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Abstract

In this thesis, a noisy speech enhancement method based on noise compensation

performed on short time magnitude as well phase spectra is presented unlike the

conventional spectral subtraction method. Here, the noise estimate to be subtracted

from the noisy speech spectrum is proposed to be determined exploiting the low

frequency regions of noisy speech of current frame rather than depending only on

the initial silence frames. We argue that this approach of noise estimation offers the

capability of tracking the time variation of the non-stationary noise thus resulting

in a noise compensated magnitude spectrum. By employing the noise estimates

thus obtained, a procedure is formulated to compensate the distortion in the phase

spectrum,which is kept unchanged in the typical speech enhancement methods. The

noise compensated phase spectrum is then recombined with the noise compensated

magnitude spectrum to produce a modified complex spectrum thus synthesizing an

enhanced frame. Extensive simulations are carried out using NOIZEUS database

in order evaluate the performance of the proposed method. It is shown in terms of

objective measures, spectrogram analysis and informal subjective listening test that

the proposed method consistently outperforms some of the state-of-the-art methods

of speech enhancement from noisy speech corrupted by white or train or babble

noise of very low levels of SNR.
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Chapter 1

INTRODUCTION

The problem of improving performance of speech communication systems in noisy

environments has been a challenging area for research for more than three decades.

Now important applications of noise suppression and speech enhancement systems

include improving the performance of 1) digital mobile radio telephony systems,

which suffer both from background noise in the environment as well as from channel

noise; 2) hands free telephone systems suffering from car noise etc.; 3) pay phones

in a noisy environment (e.g. restaurants, factories, airports); 4) air-ground commu-

nication systems in which pilot’s speech is corrupted by cockpit and engine noise;

5) ground-air communication where the cockpit/engine noise corrupts the received

signal; 6) long distance communication over noisy radio channels; 7) teleconferenc-

ing systems where a noise source from one location maybe broadcasted to all other

locations; and 8) hearing aids and cochlear implants in a noisy environment (e.g.

classrooms, cafeteria etc. Efforts to achieve higher quality and intelligibility of noisy

speech may effectively end up improving performance of other speech applications

such as speech coding/compression and speech recognition etc.

The terms “speech enhancement” and “speech cleaning” properly refer respec-

tively to the improvement of the quality or intelligibility of speech and the reversal

of degradations that have corrupted it; in practice however, most authors use the

two terms interchangeably. The principal degradations that we are concerned with

are (a) additive acoustic noise, (b) acoustic reverberation, (c) convolutive channel

effects resulting in an uneven or band limited response, (d) non-linear distortion

such as arises from clipping, (e) additive broadband electronic noise , (f) electrical

interference, (g) codec distortion , (h) distortion introduced by recording apparatus.

2
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Speech enhancement methods attempt to improve the performance of commu-

nication systems when their input or output signals are corrupted by noise. The

main objective of speech enhancement or noise reduction is to improve one or more

perceptual aspects of speech, such as the speech quality or intelligibility. This is im-

portant in a variety of contexts, such as in environments with interfering background

noise (e.g offices, streets and automobiles etc.) and in speech recognition systems.

Over the year, researchers and engineers have developed a number of methods to

address this problem. Yet, due to complexities of the speech signal, this area of

research still poses a considerable challenge. It is usually difficult to reduce noise

without distorting speech and thus, the performance of speech enhancement systems

is limited by the tradeoff between speech distortion and noise reduction.

The overall goal of a speech enhancement technique is to reduce listener fatigue,

to boost the overall speech quality, to increase intelligibility, and to improve the

performance of the voice communication device [1], [2] . The goal varies according to

specific application and each application has an aim to make a tradeoff between two

or among several goals. In general, since the presence of noise seriously degrades the

performance of the systems in such applications, the efficacy of the systems operating

in a noisy environment is highly dependent on the speech enhancement techniques

employed therein.Therefore,the aims of speech enhancement can be summarized as

follows:

1. Improvements in the intelligibility of speech to human listeners.

2. Improvement in the quality of speech that make it more acceptable to human

listeners.

3. Modifications to the speech that lead to improved performance of automatic

speech or speaker recognition systems.

4. Modifications to the speech so that it may be encoded more effectively for

storage or transmission.

1.1 Problem Definition

In speech communication system, during transmission and reception, signals are

often corrupted by noise, which can cause severe problems for further processing
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and user perception. The presence of background noise [3] in speech significantly

reduces the intelligibility of speech. Degradation of speech severely affects the abil-

ity of person, whether impaired or normal hearing, to understand what the speaker

is saying. Therefore an effective means of removing the noise from speech is in-

valuable for many speech processing applications by using noise reduction or speech

enhancement algorithms that can suppress such background noise and improve the

perceptual quality and intelligibility of speech. The speech signal can be acquired

from single or multiple channel sensors. Single channel systems constitute one of

the most difficult situations of speech enhancement, since no reference signal to the

noise is available, and the clean speech cannot be preprocessed prior to being af-

fected by the noise. It is already known that additive noise make speech degraded

and non-stationarity of the noise process can further complicate the enhancement

effort. One microphone input (single channel) could make speech enhancement dif-

ficult, as speech and noise are present in the same channel. Separation of the two

signals would require relatively good knowledge of the speech and noise models or

require that the interfering signal be present Exclusively in a different frequency

band than that of the speech signal. Usually single channel systems make use of

different statistics of speech and unwanted noise.The performance of these meth-

ods are usually limited in presence of non-stationary noise as most of the methods

make an assumption that noise is stationary during speech intervals and also, the

performance drastically degrades at lower signal to noise ratios. A costly solution

to this problem is to use a dual channel microphone approach. These systems take

advantage of the availability of multiple signal inputs to the system and make use of

the noise reference in an adaptive noise cancelation device, the use of phase align-

ment to reject undesired noise components, or even the use of phase alignment and

noise cancelation stages into a combined scheme. But these systems tend to be more

complex and more costly.In general, the situation where the noise and speech are

in the same channel (single channel systems) is the most common scenario and is

one of the most difficult situations to deal with.The complexity and ease of imple-

mentation of any proposed scheme is another important criterion especially since

the majority of the speech enhancement and noise reduction algorithms find appli-

cations in real-time portable systems like cellular phones, hearing aids, hands free
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kits etc. Hence, between the two systems, single microphone systems are the most

common real-time scenario e.g. mobile communication, hearing aids etc. as usually

a second channel is not available in most of the applications. These systems are

easy to build and comparatively less expensive than the multiple input systems.

Therefore, this thesis is concerned with enhancement methods that use only a single

microphone signal. Single channel speech enhancement methods can be generally

divided into several categories based on their domains of operation, namely time

domain, frequency domain and time-frequency domain. Time domain methods in-

cludes the subspace approach [4]- [8], frequency domain methods includes speech

enhancement methods based on discrete cosine transform [9], the spectral subtrac-

tion [10], [11], minimum mean square error (MMSE) estimator [4], [12], [13], Wiener

filtering [5], [14] and time frequency-domain methods involve the employment of

the family of wavelet [15]- [20] and [8], which is a superior alternative to the anal-

yses based on Short Time Fourier Transform (STFT). The main challenge in such

denoising approaches based on the thresholding of the wavelet coefficients [21] of

the noisy speech is adjusting the threshold value, so that it can prevent enhanced

speech distortion as well as decrease residual noise. Then, by using the threshold,

the designing of a thresholding scheme to minimize the effect of wavelet coefficients

corresponding to the noise is another difficult task. In order to handle the practi-

cal situations of real life applications, a speech enhancement method, apart from

providing simplicity in computation, is needed to be capable of producing optimal

results with improved overall speech quality with minimized speech intelligibility

loss under low levels of SNR.

Since the majority of the speech enhancement and noise reduction methods find

applications in real-time portable systems like cellular phones, hearing aids, hands

free kits etc., the complexity and ease of implementation of any proposed scheme is

another important criterion. In order to attain these goals by reducing noise from

the noisy speech, various speech enhancement methods namely, spectral subtraction

(SS) [10], [11], MMSE estimation [22], [11] subspace [4]- [8] Wiener filtering [5], and

Kalman filtering [6] have been reported in the literature.The spectral subtraction

method has been one of the most well-known techniques for noise reduction. The

spectral subtraction estimates the power spectrum of clean speech by explicitly sub-



6

tracting the noise power spectrum from the noisy speech power spectrum. Due to

its mini-mal complexity and relative ease in implementation, it has enjoyed a great

deal of attention over the past years. This approach generally produces a residual

noise commonly called musical noise. Among all the methods mentioned above,

although spectral subtraction suffers from an artifact known as musical noise, it has

been widely used due to its noise suppression capability with simple computation.

All the conventional speech enhancement methods, considers only the magnitude

spectrum of the noisy speech while keeping the corresponding phase spectrum un-

changed for synthesizing a cleaner speech. In [23], [24] the phase spectrum has been

modified keeping the magnitude spectrum unchanged. Yet, the fact that at low lev-

els of SNR, the changes in phase have indeed an effect on speech understandability,

has not been studied in detail. Thus, in severe noisy conditions, development of a

speech enhancement method incorporating noise compensations in both amplitude

and phase spectra is still a challenging task.

