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ABSTRACT 
 

Integration of images from different sources is increasingly used in different visual 
signal processing applications. But before the integration it is of utmost importance that 
the images are geometrically aligned and this aligning process is very often referred to 
as ‘image registration’. There are two approaches of registering the reference and 
distorted images, viz., feature-based and intensity-based. The intensity-based methods 
give better accuracy comparing to the feature-based methods by considering entire 
pixels of the images, instead of considering just few selected geometric features as in 
the latter method. Traditionally, image registration is carried out in different transform 
domains to incorporate the facilities that these transforms provide. Discrete wavelet 
transform (DWT) has widely been used for image registration. But it has poor 
directional selectivity. The complex wavelet, ridgelet and shearlet transforms proved 
slight improvement in directional selectivity over the DWT. Recently, the curvelet 
transform proved its superiority in directional selectivity among all these wavelet-like 
transforms, being able to properly detect the commonly occurred curve and edge 
singularities in images. Hence, in this thesis, an image registration algorithm is 
developed that uses the curvelet coefficients of images.  
 
 
Commonly-used probabilistic objective functions in the intensity-based registration 
algorithms include mutual information, joint entropy and cross-correlation of the 
transform coefficients of the distorted and reference images. None of these functions 
consider the conditional dependencies among the images which may exist as the images 
to be registered are usually captured from a same scene. In this thesis, a new conditional 
entropy-based objective function is developed using a suitable probabilistic modeling of 
the approximate level curvelet coefficients of images. The suitability of the probability 
distribution of the curvelet coefficients of images is validated with a standard statistical 
test of fit. For the purpose of alignment, a linear transformation, viz., affine transform is 
used. Extensive experimentations are carried out to test the performance of the proposed 
registration method as compared to other existing methods using commonly-used 
performance metrics.   
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CHAPTER 1: INTRODUCTION 
 

1.1  Introduction 
 

Living in today‟s technology dependent world, we cannot separate ourselves from the 

dominance of digital kingdom and digital images play the role of vanguard in this 

sovereign. Images are connected to our daily life like a spider web. Every single time 

we browse the internet, do the social networking, read the newspaper, watch any movie 

or use our mobile network we have to get in touch of digital images. Even when we are 

sick, we need to go through some medical imaging tests for diagnosis. Our advanced 

security measures also incorporate digital images through fingerprint detection, face 

recognition or Irish scan. Scientists dedicated for the research of our earth and the outer 

space very often have to analyze huge amount of terrestrial images for research purpose. 

Now, every single digital image we see has gone through some little or extensive 

processing and the techniques behind those processing are the study materials of digital 

image processing. Therefore, observing the widespread use of digital images in our day-

to-day life we can certainly assume how important image processing is for humankind. 

 

 

Recently, it is of general interest to integrate knowledge from different sources to 

increase the information content. Now, as images carry visual information, they play 

very crucial role as an information source. Very often it becomes necessary to fuse two 

or more number of images into a single image to provide a better visualization and the 

process is called „image fusion‟. But before fusing images, it is a challenge to align 

those images properly. Generally, the images which are needed to be fused are found in 

geometrically nonaligned condition. For example, in a satellite orbiting around the 

earth, there are a number of cameras or sensors which capture images of the same scene 

in different angles and in different modes. The images found from individual cameras 

vary in geometrical alignment due to the fact that the physical positions of the cameras 

vary from each other. Another example can be, two x-ray images of the same patient in 

prone and supine position will spatially mismatch from each other because dislocation 

happens in the patient‟s body when changing his or her position. Whether the 

misalignments happened due to the spatial difference in the positions of the image 
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capturing devices or due to the movement of the target objects, the misaligned images 

are needed to be geometrically aligned correctly before fusing. Then development of 

algorithms which will result an accurate and automatic spatial overlaying of images is 

an emerging necessity. Such an algorithm is desired to be computationally efficient 

when huge volume of data is needed to be analyzed within a short period of time with a 

significant level of accuracy. In image processing, these methods or algorithms for 

overlaying images are very often referred to as image registration and over the years it 

has been an important topic of work for the researchers in this area. 

 

 

1.2  Image Registration: A Background 
 

For better understanding, this section has been divided into several subsections, viz., 

definition, examples, features, approach and last but not the least early works and scope 

of work in the area of image registration.     

 

 

1.2.1 Definition 

 

In short, image registration can be defined as the process of spatially overlaying images 

which are captured from the same scene but possess some geometric distortions. In 

general, there are two types of images in image registration: one reference image and 

one or more sensed images which are needed to be registered. The reference and sensed 

images again can be of following categories [1]: 

 

 Multitemporal: images captured in different moments such as in different days, 

occasions or seasons. 

 Multiview: images acquired from different viewpoints such as left focused, 

middle focused and right focused images of a scene.  

 Multimodal: images captured by different mode settings of the image capturing 

instrument e.g., T1 and T2 mode images of MRI. 

 Multisensored: images obtained from different sensors such as images captured 

by cameras sensitive to visual and infrared rays.  
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1.2.2 Examples 
 

As mentioned earlier, registration is the mandatory first step in image fusion. For 

example, in the area of remote sensing, geology and cartography high resolution images 

such as Ikonos, Quick Bird, Orb View type images are needed to combined with low 

and medium images such as Landsat, IRS, Spot images [1]-[3]; and these images must 

be aligned before fusing them. In the field of medical imaging, commonly used imaging 

methods are computer tomography (CT), magnetic resonance imaging (MRI), single 

photon emission tomography (SPECT). The CT images can determine cancers, 

cardiovascular diseases, blood vessels, trauma and musculoskeletal disorders. Two 

commonly used modes in MRI are T1 weighted and T2 weighted MRI images. T1 

weighted images demonstrate excellent anatomic detail whereas T2 weighted images 

provide outstanding contrast between normal and malignant tissues. The SPECT scan 

demonstrates the functional information about patient‟s specific organ; but do not show 

anatomical information like CT and MRI. When MRI, CT, SPECT or other medical 

images are to be fused into one image, the prior images are needed to be aligned exactly 

such that the fused image does not create any ambiguity [4]-[9]. Some other types of 

images such as for navigation and security purposes visual and infrared images [10], in 

printed circuit board (PCB) surface mount technology (SMT) assembly products 

inhomogenously illuminated circuit board images [11], for defect detection in circuits 

flexible printable circuit images [12], images captured with different focus points are 

needed to be registered and fused. Again, for wildlife preservation images of forests in 

different seasons are required to be aligned and then fused to provide better 

visualization.  

 

 

Registration is used not only prior to the fusion of images but also in panoramic image 

construction [13] and 3D scene reconstruction [14]. When constructing panoramic 

image, several pieces of images capturing the different portions of a large scene are 

gathered and those pieces are overlaid to make a continuous image of the large scene. It 

is important to shift the consecutive pieces of images in proper amount so that the 

panoramic image does not contain any discontinuous or overlapping section. For 

example, recently a panoramic image of a 300-feet 1500 year old redwood tree in 



4 
 

California‟s Redwoods State Park has been composed from eighty-four images captured 

by three cameras and this process needed rigorous image registration [15]. This 

panoramic image construction is also needed in extensively used mapping software such 

as in Google map. CT colonography is a good example of 3D scene reconstruction [14]. 

In this process, after insufflating the abdomen with    , CT scans are acquired both in 

the prone and supine position of a patient. But the remaining moving stool in the colon 

poses problems by creating empty spaces in the 3D CT colonography images. So, 

proper registration of the prone ant supine 3D CT scan images with some interpolation 

is applied here in order to obtain a total 3D view of the abdomen of the patient.   

 

 

1.2.3 Issues of registration 
 

In designing a registration algorithm, it is necessary that the algorithm to be not only 

highly accurate but also computationally efficient. 

 

 Accuracy of registration is important in many fields such as in security purposes 

the images from different cameras or sensors are needed to be registered and 

analyzed very accurately. Otherwise it will make the security system futile. In 

synthetic aperture RADAR (SAR) images, accuracy is very important. As a 

small part in the map represent a large area on the Earth‟s surface, the 

registration process is needed to be highly accurate in this field.    

 Computational efficiency of registration algorithm is a requirement in the fields, 

where fast analysis of huge volume of data is needed such as in remote sensing, 

analysis of large size high resolution images are needed to be registered within a 

short period of time. So, the algorithm should result a fast output within a certain 

amount of accuracy. 

 

 

1.2.4 Common approaches 
 

In general, there are two approaches for image registration: feature-based [16]-[22] and 

intensity-based [23]-[32]. In the fully-automated [17], [18] or semi-automated [16], [19] 
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feature-based registration processes at first, some feature or control points such as 

edges, lines and surfaces, are selected from the reference image and some matching 

points are selected from the sensed image. After that, control points and matching points 

are refined and a mapping function is estimated using which the sensed images are 

registered. Although in general these feature-based methods require a lower 

computational load by considering only a few number of selected features, the accuracy 

of such registration is lower as in these methods total pixels of entire images are not 

considered [16]-[18], [23]-[26]. 

 

  

In the intensity-based methods, at first a suitable geometric mapping function is chosen 

by observing the distortion between the reference and sensed images. The mapping 

function can be linear such as affine transform [33], [34] containing rotation, 

translation, scaling and shearing. It can also be piecewise-linear, polynomial, barrel or 

pin-cushion [35] type which generally bring arc or curve type distortions in images. 

