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ABSTRACT 
 
Epilepsy is one of the most common and serious neurological disorders that affects a 
significant amount of people around the world. It is characterized by sudden occurrence 
of massive seizure attack, which is unpredictable in nature. The treatment of epilepsy is 
often carried out through continuous monitoring of the patient using electro-
encephalogram (EEG) signals.  Since the EEG records are generally of long duration 
and the number of patients is huge, an automatic system for diagnosis of epilepsy and 
detection is necessary. In addition, it may aid in focal drug delivery and generating 
alarm through an implantable device. 
 
Various methods are available in the literature for automatic seizure detection from 
EEG signals. The most promising performances are reported by those using time-
frequency transform domain techniques. Recently, the empirical mode decomposition 
(EMD) has emerged as a simple and effective method for the analysis of time-series 
data. Unlike time-frequency transforms, the EMD is data adaptive, not requiring any 
basis function or assumption in regard to data linearity and stationarity. This is 
particularly important given that the EEG signals are highly nonlinear and non-
stationary. However, limited amount of work is available in the literature that use the 
EMD analyzing EEG signals to classify them for epilepsy diagnosis and seizure 
detection. 
 
In this thesis, efficient EMD-based methods are developed classification of EEG signal 
for subsequent diagnosis of epilepsy and seizure detection. A comprehensive database 
of EEG records, publicly available online is used for analyzed using statistical and 
chaotic features extracted from the decomposed intrinsic mode functions. The ability of 
these features in discriminating the EEG signals is extensively studied. Classification 
systems are then developed using the statistical and chaotic features in an artificial 
neural network (ANN). The performance of these classification systems is investigated 
in terms of sensitivity, specificity and accuracy for various problems of classification 
regarding real-life medical scenario of epilepsy diagnosis and detection of seizure 
activity. The results show that the features extracted in EMD domain can classify the 
EEGs with 100% sensitivity, 100% specificity and 100% accuracy in most of the cases, 
while requiring reduced computational cost and fewer features. It is further observed 
that the statistical features play the major role in improving the overall performance 
compared to the chaotic ones. Finally, an extensive study is conducted to determine 
whether statistical priors can capture the underlying statistics of EEG signals.  
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The human brain contains approximately 100 billion neurons or nerve cells. These are 

involved in the brain’s fundamental functions; fast, organized information processing 

and communication. The neurons transmit information and communicate with each 

other using a combination of chemical and electrical signals. They are interconnected 

using axons and dendrites – analogous to a transmitter and a receiver, respectively (Fig. 

1.1(a)).  

 
When the aggregate input to neuron exceeds a threshold value, an action potential 

occurs and at the axon terminal, it results in the release of neurotransmitter from the pre-

synaptic membrane, causing postsynaptic potentials (PSP).This is illustrated in Fig. 

1.1(b). The black arrow shows an action potential terminating at a synapse. 

Neurotransmitters are released, causing a PSP with the gray arrow showing an 

approximation of the macroscopic current. 

 

  
   (a)         (b) 

 
Fig. 1.1: Transmission of electric signal through a single neuron.  

 
The PSP can be described by a current dipole, giving rise to currents in the surrounding 

tissues, which can exist for several tens of milliseconds causing the so called volume 

currents. For a large group of neurons these volume currents can induce measurable 

electric and magnetic fields over the cerebral cortex which can be detected using 

appropriate electric and electro-magnetic transducer. Fig. 1.2 illustrates typical neural 

activity inside human brain which, can be analyzed by detecting the electro-magnetic 

effect caused by the activity itself.  

 

Synapse 
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Fig. 1.2: Human brain electrical activity. (Adapted from [1]) 
 

1.1 EEG 

EEG is the abbreviation of electroencephalogram – the name given by a German 

psychiatrist Hans Berger, who made the first recording of human brain electrical 

activity in 1924 [2]. EEG recordings are achieved by placing silver-chloride covered 

electrodes of high conductivity (impedance <5000 Ω) in different locations of the head 

(scalp EEG). EEG is the measurement of the electric field induced by the neural activity 

inside the brain. Internationally standardized 10-20 system is usually employed for 

electrode placement (Fig. 1.3). In this system 21 electrodes are located on the surface of 
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the scalp. The positions are determined as follows: Reference points are nasion, which 

is the delve at the top of the nose, level with the eyes; and inion, which is the bony lump 

at the base of the skull on the midline at the back of the head. From these points, the 

skull perimeters are measured in the transverse and median planes. Electrode locations 

are determined by dividing these perimeters into 10% and 20% intervals. Three other 

electrodes are placed on each side equidistant from the neighboring points [3, 4]. 

 

Fig. 1.3: The international 10-20 system seen from (A) left and (B) above the head. A-
Ear lobe, C-central, F-frontal, Fp-frontal polar, P-parietal, Pg-nasopharyngeal, O-

occipital.  
Measures of the electric potentials can be recorded between pairs of active electrodes 

(bipolar recordings) or with respect to a reference electrode (monopolar recordings). 

The scalp EEG signals as sensed by the electrodes are generally passed to a multi-

channel amplifier system through a protection circuit (Fig. 1.4). The amplified signals 

are then converted into digital format and are recorded using a computerized data 

acquisition system. However, a practical EEG recording system is more sophisticated to 

deal with various artifacts that occur in real life. 

     

Fig. 1.4: Generalized block diagram of EEG recording system. 
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The amplitude and frequency content of EEG signals recorded depends on the electrode 

position as well as both physical and mental states of a person undergoing the process. 

Generally, the frequency contents of EEG signals are defined according to five sub-

bands: 

1.  (0~4 Hz): EEG signals in this frequency range are detectable in infants and 
sleeping adults. 

2.  (4~8 Hz): The EEG signals of this band are obtained from children and 
sleeping adults. 

3.  (8~12 Hz): EEGs of this frequency range can be measured from the occipital 
regions (O1 and O2 electrode in Fig. 1.3) of an awaken person closed eyes. 

4.  (13~30 Hz):  EEG signals having this frequency band are detectable over the 
parietal and frontal lobes (Fig. 1.3). 

5.  (30~60 Hz): The regions of high EEG signals having this highest level of 
subband are located in the frontocentral area.  

Since its first recordings, EEG is used in neuroscience to analyze various neural 

activities (e.g. sleep stages, sensory and motor activity, emotional state etc.) as well as 

to diagnose diseases and disorders such as epilepsy, sleep apnea, schizophrenia. Among 

various neurological disorders, epilepsy is the most common and serious one.  About 50 

million people world-wide are suffering from epilepsy and 85% of those live in 

developing countries. Each year 2.4 million new cases are estimated to occur globally 

[5]. In most of the adult patients, epilepsy occurs in the mesial temporal structures such 

as hippocampus, amygdala, and parahippocampal gyrus [6].  Epilepsy is characterized 

by recurrent seizures i.e. physical reactions to sudden, usually brief, excessive electrical 

discharges in a group of brain cells. Symptoms of a seizure can range from sudden, 

violent shaking and total loss of consciousness to muscle twitching or slight shaking of 

a limb. Staring into space, altered vision, and difficult speech are some of the other 

behaviors that a person may exhibit while having a seizure. The unpredictable nature of 

seizures is responsible for the enhanced risk of sudden unexpected injury or death. The 

occurrence of seizure manifests itself by making drastic changes in EEG patterns (Fig. 

1.5). The following figure shows typical EEG patterns of an epileptic patient before, 

during and after the seizure attack. Note that, the EEG patterns are somewhat spiky 

during the occurrence of seizure.  
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Fig. 1.5: Multi-channel EEG records illustrating the occurrence of seizure. 
 

 
 

 
 

 
 

 

 

(1)Normal 

(2)Pre-Seizure 

Seizure 

Post-Seizure 

(3)Seizure 

(4)Post-Seizure 
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In general, epilepsy affects the human brain in different locations, defined as 

epileptogenic zone and it may be necessary to monitor the seizure activity more 

accurately depending on the patient’s condition. In these cases, special intracranial 

electrodes are surgically inserted into this zone to record EEG. Fig. 1.6 below shows an 

example of such electrode placement. 

   

  Bottom view              Left-side view     

Fig. 1.6: Intracranial electrode placement. (Adapted from [7]) 
 

As shown on the figure, depth electrodes are inserted at the left and right temporal lobes 

(LTD, RTD) and subdural electrode strips are symmetrically placed over  the 

orbitofrontal (LOF, ROF) and subtemporal (LST, RST) cortex. The EEG patterns 

obtained from an epileptic patient are defined as ictal and interictal that correspond to 

the condition of non-seizure and seizure attack respectively. 

 

1.2 Motivation 

Detection of a seizure attack is traditionally carried out by viewing EEG records of long 

duration that may even last for several days. Considering the length of the records to be 

observed and the huge volume of patients, it is often difficult and time consuming for an 

expert neurologist to locate a seizure. An automatic seizure detection system can 

considerably reduce the volume of data to be observed. It is to be noted that such a 

system needs to be highly sensitive, even though that may generate lots of false alarms, 

since the neurologist could easily discard them. In addition, such a system can be 

integrated into an implantable device for detecting the onset of seizures and henceforth, 
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triggers an alarm as well as initiate drug delivery. This is important since often the 

patient is not in a state to push the alarm and focal drug delivery might be more 

effective with reduced side effects related to antiepileptic drugs [18]. 

 

Various algorithms have been introduced for detecting seizure from EEG records [8 – 

22]. Most of these researches are carried out based on the analysis of dynamic behavior 

of EEG records in inte-rictal and ictal regions. For a time series like EEG, portrait of the 

reconstructed phase space can be useful in representing EEG dynamics. In [8], a 

probabilistic analysis is carried out to statistically quantify the changes of points within 

the reconstructed phase space portrait during seizure and non-seizure activity. For 

comparison, variance based analysis is also carried out and it is reported that the 

statistical significance of the two analysis is almost same in distinguishing seizure and 

non-seizure activities. However, the accuracy level of detecting seizures using these two 

analyses is not reported. Variance among a set of delay vectors is used in [9]. The set 

consists of the delay vectors that are within a certain standardized distance. Over a 

range of this distance, a number of set is defined and corresponding variance is 

calculated for EEG records of different category. It is observed that the average values 

of these variances for each category give specific pattern against certain range of 

standardized distance which is clearly distinguishable. Based on this analysis, nearest 

neighbor and leave-one-out approach is employed to classify EEG signals into healthy, 

inteictal and ictal types and their accuracy is reported. In [10], arbitrary thresholding of 

EEG signal variance is used. Considering the non-stationarity, EEG signals are 

windowed in small blocks and variance is calculated for each of them. Fixed 

thresholding is used over these variances to classify the EEG segments into healthy and 

interictal and ictal ones. Although, maximum accuracy of classification is reported 

based on an specific online EEG database, no indication is given about a generalized 

process (if any) of defining the level of fixed threshold.  

