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Abstract

Formants frequencies of the voiced utterance represent the free resonances of the human
vocal tract system. They are one of the fundamental properties of human voiced speech,
and for the purpose of speech analysis or speech recognition, formant frequencies play
a dominant role. In this thesis, effective methods for formant estimation are developed,
which work well even in the presence of significant background noise. In real life applica-
tions, very often human speech is affected by environmental noises from different sources.
Hence noise robustness of formant estimation methods is a key factor. Accurate estima-
tion of formants from given noise corrupted speech is a very difficult task. The major
objective of this research is to develop an algorithm that can successfully estimate the
formants in the presence of noise, overcoming the limitations of conventional methods.
The autocorrelation operation on the speech signal can be viewed as a mean to overcome
the adverse effects of noise, since it offers advantageous property of strengthening the
dominant formant peaks, leading to better formant estimation accuracy in noise. One
major idea in this research, unlike the conventional spectral domain peak picking is to
develop a spectral model of autocorrelated speech signal and thereby introduce a model
fitting scheme to find out the model parameters which are directly related to formants.
Based on the spectral peak strengthening property of the autocorrelation operation by
introducing new poles on the formant location, the idea of repeated autocorrelation is
presented. The effects of repeated autocorrelation in time and frequency domains are
investigated in detail, especially in noisy environments. It is observed that that in com-
parison to single autocorrelation, double autocorrelation function of a signal exhibits

more noise immunity. A spectral model is further developed to incorporate the effects of

vii



double autocorrelation. Finally the effect of spectral band limiting of the speech signal
before performing the autocorrelation operation is investigated. It is shown that formant
estimation from each band further improves the estimation performance. In order to
utilize this property, a band limiting approach is developed that can adaptively filter the
frequency zones where a formant frequency is most likely to be present. Spectral model
for the double autocorrelation function of the band limited signal is proposed and em-
ployed in a model matching approach for estimating the formants. Several vowel sounds
taken from the naturally spoken continuous speech signal are tested in the presence of
noise. Vowel sounds from synthetic speech as well as naturally spoken isolated words are
also considered. The experimental results demonstrate superior performance obtained
by the proposed scheme in comparison to some of the existing methods at low levels
of signal-to-noise ratio. The estimated formants are used in a basic vowel recognition
scheme utilizing a linear discriminant analysis based classifier along with Mel frequency
cepstral coefficients (MFCC), and the results demonstrate a good degree of noise robust-
ness compared to the methods using formant values estimated using traditional formant

estimation schemes.
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Chapter 1

Introduction

1.1 Background

Speech is the primary method for intelligent communication among humans. Thousands
of languages all over the world continue to convey the intention of people, with words
uttered by humans leaving a powerful impact on the world around us. Human communi-
cation revolves around the ability to manipulate sounds to form expressions. This type
of intelligent communication using complex forms of sounds is one of the features that
distinguish humans from other species, leading to the superior position.

With the advent of technology, the communication method for driving powerful ma-
chines has shifted towards written commands. For example, computers are controlled via
keyboards, a device for writing commands, and mouse, which is used as a pointing device.
Written communication also has the added advantage of being easy to preserve. However,
people are more comfortable using voice communication, as evident by the popularity of
telephones over letters. This has led to the search for developing methods for recogni-
tion of speech by machines. Speech recognition can also be easily configured to provide
written outputs from oral speech, powering speech-to-text systems. Thus a good speech
recognition scheme can be used to preserve dictations of speeches, control machines with
voice and give feedback to people with hearing disabilities.

While designing speech recognition methods, one of the primary goals is to find out



facets of speech that are unique to each sound. In this regard, the structure of human
speech has been analyzed in detail by researchers, and some of the features that can be
used to identify speech have been explored. A recognition system that works with speech
normally makes a comparison using these features instead of directly comparing speech
utterances.

The human speech can be primarily divided into two categories, voiced speech and
unvoiced speech. Voiced speech is normally represented by vowels in the alphabet, and
they contain the major portions of energy in speech. Voiced speech has both longer du-
ration and higher amplitude compared to unvoiced speech. This difference arises because
of the way speech is produced in the human vocal system. While producing sounds, air
travels through the human vocal tract system, and the constrictions applied there are
responsible for the sounds that omit from the lip. In case of voiced sounds, there is very
little resistance to the flow of air, and thus the sound is louder compared to the unvoiced
sounds. As air passes through the vocal tract system for a voiced sound, the structure
of the path creates resonances. In the spectrum of the subsequently produced sound,
these resonant frequencies are clearly distinguishable as the areas where peaks with high
energy are present. These frequencies, caused by the free resonances of the vocal tract,
are called formants that are important features of the voiced sounds. Particularly for
different vowels, these formant frequencies can be used to distinguish one from another.
Thus in cases of vowel recognition, formants are a promising feature.

However, everyday speech is not isolated from the environment in which it is produced.
Conversations seldom take place in sound resistant places, and as such, various other
sounds that are produces at the same time at neighboring places are mixed with voiced
sounds. While performing analysis of speech, these unwanted sounds, classified as noise,
play a big role. As noise free environments cannot be guaranteed for all speech utterances,
speech recognition systems require features that present significant amount of intra-class
compactness and inter-class separability even in the presence of noise. As discussed
previously, formants are an important tool in distinguishing vowels from one another.

Thus in automated vowel recognition systems formant estimation schemes that are robust



in the presence of noise are highly in demand.

1.2 Vocal Tract System

Figure 1.1: Components of the human vocal tract

The speech production in humans are carried out through a set of organs grouped as
the human vocal tract . The vocal tract is made up of three cavities: the pharyngeal,
oral and nasal cavities and their contribution to the acoustic properties of the vocal tract
depend on their configuration and connection to the whole articulatory system. Vocal
cords also play an important role in the composition of the vocal tract, as they control
the inflow of air from the lungs into the cavities.

The vocal tract can perform two major operations in processing different types of
signals: (i) to generate different types of obstacles and (ii) to modify spectral energy dis-
tribution of generated sound. In Fig. [LIlthe typical composition of the human vocal tract

is shown[l]. Air enters from the lungs through the vocal cords and then passes through

3



the cavities and finally exits through the lip, or the nose in case of nasal phonemes. For
and adult male, the vocal tract is about 17 cm long from the glottis to the lips. When
the tract is considered to be a cavity resonator, then the position of the tongue, the area
of opening of the mouth, and any changes which affect the volume of the cavity will re
tune the resonance.

In general, the VT system exhibits the acoustical characteristics of an acoustic tube
whose cross-sectional dimensions are small relative to the wavelengths of the frequencies
generated. In its most simplified form, the vocal tract is modeled in the form of a chain
of homogeneous tubes. In that case, the vocal tract can be modeled as a closed tube
resonator, with the prominent frequency peaks in the vowel sounds corresponding to
the resonances of the model. Spectral behavior of such a model can be estimated by
comparing the acoustic tube model to a transmission line. However, the actual shape
of the vocal tract is more complex than this simple tube model, because its walls vary
in shape, and components like the tongue, upper and lower lip are subject to much
movement.

From a systems perspective, the linked cylindrical tube model of the vocal tract can be
represented by an all pole transfer function. An all pole or autoregressive (AR) modeling
of the vocal tract considers the resonances to be caused by complex conjugate pole pairs

in the transfer function.

1.3 Voiced and Unvoiced Speech

In regard to phonology, voicing refers to the articulatory process in which the vocal cords
vibrate. Vowels are normally voiced sounds, while consonants are generally not voiced.
In case of voiced sounds, air passes mostly unobstructed from the lungs to the lips, while
in case of unvoiced sounds, the air faces obstruction in various parts of the vocal tract and
as a result the resulting speech signal is weak. Compared to voiced speech signals, which
show pretty strong periodicity following the pitch or fundamental frequency of speech,

the unvoiced signals are quite random.
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In Fig. the time domain waveform of the sentence 'Now he’ll choke for sure’ is
shown. The high amplitude waveforms in the sentence are caused by the vowels present
in the sentence. For instance, the area with the highest amplitude, starting at around
200 ms and continuing up to 400 ms in all the sentence correspond to the vowel /aa/ in
‘now’.