Then, the sensed image is transformed using this selected mapping function. In order to 

set the parameters of the mapping function, an objective function has to be determined 

between the reference and the transformed sensed image which considers the pixel 

intensities of the whole image. At last, the sensed image is registered by using the 

calculated distortions parameters that optimizes the objective function. In general, the 

pixel-based or intensity-based methods provide a higher accuracy comparing to the 

feature-based methods. Because, unlike feature-based methods where a few feature 

points are considered, in the intensity-based registration algorithms pixel values of the 

entire images are considered. Due to this higher accuracy very often intensity-based 

registration methods are preferred to feature-based methods.  

 

 

1.2.5 Related works and scope 
 

Among the traditional objective functions used in the intensity-based image registration 

methods cross-correlation [17], [36], mutual information [26], [27], [29], [31] and joint-

entropy [37] are worth mentioning. The problem of cross-correlation based image 

registration is that it gives unwanted peaks when calculating the value of the objective 
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function by changing the parameters of the mapping function. This problem is more 

visible where the pixel intensities of the image have a periodic nature. In between such 

periodic nature there exist some varying gray levels. In such a case the correlation 

becomes multimodal in nature. Hence, it becomes almost impossible to register images 

using cross-correlation. The objective functions such as mutual information (MI) and 

joint-entropy that uses probability model also has some limitations. Since the reference 

and the sensed images are captured from a same scene they have some sort of similarity 

and dependencies. The MI and joint-entropy based objective functions overlook the 

conditional dependency that may exist between the images. Moreover, the probability 

density functions (PDFs) [38] which are commonly used for calculating these objective 

functions are chosen heuristically without any justification. Now, another objective 

function that has been exploited is the cross-entropy [37]. In [37], for calculating the 

cross entropy two PDFs, namely, the actual joint PDF and an assumed prior estimated 

PDF among the pixel intensities of the images are required. Three unlikely conditions 

has been taken into consideration for assuming the prior PDF, viz., uniform PDF, 

independently related PDFs and joint PDF proportional to the marginal PDF. When 

optimizing the cross entropy from these three conditions it ultimately turns to the 

optimization of the conditional entropy. In this way this cross entropy procedure 

actually measures the conditional entropy in a difficult and indirect way. So in this 

thesis we intend to use the conditional entropy directly with a PDF verified by a 

standard statistical test of fit for constructing the objective function for image 

registration.  
 

 

It is a general trend to carry out the image registration process in a suitable transform 

domain instead of the pixel domain in order to take the advantages of the properties of 

the transformations and thus improving the efficiency of the registration methods. 

Among these transformations the discrete wavelet transform (DWT) is the most popular 

[39]. The DWT based registration methods have been explored widely and showed a 

good performance in context of accuracy and processing time [31], [32], [40]-[42]. This 

is mainly due to the fact that the coefficients of a wavelet transform represent the edge 

and textures of images better than those of the discrete Fourier transform (DFT) and the 

discrete cosine transforms (DCT). Moreover, some selected subbands of the wavelet 

transform may be easily processed instead of the entire transformed data of the DFT and 
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DCT in order to reduce the processing time. But, the traditional wavelet transforms 

suffer from a property of poor directional selectivity. For example, the DWT can 

capture the edge and ridge features in an image in only four directions, viz., 00, 900 and 

±450. To improve the directional selectivity of the wavelet transforms, the complex 

wavelet transform (CWT) was introduced [26], [43]. The CWT can capture six 

directions, viz., ±150, ±450 and ±750. But, it is hard to design complex wavelets with 

perfect reconstruction properties and good filter characteristics. Kingsbury proposed the 

dual-tree CWT [44] which enhanced the reconstruction problem of CWT. To improve 

the directional selectivity further, Cnadès and Donoho proposed an anisotropic 

geometric wavelet transform in 1999 and named it as the ridgelet transform [45], [46]. 

The ridgelet transform could optimally detect the straight-line singularities. But, in 

practical applications global straight-line singularities are rarely found. So, for 

analyzing curve singularities, the same authors proposed at first to consider a partition 

of the image, and then apply the ridgelet transform to the obtained sub-images [47]. 

This block-ridgelet transform was named as the curvelet transform. This so-called first-

generation curvelet was facing problem as the geometry of the ridgelet was unclear and 

they were not true ridge functions in digital images. After that a considerably simpler 

second-generation curvelet transform was proposed based on frequency partition 

technique [48] and then the alternate second-generation curvelet transform was 

proposed by adding mirror extensions (ME) [49]. The curvelet transform has been 

proved its dominance in many different applications in image processing [50], [51]. 

Since, the curvelet transform extracts the image features efficiently and gives better 

directional sensitivity than previous wavelet-like transforms, it is expected that a 

suitable objective and mapping functions applied over the curvelet coefficients would 

give more accurate image registration results than existing methods. Traditional 

correlation, MI or joint entropy based objective functions may also be used for the 

curvelet coefficient to design an image registration algorithm. However, such an 

objective function will ignore the conditional dependencies that may exist between the 

reference and sensed images. So, there is good scope of work on the search of an 

objective function working on the curvelet coefficients of images and that will consider 

the conditional dependencies as well.  
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1.3  Objective 
 
The objectives of this thesis are:  

 

 To obtain better directional selectivity as well as lower computational 

complexity, the conditional entropies would be calculated for the coefficients of 

the approximate level curvelet transform of the reference and sensed images.  

 To take into account the conditional dependencies among the reference and the 

sensed images, combination of the conditional entropies (CEs) would be taken 

into consideration for constructing the objective function. 

 To calculate the CEs, a suitable probability density function is required. The 

probabilistic model for the objective function would be verified using a 

traditional test of fit.  

 Finally, the performance of the proposed registration method would be 

investigated using commonly accepted performance metrics. 

 

To achieve these objectives, at first a suitable PDF for the curvelet [17], [18] 

coefficients of image intensity values is chosen. This choice is verified by standard 

statistical tests of fit [19]. Using this PDF, an expression of the objective function is 

derived considering the CEs of the curvelet coefficients of images. Then the objective 

function is minimized over the experimentally selected subbands of the curvelet 

coefficients both locally and globally to find out the distortion parameters of the images. 

In order to verify the working capability of the proposed method, two images, namely, 

„reference image‟ and „sensed image‟ are chosen keeping in mind that it can be 

extended for a higher number of images also. For the purpose of experimentation, two 

types of sensed images are considered: (i) Distorted version of reference image using a 

known set of parameters of affine transformation. (ii) An image already aligned to the 

reference image but captured in a different mode, moment, view or sensor. Distorted 

version of this image will be found using a known set of parameters of affine 

transformation. These sensed images will be geometrically aligned or overlaid with the 

reference image by minimizing the entropy-based objective function of the curvelet 

coefficients of the images. The closeness of the estimated distortion parameters will be 

compared using the known distortion parameters. Finally, the performance of the 

proposed registration method will be compared with those of the existing methods using 
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commonly accepted metrics such as normalized cross correlation coefficient (NCCC), 

root mean squared deviation (RMSD), normalized root mean squared deviation 

(NRMSD) and percent root mean squared error (PRRMSE) [52]. 

 

 

1.4  Organization 

 

This thesis is organized as follows. In Chapter 2, a brief introduction about the curvelet 

transform, differences of this transform with other wavelet-like transforms are given. 

The probabilistic test of fit for a suitable PDF of the curvelet coefficients of image pixel 

intensities has been presented in this chapter. In Chapter 3, a mathematical expression 

of the objective function of the proposed registration method is derived. Chapter 4 

provides the experimental results along with the performance comparisons of the 

proposed algorithm with other existing methods. Finally, in Chapter 5, a general 

concluding discussion and future extension of this work is given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2: CURVELET TRANSFORM OF IMAGES 
 

 

2.1 Introduction 
 

In chapter one, the definition of image registration, its necessity, applications, 

techniques and scope of work are given. It was mentioned that a suitable transformation 

such as curvelet transform of the image pixel intensities would provide a better image 

registration algorithm as this transform will represent the points, edges and lines in the 

images in a better way. The curvelet transform is a multiscale directional transform that 

gives an optimal nonadaptive sparse representation of objects with edges in the images 

[47]-[49]. In recent years curvelet has proved its superiority in applied mathematics and 

signal processing. In this chapter a brief review on curvelet transform is given. 

Moreover, its history starting from wavelet and the relationship of the curvelet 

transform to other multiresolution transforms is discussed. In chapter one, it was 

mentioned that a statistical objective function of image registration require a suitable 

PDF for the coefficients of the curvelet transform. In this chapter, a PDF for the curvelet 

coefficients of image pixel intensities is chosen based on commonly used PDFs for 

other wavelet-like transforms. The suitability of such PDF of the curvelet coefficients is 

tested using a standard test of fit. At the end of this chapter, some objective functions 

that have been traditionally used for intensity-based image registration approach are 

given. 
 

2.2 Curvelet Transform  

 

In this section, at first a brief background of the curvelet transform is given. Following 

that mathematical expression for the curvelet transform is given. At the end of this 

section, the relationship between curvelet and other wavelet-like transforms is 

discussed.   

 

2.2.1 A brief background 

The natural images normally have discontinuities called line or curve singularities. 

Though the wavelet based applications have become increasingly popular in scientific 
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and engineering fields, traditional wavelets can only detect point singularities well. So 

wavelet based image registration, compression and denoising techniques have become 

computationally inefficient for geometric features with line and curve singularities [26]. 