 

Besides, research works in non-linear analysis of the EEG signals using chaos theory 

are reported in the literature. The general theme of these works is that the dynamic 

behavior of EEG signals varies in terms of complexity and chaos from a healthy person 

to an epileptic patient. Chaos is defined as an apparent disorder of a system, highly 
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sensitive to differences in initial conditions. A number of measures are reported in 

literature to quantify the level of chaoticity and complexity [8]. In [11], EEG signals are 

decomposed into five sub-bands using discrete wavelet transform (DWT) and two 

chaotic features: largest Lyapunov exponent (LLE) and correlation dimension (CD) are 

obtained from these subbands. These two quantities define the chaoticity and 

complexity of a dynamic system, respectively. A one-way analysis of variance 

(ANOVA) shows significant statistical difference among healthy, interictal and ictal 

segment using these two measures in wavelet subbands. However, no extensive analysis 

is reported to observe the accuracy of these measures in classifying EEGs into the three 

mentioned categories in DWT domain.  In [12], Lyapunov spectra are used to make 

three-way (healthy, interictal and ictal) classification employing recurrent neural 

network (RNN) as the classifier. From the spectra, maximum, minimum, mean and 

standard deviation (SD) of Lyapunov exponents are used as features. Using similar 

features obtained from Lyapunov spectra of original EEG time series as well as the 

wavelet coefficients, a multi-way classification system is reported in [13]. The wavelet 

coefficients are obtained from the EEG signals using 5-level DWT. These features are 

fed to a multi-class classifier which is designed from several support vector machines 

(SVM) employing ECOC (error correcting output code) approach. The performance of 

this classifier is then compared with that of probabilistic neural network (PNN) and 

multi-layer perceptron neural network (MLPNN) for the same feature set. In [14], two 

sets of features are used to deal with a number of classification problems relevant to 

practical scenario of epilepsy diagnosis and seizure detection. One feature set consists 

of the estimated parameters of autoregressive model of EEG signals. The EEG signals 

are then divided into several sub-windows and power spectral analysis is carried for 

each of them using fast Fourier transform (FFT). The power spectra are divided into 

fifteen sub-bands and their mean energies are used to constitute another feature set. In 

addition to that, approximate entropy (ApEn), a thermodynamic quantity defining 

system regularity or randomness is calculated for each sub-window, which is also 

included in both sets of features. A comprehensive study is carried out by feeding these 

two feature sets to various linear and non-linear classifiers and effect of window size, 

feature reductions is reported. In [15], Fractal dimension (FD) is used as feature in 

classifying healthy and ictal EEG segments employing SVM. A comparative study is 

reported showing the effect of choosing different kernels for SVM as well as different 
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algorithm to calculate FD. In [16], ApEn and linear statistical measures such as 

variance, skewness and kurtosis obtained from the EEG signals are utilized as features 

and fed to a linear classifier to distinguish normal and seizure activities. Later, Fisher’s 

Discreminant analysis is used in [17] to make optimum selection of features from four 

linear statistical measures such as variance, skewness, kurtosis and coefficient of 

variance to obtain the highest accuracy in classifying healthy and ictal EEG segments.  

It should be noted that, the analyses reported in [15 – 17] consider the problem of 

classification resembling epilepsy diagnosis. No performance is reported about 

classifying interictal and ictal EEGs, relevant to seizure detection. In medical 

perspective, detection of seizure is not less important than the diagnosis of epilepsy and 

thus can’t be considered unnoticed.  

 

As mentioned earlier, occurrence of seizure activity manifests itself by drastic change 

and giving a spiky wave patterns in EEG signals. Such an EEG record if decomposed 

into the five sub-bands ( – ) can show how seizure affects the response of EEG in 

different sub-bands. Due to non-stationary nature, the frequency response is time-

varying and for this reasons a composite analysis in both time and frequency domain is 

necessary for EEG signals to observe the effect of seizure and non-seizure activities. 

Application of time-frequency analysis (TFA) in classifying different EEGs is reported 

in [18, 19]. Smoothed pseudo-Wigner-Ville (SPWV) distribution is used in [18] to 

analyze EEG signals in time-frequency domain. The time span is divided into different 

number of partitions and the frequency range is divided into different number of sub-

bands. Time-frequency grid is thus obtained for each combination of frequency sub-

band and time partitions.  Energy of each time-frequency gird is used as features. These 

features are fed to a feed-forward artificial neural network (ANN) in order to classify 

the EEGs in various categories. Four classification problems are studied for different 

combinations of time windows and frequency sub-bands. The performance of 

classification is reported for each combination of time-frequency grid. Further extensive 

analysis is carried out in [19] for a number of time-frequency distributions such as short 

time Fourier transform (STFT), SPVW, reduced interference (RI) etc. In this case, three 

time windows and five frequency sub-bands are used for all time-frequency 

distributions. A comparative study of ANN based classification shows that the best 

performance for all classification problems is achieved when RI and SPVW are used for 
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TFA of EEG signals. Although, TFA can give high degree of accuracy, its 

computational complexity should also be considered to meet the objective of a fast and 

efficient practical seizure detection system.   

 

Recently, the empirical mode decomposition (EMD) has drawn the attention of 

researchers in nonlinear signal analysis for being intuitive and adaptive to signals, while 

requiring no assumption in regard to stationarity and linearity [20]. Since the EEG 

signals exhibit non-stationary behavior, a number of methods have been developed to 

detect seizures in the EMD domain. The EMD can decompose a signal in to a number 

of distinct oscillatory modes called intrinsic mode function (IMF). In [20], EEG signal 

is empirically decomposed into IMFs and then the mean frequencies are obtained from 

the Fourier-Bessel expansion series of these IMFs. These mean values are shown to be 

effective in discriminating the ictal periods from the inter-ictal ones. However, the 

applicability of these mean frequencies is not evaluated by considering a classification 

problem related either to epilepsy diagnosis or seizure detection. Energy thresholding 

for the first three IMFs are used in [21] to identify inter-ictal and ictal segments from 

EEG records of epileptic patients. The threshold level for an IMF is defined from its 

own energy content and the detection of seizure activity is based on whether the three 

IMF energies exceed their respective threshold levels for certain duration. Power 

spectral densities of the first three IMFs are used in [22], to extract several statistical 

features both in time and frequency domain. The dimension of the feature vectors  are 

reduced using Lambda of Wilks criterion and then applied to a linear discriminant 

analyzer (LDA) for detecting inter-ictal and ictal segments from EEG records of an 

epileptic patient.  

 

It should be noted that the works of [21-22] do not conduct any comprehensive analysis 

of EEG signals in the EMD domain and consider only the classification of signals 

collected during ictal and inter-ictal periods, neglecting the other classifications related 

to medical applications (e.g., diagnosis of epilepsy) In fact, very limited work is done to 

analyze different classification problems using features obtained from IMFs of EEG 

signal.  Thus, it might be worthwhile to explore the potential of EMD for EEG signal 

analysis comprehensively and develop classification systems suited to a variety of 

classification problems. 



- 12 - 

 

1.3 Objective and Scope 

The objective of this thesis is to develop effective classification methods with improved 

accuracy for use in epilepsy diagnosis as well as detecting seizure activity. The efficacy 

of a classification system depends mostly on the types of the features used and whether 

they are extracted from original or transformed signals. In this regard, a comprehensive 

analysis of EEG signals will be done in the EMD domain to investigate the 

effectiveness of higher order statistical features such as variance, kurtosis and skewness 

in discriminating EEG segments of different characteristics. An ANN based 

classification system shall be developed using these statistical features and its 

performance studied for different classification problems extensively. Furthermore, the 

possibility of EEG signal discrimination using chaotic features will be explored. An 

extensive study will be conducted to determine the potentiality of chaotic features 

extracted in the EMD domain in discriminating the EEG signals. A classification system 

will then be developed using a combination of the statistical and chaotic features and its 

performance investigated for different classification problems.  Since the variance, 

kurtosis and skewness provide an average characterization of different order EEG 

signals, it might more interesting to see whether the statistics of these signals can be 

effectively described using statistical models. This is important as given that a model 

capture the underlying statistics of an EEG signal, whether in time or EMD domain, the 

corresponding model parameters may provide valuable information as to the signal 

characteristics related to epilepsy. Thus, the performance of a number of well-known 

statistical priors in describing the underlined statistics of original EEG signals as well as 

the decomposed IMFs will be investigated.   
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1.4 Organization 

 The thesis is organized as follows. In Chapter 2, the suitability of kurtosis, 

skewness and variance in classifying EEG signals is investigated in the EMD domain. 

The performance of the ANN-based classification method, wherein these features are 

used as patterns, is described for various classification problems related to medical 

scenario involving epilepsy diagnosis and seizure detection. In Chapter 3, chaotic 

analysis is carried out on the IMFs to observe their capability of distinguishing various 

types of EEG signals. Performance of the classification method employing a 

combination of statistical and chaotic features of the IMFs is described in Chapter 4. In 

Chapter 5, EEG signals are modeled using various statistical priors and the performance 

of these priors in modeling the signals is described using standard  measures of 

goodness-of-fit. Finally, in Chapter 6, the research work presented in this thesis is 

summarized and recommendation for future research is stated.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 2 

DETECTION OF EPILEPTIC SEIZURES USING 
HIGHER-ORDER STATISTICS IN THE EMD 

DOMAIN 
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2.1 Overview 

In this chapter, a method for efficient detection of seizure using higher order statistical 

moments calculated in the EMD domain is proposed [23]. The suitability of these 

moments in distinguishing the EEG signals is investigated through an extensive analysis 

in the EMD domain. An artificial neural network (ANN) is employed as the classifier of 

the EEG signals wherein these moments are used as features. The performance of the 

proposed method is studied using a publicly available comprehensive database for 

various classification categories and compared with that of several recent techniques. It 

is shown that the proposed method can provide very high degree of sensitivity, 

specificity and accuracy especially in the case of discriminating seizure activities from 

the non-seizure ones for patients with epilepsy. 

 

2.2 Empirical Mode Decomposition (EMD) 

The EMD is an adaptive process of extracting amplitude and frequency modulated 

oscillatory patterns directly from a time series data. The decomposition is based on the 

simple assumption that any data consists of different simple intrinsic modes of 

oscillations which can be extracted using the basis derived from the data.  These 

patterns are called intrinsic mode functions (IMFs) and they satisfy the following two 

conditions [24]:  

a) For an IMF, total number of maxima and minima equals to the total number 

of zero crossings or differs at most by one. 

b) At any point of the IMF, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero.  

The process of extracting IMFs from a time series data is called a Sifting process. It 

should be noted that, the signal should have at least one maxima and on minima for 

successful decomposition. For an N-point data, X{x1, x2, ..., xN}, the sifting process is 

carried out as follows: 

Step 1: The original data (X) is assigned to an initial dummy variable,  h 

h=X       (2.1) 

Step 2: h assigned to another variable, hold  

hold = h     (2.2) 

Step 3: The local maxima and minima of hold are identified. The jth sample of hold 

is considered to be local maxima if it is greater than both the (j+1)th and (j – 1)th sample 

and minima if it is less than both the (j+1)th and (j – 1)th sample. 
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Step 4: Envelops of local maxima emax and that of local minima emin are obtained 

using the following method of cubic spline interpolation. 