Therefore, in this thesis, we intend to develop a speech enhancement method,

where not only the short time magnitude is noise compensated but also the short

time phase spectrum is altered to handle and reduce the noise causing unwanted dis-

tortion in the enhanced speech. We rely on the fact that noisy speech spectrum in

low frequency regions is equivalent to the noise spectrum in that region. Therefore,

unlike the conventional methods of SS, noise estimate is proposed to be determined

exploiting the low frequency regions of noisy speech of the current frame rather than

depending only on the initial silence frames and the determined noise spectrum es-

timate is updated in every silence period. Such an approach of noise estimation and

resulting noise compensated magnitude spectrum offer the capability of tracking the

time variation of the non-stationary noise. Unlike the majority of the conventional

speech enhancement methods that keep the short time phase spectrum unchanged,

we design a real value frequency dependent phase compensation function in order

to modify the complex spectrum of the noisy speech. The angle of the modified

complex spectrum of the noisy speech represents the noise-compensated phase spec-

trum. We propose the degree of phase spectrum compensation to be dependent on

the magnitude of the noise spectrum estimate of the current frame thus allowing

the phase spectrum also to follow the time variation of the non stationary noise.
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Since the phase compensation function is anti-symmetric, it acts as the cause for

changing the angular phase relationship. The noise compensated phase spectrum in

conjunction with the noise compensated magnitude spectrum produces an enhanced

complex spectrum that is found to contribute to cancel out low energy components

more than the high energy components while performing enhanced speech synthe-

sis thus reducing background noise drastically. Extensive simulations are carried

out using NOIZEUS [25] database in order evaluate the performance of proposed

method. It is shown in terms of objective measures and subjective evaluations that

the proposed method consistently outperforms some of the state-of-the-art meth-

ods of speech enhancement from noisy speech corrupted by white or train or babble

noise of very low levels of SNR. The proposed method is able to provide an improved

overall speech quality with minimized speech intelligibility loss under low levels of

SNR thus can be suitable to be employed in speech communication applications,

such as mobile telephony, speech coding and recognition, and hearing aid devices

involving practical noisy conditions.

1.2 Objective of the Thesis

The objectives of this thesis are:

1. To develop a noise compensation scheme for the magnitude spectrum based

on the low frequency regions of noisy speech of the current frame.

2. To formulate a noise compensation scheme for the phase spectrum by employ-

ing the obtained noise estimate.

3. To investigate the performance of the proposed speech enhancement method in

terms of objective and subjective measures using speech signals of a standard

speech database in the presence of different noises in a wide range of SNRs

from high to low.

The outcome of this thesis is a spectral enhancement method for noisy speech

based on noise compensated magnitude and phase spectra thus synthesizing an

enhanced speech with improved quality and minimal intelligibility under low levels

of SNR.



8

1.3 Organization of this Thesis

This thesis is organized as follows; Chapter 1 gives the introduction of the overall the-

sis. Chapter 2 gives an overview of hearing and various aspects of hearing which are

critical in developing noise reduction criteria based on human perception along with

a review of various speech enhancement methods Chapter 3 discusses the proposed

Modified Spectral Subtraction (MSS) approach with correction in phase.Results and

simulations parts are elaborated in chapter 4. Finally, concluding remarks and sug-

gestions for future works are provided in Chapter 5.



Chapter 2

LITERATURE REVIEW

Research in the field of speech enhancement has focused on the suppression of ad-

ditive background noise in the past decades. From the point of view of signal pro-

cessing, it is easier to deal with additive noise than convolutive noise or nonlinear

disturbances. The ultimate goal of speech enhancement is to eliminate the additive

noise present in speech signal and restore the speech signal to its original form.

Several methods have been developed as a result of these research efforts. Most of

these methods have been developed with some or the other auditory, perceptual or

statistical constraints placed on the speech and noise signals. However, in real world

situations, it is very difficult to reliably predict the characteristics of the interfering

noise signal or the exact characteristics of the speech waveform. Hence, in effect,

the speech enhancement methods are sub-optimal and can only reduce the amount

of noise in the signal to some extent. Due to the sub-optimal nature of these meth-

ods, some of the speech signal can be distorted during the process. Hence, there

is a trade-off between distortions in the processed speech and the amount of noise

suppressed. The effectiveness of the speech enhancement system can therefore be

measured based on how well it performs in light of this trade-off. Various speech

enhancement methods have been reported in the literature describing the know how

to solve the problem of noise reduction in the speech enhancement methods.

In this chapter, an overview of hearing and various aspects of hearing which have

been important in development of some of the recent perceptually based enhance-

ment [26], [27] methods is presented here. Since real world is concerned with noises,

different types of noises and their characteristics are described in detail in this chap-

ter. Basically,this chapter presents an overview of different speech enhancement

9
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methods, with greater emphasis on single channel subtractive type algorithms and

provides a review of some of the major aspects and approaches in this category.

2.1 Overview of Hearing

The human auditory system has an unsurpassed capability to adapt to noise. There

has been a great deal of research domain order to model this capability for pur-

pose of enhancing speech. In the past few decades, good progress has been made

in Understanding how the hearing mechanism works in processing a sound in gen-

eral and Especially in context of noise.The human auditory system is based on a

time-frequency analysis of sounds. The information received by the human ears

can be described most conveniently as non-linear auditory responses to frequency

selectivity and perceived loudness. The general properties of frequency selectivity

are related to the concepts of critical band.Critical bands correspond to a physical

measurement in the cochlea. Fletcher’s band widening experiment laid the foun-

dation for the critical-band concept by the assumption that incoming sounds are

preprocessed by the peripheral auditory system through a bank of band pass filters.

Each of these auditory filters acts like a frequency.Weighing function, corresponding

closely to the frequency selectivity of the ear across the critical bands. The notion of

critical band is related to the phenomenon of masking.Masking occurs because the

auditory system is not able to differentiate two signals close in frequency or in time.

It is manifested by a shift of auditory threshold in signal detectability. Loudness is

another important attribute of auditory perception in terms of which sounds can be

ranked on a scale extending from quiet to loud. These aspects of human auditory

system such as critical band structure,masking, absolute threshold, excitation pat-

terns etc. have been applied in speech coding,speech recognition and speech quality

evaluation.The following section describes the above-mentioned aspects of human

auditory perception, which addresses the basis of modeling perceptual properties

andincorporating them into speech processing systems especially in the context of

speech enhancement systems.
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2.1.1 The Human Ear

The human auditory system consists of the ear, auditory nerve fibers, and a section

of the brain. It converts sound waves into sensations perceived by the auditory

cortex. The ear is the outer peripheral system, which converts acoustic energy

(sound waves) into electrical impulses that are picked up by the auditory nerve.

The ear itself is divided into three parts, the outer, middle and inner ear as shown

in Fig. 2.1.

The Outer Ear

The outer ear consists of the pinna (the visible part of the ear), the meatus (ear

canal), and terminates at the tympanic membrane, also known as the eardrum. The

pinna is primarily responsible for collecting sound, and aids in sound localization.

The meatus is a tube, which directs the sound to the tympanic membrane. A cavity

with one end open and the other end closed by the tympanic membrane, the meatus

acts as a quarter-wave resonator with a center frequency around 3000 Hz. This

particular structure likely aids the perception of obstruents (sounds produced by

obstructing the air flow in the vocal tract, such as /s/ and /f/), which have their

energy content in this frequency region.

The Middle Ear

The middle ear is considered to begin at the tympanic membrane and contains the

ossicles, a set of three small bones. The bones are named malleus (hammer), incus

(anvil), and stapes (stirrup). Acting primarily as levers performing an impedance

matching transformation (from the air outside the eardrum to the fluid in the

cochlea),they also protect against very strong sounds. The acoustic reflex acti-

vates the middle ear muscles, to change the type of motion of the ossicles when

low-frequency sounds with Sound Pressure Level (SPL) above 85-90 dB reach the

eardrum. Attenuating pressure transmission by up to 20 dB, the acoustic reflex is

also activated during voicing in the speaker’s own vocal tract . Due to their mass,

the ossicles act as a low-pass filter with a cutoff frequency around 1000 Hz.
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Fig. 2.1: Structure of Human Ear

The Inner Ear

The inner ear is a bony structure comprised of semicircular canals of the vestibula

and the cochlea. The vestibula is the organ that helps balancing the body with no

apparent role in the hearing process [18]. The cochlea is a cone-shaped spiral in

which the auditory nerve terminates. It is the most complex part of the ear that

transmits the mechanical oscillations to the basilar membrane through the fluid

present in the inner ear, which produces very small displacements of the basilar

membrane. The Corti, which is located on the basilar membrane and contains

about 4 × 3500 hair cells (for a total length of 32mm) performs a frequency-place

transformation of these mechanical oscillations into electrical pulses. Linear distance

along the basilar membrane corresponds approximately to logarithmic increments

of frequency.