So the evolvement of new transform having the quality of detecting the line and curve 

singularities is natural. Since Olshausen and Field‟s work in Nature [53], researchers 

have given importance about the similarity between the vison and multiscale image 

processing. The receptive fields of cells in the primary visual cortex can be 

characterized as being spatially localized, oriented, and bandpass, i.e., selective to 

structures at different spatial scales. Wavelets do not have good directional selectivity 

which is an important response property of simple cells and neurons at stages of the 

visual pathway. Therefore, a directional multiscale sparse coding has been desirable in 

this area. To extract the features from an image is one of the primary tasks in image 

processing. The features include points, lines, edges and textures. Linear scale-space 

filtering such as those done in multiresolution wavelet transform was widely used for 

extracting these features in early works. To overcome the poor directional selectivity of 

2-D DWT, a multiresolution geometric analysis (MGA), named curvelet transform was 

proposed [47]-[49]. In images, the curvelet transform gives an almost sparse 

representation of objects with line or edge singularities. Moreover, the needle-shaped 

elements (as shown in figure 2.1 and 2.2) of curvelet transform possess very high 

directional sensitivity and anisotropy comparing to the isotropic elements of wavelet 

transform. If we compare the curvelet system with the conventional Fourier and wavelet 

analysis, the short-time Fourier transform uses shape-fixed rectangle in frequency 

domain (as shown in Figure 2.3a and Figure 2.3b) and the wavelet transform uses 

shape-changing but area fixed windows (as shown in Figure 2.4a and Figure 2.4b), 

whereas curvelet transform uses angles polar wedges or angled trapezoid windows in 

frequency domain (as shown in Figure 2.5) to resolve directional features.  
 
 

2.2.2 Mathematical expression of the curvelet transforms 
 

Curvelets are band-limited complex-valued functions       
    parameterized in a 

scale (   ), location (    ) and rotation (    ) space. The graph of the modulus 

of a curvelet looks like a brush stroke (as shown in Figure 2.1) of a given thickness (as 

given by    ), location on the canvas (    ), and direction (    ). 
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Figure 2.1: Mesh plot of        ; 

                     

Figure 2.2: Basic curvelet     , when 

calculating in Cartesian form 

 

 

Let,               be a pixel value of an image with spatial index      . This square 

integrable function can be represented by discrete version of the curvelet transform as 

[48] 

 

                                 

       

     

      

                      

 

 

Here,        represent the curvelet coefficient. „ ‟ is the scaling parameter, „ ‟ is the 

angle of rotation and „ ‟ is the location of the curvelet     . The basic curvelet in 

Cartesian form is shown in Figure 2.2. However, the inverse curvelet transform in 

discrete domain is given as [48] 
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Figure 2.3: (a) Time-frequency tiling (b) Frequency tiling for the 2-D short-term 

Fourier transform (STFT) 
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Figure 2.4: (a) Scale-frequency tiling (b) Frequency tiling for the 2-D DWT 

 

 

 
Figure 2.5: Frequency tiling for the curvelet transform , calculating in Cartesian form 
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2.2.3 Relationship between wavelet-like transforms 
 

Over the years, several directional wavelet transforms have been developed to provide 

better directional selectivity. Among those systems, complex wavelets [26], [43], 

steerable wavelets [54], [55], Gabor wavelets [56], wedgelets [57], beamlets [58], 

contourlets [59], shearlets [60], wave atoms [61], platelets [62] and surfacelets [63] are 

worth mentioning. These directional wavelets are uniformly called X-lets. The steerable 

wavelets and Gabor wavelets can be seen as early directional wavelets. The steerable 

wavelets were built based on the directional derivative operators and Gabor wavelets 

were produced by a Gabor kernel that is a product of an elliptical Gaussian and a 

complex plane wave. The steerable wavelets give translation-invariance and rotation-

invariance of the position and the orientation of considered image structures. Gabor 

wavelets were used for image classification and texture analysis. But unlike other X-

lets, steerable wavelet and Gabor wavelet do not allow different number of directions in 

every scale. Do and Vetterli [59] proposed contourlets which form a discrete filter bank 

structure that can deal effectively with piecewise smooth images with smooth contours. 

This discrete transform can be connected to curvelet-like structures in the continuous 

domain. So the contourlet transform can be depicted as a discrete form of a particular 

curvelet transform. Curvelet constructions require a rotation operation and correspond 

to a partition of the 2-D frequency plane based on polar coordinates. Due to this 

property in continuous domain the idea of curvelet becomes simple but in discrete 

domain its implementation becomes difficult. Unfortunately, contourlet functions have 

less directional features than curvelets. Shearlets [60] form an affine transform system 

with a single generating mother shearlet function parameterized by a scaling, a shear 

and a translation parameter captures the direction of singularities. Both the curvelet and 

shearlet transforms are suited for approximation of piece-wise smooth images with 

singularities along smooth curves [47]-[49]. But the performance of curvelet transform 

is better than the shearlet transform as the curvelet transform can detect curve 

singularities in a better way [45]-[49].     
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(a) 

 
(b) 

 
(c) 

Figure 2.6: Coefficients of an MRI image for different multiresolution transforms (a) 

DWT coefficients (four level of decomposition) (b) Contourlet transform coefficients 

(three level of decomposition) (c) log of curvelet transform coefficients (Five numbers 

of scales and Sixteen number of angles) 
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In Figure 2.6 the wavelet, contourlet and curvelet coefficients of a MRI image are 

shown. The wavelet coefficients are found using the Daubechies 2 mother wavelet [39] 

and four levels of decomposition. The contourlet coefficients are found using the 

pyramidal directional filters and three levels of decomposition. The curvelet coefficients 

are found using Curvelab, version 2.1.2 which is available in (http://curvelab.org). For 

calculating curvelet coefficients, four number of scales (   ) and sixteen number of 

angles (    ) are used. If we compare the images in Figure 2.6, we observe that for 

the same scale number, curvelet transform gives more orientations. So, the curvelet 

transform gives better directional selectivity than that of the wavelet and contourlet 

transforms.    

 

 

2.3 Test of Fit 
 

In general, the wavelet-like transforms are locally stationary due to the fact that there 

remains an explicit intra-scale dependency among the coefficients of the sub bands [39]. 

Hence, the local processing of wavelet-like transform coefficients give better 

performance in images than global processing. This is why, the wavelet-like coefficients 

are probabilistically modeled using a local neighboring coefficients. In this thesis, we 

also prefer probabilistically model the curvelet coefficients using a local neighboring 

region as a scale. The Gaussian or normal PDF [64] is very often chosen as the 

probability model for DWT coefficients. It should be mentioned that, other wavelet-

based image registration methods use only approximate band for registration. Moreover, 

the approximate level can be said as the miniature version of the original image and the 

computational load will be minimized if only this level is used for registratoin. Hence, 

we would like to use the approximate band of the curvelet coefficients of image for the 

registration. We choose the bivariate Gaussian or bivariate normal distribution [38], 

[64] to be the PDF for coefficients of the approximate level of the curvelet transform of 

images.    

 

 

The probability density function for a single normally distributed variable,  , with mean 

  and a standard deviation   is given by [64] 

http://curvelab.org/
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where  

  
   

 
                                                                  

 

Here,   represents a standardized version of   and   is the sample value of the random 

variable (RV)  . The standardized random variable (RV),  , follows a normal 

distribution with a mean zero and standard deviation one, or mathematically, 

        . The appearance of –   , the negative of the squared scaled distance to the 

mean, in the exponential of the PDF is quite important. This squared scaled distance is 

the natural distance metric for normally distributed variables.  

 

 

For the multivariate normal distribution, a vector of random variables (RVs)  , with a 

vector mean of   and a covariance matrix   is considered. Each individual variable,    

follows a normal distribution with a mean    and a variance        . The covariance 

between any pair of variables,    and   , is given by     and the corresponding 

correlation is given by [64]  

 

    
   

   
   

 

                                                             

 

Here,     is the covariance and    denote the variance. Now, the multivariate normal 

density function for   is given by [64] 
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Where,   is the number of variables or the number of components of  . The quadratic 

form 

 

                                                               

 

represents the squared distance to the vector mean, scaled according to the variances 

and covariances specified in  . This is called the squared Mahalanobis distance (MD) to 

the vector mean [64]. We use this squared Mahalanobis distance (MD) and chi-squared 

quantile to check the deviation of the curvelet coefficients of the paired image‟s 

distribution from the ideal bivariate normal distribution. The quantile indicates the point 

below which a given fraction of data remains [64]. For defining chi-square, let the 

probabilities of various classes in a distribution be               with observed 

frequencies             . Now, the quantity [64] 

 

  
   

        
 

   

 

   

                                                  

 

is therefore a measure of the deviation of a sample from mean or expectation, where   

is the sample size.  

 

In the multivariate case, each variable must be normally distributed for the entire set to 

follow a multivariate normal distribution. But, normality of the individual variables 

does not guarantee multivariate normality. If the data do follow a multivariate normal 

distribution, then the squared MD from the data points to the centroid (mean) should 

follow a chi-squared distribution with   degrees of freedom [64]. For this purpose we 

construct a quantile-quantile plot of the observed squared M.D.‟s versus chi-squared 

quantile. The closeness of this plot to the        line is the measure of closeness of the 

distribution to the multivariate normal distribution. The more the closeness, the higher 

the accuracy of the data follows the normal distribution. Figure 2.7 and Figure 2.8 show 

the MD versus    quantile for the approximate curvelet coefficients of four pair of 

chosen test images with mask sizes     and     respectively. The test images used 

here Toy (image 1 and 2), Room, SAR1, and MRI for     window and Toy (image 1 
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and 3), Room, SAR2, and MRI for7   window. These test images are given in the 

appendix. Here, for the calculation of chi-square quantile 2-degrees of freedom is used. 