The high energy and duration of voiced speech frames can be more clearly understood
by looking at the spectrogram of the same sentence, as presented in Fig. [[L3l Spectrogram
is a time-frequency representation, where the variation in spectral energy is depicted
(in Y-axis) wit respect to time (X-axis). A color map is used to represent the energy
variation in frequency axis. Here the dark areas correspond to high energy voiced parts
of the utterance. It can be observed from the spectrogram that the voiced phonemes
are also longer in duration compared to the low energy unvoiced portions. For further
clarification of the random nature of unvoiced sounds, the phoneme /s/ of the word ’sure’
form the sentence presented in Fig. is taken and its separate time domain waveform is
presented in Fig. [[L4l For a better understanding of the spectral energy of this unvoiced
frame, its spectrogram is presented in Fig.

In the AR modeling of the vocal tract, the excitation that causes voiced speech is

assumed to be an impulse train, while the excitation for unvoiced speech is assumed to

be random noise.

1.3.1 Formants

Formants are the free resonances of the vocal tract. The resonances occur when the air
passes through the vocal tract with no or little resistance. Thus these formant frequencies
are clearly distinguishable in the spectra of voiced speech. As these resonant frequencies
contain a high amount of energy, in the spectrum of the output speech, prominent peaks
are present at formant frequency locations. Formant frequencies act as the primary
distinguishing feature for vowels. More specifically, the first three formant frequencies
tend to follow a distinct path for different vowels. As the fundamental frequency or pitch

has totally different ranges for male and female speakers, the ranges of formants for male



and female speakers is also different.
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Figure 1.6: Spectra of three different vowels /a/, /i/ and /e/

For example, normalized spectrum of three natural vowels /a/, /i/ and /e/ are pre-
sented in Figs. [LO(a){L0lc). It can be clearly observed that all the spectrum show peaks
at their formant frequencies. For a clear representation of the formant locations, the It
is also evident that the locations of the formant frequencies for these three vowels are
different. In practice, a plot of the mean values of the first two formants F'1 and F2
exhibit a condition known as the vowel triangle, where the point vowels /i/, /a/ and /u/
have extreme values and most other vowels have formant values lying close to the sides
of the triangle [I]. For example, the /i/-/a/ axis lies close to the front vowels and the
/u/-/a/ axis lies close to the back vowels. The formant values are closely related to the
articulation of vowels. The vowels for which the tongue has a higher position normally
have low F'1 values, while the second formant F2 has a close relation with the forward
and backward positions of the tongue. Thus the high front vowel /i/ has the lowest F'1
and highest F'2 among all vowels. Again vowel intensity decreases with the increase in

tongue height, resulting in very little energy outside the first formant range, as observer
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in Fig. [LO(b). In order to further clarify the representations of formant locations, in
Fig. [L7, the spectrograms for the same natural vowel utterances are presented. Here it
is clearly observed that the formant bands contain very high energy and the dark lines
track the variations in formant frequencies with time.

Normally, vowel formants occur on average every 1 kHz for adult males. Thus, formant

frequencies are one of the most distinguishing features for vowels.

1.3.2 Problems in Formant Estimation

However, there are some problems regarding formant estimation that arise due to the
nature of human speech. As vowel spectrum have a decrease in intensity with the increase
in energy, the higher formants have comparatively low energy values, especially for high
vowels like /i/. Due to this, identifying the second and third peak from the spectrum
becomes difficult. In case of the formant frequencies for female speakers, the formant
frequency zones are quite diverse. For instance, the female vowel /i/ has its first formant
frequency in the range of 300 Hz while its second formant frequency peak is found at
around 2800 Hz, meaning that its second formant frequency is higher than the third
formant frequency for the vowel /u/. On the other extreme, male vowel /a/ has a first
formant value around 700 Hz and a second formant range at around 1100 Hz, resulting
in closely spaced formant peaks.

For instance, the spectrum of a vowel /a/ from a male speaker is presented in Fig.
[LI. It can be seen here that the first and second formant frequencies are very closely
positioned and the energy from the first formant affects the second formant, too. So while
estimating the formants, it is quite difficult to separate the two formants.

For the task of formant estimation, the conventional methods can be mainly divided
into two types, ones that depend on finding the roots for the system and ones that depend
on finding the peaks of the spectrum. One of the most basic formant estimation methods
was the analysis by synthesis method, where synthetic speech is produced with a varied
formant value and is matched with the voiced speech. In linear predictive coding based

methods, an estimation is made for relevant speech parameters based on the output
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Figure 1.9: Spectrum of a natural vowel sound /a/ uttererd by a male speaker

speech. The roots of the model responsible for the output speech spectrum are predicted
and formant frequencies are estimated based on that prediction. On the other hand,
peak picking based methods work by finding out the peaks in the speech spectrum.

These methods suffer when the peaks in speech spectrum are not distinct.

1.4 Vowel Recognition

In statistical automatic speech recognition (ASR), the human speech is represented as
a stochastic process, for which an acoustic model is used to approximate the acoustic
aspects (such temporal and spectral patterns) and a language model is used to deal with
the linguistic aspects (such as syntax and semantics) of speech. Acoustic models ate
often established in feature space, where features are meant to be salient representations
of speech signals for the purpose of recognizing the embedded linguistic targets. Language
models are often built in the discrete space of word sequence, with the goal of assigning
most of the probability mass to the well-formed and meaningful word sequences (i.e.

syntactically and semantically correct sentences) while maintaining non-zero (albeit very
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small) probabilities to the ill-formed ones. An ASR system thus includes a module of
features extraction in the front end and a module of speech models in the back end. The
parameters in speech models are first trained with trained data and then used for test
data. After an ASR system has been trained and tested, its performance can be evaluated
by different performance based on the objective of the underlying application.

There are mainly two types of voice recognition methods , (i) direct matching and
(ii) feature based matching. Direct Matching is a simple method but high computation
required, more memory space and time consuming. And it is not suitable in some practical
cases. Direct method needs all the data value of the speech signal. One of the examples
of direct method is cross correlation. It required a machine which has high computational
capability. Feature based methods are more suitable for practical uses. It does not use
all the values of voice signal but extracts some feature parameters which is used for
the voice recognition. This required less computational complexity, less memory and
less time consuming. These features can be found in two ways , namely time domain
analysis and frequency domain analysis. Again, based on the type of approach used, the
ASR systems can be further classified between those with an acoustic phonetic approach,
pattern recognition approach and an artificial intelligence approach.

Vowel recognition systems are a specific subset of ASR systems that are concerned
with the recognition of voiced vowels only. As these systems deal with a smaller subset,
they can be implemented with fast responses. These systems have specific application on
digit recognition systems, where the numbers can be identified based on the dominant
vowel.

Furthermore, based on the nature of the speech frame on which recognition is carried
out, the recognition systems can be divided into isolated speech recognizers, continuous
speech recognizers and spontaneous speech recognizers. Isolated speech recognizers usu-
ally require each utterance to have quiet (lack of an audio signal) on both sides of the
sample window. It accepts single words or single utterance at a time. These systems
have "Listen/Not-Listen" states, where they require the speaker to wait between utter-

ances (usually doing processing during the pauses). Continuous speech recognizers allow
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users to speak almost naturally, while the computer determines the content. Recognizers
with continuous speech capabilities are some of the most difficult to create because they
utilize special methods to determine utterance boundaries. Finally, an ASR system with
spontaneous speech ability should be able to handle a variety of natural speech features

such as words being run together, and even slight stutters.

