 
and the K terms are modified Bessel functions, V is the normalized frequency, kcore is the 

core propagation constant, kclad is the cladding propagation constant and βz is the effective 
propagation constant of the fundamental mode (the z- axis being the direction of 
propagation). Bend loss in units of dB/length is obtained by multiplying 2α by the factor 
4.343. 
 

 
3.2 Modification of Simplified Bend Loss Formula 
 

Schermer et. al. argues in [27] that the bending radius R in Eqn. (3.3) should be replaced by 
Reff to include the elastooptic effect due to bending resulting in, 
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Fig. 3.1 Comparison of FEM calculated bend losses with those of experimental, BPM 

calculated and simple formula generated values for SMF-28 fiber. 
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Fig. 3.2 Comparison of FEM calculated bend losses with those of experimental, BPM 
calculated and simple formula generated values for Liekki passive 25/240DC fiber. 

They calculated the bend loss of SMF-28 (a single mode fiber) and Liekki passive 
25/240DC (a multi-mode fiber) numerically by beam propagation method (BPM), also 
obtain these values experimentally and finally compared these bend loss values with those 
calculated from Eqn. (3.6). The accuracy of their BPM was established as the bend loss 
calculated by BPM matched those of obtained from experiment. In this thesis, the bend 
loss of SMF-28 and Liekki passive 25/240DC are calculated by using the FEM based 
software [48] and its accuracy is established too as the calculated bend loss very closely 
match those of experimental values shown by [27]. In Figs. (3.1) and (3.2) these 
comparisons are shown, It can be seen from Fig. 3.1 that the simple formula of Eqn. (3.6) 
overestimates the bend losses for lower values of bending radii although it approximately 
matches the actual bend losses at higher bending radii. Though this slight overestimation is 
not dealt with much importance in the literatures [27], it will be worth reducing this 
difference to increase the accuracy of the formula. 
 

In the case of multi-mode fiber, it can be seen from Fig. 3.2 that the simple formula of Eqn. 
(3.6) overestimates the bend losses to a much larger extent than in the case of single mode 
fiber. This overestimation is even larger at the lower values of bending radii. Clearly, a 
modification in the formula of (3.6) is essential to reduce this difference for multimode 
fibers. 

It is clear from [25] that in Eqn. (3.6), effective refractive index of a straight fiber is used. 
But, when the fiber is bent, Eqn. (3.2) is used to obtain the index distribution of the 
equivalent straight fiber. Thus, the effective index of the fundamental mode of interest is 
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now different from that of a straight fiber. Thus, the effective index of the bent fiber should 
be used in (3.6) for the corresponding bending radius. This is one source of overestimating  
bend loss by the simplified formula identified by Schermer.  
 

Another simplifying assumption that was made by Marcuse in the process of derivation of 
Eqn. (3.6) is, he assumes the mode field distribution does not change due to bending. To 
account for this change in mode field distribution in bent fibers, Schermer derived the 
following formula by expanding the fields on the boundary cylinder, defined by x = a, as a 
superposition of outgoing cylindrical waves in the cladding. 

( )

( ) ( ) ( )aKaKVaR

a
aR

mmeff

z

eff

γγγ

γ
β

γ
κπ

α

11
22

3

2
1

2

3
22

1

2

2
3

2
exp

2

+−+














−

+
−

=                                              (3.7) 

0 0.5 1 1.5 2 2.5 3
10

-4

10
-2

10
0

10
2

10
4

10
6

Bending Radius (cm)

B
e
nd

in
g
 L

o
ss

 (
d
B

/m
)

 

 

experiment
BPM
FEM
Simple Formula
eqn. (3.7), neff

of straight fiber
eqn. (3.7), neff
of bent fiber

 

Fig. 3.3 Comparison of eqn. (3.7) generated bend losses with those of experimental, BPM 
calculated and FEM calculated values for Liekki passive 25/240DC fiber at the wavelength 

of 633 nm. 

These two sources of discrepancies from the actual bend loss were identified by Schermer 
and they are almost overcome using Eqn. (3.7) where κ and γ are calculated from the actual 
refractive index of the bent fiber. But, this would weaken the justification of using an 
analytical formula to calculate bend loss which could otherwise be calculated by any 
tedious numerical method such as BPM or FEM. 
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To increase the accuracy of the modified formula, the modified formula of Schermer 
should be re-modified. For this, the simplified assumption by Schermer should be dealt 
with proper care. Schermer derived Eqn. (3.7) by expanding the fields on the boundary 
cylinder, defined by x = a. The reason is, the peak of mode field distribution shifts towards 
the bend direction from the center of the core and taking x = a implies that the shift 
distance is equal to the core radius. But actually it should be dependent upon the bending 
radius according to the rule that the lower the bending radius, the larger becomes the shift 
distance. 

Usually, the field along a line through the center of the fiber follows the Gaussian 
distribution. But when the fiber is bent, the field deviates from the Gaussian shape and 
resembles the shape of Chi-square distribution. 
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(a)                                                               (b) 

Fig. 3.4 Qualitative field distribution along a line going through the center of the cross 
section for a (a) straight fiber and (b) for a bent fiber. 

In this thesis, firstly we argue that the value, x = a, should not be used to derive Eqn. (3.7) 
as it will underestimate the loss to a large extent. Rather, by expanding the fields on the 
point where the peak of the field occurs, defined by x = xpeak the resulting bend loss 
equation becomes,  
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But, it is observed that Eqn. (3.8) underestimates the bend loss too though the values are 
closer to the actual ones this time than those determined by eqn. (3.7), as shown in Fig. 3.5. 
So, taking x = xpeak cannot be the solution. To determine the value of x, a quasi- analytical 
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technique is adopted. It is to be noted that the calculated bend loss from eqn. (3.7) gets 
lower with the decrease of x. So, a value smaller than xpeak, will return the accurate result.  
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Fig. 3.5 Comparison of eqn. (3.8) generated bend losses with those of experimental, BPM 
calculated and FEM calculated values for Liekki passive 25/240DC fiber at the wavelength 

of 633 nm. 

The area under the Gaussian curve of Fig. 3.4(a) is divided into two equal halves at x = 
xpeak. But, for the Chi-square like distribution, the area under the curve is divided into two 
equal halves for a value of x < xpeak. This value of x is determined by a computer program 
and symbolized as xeq.area. If this xeq.area is put into the eqn. (3.7) instead of the core radius a, 
we get, 
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In Fig. 3.7, eqn. (3.9) generated bend loss values are compared with those calculated using 
the BPM, FEM and simple formula of Marcuse. The formula given by eqn. (3.9) is shown 
to estimate bend loss with a very high accuracy. So, the quasi-analytic assumption x = 
xeq.area is a valid one. 

Next, it has to be checked that whether the eqn. (3.9) works well enough too for single 
mode SI fibers or not. Fig. (3.8) shows the comparisons among eqn. (3.9) generated bend 
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losses with those of experimental, BPM calculated and FEM calculated values for SMF-28 
fiber used by Schermer et. al. It can be seen from this figure that like a multimode fiber, the 
accuracy of bend loss estimation for a single mode fiber using eqn. (3.9) is very high too. 
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Fig. 3.6 The area under the curve is divided into two equal halves at xeq.area. 
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Fig. 3.7 Comparison of eqn. (3.9) generated bend losses with those of experimental, BPM 
calculated and FEM calculated values for Liekki passive 25/240DC fiber at the wavelength 

of 633 nm. 
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Fig. 3.8 Comparison of eqn. (3.9) generated bend losses with those of experimental, BPM 
calculated and FEM calculated values for SMF-28 fiber. 

 

3.3 Bend Loss Formula for PCFs 

The applicability of Marcuse’s simplified bend loss formula for PCFs has not been 
addresses in the literature much. In this thesis, an attempt has been made to modify 
Marcuse’s formula for bend loss prediction of PCFs in the telecommunication wavelength 
bands (usually lies between 1350 nm 1700 nm). Unlike SI fibers, bend loss of PCFs shows 
a peak in the lower wavelength range (between 500 nm to 850 nm) [43] along with another 
peak in the telecommunication wavelength bands. Whereas, SI fiber has a single peak in its 
bend loss curve only in the telecommunication wavelength bands. That is why Marcuse’s 
formula which was originally developed for SI fibers is difficult to apply on PCFs. 

Here, an attempt to apply the modified Marcuse’s formula of eqn. (3.9) has been made in 
the wavelength range 1450 nm to 1650 nm. Eqn.(3.9) is applied directly on PCFs with the 
only exception that kclad in eqn. (3.5) is calculated from the fundamental space filling mode, 

nFSM adopting a technique described in [47]. The core radius is taken to be 
3

Λ  [47] for 

calculating the normalized frequency V, where Λ is the pitch of the PCF. 
 

It can be seen from Figs. 3.9-3.11 that the modified bend loss formula developed for SI 
fibers in eqn. 3.9 can predict the bend loss in PCFs too. Though the accuracy is not similar  
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Fig. 3.9 Comparison of eqn. (3.9) generated bend losses with those FEM calculated values 

for an H-PCF having Λ = 18µm and Λ
d = 0.6 at different wavelengths. 
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Fig. 3.10 Comparison of eqn. (3.9) generated bend losses with those FEM calculated 

values for an H-PCF having Λ = 18µm and Λ
d = 0.5 at different wavelengths. 
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Fig. 3.11 Comparison of eqn. (3.9) generated bend losses with those FEM calculated 

values for an H-PCF having Λ = 18µm and Λ
d = 0.4 at different wavelengths. 

to the case of SI fibers, the values are close enough to the actual ones calculated by FEM. 
It is intuitive that the differences are due to the bend induced coupling [40] between the 
fundamental mode and leaky cladding mode, which is totally unpredictable and depends on 
wavelength strongly. Thus, the formula of (3.9) finds its applicability for PCFs over a 
limited range of wavelength.  