From Figure 2.7 and Figure 2.8, it is observed that for both     and     windows 

the squared distance versus chi-squared quantile approximately follow the        line 

with negligible amount of deviation. The percent squared error of the test line from the 

ideal Bivariate PDF line for each case is less that 10%. This means that, the test line is 

very close to the ideal line. Hence, for designing a probabilistic objective function using 

the approximate curvelet coefficients of images for registration purposes, the bivariate 

Gaussian distribution can be used. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.7:    plot using 5×5 window. The test images are:  (a) Toy (images 1 and 2) 

(b) Room (c) SAR1 (d) MRI 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.8:    plot using 7×7 window. The test images are:  (a) Toy (images 1 and 3) 

(b) Room (c) SAR2 (d) MRI  

 

 

2.4 Traditional Objective Functions 
 

In the previous sections of this chapter, the curvelet transform and the statistical choice 

of PDF for the curvelet coefficients of images with standard test of fit has been 

discussed. Now for the purpose of modeling of objective function using this curvelet 

transform coefficient of images, we intend to recall some objective function 

traditionally used in intensity-based registration methods. These objective functions 

include cross correlation [17], [36], mutual information [26], [27], [29], [31] and joint-

entropy [37]. Let   ,    be the curvelet coefficients in the approximate level and   ,    
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denote their random variables (RVs) for reference and sensed images respectively. Let 

the reference and registered images are of size    . Let the curvelet coefficients in 

approximate level are of size      . 

 

2.4.1 Cross correlation 
 

The formula of the cross-correlation computation is [17] the equation of cross 

correlation coefficient 

 

  
                            

  
   

  
   

               
   

   
              

   
   

  
   

  
   

                 

 

where    and    denote the mean of the approximate curvelet coefficients of the 

reference and sensed images respectively. The problem of this objective function is that 

cross correlation gives unwanted peaks when calculating the value of the objective 

function by changing the parameters of the mapping function. This problem becomes 

more visible when the image has periodicity. So it becomes difficult to determine the 

required or desired registration parameters using the cross correlation method.  

 

 

2.4.2 Mutual information 
 

The mutual information among the RVs    and    is given as [26], [27], [29], [31] 

 

               
 

  

   
          

            
       

 

  

                                

 

where            is the joint PDF and               are the marginal PDFs of the 

coefficients of the approximate level of the curvelet transform of the reference and 

sensed images. The mutual information calculates the mutual dependency or joint 

dependency that remains among the images needed to be registered. In this context it 

performs better than the cross correlation-based methods. But mutual information does 
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not consider the conditional dependency that may exist among the images. This is to be 

noted that, it is likely to have conditional dependency among the images as they are 

captured from the same scene but may be captured in different modes or by different 

sensors or in different times.  

 

 

2.4.3 Joint entropy 
 

The joint entropy of two random variables    and    is given as [65], [66] 

 

                                          

  

  

  

  

                            

 

This objective function considers the joint dependency among the images but ignores 

the conditional dependency that may exist among them. Moreover, in the previous 

methods that used joint entropy or mutual information, the required PDF was never 

verified by statistical test of fit.  

 

In this thesis, we intend to form an objective function that will consider the conditional 

dependency that may remain among the images. Here in this thesis we intend to use 

conditional entropy to form the objective function. 

 

 

2.5 Conclusion 
 

In this chapter, the curvelet transform and the probabilistic modeling of the approximate 

level curvelet coefficients are discussed. Here, the backgrounds of the curvelet 

transform, mathematical expression, relationship with other wavelet-like transforms are 

described. Moreover, it has been verified by chi-square plot that for local neighboring 

region of curvelet coefficients, the bivariate Gaussian density function can be used for 

constructing the probabilistic objective function for image registration purposes. At the 

end of the chapter traditional objective functions for image registration has been 

discussed. 



 
 

CHAPTER 3: PROPOSED REGISTRATION METHOD 
 

 

3.1 Introduction 
 

In Chapter 1, it has been mentioned that the curvelet coefficients of the image can detect 

the curve and line singularities very efficiently. The approximate level of the curvelet 

transform represents the significant edge and line features of an image. Thus such 

coefficients of the approximate level are adequate for developing a curvelet based 

registration algorithm with a lower computational load. Now, from the    test in 

Chapter 2, it has been found that the bivariate normal distribution can be used for 

probabilistic modeling of the local neighboring region of the approximate curvelet 

coefficients of images. This PDF may be used to develop the conditional entropy based 

registration algorithm. For this purpose, in this chapter, an analytical form of 

conditional entropies between the approximate curvelet coefficients of the reference and 

sensed images is determined by considering that their joint PDF follows the bivariate 

Gaussian distribution. The distortions considered are obtained by using the affine 

transform, which considers different geometric distortions, viz., rotation, translation, 

scaling and shearing of images. Expressions of the affine transformation matrix and the 

parameters of this transform are also given at the end of this chapter.  

 

 

3.2 Conditional Entropy-Based Objective Function 
    

Let       and    be the reference, sensed and registered images. Here, the subscript „ ‟ 

denotes the reference image and the subscript „ ‟ denotes the sensed image. Now, prior 

to develop the CE based objective function; at first the connotations of different 

symbols used in the following discussions are given below: 

 

       : a square-shaped local window centered at       position in the approximate 

level of the curvelet transform of the images   

        : index dependent random variable (RV) in the approximate curvelet 

coefficients of the reference image 
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        : index dependent RV in the approximate curvelet coefficients of the sensed 

image 

        : sample value of the RV         in        

        : sample value of the RV         in        

 

If stated otherwise, here after in this thesis, the index       will be suppressed from the 

RVs         and         for notational convenience. Let the joint PDF of the RVs    

and    be expressed in terms of the bivariate Gaussian distribution as [64] 
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and 

  
                 

    
 

 

where,            is the correlation coefficient [64];   ,    are the means; 

                  are the standard deviations of the RVs    and   , respectively 

and      denotes the mathematical expectation. Now, the joint entropy of the two RVs 

   and    having joint PDF            is given by the following equation [65], [66]  

 

                                          

  

  

  

  

                           

                                

For the bivariate Gaussian PDF, the differential joint entropy given in (3.2) can be 

expressed as [67] 
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where    is the covariance matrix between the RVs    and    and is given by [64] 

 

    
  
      

       
   

      
                                  

                                  
                                                      

 

Now, the conditional entropy (CE) of two RVs    and    can be found as [68] 

                           

 

  

    

                                                      

 

  

 

 

  

    

                                                  

 

  

 

  

       

                                   
          

      
 

 

  

 

  

       

                                              

 

  

 

  

      

                       

 

  

 

  

        

                                              

 

  

 

  

      

                 

 

  

           

 

  

    

                                              

 

  

 

  

                        

 

  

    

 

                                                                                                                                    

 

In the similar fashion, it can be shown that 
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Thus, CE can be expressed as the difference between the joint and the marginal 

entropies. So the dependence of one RV is deducted to find the conditional entropy of 

other RV. Now, if the marginal distributions of RVs    and    follow the univariate 

Gaussian distribution, the entropy for single variable can be evaluated as [64], [65]  

 

              

 

  

              

          

             
 

 
       

   
 

 
  
       

 

  
 

                                                                               

 

Since,          
 

  
    , from equation (3.7) we obtain 

 

       
 

 
        

                                                              

                                                                                   

In the similar fashion, we obtain  

 

      
 

 
        

                                                              

                   

From equations (3.8) and (3.9), it can be found that if the variance     or     increases, 

the entropy       or       increases. Now, from the above equations the CEs between 

  and    can be expressed as 

  

                        

or 

         
 

 
               

 

 
        

                               

                                   

and 
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or, 

         
 

 
               

 

 
        

                                 

  

The independent variable in equations (3.10) and (3.11) is   . From equation (3.4) it is 

seen that the determinant of this covariance matrix is actually the difference between the 

product of the variances and the product of the correlation coefficient with the 

covariances of the RVs    and   . In other words, this determinant is the measure of 

similarity of the RVs    and   . As the reference and sensed images are aligned 

properly, the curvelet coefficients of them become closer and the RVs    and    become 

closer. So the value of the determinant of the covariance matrix,      becomes lower 

and subsequently, the conditional entropies          or          become lower.  

 

 

Now, the reference and the sensed images must have a linear dependency as they are 

captured from the same scene. Again, in this thesis, linear geometric distortion is 

considered for the sensed image. Hence, the objective function may be formed as the 

minimization of a linear combination of CEs. It is noted that the RVs, viz.,    and    

considered here are indexed dependent. Hence, the CEs from the equations (3.10) and 

(3.11) are combined to construct the indexed dependent objective function given by 

  

                                                                     

 

where           is the weight parameter. If the reference image is given more 

importance comparing to the sensed image,   approaches 1. Again if the sensed image 

is given more importance than the reference image,   approaches 0. In general,   may 

be set as 0.5 to give equal importance to both of the reference and sensed images. Now 

all the        found for the entire coefficients of the approximate level of the curvelet 

transform are summed up to calculate the final value of the objective function which is 

given by 
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3.3 Parameter Estimation 
 

In order to register the images, the index dependent objective function        is needed 

to be estimated. This function is a linear combination of conditional entropies between 

the approximate curvelet coefficients of reference and sensed images. For determining 

the value of this index dependent objective function, the following parameters are 

needed to be calculated for each of the coefficient. Each of the following parameters are 

defined around the neighboring region of point       defined by square window       . 

 

        : Arithmetic mean of the coefficients of the approximate level of the 

curvelet transform of the reference image  

        : Arithmetic mean of the coefficients of the approximate level of the 

curvelet transform of the sensed image 

        : Standard deviation of the coefficients of the approximate level of the 

curvelet transform of the reference image 

        : Standard deviation of the coefficients of the approximate level of the 

curvelet transform of the sensed image 

         : Correlation coefficient between the coefficients of the approximate level 

of the curvelet transform of the reference and the sensed images 

By using maximum likelihood (ML) estimation [64] method, the parameters are defined 

as following [64] 
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where 

         
 

 
 

                               

                                            
            

 

 

where   is the total number of coefficients in the local neighboring region in       .  