1.5 Literature Review

1.5.1 Formant Estimation Methods

In recent years, there has been an increasing demand for the development of the accu-
rate, efficient, and compact representations of speech dynamics. Such representations
call for the extraction of characteristics of the vocal-tract system from speech signals.
Thus vocal-tract system identification has been received potential applications in many
research areas of speech processing, such as, speech analysis/synthesis, speech coding,
speech recognition, acoustics phonetics, modeling of speech production process. Several
system identification methods have been used for the estimation of the vocal tract system
parameters. For example, pitch synchronous analysis |2 3, 4], predictive deconvolution
[5], homomorphic deconvolution [6], iterative inverse filtering [7], conventional SI-based
methods [8, [9].

Free resonances of the vocal-tract system are called formants. They are associated
with the peaks in the power spectrum of speech. Estimation of formant parameters is a
difficult problem for which there have been many proposed solutions. Among them, linear
predictive coding (LPC)-based methods have received considerable attention [10] 1T [12].
Cepstrum features are also used in the determination of the formants [13] [14] [15].

Most of the formant estimation methods so far reported, including some recent tech-
niques, deal only with the noise-free environments [10, 1Tl 13, [14] 15, [16] 17, 18] 19,
20), 211 12] Recently, there has been a renewed interest in emphasizing formant infor-
mation, particularly in the context of noise-corrupted speech in different applications.

Algorithms, based on the LPC analysis, are very sensitive to the noise level. Very few
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research results are so far reported that deal with formant estimation in case of noise-
corrupted speech [22, 23] 24 25]. Multicyclic covariance method, reported in [22], is
based on the Prony method. It is shown that using this method the poles of the vocal
tract system (equivalently the formant parameters) can be estimated only above SNR
of 40dB. In [23], new spectral analysis methods, based on the statistical properties of
the zero-crossing intervals of a noisy signal, are proposed. The SVD based spectral esti-
mation techniques, where parametric models such as AR or ARMA are used, have also
been successfully applied in speech signals [26]. However, with the addition of noise, the
advantage of the new methods is only prominent in case of first formant estimation up
to a certain positive value of SNR. The method, proposed in [24], is completely based on
[27]. The parameters involved in this method are only adjusted for a particular synthe-
sized sentence of one male speaker. Errors in estimation of higher formants (i.e. other
than the first formant) are very high. Recently in [25], peak-picking algorithm is used
on the spectral segments containing the formants. Here, a sequential digital resonator
model is used for spectral segmentation, while, in [28], a set of parallel digital formant
resonators has been proposed for formant frequency estimation. A major advantage of
[25] is that it determines the segment boundaries sequentially and avoids the need for dy-
namic programming as done in [28]. However, the segmentation algorithm requires access
to the ACF of the clean signal, which is not available in noisy environment. To determine
an estimate of that noise-free ACF, at the beginning, spectral subtraction technique is
used which restricts the performance of the method up to 5 dB. Some of the recent for-
mant estimation methods also provide better results in noise free environments, such as
vocal tract modeling method proposed in [29] and multi cyclic covariance method [30].
Conventional time domain formant estimation methods, such as Linear Predictive Cod-
ing (LPC), exhibit poor performance in noisy environments [31]. Spectral domain peak
picking based formant estimation methods suffer from performance degradations under
presence of background noise as spurious peaks are introduced. Some methods proposed
so far to deal with noisy environments utilize sequential segmentation of spectrum and

time domain Adaptive Bandpass Filter Bank (AFB) [32].
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1.5.2 Vowel Recognition Using Formants

It has been known for a long time that the frequencies composition in voiced speech can
be used to discriminate between vowels [33]. One of the first digit recognition system ever
built used the spectral resonances of the vowels from each of the digits [34]. In the early
years of speech recognition when computers were not available, spectrum analyzers were
built to be used in vowel recognition systems [35]. In order to obtain better recognition
accuracies, better estimation accuracies for formants were demanded, and LPC based
parameter estimation methods were employed for better estimation of formant frequen-
cies, leading to better vowel detection systems [36]. However, mel frequency cepstral
coefficients have become popular due to their more separable inter class characteristics
[37]. Even then, formant frequencies continue to receive attention due to their association
with the fundamental nature of voiced speech [38] 28]. Formant frequencies have been
utilized to derive parameters characterizing gross VT dimensions, which are in turn used
for speaker dependent speech recognition [39]. Formant based feature vectors also offer
the advantage of dimensionality reduction, facilitating faster processing [40]. Recently,
formants as a distinguishing feature of vowels have received renewed attention due to
better understanding of the human speech perception mechanism, where formants play a
big role [41]. Methods for efficient separation of vowels and consonants from continuous
speech are reported that can be utilized for vowel recognition from continuous speech
[42].

One aspect of vowel recognition systems that has largely been overlooked is noise
robustness. Methods like minimum mean square error (MMSE) and filter bank based
methods has been proposed that can improve the recognition performance in moderately
high signal to noise ratios [43] [44]. Model based spectral estimation methods have been
reported to provide better performance in the presence of noise [44]. Methods that utilize
the autocorrelation operation for a better modeling of AR parameters for speech has
also been reported to increase the recognition accuracy [45]. Recently spectro temporal
methods are being investigated for improved vowel recognition in the presence of noise

[46].
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1.6 Objective of the Thesis

The objective of the thesis are to

e Develop formant estimation methods that offer significant performance improve-

ments over conventional methods in the presence of noise.

e Evaluate the performance improvements in automatic speech recognition systems

incorporating the estimated formants in their feature vector.

1.7 Organization of the Thesis

The major objectives of this thesis are to develop noise robust formant estimation tech-
niques that can perform even at a very low SNR. In the next chapter, first a general
explanation of the spectral representation of the vocal tract is presented and the problem
is formulated. Then the problems in formant estimation arising due to the presence of
environmental noise is discussed, and autocorrelation is presented as an operation that
exhibit significant noise reduction. Afterward, a novel spectral matching technique is
developed based on the spectrum of autocorrelation of speech. Thereafter the problem of
vowel recognition in the presence of noise is presented, and a feature set incorporating the
formants estimated from the proposed noise robust method is proposed that can offer sig-
nificantly better recognition performance under the presence of severe background noise.
It is to be noted that extensive experimentation were done to evaluate the performance
of the algorithms throughout the thesis on the TIMIT speech corpus, which contains a
comprehensive selection of uttered sentences from English speakers. Also variations in
the estimation performance by varying the frame lengths is observed and analyzed.

In chapter 3, the similar problem of noise robust formant estimation technique is de-
veloped based on a spectral matching technique involving the repeated autocorrelation
of speech. Due to the advantages offered by the pole preserving and pole increasing na-
ture of autocorrelation, repeated autocorrelation offers even better noise robustness com-

pared to single autocorrelation operation, and the previously proposed spectral matching

16



technique is expanded to incorporate double autocorrelation operation. As in previous
section, a linear discriminant analysis based classifier is deployed for the task of vowel
recognition and in the presence of noise, vowel recognition accuracies show improvements
compared to that obtained using conventional mel frequency cepstral coefficients. Exten-
sive experimentation on the TIMIT speech corpus is performed and the obtained results
are compared with performances of traditional methods like linear predictive coding and
adaptive filter bank methods.

The formant estimation technique involving double autocorrelation is again addressed
in Chapter 4, where a band limiting method based on the observed formant frequency
zones is presented. Due to the effect of repeated autocorrelation on the spectrum of
speech, better estimation performance can be obtained for second and third formant
frequencies by band limiting the speech signal first and then performing double autocor-
relation. A new spectral model for the repeated autocorrelation for band limited speech
signals is presented and used in the proposed spectral matching technique.