The interpolation is based on defining a set of piece-wise 3rd degree polynomials, F(z) 

for P-point data {z1, z2, ... zP} 

F(z) = fi(z); zi ≤ z < zi+1; i = 1, 2, 3, …, P – 1;  (2.3) 

where, fi(z)= ai(z-zi)3+bi(z-zi)2+ci(z-zi)+di  and z denotes the set of either the local 

maxima or the local minima. The parameters ai, bi, ci and di are estimated as:  
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for yi =F(zi)  and Mi = fi’’(zi) 

Step 5: The values of the mean of emax and emin are calculated 

M = ( emax + emin)/2    (2.4) 

 and subsequently subtracted from  hold  

hnew = hold – m     (2.5) 

Step 6: hnew is then assigned to hold 

hold  = hnew     (2.6) 

 

Steps 3 – 6 are repeated until the following stopping criterion is fulfilled. 
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      (2.7) 

where α is an arbitrary value preset in the range of 0.2~0.3. Upon satisfying eqn. (2.7), 

hnew becomes an IMF c, a residue value r is calculated as 

r = h – c     (2.8) 

The entire process is then repeated by setting r as h. Thus, the input signal can be 

decomposed into L IMFs until the residue becomes a monotonic function such that 

further extraction of an IMF is not possible. Fig. 2.1 illustrates the whole process using 

a flow chart. 
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Fig. 2.1: Flow Chart describing EMD. 
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The input X can be reconstructed from all the IMFs as  





L

n
Ln rcX

1

     (2.9) 

As mentioned in Sec. 1.5, EMD is particularly well-suited for analysing non-stationary 

and non-linear signals and further investigations is required to evaluate its applicability 

in EEG signal analysis. As a first attempt, an original EEG segment and its first four 

empirically decomposed IMFs are shown on Fig. 2.2. Notice that as the level of an IMF 

increases, the corresponding data becomes smoother. 
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Fig. 2.2: Sample EEG signal and its first four IMFs. 

2.3 Analysis of EEG Signals Using Higher Order Statistics 

In this work, higher order statistics such as variance, skewness and kurtosis are utilized 

for classifying the EEG signals in the EMD domain. The use of these moments is 

motivated by the fact that distribution of the samples of a data set is often characterized 

by its level of dispersion, asymmetry and concentration around the mean. For an N-

point data, X{x1, x2,..., xN}, the variance σ2 is calculated as 





N

i
ii

N

i
x

N
x

N 1

2

1

2 1;)(1
    (2.10) 

where µ denotes the sample mean of the data. The skewness 1 is measured as 
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If skewness is negative, the data are spread out more to the left of the mean than to the 

right. On the other hand, a positive skewness indicates that the data are spread out more 

to the right. For a perfectly symmetric distribution about mean, the skewness would be 

equal to zero. The kurtosis 2  is obtained as 

4
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The kurtosis of a data histogram having a sharper peak and longer, fatter tails is greater 

than that for a distribution having a more rounded peak and shorter thinner tails.  Notice 

that the variance itself is the 2nd – order moment of the data, whereas the skewness and 

kurtosis are computed from the 2nd, 3rd and 4th – order moments. Fig. 2.3 shows the plot 

of histograms of EEG signals obtained from a healthy person and an epileptic patient 

during inter-ictal and ictal periods.   

-2000 -1000 0 1000 2000
0

500

1000

1500

2000

2500
Healthy EEG

Voltage (v)

R
el

at
iv

e 
fre

qu
en

cy

-2000 -1000 0 1000 2000
0

500

1000

1500

2000

2500
Inter-ictal EEG

Voltage (v) 

R
el

at
iv

e 
fre

qu
en

cy

-2000 -1000 0 1000 2000
0

500

1000

1500

2000

2500
Ictal EEG

Voltage (v)

R
el

at
iv

e 
fre

qu
en

cy

(a) (b) (c)  

Fig. 2.3: Histograms of (a) healthy, (b) inter-ictal and (c) ictal EEG segment.  

It is seen that ictal ones demonstrate the highest level of dispersion, whereas the non-

ictal one (healthy) the smallest. However, these two show a similar level of peakedness. 

On the other hand, the inter-ictal (seizure-free interval) segment gives considerably 

higher peak. The healthy, inter-ictal and ictal segments are symmetric, asymmetric to 

the right and asymmetric to the left with respect to the corresponding mean, 

respectively, the ictal one being more asymmetric than others. 
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Since the measures, variance, skewness and kurtosis, are representative of the 

dispersion, asymmetry and peakedness of the data, and hence, may be used to 

discriminate EEG signals of different categories. However, since the EEG signals are 

non-stationary, it might be more interesting to see whether similar discriminatory 

attributes are observed in the EMD domain for these statistical measures. For this 

purpose, an extensive study is conducted using a comprehensive database of EEG 

signals, in which the values of these measures are calculated for a large number of EEG 

segments as well as their various IMFs. The database consists of five hundred EEG 

segments and is available online [25]. The reason for using the database is its 

availability in public domain and its widespread use in the literature. It is a collection of 

500 single-channel EEG segments of 23.6-sec. duration that are categorized into five 

groups of 100 segments each (Set A – Set E). Set A and Set B consist of surface EEG 

segments collected from five healthy volunteers in awaken and relaxed state, with their 

eyes open and closed, respectively. Segments in Set C, D and E are obtained from five 

epileptic patients. Set C and Set D contain inter-ictal EEGs recorded intracranially from 

the hippocampal formation of the opposite hemisphere and the epileptogenic zone of the 

brain, respectively. Set E contains signals corresponding to seizure attacks (i.e. ictal 

EEGs). The signals are recorded in digital format at a sampling rate of 173.61Hz 

omitting the artifacts caused either by muscle activity or strong eye movements [26]. 

Thus, the sample length of each segment is 173.61×23.64097, and the corresponding 

maximum frequency content is 86.81 Hz. Since the frequency range of an EEG signal 

spans over 0~60 Hz [11], frequencies greater than 60 Hz are considered as noise and 

discarded by passing each signal through a 6th – order Butterworth filter having a cut-off 

frequency of 60 Hz. Fig. 2.4 illustrates sample EEG segments from each of these data 

sets. 

 

For the purpose of analysis, each EEG segment is decomposed into nine IMFs using the 

algorithm described in Section 2.2. Due to the non-stationary nature, an IMF is further 

segmented into 16 blocks using a rectangular window of length 256. For each window, 

the values of the variance, skewness and kurtosis are calculated using (2.10), (2.11) and 

(2.12).  For the sake of comparison, these values are also calculated for the band-limited 

EEG segments. 
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Fig. 2.4: Sample EEG segments from the five datasets. 

Tables 2.1, 2.2 and 2.3 shows the mean and standard deviation (SD) of the values 

obtained for the different sets of EEG signal as well as their IMFs. It can be seen that 

the mean values are clearly distinguishable for the different sets of EEG signals, 

especially between the ictal and non-ictal ones. Also, note that the difference becomes 

larger in the EMD domain as compared to that of band-limited signal. The values of the 

standard deviation are small for all the parameters except the variance. However, the 

standard deviations are greatly reduced for the IMFs. In addition, for the set E (that 

contains signals of ictal period) the mean values of variance are quite large in 

comparison to those of other sets. It is also seen that the values of variance rapidly 

decreases with the increase in IMF level. 
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Table 2.1: Mean values of variance (SD shown in parentheses) 

 Set A Set B Set C Set D Set E 
Band-
limited 

1611.324 
(815.45) 

3953.915 
(2913.945) 

2845.639 
(2611.025) 

7299.808 
(23242.150) 

114858.022 
(104905.175) 

IMF 1 480.318 
(315.588) 

2653.632 
(2747.498) 

292.097 
(434.722) 

1059.390 
(5059.273) 

57976.683 
(75834.202) 

IMF 2 359.685 
(212.33) 

675.571 
(442.931) 

625.770 
(699.974) 

1592.860 
(5748.099) 

55920.001 
(66271.258) 

IMF 3 277.509 
(225.947) 

367.282 
(357.469) 

894.746 
(1170.022) 

2054.435 
(6744.977) 

22487.367 
(32335.638) 

IMF 4 283.841 
(357.366) 

326.523 
(641.159) 

752.704 
(1152.976) 

1984.115 
(7380.363) 

9063.732 
(18489.421) 

IMF 5 215.720 
(330.739) 

221.450 
(493.7) 

334.132 
(559.707) 

1932.679 
(12947.829) 

2810.065 
(7526.228) 

IMF 6 90.585 
(405.294) 

104.666 
(302.232) 

73.602 
(196.305) 

897.671 
(7431.247) 

885.594 
(5008.929) 

IMF 7 50.696 
(244.555) 

69.882 
(235.147) 

35.741 
(130.478) 

144.141 
(1053.630) 

273.489 
(1871.726) 

IMF 8 22.330 
(68.212) 

51.857 
(168.252) 

24.766 
(98.504) 

30.891 
(121.214) 

89.201 
(250.402) 

IMF 9 10.658 
(31.306) 

15.042 
(34.457) 

8.514 
(24.825) 

14.666 
(61.237) 

30.986 
(67.602) 

 

Table 2.2: Mean values of skewness (SD shown in parentheses) 

 Set A Set B Set C Set D Set E 
Band-
limited 

-0.018 
(0.342) 

0.032 
(0.306) 

-0.107 
(0.513) 

0.055 
(0.781) 

-0.062 
(0.795) 

IMF 1 0.002 
(0.153) 

-0.006 
(0.133) 

0.013 
(0.288) 

0.026 
(0.393) 

-0.012 
(0.243) 

IMF 2 -0.004 
(0.195) 

0.004 
(0.164) 

0.013 
(0.260) 

0.002 
(0.297) 

-0.006 
(0.187) 

IMF 3 0.001 
(0.259) 

-0.003 
(0.284) 

0.000 
(0.332) 

0.015 
(0.321) 

-0.007 
(0.258) 

IMF 4 0.007 
(0.347) 

0.003 
(0.368) 

-0.016 
(0.377) 

-0.008 
(0.390) 

0.003 
(0.353) 

IMF 5 -0.010 
(0.475) 

0.004 
(0.466) 

0.019 
(0.484) 

0.002 
(0.473) 

0.008 
(0.460) 

IMF 6 0.017 
(0.645) 

0.009 
(0.658) 

0.010 
(0.663) 

0.001 
(0.647) 

-0.002 
(0.633) 

IMF 7 0.018 
(0.626) 

0.030 
(0.607) 

0.027 
(0.604) 

0.007 
(0.597) 

0.006 
(0.607) 

IMF 8 0.006 
(0.493) 

0.026 
(0.486) 

0.048 
(0.456) 

0.024 
(0.469) 

0.014 
(0.490) 

IMF 9 0.010 
(0.364) 

0.042 
(0.358) 

0.038 
(0.312) 

0.028 
(0.326) 