 

3.4    Comments 

A modified bend loss formula has been proposed in this chapter for step index fibers and 
its applicability is verified through numerical simulations using FEM. Before this, the 
accuracy of FEM in calculating bend loss is confirmed through a comparison with the 
previously published results. Moreover, this modified formula is also shown to be 
applicable for PCFs, though in a limited extent. It is expected that this formula will ease 
the computation of bend loss both for SI fibers and PCFs. 



CHAPTER 4 
DESIGN AND ANALYSIS OF PHOTONIC CRYSTAL FIBERS 

 

A conventional design of PCF has a hexagonal lattice where three parameters such as, 
pitch, air hole diameter and number of air hole rings, can be varied to obtain useful 
properties. On the contrary, an ES-PCF has more than three parameters to vary like 
variable pitch, air hole diameter, number of air hole rings, angular difference between 
rings, increase factor of air hole diameter etc. Thus, an ES-PCF offers more design 
flexibility to obtain valuable properties in fiber optic communication systems. In this 
chapter, several such designs of ES-PCF have been shown.   

 
4.1    Residual Dispersion Compensating ES-PCF 

In section 2.3.1, several design based on H-PCF have been shown for residual 
dispersion compensation over the telecommunication wavelength bands [31]-[33]. In 
this thesis, an ES-PCF has been investigated for this application for the first time to 
my knowledge. The polarization issue has been considered here simultaneously. 
Among the several developed designs, the first one has an elliptical air hole at the 
core region which is employed to achieve a flattened and larger negative dispersion to 
obtain dispersion compensation over E+S+C+L+U  wavelength bands. The structure 
also exhibits a very high value of birefringence.  

 

4.1.1    ES-PCF design 

The proposed residual dispersion compensating fiber (RDCF) design is based on the 
equiangular spiral PCF [20]. In this design process, a full-vectorial finite element 
method (FEM) has been used to characterize the proposed ES-PCF as described in 
chapter three. An anisotropic perfectly matched layer (PML) was used to accurately 
account for the confinement losses. Chromatic dispersion caused by the combined 
effects of material and waveguide dispersions in an optical fiber, can be calculated by 
the formula,  

2

2 ))(Re(

λ
λ

∂

∂
−= effn

c
D

,                                                   (4.1) 

where λ is the wavelength of, c is the velocity of light, neff is the effective refractive 
index of the fundamental mode and Re(·) indicates the real part. The birefringence is 
determined by taking the difference of the real parts of the effective indices of two 
fundamental polarization modes (slow and fast axis modes) [51],  

 

                                 B = |nx−ny|.                                                          (4.2)                 
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Fig. 4.1 shows the air hole arrangement in the proposed design. In this design, there 
are Nr air holes in each ring. The first ring has a radius of ro and the radii of the 
subsequent rings increase by geometric progression. Each air hole of the first ring is 

 

 

Fig. 4.1 Cross section of the proposed ES-PCF. 

 

the starting point of a spiral arm. There are N circular air holes in each arm. The first 
nine of them has a radius of rh. The angular position of each air hole in an arm is 
increased by θ than the previous one. The major and minor semi axes lengths of the 
central defect air hole are dm and dn, respectively. 

 

4.1.2    Simulation results 

A full-vectorial finite element method (FEM) described in chapter three has been used 
to characterize the ES-PCF design. About 20512 second-order triangular elements 
arranged in an irregular mesh over the cross section have been used to represent the 
fiber structure. A single simulation run on a 64-bit dual core Intel Pentium desktop 
computer took about 90 s. The numerical results are reported    for an optimized 
structure with Nr=10, N=16, ro=1.4µm, θ=12◦, rh=0.15µm, dm=0.735µm and 
dn=0.1838µm for an RDCF having numerical aperture around 0.65. The minimum 
and average distances between air holes are 0.02 µm and 0.18 µm, respectively. The 
material dispersion is taken into account by using the Sellmeier equation to obtain the 
refractive index of silica at different wavelengths. An RDCF should have a flat 
negative chromatic dispersion of high magnitude in the wavelength band of interest. 
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Fig. 4.2 Comparison of the dispersion profile with those reported in recent literature. 

In this work, the design shows an average value of chromatic dispersion equal to −227 
ps/nm-km with a dispersion variation of 11 ps/nm-km (between −220.2 ps/nm-km and 
−232.1 ps/nm-km) in the wavelength range 1350nm to 1675nm for the fundamental  
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Fig. 4.3 Total dispersion versus wavelength as a function of ro.      
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(a)                                                     (b) 

Fig. 4.4 Electric field of the fundamental slow axis mode of the proposed ES-PCF, (a) 
at 800 nm, (b) at 1550 nm.  

slow axis mode. In Fig. 4.2, we have compared our result of total dispersion with 
those obtained by Franco et. al. [31] and Da Silva et. al. [32]. For our design, we have 
obtained negative dispersion with higher amplitude than those of Franco et. al. and Da 
Silva et. al. In Fig. 4.3 we show the total dispersion versus wavelength as a function 
of ro over a wide band (from 700nm to 1700nm) while the other parameters are 
unchanged. It can be seen here that at lower wavelengths, the dispersion increases 
with wavelength as the field spreads in the central silica region and effective index 
decreases rapidly as the field interacts with the first ring of air holes as shown in Fig. 
4.4(a). As the field spreads out further and interacts with the silica cladding in the  
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Fig. 4.5 Total dispersion variation for different values of dm and dn. 
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region beyond the first ring of air holes, the change in refractive index reduces and 
dispersion becomes nearly flat at the wavelength near 1000 nm. With further increase 
in wavelength, the field comes under the influence of the second ring of air holes as 
shown in Fig. 4.4(b) and causes to increase the change in refractive index and thus 
leads to large negative dispersion. At higher wavelengths near 1500 nm, the field 
again interacts with silica cladding beyond the second ring of air holes and again the 
change in refractive index slows down. It leads to a flat negative dispersion of interest 
for dispersion compensation. It can also be seen that some small fraction of power, 
about 1.3% at 800nm and about 6% at 1550nm, stays in the elliptical air hole in the 
core.  

In Fig. 4.5, we show the total dispersion variation as a function of different values of 
dm and dn. A change in anyone of the semi axes (dm or dn) causes a significant 
variation in total dispersion. However, the structure is optimized to obtain a large 
negative and flat dispersion profile and high birefringence simultaneously. A change 
in orientation of the defect air hole however does not alter the dispersion curves 
much. It has been found that the birefringence is of the order of 10−2 over the 
wavelength range considered here and at 1500nm it is about 0.017 when ro=1.4µm. At 
ro=1.26µm it is even higher as to obtain a polarization maintaining fiber in 
comparison with the values presented earlier in the literatures [51]-[55]. Here, it has 
also been found that the high birefringence of the proposed structure is due to the 
central elliptical air hole alone.  

Next, to ensure the stability of the proposed designs, tolerance study was performed 
based on different structural parameters. Total dispersion and birefringence are shown  
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Fig. 4.6 Sensitivity of total dispersion for different structural parameters. 
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Fig. 4.7 Sensitivity of birefringence for different structural parameters. 

in Fig. 4.6 and Fig. 4.7, respectively, where the results of the optimized design are 
compared with the results obtained by changing only one parameter at a time. It is 
seen that a variation of about 5% in the structural dimension does not alter the average 
dispersion and birefringence much. The curves with the dark circle show the results of 
the optimized design. 

 

4.1.3    Outcomes 

Here, an ES-PCF is investigated as a polarization maintaining residual dispersion 
compensating fiber in the telecommunication frequency bands. Apart from dispersion 
compensation, the proposed design in this work also maintains single polarization. Its 
birefringence value is fairly high and even higher than most of the polarization 
maintaining fiber reported earlier. These dual characteristics make this fiber a 
promising candidate in its application in the fiber optic communication link in the 
telecommunication window. 

 

4.2    Residual Dispersion Compensating ES-PCF with Modified Design 
 

In this section, the dispersion profile and birefringence of the ES-PCF are investigated 
by introducing more than one air holes in the core region to obtain a dispersion profile 
even flatter than that discussed in section 4.1, with less dispersion variation over the 
wavelength range 1350 nm to 1650 nm. Dispersion profiles having average dispersion 
of about −293.5 ps/nm-km and −393 ps/nm-km over the wavelength range of interest 
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have been reported here with dispersion variation of only 8.6 ps/nm-km and 10.4 
ps/nm-km, respectively. Also, a further investigation has been carried out to obtain a 
higher birefringence in the order of 10-2 over the wavelength range1350 nm to 1650 
nm (0.0278 at 1550 nm.). Furthermore, the higher order modes (HOMs) of this ES-
PCF are suppressed by introducing a secondary annular core in the outer cladding 
region.  
 
4.2.1    Modified design of ES-PCF 
 

The structure of the proposed residual dispersion compensating fiber (RDCF), which 
is basically an ES-PCF having air hole arrangement in silica background is shown in 
Fig. 4.8. There are Nr air holes in each ring, the first ring has a radius of ro and the 
radii of the rings in the same arm increase by geometric progression. There are N  
 

 
 

Fig. 4.8 Geometrical model of the proposed residual dispersion compensating fiber, 
where ro = the radius of the first air hole ring in the cladding, θ = angular increment of 
each air hole in spiral arms, 2rh = the diameter of the air holes in the first nine rings. 
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Fig. 4.9 Total dispersion versus wavelength for circular air hole of different radius in 

the core. 
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Fig. 4.10 Birefringence versus wavelength for circular air hole of different 
radius in the core. 

 
circular air holes in each arm. The first seven of them have a radius of rh. The radii of 
the subsequent air holes in the same arm are increased gradually. The angular position 
of each air hole in an arm is increased by θ than the previous one. Here, dm and dn are  
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Fig. 4.11 Total dispersion versus wavelength for one elliptical air hole of different 
ellipticity in the core. 
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major and minor axes of the elliptical air hole at the center of the core. The dispersion 
properties are shown for the fundamental slow axis mode. Material dispersion that 
refers to the wavelength dependence of the refractive index of the material and is 
caused by the interaction between the optical mode and ions, molecules, or electrons 
in the material and is taken into account here by using the Sellmeier equation to 
obtain the refractive index of silica at different wavelengths. In most cases, the 
following structural parameters are kept unchanged unless otherwise stated: Nr=10, 
N=16, ro=1.4µm, θ=12◦ and rh=0.148µm. 