2.1.2 The Critical Band

The critical band structure can be used to describe many aspects of the behavior of

the auditory system. The critical band has a perceptual and a physical relationship
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with the auditory system. A basic definition of the critical band is the ”bandwidth

at which subjective response changes rather abruptly”. Another view of the critical

band is that it represents a first approximation of the ear’s ability to discriminate

different frequencies. Experiments have shown that 25 critical bands exist over the

frequency range of human hearing, which spans from 20 Hz to 20 kHz. It is evident

that the critical bands have constant width of 100 Hz for center frequencies up

to 500 Hz, and the bandwidths increase as the center frequency increases further.

Since location on the basilar membrane has an approximately linear relationship

to the frequency scale for low frequencies but a logarithmic relationship at higher

frequencies, the linear frequency scale is inadequate for representing the auditory

system. Critical band analysis is the basis for almost all the models based on

auditory system. One critical band corresponds to a 1.5 mm step along the basilar

membrane that contains 1200 primary auditory nerve fibers. Critical band analysis

is the first stage of analysis performed by the inner ear. As mentioned earlier, this

analysis is a frequency-domain transformation, which can be seen as a filterbank

with bandpass filters. A critical filter bank, gives equal weight to portions of speech

with the same perceptual importance.

2.2 Noise Characteristics

The nature of the noise is an important factor in deciding on a speech enhancement

method. Therefore, a good model of noise is important for the performance of

speech enhancement system and vice-versa it is important to analyze how well a

speech enhancement algorithm/model works with different types of noise.Based on

the nature and properties of the noise sources, noise can be classified in the following

ways:

1. Background noise: additive noise, which is usually uncorrelated with the sig-

nal and present in various environment scenarios like cars, offices, city streets,

fans,machines, climatic conditions, factory environment, cockpits, helicopters

etc.From these types of noise, both noise (white noise filtered to model long-

term average of room noise) is stationary, noises in streets and factories etc.

have more dynamic characteristics. Factory and helicopter noise having strong

periodic components and noise from fans, and car noise in a hands free envi-
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ronment etc. are real noise and are examples of non-stationary noise having

time varying characteristics.

2. Interfering speakers (speech like noise): additive noise, composed of single or

multiple “competing” speakers. The multi-talker babble which also attributes

to the phenomenon called “cocktail party effect”(many voices talking simulta-

neously, e.g. in a cafeteria, a noisy classroom) is noise, which has characteris-

tics and frequency range very similar to the speech signal of interest.

3. Impulse noise: slamming of doors, noise present in archived gramophone

recordings.

4. Non-additive noise: noise due to non-linearities of microphones, speakers and

channel distortion (speech on transmission lines).

5. Non-additive noise due to speaker stress: e.g. Lombard effect i.e. the effect

induced in presence of noise, wherein the speaker has a tendency to increase

his vocal effort. This results in speech having different spectral properties

as compared to clean speech, a detailed summary of the changes in speech

characteristics due to this effect are given in Speech produced under situational

and emotional stress also fall in this category.

6. Noise correlated with the signal: reverberations and echos.

7. Convolutive noise: corresponds to convolution in time domain. For instance,

changes in speech signal due to changes in room acoustics or changes in mi-

crophones etc. These are usually harder to deal with, as compared to additive

noise.

8. Multiplicative noise: signal distortion due to fading in cellular channels.

In general, it is more difficult to deal with non-stationary addative noise, where

there is no priority knowledge available about the characteristics of noise. Since non-

stationary noise is time varying, the conventional method of estimating the noise

from initial intervals assuming no speech signal is not suitable for estimation [10].

Noise types, which are similar in temporal, frequency or spatial characteristics to

speech, are also difficult to remove or attenuate. Multitalker babble, for instance,
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retains some characteristics of speech and In general, it is more difficult to deal

with non-stationary noise, where there is no priori knowledge available about the

characteristics of noise. Since non-stationary noise is time varying, the conventional

method of estimating the noise from initial intervals assuming no speech signal is

not suitable for estimation. Noise types, which are similar in temporal, frequency or

spatial characteristics to speech, are also difficult to remove attenuate. Multitalker

babble, for instance, retains some characteristics of speech and poses a particularly

difficult problem for an algorithm intended to isolate speech signal from the ad-

ditive noise. Fig. 2.2 through Fig. 2.9 shows the effect of various type of noises

on the clean speech signal. Fig. 2.2 shows the time domain representations of the

clean speech which plots the amplitude of the clean speech signal with respect to

time. Fig. 2.6 is the spectrograms of the clean speech, which provides a three

dimensional representation of short speech utterances. From these figures we see

that, the spectrograms display separate harmonics and they aid analysis of pith

and vocal tract resonance. Due to limited range on spectrograms or to filtering

of the speech,however, harmonics are often invisible . For better understanding of

the effect of various types of noises on the clean speech signal both in the time

and frequency domains, Fig. 2.2 through Fig. 2.5 are plotted for the time domain

representations and Fig. 2.6 through 2.9 show the spectrogram representations

of the speech signal.In this thesis we are concerned with additive stationary and

nonstationary noise.

The majority of speech enhancement algorithms operate only the spectral mag-

nitude. This stems from the generic principle “the ear is phase deaf”. This principle

is only partially true.It is true that the phase can be changed drastically - as is the

case in reverberant speech without greatly affecting understanding; thus the main

effect of phase seems to rather qualitative. However, phase is not free either. We

presume that random and fast changes in phase have indeed an effect on speech

understandability [23]. However, this effect has not been studied in detail .In speech

enhancement algorithms - especially those of the spectral subtraction nature the

spectral magnitude is modified in order to remove as much of the noise as possible.

Then the cleaned magnitude is recombined with the noisy phase to reconstruct a

cleaned up speech signal. In this situation the phase and magnitude components are
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Fig. 2.2: Clean speech signal

Fig. 2.3: 0 dB White noise corrupted speech signal

not necessarily consistent. Especially in speech resynthesis with an overlap-add [3]

paradigm phase isn’t free due to the usage of overlapping frames. Using an iterative

algorithm first designed by Griffin and Jim phase can be adjusted to be as consistent

as possible.

2.3 Classification of single channel speech enhance-

ment Techniques

Speech Enhancement (SE) systems can be classified in a number of ways , based on

the criteria used or application of the enhancement system. Typically, the speech en-

Fig. 2.4: 0 dB train noise corrupted speech signal
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Fig. 2.5: 0 dB babble noise corrupted speech signal

Fig. 2.6: Spectrogram of Clean speech signal

Fig. 2.7: Spectrogram of 0 dB white noise corrupted speech signal

Fig. 2.8: Spectrogram of 0 dB train noise corrupted speech signal
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Fig. 2.9: Spectrogram of 0 dB babble noise corrupted speech signal

hancement literature broadly divides the various speech processing strategies under

single and multichannel enhancement techniques. The performance of single chan-

nel systems is usually limited because they tend to improve the quality of the noisy

signal at the expense of some intelligibility loss [28] [29]. Hence time, frequency,

and time-frequency domain single channel speech enhancement methods, reported

in the literature, have their own advantages and drawbacks. The discussion in this

chapter will be limited to single channel enhancement techniques at different do-

mains, as these are the most common types of enhancement systems found in many

applications.

2.4 Overview of the time domain single channel

SE methods

One of the popular time domain speech enhancement methods include the subspace

method [4]- [8]. The idea behind the subspace approach is to project the noisy signal

onto two subspaces: the signal-plus-noise subspace, or simply signal subspace (since

the signal dominates this subspace), and the noise subspace. The noise subspace

contains signals from the noise process only, hence an estimate of the clean signal

can be made by removing the components of the signal in the noise subspace and

retaining only the components of the signal in the signal subspace. Some well known

methods for the decomposition of the space into two subspaces are the eigenvalue

decompositions (EVD) [10], [6], [7]. The EVD based methods by Ephraim and

Van Trees in [22] provided a noise shaping mechanism, but unfortunately they can

only be applied to white noise and a separate noise whitening procedure needs to

be utilized when colored-noise is present. The important succeeding extension to
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colored noise by Mittal et al. in [18] is suboptimal methods since approximations

were made to obtain the desired results. In [9], Jabloun and Champagne proposed a

way to incorporate the auditory model into the subspace-based methods for speech

enhancement. They first performed the eigen decomposition of the clean signal co-

variance matrix (by subtracting the noisy signal and noise covariance matrices) and

then estimated the masking thresholds using the spectrum derived from an eigen-

to frequency domain transformation. The masking thresholds were transformed

back to the eigenvalue domain using a frequency-to-eigen domain transformation

and then incorporated into the signal-subspace approach. The authors implicitly

assumed that the subspace occupied by the speech signal is the same as that occu-

pied by the signal obtained after the auditory model is taken into account. In the

subspace method [9], a mechanism to obtain a tradeoff between speech distortion

and residualnoise is proposed with the cost of a heavy computational load.

subspace approach

One particular class of speech enhancement techniques that has gained a lot of

attention is signal subspace filtering. In this approach, a nonparametric linear es-

timate of the unknown clean-speech signal is obtained based on a decomposition

of the observed noisy signal into mutually orthogonal signal and noise subspaces.

This decomposition is possible under the assumption of a low-rank linear model for

speech and an uncorrelated additive (white) noise interference. Under these condi-

tions, the energy of less correlated noise spreads over the whole observation space

while the energy of the correlated speech components is concentrated in a subspace

thereof. Also, the signal subspace can be recovered consistently from the noisy data.