0.021 
(0.361) 
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Table 2.3: Mean values of kurtosis (SD shown in parentheses) 

 Set A Set B Set C Set D Set E 
Band-
limited 

2.971 
(0.599) 

2.949 
(0.550) 

3.041 
(0.940) 

3.456 
(2.238) 

3.237 
(1.210) 

IMF 1 3.312 
(0.912) 

3.188 
(0.917) 

4.017 
(1.522) 

4.707 
(2.337) 

3.070 
(1.439) 

IMF 2 2.871 
(0.719) 

2.839 
(0.707) 

3.108 
(0.859) 

3.271 
(1.278) 

2.582 
(0.826) 

IMF 3 2.618 
(0.645) 

2.586 
(0.671) 

2.596 
(0.729) 

2.630 
(0.778) 

2.451 
(0.680) 

IMF 4 2.216 
(0.563) 

2.196 
(0.598) 

2.147 
(0.554) 

2.189 
(0.610) 

2.124 
(0.548) 

IMF 5 1.928 
(0.559) 

1.903 
(0.567) 

1.889 
(0.562) 

1.891 
(0.581) 

1.909 
(0.512) 

IMF 6 2.098 
(0.568) 

2.132 
(0.567) 

2.147 
(0.549) 

2.112 
(0.549) 

2.089 
(0.566) 

IMF 7 2.157 
(0.527) 

2.138 
(0.509) 

2.136 
(0.513) 

2.126 
(0.512) 

2.133 
(0.518) 

IMF 8 2.025 
(0.399) 

2.015 
(0.378) 

1.997 
(0.366) 

2.006 
(0.384) 

2.004 
(0.450) 

IMF 9 1.906 
(0.348) 

1.923 
(0.299) 

1.767 
(0.547) 

1.758 
(0.587) 

1.868 
(0.439) 

 

Next, a one-way analysis of variance (ANOVA) is performed at 99% confidence level 

to observe the ability of discrimination of a particular measurement over the band-

limited EEGs as well as IMFs. Significant statistical difference among the five groups is 

indicated when p < 0.001. Table 2.4 shows the results obtained from the ANOVA. 

 

Table 2.4: p-values obtained from one-way ANOVA analysis 

Signals p-values for Kurtosis p -values for Skewness p -values for Variance 
Band-Limited 0 1.11E-16 0 

IMF 1 0 1.96E-04 0 
IMF 2 0 0.12331204 0 
IMF 3 9.53E-14 0.27357587 0 
IMF 4 1.48E-05 0.38668119 0 
IMF 5 0.2694423 0.53907444 0 
IMF 6 0.0208843 0.92752396 1.11E-15 
IMF 7 0.5289733 0.70355458 3.26E-13 
IMF 8 0.3048336 0.12701895 0 
IMF 9 0 0.07286216 0 
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It is observed that kurtosis gives significant statistical difference among five groups for 

band-limited EEGs as well as the first four IMFs. Skewness does the same for band-

limited EEGs and IMF1. However, variance gives significant statistical difference for 

band-limited EEGs as well as for all the IMFs. These observations are concurrent with 

that of [20] where it is shown that significant statistical difference exist among the first 

four IMFs. 

 

2.4 Classification 

In the previous section, it is seen that the values of the statistical parameters, variance, 

skewness and kurtosis are significantly different from each other for different classes of 

EEG signals especially for the first four IMFs. Thus, a classifier is developed using 

these parameters as features to differentiate various types of EEG signals. The features 

are obtained from the IMFs as well as band-limited EEG segment using the procedure 

described in the previous section. Since an EEG segment is divided into 16 blocks and 

there are 100 segments in a set, 1600 feature vectors of dimension three are constructed 

a particular set. These feature vectors are fed into an ANN to perform classification 

process. The ANN used is a  two-layer feed-forward neural network (Fig. 2.5), where 

both the hidden and output layer neurons use hyperbolic tangent sigmoid transfer 

function of the form [27]  

 

1
1

2)( 2 


  xe
xfy     (2.13) 

 

The use of such a non-linear transfer function allows the two-layer network learn the 

non-linear relationship among the input (feature set) and output (target class) vectors. 

After random initialization, the weight and bias values are tuned, using a back- 

propagation training algorithm to optimize the network performance by minimizing the 

mean square error (MSE) among the target and network output vectors. The training 

algorithm performs necessary computations backward through the network and updates 

the network weights and biases to the direction toward which, MSE decreases most 

rapidly.  
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For the present analysis, the number of neurons is set to 20 in the hidden layer. In the 

output layer, the number of neurons is set equal to the number of target classes. The 

scaled conjugate gradient algorithm [28] is used to train the network using the feature 

vectors. Training stops when MSE tends to increase during the validation process. The 

training, validation and testing for classification are carried out using the well-known 

MATLAB® software package, where 60%, 5% and 35% of the feature vectors are 

selected randomly for the purpose of training, validation and testing, respectively. For 

the sake of comparison, an independent classifier is developed for each of the band-

limited signal and the corresponding first four IMFs. For the five sets of EEG records 

described earlier, five different cases of classification problem are considered in this 

paper. In Case I, the EEG records are classified into three categories. EEG segments 

from Set A and Set B are tagged together as healthy class. Set C and Set D are grouped 

into the inter-ictal class and the Set E the seizure class. In Case II, Set A, D and E are 

classified into healthy, inter-ictal and seizure classes, respectively. In Case III, segments 

from Set A and Set E are classified into healthy and seizure classes, respectively. In 

Case IV, Set A, B, C, and D are tagged together to form the non-seizure class, whereas 

Set E the seizure class. In Case V, Set D and Set E are classified into the inter-ictal and 

seizure classes, respectively. Table 2.5 shows the distribution of the feature vectors 

randomly chosen for training, validation and testing purposes. 

 

 

Fig. 2.5: Two layer feed-forward network with R input elements and N output elements. 
(Dimension of each matrix / vector is given inside the corresponding blocks.)   
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Table 2.5: Distribution of the feature vectors 

Case Class Number of feature vectors randomly chosen 
Training Validation Testing Total 

I 
healthy (AB) 1920 160 1120 3200 

interictal (CD) 1920 160 1120 3200 
seizure (E) 960 80 560 1600 

Total 4800 400 2800 8000 

II 
healthy (A) 960 80 560 1600 

interictal (D) 960 80 560 1600 
seizure (E) 960 80 560 1600 

Total 2880 240 1680 4800 
III healthy (A) 960 80 560 1600 

seizure (E) 960 80 560 1600 
Total 1920 160 1120 3200 

IV non-seizure (ABCD) 3840 320 2240 6400 
seizure (E) 960 80 560 1600 

Total 4800 400 2800 8000 
V interictal (D) 960 80 560 1600 

seizure (E) 960 80 560 1600 
Total 1920 160 1120 3200 

 

2.5 Results and Discussion 

The performance of the proposed method is studied using standard measures such as 

sensitivity (Sen), specificity (Spe) and accuracy (Acc), expressed as 

%100



FNTP

TPSen     (2.13) 

%100



FPTN

TNSpec     (2.14) 

%100





FNFPTNTP
TNTPAcc    (2.15) 

where TP, TN, FP and FN stand for true positive, true negative, false positive and false 

negative events, respectively [14]. The results obtained from the proposed classification 

algorithm are given in Table 2.6 in terms of sensitivity, specificity and accuracy for the 

five cases mentioned earlier.  Notice that all the cases are closely related to practical 

medical scenario. 

It is seen that the classification performance improves in the EMD domain as compared 

to that of using the band-limited signals. For Case I, the best result is obtained for IMF 3 

where, the sensitivity for inter-ictal and seizure class are 99.93% and 99%, respectively. 

This signifies a high degree of accuracy in classifying these two classes of EEG signals. 
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However, the corresponding sensitivity for the healthy class is 50.06%. This result is 

not unexpected since one can see from Tables 2.2 and 2.3 that the mean values of 

skewness and kurtosis obtained from IMF 3 are almost same for Set A to Set D. It 

should be mentioned that an EEG detection method is expected to be highly sensitive 

especially in the case of inter-ictal and seizure classes EEG data.  

 

Table 2.6: Classification performance for the various cases 

Case Band-Limited EEG IMF 1 IMF 2 IMF 3 IMF 4 

I 

(A,B), (C,D), E 

SenAB 76.81 71.8 50.34 50.06 49.6 
SenCD 43.23 57.03 98.4 99.93 99.22 
SenE 87.88 78.44 82.2 100 70.88 

Accuracy 65.6 67.2 75.9 80 73.7 
II 

A, D, E 

SenA 89.8 78 100 100 1576 
SenD 36.75 57.44 96.56 100 99.3 
SenE 94.4 86 79.5 100 63.31 

Accuracy 73.6 73.8 92 100 87 

III 

A, E 

Sen 99.9 99.3 100 100 99.9 

Spec 98.4 87.8 100 100 75.1 

Accuracy 99.1 93.5 100 100 87.5 

IV 

(A,B,C,D),  E 

Sen 91.5 77.4 85.1 100 66.1 

Spec 98.1 98.1 99.2 100 99.8 

Accuracy 96.8 94 96.4 100 93.1 

V 

D, E 

Sen 93.8 97.7 97.3 100 100 

Spec 92.3 85.8 83.9 100 100 

Accuracy 93.1 91.7 90.6 100 100 
 

The EEG segments falsely classified as inter-ictal and seizure can be easily discarded 

by a neurologist. In addition, the overall accuracy achieved for IMF 3 is also acceptable, 

about 80%. For Case II, 100% sensitivity is achieved for IMF3 with an overall accuracy 

of 100%, thus indicating a perfect classification of healthy, inter-ictal and seizure 

groups. In Case III, similar results are obtained for both IMF 2 and IMF 3. Note that this 

case is closely related to epilepsy diagnosis based on the presence of seizure activity 

only. In Case IV, 100 % sensitivity and specificity are obtained with IMF 3, indicating 

exact 9dentification of true positive and negative events. The overall accuracy is also 
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100%. As for the last case, which is especially important during on-line detection of 

seizure occurrence for an epileptic patient, 100% sensitivity, specificity and accuracy 

are achieved using IMF 3 and IMF 4.  Table 2.7 provides a comparative study of the 

obtained results for the various cases with those of several state-of-the-art methods 

reported in the literature. For the different methods in Table 2.7, the values of the 

corresponding maximum accuracy are used for comparison. 

  

It is seen that the proposed method shows a better accuracy in most of the cases as 

compared to those of others. In Case I the accuracy is 80% as compared to the 97.72% 

accuracy of [18]. This is mainly due to the misclassification of healthy groups (A and 

B) into the epileptic ones (C, D and E). Thus, it would not strongly affect the detection 

process. In addition, the proposed method uses feature vectors of lower dimensionality 

as compared to [18], thus incurs a reduced computational effort. 