As shown in Fig. 4.8, a secondary annular core is introduced in the outer cladding by 
employing an air hole ring having radial distance from the center, rout = 5.88 µm 
resulting in a dual core ES-PCF. The diameter of the air holes of this ring is d0 = 1.68 
µm. The values of rout and d0 are so optimized that the resulting secondary core modes 
occur as degenerate modes with the higher order modes (HOMs) of the central core. 
Coupling of energy between the secondary core modes and the central HOMs makes 
these HOMs very lossy over the entire wavelength range of interest [57]. It is 
observed that the HOMs of the central core have confinement loss more than 1dB/m 
and thus, they can be effectively suppressed to realize the single mode (SM) condition 
in ES-PCF. It should be noted here that single modedness in H-PCF has been realized 
similarly in [42]. 
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Fig. 4.12 Birefringence versus wavelength for one elliptical air hole of different 
ellipticity in the core.  
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Fig. 4.13 Birefringence versus wavelength as a function of ro. 

 

4.2.2    Simulation results and discussion 
 

The dispersion and birefringence properties of the ES-PCF structure with one circular 
air hole (dm = dn) in the center of the core are shown in Figs. 4.9 and 4.10, 
respectively. In Fig. 4.9, we can see that the dispersion becomes more negative with 
the introduction of air hole in the core and the value increases further with the 
increase of its radius. Here, the blue line shows a flattened profile of average 
dispersion about 10 ps/nm-km over 1350 nm to 1650 nm wavelength bands when the 
diameter of the central hole, dm= dn= 0.17 µm. For dm= dn= 1.02 µm, the average 
dispersion is −300 ps/nm-km with a flat profile having a dispersion variation of 35 
ps/nm-km around the mean value. This is a large negative value as compared to those 
reported in [31]-[33], but the flatness should be improved. We can also notice from 
Fig. 4.9 that the more negative the dispersion goes, the less flat its profile becomes. A 
trade-off has to be made between the flatness and higher negative values of 
dispersion. From Fig. 4.10, we can see that the birefringence of the ES-PCF increases 
after introducing a circular air hole in the core. The birefringence also increases with 
the increase of diameter of this air hole. It is perhaps due to the fact that the symmetry 
of the structure is disturbed more due to the increase in diameter of the central air 
hole. 
 

Now, we consider a single elliptical air hole in the core and show the dispersion and 
birefringence properties in Figs. 4.11 and 4.12, respectively. The effect of ellipticity 
(defined as the ratio of major axis length to minor axis length) on dispersion and  
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Fig. 4.14 Different number of elliptical air holes in the core with their dimensions, in 
(a) three air holes, (b) five air holes and (c) electric field distribution for three air 

holes, (d) electric field distribution for five air holes.  

 

birefringence has been demonstrated here. In Fig. 4.11, we can see that the dispersion 
becomes more negative for lower ellipticity that results in larger size of the air hole as 
expected [46]. Here, for dm= 1.02 µm and dn=0.7654 µm, the gray line with triangular 
marker shows an average dispersion of −245 ps/nm-km over 1350 nm to 1650 nm 
wavelength bands with a dispersion variation of about 30 ps/nm-km. This value is less 
negative but slightly flatter than that shown in Fig. 4.9, where the dispersion variation 
is about 34.6 ps/nm-km for a circular central air hole with dm= dn= 1.02 µm, although 
the flatness should be improved more to be used effectively as a DCF. A more flat 
profile with less negative dispersion values has been achieved by optimizing the 
structural parameters for the same structure as reported in [58]. It can be seen in Fig. 
4.11 that an ultraflattened dispersion profile can be obtained when dn= 0.358 µm as 
shown by the blue line with square markers. In this case an average dispersion of 
−113 ps/nm-km over 1350 nm to 1650 nm wavelength bands with a dispersion  
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Fig. 4.15 Total dispersion versus wavelength for additional two elliptical air holes of 

different size in the core. 
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Fig. 4.16 Birefringence versus wavelength for additional two elliptical air hole of 

different size in the core. 
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Fig. 4.17 Total dispersion versus wavelength for additional four elliptical air holes of 

different size in the core. 
 

variation of only ~0.5 ps/nm-km between ~13.25 ps/nm-km and ~12.75 ps/nm-km 
can be obtained.  
 

From Fig. 4.12, we can see that the birefringence becomes higher with the increase in 
ellipticity, although the dispersion becomes less negative. This is because higher 
asymmetry is encountered by the field with the increased ellipticity of the central air 
hole. If we optimize the structural parameters to obtain a higher birefringence, we get 
even higher value of birefringence over the wavelength bands of interest. The 
birefringence increases with the decrease of r0 when other dimensions are unchanged 
as shown in Fig. 4.13. The highest value of birefringence is found to be 0.0278 at the 
wavelength of 1550 nm for the parameters dm= 1.3089 µm, dn= 0.3272 µm, r0= 
0.9696 µm and rh= 0.115 µm shown in Fig. 4.13. This birefringence is very high, even 
higher than the values reported in [54]-[55]. However, this structure shows an average 
dispersion of −113 ps/nm-km with a variation of about 14 ps/nm-km over the 
wavelength range 1350 nm to 1650 nm. 
 

We have observed that large negative dispersion with high birefringence can be 
achieved with even one elliptical air hole in the core by increasing the size of the hole. 
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Fig. 4.18 Birefringence versus wavelength for additional four elliptical air hole of 

different size in the core. 
 

But, as the dispersion gets more negative, it becomes less flat. Now, we introduce 
more air holes in the core region as shown in Fig. 4.14 and study dispersion and 
birefringence properties for each case separately to obtain large negative as well as 
flat dispersion profile with high birefringence. In Fig. 4.15, the dispersion properties 
are shown for the structure of Fig. 4.14(a), where for additional holes, the major and 
minor axes are dm1 and dn1, respectively. The size of central air hole is kept fixed at 
dm= 1.02 µm, dn= 0.2552 µm because at values greater than these, the modal effective 
area becomes very small resulting in high splice loss with an standard SMF. The sizes 
of the additional two elliptical air holes are varied keeping their ellipticity (dm1/dn1) 
fixed at 4 because birefringence is seen to be maximum around this value. It can be 
seen that the dispersion gets more negative with the introduction of two more 
elliptical air holes. Also, as the size of these extra air holes increase, the dispersion 
becomes more negative. The gray line with triangular marker in Fig. 4.15 has an 
average dispersion of about −340 ps/nm-km with a dispersion variation of ~16 ps/nm-
km over the wavelength bands of interest, and this value is far more negative than 
those reported in [31]-[33] though the curve  is slightly less flat. However, for these 
structures the birefringence remains in the order of 10−2 and is seen to be decreasing 
after introducing the two additional air holes in the core and also with the increase of 
the size of these two air holes as shown in Fig. 4.16.  
 

With the intuition of obtaining a large negative as well as flat dispersion profile over 
the wavelength band of interest, we consider another structure shown in Fig. 4.14(b). 
The additional two air holes have major and minor axes of dm2 and dn2, respectively. 
The sizes of previous three air holes are kept fixed at dm= 1.02 µm, dn= 0.2552 µm, 
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dm1= 0.567 µm, dn1= 0.1418 µm and the sizes of the newly introduced two are varied 
keeping their ellipticity fixed at 4 for the same reason stated previously. From Fig. 
4.17, we can see that the dispersion gets more negative after employing those extra 
two air holes and becomes even more negative for increased size. The curves shown 
by the gray line with triangular marker has an average dispersion of about −396 
ps/nm-km with a dispersion variation of only 10.4 ps/nm-km and the green line with 
 

TABLE 4.1 
Summary of Proposed ES-PCF designs 

Design No. Structural parameters Dispersion and 
Birefringence properties 

1. r0= 0.9696 µm, rh= 0.115 µm dm= 1.3089 
µm and dn= 0.3272 µm 

B = 0.0278 at λ = 1.55 
µm, D = −115 ps/nm-
km, ∆D = 14 ps/nm-km 
over λ = 1.35 to 1.65 µm 

2. r0= 1.4 µm, rh= 0.148 µm, dm= 1.02 µm, dn= 
0.2552 µm, dm1= 0.567 µm, dn1= 0.1418 
µm, dm2= 1.129 µm and dn2= 0.253 µm 

B = 0.0065 at λ = 1.55 
µm, D = −393 ps/nm-
km, ∆D = 10.4 ps/nm-km 
over λ = 1.35 to 1.65 µm 

3. r0= 1.4 µm, rh= 0.148 µm, dm= 1.02 µm, dn= 
0.2552 µm, dm1= 0.567 µm, dn1= 0.1418 
µm, dm2= 0.869 µm and dn2= 0.215 µm 

B = 0.0085 at λ = 1.55 
µm, D = −293.5 ps/nm-
km, ∆D = 8.6 ps/nm-km 
over λ = 1.35 to 1.65 µm 

D = Average dispersion, ∆D = Dispersion variation 
 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-400

-300

-200

-100

0

100

λ/r
0

T
o

ta
l d

is
p

e
rs

io
n

 (
p

s/
n

m
-k

m
)

 

 

design-1

design-3

design-2

 
Fig. 4.19 Total dispersion as a function of r0. 