 

 

3.4 Distortion Function 
 

In order to obtain synthetically distorted images, linear distortion function is applied 

over the images uniformly. We choose the linear distortion function, viz., the affine 

transform because it gives a low computational load; at the same time most of the 

practical distortions may be realized by this transformation. In this thesis, the distortion 

function is applied uniformly over the image. It is to be noted that such a uniform 

distortion may be applied locally where nonuniform or piecewise-linear distortion is 

considered. Let         be the geometrically distorted location of the index      . The 

affine transform is then given by the following equation [33], [34] 

 

 
  
  
 

     
 
 
 
                                                            

where 
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Here,    is the angle of rotation,    is the horizontal scaling parameter,    is the vertical 

scaling parameter,    is the horizontal shearing parameter,    is the vertical shearing 

parameter,    is the translation in  -direction and    is the translation in  -direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Block diagram of the proposed algorithm 

 

 

In the proposed algorithm at first, a user defined set of distortions is carried out on the 

sensed image (  ) using the affine transform and   sets of the parameter grid, viz., 

     
    

    
    

    
    

               . Thus, the distorted images   
    

          are found. Now, the reference image (  ) as well as all the distorted images 

(   ) are gone through curvelet transform. Then, the approximate level coefficients (   ) 

of the curvelet transform of the reference image and approximate level coefficients 

               

            

 
   

 

Objective  
Function, 
           
Minimization  
  

Affine 
Transformation 

 
  
  
 
  
  
  
  
  
  
 
  
 

 
 
 
  
  
  

 

   

 

  
                

 

 

   
            

Approximate  
Coefficients 

 
 Curvelet 

Transformation 
Affine 
Transformation 

            

User Defined Set of Distortion 
Parameters
     

    
    

    
    

    
  

 

   

 

Approximate Coefficients     
 

ML 
Parameter 
Estimation 

Curvelet 
Transformation 



31 
 

(               ) of all the distorted images are sent to the ML estimator which 

estimates   set of statistical parameters (                               ). After that 

the values of the objective function (             ) for all the sets of statistical 

parameters are calculated. Then, the lowest of all the   values of the objective function 

is calculated and the corresponding distortion parameters give the desired distortion 

parameters (                          ). Using these desired distortion parameters the affine 

transform is carried out on the sensed image (  ) which gives the registered image   . A 

simple block diagram of this algorithm is shown in the Figure 3.1. 

 

Some points are to be noted about this registration algorithm: 

 

 The computational load depends on the number of sets of distortion parameters 

( ) in the parameter grid used in the algorithm. If   increases, the 

computational load increases. 

 In the proposed algorithm discrete values in the entire search space of the 

parameter grid are considered, and hence the best local minima of the objective 

function may be chosen for finding the desired distortion parameters. In this 

regard, the proposed algorithm may not provide an optimal registration 

performance, but it is ensured to provide the best suboptimal result.  

 Another thing is to be noted that the ML detection is done only on the 

approximate level of the curvelet transform. This is due to the fact that, previous 

wavelet-like methods also used only the approximate level and in this thesis, we 

also followed that approach. Moreover, the detailed level coefficients of the 

curvelet transform are complex valued. So the calculation of objective function 

using detailed level coefficients is mathematically difficult. Using only the real 

valued approximate level coefficients decrease the computational complexity 

and register the images with good performance. 

 There are two linear blocks in the block diagram of the proposed method namely 

„Affine Transform‟ and „Curvelet Transformation‟. These two blocks are placed 

one after another. As these boxes are linear, they could have been placed by 

swapping their position. In that case the sensed image    would have been at first 

curvelet transformed and then the approximate level coefficients would have 

been sent to the „Affine Transform‟ block. So the set of parameters in the grid 
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would have been applied on the coefficients of the approximate level of the 

curvelet transform of the sensed image. This position change could have saved 

some computational load as the dimension of the approximate curvelet level is 

smaller than that of the original image. But there is a problem in this process. 

We can consider the approximate level of the curvelet transform as a miniature 

version of the total image. So every coefficient of the approximate level 

represents a large area in the pixel domain. That means slight geometrical 

change in the coefficients of the approximate level would indicate a large change 

in the pixel domain. So it would be difficult to detect slight geometrical changes 

in the pixel domain if affine transform is carried out on the approximate level 

curvelet coefficients rather than on the pixel domain. Hence, the affine transform 

is first carried out on the sensed image and then the curvelet transform is carried 

out on the distorted images.       

 Another thing should be mentioned that the algorithm could be arranged in an 

iterative process, in which the objective function would have to be checked in 

every iteration and depending on the change in the objective function the value 

of the parameter set would have to be updated. But, there is no guarantee that 

changing the distortion parameter would monotonically decrease the value of the 

objective function and ultimately converge to an optimal result. Moreover, if 

there are several lower regions in the plot of the distortion versus objective 

function, the iterative process may produce wrong result by finding the solution 

in a local lower point instead of finding the solution in global lower point.  

 

 

3.5 Conclusion 
 

In this chapter, the analysis of the proposed registration method has been presented. At 

the beginning of this chapter, the objective function for the image registration algorithm 

is obtained using the conditional entropies among the approximate curvelet coefficients 

of the reference and sensed images. Afterwards, the parameters are estimated using ML 

estimator. The distortion function used for the proposed registration algorithm is given 

with necessary equations. At last, the block diagram of the proposed algorithm with 

necessary explanations is presented. 



 
 

CHAPTER 4: EXPERIMENTAL RESULTS 
 

 

4.1 Introduction 
 

In order to evaluate the performance of the algorithm proposed in Chapter 3, 

experiments are carried out on commonly used test images. Both subjective and 

objective evaluations of the distorted and registered images are done. The subjective 

evaluation is done through visualization of the reference, sensed and registered images. 

On the other hand, the objective evaluation is done by the comparison of the values of 

some traditional performance metrics. The performance metrics include the root mean 

square distortion (RMSD), normalized root mean square distortion (NRMSD), 

normalized cross correlation coefficient (NCCC) and percent relative root mean square 

error (PRRMSE) [52], [69]. The distortions considered in this thesis are rotation, 

scaling, translation, and shearing of images. Both the single and combination of 

distortions are considered here. To calculate the objective function from the local 

neighboring region of the approximate level curvelet coefficients the experiments are 

carried out using local windows of sizes         and    . In the following 

sections of this chapter, details of the test data, mathematical definitions of the 

performance metrics, entropy curves for the objective functions of the proposed 

algorithm, reference and registered images and comparison with three existing methods 

are presented and the performance of the proposed method for real registration case will 

be discussed. 

 

4.2 Test Data and Distortions 
 

In this thesis, two types of sensed images are considered: 

  

(i) Distorted version of reference image using a known set of parameters of 

affine transformation.  

(ii)  Distorted version of images captured in different modes, moments, views or 

sensors, using a known set of parameters.  
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All the test images are available in different sources given in www.imagefusion.org and 

a few of these images are shown in Appendix A. In the case of „single distortion‟, 

rotation, translation, shearing and scaling is taken into account separately. While in 

„combination of distortions‟ four types of distortions are considered namely,  

 

(i) Translations in both   and   axes,  

(ii) Translation in  -axis along with rotation,  

(iii) Translation in  -axis along with horizontal shear, and  

(iv) Translations in both   and   axes along with rotation.  

 

 

4.3 Performance Metrics 
 

The mathematical expressions of the performance metrics, viz., RMSD, NRMSD, 

NCCC and PRRMSE considered in this thesis are as follow [52], [69] 

 

              
 

   

   
                                             

 

      
    

          
                                                    

 

     
                              

               
 

                  
 

    
                      

 

        
 
  

                   
 

 
   

 
   

         
 
   

 
   

                             

 

where         denotes the pixel intensity of the reference image at spatial index      ,  

        denotes the pixel intensity of the registered image at that location,      and 

http://www.imagefusion.org/


35 
 

     are the maximum and minimum pixel value in the entire image.     and     are the 

mean of the pixel values of the reference and sensed images.  

 

Each of the performance metrics mentioned above has different significance concerning 

the registration performance. The RMSD, NRMSD and PRRMSE are the measure of 

the distortion of the registered image from the reference image. As the reference and 

sensed images may be obtained in different modes, they already have dissimilarity even 

if they are aligned. So depending upon the registration algorithm, the more the two 

images is properly aligned, the lower the value of the RMSD, NRMSD and PRRMSE 

will be. On the other hand, the NCCC measure the closeness of the reference and 

registered images. The more the two images are properly overlaid, the higher the NCCC 

becomes. 

 

 

 4.4 Single Distortion 
 

In this section, the experimental results considering the image registration for rotation, 

translation in single direction, shearing in horizontal or vertical direction and scaling in 

  or    direction in the sensed images are given. 

 

4.4.1 Rotation 
 

Figures 4.1 and 4.2 show the variation in the value of objective function   due to the 

variation in the angle of rotation   for image of same modality and images of different 

modalities respectively. It may be observed that in Figure 4.1 (a) the minimum value of 

the objective function is in      of angle of rotation. It means that the sensed image 

has a clockwise rotation of     and a counterclockwise rotation of      would register 

it. In a similar fashion, the other figures of the objective function can be interpreted. 