 

For example, to extract features from a 4097-point length EEG segment, the time taken 

by the proposed method is about 0.3 second, whereas the method in [18] requires 

minimum 3 second and maximum 28 second. Note that an EEG segment is divided into 

sixteen 256-length blocks and the feature vectors are obtained from the IMFs of 

different blocks. Since a feature vector is generated from an IMF of a block, the 

corresponding extraction time is about 0.3/16 second or 19 ms. 
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Table 2.7: Comparison of classification performance obtained for various algorithms 

Case Method Feature and classifier Number of 
features used 

Accuracy 
(%) 

I 

(A,B), 
(C,D), E 

Tzallas et al.[18] (2007) 
Fractional energy from 

TFA, ANN 40 97.72 

Proposed EMD, higher order 
moments, ANN 3 80 

II 

A, D, E 

Tzallas et al.[18] (2007) TFA, ANN 13 99.28 

Liang et al.[14] (2010) 
TFA, ApEn, PCA, 

RBFSVM 16 98.67 

Proposed EMD, higher order 
moments, ANN 3 100 

III 

A, E 

Tzallas et al. [19] (2009) RI, ANN 16 100 

Bedeeuzzaman et al. [16] 
(2010) 

Higher order statistics, 
Linear classifier 4 97.75 

Fathima et al.[17] (2011) Higher order statistics, 
Linear classifier 3 96.9 

Proposed EMD, higher order 
moments, ANN 3 100 

IV 

(A,B,C,
D), E 

Tzallas et al.[18] (2007) SPWV dist., ANN 16 97.73 

Liang et al.[14] (2010) TFA, ApEn, PCA, 
RBFSVM 16 98.51 

Proposed EMD, higher order 
moments, ANN 3 100 

V 

D, E 

Liang et al.[14] (2010) TFA, ApEn, PCA, 
RBFSVM 16 98.74 

Proposed EMD, higher order 
moments, ANN 3 100 
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2.6 Summary 

In this chapter, a seizure detection method based on using the higher order statistical 

moments such as variance, skewness and kurtosis has been discussed. An extensive 

analysis has been carried out in the EMD domain to investigate the ability of these 

moments in distinguishing the EEG signals. These moments have been used as features 

to classify the EEG signals using an ANN. A publicly available comprehensive database 

has been used to study the performance of the proposed method for various 

classification categories and compare it with that of several recent techniques. It has 

been shown that the proposed method can provide very high degree of sensitivity, 

specificity as well as accuracy especially in the case of discriminating seizure activities 

from the non-seizure ones with reduced computational effort. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 3 

EEG SIGNAL DISCRIMINATION USING  

NON-LINEAR DYNAMICS IN THE EMD DOMAIN  
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3.1 Overview 

 

In this chapter, a nonlinear approach, based on chaos analysis of EEG signals in the 

EMD domain, to classify healthy persons, and epileptic patients with and without 

seizure attacks, is introduced [29]. The signals are discriminated using the values of the 

largest Lyapunov exponent (LLE) and correlation dimension (CD) calculated from the 

corresponding IMFs.  Using the five sets of EEG signals [25, 26] mentioned in Sec. 2.3, 

a comprehensive analysis is carried out in the EMD domain and the results show that 

the values of LLE and CD can be an effective tool for discriminating EEG signals. 

 

As mentioned in Sec. 1.5, these chaotic features, when obtained from the wavelet 

subbands of the EEG signals are shown to be effective in differentiating the signals of 

various classes including those of seizures [11]. However, the discriminations are not 

consistent for different sub-bands and satisfactory performance is achieved for only one 

sub-band. Concurrently, Lyapunov spectra have been used in [13] to make a multi-way 

classification using multi-class support vector machines (SVM). In [15], applicability of 

another chaotic measure named fractal dimension (FD) with SVM is analyzed to 

classify healthy, inter-ictal and ictal EEG segments.  

 

3.2 EEG Signal Analysis with Chaos 

 

The first step in the chaos analysis is to obtain a phase space portrait, by using the time-

dependent variables of the system (here, the EEG signal and its IMFs) as the 

components of the vectors, constituting the multidimensional phase space of the system. 

The sequential plots of the time-dependent vectors represent the evolution of the 

system’s state over time. For an N-point data, {x1, x2, ..., xN}, the phase space portrait 

having M embedding vectors are reconstructed employing the method of delay 

coordinates [30]. First, a matrix X is formed as 
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where, Xn represents the n-th embedding vector and, M = N – (D-1)l. D represents the 

embedding dimension and l represents the lag or reconstruction delay. In order to 

observe the attractor dynamics from the phase space portrait, the optimum value of lag, 

and the minimum value of embedding dimension are determined using the algorithm of 

equidistant histogram box and Cao’s method, respectively [31]. Fig. 3.1 and 3.2 show 

the 3-dimensional phase space portrait of EEG signals recorded from a healthy person 

and an epileptic patient during inter-ictal and ictal period. 
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Fig. 3.1: Phase space plot of (a) healthy EEG. 
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Fig. 3.2: Phase space plot of (b) inter-ictal and (c) ictal EEG. 

From Fig. 3.1 and 3.2 it we can see three distinctive phase space portrait for three types 

of EEG. Furthermore the portrait is more defined for ictal EEG than both the healthy 

and inter-ictal one. Hence, chaotic measures based on the reconstructed phase space  

may reveal important nonlinear properties which may help to further improve epilepsy 

diagnosis and seizure detection system.  

 

It should be noted that the phase space portrait corresponds to the dynamics of an 

attractor, confined to a sub-region of the system. The attractor is characterized by its 

level of chaoticity and complexity. The Lyapunov exponents are used as a measure of 

the chaoticity of the attractors. The exponents quantify the average exponential 

separation between the nearby trajectories of a phase space. An exponential divergence 
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coupled with folding of the trajectories represents deterministic randomness and 

unpredictability. Thus, a positive Lyapunov exponent for almost all initial conditions in 

a bounded dynamical system is used as an indicator of deterministic chaos.Various 

methods are proposed to date for obtaining the Lyapunov exponents from a time series 

data. In the direct method proposed by Wolf et al. [32], the largest Lyapunov exponent 

(LLE) of a time-series data is obtained as 
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Where 

 n0 = initial discrete time instant; nN, = final discrete time instant, 

1kL = distance between two nearest neighbours on separate trajectories at nk-1,   

kL  = distance at time nk between those two neighbours as evolved from 1kL  

and N represents the number of replacement steps.  However, the LLE can also be 

estimated from p(i) vs. i plot [33], where p(i), the prediction error is given by 
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where, i and Ts represents the number of time steps and sampling interval, respectively. 

According to this method the plot is observed to identify the portion through which the 

prediction error increases at almost constant rate. Least-square method is used to fit a 

straight line to this portion and the LLE is estimated as the slope of this straight line, in 

this thesis, the method of [33] is used since it involves less computational complexity as 

compared to that of [32]. 

 

There is another measure called the correlation dimension (CD) which defines the level 

of complexity of the attractor. To obtain CD, the correlation sum C(r) is first calculated 

using the Grassberger-Procaccia algorithm as [34] 

 






wjk

kj

N

Dj
XXr

wDNDN
rC

)1)(1(
2)(   (3.4) 

where, r= cell size, w = Theiler window 

 and Θ = Heaviside step function,  Θ(x) = 
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Next, the optimum value of CD is obtained employing the Takens-Theiler estimator as 

[35] 
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3.3 Results and Discussion 

As discussed in Sec. 2.3, after low-pass filtering, each EEG signal of the available five 

sets is empirically decomposed into nine IMFs. Using eqn. (3.3), the values of LLE are 

calculated for the band-limited EEG signals as well as for the corresponding IMFs. For 

each dataset, the mean and standard deviation (SD) of the values of LLE are then 

obtained and listed in Table 3.1 for different datasets. The values of CD are obtained 

using (3.4) and (3.5) and the corresponding mean and SD values are provided in Table 

3.2 

Table 3.1: Mean values of LLE (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 
Band-

Limited 
18.16 

(2.098) 
22.16 
(1.93) 

11.72 
(2.643) 

12.89 
(3.762) 

20.49 
(3.634) 

IMF 1 24.63 
(0.763) 

24.09 
(0.792) 

23.99 
(0.898) 

23.39 
(1.028) 

22.14 
(2.244) 

IMF 2 26.4 
(1.253) 

26.06 
(1.315) 

26.68 
(1.407) 

26.15 
(1.914) 

25.58 
(2.47) 

IMF 3 27.69 
(1.337) 

26.8 
(1.422) 

26.46 
(1.406) 

25.88 
(2.057) 

25.58 
(2.863) 

IMF 4 21.52 
(2.065) 

20.75 
(2.137) 

19.35 
(1.903) 

19.19 
(2.29) 

19.49 
(3.461) 

IMF 5 12.68 
(1.901) 

11.97 
(2.41) 

11.39 
(2.204) 

11.96 
(2.487) 

11.91 
(3.448) 

IMF 6 5.665 
(2.253) 

4.711 
(1.999) 

4.295 
(1.957) 

4.757 
(2.051) 

4.957 
(2.551) 

IMF 7 1.479 
(1.152) 

1.681 
(1.569) 

1.327 
(1.176) 

1.358 
(1.444) 

1.396 
(1.399) 

IMF 8 0.697 
(0.667) 

0.833 
(0.894) 

0.583 
(0.809) 

0.644 
(0.74) 

0.551 
(0.858) 

IMF 9 0.142 
(0.385) 

0.179 
(0.495) 

0.029 
(0.118) 

0.093 
(0.248) 

0.141  
(0.32) 

 

It is observed from Table 3.1 that the mean value of LLE shows no specific trend for the 

EEG signals from Set A to Set E and thus, no decision can be taken from it. However, it 

decreases as one move from Set A to Set E for IMFs 1 and 3. A similar trend is found 
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for the IMFs 2 and 4, with an exception for Sets C and D, and Set E, respectively. On 

the other hand, no specific trend is seen for the IMFs 5 to 9. But, for all IMFs it is seen 

that the mean value of LLE for Set A is always greater than that for Set E (seizure 

activity). From Table 3.2 it is observed that the mean value of CD decreases from Set A 

to Set E for the IMFs 1, 2, 3, 4 and 7, but no general trend for the EEG signals. As for 

other IMFs, no decision can be taken based on the mean value of CD since it does not 

show any specific trend. 