55 
 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.01

0.02

0.03

0.04

λ/r
0

B
ire

fr
in

g
e

n
ce

 

 

design-1

design-3
design-2

 
Fig. 4.20 Birefringence as a function of r0. 

 
diamond marker has an average dispersion of about −296 ps/nm-km with a dispersion 
variation of only around 8.6 ps/nm-km over the wavelength bands of interests are 
even far more negative than those reported in [31]-[33] and also more flat or flat 
almost as like as that of [58]. However, the birefringence remains between the orders 
of 10−3~10−2 for these structural parameters and is seen to be decreasing when these 
two additional air holes are introduced in the core and also with the increase of the 
size of these two air holes as shown in Fig. 4.18. It is observed and also can be 
deduced from Figs. 4.10, 4.12, 4.16, 4.18 that the birefringence is maximum for the 
structure of Fig. 4.8 with hole ellipticity around 4 and it decreases with the 
introduction of more holes in the core resulting in structures of Fig. 4.14(a)-(b). It is 
also observed that the introduction of more elliptical air holes in the core in the 
structure of Fig. 4.14(b) does not result in significant improvement in birefringence 
and in the dispersion profile to be used for dispersion compensation. So, the analysis 
is shown for a maximum of five air holes in the core.  
 

In Table 4.1, the optimized designs of the proposed ES-PCFs are summarized. The 
main focus of design no.1 is to obtain an ES-PCF with high birefringence while the 
main focus of the other two designs, no. 2 and 3 is to obtain ES-PCFs with flat large 
negative dispersion profile over the wavelength range 1350 nm to 1650 nm. Design 2, 
however, provides more negative dispersion with less flatness than design 3. In Figs. 
4.19 and 4.20, the total dispersion and the birefringence, respectively, are shown 
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Fig. 4.21 Confinement loss versus wavelength of the fundamental mode for the 
proposed ES-PCF designs. 

 

as functions of r0 at λ= 1550 nm. Here, in these figures, by varying r0, the whole 
structure is scaled up or down. In Fig. 4.19, it can be seen that the minima of the total 
dispersion curves of color blue and red occur at those r0 corresponding to design no. 2 
and 3, respectively as expected. As design no. 1 is optimized to obtain a very high 
birefringence and the focus was not on obtaining a large negative dispersion, the 
minima of the green line in Fig. 4.19 is not at the r0 corresponding to design no. 1. In 
Fig. 4.20, one could expect that the maxima of the green curve should occur at the r0 
corresponding to design no. 1. But, the maxima occurs for a value of r0 which is 
obviously smaller than that of design no. 1. This implies that higher birefringence can 
be achieved for lower r0 values than the optimized one. But for r0 lower than 0.9696 
µm (design no. 1), the confinement loss becomes very high as is evident from Fig. 
4.21, where the confinement losses of the optimized designs are shown as a function 
of λ. The confinement loss can be calculated from the imaginary part of the complex 
effective index [17], 
 

Confinement Loss = 310)Im(
)10ln(

40 ×effn
λ

π , [dB/km]                         (4.3) 

where Im(neff) is the imaginary part of neff. The other two designs, design no. 2 and 3, 
are not optimized to obtain the highest birefringence rather they are optimized to 
obtain very large negative dispersion over the wavelength bands of interest. So, it is 
not unexpected that the maxima of the blue and red curves do not occur at those r0 
corresponding to design no. 2 and 3 respectively. Here, all the ES-PCF designs are 



57 
 

optimized so that the confinement loss of the fundamental mode lie within an 
acceptable limit of 0.01 dB/m over the entire wavelength range of interest. As shown 
in Fig. 4.21, the confinement loss increases with the decrease of structural 
dimensions. The confinement loss is the highest for design no. 1 because it has the 
lowest r0 among the three designs. Also, design no. 2 has higher confinement loss 
than that of design no. 3. This is because the effective core index is lower in design 
no. 2 as it has elliptical air holes of larger size than those of design no. 3 resulting in 
reduced difference between the effective core index and effective cladding index. It is 
observed that confinement loss for all the designs increases if the number of air hole 
rings, N in the cladding is decreased as expected. For this reason, a large number of 
N=16 has to be employed to obtain confinement losses within the limit 0.01 dB/m 
over the entire wavelength range of interest. 
 

Here, the single modedness of the ES-PCF is another important issue. We defined the 
single mode operation of the ES-PCF in a way that the confinement loss of the first 
higher-order mode (HOM) should be greater than 1 dB/m [16]. Also, the confinement 
losses of the fundamental modes are about 1.15×104, 1.25×104 and 2.1×104 times 
lower than those of the first HOMs of the design no. 1, 2 and 3, respectively, at 1.55 
µm ensuring single mode operation. One can see from Fig. 4.22 that the first HOMs 
have cut-off wavelengths around 925 nm, 1195 nm and 1290 nm for design no. 1, 2 
and 3, respectively, which are well below the wavelength range of interest (1350 nm 
to 1650 nm).  
 

The issue of splice loss becomes very critical when the PCF has to be jointed with a 
conventional SMF in a communication link for residual dispersion compensation and 
maintaining polarization. The splice loss due to mode field diameter (MFD) mismatch 
can be calculated from MFDs of two fibers using [59],  
 

 Splice Loss [dB] = 20log [
2

1
(

2

1

MFD

MFD
+

1

2

MFD

MFD
)],                      (4.4) 

where MFD1 and MFD2 are the MFDs of the two fibers. The transverse extent of 
the optical intensity distribution of a mode of an optical cavity or a waveguide is 
usually specified as a mode radius, which is defined like a Gaussian beam radius. For 
non-Gaussian mode shapes, it is also common to use a Gaussian fit and take its radius 
as the result. The MFD is simply twice the mode radius. Splice loss depends mostly 
on the difference of MFDs of the two fibers of interest. Thus, from equation (4), 
average splice loss for both directions can be calculated. The splice loss increases 
with the increase of difference between these two MFDs. The average MFD of a 
typical SMF is taken to be 10µm [59]. The MFDs of the proposed ES-PCF designs 
are calculated from Aeff = πw2, where Aeff is the effective modal area and w is the 
mode field radius which is half of MFD. The Aeff of the ES-PCF is calculated from the 
following equation [43], 
 



58 
 

Aeff = 

∫∫
∫∫

dxdyE

dxdyE

4

2
2 )(

.                                                                  (4.5) 

The Aeff and average splice loss between a typical SMF and the ES-PCF designs as 
functions of wavelength are shown in Fig. 4.23. Though the splice losses shown in 
Fig. 4.23 are high, they can be minimized by the technique proposed in [26]. This loss  
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Fig. 4.22 Confinement loss of the first HOM versus wavelength for the proposed ES-

PCF designs. 
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Fig. 4.23 Effective area and splice loss versus wavelength for the proposed ES-PCF 

designs. 
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Fig. 4.24 Effective area as a function of r0. 

 
will also be reduced if an SMF to be spliced with the ES-PCF is used having MFD 
less than 10µm.  
     
In Fig. 4.24, effective areas of the ES-PCF designs as functions of r0 are shown. It can 
be deduced that at higher values of r0, the effective area approaches that of a typical 
SMF resulting in reduced splice loss. But, for these values of r0, the desired dispersion 
and birefringence cannot be obtained as is evident from Figs. 4.19 and 4.20. So, a 
trade-off has to be made between low splice loss and large negative dispersion with 
high birefringence. A large negative dispersion and high birefringence normally 
yields low effective area and vice versa. 
 
4.2.3    Outcomes 
 

In this section, ES-PCF is investigated as a polarization maintaining residual 
dispersion compensating fiber in the telecommunication wavelength bands. It is 
numerically shown to exhibit an average dispersion of −293.5 ps/nm-km and −393 
ps/nm-km for two different designs with dispersion variation of only 8.6 ps/nm-km 
and 10.4 ps/nm-km, respectively. To our knowledge, this dispersion profile is more 
negative than the residual dispersion compensating fibers reported earlier. Another 
unique feature of these designs is their high birefringence along with the property of 
dispersion compensation. An optimized structure exhibits a birefringence as high as 
0.0278. The structural dependence as presented in the paper also shows that large 
negative and flattened dispersion and high birefringence can be obtained over a wide 
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wavelength range and this structure can be considered to be robust with respect to 
small variations in structural parameters which are unavoidable during fabrication. 
The dual characteristics of dispersion compensation and high birefringence make this 
fiber a promising candidate in its application in the fiber optic communication link in 
the telecommunication window. 
 
4.3    Liquid Crystal Infiltrated Residual Dispersion Compensating ES-PCF  
 

Here, two more elliptical air holes than the design presented in section 4.1 in the core 
as shown in Fig. 4.8, have been used and the elliptical air holes are surrounded by a 
circular region containing nematic liquid crystal. An average dispersion of −259 
ps/nm-km with dispersion variation about 4.58 ps/nm-km has been obtained over the  
 

 

(a) 
 

                        

(b)                                                     (c)  
 

Fig. 4.25 (a) Cross section of the proposed ES-PCF with infiltration of liquid crystal, 
(b) electric field distribution and (c) magnetic field distribution of the fundamental 

mode. 
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wavelength range 1.35 µm to 1.675 µm. Also the proposed fiber shows single 
polarization with one of its two degenerate fundamental modes completely suppressed 
and its single modedness is ensured. Also, the dispersion is more negative than those 
of recently published works [31]-[33], [58]. Although the dispersion compensating 
fibers of section 4.1 and 4.2 shows very high birefringence, complete achievement of 
single polarization was not possible there.  
 
4.3.1    Design of liquid crystal (LC) infiltrated ES-PCF  
 

Fig. 4.25 shows the air hole arrangement in the proposed design in a optical glass 
background with refractive index, ng. In this design, there are Nr air holes in each ring. 
The first ring has a radius of r0 and the radii of the subsequent rings increase by 
geometric progression. Each air hole of the first ring is the starting point of a spiral 
arm. There are N circular air holes in each arm. The first seven of them are elliptical 
having major axis length dma and minor axis length dna. The angular position of each 
air hole in an arm is increased by θ than the previous one. The major and minor axes 
lengths of the central defect air hole are dm and dn, respectively. The elliptical air 
holes just below and above the central one have major axes length dm1 and minor axes 
length dn1.  
 