Moreover, for all window sizes the lowest value of the objective function occur at the 

same angle of rotation. In Figures 4.3 and 4.4, the reference, sensed and registered 

images are shown. It can be seen from these figures that the sensed images are 

registered properly. 
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4.4.2 Translation in   or   direction 
 

Figures 4.5 and 4.6 show the variation in the value of objective function   due to the 

variation in the translation in   or   direction for image of same modality and images of 

different modalities, respectively. It may be observed that in Figure 4.5 (a) the 

minimum value of the objective function is in     pixels of translation in   direction 

(  ). It means that the sensed image has a translation in    direction of    pixels and a 

translation of     pixels in –   direction would register it. In a similar fashion, the other 

figures of the objective function can be interpreted. Moreover, for all window sizes the 

lowest value of the objective function occur at the translation (   or   ) required for 

registration. In Figures 4.7 and 4.8, the reference, sensed and registered images are 

shown. It can be seen from these figures that the sensed images are registered properly. 
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Rotation 

  

 
(a) 

 
(b) 

 

Figure 4.1: Objective function versus the angle of rotation ( ) for images of same 

modality (a) Toy (image 1) (b) SAR1 (image 1)  

 

 
(a) 

 
(b) 

 

Figure 4.2: Objective function versus the angle of rotation ( ) for images of different 

modalities (a) Navigation (images 1 and 2) (b) MRI 
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Rotation 
 

 

 

 
(a) 

 
 (b) 

Figure 4.3: Reference, sensed (rotated) and registered images for images of same 

modality (a) Toy (image 1) (b) SAR1 (image 1) 

 

 
(a) 

 
(b) 

 

Figure 4.4: Reference, sensed (rotated) and registered images for images of different 

modalities (a) Navigation (images 1 and 2) (b) MRI  

 

Image 1 (Reference) Rotated Image 1 Registered Image

Image 1 (Reference) Rotated Image 1 Registered Image

Image 1 (Reference) Image 2

Rotated Image 2 Registered Image 2

Image 1 (Reference) Image 2

Rotated Image 2 Registered Image 2
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Translation in x or y direction 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d)  

Figure 4.5: Objective function versus translation in  -axis (  ) or translation in  -axis 

(  ) for images of same modality (a) Toy (image 1) (b) Room (image 1) (c) SAR1 

(image 1) (d) Navigation (image 1) 
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Translation in x or y direction 

 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4.6: Objective function versus translation in  -axis (  ) or translation in  -axis 

(  ) for images of different modalities (a) Toy (images 1 and 3) (b) Room (c) SAR2 (d) 

Navigation (images 1 and 2) 
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Translation in x or y dorection 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4.7: Reference, sensed (translated in   or   direction) and registered images for 

images of same modality (a) Toy (image 1) (b) Room (image 1) (c) SAR1 (image 1) (d) 

Navigation (image 1)  

Image 1 (Reference) Rotated Image 1 Registered Image

Image 1 (Reference) Translated Image 1 Registered Image

Image 1 (Reference) Translated Image 1 Registered Image

Image 1 (Reference) Translated Image 1
Registered Image
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Translation in x or y dorection 
 

  

 
(a) 

 

 

 
(b) 

 

 

 
(c) 

 

 

 
(d) 

 

 

Figure 4.8: Reference, sensed (translated in   or   direction) and registered images for 

images of different modalities (a) Toy (images 1 and 3) (b) Room  (c) SAR2 (d) 

Navigation (images 1 and 2) 

 

 

 

Image 1 (Reference) Image 2

Translated Image 2 Registered Image 2

Image 1 (Reference) Image 2

Translated Image 2 Registered Image 2

Image 1 (Reference) Image 2

Translated Image 2 Registered Image 2

Image 1 (Reference)
Image 2

Translated Image 2 Registered Image 2
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4.4.3 Horizontal or vertical shearing 
 

Figures 4.9 and 4.10 show the variation in the value of objective function   due to the 

variation in shear in horizontal (  ) or shear in vertical (  ) direction for image of same 

modality and images of different modalities, respectively. It may be observed that in 

Figure 4.9 (a) the minimum value of the objective function is in      of shear in 

horizontal direction. It means that the sensed image has a shear of     in horizontal 

direction and a opposite shear of      in horizontal direction would register it. In the 

similar fashion, the other figures of the objective function can be interpreted. Moreover, 

for all window sizes the lowest value of the objective function occur at the shearing 

parameter (   or   ) required for the registration. In Figures 4.11 and 4.12, the 

reference, sensed and registered images are shown. It can be seen from these figures that 

the sensed images are registered properly. 

 

4.4.4 Scaling in   or   axis 
 

Figures 4.13 and 4.14 show the variation in the value of objective function   due to the 

variation in scale in  -axis (  ) or scale in  -axis (  ) for image of same modality and 

images of different modalities, respectively. It may be observed that in Figure 4.13 (a) 

the minimum value of the objective function is found in scaling on  -direction,     . 

It means that the sensed image has a scaling of     (inverse of 2) in horizontal direction 

and an opposite shear of      in  -axis would register it. In the similar fashion, the 

other figures of the objective function can be interpreted. Moreover, for all window 

sizes the lowest value of the objective function occur at the scaling parameter (   or   ) 

required for the registration. In Figures 4.15 and 4.16, the reference, sensed and 

registered images are shown. It can be seen from these figures that the sensed images 

are registered properly. 
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Horizontal or vertical shearing 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4.9: Objective function versus shear in horizontal direction (  ) or shear in 

vertical direction  (  ) for images of same modality (a) Toy (image 1) (b) Room (image 

1) (c) Tree (image 1) (d) MRI (image 1) 
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Horizontal or vertical shearing 

 

 

 
(a) 

 

 (b) 

 
(c) 

 

 (d) 

Figure 4.10: Objective function versus shear in horizontal direction (  ) or shear in 

vertical direction (  ) for images of different modalities (a) Toy (images 1 and 2) (b) 

SAR2 (c) Navigation (images 1 and 3) (d) MRI  
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Horizontal or vertical shearing 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.11: Reference, sensed (sheared in horizontal or vertical direction) and 

registered images for images of same modality (a) Toy (image 1) (b) Room (image 1) 

(c) Tree (image 1) (d) MRI (image 1) 
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Horizontal or vertical shearing 

 

 

 
(a) 
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(c) 

 

 
(d) 

 

 

Figure 4.12: Reference, sensed (sheared in horizontal or vertical direction) and 

registered images for images of different modalities (a) Toy (images 1 and 2) (b) SAR 2 

(c) Navigation (images 1 and 3) (d) MRI 
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Scaling in x or y axis 
 

  

 
(a) 

 

 

 
(b) 

 
(c) 

 

 

 
(d) 

Figure 4.13: Objective function versus scale in  -axis (  ) or scale in  -axis (  ) for 

images of same modality (a) Toy (image 1) (b) SAR1 (image 1) (c) Navigation (image 

1) (d) MRI (image 1) 
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Scaling in x or y axis 
 

  

 

 
(a) 

 

 

 

 
(b) 

 
(c) 

 

 

 
(d) 

Figure 4.14: Objective function versus scale in  -axis (  ) or scale in  -axis (  ) for 

images of different modalities (a) Toy (images 1 and 3) (b) Room (c) SAR2 (d) MRI 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.15 Reference, sensed (scaled in   or   direction) and registered images for 

images of same modality (a) Toy (image 1) (b) SAR1 (image 1) (c) Navigation (image 

1) (d) MRI (image 1) 
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Scaling in x or y axis 
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(c) 
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Figure 4.16: Reference, sensed (scaled in   or   direction) and registered images for 

images of different modalities (a) Toy (images 1 and 3) (b) Room (c) SAR2 (d) MRI 
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4.5 Combinations of Distortions 
 

Experimental results concerning image registration for four types of combinations of 

distortions, viz., rotation, shearing and translation are presented in this section.  

 

4.5.1 Translations in both   and   axes 
 

Figures 4.17 show the variation in the value of objective function   due to the variation 

in translation both in  -axis (  ) and in  -axis (  ) for image of different modalities. It 

may be observed that in Figure 4.17 (a) the minimum value of the objective function is 

found at around        and       . It means that the sensed image has a 

translation in    direction of    pixels and a translation in    direction of 30 pixels. 

So a translation on    pixels in –   direction and a translation of    pixels in    

direction would register it. In the similar fashion, the other figures of the objective 

function can be interpreted. In Figure 4.18, the reference, sensed and registered images 

are shown. It can be seen from this figure that the sensed images are registered properly. 

 

 

4.5.2 Translation in  -axis along with rotation 
 

Figure 4.19 show the variation in the value of objective function   due to the variation 

in translation in  -axis (  ) along with angle of rotation ( ) for image of different 

modalities. It may be observed that in Figure 4.19 (a) the minimum value of the 

objective function is found at around        and       . It means that the sensed 

image has a translation in    direction of 30 pixels and a rotation of     in clockwise 

direction. So a translation of    pixels in    direction and a rotation of     in the 

counterclockwise direction would register it. In the similar fashion, the other figures of 

the objective function can be interpreted. In Figure 4.20, the reference, sensed and 

registered images are shown. It can be seen from this figure that the sensed images are 

registered properly. 
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4.5.3 Translation in  -axis along with horizontal shear 
 

Figure 4.21 show the variation in the value of objective function   due to the variation 

in translation in  -axis (  ) along with shear in horizontal direction (  ) for image of 

different modality. It may be observed that in Figure 4.21 (a) the minimum value of the 

objective function is found at around        and        . It means that the sensed 

image has a translation in    direction of 30 pixels and a shear,        in horizontal 

direction. So a translation of    pixels in    direction and a shear,         in the 

horizontal direction would register it. In the similar fashion, the other figures of the 

objective function can be interpreted. In Figure 4.22, the reference, sensed and 

registered images are shown. It can be seen from this figure that the sensed images are 

registered properly. 
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Translation in both x and y axes 
 

  

 

 
(a) 

 