Generally speaking, noise reduction is obtained by nulling the noise subspace and

by removing the noise contribution in the signal subspace. It is assumed that the

original signal exhibits some well-defined Properties or obeys a certain model. Sig-

nal enhancement is then obtained by mapping the observed signal onto the space of

signals that possess the same structure as the clean signal. This theory forms the

basis for all subspace-based noise reduction algorithms. A first and indispensable

step towards noise reduction is obtained by nulling the noise subspace (least squares

(LS) estimator) [3].Of particular interest is the minimum variance (MV) estimation,

which gives the best linear estimate of the clean data, given the rank p of the clean
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signal and the variance of the white noise [4], [5]. Later on, a subspace-based speech

enhancement with noise shaping was proposed in [6]. Based on the observation that

signal distortion and residual noise cannot be minimized simultaneously, two new

linear estimators are designed-time domain constrained (TDC) and spectral domain

constrained (SDC)-that keep the level of the residual noise below a chosen threshold

while minimizing signal distortion. Parameters of the algorithm control the trade-off

between residual noise and signal distortion. In subspace base speech enhancement

with true perceptual noise shaping, the residual noise is shaped according to an

estimate of the clean signal masking threshold, as discussed in more recent papers

[7]-[9]. Although basic subspace-based speech enhancement is developed for dealing

with white noise distortions, it can easily be extended to remove general coloured

noise provided that the noise covariance matrix is known (or can be estimated)

2.5 Overview of the Frequency domain single chan-

nel SE methods

2.5.1 Spectral subtraction approach

Spectral subtraction [10], [13], [28], [30], [31], [32] is a well-known noise reduc-

tion method based on the short term spectral amplitude (STSA) estimation tech-

nique [10]- [13]. The basic power spectral subtraction technique, as proposed by

Boll [10], is popular due to its simple underlying concept and its effectiveness in

enhancing speech degraded by additive noise. The basic principle of the spectral

subtraction method [10], [13], [28], [30], [31], [32] is to subtract the magnitude spec-

trum of noise from that of the noisy speech. The noise is assumed to be uncorrelated

and additive to the speech signal. An estimate of the noise signal is measured dur-

ing silence or non-speech activity in the signal. A general representation of the

technique is given in Fig. 2.10. The enhanced signal has largely reduced noise lev-

els compared to the original noise corrupted signal resulting in a better SNR and

improved speech quality. However, although spectral subtraction method is simple

and provides a tradeoff between speech distortion and residual noise to some extent,

it suffers from an artifact known as “musical noise” having an unnatural structure

that is perceptually annoying, composed of tones at random frequencies and has an

increased variance. It is obvious that the effectiveness of the noise removal process is
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Fig. 2.10: Diagrammatic representation of short time spectral magnitude enhance-
ment system

dependent on obtaining an accurate spectral estimate of the noise signal. The better

the noise estimate, the lesser the residual noise content in the modified spectrum.

However, since the noise spectrum cannot be directly obtained, we are forced to

use an averaged estimate of the noise. Hence there are some significant variations

between the estimated noise spectrum and the actual noise content present in the

instantaneous speech spectrum. The subtraction of these quantities results in the

presence of isolated residual noise levels of large variance. These residual spectral

content manifest themselves in the reconstructed time signal as varying tonal sounds

resulting in a musical disturbance of an unnatural quality. This musical noise can

be even more disturbing and annoying to the listener than the distortions due to

the original noise content. This and other drawbacks of the method neutralize the

improvement in speech quality achieved due to the reduction in noise levels and can

be more annoying than the original noise itself. In Boll’s method [10] of spectral

subtraction (SS), the noise spectrum is estimated from the non-speech frames and

subtracted from the noisy speech spectrum in the current frame. If the noise is

stationary, then the noise estimation becomes accurate and the resulting spectrum

on transforming it in the time domain produces a cleaner speech. However, in prac-

tice, since most of the noises are usually nonstationary [33], the Boll’s SS method

results in a degraded performance in terms of speech quality and intelligibility. The

method in [34] proposed by Paliwal, where noise is estimated based on the high-

order Yule-Walker equations without finding the non-speech frames, can track the

non-stationary noise but needs larger computations. The minimum statistics based
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SS approach [23], [4] can handle non-stationary noise with lesser computations, but

the outcome of the approach relies on the spectra estimated from the past frames.

Recently, in Yamauchi’s method [18] the noise spectrum is estimated in the current

frame using high-frequency regions, where human speech information is absent. It

is to be noted that this method needs a very high sampling rate, which is unrealistic

in the context of speech processing systems. To this end, a SS method has been

proposed in [7], where the spectrum of non-stationary noise is estimated without

using the higher sampling rate. All the speech enhancement methods mentioned

above, considers only the magnitude spectrum of the noisy speech while keeping the

corresponding phase spectrum unchanged for synthesizing a cleaner speech.

Correction of phase in spectral subtraction

Several methods employ the analysis-modification-synthesis (AMS) framework [35].

Let us consider an additive noise model,

x(n) = s(n) + d(n), (2.1)

where x(n), s(n) and d(n) denote discrete-time signals of noisy speech, clean speech

and noise, respectively. Since speech can be assumed to be quasi-stationary, it is

analyzed frame-wise in the AMS framework through short-time Fourier analysis.

The discrete short-time Fourier transform (DSTFT) of the corrupted speech signal

x(n) is given by

X(n, k) =
∞∑
−∞

x(m)w(n−m)e−
j2πmk
N , (2.2)

where k denotes the kth discrete-frequency of N uniformly spaced frequencies and

w(n) is an analysis window function. In speech processing, the Hamming window

with 20-40 ms duration is typically employed. Using DSTFT analysis we can, subject

to constraints described in [7], represent Eqn. 2.2 as

X(n, k) = S(n, k) +D(n, k), (2.3)

whereX(n, k), S(n, k), and D(n, k) are the DSTFTs of noisy speech, clean speech,

and noise, respectively. Each of these can be expressed in terms of the DSTFT
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magnitude spectrum and the DSTFT phase spectrum. For instance, the DSTFT of

the noisy speech signal can be written in polar form as

X(n, k) = |X(n, k)|ej∠X(n,k), (2.4)

where |X(n, k)| denotes the magnitude spectrum and ∠X(n, k) denotes the phase

spectrum.

Traditional AMS-based speech enhancement methods modify only the magni-

tude spectrum while keeping the noisy phase spectrum unchanged for synthesis.

This stems from the generic principle that “the ear is phase deaf”. In [23], the

phase spectrum has been modified keeping the magnitude spectrum unchanged.

In the phase domain approach the noisy phase spectrum is modified leaving the

noisy magnitude spectrum unchanged. Noise suppression is achieved by altering

the DSTFT phase spectrum in such a way as to induce large synthesis cancellation

among noise components during the inverse DSTFT operation.

2.5.2 Minimum mean square error (MMSE) estimator ap-
proach

In the MMSE estimator [4], [12], [13], the frequency spectrum of the noisy speech is

modified to reduce the noise from noisy speech in the frequency domain. A relatively

large variance of spectral coefficients is the problem of such an estimator. While

adapting filter gains of the MMSE estimator, spectral outliers may emerge, that

is especially difficult to avoid under noisy conditions. Unlike magnitude averaging

where averaging is performed irrespective of whether the frame contains speech or

noise, the proposed MMSE estimator performs non-linear smoothing only when the

SNR is low, i.e. when the frame predominantly contains noise. The residual noise

present due to this technique has been observed to be colorless. The method reduces

the distortions in the speech parts due to averaging.

2.5.3 Wiener filtering approach

The Wiener filter is a popular adaptive technique that has been used in many

enhancement methods [5], [36], [37]. The basic principle of the Wiener filter is

to estimate an optimal filter from the noisy input speech by minimizing the Mean
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Square Error (MSE) between the desired signal s(k) and the estimated signal ŝ(k).

The Wiener filter can be given in the frequency domain by:

H(w) =
Ps(w)

Ps(w) + Pn(w)
, (2.5)

where Ps(w) is the power spectral density (PSD) of the speech and Pn(w) is the

PSD of the noise spectrum calculated during periods of non-speech activity. From

2.1 it is obvious that a priori knowledge of the speech and noise power spectra

is necessary. The speech power spectrum is estimated using the estimated speech

model parameters. One of the major problems of wiener filter based methods is the

requirement of obtaining clean speech statistics necessary for their implementation.

Both the MMSE and the Wiener estimators have a moderate computation load, but

they offer no mechanism to control tradeoff between speech distortion and residual

noise.

2.6 Conclusion

In this chapter, brief literature surveys of the recent state-of-the-art speech enhance-

ment [1] methods are presented. All the methods have their pros and cons. In order

to handle the practical situations of real life applications, a speech enhancement

method, apart from providing simplicity in computation, is needed to be capable

of producing optimal results with improved overall speech quality with minimized

speech intelligibility loss under low levels of SNR. Despite many relatively successful

attempts to implement speech enhancement system in severe noisy conditions, de-

velopment of a single approach of speech enhancement that offers the know-how of

determining an appropriate threshold value as well as designing an effective thresh-

olding scheme is still an open problem.