The single-modedness of the proposed ES-PCF is difficult to achieve as its 
fundamental space filling mode, nFSM is much lower than the effective core index, 
ncore. This can be inferred from the compactness of the air holes surrounding the core. 
The single-modedness is thus achieved by employing a unique technique discussed in 
[57]. For this purpose, a secondary annular core is introduced at the outer cladding of 
the ES-PCF. as shown in Fig. 4.25. This secondary core has radial distance from the 
center, rout and the diameter of the air holes of this ring is d2. The values of rout and d2 
are so optimized that the resulting secondary core modes occur as degenerate modes 
with the higher order modes (HOMs) of the central core. Coupling of energy between 
the secondary core modes and the central HOMs makes these HOMs very lossy over 
the entire wavelength range of interest [57]. It is observed that the HOMs of the 
central core have confinement loss more than 1dB/m and thus, they can be effectively 
suppressed [42] to realize the single mode (SM) condition in ES-PCF. There is a 
cylindrical region in the core having a radius of rlc filled with a typical nematic LC 
material.  
 

Nematic liquid crystals are anisotropic materials consisting of rod-like molecules 
whose axis coincides with the anisotropy’s optical axis. When confined in closed 
cylindrical cavities in the absence of external stimuli, the liquid crystal’s director 
distribution is determined by the physics of elastic theory and the anchoring 
conditions at the cavity’s surface [35]. Under the application of a static electric field 
the director’s orientation can be controlled, since the liquid crystal molecules tend to 
align their axis according to the applied field. In an alternative approach, the 
properties of nematic liquid crystals can be tuned thermally owing to the dependence 
of the refractive index values on temperature. The above features have favored their 
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utilization in a number of recently proposed photonic crystal based optoelectronic 
devices [35].  
 

The nematic liquid crystal (LC) material in the core is characterized by ordinary and 
extraordinary refractive indices of no and ne, respectively. The anisotropic refractive 
index of nematic LC is utilized to obtain a single polarization behavior of the 
proposed ES-PCF over the entire bands of wavelength of interest. The ES-PCF is 
analyzed for a uniform distribution of the nematic director along x- or y-axis (the 
direction of propagation is along the z-axis). Though this condition is somewhat ideal, 
it can be achieved under the influence of the appropriate homeotropic anchoring 
conditions or by controlling the nematic director through the application of an 
external electric (or magnetic) static field [35]. The fiber material is chosen such that 
its index, ng is slightly lower than the extraordinary index of the LC material ne. 
Among the various types of available fiber glasses for which 1.5 < ng < 1.8 are the 
high-lead silicate, barium crown, lanthanum crown, or barium flint fiber glasses [35]. 
The refractive index of these glasses can b\e tuned, for instance, by adjusting the 
doping percentage of metal oxides such as lead (PbO) or lanthanum (La2O3) oxides. 
For the purposes of the present analysis, we selected the common nematic material E7 
with ne and no around 1.68 and 1.5, respectively and barium flint as fiberglass with ng 
around 1.66. The material dispersion is taken into account by using the Sellmeier 
equation to obtain the refractive index of barium flint and LC E7 at different 
wavelengths. The fiber is considered to be uniform along the z-axis, which coincides 
with the axis of the cylindrical defect core. It is to be noted that LC E7 has melting 
point around 70° C. So, it is possible to have air holes inside the LC region of the 
central core. 
 
4.3.2    Simulation results 

 

An RDCF should have a flat negative chromatic dispersion of high magnitude in the 
wavelength band of interest. In this work, the optimized structural parameters are: r0=  
1.4 µm, rlc= 1.4 µm, dm= 1.91 µm, dn= 0.384 µm, dm1= 0.91 µm, dn1= 0.2275 µm, 
dma= 0.31 µm, dna= 0.15 µm and θ = 12°. The design shows an average value of 
chromatic dispersion equal to −259 ps/nm-km with a dispersion variation of 4.58 
ps/nm-km (between −256.96 ps/nm-km and −261.54 ps/nm-km) in the wavelength 
range 1350nm to 1675nm for the fundamental x-polarized mode. In Fig. 4.26, we 
have compared the results of total dispersion with those obtained by Franco et. al.  
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Fig. 4.26 Dispersion profile of the Proposed ES-PCF in comparison with other 

profiles reported in the literatures. 
 

 

 

Fig. 4.27 Dispersion profile of the Proposed ES-PCF for different scale factors 
applied over the whole geometry. 
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Fig. 4.28 Dispersion profile of the Proposed ES-PCF as a function of dm. 

 
 
Fig. 4.29 Dispersion profile of the Proposed ES-PCF as a function of dn. 

 
[31], da Silva et. al. [32] and the author [58]. The proposed design exhibits more 
negative and also more flat dispersion profile than these literatures except [31]. 
Though the dispersion variation of [31] is slightly less than the present design, 
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Fig. 4.30 Dispersion profile of the Proposed ES-PCF as a function of dm1. 
 

 

Fig. 4.31 Dispersion profile of the Proposed ES-PCF as a function of dn1. 
 

its dispersion value is less negative. Also, it shows a dispersion profile for a shorter 
range of wavelength.  
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In Fig. 4.27, we show the total dispersion versus wavelength for three values of scale 
factor applied to all over the cross sectional geometry of the fiber. The scale factor 
can be used to scale up or down the overall cross sectional geometry of the ES-PCF. It 
can be seen here that smaller scaling factor yields more negative dispersion profile but 
with larger variation of it. On the other hand, for larger scaling factor, the dispersion 
profile shifts upward. 
 

In Figs. 4.28 and 4.29, the total dispersion versus wavelength as a function of dm and 
dn are shown, respectively. Though dispersion profiles more negative than the 
proposed design can be achieved for higher values of dm and dn than those of proposed 
design, the proposed design has the most flat dispersion profile than that of others as 
evident from Figs. 4.28 and 4.29. 
 

The total dispersion versus wavelength for different values of dm1 and dn1 are shown in 
Figs. 4.30 and 4.31, respectively. Here, it is shown that the total dispersion is the most 
negative and flat for the dm1 and dn1 of the proposed structure.    
 

The confinement and bend losses are also very important features to be considered 
during fiber design. High confinement or bend loss is a limiting factor for a fiber to be 
used efficiently as a part of the communication system. Here, the ES-PCF design is 
optimized so that the confinement loss of the fundamental mode of the central core 
remain within an acceptable limit of 0.01 dB/m over the entire wavelength range of 
interest. The confinement losses of the HOMs of the central core is greater than 10 
dB/m for the entire wavelength range of interest. Thus, the HOMs are effectively 
suppressed. The bending loss of the proposed ES-PCF is found to be 0.02 dB/m 
around bending radius 500 µm which is lower than that of hexagonal lattice PCF 
having similar structural dimensions. This low value of bending radius is attributed to 
the compactness of air holes surrounding the central core. It is also found that the 
average effective area of this ES-PCF is around 5µm2 and the calculated splice loss is 
around 6.5 dB. This loss can be reduced using fusion splicing reported in [60]. 
 
4.3.3    Outcomes 
 

Here, an ES-PCF is investigated to obtain a more negative flat dispersion profile than 
that of the recently published literature. With a change in the background material 
from silica into fiber glass, it exhibits a more negative dispersion profile having an 
average value of −259 ps/nm-km with much smaller dispersion variation than those of 
recently published results over the wavelength range 1.35 µm to 1.675 µm. Two 
additional elliptical air hole are employed in the central core with the previous one to 
get this lowered dispersion profile. Also, the previous ES-PCF structure is further 
modified by introducing a cylindrical region in the central core containing nematic LC 
material having anisotropic index. This feature allows the suppression of one of the 
two degenerate fundamental modes resulting in single polarized operation of the 
proposed ES-PCF. Moreover, the apparently unavoidable HOMs of the central core 
are effectively suppressed by an ingenious technique. To the best of our knowledge, 
this is the first single polarization residual dispersion compensating fiber with a large 
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negative flat dispersion profile. These novel characteristics make this fiber a 
promising candidate in its application in the fiber optic communication link in the 
telecommunication window. 
 

 
 

Fig. 4.32 Geometrical model of the proposed ES-PCF. 
 
 

4.4    Mode Degeneration in ES-PCF 
 

As ES-PCF is found to be a potential candidate to achieve useful properties in fiber 
optic communication system, many important properties of this type of PCF like 
confinement loss, bending loss, mode degeneration of core mode with the cladding 
modes etc. need to be investigated thoroughly to explore different possible 
applications. In the practical applications of PCFs, one cannot avoid bends, twists and 
stresses on the fiber. When a fiber is bent, the modal field shifts in the outward 
direction and radiation loss occurs. One of the main disadvantages suffered by 
standard silica fibers has been that significant bending loss arises due to the low index 
contrast between the core and cladding when compared to that of a PCF [40]. 
However, sometimes the need for a small bending radius may be unavoidable in a 
specific application. Also, bending effects have also been exploited to design 
functional devices such as ring resonators, arrayed waveguide filters, optical delay 
lines, bend attenuators, to suppress higher order modes etc. [40]. 

 

To study the arbitrary bends in PCFs, various methods are used. Among them 
conformal transformation is widely used [27]. In this transformation, a curved 
dielectric waveguide is converted to its equivalent straight one with a modified index  
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profile. The coordinate transformation maps the refractive index profile n(x,y) of a 
bent PCF to its equivalent straight fiber’s refractive index neq(x,y) using the following 
formula [27], 

        






 +=
R

x
yxnyxneq 1),(),( ,   where 2x ≪ R                                   (4.6) 

Here, R is the radius of the curvature and x is the distance from the center of the 
waveguide. The wavelength dependent refractive index of silica material is obtained 
by using the Sellmeier equation. 
 