 (b) 

 
(c) 

 
 (d) 

Figure 4.17: Objective function versus translation in  -axis (  ) and translation in  -axis 

(  ) for images of different modalities (a) Toy (images 1 and 2) (b) SAR2 (c) 

Navigation (images 1 and 2) (d) MRI 
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Translation in both x and y axes 
 

  

 
(a) 

 
(b) 

 
 
 

 
(c) 

 

 
(d) 

 

Figure 4.18: Reference, sensed (translated in both   and   direction) and registered 

images for images of different modalities (a) Toy (images 1 and 2) (b) SAR2 (c) 

Navigation (images 1 and 2) (d) MRI 
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Translation in y-axis along with rotation 

  

  

 
(a) 

 

 
(b) 

 

 
(c)  (d) 

 

Figure 4.19: Objective function versus translation in  -axis (  ) and angle of rotation 

( ) for images of different modalities (a) Toy (images 1 and 3) (b) SAR1 (c) Navigation 

(images 1 and 3) (d) MRI 
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Translation in y-axis along with rotation 
 

  

 
(a) 

 

  

(b) 

 
 

(c) 

 

  

(d) 

 

Figure 4.20: Reference, sensed (translated in  -axis and rotated) and registered images 

for images of different modalities (a) Toy (images 1 and 3) (b) SAR 1 (c) Navigation 

(images 1 and 3) (d) MRI 
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Translation in x-axis along with horizontal shear 
 

  

 
(a) 

 

 
 (b) 

 
(c) 

 

 
 (d) 

 

Figure 4.21: Objective function versus translation in  -axis (  ) and shear in horizontal 

direction (  ) for images of different modalities (a) Toy (images 1 and 2) (b) Room (c) 

Tree (d) MRI 

 

 

 

-60

-40

-20

0

20

-1

-0.5

0

0.5
200

300

400

500

600

700

Translation

in x-axis

Shear in

horizontal direction

W
e

ig
h

te
d

 s
u

m
 o

f 
c
o

n
d

it
io

n
a

l 
e

n
tr

o
p

ie
s

window: 7 7

=0.5

-60

-40

-20

0

20

-0.5

0

0.5

1
450

500

550

600

Translation

in x-axis

Shear in

horizontal direction
W

e
ig

h
te

d
 s

u
m

 o
f 
c
o

n
d

it
io

n
a

l 
e

n
tr

o
p

ie
s

window: 77

=0.5

-20

0

20

40

60

-1

-0.5

0

0.5
480

500

520

540

560

Translation

in x-axis

Shear in

horizontal direction

W
e

ig
h

te
d

 s
u

m
 o

f 
c
o

n
d

it
io

n
a

l 
e

n
tr

o
p

ie
s

window: 77

= 0.5

-20

0

20

40

60

-0.5

0

0.5

1
480

500

520

540

560

580

600

Translation

in x-axis

Shear in

horizontal direction

W
e

ig
h

te
d

 s
u

m
 o

f 
c
o

n
d

it
io

n
a

l 
e

n
tr

o
p

ie
s

window: 77

= 0.5



59 
 

 

 

 

Translation in x-axis along with horizontal shear 
 

  

 
(a) 

 

 
(b) 

 
(c) 

 

 (d) 

 

 

Figure 4.22: Reference, sensed (translated in  -axis and sheared in horizontal direction) 

and registered images for image of different modalities (a) Toy (images 1 and 2) (b) 

Room (c) Tree (d) MRI 
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4.5.4 Translations in both   and   axes along with rotation 
 

Figures 4.23a, 4.23b and 4.23c show the variation in the value of objective function   

due to the variation in translation in  -axis (  ), translation in  -axis (  ) along with 

angle of rotation ( ) for image of different modality. It may be observed that in Figure 

4.23a the minimum value of the objective function is found at              and 

     . It means that the sensed image has a rotation of     in clockwise direction, a 

translation in    direction of 30 pixels and a translation in    direction of 40 pixels. So 

a rotation of     in the counterclockwise direction along with a translation of    pixels 

in    direction and a translation of    pixels in    direction would register it. In the 

similar fashion, the other figures of the objective function can be interpreted. In Figures 

4.24a, 4.24b and 4.24c, the reference, sensed and registered images are shown. It can be 

seen from these figures that the sensed images are registered properly. 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

Figure 4.23a: Objective function versus translation in  -axis (  ) and translation in  -

axis (  ) with different angle of rotation ( ) for images of different modalities ( ) Room 

(  ) MRI 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

Figure 4.23b: Objective function versus translation in  -axis (  ) and translation in  -

axis (  ) with different angle of rotation ( ) for images of different modalities ( ) 

Navigation (images 1 and 2) (  ) SAR2 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

Figure 4.23c: Objective function versus translation in  -axis (  ) and translation in  -

axis (  ) with different angle of rotation ( ) for images of different modalities ( ) Toy 

(images 1 and 2) (  ) Tree 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

 

Figure 4.24a: Reference, sensed (translated in both   and  -axes along with rotation) 

and registered images for images of different modalities ( ) Room (  ) MRI 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

 

Figure 4.24b: Reference, sensed (translated in both   and  -axes along with rotation) 

and registered images for images of different modalities ( ) Navigation (images 1 and 2) 

(  ) SAR2 
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Translation in both x and y axes along with rotation 
 

 

 
( ) 

 
(  ) 

 

Figure 4.24c: Reference, sensed (translated in both   and  -axes along with rotation)and 

registered images for images of different modalities ( ) Toy (images 1 and 2) (  ) Tree 
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4.6 Comparisons with Other Methods 
 

The proposed method is compared with three other existing intensity-based methods 

where the probabilistic objective function either in the wavelet domain or pixel domain 

is used. The comparison is shown with the context of four standard performance 

metrics. Here, the values of the performance metrics are calculated only for 

„combination of distortions‟. Because, the performance of the proposed registration 

algorithm can be realized properly by the values of the performance metrics calculated 

for „combination of distortions‟. Moreover, by observing these values for combination 

of distortions, the performance due to single distortion can be easily realized. The three 

existing methods with which the proposed algorithm is compared are briefly described 

below. 

 

Method 1[41]: Here the objective function is the mutual information of the coefficients 

of the approximate level of DWT of the reference and sensed image. Where the mutual 

information of the approximate wavelet coefficients gets highest the desired distortion 

there is found there. Similar registration algorithm is also used in [31]. 

 

Method 2 [42]: The objective function in this method is the normalized cross correlation 

coefficient of the approximate DWT coefficients estimated at different levels of the 

reference and sensed image. The approximate coefficient of a given level are 

thresholded to the 50% of the maximum value at that level and the next level‟s 

coefficients are threshold to the 40% of the maximum value in that level. The desired 

distortion is found where the normalized cross correlation coefficient becomes the 

highest. 

 

Method 3 [10]: In this method the objective function is the mutual information of the 

pixel intensities of the reference and sensed image [70]. The desired distortion is found 

where the mutual information becomes the highest. Similar registration algorithm is 

used also in [70]. 
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The values of the performance metrics for four combinations of distortions and for five 

sets of images, viz., Toy, Room, SAR2, Tree and MRI are shown in tables 4.1, 4.2, 4.3 

and 4.4. The best result is shown in bold for the test images and each of the performance 

metrics. A close observation reveals that for most of the cases the proposed method 

gives the best performance as compared to the other methods. In the cases, where the 

proposed method does not give the best result, the difference between the values of the 

metrics for the best and for the proposed method is negligible. Thus, it can be concluded 

that the proposed method performs better than the similar existing methods with the 

context of the mentioned performance metrics.   

 

 

Table 4.1 Results concerning the performance metrics for translation in both   and 

 -axes   

 

Image Methods RMSD NRMSD NCCC PRRMSE 
Toy (Image 
1 and 2) 

Method 1 26.5063 0.1183 0.2616 0.0067 
Method 2 49.0427 0.2189 0.2394 0.0134 
Method 3 19.8472 0.0827 0.2664 0.0050 
Proposed  10.9576 0.0457 0.2617 0.0028 

Room Method 1 167.5459 0.6570 0.0020 0.0225 
Method 2 173.4010 0.6800 0.0102 0.0236 
Method 3 167.5459 0.6570 0.0020 0.0225 
Proposed 166.7243 0.6538 0.0021 0.0223 

SAR 2 Method 1 30.0326 0.1615 0.0554 0.0048 
Method 2 37.4100 0.2011 0.0536 0.0062 
Method 3 30.0326 0.1615 0.0554 0.0048 
Proposed 26.0410 0.1400 0.0536 0.0041 

Tree  Method 1 79.8601 0.3427 0.2482 0.0394 
Method 2 79.8301 0.3426 0.2395 0.0392 
Method 3 74.1598 0.3169 0.2405 0.0364 
Proposed 73.7378 0.3151 0.2316 0.0359 

MRI  Method 1 25.0563 0.1165 0.1872 0.0195 
Method 2 41.7196 0.1940 0.1778 0.0327 
Method 3 25.0563 0.1165 0.1872 0.0195 
Proposed 24.0689 0.1119 0.1871 0.0188 
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Table 4.2 Results concerning the performance metrics for translation in  -axis and 

rotation 

 

Image Methods RMSD NRMSD NCCC PRRMSE 
Toy (Image 
1 and 2)  

Method 1 14.8429 0.0628 0.2471 0.0037 
Method 2 14.8519 0.0618 0.2662 0.0038 
Method 3 14.8559 0.0617 0.2651 0.0039 
Proposed 12.2350 0.0510 0.2550 0.0031 