In the final chapter, chapter 5, ideas for future improvements are presented and the

whole scenario of this literature is summerized with some concluding remarks.
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Chapter 2

Spectral Model of Autocorrelation of

Speech

Formants are the free resonances of vocal tract, which represent distinguishable charac-
teristics of human voice. Formant frequencies are associated with peaks in the smoothed
spectrum of a speech signal [I3]. Formants are widely used in many applications, such as
speech synthesis, emotion detection [47], and voice disorder detection [48]. In particular,
formants of the voiced sound can serve as a unique voice template, which can be used
as a fundamental speech property in Automatic Speech Recognition (ASR). Since in the
real life speech is corrupted by various types of noise, a formant estimation method with
its performance robust to noise is required to be designed. But, estimating formant ac-
curately in the presence of a severe background noise becomes extremely difficult task.
Most of the formant frequency estimation methods deal with only noise-free environ-
ments. Some of the recent formant estimation methods also provide better results in
noise free environments, such as vocal tract modeling method proposed in [29] and 2-D
time-frequency transformations proposed in [22]. However, effects of noise on them were
not investigated. The multi cyclic covariance method can detect formant frequencies at
relatively high signal to noise (SNR) ratios [30]. Conventional time domain formant esti-
mation methods, such as Linear Predictive Coding (LPC'), exhibit poor performance in

noisy environments [3I]. Spectral domain peak picking based formant estimation meth-
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ods suffer from performance degradations under presence of background noise as spurious
peaks are introduced. Some methods proposed so far to deal with noisy environments
utilize sequential segmentation of spectrum and time domain Adaptive Bandpass Filter
Bank (AFB) [32]. However, an accurate estimation of formants in the presence of severe
noise yet remains a challenging task.

In this chapter, an efficient scheme for estimating the formant frequencies in the pres-
ence of noise is presented. In order to overcome the effects of noise in formant estimation,
operations that offer similar advantages as strengthening the poles responsible for the
formant frequencies are investigated. Autocorrelation operation, which strengthens the
dominant poles, and exponentially increases the peak-valley ratio at formant frequencies
of the magnitude response, is proposed to be employed with the purpose of canceling
out the effects of noise. Formant estimation is carried out in the spectral domain where
instead of direct peak-picking from the speech spectrum, a spectral domain model of
autocorrelation function (ACF) of speech signal is first proposed considering the vocal
tract to comprise of cascaded subsystem responsible for single resonant frequencies. A
spectral domain model fitting based algorithm is also developed to extract the model
parameters which in turn give the formant. Through the simulation results on standard
speech databases, it is shown that the developed method is effective in maintaining a
high success rate in formant estimation even in the presence of a significant background

noise.

2.1 Background

A typical voiced speech signal is the result of air passing through the human vocal tract,
with multiple resonances created due to the structure of the vocal tract. The vocal
tract system can be modeled as an autoregressive (AR) filter whose input is a periodic
impulse train [49]. These resonant frequencies, known as formants, are evident as peaks
in the spectral domain representation of speech. As the ranges for formant frequencies

of different vowels are different, this property can be used in ASR systems for vowel
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detection. However, real life speech signals are affected by background noise, which alters

its frequency spectrum of and can make the detection of formant frequencies difficult.

2.2 Proposed Method

In this section, the composition of the human vocal tract system used to produce voiced
sounds is first investigated. Then the effect of everyday noise on voiced speech is demon-
strated. Then methods for countering the effect of noise on formant estimation are evalu-
ated and the performance of autocorrelation as a facilitator for better formant detection
under noise is demonstrated. Then a model for the human vocal tract is developed,
considering the vocal tract to comprise of cascaded subsystems responsible for a single
formant frequency. Finally a model matching method is developed for extracting the

formants from the autocorrelation of band limited speech.

2.2.1 Spectral Representation of the Vocal Tract System

In order to estimate the formant frequencies from observed speech signal, it is sufficient
to restrict the analysis only for the voiced sound. In case of the voiced speech signals,
considering the excitation as a periodic impulse-train, the overall vocal tract filter can
be represented by a P-th order autoregressive (AR) system with the following transfer

function

C
HZP:1<1 —pizt)

where p; denotes the pole of the AR system and C' is the gain factor. As mentioned before,

H(z) = (2.1)

the resonances of the vocal tract correspond to the formant peaks in the speech spectrum
[13]. Each pair of complex conjugate poles in the AR system can generate a peak in the
frequency response. Hence, the vocal tract system in (21]) can exhibit P/2 formants.
However, as far as formant estimation is concerned, only the first three formants are
significant and contain a very high portion of the total energy. In this regard, it would

be sufficient to consider the vocal tract to be represented as a cascaded network of three
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separate subsystems, each causing a resonant peak in the speech spectrum.

Figure 2.1: Voiced sound generation through a simplified model of vocal tract system
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Figure 2.2: Frequency response of the individual subsystems responsible for single for-
mants

In Fig. 21l a simplified vocal tract model consisting of three subsystems is shown

where a periodic impulse train is used as the excitation, which can be expressed as

A—

Uimp(n) = Y d(n —iT) (2.2)

1=0

—

where 7" is the period of the impulse train and A denotes the total number of impulses.

Each individual subsystem in Fig. 2] can be represented as
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C
(1 =piz)(1 = piz7t)

Hi(z) = (2.3)

Here for each pair of complex conjugate poles p; = ;%) the magnitude r; and angle 6;

are related to a particular formant F; and the formant bandwidth B; as

—nB;

r; = e Fs (2.4)
2rF;

g, — “ L 25
T (2.5)

where Fs is the sampling frequency. In Fig. 2.2] the frequency responses corresponding to
each subsystem shown in Fig. 2.1l are presented, which clearly demonstrates the behavior
of spectral peak as discussed above.

In Fig. 2.3] the overall frequency response of the cascaded system considered in Fig.
2.1 is shown. Next a synthetic sound is generated based on the model shown in Fig. 2.1

and the spectrum corresponding to that synthetic sound is shown in Fig. 2.4l It can be
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observed that the location of formant peaks are preserved both in Fig. 2.3 and Fig. [2.4]
However, the reason behind the lack of smoothness in the spectrum as seen in Fig. 2.4
is mainly because of the nature of the excitation, which in this case is a periodic impulse
train. Apart from the synthetic sound, for a more clear understanding, a natural voiced
sound /eh/ is taken which contains formants at locations that closely match with the
formant locations of the synthetic sound considered before. In Fig. .5 the spectrum
corresponding to the natural sound is shown. It is observed that the spectra obtained from
the natural and synthetic speech signals match closely even though a simplified model is
used to generate the synthetic sound. Hence in order to estimate formant frequencies,
one can employ the conventional method of spectral peak picking on speech spectrum or
can look for a suitable spectral model that fits the speech spectrum. However, due to the
effect of the fundamental frequency or pitch of speech and the presence of noise in real

life scenario, these approaches may not be able to provide accurate formant estimation.

2.2.2 Formant Estimation in Noise

For noise-free voiced speech signal conventional peak picking formant estimation methods
may provide satisfactory results. However, presence of background noise is very common
in everyday situations and it affects the accuracy of traditional estimators.

For a voiced sound z(n) in the presence of additive noise v(n) with zero mean and

unit variance, the noise corrupted speech y(n) can be written as

y(n) = x(n) +v(n) (2.6)

In a time domain representation of the noise corrupted speech signal, it is very difficult
to distinguish the original speech samples even at a moderate level of noise. The presence
of additive noise completely destroys the original speech pattern resulting in a noise
like pattern. In order to show the effect of noise in time domain, in Figs. 27(a) and
27(b), a noise free speech z(n) and corresponding noise corrupted speech y(n) are shown,
respectively. Here the natural sound /eh/ is considered and its spectral representation is

presented in Fig. [2.6]
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For the purpose of comparison, here the same natural sound that is considered in Fig.
is taken in the presence of additive white Gaussian noise (AWGN) and the SNR is
set at —bHdB. It is clearly observed in Fig. that the presence of noise causes several
spurious peaks and obscures some of the formant peaks in the frequency spectrum causing
error in formant estimators. It is obvious that the formant peaks with lower magnitudes
will be heavily affected because of the presence of noise.