4.4.1    ES-PCF design 
 

Fig. 4.32 shows the air hole arrangement in a silica background of the proposed ES-
PCF design. In this design, there are Nr air holes in each ring. The first ring has a 
radius of r0 and the radii of the subsequent rings increase by geometric progression. 
Each air hole of the first ring is the starting point of a spiral arm. There are N circular 
air holes in each arm having diameter dh each. The angular position of each air hole in 
an arm is increased by θ than the previous one. The dh is set at a value to obtain the 
required ASR for each case. 
 
4.4.2    Simulation results 

In Figs. 4.33(a)-(c), the comparison of variations of the total loss of the fundamental 
slow axis mode with the bending radius R between H-PCF and ES-PCF are shown for 
the wavelength 1550 nm. Here, Nr = 8, N = 4, and θ = 22°. At first, total loss is 
determined for r0 = 2.6 µm. Then the whole ES-PCF structure is scaled up to obtain 
higher structural dimensions with r0 = 3.8 µm and r0 = 5 µm and total loss is 
determined for these cases. This procedure is repeated for three values of ASRs: 
0.1686, 0.2092 and 0.2332. The curves having the same color are similar structures of 
ES-PCF and H-PCF and are subject to comparison of their total losses. Here, for H-
PCF, the number of air hole rings is Nh = 3 and the air hole diameter d is set at a value 
to obtain the required ASR. Here, the total losses for the fundamental fast axis mode 
are not shown as these are seen to be similar to those of the slow axis mode.  
 

It is known that at lower structural dimensions, a PCF operates closer to its modal cut-
off than its higher structural dimensions. When a PCF operates close to its modal cut-
off, the leakage loss becomes high which is evident in Fig. 4.33 at lower structural 
dimensions (for R = 104 µm the total loss contains mainly the confinement loss, as the 
pure bending loss is nearly zero). As the bending radius is reduced, the bending loss 
increases gradually and as a result the total loss also increases. The rate of increase is 
more for higher structural dimensions which is obvious according to eqn. (4.6). For 
higher structural dimensions the term x in eqn. (4.6) becomes more dominant than that 
for lower dimensions and the total loss increases.  
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Though PCFs having higher values of structural dimensions are used in many 
applications for their lower total loss for large bending radii, they show high total loss 
for low bending radii [40]. This loss may become even higher than that of PCFs 
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(c) 

Fig. 4.33 Comparison of leakage loss as a function of bending radius between 
H-PCF and ES-PCF, (a) ASR = 0.1686, (b) ASR = 0.2092 and (c) ASR = 

0.2332. 
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having lower values of structural dimensions as shown in Fig. 4.33. But, in ES-PCF, 
this is less likely to occur. Also, it can be seen from Fig. 4.33 that at higher bending 
radii the confinement loss is 102 to 103 times lower in ES-PCF than in H-PCF. At 
lower bending radii this total loss becomes even lower in ES-PCF than that of H-PCF 
(103 to 106 times on the average). In [40], the degeneration of the cladding modes 
with the fundamental core mode is discussed for a conventional H-PCF. The 
degeneration occurs at R ≈ 1445 µm for Λ = 5µm, d = 2.5 µm and Nh= 3 which is also 
confirmed in our calculation. At R larger than this value, the effective index of the 
fundamental core mode is greater than that of the highly dispersive first cladding 
mode. But when R is smaller than this value, the effective index of the first cladding 
mode becomes larger. Coupling between the fundamental core mode and cladding 
mode, occurring at the point of degeneration, is responsible for a sudden rise in 
leakage loss for conventional H-PCFs according to [57]. But, as seen in this work, for 
ES-PCF, no such cladding mode exists for the structures considered here. This may be 
due to the less number of air hole rings which cannot confine cladding modes. So, the 
sudden rise in leakage loss like that in H-PCF, was not observed in ES-PCF for 
similar bending radii. Although at a very low value of R, the power distribution of the 
fundamental core mode shifts far from the center along the bending direction and a 
significant amount of power leaks out of the core. 
 

In Fig. 4.34, the power distribution is shown for three different bending radii for the 
proposed ES-PCF with ASR = 0.2092, r0= 5 µm and dh= 2.5 µm. It can be observed 
from here that the distribution shifts more to the direction of bending (along x axis in 
this case) as the bending radius gets lower. But, the field as well as power does not 
leak into the cladding like that of H-PCF [40]. 
 

       
(a)                                             (b) 

 
(c) 

Fig. 4.34 Power distribution of the fundamental mode of the ES-PCF at bending radii, 
(a) 500 µm, (b) 1000 µm and, (c) 1500 µm.  
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From Fig. 4.35, it can be observed that the effective area values of ES-PCF are almost 
similar at higher bending radii to those of H-PCF for similar dimensions. But, at lower 
bending radii, effective area decreases for ES-PCF whereas for H-PCF it increases. 
This is because the field of fundamental core mode is highly confined in the core even 
at lower bending radii for ES-PCF and cannot leak in the outer cladding much as the 
air holes of the first two cladding rings are very compact. But, in H-PCF, the field for 
fundamental core mode easily leaks in the outer cladding as the bending radius gets 
lower. 
 

To understand the abrupt increase of total loss, we show the total loss and neff at lower 
bending radii in Fig. 4.36, where the structural dimensions are same as those of blue 
dotted line in Fig. 4.33(b). Here both neff and total loss increase very rapidly as R is 
reduced from 280µm. This can be attributed to the term x of eqn. (4.6), from where 
one can deduce that the difference of effective refractive indices of the core and 
cladding reduces even more rapidly at lower values of R. Thus, it accelerates the rise 
of total loss at the same R as the neff starts to grow rapidly even though there is no 
coupling between fundamental core mode and cladding mode. 
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Fig. 4.35 Comparison of effective area as a function of bending radius between H-
PCF and ES-PCF for air-silica ratio 0.2092.  
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Fig. 4.36 The effect of reducing bending radius on effective index and total loss of the 
fundamental core mode. 

 
 

4.4.3    Outcomes 
 

In conclusion, it can be said that for similar dimensions an ES-PCF shows 
confinement losses almost 2 to 3 order of magnitude lower than that of an H-PCF at 
higher bending radii. At lower radii, ES-PCF shows even lower bending loss (103 to 
106 times on the average) than H-PCFs. Also we have found no mode degeneration 
between fundamental core mode and first cladding mode like H-PCFs in ES-PCFs as 
there was no significant cladding modes for the structural dimensions considered here. 
This phenomenon is related to the very low bending loss of ES-PCFs. Now, it can be 
said that ES-PCFs are less sensitive to bending than H-PCFs. The reason of rapid rise 
of total loss at lower bending radii (much lower than that of H-PCF) is also discussed. 
The ES-PCF can thus play a significant role in the optical communication system as a 
low loss optical fiber.  
 

4.5    Bend Insensitive Single Mode Spiral PCF with Large Effective Area 

The high leakage loss of a bent PCF can be minimized to an acceptable level by 
appropriately choosing the air hole diameters. But, apart from low bending loss, other 
two conditions are to be met simultaneously. These are, the higher order modes which 
are usually unavoidable in a low bending loss PCF, should be suppressed and the 
effective mode area of the fundamental mode of the PCF should be very close to that 
of a typical single mode fiber (SMF) to minimize the splice loss. This is a challenge to 
meet these three conditions simultaneously as they are usually conflicting. However, 
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Fig. 4.37 Cross section of the proposed ES-PCF. 

several such designs have been reported in the literatures [42]-[45] for hexagonal 
lattice PCFs.  
 

In this section, an equiangular spiral photonic crystal fiber (ES-PCF) with a very low 
bending loss, suppressed higher order modes (HOMs) and large effective modal area 
close to that of a standard SMF is proposed. The ES-PCF has an asymmetric cladding 
structure with air holes of larger diameter in one side and air holes of smaller diameter 
in the opposite side. If the fiber is bent to a particular direction (along x axis or 
around, in Fig. 4.37), the propagating modes will become more confined upto a 
certain bending radius resulting in reduced leakage loss even lower than that of the 
same straight ES-PCF. This phenomenon is unique as compared to that of other 
literatures. The proposed ES-PCF exhibits a leakage loss of about 8.32×10-4 dB/turn 
(0.033 dB/m) at the wavelength of 1.55 µm for a bending radius as low as 4 mm, 
effective modal area 80.78 µm2 at the same wavelength for a straight fiber resulting in 
a very low splice loss of about 0.00086 dB, and the cut-off frequency of the HOMs 
below 1.35 µm.     

 

4.5.1    ES-PCF design 
 

Fig. 4.37 shows the air hole arrangement in silica background. In this design, there are 
10 air holes in each ring. The first ring has a radius of r0 and the radii of the 
subsequent rings increase by geometric progression. Each air hole of the first ring is 
the starting point of a spiral arm. There are 3 circular air holes in each arm. Among 
the 10 spiral arms, 6 arms have air holes of diameter d and the remaining 4 have air 
holes of diameter d1 where d1 > d to ensure lower leakage loss due to bent in a 
particular direction (along x axis or around in this case). The angular position of each 
air hole in an arm is increased by θ = 12° than the previous one.  
 

As shown in Fig. 4.37, a secondary core is introduced in the cladding region beyond 
the third air hole ring by employing another ring of air holes at a distance rout from the 
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center and diameter of air holes d2. As will be shown later, these secondary core 
modes appear as degenerate modes with the HOMs of the central core. Thus these 
HOMs become lossy and effectively can be suppressed [57]. A HOM is suppressed if 
the associated leakage loss is greater than 1 dB/m [44].   
 