Chapter 3

A Spectral Domain Speech
Enhancement Method Based on
Noise Compensations in Both
Magnitude and Phase Spectra

3.1 Introduction

For speech enhancement, it is well known that spectral subtraction has been widely

used due to its noise suppression capability with simple computation. Most of the

variations of spectral subtraction assume that noise remains stationary over time and

considers only the modified magnitude spectrum while keeping the phase spectrum

of noisy speech unchanged for synthesizing an enhanced speech. Although there

are complex issues that involve the effect the phase spectrum on human audition,

recently, it is suggested that phase spectrum can be useful for improved speech

processing tasks [38]- [40].

In this chapter, a new approach to speech enhancement is developed, where not

only the short time magnitude is noise compensated but also the short time phase

spectrum is altered to handle the noise causing unwanted distortion in the enhanced

speech. Based on the fact that noisy speech spectrum in low frequency region is

equivalent to the noisy spectrum in that region, a noise estimation approach is in-

troduced with the conditional spectral subtraction method in order to track the

time variation of non-stationary noise. Unlike the conventional speech enhancement

methods that help the short time phase spectrum unchanged, we proposed to in-

corporate the estimate noise spectrum in a procedure of noise compensation in the

phase spectrum. the new complex spectrum obtained by exploiting the modified

25
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magnitude and phase spectra is found effective is producing enhanced speech with

improved quality with minimal distortion as compared to some of the existing speech

enhancement methods [41].

3.2 PROBLEM FORMULATION

In the presence of additive noise sv[n], a clean speech signal sx[n] gets contami-

nated and produces noisy speech sy[n]. The proposed method is based on the AMS

framework where, speech is analyzed frame wise since it can be assumed to be quasi-

stationary. The noisy speech is segmented into overlapping frames by using a sliding

window . A windowed noisy speech frame is expressed in the time domain as

y[n] = x[n] + v[n], (3.1)

where, x[n] and v[n] represent the windowed version of the clean speech sx[n] and

that of the noise sy[n], respectively. In a transform domain, such as frequency

domain, eqn. 3.1 can be expressed as

Y [k] = X[k] + V [k], (3.2)

where, Y [k], X[k] and V [k] are the frequency domain representations of frames of

noisy speech , clean speech and noise in that order. In this paper, short-time Fourier

transform (STFT) is employed to process and modify the noisy signal. The N-point

STFT , Y [k] of y[n] can be computed as

Y [k] =
N−1∑
n=0

y[n]e−
j2πnk
N if, 0 ≤ k ≤ N − 1., (3.3)

According to the AMS framework, first, the noisy speech frame y[n] in processed in

the transformed domain, then, modifications are carried out in the transformed do-

main and finally, the inverse transform of the operation followed by the overlap-add

[3] synthesis is performed to reconstruct an enhanced speech frame. An overview of

the proposed speech enhancement method is shown by a block diagram in Fig.3.1.In

the AMS framework, we propose to employ the idea of SS based speech enhance-

ment method due to its several attractive features, where, the short-time Fourier

transform Y [k] of y[n] as expressed in eqn. 3.3 can be written in polar form as

Y [k] = |y[k]|ej∠Y [k]. (3.4)
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In eqn. 3.4, Y [k] denotes the short-time magnitude spectrum and ∠Y [k] denotes

the short-time phase spectrum. In speech analysis, it is commonly believed that

human auditory system is phase-deaf i.e., it ignores phase spectrum and considers

only magnitude spectrum. That is why in the conventional spectral subtraction (SS)

based speech enhancement methods, for synthesizing a clean speech, operations are

performed only on the short-time magnitude spectrum and an unaltered short-time

phase spectrum is maintained or vice versa. Recently, it has been shown that the

phase spectrum is also useful in speech analysis [42], [24]. Therefore, in the intended

SS based noise reduction scheme, we are inspired to modify not only the magnitude

spectrum but also alter the phase spectrum of the noisy speech with a view to handle

and reduce noise of different characteristics.

3.3 PROPOSED METHOD

3.3.1 Noise Compensated Magnitude Spectrum

In this section, the magnitude spectrum of the noisy speech is modified by exploit-

ing the low-frequency regions of the noisy speech. Unlike conventional methods,

the noise spectrum estimate is updated in every silence period and the low fre-

quency regions of magnitude spectrum is taken into special consideration in order

to compensate for the noise spectrum errors that may be induced in the spectral sub-

traction procedure specially when the additive noise is non-stationary changing its

amplitude drastically with time. By using eqn. 3.3 and eqn. 3.4, the instantaneous

power spectrum of y[n] can be estimated as

|Y [k]|2 ≈ |X[k]|2 + |V [k]|2, (3.5)

Since in a noisy environment, we do not have access to x[n], we would like to obtain

an estimate of |X[k]|2 from |Y [k]|2 For this purpose, a Fast Fourier transform (FFT)

based power spectral subtraction scheme is derived from eqn. 3.5 as

|X̂[k]|2 =

{
H[k] if ,H[k] > 0

βs|V̂ [k]|2 otherwise,
(3.6)

where,

H[k] = |Y [k]|2 − α|V̂ [k]|2. (3.7)
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Fig. 3.1: Block diagram of proposed speech enhancement method
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In eqn. 3.6, |X̂[k]|2 represents at estimate of the short time FFT power spectra of x[n]

and βs refers to the spectral flow parameter introduced to prevent the negative value

of |X̂[k]|2. In eqn. 3.7 , α symbolizes the over-subtraction factor used to prevent the

overestimation of the noise power spectram. Conventionally an estimate |V̂ [k]|2 of

the noise power spectrum |V [k]|2is obtained from the beginning silence frames . In

the proposed SS based noise reduction scheme, the noise power spectrum estimated

from the beginning silence frames is updated during each silence period as follows

|V̂ t[k]|2 =

{
|Y t[k]|2 for t=1
vn|V t−1[k]|2 + (1− vn)|Y t[k]|2 otherwise

, (3.8)

where,

|V̂ t[k]|2 = |V̂ tI [k]|2, , (3.9)

where t is the frame index, vn is the forgetting factor, |V̂ t[k]|2 and |Y t[k]|2, respec-

tively, represent the estimated power spectrum and the power spectrum of the noisy

speech at the t-th frame. After a silence period, for any frame t in the speech region,

we rely on the use of a preliminary noise power spectrum estimated from eqn. 3.8

as eqn. 3.9 where tI refers to the index of the immediate last silence frame before

the beginning of a speech frame. Considering that this estimate of the noise power

spectrum is updated only during a silence period while it may change drastically

with time, it is insufficient to use a constant value of the over subtraction factor α

to compensate for the errors induced in the noise power spectrum to be subtracted

from the noisy speech power spectrum at each frame. In order to track the time

variation of the noise , α should be adjusted at each frame t after a silence period.

According to the spectral chateristics of human speech, the low frequency band typ-

ically from 0 to 50 Hz contains no speech information. Thus, for noisy speech, the

low frequency band, say ∆ = [0, 50]Hz contains only noise. In view of this fact, n

order to change the value of α for the t-th frame after a silence period we propose

to use the ratio between the powers of |Y t[k]| and |V̂ tI [k]|2 in low frequency band

delta as

αt =

∑
kε∆ |Y t[k]|2∑
kε∆ |V̂ tI [k]|

2 where ∆ = [0, 50]Hz, (3.10)

where |V̂ tI [k]|2 represents the estimated noise power in the immediately last silence
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frame tI before the beginning of speech frame. In the low frequency band ∆ of the t

th frame the variation of the noise speech power spectrum is equivalent to the noise

power spectrum of that frame. Thus , use of αt defined in eqn. 3.10 clearly serves

as a relative weighing factor with respect to the estimated preliminary noise power

spectrum |V̂ t[k]|2 = |V̂ tI [k]|2, leading to a reasonable tracking for the time variation

of the noise if nonstationary. Thus the noise compensated magnitude spectrum can

be written as

|X̂ t[k]|2 =

{
|Y t[k]|2 − αt|V̂ t[k]|2 if(|Y t[k]|2 − αt|V̂ t[k]|2) > 0

βs|V̂ t[k]|2 otherwise.
(3.11)

3.3.2 Noise Compensated Phase Spectrum

In this section, by exploiting the noise estimate of the current frame as obtained

in the previous section, the complex spectrum of the noisy speech is modified in

such a way that the low energy component cancel out more than the high energy

components. The modified complex spectrum thus obtained is used to obtain an

altered phase spectrum that in conjunction with the noise compensated magnitude

spectrum contribute to noise suppression while performing clean speech synthesis

operation via FFT.

The noisy speech signal in the current frame yt[n] in the analysis stage is a real

valued signal and therefore, its FFT is conjugate symmetric, ie.