 

Table 3.2: Mean values of CD (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 
Band-

Limited 
13.8 

(26.6) 
20.47 

(101.9) 
6.906 

(1.572) 
6.289 

(1.475) 
5.252 

(1.793) 
IMF 1 6.627 

(1.356) 
6.165 

(0.833) 
5.769 

(0.798) 
4.891 

(1.264) 
4.346 

(1.219) 
IMF 2 4.682 

(0.407) 
4.189 

(0.478) 
4.049 

(0.395) 
3.858 

(0.611) 
3.739 

(0.829) 
IMF 3 3.073 

(0.221) 
2.907 

(0.317) 
2.729 

(0.231) 
2.71 

(0.319) 
2.702 

(0.488) 
IMF 4 2.16 

(0.122) 
2.111 
(0.14) 

2.079 
(0.112) 

2.075 
(0.126) 

2.074 
(0.244) 

IMF 5 1.874 
(0.146) 

1.807 
(0.206) 

1.845 
(0.142) 

1.815 
(0.196) 

1.771 
(0.239) 

IMF 6 1.551 
(0.221) 

1.483 
(0.241) 

1.505 
(0.222) 

1.495 
(0.248) 

1.451 
(0.262) 

IMF 7 1.268 
(0.182) 

1.264 
(0.166) 

1.252 
(0.148) 

1.25 
(0.159) 

1.23 
(0.165) 

IMF 8 1.182 
(0.085) 

1.171 
(0.088) 

1.174 
(0.085) 

1.168 
(0.094) 

1.143 
(0.148) 

IMF 9 1.095 
(0.136) 

1.098 
(0.07) 

1.003 
(0.282) 

1.084 
(0.13) 

1.072 
(0.204) 

 

Furthermore, a one-way analysis of variance (ANOVA) is performed at 99% confidence 

level, where no significant difference among the means of the five data sets represents a 

null hypothesis. The null hypothesis will be rejected if the corresponding p value is less 

than 0.001. Table 3.3 shows the results obtained from the ANOVA. 
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Table 3.3: p-values obtained from one way ANOVA 

Signals p-value for 
LLE 

p-value for 
CD 

Band-Limited 0 0.1095 
IMF 1 0 0 
IMF 2 0.0002 0 
IMF 3 2.3908e-14 0 
IMF 4 1.59983e-13 0.0002 
IMF 5 0.0113 0.0021 
IMF 6 0.0003 0.0579 
IMF 7 0.3593 0.5238 
IMF 8 0.104 0.0812 
IMF 9 0.02 0.0017 

 

It is seen from Table 3.3 that the null hypothesis is rejected for both the LLE and CD in 

the case of the IMFs 1, 2, 3 and 4. Thus, the LLE and CD values of the five sets are 

significantly different from each other if their first four IMFs are considered. This is 

further illustrated in Fig. 3.2, 3.3 and 3.4 that show the confidence interval plots for the 

EEG signals and the corresponding first two IMFs. Fig. 3.2 shows plots for original 

band-limited EEG signals whereas Figs. 3.3 and 3.4 the plots for first and second IMFs, 

respectively. Notice that, the LLE values calculated directly from the signal shows 

discriminating feature but in an inconsistent manner, while the values of CD are all 

similar, thus useless for discrimination. On the other hand, the values of CD and LLE 

obtained from the IMFs clearly show distinguishing feature-enabling one to easily 

discriminate signals belonging to various categories including seizure-free intervals and 

seizure attacks. Overall, it is clear that the values of LLE and CD can be quite 

effectively employed to identify seizure activities from the various IMFs of the EEG 

signals. In addition, one can take decisions from multiple IMFs, which is more 

convincing. 
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Fig. 3.3: Confidence interval plots of (a) LLE and (b) CD from band-limited EEGs 
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Fig. 3.4: Confidence interval plots of (a) LLE and (b) CD from IMF1s 
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Fig. 3.5: Confidence interval plots of (a) LLE and (b) CD from IMF2s 
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3.4 Summary 

EEG signals have been analysed using chaotic parameters in the EMD domain to 

differentiate the signals of healthy and epileptic patients. The largest Lyapunov 

exponent (LLE) and correlation dimension  (CD) have been employed as the measure of 

chaoticity and complexity of a signal, respectively, and calculated for various IMFs of a 

large group of EEG signals of healthy and epileptic persons (with and without seizure 

attacks). It has been observed that both the value of LLE and CD decreases as the non-

linearity as well as randomness of IMF decreases from healthy to signals corresponding 

to seizure activity. Thus, the parameters have demonstrated distinguishing features 

enabling one to discriminate the EEGs of seizure attacks from the others.  

 
 

 



 

 

 

 

 

 

CHAPTER 4 

DETECTION OF EPILEPTIC SEIZURES USING 

CHAOTIC AND STATISTICAL FEATURES IN THE 

EMD DOMAIN 
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4.1 Overview 

 

As discussed in Chapter 1, 2 and 3, EMD is quite suitable for nonlinear signals like 

EEG. Also, the statistical and chaotic features exhibit discriminating characteristics for 

first four IMFs. For this reason, three statistical features, variance, skewness and 

kurtosis will be calculated using eqn. (2.10), (2.11) and (2.12), respectively. Two 

chaotic features, LLE and CD will be calculated using eqn. (3.3) and (3.4), (3.5), 

respectively. In addition to that, another chaotic measure called approximate entropy 

(ApEn) will be calculated from the band-limited EEGs as well as first four IMFs. 

   

The objective of this chapter is to develop classification method using a combination of 

both statistical and chaotic features as patterns for classification by a neural network 

[36]. It is worthwhile to mention that to the best of our knowledge, the application of 

the statistical features and ApEn in EEG signal discrimination in the EMD domain is 

still not reported in the literature. 

Entropy is a thermodynamic quantity that describes the amount of disorder in the 

system. It is estimated from a time series using either power spectral analysis or phase 

space reconstruction. It is shown in [14] that the ApEn can effectively characterize the 

complexity of EEG signals and thus, may be used as a feature suitable for their 

classification. For an EEG data, the approximate entropy (ApEn) is given by [37] 
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where )(rC D
i represents the correlation integral with D embedding dimension and time 

lag of 1 sample. Larger values of ApEn indicate higher irregularity in a time series. In 

this analysis, D is set to 2 and r is set to the 15% of standard deviation of each time 

series [38].  

Table 4.1 gives the mean and SD values of ApEn obtained for band-limited EEG signals 

and their corresponding IMFs. It is observed that for a particular group, the mean values 
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of ApEn decreases as one move from band-limited EEGs to their corresponding IMFs. 

It can also be observed that, for a particular IMF as well as the band-limited EEGs, the 

highest  mean is obtained for Set A and the lowest  for Set E, indicating the reduction of 

randomness of EEGs when seizure occurs.  Furthermore, a gradual reduction of the 

mean values from Set A to Set E can be noticed for band-limited EEGs, and first two 

IMfs.  

Table 4.1: Mean values of ApEn (SD shown in parethesis) 

Signals Set A Set B Set C Set D Set E 
Band-
limited 

0.6899 
(0.058) 

0.621 
(0.065) 

0.566 
(0.065) 

0.532 
(0.103) 

0.479 
(0.091) 

IMF1 0.548 
(0.049) 

0.526 
(0.047) 

0.542 
(0.051) 

0.508 
(0.077) 

0.505 
(0.077) 

IMF2 0.5071 
(0.034) 

0.499 
(0.039) 

0.502 
(0.038) 

0.491 
(0.055) 

0.478 
(0.072) 

IMF3 0.4547 
(0.059) 

0.436 
(0.066) 

0.411 
(0.069) 

0.406 
(0.072) 

0.414 
(0.08) 

IMF4 0.2604 
(0.08) 

0.246 
(0.083) 

0.211 
(0.074) 

0.22 
(0.081) 

0.235 
(0.094) 

IMF5 0.0882 
(0.049) 

0.082 
(0.049) 

0.071 
(0.04) 

0.077 
(0.046) 

0.087 
(0.056) 

IMF6 0.0322 
(0.032) 

0.031 
(0.031) 

0.029 
(0.032) 

0.03 
(0.032) 

0.032 
(0.032) 

IMF7 0.015 
(0.026) 

0.014 
(0.025) 

0.012 
(0.023) 

0.013 
(0.025) 

0.014 
(0.024) 

IMF8 0.0071 
(0.018) 

0.007 
(0.017) 

0.007 
(0.018) 

0.007 
(0.017) 

0.007 
(0.018) 

IMF9 0.0046 
(0.015) 

0.005 
(0.016) 

0.004 
(0.014) 

0.004 
(0.013) 

0.005 
(0.015) 

 

To investigate the level of discrimination, a one-way ANOVA analysis at 99% 

confidence interval is carried out for band-limited EEGs and the IMFs. The 

corresponding p-values, given in Table 4.2 and the confidence interval plots (Fig. 4.1) 

show that, ApEn values are significantly different for  band-limited EEGs as well as 

first five IMFs. Thus, it will be worthwhile to add ApEn as a feature in designing the 

classification system.   
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Table 4.2: p-values obtained from one-way ANOVA analysis 

Signals p-values for ApEn 
Band-limited 0 

IMF1 0 
IMF2 0 
IMF3 0 
IMF4 0 
IMF5 0 
IMF6 0.0113 
IMF7 0.0341 
IMF8 0.7271 
IMF9 0.1438 
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Fig. 4.1: Confidence interval plots for (a) Band-limited EEGs and (b) IMF3s.  
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4.2 Classification of EEG Signals 

 

The detection of seizure activity from an EEG segment is based on identifying the 

features that can differentiate it from normal or inter-ictal segments. It is also possible to 

determine whether a person is suffering from epilepsy or not using the extracted 

features. In this analysis, EEG segments from Set A, D and E is used which has already 

been discussed in Sec. 2.3 [25, 26]. After low-pass filtering, each of the EEG segments 

from three data sets is empirically decomposed into first four IMFs. Due to the non-

stationary nature, an IMF is further segmented into 16 blocks using a rectangular 

window of length 256. For each window three chaotic features (LLE, CD, ApEn) and 

three statistical features (variance, skewness, kurtosis) are calculated. For the purpose of 

comparison, features are extracted from band-limited signals, too. Three cases of 

classification problem are considered. In Case I, Set D and Set E are classified into the 

inter-ictal and seizure classes, respectively. In Case II, segments from Set A and Set E 

are classified into healthy and seizure classes, respectively. Case I represents the 

detection of seizure occurrence for an epileptic patient whereas case II represents the 

diagnosis of whether a person is suffering from epilepsy or not. Case III is a 

combination of Case I and II. Note that all the three cases are close to real medical 

scenario.  

 

Since an EEG segment is divided into 16 blocks and there are 100 segments in a set, 

1600 feature vectors of dimension six are constructed for a particular set. The 

classification process is carried out by feeding these feature vectors into a two-layer 

feed-forward neural network, where the number of neurons is set to 20 in the hidden 

layer and equal to the number of classes in the output layer. The training, validation and 

testing for classification are carried out using the well-known MATLAB® software 

package, where 60%, 5% and 35% of the feature vectors are selected randomly for the 

purpose of training, validation and testing, respectively. The performance of 

classification for each case is studied in terms of sensitivity (Sen), specificity (Spec) and 

accuracy (Acc) using eqn. (2.13), (2.14) and (2.15), respectively. 
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The values of sensitivity, specificity and accuracy obtained for the proposed method are 

shown in Table 4.1 for various cases.  It is seen that for IMF 3, perfect classification is 

achieved in almost all the cases.  