As formant frequencies are represented by peaks in speech spectrum, methods that
facilitate better detection of peaks are highly desired for a formant estimation system.
One possible solution for this can be to increase the strength of the poles, in turn in-
creasing the strength of the related spectral peaks. In order to achieve this goal, one
may duplicate the existing poles, by placing additional poles at the positions of original
poles. However, as far as the construction of the vocal tract system cannot be changed,
this approach would not be feasible in practical situations. This has led to the search
for a method that can be used to imitate duplication of the poles and autocorrelation

emerges as a prime candidate. In what follows, it is shown that the ACF of an impulse
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response h(n) of the AR system can be represented as the impulse response of a system
that possesses twice the number of poles of the AR system and among these poles, apart
from the original poles, there are some new poles located at conjugate reciprocal positions
of the original poles with respect to the unit circle. If the original poles were all inside
the unit circle, the additional poles generated by the autocorrelation operation will lie
outside the unit circle but at the same angles.

The autocorrelation function (ACF) of a voiced sound z(n) is defined as

re(17) = E[z(n)x(n — 7)] (2.7)

where 7 denotes the lag. ACF is an even function, with the output being symmetric with
respect to the amplitude axis. In practical application the ACF of z(n) is computed by
using the working formula given below

N—-1—|n|

> a(k)a(k+n))n=01,2......... M -1 (2.8)
k=0

Using (2.6) and (2.7)), the ACF of noisy speech y(n) can be expressed as

re(n) = %

ry(n) = re(n) + 1u(n) 29)
Tw(n) = 1o(n) + 1yz(N) + 740(n)

Here r,(n) is the ACF of noise v(n) and r,,(n) and r,,(n) are the cross correlation terms.
Since v(n) is uncorrelated with z(n), it is expected that the values of the cross-correlation
terms, in comparison to that of r,(n), will be negligible. On the other hand, the ACF of
the AWGN v(n) generally exhibits a peak at the zero lag and the values of all other lags
should be very small and ideally should be zero. In Figs. 2.8(a)2.8(f), different ACFs,
namely 7,(n), r,(n), ry(n), ro(n), rew(n) and r,,(n) are plotted. From Figs. 28(e) and
2.8(f), it can be observed that the values of the cross correlation terms are very small as
expected. However, as seen in Fig. [2.8(d), although r,(n) exhibits a very large peak at

the zero lag, nonzero small values exist at all other lags because of the finite data length.

It is also observed in Fig. 2.8|c) that r,(n) exhibits the maximum value at the zero lag

27



and the values at other lags are comparatively very small. From these figures, it can be
concluded that in comparison to the effect of v(n) on x(n) as shown in Fig. 27 the effect
of r,(n) on r,(n) is drastically reduced because of the autocorrelation operation. Since
the autocorrelation is a pole preserving operation and it exhibits higher noise immunity,
it is advantageous to deal with the ACF of y(n) instead of directly using y(n) in spectral
domain formant estimation.

Considering x(n) as an output of an LTI system with transfer function H(z), x(n)

can be written as

z(n) = h(n) * u(n) (2.10)

It can be shown that the ACF of z(n) can be expressed as

re(n) = rp(n) * ry(n) (2.11)

where r,,(n) is the ACF of u(n). For a voiced sound with periodic impulse train excitation,
when the length of the period is sufficiently large, the variation of r,(n) within a period
will match closely with that of r,(n). Next a synthetic signal x(n) is generated from an
AR(6) system using a periodic impulse train excitation with a period of 7' = 200 samples.
It is expected that in the frequency domain representation of r,(n) and r,(n), dominant
peak locations will be similar. Hence, in what follows to develop a frequency domain
scheme for formant frequency estimation it would be sufficient to consider the detailed
analysis of r,(n) instead of r,(n). As per the definition of the ACF provided in (2.7]), the

ACF of h(n) can be written as

rn(n) = h(n) x h(—n) (2.12)

In view of analyzing the frequency domain effects, for simplicity, first the Z domain
representation is considered. The Z transform of rj,(n), as obtained from (Z12)) is given

by
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Figure 2.10: Effect of spectral strengthening because of autocorrelation operation. Spec-
trum of: (a) r,(n), (b) rsyna(n), (¢) rz(n) and (d) r4(n)

Ru(2) = H(2)H(=™) (2.13)

It is observed from (2.I3]) that the ACF operation produces a set of new poles with
equal number of the original system poles corresponding to H(z) and the new poles
corresponding to H(z71) are located at the conjugate reciprocal location of the original
poles. For a clear understanding, a sample z-plane pole representation of H(z) having
three pairs of complex conjugate poles and corresponding Ry, (z) are shown in Figs. 2.0(a)
and [29(b) respectively. It is seen that from the figure that at each angular position of
the original poles, one new pole is generated outside the unit circle. Obviously, with
the increase in number of poles at a particular angular position the spectral energy
corresponding to that particular frequency will be significantly increased. Especially in
the presence of noise, this peak strengthening effect is important as it helps in finding out
the formant peaks in spite of the presence of several unwanted noise peaks. In order to

present the effect of spectral peak strengthening both in noise-free and noisy condition,
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in Fig. 2.10] spectra corresponding to r(n), rsyns(n), rz(n) and r,(n) are shown. It is to
be mentioned that the synthetic speech considered here to calculate rgy,,(n) and 74,(n)
is the one that is used in Fig. [24] while the same natural sound /eh/ as shown in Fig.
is used to obtain the spectrum of r,(n). In case of noise for both the synthetic and
natural sound, 0dB background noise is used. In comparison to the spectra corresponding
to y(n), it is clearly observed that the spectra corresponding to r,(n) exhibits better
noise immunity. Strengthening of dominant peaks is evident as the first formant peak is
significantly strengthened. However, in comparison to the increase in the first formant
peak, the spectral peaks corresponding to other formants remain very weak. In view of
overcoming this problem, one practical solution is to consider the vocal tract to consist of
cascaded subsystems, each responsible for a single formant peak, as presented in Fig. 2.1l
As the subsystems responsible for the formants are in a cascaded formation, the spectral
output of the whole vocal tract system is the product of the separate spectral outputs
for the subsystems. Higher formants become increasingly weak due to their low energy
concentration and the tilt caused by the lip radiation. Thus, the first three formants are
mostly considered for real life applications. Considering only the first three formants, the

impulse response h(n) of the whole system can be written as

h(n) = hi(n) = ha(n) = hz(n) (2.14)
where hi(n), he(n) and hz(n) are the impulse responses of the individual systems. After

performing autocorrelation, the system impulse response becomes

rh(n) = rri(n) * rha(n) * raz(n) (2.15)

The Z Transform of r,(n) , as obtained from (2.I5]) is given by

Rh(Z) = Rhl(Z)RhQ(Z)Rhg(Z) (216)

The first formant peak is prominent in the spectrum of ACF presented in Fig. 2.10]

indicating that the effect of Rp2(z) and Rps(z) are negligible on Rpi(z). Using this
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property, it can be assumed that the output response closely match Rj;(z) around the
first formant peak. Thus instead of conventional peak picking, in this chapter, the task
of formant estimation is carried out through spectral model fitting, which ensures that

both the frequency and bandwidth of formant peaks are matched.