4.5.2    Simulation Results 
 

A full-vectorial finite element method (FEM) has been used to characterize the 
proposed ES-PCF. An anisotropic perfectly matched layer (PML) has been used to 
accurately account for the leakage losses. The material dispersion is taken into 
account here by using the Sellmeier equation to obtain the refractive index of silica at 
different wavelengths. Here, r0 of the ES-PCF corresponds to the parameter Λ (hole to 
hole spacing) of a hexagonal lattice PCF and in this section, a change in r0 implies 
change in every parameter of the ES-PCF structure by the same factor.  
 

For a low splice loss the mode field diameter (MFD) of the ES-PCF should be as 
close as possible to that of a standard SMF to which it is to be spliced [58]. It is 
observed here that the MFD of the ES-PCF depends much on r0 and less on d1/d. At 
first, r0 is chosen for which the MFD is close to that of a standard SMF (10 µm) and 
then, d1/d and d2 are optimized to achieve suppression of HOMs and low bending loss 
simultaneously. Fig. 4.38 shows how MFD and splice loss vary for different r0 as a 
function of d1/d. Here, it is obvious that splice loss is minimum for r0 = 6.5 µm and 
does not change much with the change of d1/d. So, this value of r0 is chosen for the 
structure and d1/d is optimized to obtain single modedness with low bending loss 
simultaneously. Here, d = 0.878 µm, rout = 12.2 µm and d2 = 1.452 µm are set fixed 
for r0 = 6.5 µm. d1 is varied to obtain the desired features of the ES-PCF.  
 

It is observed that the leakage loss of both the straight and bent fibers increase with 
the increase of wavelength. To obtain a low bending loss large effective area ES-PCF 
with HOMs suppressed over the wavelength range1.35 µm to 1.65 µm, the cut-off 
frequency of the first HOM should be below 1.35 µm over the range of bending radii 
of interest. Also, the leakage loss of the fundamental mode (FM) should be very low 
at 1.65 µm which will ensure lower leakage loss below 1.65 µm. In Figs. 4.39 and 
4.40, leakage loss of first HOM at 1.35 µm and FM at 1.65 µm are shown, 
respectively, over the bending radii 2 mm to 10 mm for r0 = 6.5 µm with α = 0° when 
the cladding air holes with radius d1 remains at the outside of the bend. Here, α is the 
angle of bending orientation.  
 

It can be seen from Fig.4.39 that the first HOM is suppressed for all three d1/d values 
(leakage loss greater than 1 dB/m) over the bending radii 2 mm to 10 mm. As the 
leakage loss of the first HOM is decreasing with the increase of bending radius, one 
may expect that it will fall below 1dB/m line for a certain value of the bending radius. 
But, it has been found that, the minima of the leakage losses of the first HOM are 1.86 
dB/m, 1.81 dB/m and 1.76 dB/m, which occurs at bending radius around 10 mm for  
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Fig. 4.38 Mode field diameters and corresponding splice losses as functions of d1/d at 
1.55 µm for straight fiber. 
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Fig. 4.39 Leakage loss versus bending radius of the first HOM at 1.35 µm. 
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Fig. 4.40 Leakage loss versus bending radius of the fundamental mode at 1.65 µm. 

 

d1/d = 1.55, 1.60 and 1.65, respectively. Also, the leakage losses of a straight fiber are 
3.4 dB/m, 3.3 dB/m and 3.2 dB/m for d1/d = 1.55, 1.60 and 1.65, respectively. It is 
unusual to have bent fiber leakage losses less than those of straight ones.  
 

From Fig. 4.40, it can be seen that the ES-PCF exhibits a very low leakage loss of the 
FM when it is bent at bending radii 2 mm to 10 mm having a leakage loss as low as 
0.0536 dB/m at a bending radius 4 mm for d1/d = 1.65 and this loss decreases with the 
increase of d1/d. It may be expected that d1/d can be further increased to reduce the 
leakage loss of the FM maintaining the condition that the leakage loss of the first 
HOM should be greater than 1dB/m. But this will lead to a structure having spacing 
between the air holes of the first and second ring of the same arm smaller than 50 nm 
(it is 50 nm for d1/d = 1.65). The fabrication of an ES-PCF of such a structure will be 
very difficult. Thus, the structural parameters of the proposed large mode area, low 
leakage loss single mode ES-PCF are: r0 = 6.5 µm, d = 0.878 µm, d1/d = 1.65, d2 = 
0.726 µm.  

It is to be noted that the leakage losses of the FM for a straight fiber are 0.187 dB/m, 
0.183 dB/m and 0.178 dB/m, for d1/d = 1.55, 1.60 and 1.65, respectively. So, the 
leakage losses of the FM are lower in a bent fiber than those of a straight one when 
bent in a specific direction. This unconventional phenomenon can be explained in a 
way that the ES-PCF has d1 > d. So, when the fiber is bent at α = 0° (along positive x 
axis) and around as will be seen later, the propagating modes become more confined 
as shown in Fig. 4.41, where power confinements of the FM of a straight and bent 
fiber are shown. It is worth mentioning here that if we calculate the bending losses of 
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this fiber, obviously it will return negative values. The leakage loss rapidly increases 
at bending radii lower than 3 mm in both Figs. 4.39 and 4.40, where the effect of 
bending dominates the higher mode confinement due to d1 > d. Thus, the proposed 
ES-PCF can be used upto bending radius as low as 3 mm. 

From Fig. 4.42, the leakage losses of the first HOM and FM as a function of α are 
seen to be increasing with the increase of α. The increase of leakage loss of the first 
HOM suppress it more which is desirable. But, the increase of leakage loss of the FM 
should be minimized. Although, leakage losses increase with the increase of α, its 
value is within acceptable limit upto α = 40° where the leakage loss of FM is 0.303 
dB/m at 1.65 µm. To control the angular rotation of the fiber, a precise fiber rotator 
can be employed with an accuracy of 2° [45]. The ES- PCF behaves similarly for 
negative values of α. A previously reported PCF with bending loss dependent on α 
[45] had permissible value of α = ±7° only. 

 

           

(a)                          (b) 

Fig. 4.41 Power confinement of the fundamental mode of the proposed ES-PCF, (a) 
for straight fiber (b) for bent fiber with bending radius 4mm. 
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Fig. 4.42 Leakage loss as a function of bending orientation. 
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4.5.3    Outcomes 
 

In this section, the compactness of cladding air holes in an ES-PCF is utilized to 
achieve low leakage loss over a wide wavelength range 1.35 µm to 1.65 µm and 
above. But, this results in HOMs in the core. However, a useful technique is 
employed to suppress these HOMs. The optimized structure also exhibits a very low 
splice loss if spliced with a conventional SMF. The proposed structure shows leakage 
loss as low as 8.32×10-4 dB/turn (0.033 dB/m) at 1.55 µm for bending radius 4 mm, 
single-modedness over 1.35 µm and splice loss 0.00086 dB with a typical SMF. 
Moreover, the proposed structure has a unique property that it shows lower leakage 
loss as it is bent upto a certain radius than that of the same straight fiber. Thus, the 
proposed ES-PCF can be a very good candidate for the fiber-to-the home usage. 

 

4.6    A Novel Design on Bend Insensitive Single Mode Circular PCF with 
Ultralarge Effective Area 
 

In WDM transmission systems, dispersion and nonlinearity are of major concern as it 
may degrade the system performance to a large extent [42]. Dispersion compensation 
techniques have been developed and are extensively used in high speed transmission 
systems [42]. Due to higher nonlinearity, the optical input power must be restricted 
below a level. To increase this level, fibers having higher effective area, Aeff are 
always necessary. Several such designs with a large Aeff have been developed [42]-
[45].      
 

The high leakage loss of a bent PCF can be minimized to an acceptable level by 
appropriately choosing the air hole diameters. But, apart from low bending loss, other 
two conditions are to be met simultaneously. These are, the higher order modes which 
are usually unavoidable in a low bending loss PCF, should be suppressed and Aeff of 
the fundamental mode of the PCF should be high. But, fibers with higher Aeff usually 
have more number of higher order modes (HOMs). 
 

In this section, a bend insensitive large effective area circular PCF (C-PCF) has been 
proposed over the wavelength range 1300 nm to 1700 nm for WDM transmission 
(design-1). This proposed C-PCF exhibits bend loss in the order of 10-3-10-4 dB/turn, 
effective area around 250 µm2 and higher order mode leakage loss over 22 dB/m in 
the range 1300nm to 1700nm. Also, the whole structure of the same C-PCF is scaled 
down to obtain a bend insensitive large effective area C-PCF for fiber to the home 
application over the same wavelength range (design-2). This design shows bend loss 
in the order of 10-4 dB/turn, effective area very close to 80 µm2 that ensures near zero 
splice loss with a typical SMF and higher order mode leakage loss over 10 dB/m in 
the same wavelength range. These dual characteristics make this fiber very attractive 
to be used in fiber optic communication systems. 
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(a) 

 

                       

(b)                                                 (c) 

Fig. 4.43 (a) Geometry of the proposed C-PCF and electric field distribution at 
1550nm (b) for first design at R = 30mm, (c) for second design at R = 4mm.  

 

 

4.6.1    C-PCF design 
 

The proposed C-PCF consists of three circularly arranged air hole rings in the 
cladding with a silica background. The first of them has eight air holes. Three of these 
eight have a diameter of d2, two of them have that of d1 and the remaining three have 
that of d0 where d2>d1>d0 to ensure lower leakage loss due to bending in a particular 
direction (along x axis or around in this case). The radii of the first, second and third 
air hole rings are r0, r1 and r2, respectively. When the fiber is bent in the direction of 
positive x-axis, the angle of bending orientation, α (shown in Fig. 1) is equal to zero. 
A full-vectorial finite element method (FEM) has been used to determine optical 
modes of this design. A perfectly matched layer (PML) has been used at the outer 
boundary to account for the leakage loss correctly. Sellmeier equation has been used 
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to calculate the wavelength dependent index of silica. Leakage losses of bent fibers 
are calculated using the technique of conformal mapping [27]. The optimized 
structural parameters for the design-1 are: d0= 6µm, d1= 9µm, d2= 12.6µm, r0= 
16.8µm, r1= 33.6µm, r2= 46.2µm. Those for design-2 can be obtained by multiplying 
each parameters of design-1 with 0.5. It is observed that variation of ~5% of these 
parameters does not yield significant deviation from the characteristics shown here.   
 