 

Table 4.3: Performance of the proposed method 
Case Band-Limited EEG IMF 1 IMF 2 IMF 3 IMF 4 

I 

(D, E) 

Sen 95.375 97.13 97.88 100 100 
Spec 87.125 86.81 78 100 100 

Accuracy 91.25 91.97 87.94 100 100 
II 

(A, E) 

Sen 99.875 89.7 100 100 95.8 
Spec 99.375 99.4 100 100 69.9 

Accuracy 99.625 94.5 100 100 82.84 
III 

(A, D, 

E) 

SenA 88.125 75.7 84.44 100 68 
SenD 72.625 61 97.06 100 99.06 
SenE 74.625 86.2 100 100 94.2 

Accuracy 78.46 74.3 93.83 100 87.1 

 

The performance of classification system can also be visualized using a confusion 

matrix. It is a matrix having the index of target or actual class as column index and 

index of the output class as the row index. The content of the ith row and jth column 

represents the number of patterns of class j classified under class i. Fig. 4.2 shows the 

confusion matrix obtained for case II using the features from IMF 1 and IMF 3. For 

same IMFs, Fig. 4.3 shows the confusion matrix of case III.  
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(a)     (b) 

 
Fig. 4.2: Case II confusion matrix for (a) IMF1s and (b) IMF3s. 

(Class 1-healthy, Class 2-ictal) 
 
 

 
(a)     (b) 

 
Fig. 4.3: Case III confusion matrix for (a) IMF1s and (b) IMF3s. 

(Class 1-healthy, Class 2-inter-ictal, Class 3-ictal) 
 

From Table 4.3, it is seen that for IMF 3, perfect classification is achieved in almost all 

the cases. The maximum accuracy achieved by the proposed method is compared with 

that of several recent techniques in Table 4.4. Notice that for the various cases, it gives 

higher accuracy as compared to the other methods. 
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Table 4.4: Comparison with other methods 

Case Method Accuracy (%) 
I 

(D, E) 

Liang et al.[14] 98.74 

Proposed 100 

II 

(A, E) 

Tzallas et al. [19] 100 

Bedeeuzzaman et al. [16] 97.75 

Fathima et al.[17] 96.9 

Proposed 100 

III 

(A, D, E) 

Tzallas et al.[18] 99.28 

Liang et al.[14] 98.67 

Proposed 100 

 

4.3 Summary 

A combination of statistical and chaotic features obtained in the EMD domain has been 

used for classifying EEG signals. Using these features, the classification has been 

carried out by an ANN. The performance of the proposed method has been investigated 

for various practical cases using a comprehensive database. It has been shown that the 

proposed method gives perfect classification in almost all the cases, better than several 

state-of-the-art techniques. 

 

 

     

 

 

 



 

 

 

 

 

 

CHAPTER 5 

STATISTICAL MODELING OF EEG SIGNALS IN 

THE EMD DOMAIN 
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5.1 Overview 

The characteristics of sample distribution of EEG signal can significantly improve the 

performance of epilepsy diagnosis and seizure detection system. In Chapter 2 we 

observe this in terms of classification accuracy, which have reached the maximum value 

(i.e. 100%) in most of the cases. It should be noted that, three features defining the 

average level of dispersion, asymmetry and peakedness have been used to attain this 

level of accuracy.  

 

Observing the results in Chapter 2, it would be worth-while to investigate the 

underlying statistics of EEG data. There are several standard statistical models which 

are used to fit sample distribution and quantify the overall statistics of data. In this case 

the estimated model parameters may be used as features in classifying various types of 

EEG signals, since they will represent the fitted signal as a whole rather being average 

statistical characteristics.  The modeling of a sample distribution is based on the 

optimum fitting of its probability density using a standard density function where the 

parameters of the function are estimated from the sample data itself.  

 

In this chapter, two well known standard statistical models named, normal inverse 

Gaussian (NIG) distribution and stable distribution will be used to fit the distribution of 

band-limited EEG signals as well as its IMFs. An extensive analysis will be carried out 

using the same database of EEG signals [25, 26], introduced in Chapter 2.  The 

goodness-of-fit of these modeling will be evaluated in terms of Kullback-Leibler 

divergence (KLD) and Kolmogorov-Smirnov (KS) statistics.  

 

5.2 The Normal Inverse Gaussian distribution 

A random variable X is said to be normal inverse Gaussian (NIG) if its probability 

density is fitted by the following probability density function (pdf) [39]: 
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where, K1(.) is the first ordered modified Bessel function of the second kind. The 

density function is valid for the parameters (  ,,, ) satisfying the following 

inequality conditions: 

0;0   and       (5.2) 

The parameters are estimated from the data in four steps. In the first step, four 

lowest order moments about the origin are calculated. For an N-point data, X{x1, x2,..., 

xN}, the rth moment about the origin is defined as 





N

i

r
ir x

N
m

1

1 ; r = 1, 2, 3, 4      (5.3) 

Next, the first four cumulants are calculated from these moments using the following set 

of equations 
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Then, four intermediate quantities (  ,,, 43 ) are calculated from these cumulants: 
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It should noted that 321 ,, kk and 4 represent the mean, variance, skewness and kurtosis 

of the data, respectively. 

At the final step, the density parameters (  ,,, ) are estimated using the following 

relationships: 
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For accurate estimation of the parameters using the cumulants, data length N should be 

sufficiently large [39]. Effects of these parameters are illustrated on following figures.  

 

Fig. 5.1 shows the effect of steepness parameter  and scaling parameter , keeping 

both and  zero. And Fig. 5.2 shows the effect of skewness parameter   and location 

parameter  , keeping both and  equal to 1.       
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 Fig. 5.1: Effects of   and  on NIG pdf. 
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Fig. 5.2: Effects of    and  on NIG pdf. 

5.3 The Stable Distribution 

 Stable distributions are a rich class of probability distributions, which fit highly 

skewed and heavy tailed distribution of data. Normal, Cauchy and Lévy are some of the 

members of this class. A random variable X is said to be stable if the shape of its 

distribution is preserved (upto scale and shift) under addition. The stable pdf of X, 

S( , ,  , ) is defined by the following characteristic function [40]: 
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where,  = stability index;  2,0  

  = skewness parameter;  1,1  

  = scale parameter; 0  

and  = location parameter;     

In our analysis, the estimation of these parameters as well as calculation of probability 

density is done using STBL toolbox [41]. 

The effect of these parameters on stable distribution is illustrated on the next page. Fig. 

5.3 (a) shows the effect of stability index   and skewness parameter  , keeping  = 1 
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and  = 0. And Fig. 5.3 (b) shows the effect of scale parameter   and location 

parameter , keeping = 1 and  = 0.    
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Fig. 5.3: Effects of (a) ,  and (b)  ,  on Stable pdf. 

 5.4 Statistical Modeling of EEG signals and its IMFs 

As discussed in Sec. 2.3, the EEG signals from each of the five data sets are low-pass 

filtered using 6th order Butterworth filter and then empirically decomposed into nine 

IMFs. A histogram plot is obtained for each IMF and band-limited EEG signal so that 

relative frequency of occurrence can be stored for 512 equally distributed voltage labels. 
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This information will be used to generate empirical pdf, Pemp. The procedure is 

illustrated below for 256 equally distributed voltage labels. 
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Fig. 5.4: Sample EEG signal (a), and its histogram plot (b). 
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Fig. 5.5: Empirical probability distribution obtained from EEG signal. 

The sample EEG signal and its histogram plot are shown in Fig. 5.4. The empirical 

probability distribution derived from the histogram is shown in Fig. 5.5.The set of 

equally spaced voltage labels thus obtained, are used to the NIG and stable distributions 

using eqn. (5.3-5.6) and STBL toolbox, respectively.  

 

5.5 Results and Discussions 

The fitting of NIG and stable pdf to a sample EEG signal and its corresponding P-P plot 

is shown below. The P-P plot is a visual tool to observe the goodness-of-fit obtained by 

a standard pdf. For the empirical pdf, this plot will give a straight line passing through 

the origin. To what level does the standard P-P plot matches that of empirical pdf, gives 

an idea of goodness-of-fit. However, visual inspection may not always be correct for P-

P plots like Fig. 5.6 (b). For this reason, Kullback-Leibler divergence [42] and 

Kolmogorov-Smirnov statistics [43] are calculated to numerically quantify the 

goodness-of-fit. 
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Fig. 5.6: Fitting of NIG and stable pdf (a), and corresponding P-P plot (b). 

The Kullback-Leibler divergence (KLD) is given by 


x type
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emptype xP

xP
xPKLD

)(
)(

log)( 2     (5.8) 

where, subscript type  defines the standard pdf for which the measurement is being 

carried out. Pemp and Ptype denote the empirical and fitted standard pdfs, respectively. 

The second quantity, Kolmogorov-Smirnov (KS) statistics is defined as 

)()(
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xFxF
x

KS typeemptype      (5.9) 

Here, Femp and Ftype denote the empirical and fitted standard cumulative probability 

distributions, respectively. For both KLD and KS measures, lower the value, the better 

is the goodness-of-fit. Fig. 5.7 shows the distribution fitting of a sample EEG signal 

from Set A. From all the five data sets, each band-limited EEG signal and its nine IMFs 

are fitted using NIG and stable pdfs. For each case, KLD and KS are measured. Table 

5.1 and 5.2 show the mean values of KLDs obtained for fitting NIG and stable pdf, 

respectively. 
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Fig. 5.7: Distribution fitting of a band-limited EEG signal from Set A. 

Table 5.1: Mean values of KLDNIG (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 

Band-limited 0.2493 
(0.0824) 

0.1672 
(0.0438) 

0.2229 
(0.1090) 

0.2268 
(0.1342) 

0.0752 
(0.0499) 

IMF1 0.3449 
(0.1368) 

0.1935 
(0.0521) 

0.4281 
(0.2578) 

0.4006 
(0.2119) 

0.0879 
(0.0731) 

IMF2 0.5320 
(0.1749) 

0.3627 
(0.1228) 

0.3851 
(0.2150) 

0.3743 
(0.2050) 

0.1079 
(0.0856) 

IMF3 0.6962 
(0.2543) 

0.6180 
(0.1950) 

0.4536 
(0.2360) 

0.4847 
(0.2795) 

0.1525 
(0.0945) 

IMF4 0.9473 
(0.3426) 

0.9290 
(0.3372) 

0.7567 
(0.4254) 

0.7699 
(0.4517) 

0.3201 
(0.2509) 

IMF5 1.6040 
(0.6426) 

1.6441 
(0.7317) 

1.7513 
(1.0384) 

1.9226 
(1.6187) 

0.7519 
0.6326) 

IMF6 4.2048 
(2.1928) 

3.6301 
(1.9723) 

4.7522 
(3.5697) 

4.9823 
(3.9804) 

1.8763 
(1.8647) 

IMF7 10.7284 
(8.8936) 

10.0698 
(9.4698) 

12.0200 
(12.5111) 

11.1622 
(12.7843) 

3.9639 
(4.5583) 

IMF8 21.2369 
(22.2463) 

16.0529 
(16.0468) 

15.8035 
(14.3168) 

17.8704 
(24.0495) 

6.3093 
(7.5020) 

IMF9 56.1903 
(228.9148) 