Y t[k] = {Y t[N −K]}∗. (3.12)

The conjugate can be obtained as a result of applying FFT on yt[n] . The conjugate

arise naturally from the symmetry of the magnitude spectrum and anti-symmetry of

the phase spectrum . During IFFT operation as needed for clean speech synthesis,

the conjugate are summed together to produce larger real valued signal. If the

conjugate are modified, the degree to which they sum together can be influenced

and this can be contributed constructively or destructively to the reconstruction of

the clean time domain signal. In our approach, an ideal of the degree to which the

conjugates reinforce or cancel during IFFT operation is by altering their angular

relationship. Moreover, we propose the degree of phase spectrum compensation to
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be dependent on the magnitude of the noise spectrum estimate of the current frame

thus facilitating the handling of time and frequency varying no stationary noise

conditions. For this purpose, we formulate a phase spectrum compensation function

as given by

φ[k] = ηΛ[k]|D̂t[k]| where, D̂t[k] = αt|V̂ t[k]|, (3.13)

where,in eqn. 3.14 η is a real valued empirically determined constant, |D̂t[k]| is an

estimate of the short time magnitude spectrum of noise in the current frame , and

Λ[k] presents a weighting function expressed as

Λ[k] =


1 , if 0 < k

N
< 1

2

−1 , if 1
2
< k

N
< 1

0 otherwise
(3.14)

Here, zero weighting is assigned to the values of k corresponding to the non-conjugate

vectors of FFT, such as k = 0 and value at k = N
2

if N even. Since the estimate of

noise magnitude spectrum D̂t[k]| is symmetric, introduction of the weighting func-

tion Λ[k] defined by 3.14 produces an anti-symmetric compensation function φ[k]

that acts as the cause for changing the angular phase relationship in order to achieve

noise cancelation during synthesis. A more in depth vector based explanation for two

cases of single conjugate pair and their corresponding modifications are presented

in Fig.3.2, where both the time frequency indexes are omitted for convenience and

clarity. For the representation in Fig.3.2(a), the magnitude of the conjugates, ie.
−→
Y

and
−→
Y ∗ are considered larger than that of the φ[k].Column one of Fig.3.2(a) shows

the conjugate vectors
−→
Y and

−→
Y ∗ as well as their summation vector

−−−−→
Y + Y ∗, in col-

umn two the real part of the
−→
Y and

−→
Y ∗ are shown to be offset by |φ| and -|φ|

, respectively.Thus alters the angles of the vectors
−→
Y and

−→
Y ∗ while keeping their

magnitude unchanged thus Producing vectors
−→
Sφ and

−→
S ′φ, respectively. It is seen

from the column three that the vector
−−−−−→
Sφ + S ′φ, is produced as a result of adding

the modified vectors
−→
Sφ and

−→
S ′φ. column four demonstrates the real part of the

addition vector
−−−−−→
Sφ + S ′φ, while its imaginary part is discarded with a view to avoid

getting complex time domain frames after IFFT operation. Comparing column one

and four of Fig.3.2(a), it is clear that a limited change of original signal occurs if

|
−→
Y | and |

−→
Y ∗| are greater than |φ|. In Fig.3 2(b), similar illustration is shown by

considering |
−→
Y | and |

−→
Y ∗| is smaller than |φ| and found that significant change of



32

Fig. 3.2: Vector diagram of modification of conjugate symmetry.

the original signal occurs. Since φ[k] is anti symmetric, the angle of the conjugate

pair in each case of Fig.3.2 are pushed in opposite directions, one towards 0 radian

and other towards π radian. the Further they are pushed apart, the more out of

phase they become. This justifies that, FFT spectrum of noisy speech with larger

magnitude undergoes less attenuation and that with smaller magnitude subject to

more attenuation based on the fact that noise frequency components are assumed

to have lower magnitude than signal , when FFT spectrum of noisy speech has

larger magnitude components. Using this assumption, which is basis for many noise

cancellation and noise estimation algorithms, we compute the real value frequency

dependent compensating function φ[k] and utilize it to offset the complex spectrum

of the noisy speech as

X̂ t
φ[k] = Y t[k] + φt[k]. (3.15)

The strength of the compensation is dependent on the magnitude of both the FFT

involving Y t[k] vectors and the φ[k] function. Finally , the noise-compensated phase
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spectrum is obtained from X̂ t
φ[k] as

∠X̂ t
φ[k] = ARG[X̂ t

φ[k], (3.16)

where ARG is complex angle function. Although the compensated phase spectrum

may not possesses the properties of phase spectrum of the clean speech it is cable

of tracking phase compensating required due to noise present in each frame by

incorporating the noise estimate D̂t[k] of corresponding frame while constructing the

compensating function Λ[k] used for computing the compensated phase spectrum.

3.3.3 Resynthesis of Enhanced Signal

In the synthesis stage , the compensated phase spectrum recombined with the com-

pensated magnitude spectrum in order to produce an enhanced complex spectrum.

X̂ t[k] = |X̂ t[k]ej∠X̂
t
φ[k]. (3.17)

The enhanced speech frame is synthesized by performing the inverse FFT on the

resulting X̂ t[k],

x̂[n] = IFFT{X̂ t[k]}, , (3.18)

where x̂[n] represents the the enhanced speech frame. The final enhanced speech

signal is synthesized by using the standard overlap and add method [3].

3.4 Conclusion

A spectral enhancement method for noisy speech based on noise compensation both

in magnitude and phase spectra is presented. Here a new spectral subtraction

method is developed to obtain a noise compensated amplitude spectrum obtained

by using a noise spectrum estimated by exploiting the low frequency regions of noisy

speech of the frame under consideration. Such estimates of noise spectrum are in-

corporated to a proposed new procedure of phase-compensation required to handle

phase distortion caused by additive noise. The modified complex spectrum obtained

by recombining the noise compensated magnitude and phase spectra is found to can-

cel out of low energy components thus reducing background noise drastically.



Chapter 4

SIMULATION RESULT AND
PERFORMANCE EVALUATION

In this chapter, a number of simulations are carried out to evaluate the performance

of the proposed method.

4.1 Simulation Conditions and other Details

A noisy speech corpus (NOIZEUS) was developed to facilitate comparison of speech

enhancement methods among research groups [17]. Thirty sentences from the IEEE

sentence database [43] were recorded in a sound-proof booth using Tucker Davis

Technologies (TDT) recording equipment. The sentences were produced by three

male and three female speakers. The IEEE database (720 sentences) was used as

it contains phonetically-balanced sentences with relatively low word-context pre-

dictability. The thirty sentences were selected from the IEEE database so as to

include all phonemes in the American English language. The sentences recorded for

NOIZEUS database [17] were originally sampled at 25 kHz and downsampled to 8

kHz. The noise was taken from the AURORA [44] database and includes suburban

train noise, babble, car, exhibition hall, restaurant, street, airport and train-station

noise. The noise signals taken from the AURORA database are artificially added to

the clean speech signals in order to develop the noisy speech corpus.

We employ real speech sentences from the NOIZEUS noisy speech corpus for

the evaluation of the performance of the proposed and other comparison methods.

In our evaluation, in order to imitate a noisy environment, three different types of

stationary and non-stationary noises, such as white, train and multi-talker babble

noise are used. We have adopted train and babble noise corrupted speech from

34
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the NOIZEUS noisy speech corpus. We have also used white noise available in the

NOISEX92 [35] database to corrupt the NOIZEUS clean speech signals at different

signal to noise ratio(SNR) levels.We consider noisy speech signals ranging from 15

db to 0 db for our simulations. Fig. 4.1 to Fig 4.8 show the spectrograms of a original

clean speech signal uttered by a male and a female speakers and that of the same

signals corrupted by white, train and babble noise of different SNRs (0 to 15). It

is seen from these figures that harmonics representation in the original clean speech

spectrogram is distorted while the different noises are added.

In order to obtain the overlapping analysis frames, hamming windowing oper-

ation is performed, where each frame is of 32 ms(256 samples), with a frame shift

of 4 ms. 1024-point FFT operation is employed in this thesis in order to keep the

noise estimation error minimal.

Figs. 4.9 through 4.11 demonstrate the setting of αt over the frames of a sentence

and the resulting time domain waveforms obtained by using the above settings in

the proposed enhancement method in the presence of white, train and babble noise,

respectively. It is seen from Figs. 4.9(a),(c); 4.10(a),(c) and 4.11(a),(c) that the

αt used in the proposed method is able to track the amplitude of different types of

noise, particularly, the non-stationary case thus leading to a significant reduction of

noise. This is validated by comparing noisy and enhanced time domain waveforms

plotted in Figs. 4.9(b),(d); 4.10(b),(d) and 4.11(b),(d).

The value of η in 3.14 is determined empirically. Fig. 4.12 shows the empirical

mappings of η as function of input speech SNR in dB for white ,train and bab-

ble noises. such empirical mapping are performed using all thirty utterance of the

NOIZEUS database. The empirical are determined in a way such that the perfor-

mance matrices used in our evaluation are maximized.