2.2.3 Proposed Spectral Model of ACF of Speech

As seen from the previous section, the spectrum of the vocal tract response within a
particular formant band generally exhibits a prominent peak corresponding to the for-
mant. Considering the vocal tract as an AR system, a pair of complex conjugate poles is
responsible for generating a dominant peak in the spectral domain. Although the effect
of other pole pairs, unless otherwise located at a very close vicinity, may enhance the
spectral level, dominance of a particular formant peak is mostly because of the pole pair
located in that particular formant frequency. Hence it is sufficient to consider a band lim-
ited speech signal corresponding to a particular formant band to analyze the effect of an
individual formant. In this regard, according to (2.16]) considering the vocal tract system
as a cascade of a set of subsystems, each subsystem that is responsible for generating a
formant peak is denoted as H;(z).

However, in noisy environments, presence of spurious peaks may cause difficulties in
identification of formant peaks even in the case of band limited signals. As discussed in
the previous section, the autocorrelation operation can reduce the effect of noise. More-
over, performing the ACF operation will definitely exhibit significant noise reduction. In
order to identify the formant peaks, especially under noisy condition, one possibility is to
consider a transfer function which can produce an impulse response that closely matches
the output ACF of the most prominent subsystem, namely H;(z). By limiting the com-
parison to only the zone where only the first formant frequency should be present, the
spectrum corresponding to that transfer function can then be used in a spectral matching
technique along with the spectrum obtained from the ACF of the noise corrupted signal.
In this case, the transfer function of the subsystem responsible for the ACF spectrum

around the first formant peak as per (2.I3]) can be represented as
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CR122

Rpi(2) = (I —prz=)(1 = piz=H(1 — p12)(1 — pi2)

(2.17)

where Cp; is a constant.

ACF of Impulse Response
Impulse response of Model

Figure 2.11: Impulse response of Rj;(z) and the ACF of the impulse response

With the introduction of each new pole outside the unit circle, a trivial zero is also
introduced at the origin. The effect of these zeros is to introduce a delay in the output.
Thus a pair of zeros is incorporated in (2I7)). If the ACF of an impulse response for
a synthetic speech signal is taken, it is expected that this will match with an impulse
response obtained from a system which contains new poles in addition to the original
ones, as described above. This is evident in Fig. R.11 where these two signals match
perfectly, showing the validity of the proposed model generation approach. If the trivial
zeros were not included while constructing the new system for generating an impulse
response similar to the ACF, we would have experienced a delay between the signals,

which can be observed in Fig.
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Figure 2.12: Impulse response of Rj1(z) and the ACF of the impulse response without
using trivial zeros

2.2.4 Proposed Spectral Matching Technique

In the proposed formant estimation method, a spectral model corresponding to the first
formant zone of the spectrum of the ACF of the speech signal is introduced, which is
utilized in a model matching technique to find out the model parameters that in turn
will provide the first formant frequency. In what follows the proposed approach of model
matching will be elaborated in detail where each formant will be estimated once at a time.
In the estimation of each formant, one such model corresponding to that specific formant
is required. Similar to the z-transform representation given by (217, for estimating each
formant one such Z-domain model is required and the i-th model within the region of

convergence of r; < z < rl can be represented in the Fourier transform as
7

Ci6j2w
Ryi(e79) = , : : :
Wile) = e )1 pre )1 = piee) (1 = i) (2.18)
pi = riel"
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where the spectrum R,(e’*) of the ACF of the observed noisy signal y(n) is used in
conjunction with the proposed model Rys;(e’*) to form an objective function and for
the first formant with ¢ = 1 based on the square of absolute difference of these spectra,

namely

; : Whe jw % jw 2
Emin(T,05) = min St e (IRani(e7)] — [Ry (7))
rp <1 <1 (2.19)
01 < 92 < Qh

Note that here the superscript ¢ is introduced to control the step by step algorithm.

1

In particular, at the first step with ¢ = 1, in order to obtain e . (r1,6;), one has to
consider R, (e’*) = Ry(¢/*). However in later part it will be shown that R} (e’*) will
vary for different formants. Minimization of the objective function is carried out within
a restricted frequency range wj. to wy. which depends on the range of the first formant
zone. One may utilize the —3dB points on the lower and higher sides of the peak in the
spectrum of the model to extract w;. and wy.. Within that specified range w;. < w < wpe,
the optimum value of the two variables r; and 6; is obtained at the minimum square
absolute difference. Based on the fundamental knowledge of traditional range of formants,
one may restrict the search range for the two variables i.e., r; < r < r, and 6, < 0 < 6,
or adopt a coarse and fine search approach [30]. Formant frequencies are estimated from
the pole angle ; that produces the best match between the spectra using (2.3).

Once the first formant frequency F'1 is obtained, (2.I6]) is utilized to estimate the
second formant frequency F'2. R,(e?*) can be written as the product of Ry (e7%), R,2(e?*)
and Ry3(e?*) according to (2.I6). The magnitude spectrum of R,(e’*) is divided by
Ry1(e7) so that the resulting spectrum R?(e7“) closely resembles the product of Ry (e/*)

and Ry3(e’*). Hence R; (/) in general for estimating second and third formant can be

expressed as

R, (') = R7(e7).(Ry—ny (7)) 1 i > 1 (2.20)
Then similar to the matching in the first formant zone, matching is performed in the
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second formant zone and F2 is estimated. Then the magnitude spectrum of R(e’*) is
divided by Raz2(e’) to obtain R3(e?). According to the simplified modeling of the vocal
tract presented above, R}(e’) should closely match with Rys(e’), leading to a similar
approach as described in (2I8) and (2.19) to obtain F'3.

One major advantage of the proposed model fitting approach over the conventional
peak picking method lies in the fact that an entire formant band is taken into consider-
ation instead of relying only on the magnitude of the peaks, which are extremely noise
sensitive. As a result the formant frequency that is chosen as the desired estimate should
provide the best match between the spectra within a formant band. This spectral match-
ing is very suitable especially when the level of noise is very severe and/or the formants
are very closely spaced.

A simple block diagram representing the major steps involved in the proposed formant
frequency estimation scheme is presented in Fig. 213l Here it is to be noted that a
feedback from the estimated first and second formants is taken in selecting the pass band

ranges of the bandpass filters corresponding second and third formants.

Vowel Sound
Range BPF formant Repeated
Estimation for range Autocorrelation

Formant

Freq domain
model of
autocorrelation

Matching

Formant Estimation

Figure 2.13: Block diagram of the proposed formant estimation system
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2.2.5 Vowel Recognition

After estimating formants in this manner, in the proposed scheme they are employed
in a vowel recognition systems as potential features along with the commonly used Mel
frequency cepstral coefficients (MFCC). For the purpose of recognition two major steps
are followed. First given the train data set for different vowels, formants and MFCC
features are extracted. For each vowel a number of samples (tokens) are considered in
the training stage. during the testing phase, the similar features are extracted from the
test vowels. Utilizing the Linear discriminant analysis (LDA) based classifier, the label of
the unknown test vowel is identified. It is to be noted that the use of formants increases
the dimension by 3. However, as can be seen from the experimental result, it will offer a
huge increase in estimation accuracy.