48.0788 
(242.7645) 

27.5163 
(74.9222) 

42.9727 
(165.0672) 

12.4197 
(26.8253) 
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Table 5.2: Mean values of KLDStable (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 

Band-limited 0.1721 
(0.0519) 

0.1176 
(0.0319) 

0.1697 
(0.0730) 

0.1644 
(0.0875) 

0.0690 
(0.0428) 

IMF1 0.2954 
(0.0971) 

0.1800 
(0.0565) 

0.4183 
(0.2221) 

0.3832 
(0.2125) 

0.0811 
(0.0723) 

IMF2 0.4052 
(0.1214) 

0.2789 
(0.0771) 

0.3829 
(0.1985) 

0.3377 
(0.1668) 

0.0849 
(0.0688) 

IMF3 0.5624 
(0.1746) 

0.5039 
(0.1370) 

0.4198 
(0.1949) 

0.6701 
(2.3055) 

0.1290 
(0.0890) 

IMF4 0.8093 
(0.2317) 

0.7825 
(0.2713) 

0.6498 
(0.3588) 

0.6640 
(0.3715) 

0.2708 
(0.2191) 

IMF5 1.3911 
(0.5228) 

1.4748 
(0.5671) 

1.5281 
(0.8837) 

1.6613 
(1.3142) 

0.6674 
(0.5327) 

IMF6 3.8143 
(1.9265) 

3.5382 
(1.9470) 

4.4551 
(3.1232) 

4.6001 
(3.4659) 

1.8340 
(1.8910) 

IMF7 10.3714 
(8.3345) 

9.2693 
(8.2466) 

11.3542 
(11.6402) 

11.1291 
(13.0707) 

4.0373 
(5.0407) 

IMF8 19.9524 
(20.5767) 

15.0333 
(15.0007) 

14.8713 
(13.5860) 

16.8506 
(23.3479) 

5.8642 
(6.7829) 

IMF9 53.6185 
(227.4512) 

46.0537 
(241.3360) 

26.1593 
(74.1507) 

41.6908 
(164.1101) 

11.7365 
(25.8590) 

 

From Table 5.1 and 5.2 it can be observed that, stable pdf fits better than NIG 

pdf for most the EEG signal types. However, NIG pdf performs better for the 3rd IMFs 

from Set D and 7th IMFs from Set E. In addition to that, fitting of both standard pdfs is 

better for band-limited EEGs than for the IMFs for all data sets. Fig. 5.8 and 5.9 below 

represents the distribution fitting of sample EEG signals from Set D and Set E, 

repectively. 
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Fig. 5.8: Distribution fitting of a band-limited EEG signal from Set D. 
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Fig. 5.9: Distribution fitting of a band-limited EEG signal from Set E. 

Next we represent the mean values of KS obtained for fitting NIG and stable pdf on 

Table 5.3 and Table 5.4, respectively. 
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Table 5.3: Mean values of KSNIG (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 

Band-limited 0.0497 
(0.0049) 

0.0500 
(0.0060) 

0.0471 
(0.0085) 

0.0514 
(0.0129) 

0.0789 
(0.0269) 

IMF1 0.0362 
(0.0102) 

0.0361 
(0.0143) 

0.0294 
(0.0142) 

0.0465 
(0.0444) 

0.0520 
(0.0209) 

IMF2 0.0441 
(0.0075) 

0.0440 
(0.0082) 

0.0314 
(0.0098) 

0.0408 
(0.0241) 

0.0606 
(0.0299) 

IMF3 0.0452 
(0.0097) 

0.0444 
(0.0093) 

0.0378 
(0.0110) 

0.0433 
(0.0182) 

0.0512 
(0.0224) 

IMF4 0.0476 
(0.0131) 

0.0512 
(0.0146) 

0.0497 
(0.0127) 

0.0521 
(0.0149) 

0.0555 
(0.0280) 

IMF5 0.0609 
(0.0221) 

0.0638 
(0.0274) 

0.0664 
(0.0172) 

0.0672 
(0.0287) 

0.0650 
(0.0332) 

IMF6 0.0930 
(0.0376) 

0.0960 
(0.0358) 

0.0953 
(0.0338) 

0.1024 
(0.0412) 

0.0972 
(0.0549) 

IMF7 0.1358 
(0.0478) 

0.1322 
(0.0378) 

0.1442 
(0.0422) 

0.1340 
(0.0461) 

0.1308 
(0.0436) 

IMF8 0.1780 
(0.0474) 

0.1886 
(0.0474) 

0.2025 
(0.0507) 

0.1905 
(0.0462) 

0.1774 
(0.0490) 

IMF9 0.1924 
(0.0426) 

0.2030 
(0.0372) 

0.1869 
(0.0640) 

0.1805 
(0.0679) 

0.1891 
(0.0514) 

 

Table 5.4: Mean values of KSStable (SD shown in parenthesis) 

Signals Set A Set B Set C Set D Set E 

Band-limited 0.0134 
(0.0041) 

0.0138 
(0.0042) 

0.0179 
(0.0064) 

0.0228 
(0.0128) 

0.0714 
(0.0429) 

IMF1 0.0171 
(0.0060) 

0.0242 
(0.0083) 

0.0175 
(0.0062) 

0.0250 
(0.0200) 

0.0387 
(0.0168) 

IMF2 0.0146 
(0.0050) 

0.0157 
(0.0056) 

0.0237 
(0.0075) 

0.0261 
(0.0140) 

0.0349 
(0.0255) 

IMF3 0.0203 
(0.0075) 

0.0213 
(0.0067) 

0.0260 
(0.0077) 

0.0388 
(0.0980) 

0.0288 
(0.0130) 

IMF4 0.0287 
(0.0090) 

0.0288 
(0.0098) 

0.0308 
(0.0116) 

0.0341 
(0.0142) 

0.0300 
(0.0109) 

IMF5 0.0415 
(0.0134) 

0.0452 
(0.0161) 

0.0462 
(0.0140) 

0.0461 
(0.0179) 

0.0467 
(0.0204) 

IMF6 0.0767 
(0.0309) 

0.0846 
(0.0449) 

0.0849 
(0.0391) 

0.0867 
(0.0471) 

0.0865 
(0.0545) 

IMF7 0.1363 
(0.0729) 

0.1287 
(0.0516) 

0.1393 
(0.0522) 

0.1369 
(0.0552) 

0.1329 
(0.0583) 

IMF8 0.1833 
(0.0531) 

0.1928 
(0.0519) 

0.2086 
(0.0556) 

0.1944 
(0.0538) 

0.1807 
(0.0577) 

IMF9 0.1947 
(0.0426) 

0.2066 
(0.0381) 

0.1921 
(0.0653) 

0.1859 
(0.0686) 

0.1926 
(0.0537) 
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From Table 5.3 and 5.4 it can be observed that the KS measure conforms to that of KLD 

stating better performance of stable pdf. NIG performs better for a few types of signals 

(shown in bold type on the tables). The KLD measure has shown better fiiting of band-

limited EEGs than the IMFs for both NIG and stable pdf, but the KS measure represents 

different phenomena. According to KS measure, fitting of NIG pdf is better for the first 

IMFs in all datasets than the band-limited EEGs. In addition to that, stable pdf is better 

fitted to the first IMFs for Set C and Set E than the band-limited EEGs. These two 

variations are shown in bold type blue color. 

 

As a whole, we can see better statistical modeling can be achieved with original EEG 

signals than their empirically decomposed IMFs. Furthermore, stable pdf performs 

better than NIG pdf in fitting the EEG signals used in this thesis. 

 

5.6 Summary 

In this chapter, statistical modeling of EEG signals and their IMFs is investigated for 

NIG and stable pdfs. The goodness-of-fit is evaluated in terms KLD and KS measure. 

These measures indicate that stable pdf fits better than NIG pdf for all the band-limited 

EEGs and most of the IMFs. Moreover, both KLD and KS measures suggest better 

modeling of band-limited EEGs than their IMFs without a few exceptions.  

 

Since EEG signals are statistically modeled through the estimation of parameters of a 

standard pdf, these parameters should be unique for each EEG signal and hence they 

may have the discriminating capability of EEG signals. To observe this, one-way 

ANOVA analysis is carried out for the estimated parameters of stable pdfs when fitted 

to the band-limited EEG signals. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 6 

CONCLUSION 
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6.1 Summary of Research 

The necessity of an automatic seizure detection system can’t be neglected, considering 

the severity of epilepsy disease and the requirement of continuous monitoring of EEG 

records for proper medical treatment. Although, a number of feature based classification 

methods are reported in the literature, the constraint of computational complexity as 

well as the dimension of the feature sets are still a big issue on the way of developing 

more robust and efficient detection system.   

In this thesis, an automated seizure detection and epilepsy diagnosis system has been 

proposed based on ANN and EEG features obtained in the EMD domain. Three 

statistical features such as variance, skewness and kurtosis, have been calculated for all 

the IMFs as well as the band-limited EEGs. For the same set of IMFs and EEGs, three 

chaotic features such as LLE, CD and ApEn are also obtained. Extensive analyses have 

shown that all these features can exhibit statistically significant difference among 

various EEGs for the first four empirically decomposed IMFs. A number of 

classification problems relevant to practical medical applications have been designed 

using these features obtained from the IMFs and band-limited EEGs. A comparative 

study has shown that features collected from the IMFs perform better than those 

obtained from band-limited EEGs in classifying the EEG segments. Furthermore, 

statistical features are found to have greater impact than the chaotic ones in improving 

the classification performance. Using the EMD domain features, the proposed 

methodology has been shown to achieve 100% sensitivity, 100% specificity and   100% 

accuracy in all the cases of classification problem with reduced computational 

complexity.  Further investigation has been done by fitting NIG and stable pdfs to the 

EEG signals in an attempt to explore their underlying statistics. A quantitative analysis 

of goodness-of-fit has revealed that stable pdf has better fitting capability than NIG pdf 

and in fact the original EEG signals are better fitted than their decomposed IMFs. 
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6.2 Recommendations for Future Research 

The EMD process used in this thesis is generally referred to univariate EMD. The 

potential of multivariate EMD [44] is yet to be explored in analyzing multi-channel 

EEG signals in the field of seizure detection. Further research is recommended in the 

field of statistical modeling of EEG signals, so that the estimated parameters can be 

robust enough in discriminating EEG segments recorded under different conditions but 

quite impossible to separate through visual inspection. In this thesis, moment based 

method has been employed to estimate statistical model parameters of EEGs. This 

method works well with large sample size. It is recommended to use maximum 

likelihood estimate (MLE) to fit EEGs of smaller length. In addition to that, the 

applicability of Kullback-Leibler relative entropy, which is measured, based on pdfs, 

should be investigated in the analysis EEGs as well as the decomposed IMFs.   Finally, 

the methodology proposed in this thesis may be applied in the other EEG based analysis 

such as neo-natal seizure detection, sleep apnea detection, hypnosis detection and last 

but not the least, self-paced brain-computer-interfacing [45].    
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