4.1.1 Comparison Metrics

Standard objective metrics, namely segmental SNR improvement in dB and percep-

tual evaluation of speech quality(PESQ) are employed for the evaluation of proposed

method. The SNR of speech signal can be calculated as

SNR = 10log10

∑ x[n]2

v[n]2
, (4.1)



36

Fig. 4.1: Spectrogram of an original clean speech uttered by a male speaker and
that of signals corrupted by white, train and babble noises at an SNR of 15 dB.
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Fig. 4.2: Spectrogram of an original clean speech uttered by a female speaker and
that of signals corrupted by white, train and babble noises at an SNR of 15 dB.
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Fig. 4.3: Spectrogram of an original clean speech uttered by a male speaker and
that of signals corrupted by white, train and babble noises at an SNR of 10 dB.
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Fig. 4.4: Spectrogram of an original clean speech uttered by a female speaker and
that of signals corrupted by white, train and babble noises at an SNR of 10 dB.
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Fig. 4.5: Spectrogram of an original clean speech uttered by a male speaker and
that of signals corrupted by white, train and babble noises at an SNR of 5 dB.
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Fig. 4.6: Spectrogram of an original clean speech uttered by a female speaker and
that of signals corrupted by white, train and babble noises at an SNR of 5 dB.
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Fig. 4.7: Spectrogram of an original clean speech uttered by a male speaker and
that of signals corrupted by white, train and babble noises at an SNR of 0 dB.
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Fig. 4.8: Spectrogram of an original clean speech uttered by a female speaker and
that of signals corrupted by white, train and babble noises at an SNR of 5 dB.



44

Fig. 4.9: (a) Original clean speech waveform. (b) White noise corrupted waveform
at 10 dB. (c) Behavior of αt over different frames (d) Waveform of enhanced speech
obtained by using proposed method
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Fig. 4.10: (a) Original clean speech waveform. (b) Train noise corrupted waveform
at 10 dB. (c) Behavior of αt over different frames (d) Waveform of enhanced speech
obtained by using proposed method
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Fig. 4.11: (a) Original clean speech waveform. (b) Babble noise corrupted waveform
at 10 dB. (c) Behavior of αt over different frames (d) Waveform of enhanced speech
obtained by using proposed method
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Fig. 4.12: Empirically determined η as a function of input speech SNR

The segmental SNR employed here is the average of the SNRs evaluated from all

the segments or frames. The improvement in segmental SNR is given by

SegSNRimp = SegSNRoutput − SegSNRinput, (4.2)

where SegSNRinput and SegSNRoutput are the segmental SNRs of the input and

output speech signals, respectively. The PESQ score calculation [45] is a hybrid

of two perpetually motivated objective speech quality measures, such as PAMS

and PSQM99. PESQ score maps means opinion scores(MOS) to a range between

-0.5 and 4.5, where 1.0 corresponds to bad and 4.5 corresponds to distortion less.

The proposed method is also subjectively evaluated in terms of informal listening

test [44], [25], [46] and that the spectrogram representation of clean speech , noisy

speech and enhanced speech. The performance of our method is compared with some

of the existing method, such as conventional Boll’s spectral subtraction(SSUB) [10],

Shimamura’s spectral subtraction [11], and paliwal’s conjugate symmetry(ECSM)

based short-time Fourier spectrum [23] in both objective and subjective senses.

4.1.2 Objective Evaluations

(1)Results on White Noise Corrupted Signal

For white noise-corrupted speech, Figs. 4.13 through 4.16 plots the segmental SNR

improvement in dB for different methods while using a subset consists of eight speech

sentences of the NOIZEOUS database at various SNRs (15 dB to 0 dB). From these
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plots, it is clear that segmental SNR improvement in dB is higher with the proposed

method for all the sentences at a wide range SNR considered. The results in terms

of the objective metric, such as segmental SNR improvement in dB obtained by

using the Boll’s, Shimmamura’s, Paliwal’s and proposed methods for white noise

corrupted speech are summarized and presented in Fig. 4.17. Fig. 4.17 shows the

mean segmental SNR improvement in dB obtained by using different methods in the

presence of white noise, where the SNR varies from 15 dB to 0 dB. It is seen from the

Figure that in the SNR range under consideration, the comparison methods show

comparatively lower values for the improvement in segmental SNR in dB relative to

the proposed method.

Again, Figs. 4.18 through 4.21 shows the PESQ improvement for different

methods while using a subset consists of eight speech sentences of the NOIZEOUS

database at various SNRs (15 dB to 0 dB). From these plots, it is clear that im-

provement in PESQ is higher with the proposed method for all the sentences at

a wide range SNR considered. The results in terms of the objective metrics, such

as PESQ improvement obtained by using the Boll’s, Shimmamura’s, Paliwal’s and

proposed methods for white noise corrupted speech are presented in Fig 4.22. The

PESQ improvement as a function of SNR resulting from the different methods in

presence of white noise are portrayed in Fig. 4.22. It is vivid from this Figure that

the proposed method yields higher PESQ improvement at high to low SNR levels

compared to the other methods. Thus the proposed method is shown to be capable

of producing enhanced space with better quality, whereas the PESQ improvement

resulting from the other methods are relatively lower even at a higher SNR of 15

dB.

(2)Results on Train and Babble Noise Corrupted Speech Signals

Now, we present the results in terms of the objective metrics as mentioned above

obtained by using all the methods in table I for train noise corrupted speech at SNR

of 0dB. It is seen from the table I that at a particular SNR of 0 dB, the proposed

method is superior in a sense that it produces the highest segmental SNR improve-

ment in dB, whereas the other methods provide comparatively lower improvement.

The performance of proposed method are also compared in table I in terms of PESQ

improvement. It is observable that the PESQ improvement is the highest in case
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Fig. 4.13: Segmental SNR improvement comparing proposed method, ECSM
method and SSUB method in case of white noise corrupted signal at SNR of 15dB
for a subset consists of eight speech sentences of NOIZEOUS database.

Fig. 4.14: Segmental SNR improvement comparing proposed method, ECSM
method and SSUB method in case of white noise corrupted signal at SNR of 10
dB for a subset consists of eight speech sentences of NOIZEOUS database.
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Fig. 4.15: Segmental SNR improvement comparing proposed method, ECSM
method and SSUB method in case of white noise corrupted signal at SNR of 5dB
for a subset consists of eight speech sentences of NOIZEOUS database.

Fig. 4.16: Segmental SNR improvement comparing proposed method, ECSM
method and SSUB method in case of white noise corrupted signal at SNR of 0
dB for a subset consists of eight speech sentences of NOIZEOUS database.
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Fig. 4.17: Mean segmental SNR improvement comparing proposed method, ECSM
method and SSUB method in case of white noise corrupted speech signal at SNRs
of 15 dB, 10 dB, 05 dB and 0 dB.

Fig. 4.18: PESQ improvement comparing proposed method, ECSM method and
SSUB method in case of white noise corrupted signal at SNR of 15 dB for a subset
consists of eight speech sentences of NOIZEOUS database.
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Fig. 4.19: PESQ improvement comparing proposed method, ECSM method and
SSUB method in case of white noise corrupted signal at SNR of 10 dB for a subset
consists of eight speech sentences of NOIZEOUS database.

Fig. 4.20: PESQ improvement comparing proposed method, ECSM method and
SSUB method in case of white noise corrupted signal at SNR of 5 dB for a subset
consists of eight speech sentences of NOIZEOUS database.
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Fig. 4.21: PESQ improvement comparing proposed method, ECSM method and
SSUB method in case of white noise corrupted signal at SNR of 0 dB for a subset
consists of eight speech sentences of NOIZEOUS database.

Fig. 4.22: Mean PESQ improvement comparing proposed method, ECSM method
and SSUB method in case of white noise corrupted speech signal at SNRs of 15 dB,
10 dB, 05 dB and 0 dB.
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Table 4.1: Performance Comparison in train noise at 0 db

Train Noise

Metrics ECSM SSUB Proposed

Segmental SNR Improvement 3.170206 2.72114 3.24454

PESQ Improvement 0.4688553 0.273646 0.5238999

Table 4.2: Performance Comparison in babble noise at 0 db

Babble Noise

Metrics ECSM SSUB Proposed

Segmental SNR Improvement 2.591334 1.784758 2.856127

PESQ Improvement 0.4131465 0.195114 0.4447725

of proposed method. Since a higher improvement indicates a better speech quality,

the proposed method is indeed better in performance even in the presence of train

noise.

In the presence of babble noise, the segmental SNR improvement in dB and

PESQ improvement obtained by using the other methods are compared with respect

to the proposed method and summmarized in table II at an SNR 0 dB. As seen

from the table that the proposed method still gives higher values of segmental SNR

improvement in dB compared to other methods at the low level of SNR, such as 0 dB.

It is clearly demonstrated from the table II that while the other methods continue

to produce lower PESQ improvement, the proposed method remains better even at

the SNR as low as 0 dB of babble noise. It is noticeable that the performance of all

the methods degrade in the presence of babble noise compared to that in the train

or white noise, but the proposed method retains its superiority with respect to all

other methods in terms of the objective metrics under consideration.

4.1.3 Subjective Evaluations

In order to evaluate the subjective observation of the enhanced speech obtained

by using the proposed method, spectrograms of the clean speech, the noisy speech



55

and enhanced speech signals obtained by using all the methods are presented in

Fig. 4.23 through Fig. 4.25 for white, train and babble noise corrupted speech sig-

nals, respectively. The results are plotted for SNR level of 10 dB. It is evidient that

harmonics are well preserved and amount of distortion is greatly reduced in the pro-

posed method compared to the other methods, no matter the speech is corrupted by

white or train or babble noise. Thus spectrogram observations with lower distortion

even in the presence of babble noise also validate our claim of better speech quality

as obtained in our objective evaluation in terms of higher speech SNR improvement

in dB, and higher PESQ improvement relative to the other comparison methods.