Room Method 1 166.9185 0.6551 0.0083 0.0223 
Method 2 187.8198 0.7365 0.0089 0.0251 
Method 3 166.9174 0.6546 0.0084 0.0223 
Proposed 166.9104 0.6546 0.0078 0.0223 

SAR 2 Method 1 32.1065 0.1728 0.0271 0.0052 
Method 2 54.2317 0.2916 0.0421 0.0086 
Method 3 32.1062 0.1726 0.0430 0.0051 
Proposed 46.3639 0.2342 0.0433 0.0075 

Tree  Method 1 83.1587 0.3375 0.0178 0.0378 
Method 2 87.5612 0.3847 0.0212 0.0425 
Method 3 86.2132 0.3684 0.0199 0.0419 
Proposed 72.8155 0.3112 0.2363 0.0354 

MRI Method 1 24.2991 0.1141 0.1911 0.0190 
Method 2 33.9082 0.1577 0.1921 0.0264 
Method 3 24.2984 0.1130 0.1914 0.0189 
Proposed 23.3756 0.1087 0.1918 0.0182 
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Table 4.3 Results concerning the performance metrics for translation in  -axis and 

shear in horizontal direction 

 

Image Methods RMSD NRMSD NCCC PRRMSE 
Toy (Image 
1 and 2) 

Method 1 21.8523 0.0845 0.2524 0.0066 
Method 2 30.5769 0.1548 0.2146 0.0089 
Method 3 22.6931 0.0946 0.2534 0.0057 
Proposed 11.2929 0.0471 0.2610 0.0028 

Room Method 1 167.1371 0.6556 1.8237e-
004 

0.0225 

Method 2 191.6020 0.7514 0.1275 0.0256 
Method 3 167.1369 0.6554 1.8234e-

004 
0.0224 

Proposed 166.9185 0.6546 0.0027 0.0223 
SAR 2 Method 1 54.1554 0.2737 0.0430 0.0088 

Method 2 57.6431 0.2785 0.04301 0.0092 
Method 3 54.1553 0.2735 0.0431 0.0088 
Proposed 46.8098 0.2364 0.0695 0.0076 

Tree  Method 1 74.0438 0.3164 0.1975 0.0360 
Method 2 76.3241 0.3219 0.1975 0.0362 
Method 3 75.3040 0.3218 0.1974 0.0366 
Proposed 73.6977 0.3149 0.2259 0.0358 

MRI Method 1 26.2495 0.1222 0.1861 0.0206 
Method 2 45.7609 0.2128 0.1032 0.0357 
Method 3 26.2486 0.1221 0.1897 0.0205 
Proposed 23.6884 0.1102 0.1896 0.0185 
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Table 4.4 Results concerning the performance metrics for translation in  -axis, 

translation in  -axis, and rotation 

Image Methods RMSD NRMSD NCCC PRRMSE 
Toy (Image 1 
and 2) 

Method 1 12.3114 0.0513 0.2540 0.0031 
Method 2 13.4589 0.0523 0.2501 0.0032 
Method 3 12.3015 0.0513 0.2541 0.0031 
Proposed 12.2861 0.0512 0.2543 0.0031 

Room Method 1 166.9182 0.6550 0.0081 0.0222 
Method 2 187.8194 0.7363 0.0087 0.0250 
Method 3 166.9104 0.6546 0.0058 0.0223 
Proposed 166.9104 0.6546 0.0058 0.0223 

SAR 2 Method 1 26.2513 0.1414 0.0502 0.0042 
Method 2 28.5498 0.1424 0.0507 0.0041 
Method 3 26.2223 0.1410 0.0509 0.0042 
Proposed 26.1651 0.1407 0.0511 0.0041 

Tree  Method 1 82.2456 0.3134 0.0178 0.0378 
Method 2 86.8576 0.3762 0.0201 0.0420 
Method 3 85.9534 0.3542 0.0174 0.0402 
Proposed 71.4548 0.3014 0.2241 0.0345 

MRI Method 1 34.0312 0.1583 0.1921 0.0265 
Method 2 34.0312 0.1583 0.1921 0.0265 
Method 3 23.8300 0.1108 0.1918 0.0186 
Proposed 24.0503 0.1119 0.1918 0.0187 

 

 

4.7 Registration in Real Cases  
 

Up to the previous section of this chapter, all the sensed images were synthetically 

generated. In real cases the sensed image is already misaligned with respect to the 

reference image. In this section two sets of images will be considered. The sensed image 

in each of the case is geometrically in misaligned position with respect to the reference 

image. Here, the sensed image is not found by synthetic distortion function.  

 

The images shown in figure 4.25(a) and 4.25(b) are the reference and sensed images of 

Doll image. The reference image is middle focused and sensed image is left focused. 

The two images vary in dimension and the sensed image is translated in both axes with 

respect to the reference image. By using the proposed registration algorithm the sensed 

image registered. In 4.25 (c), it is observed that there is a dark line at the right and 
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bottom of the image. This means a translation in   an   axes. The objective function 

surface is shown in figure 4.26. 

 

 
 
 
  
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
  
 
 
 

(b) 
 
 
 
 
 
 
 
  
 
 
 
 

 
(c) 

 
Figure 4.25  Doll (a) reference (b) sensed (c) registered image 
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Figure 4.26: Objective function versus translation in  -axis (  ) and translation in  -axis 

(  ) for Doll 

 

Another set of image consist of two SAR images (SAR3). In figure 4.27(a) and figure 

4.72(b) the reference and sensed images are shown. It is easily observed that the sensed 

image has rotational distortion with respect to the reference image. The building and 

highways in the sensed image are rotationally different to the reference image.  

 

 
 

(a) 

 
(b) 

Figure 4.27 SAR3 (a) reference (b) sensed image  
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Using the proposed registration algorithm, the angle of rotation versus the objective 

function is plotted in figure 4.28. The lowest value of the objective function occurs at 

    of rotation. This gives the required or desired distortion parameter. Using this 

parameter the sensed image is affine transformed and thus the registered image is found. 

 

 
Figure 4.28: Objective function versus angle of rotation ( ) for SAR3 

   

 

 
(a) 

 
(b) 

Figure 4.29 SAR3 (a) reference (b) registered image 
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The reference and registered images are shown in figure 4.29(a) and 4.29(b). If we 

observe this figure, we find that the highways and building structures are now properly 

aligned with respect to the reference image. Upon our subjective evaluation it can be 

said that the proposed method works well for real registration problems.  

 

 

4.7 Conclusion 
 

In this chapter, the performance of the proposed registration algorithm is evaluated in 

terms of visual representation and the values of performance metrics. Distortion which 

is linear and uniform is used here. Both single and combination of distortions are 

considered for the distortion of the sensed image. The performance of the proposed 

method is compared with three existing methods with the context of four standard 

performance metrics. Moreover, the performance of the proposed registration algorithm 

has been checked for real registration problems. From these evaluations, it is found that 

the proposed method gives a better performance than existing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 5: CONCLUSION 
 

5.1 Conclusion and Discussion 
 

In many real world applications, integration of information from different sources is 

becoming more and more important. In the field of image processing also such 

integration is also increasingly used. In medical diagnostic, remote sensing, panoramic 

image construction and security purposes this integration of images is very important. It 

is prerequisite that the images are geometrically aligned before their integration and this 

aligning process is called „image registration‟.  

 

 

In general, two approaches are followed for registering images, namely, feature-based 

and intensity-based methods. The latter give better accuracy than the former as the latter 

methods consider the pixel intensities of the entire image. In this thesis, an intensity-

based image registration algorithm has been developed using the conditional 

dependencies that may exist between the curvelet coefficients of images. Only the 

coefficients of the approximate level of the curvelet transform have been taken into 

account and hence, the computational load has been reduced significantly. The objective 

function is a linear combination of the conditional entropies of the approximate level 

curvelet coefficients of reference and sensed images. The functional value of the 

objective function has been evaluated from the values obtained from local neighboring 

approximate curvelet coefficients. This is due to the fact that the curvelet coefficients of 

images are locally stationary. For calculating the conditional entropies, it has been 

considered that the local neighboring approximate curvelet coefficients follow the 

bivariate Gaussian distribution. This consideration has been verified by using the 

standard statistical    test of fit. 

 

     

Here, images taken from the same scene but captured in different modes or by different 

sensors or in different viewpoints are selected as test images. The alignment of images 

are carried out by using a distortion function which is linear and uniform namely, the 

affine transformation that possesses a low computational complexity. The images are 
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registered both for single and a combination of distortions. From the visual inspection 

of the distorted and registered images, it has been found that the proposed algorithm is 

capable of geometrically align the distorted images with the reference image. Moreover, 

the proposed algorithm has been compared with three other existing methods those are 

similar to the proposed method in terms of standard performance metrics. From the 

calculated performance metrics, it can be observed that for most of the cases the 

proposed algorithm performs better than the other methods. Thus, the proposed 

registration algorithm is expected to play a significant role in automatic image 

registration used in practice. 

  

 

5.2 Scope of Further Work 
 

There are a number of scopes to extend the research done in the thesis. Some possible 

avenues include: 

 

 The performance of the registration algorithm may be evaluated for noisy 

images. 

  The registration algorithm can be implemented for nonlinear distortions such as 

the barrel or polynomial type distortions. 

 A general form of Gaussian PDF may be used for determining the objective 

function.  
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The test images used in this thesis are shown below: 
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Philips LTC500 CCD 
camera (f/1.2 50dB s/n at 
0.4 Lux) sensitive from 
visual to near IR (400-900 
nm) 
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Infrared-image from a 
AMB Radiance HS IR 
camera (Raytheon), 
sensitive for 3-5 microm 
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Infrared-image from an 
AIM 256 microLW camera 
(AEG), sensitive for 8-10 
microm 
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