 
4.6.2    Simulation results 
 

In this work, we take a limiting value of 0.5 dB/100 turns at a bending radius of 30 
mm as assumed in [42] which is described in ITU-T recommendations G.655 and 
656. The bending loss of the proposed C-PCF should be lower than this for the entire 
range of wavelength. It can be seen from Fig. 2 that the bending loss is lower than 
0.5dB/100turns for the bending radius, R = 26mm-34 mm. In fact, the highest bending 
loss is 0.0019 dB/turn at 1300 nm for R = 30mm. Also, the bending loss of design-1 is 
lower for the corresponding wavelength range keeping the effective area higher than 
those of [42]. Apart from this, it shows lower bending loss over a wider range of 
wavelength.  
 
 

1300 1350 1400 1450 1500 1550 1600 1650 1700
10

-5

10
-4

10
-3

10
-2

Wavelength (nm)

L
e

a
ka

ge
 L

os
s 

(d
B

/t
ur

n)

 

 

R=26mm
R=28mm
R=30mm
R=32mm
R=34mm

0.5 dB/100turns

 

 

Fig. 4.44 Leakage loss of the proposed C-PCF for design-1 for different bending 
radius. 
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Fig. 4.45 Effective area of the proposed C-PCF for design-1 for different bending 
radius. 
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Fig. 4.46 Leakage loss of the proposed C-PCF for design-2 for different bending 
radius. 
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Fig. 4.47 Effective area and corresponding splice loss of the proposed C-PCF for 
design-2 for different bending radius. 
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Fig. 4.48 Leakage loss as a function of bending orientation. 
 

It is shown in Fig. 3 that the Aeff varies from 239.26 µm2 to 257.55 µm2 for R = 
26mm-34 mm in the range 1300nm-1700nm. These Aeff are higher than those in [42].   
From Fig. 4, it can be seen that for design-2, the leakage loss is very low over the 
wavelength range 1300nm to 1700nm for R = 4mm to 12 mm. The highest leakage 
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loss is 6.13×10−4 dB/turn at 1300nm for R = 4mm which is much lower than that 
reported in [44] for a holey fiber (HF) at R = 5mm. Also, in [44] the acceptable 
leakage loss was taken as 0.5 dB/10turns. In design-2 of the proposed C-PCF, the 
leakage loss is at least 102 times lower than this over the wavelength range 1300nm-
1700nm.  
 

Fig. 4.47 shows the Aeff and corresponding splice loss vs. wavelength curves for R = 
4mm-12mm for design-2. For low splice loss with a standard SMF (mode field 
diameter = 10µm), the effective area of the C-PCF should match closely that of a 
standard SMF. Here, the highest splice loss 0.0532 dB occurs for R = 4mm at 1300nm 
which is lower than that reported in [44]. For R = 8mm and above, the splice loss is 
near zero for the wavelength over 1450nm. 
 

It is evident from table 1 and table 2 that for both design-1 and design-2, the leakage 
loss the first four HOMs are well above 1 dB/m which ensures that the HOMs are 
effectively suppressed [42]. The uneven nature of the leakage loss may be due to the 
fact that the degree of coupling between the leaky cladding modes and core HOMs 
varies with the wavelength and bending radius. Though the leakage loss of the HOMs 
are not shown in the continuous range between 1300nm-1700nm, it is thoroughly 
checked and confirmed that the leakage loss does not fall below the limiting values 
for both designs. Also, the leakage loss of the other HOMs are also observed to be 
higher than the limiting values and thus effectively suppressed. It is observed that the 
cut-off wavelength for any HOM is below 1200nm for design-1 and 700nm for 
design-2. 

Both the designs show single mode operation even when the fiber is not bent (straight 
fiber). For straight fibers, the highest confinement loss of the HOMs we observed are 
just over 1 dB/m making it effectively suppressed in this case too. However, the 
confinement losses of the fundamental modes are more than 103 times lower than this. 

 

Table 4.2 Leakage Loss of the first four HOM at R = 30 mm for Design-1 

 1300nm 1400nm 1500nm 1600nm 1700nm 

4th 
HOM 

4.7538    

 

7.37 9.72 9.87 8.86 

3rd 
HOM 

4.3577    

 

9.43 13.28 11.60 16.44 

2nd 
HOM 

8.8550  

 

51.20 53.72 41.80 72.93 

1st 
HOM 

12.7345   

 

48.32 68.67 52.23 56.54 
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Table 4.3 Leakage Loss of the first four HOM at R = 4 mm for Design-2 

 1300nm 1400nm 1500nm 1600nm 1700nm 

4th 
HOM 

23.33     

 

53.45 67.47 91.98 225.03 

 

3rd 
HOM 

29.60     

 

77.67 83.44 86.45 149.77 

2nd 
HOM 

81.67  

 

225.78 187.54 217.34 312.13 

1st 
HOM 

69.54   

 

152.45 160.77 189.76 241.37 

 

Although, leakage losses increases with the increase of α as shown in Fig. 6, their 
values remain within acceptable limit upto α = 32° for design-1 and α = 25.6° for 
design-2. To control the angular rotation of the fiber, a precise fiber rotator can be 
employed with an accuracy of 2° [45].  
 

4.6.3    Outcomes 
 

A very low bending loss large mode area index guided PCF design has been presented 
in this paper. The same fiber design can be exploited in two different applications if 
scaled up or down. The designs are single moded as the HOMs bending losses exceed 
over certain limiting values. There are also about 104 times differences between 
bending loss of fundamental mode and HOMs. These characteristics make this C-PCF 
a useful candidate in WDM transmission and fiber to the home application. 

 

 

 

 



CHAPTER 5
CONCLUSION

5.1    Conclusion of the Work

Different properties of equiangular spiral (ES) PCF have been numerically investigated in this
thesis. The higher number of degrees of freedom in ES-PCF, yields greater flexibility in tailoring
dispersion, birefringence, confinement, bending loss etc. than that in more conventional
hexagonal lattice PCF. Thus, it is worth predicting that very useful results may be obtained by
tuning the structural parameters of an ES-PCF. In this thesis, several designs of PCFs have been
done for numerous applications in fiber optic communication systems. Among these designs, an
ES-PCF has been proposed to obtain large negative flat dispersion over the telecommunication
wavelength bands for dispersion compensation with high birefringence. This design is further
modified by employing more elliptical air holes in the core to obtain even more negative
dispersion profile. This dispersion profile is much more negative than the existing literatures on
residual dispersion compensating fibers. Also, the birefringence issue along with dispersion
compensation is addressed for the first time to my knowledge. Based on a similar structure,
another design of ES-PCF containing liquid crystal infiltration in the core region to yield
complete suppression of one degenerate mode form the two fundamental modes along with large
negative flat dispersion profile is also showed. This design exhibits a very flat dispersion profile
flatter than those of the existing literatures. The mode degeneration phenomenon between the
fundamental core mode and cladding mode is investigated next. It is shown that ES-PCFs do not
show significant mode degeneration between core and cladding modes like that of hexagonal
lattice PCFs. A single mode bend insensitive ES-PCF with large effective area for fiber to the
home application is shown subsequently. It offers lower bending loss with single modedness
having splice loss near zero with a typical SMF. The single modedness is achieved with an
ingenious technique of introducing a secondary core in the outer cladding. Other than ES-PCF, a
new structure of circular PCF has been proposed to obtain a single mode bend insensitive fiber
with large effective area for both WDM transmission and fiber to the home application. This new
structure is confirmed to be largely single moded over a wide range of wavelengths and bending
radii.

Prior to the numerical investigations, a modified bend loss formula have been developed that can
predict bend loss more accurately than the previous literatures for a very wide range of bending
radius and wavelength for step index fibers. Also, this formula is applied to predict bend loss of
PCFs. Though this formula shows moderately accurate estimation of bend loss of PCFs for a
limited range of structural parameters, wavelength and bending radius, it can be very useful in
bypassing the conventional cumbersome numerical calculations involved in predicting bending
loss.
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5.2 Scope for the Future Work

Though a number of useful designs on PCFs have been proposed, they are not tested
experimentally. The fabrication of conventional hexagonal lattice PCF is done through stack and
draw process [40]. But, the complex irregular structures of ES-PCF and C-PCF are difficult to
fabricate using this process, though not impossible as suggested by [21]. These designs are most
likely to be fabricated by extrusion or drilling technique which has already been proposed to
fabricate a golden spiral PCF [40]. Also, the sol-gel technique has some potential to fabricate
irregular structures where all the structural parameters can be adjusted independently [46]. Thus,
one of these two methods can be opted to fabricate the designs shown in this thesis. After
fabricating such structures, the numerical results may be verified experimentally that can
strengthen the findings.

Though, endlessly single mode behavior of conventional H-PCFs is well established, this feature
is yet to be investigated for ES-PCFs. To analyze this property, it seems that the concept of ‘unit
cell’ for an ES-PCF should be defined as a starting point. The boundary conditions are also
another aspect which must be treated with care for this purpose.

Large mode area (LMA) limitation in single mode PCFs with low bending loss is addressed
extensively during the last few years. For fiber laser applications, the necessity for LMA is
evident from the fact that it reduces the nonlinear effects in high power devices. This area of
research can be taken into consideration using ES-PCF and C-PCF as they have higher number
of degrees of freedom which increases the probability to tune their properties very precisely.
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