Informal [44] listening tests are conducted by allowing the listeners to percep-

tually evaluate the clean, noisy and enhanced speech signals. It is found that the

subjective sound quality resulting by the proposed method possess the highest cor-

relation with that obtained from the objective evaluation while compared with the

other methods in case of all noises considered at different levels of SNR.

4.2 Conclusion

In this chapter, the simulation results in term of objective metrics, spectrogram

representation and informal subjective listening tests demonstrate that the proposed

method is capable of enhancing speech in different noisy conditions with a better

quality and less distortion in comparison of some of the existing methods in the

literature.



56

Fig. 4.23: Spectrograms of clean speech, noisy speech, and enhanced speech obtained
by using the other and proposed methods for white noise at an SNR of 10 dB.
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Fig. 4.24: Spectrograms of clean speech, noisy speech, and enhanced speech obtained
by using the other and proposed methods for train noise at an SNR of 10 dB.
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Fig. 4.25: Spectrograms of clean speech, noisy speech, and enhanced speech obtained
by using the other and proposed methods for babble noise at an SNR of 10 dB.



Chapter 5

CONCLUSION

5.1 Concluding Remarks

In this thesis, unlike the conventional spectral subtraction method, a noisy speech

enhancement method is developed based on noise compensation performed on short

time magnitude as well phase spectra. Here the noise estimate is obtained by ex-

ploiting the low frequency regions of noisy speech of the current frame rather than

depending only on the previous initial silence frames. We argue that such noise esti-

mate can be used in a spectral subtraction approach to obtain a noise compensated

magnitude spectrum. By employing the noise estimates thus obtained that offers

the capability of tracking the time variation of the non-stationary noise, a procedure

is formulated to compensate the distortion in the phase spectrum that is kept un-

changed in the typical speech enhancement methods. The noise compensated phase

spectrum is then recombined with the noise compensated magnitude spectrum to

produce a modified complex spectrum thus synthesizing an enhanced frame.

5.2 Contribution of this Thesis

The major contributions of this thesis are,

1. Development of a single channel speech enhancement method based on the

spectral subtraction, where compensations for the distortion in the magnitude

and phase spectra are introduced.

2. Speech processed by the new method shows high levels of stationary and non-

stationary noise suppression It is shown that noise compensations in magnitude
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and phase of the noisy speech help preserving the speech content and improve

the speech quality.

3. The modified spectral subtraction method along with phase correction pro-

vides a perceived improvement over the conventional methods and suffers min-

imally from musical noise.

4. Detail simulations are carried out in the presence of white train and babble

noises from high to low lvel of SNRs to evaluate the performance of the pro-

posed method in terms of standard objective metrics, namely segmental SNR

improvement in dB and PESQ improvement as well as subjective evaluations,

such as spectrogram representation and informal listening tests.

5. the performance of our method is compared with some of the existing methods,

such as Boll’s spectral subtraction(SSUB) [10], Shimamura’s spectral subtrac-

tion [11], and paliwal’s conjugate symmetry(ECSM) based short-time Fourier

spectrum [23] in both objective and subjective senses.

6. Simulation results show that the proposed method yields consistently better

results in terms of higher segmental SNR improvement and PESQ improve-

ment than those of some of the existing methods and results in an enhanced

speech with better qualities as well as intelligibility.

5.3 Scopes for Future Work

Further research can be conducted to address various issues which are still inherent

to single channel subtractive type algorithms and issues involved in implementing

the system in real-time.

1. In the proposed enhancement scheme, the noise compensations in magnitude

and phase spectra can also be explored in other transform domains, such as

discrete cosine transform(DCT) and discrete wavelet transform(DWT)

2. In the proposed speech enhancement scheme, noise compensations in the mag-

nitude and phase spectra can be employed by using a perceptually weighted

filter that would be able to mask the remaining residual noise making it audi-

bly imperceptible.
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3. In general speech quality and intelligibility vary for different speech sounds.

This is due to the fact that noise has a non-uniform effect on various classes

of phonemes [selective magnitude subtraction]. For the proposed algorithm

as well, the performance varies for different speech sections. In general, the

loss of quality and intelligibility is greater in low energy sections and during

transitional segments compared to strong voiced segments like vowels. There-

fore, the noise suppression rules need to be somehow modified based on speech

classification, and get a decision on the tradeoff between noise suppression and

speech distortion more locally.This can be also approached by incorporating a

non-linear approach for subtraction within a frame, where subtraction param-

eters are different within a frame and depend on factors like frequency and

phase ,etc.
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[23] K. Wójcicki, M. Milacic, A. Stark, J. Lyons, and K. Paliwal, “Exploiting con-

jugate symmetry of the short-time fourier spectrum for speech enhancement,”

Signal Processing Letters, IEEE, vol. 15, pp. 461–464, 2008.

[24] S. So, K. Wocicki, J. Lyons, A. Stark, and K. Paliwal, “Kalman fitler with

phase spectrum compensation algorithm for speech enhancement,” in Acous-

tics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International

Conference on. IEEE, 2009, pp. 4405–4408.

[25] Y. Hu and P. Loizou, “Subjective comparison and evaluation of speech en-

hancement algorithms,” Speech communication, vol. 49, no. 7-8, pp. 588–601,

2007.

[26] M. Bhatnagar, “A modified spectral subtraction method combined with per-

ceptual weighting for speech enhancement,” Master’s thesis, UT Dallas, 2002.

[27] N. Virag, “Single channel speech enhancement based on masking properties of

the human auditory system,” Speech and Audio Processing, IEEE Transactions

on, vol. 7, no. 2, pp. 126–137, 1999.

[28] J. Lim and A. Oppenheim, “Enhancement and bandwidth compression of noisy

speech,” Proceedings of the IEEE, vol. 67, no. 12, pp. 1586–1604, 1979.

[29] Y. Cho, K. Al-Naimi, and A. Kondoz, “Improved voice activity detection based

on a smoothed statistical likelihood ratio,” in Acoustics, Speech, and Signal Pro-



65

cessing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference

on, vol. 2. IEEE, 2001, pp. 737–740.

[30] S. Ogata and T. Shimamura, “Reinforced spectral subtraction method to en-

hance speech signal,” in Electrical and Electronic Technology, 2001. TENCON.

Proceedings of IEEE Region 10 International Conference on, vol. 1. IEEE,

2001, pp. 242–245.

[31] W. Kim, S. Kang, and H. Ko, “Spectral subtraction based on phonetic de-

pendency and masking effects,” in Vision, Image and Signal Processing, IEE

Proceedings-, vol. 147, no. 5. IET, 2000, pp. 423–427.

[32] G. Kang and L. Fransen, “Quality improvement of lpc-processed noisy speech

by using spectral subtraction,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 37, no. 6, pp. 939–942, 1989.

[33] S. Chang, Y. Kwon, S. Yang, I. Kim et al., “Speech enhancement for non-

stationary noise environment by adaptive wavelet packet,” in Acoustics, Speech,

and Signal Processing (ICASSP), 2002 IEEE International Conference on,

vol. 1. IEEE, 2002, pp. I–561.

[34] K. Paliwal, “Estimation of noise variance from the noisy ar signal and its appli-

cation in speech enhancement,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 36, no. 2, pp. 292–294, 1988.

[35] A. Varga and H. Steeneken, “Assessment for automatic speech recognition: Ii.

noisex-92: A database and an experiment to study the effect of additive noise

on speech recognition systems,” Speech Communication, vol. 12, no. 3, pp. 247–

251, 1993.

[36] V. Stahl, A. Fischer, and R. Bippus, “Quantile based noise estimation for spec-

tral subtraction and wiener filtering,” in Acoustics, Speech, and Signal Process-

ing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on,

vol. 3. IEEE, 2000, pp. 1875–1878.

[37] B. Widrow and S. Stearns, “Adaptive signal processing,” Englewood Cliffs, NJ,

Prentice-Hall, Inc., 1985, 491 p., vol. 1, 1985.



66

[38] W. Verhelst and O. Steenhaut, “A new model for the short-time complex cep-

strum of voiced speech,” Acoustics, Speech and Signal Processing, IEEE Trans-

actions on, vol. 34, no. 1, pp. 43–51, 1986.

[39] S. Young, “A review of large-vocabulary continuous-speech,” Signal Processing

Magazine, IEEE, vol. 13, no. 5, p. 45, 1996.

[40] H. Kim and R. Rose, “Cepstrum-domain acoustic feature compensation based

on decomposition of speech and noise for asr in noisy environments,” Speech

and Audio Processing, IEEE Transactions on, vol. 11, no. 5, pp. 435–446, 2003.

[41] Asaduzzaman and C. Shahnaz., “A spectral enhancement method for noisy

speech based on noise compensated magnitude and phase spectra,” Submitted

to international Journal of speech Technology, Springer.
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