LDA based discriminants take into account the intra-cluster scatter matrix computed
from the training vectors pertaining to each of the classes. For our proposed scheme, a
frame by frame classification method is used, which offers vowel recognition results for
each voiced frame independently. The classifier classifies the data into different groups
generally, depending on the significant characteristics of the group members. The quality
of a classifier depends on its ability to provide the compactness among the member
within a cluster and the separation between the members of different clusters in terms of
feature characteristics. The task of recognizer is to identify the class label of a test sample
utilizing the classified data. In a feature based scheme, classification is performed utilizing
the extracted features of the data, instead of directly employing the data themselves. In
the proposed method, the LDA is used to classify the vowel among the different classes
(in our case, vowel) available. In LDA, the total scatter matrix is a scaled covariance

matrix, defined as

S = [z — plwi — ul” (2.21)

i=1
where ¢ denotes the global mean of the entire set of the training vector. The between-class

scatter matrix is denoted as
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Sy = Nylpy — ey — p]" + N_[po — pl[p- — )" (2.22)

Here the three points (i, gy and pu_) are collinear, meaning that

[y — 1] = NW[/M — -] (2.23)
and
e —p) = =y — ] (2.24)

using the values obtain from ([2232.24) in (2.22)), the between class scatter matrix is

obtained as

Nl = el = ]t (2.25)

in addition, the within class scatter matrix is defined as

S =l — sl — ]+ Yl — o — g ] (226)

The goal of LDA is to find out the linear projection w,,; using these relationships that
maximized a special kind of signal to noise ratio. Here the signal is represented by the
projected inter-cluster distance and the noise by the projected intra-cluster variance.The
objective function is based on determining a projection direction w to maximize the

Fisher’s discriminant defined as [50]

J(w) = (2.27)

2.3 Simulation Results and Discussion

In order to evaluate the recognition performance of the proposed methods, numerous

experiments have been conducted on the TIMIT acoustic-phonetic continuous speech
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corpus, which has jointly been developed by Massachusetts Institute of Technology (MIT),
Stanford Research Institute (SRI) and Texas Instruments (TT) [51]. The TIMIT database
contains a large collection of sentences uttered by both male and female English speakers
using various dialects. A total of 6300 sentences, with 10 sentences spoken by each
of the speakers are present on the database. Voiced and unvoiced portions of speech
are clearly marked on accompanying phone files. However, as TIMIT does not contain
reference values of formants, to compare estimated results, the most commonly used
formant database is chosen, where formant frequencies are estimated based on vocal
tract resonances (VTR) with manual correction [52]. The formant estimates reported in
[52] are taken as ground truth and the estimation performance of different methods is
evaluated at different levels of signal to noise ratios (SN R). This VTR subset of TIMIT
database contains 376 sentences across the training set, representing 173 speakers. These
sentences contain 18 voiced phonemes, out of which, the diphthongs have been ignored,
and 11 phonemes are considered. A total of 2726 utterances of phonemes are used from
the VTR subset, out of which 1583 are from male and 1143 are from female speakers, have
been analyzed. In VTR database, formant estimates are reported for every 10 ms interval.
However, vowel duration is general much larger than 10 ms. In the frame by frame formant
analysis, when the size of analysis frame is larger than 10 ms, the estimated formants
are then compared with the average VIR formant values obtained over the different 10
ms frames within the duration of that formant under investigation. For the purpose
of performance comparison, first the most widely used LPC based formant estimation
method [53] is chosen, where the order of the LPC'is chosen as 12. Apart from the LPC
method, a state of the art adaptive filter bank (AF B) method is also chosen. In the
AF B method, formant estimation is carried out in sample by sample basis, and for the
purpose of comparison, average estimated formant values over a period is considered [32].

In the proposed model fitting scheme, the range of the model parameters are set
according to the general behavior of the vocal tract. The possible range of the parameter
r is changed within the limit 0.8 to 0.99, which covers even a very rapidly decaying

impulse for the purpose of our simulation. The search range for @ is set according to the
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Table 2.1: Comparison of the estimation performance for synthetic vowels

5dB —bdB

Vowels Proposed | LPC | AFB | Proposed | LPC AFB
F1 | 4.86 21.57 | 43.65 | 4.95 24.53 | 47.17

/a/ | F2 | 10.17 7.24 25.74 | 7.23 99.56 | 27.25

F3 | 12.48 20.49 | 10.68 | 17.57 39.35 | 10.42

F1 | 5.43 61.38 | 124.73 | 7.36 73.15 | 21.63

Male Jo/ | F2 | 14.44 167.49 | 43.93 | 17.32 144.60 | 58.65
F3 | 17.90 36.74 | 12.54 | 17.90 37.68 | 11.66

F1|5.84 93.53 | 149.02 | 9.13 117.36 | 13.56

Ju/ | F2 | 11.13 158.74 | 46.60 | 14.45 148.07 | 63.59

F3 | 2.59 69.03 | 38.05 | 2.82 72.38 | 19.40

F1 | 5.62 20.24 | 46.90 | 5.98 20.46 | 49.77

Ja/ | F2 1 9.27 65.23 | 32.58 | 6.98 113.79 | 30.99

F3 | 7.65 17.80 | 8.45 11.35 34.02 | 9.84

F1 | 11.03 49.53 | 128.07 | 22.16 78.29 | 18.29

Female | /o/ | F2 | 10.05 138.88 | 20.42 | 17.89 133.29 | 46.61
F3 | 4.80 39.93 | 9.56 7.41 36.28 | 12.53

F1 | 10.02 72.96 | 109.00 | 10.02 98.29 | 12.98

Ju/ | F2{9.39 116.33 | 14.62 | 13.89 121.92 | 33.72

F3 | 6.74 52.31 | 1140 | 7.64 40.60 | 13.74

Table 2.2: Number of samples and average duration for different vowels available in the
TIMIT database

Vowel Male Female ‘
No of Occurrences | Average Duration | No of Occurrences | Average Duration

‘aa’ 129 124.96 93 122.90
"ae’ 112 136.16 o8 128.62
"ah’ 98 88.57 82 80.98
‘eh’ 194 90.15 134 97.09
'ih’ 187 78.02 160 79.31
ix’ 397 48.72 309 50.26
iy’ 262 87.14 179 92.18
ow’ 94 125.74 o4 118.15
‘ub’ 18 77.33 23 79.13
uw’ 30 96.33 14 116.43
ux’ 62 95.32 37 97.03

Total 1583 86.06 1143 84.58
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Table 2.3: Comparison of the estimation performance in terms of average error for male
speakers

—5dB 10dB
Vowel Proposed | LPC | AFB | Proposed | LPC | AFB
F1 | 13.54 31.64 | 24.12 | 13.43 22.08 | 15.66
Jah/ | F2 | 10.46 57.43 | 28.88 | 10.32 23.30 | 18.84
F3 | 12.55 39.21 | 13.09 | 8.65 35.47 | 13.16
F1 | 13.52 27.70 | 24.62 | 13.37 14.05 | 17.07
Jeh/ | F2 | 14.96 33.30 | 24.18 | 8.88 11.95 | 17.91
F3 | 13.22 39.13 | 13.39 | 7.56 33.11 | 11.67
F1 | 14.36 38.52 | 23.47 | 14.47 12.40 | 23.98
/ih/ F2 | 15.90 27.12 | 25.50 | 8.32 15.16 | 20.05
F3 | 12.02 39.50 | 13.45 | 7.60 32.66 | 11.34
F1 | 14.87 22.63 | 35.49 | 14.40 18.78 | 36.11
Jow/ | F2 | 11.95 47.20 | 26.03 | 11.37 34.22 | 22.37
F3 | 12.31 36.68 | 14.20 | 10.12 36.92 | 14.15
F1 | 15.13 20.14 | 36.49 | 14.79 19.21 | 36.59
Juh/ | F2 | 11.56 38.02 | 23.49 | 11.23 35.66 | 22.50
F319.95 37.24 | 13.89 | 9.82 37.06 | 14.07
F1 | 13.49 49.04 | 36.77 | 13.58 14.28 | 39.30
Jux/ | F2 | 12.27 30.11 | 22.86 | 9.81 23.26 | 21.70
F3 | 10.73 41.23 | 13.63 | 9.35 36.14 | 13.48

Table 2.4: Comparison of the estimation performance in terms of average error for female
speakers

—15dB 0dB
Vowel Proposed | LPC AFB | Proposed | LPC | AFB
F1 | 15.40 48.89 46.25 | 10.95 15.91 | 41.89
Jaa/ | F2 | 21.26 83.33 | 21.40 | 11.88 50.37 | 25.37
F3 | 14.25 43.46 14.23 | 12.89 27.05 | 12.70
F1 | 21.32 50.77 37.88 | 12.11 12.32 | 35.70
Jah/ | F2 | 20.81 66.14 21.65 | 10.54 33.23 | 19.26
F3 | 13.11 34.12 16.12 | 13.35 22.09 | 14.33
F1 | 15.97 55.19 31.51 | 12.13 9.32 | 24.85
Jeh/ | F2 | 29.09 31.17 28.87 | 14.33 11.90 | 23.45
F3 | 14.00 28.41 12.15 | 9.15 19.62 | 12.65
F1 | 16.21 76.56 24.15 | 12.68 10.81 | 22.83
Jow/ | F2 | 26.94 41.29 31.59 | 14.55 25.46 | 27.60
F3 | 13.29 28.29 14.97 | 9.73 20.64 | 14.49
F1 | 1547 77.76 24.67 | 13.12 11.46 | 22.14
Juh/ | F2 | 25.12 40.40 32.34 | 13.36 24.47 | 26.61
F3 | 12.95 28.21 15.12 | 8.77 20.88 | 13.60
F1 | 15.45 81.07 24.32 | 12.96 10.74 | 23.16
Juw/ | F2 | 24.96 40.34 32.41 | 13.51 23.79 | 27.00
F3 | 12.84 29.35 15.31 | 9.12 21.40 | 13.80
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Table 2.5: Comparison of the estimation performance in terms of average error for dif-
ferent frame lengths (F's = 16kHz,SNR = 10dB)

Vowels 128 samples 512 samples
Proposed | AFB | LPC | Proposed | AFB | LPC
F1 | 57.68 72.67 | 54.40 | 13.43 28.29 | 22.08
Male /ah/ F2 | 16.16 24.25 | 19.60 | 10.32 29.34 | 23.30
F3 | 66.54 69.12 | 125.10 | 8.65 14.56 | 35.47
F1|57.19 77.34 | 57.54 | 13.69 32.81 | 11.19
Female /ah/ | F2 | 18.82 25.70 | 14.67 | 11.67 29.52 | 10.60
F3 | 49.40 42.63 | 96.28 | 9.88 15.78 | 17.86

determined formant band. Search resolutions for r and 6 are chosen as/Ar = 0.01 and
Af = 0.0017, respectively. In our experiments in order to obtain a noisy signal, noise
sequence of a particular SN R is added with the clean (noise-free) signal. Noisy signals
are generated according to (2.6]), where the noise variance o, is appropriately determined

according to a specified level of SNR defined as

N-1 2
SNR = 1Ol0gloz?vi017x(n) (2.28)
> no v(n)?

n=0

At first results for three synthetic vowels /a/, /o/ and /u/ are presented in Table 211
Vowels with duration of 80 ms are synthesized using the Klatt synthesizer considering the
pitch values of 120 Hz and 220 Hz, respectively, for male and female speakers. Estimation
eroor for the first three formants are taken into consideration after performing estimation

for 10 independent trials. Here the estimation error, the mean average deviation between

the estimated formant frequency fr and the reference formant frequency fo is defined as

fE - fO
fo

In Table 2., the estimatin error is shown for the three synthesized vowels at the

E =] | % 100% (2.29)

presence of white Gaussian noise with a SNR of 5d B and—5dB for both male and female
sounds, respectively. It is clearly observed that the proposed method is able to reduce
estimation error significantly in the case of noisy environments.

Next the simulation results for TIMIT database is presented. For this analysis, the

number of occurrence of each vowel along with the average vowel duration for male and
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female speakers available in the TIMIT database is presented in Table . Overall the
average duration of vowel utterances is 85.44 ms.

The estimation errors obtained by the proposed method and that by the other two
methods are presented under the influence of white gaussian noise conditions for male
and female speakers are presented in Tables 2.3 and 2.4l For each of the Tables 2.3 and
2.4] two different SNR levels are considered, for which the results for a selection of vowels
are presented. For each vowel, the estimation errors for three different formants, namely
F1,F2 and F'3 are listed. As can be seen from the tables, the proposed method offers
better performance than both the 12 order LPC' and the AF' B methods under presence of
background noise. It can be observed that the estimation error obtained by the proposed
method in comparison to that of the other methods is extremely lower in such severe
noisy conditions.

It is clearly observed that the estimation performance for the third formant, which
is by nature very difficult to estimate because of low spectral magnitude, is significantly
enhanced by the proposed method. In some cases it is found that the estimation accuracy
decreases for the cases when the two formants are very closely spaced, for example in case
of vowel /ih/. However, considering the level of noise, the estimation accuracy obtained
by the proposed method is quite acceptable. It is also observed that the estimation error
relatively increases in case of high pitch female speakers. The standard deviation of the
estimated errors is also measured and it is found that the standard deviation is very
small, indicating a consistent estimate of the formant under various conditions. Hence
the formant estimation obtained by the proposed method is very reliable and accurate.

In the proposed method formant estimation is carried out frame by frame with a
frame length of 512 samples and 10 ms overlap between the successive frames. As a
result for a vowel sound of duration of about 80 ms, 5 frames are analyzed. It is to be
noted that, because of the inherent characteristics of the fast Fourier transform (FFT)
operation, there exists an inherent error caused by the minimum width of the FFT bin.
For instance, when a 512 point FF'T is performed on a speech frame with sampling

frequency of 16 kHz, the resulting FFT has a resolution of 15.6 Hz. In Table 2.5 the
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effect of variation in frame length on the estimation accuracy for the vowel /ah/ is shown.
A reasonable number of samples are required so that the resolution of the FFT remains
good enough. This is also true for the LPC and the AF B methods, as they also require
sufficient number of samples to perform time domain estimation. It is observed from the
table that with the increase in frame length, estimation errors are significantly reduced
for all three methods. Other vowels also show a similar trend. The reason behind the
drastic increase in estimation error with decrease in frame length in the proposed method
is mainly the finite duration autocorrelation operation which results in a autocorrelation

sequence with decreasing tailing lags.
60
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Figure 2.14: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for male speakers

In order to present the overall formant estimation errors over the entire range of
SNRs considered in the experimental setup, in Figs. 2.14] 2.15] and 2.17] average of
estimation error of all vowels for all three formants are shown for the the proposed method
and the LPC — 12 based method considering only male speakers. In this case, the SNR
levels considered are ranging from —10 to +10dB. In a similar way, in Figs. 2.18] 2.19]
and [2.27], the average estimation error are shown for the female speakers for a SNR
range of —15 to +5dB. Finally, in Fig. 2.22] the average estimation error considering
both male and female speakers is shown. It is observed that the formant estimation

performance obtained by the three methods remains similar in case of high level of SNR.
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Figure 2.15: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for male speakers
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Figure 2.16: Third formant estimation performance in terms of percentage error in for-
mant estimation under various noise levels for male speakers
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Figure 2.17: Estimation performance in terms of percentage error in formant estimation
under various noise levels for male speakers
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Figure 2.18: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for female speakers
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Figure 2.19: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for female speakers
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Figure 2.20: Third formant estimation performance in terms of percentage error in for-
mant estimation under various noise levels for female speakers
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Figure 2.21: Estimation performance in terms of percentage error in formant estimation
under various noise levels for female speakers
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Figure 2.22: Estimation performance in terms of percentage error in formant estimation
under various noise levels
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Figure 2.23: Spectrogram of the utterance ‘let him become honest and they discard him’
, with formant frequencies estimated using the proposed method
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Figure 2.24: Spectrogram of the utterance ‘let him become honest and they discard him’ ,
under —5dB of background noise with formant frequencies estimated using the proposed
method
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Figure 2.25: Spectrogram of the utterance ‘let him become honest and they discard him’ |
with formant frequencies estimated under —5dB of Background noise using the proposed

method

However, with the decrease in SNR level, the estimation performance of the other two

methods deteriorates significantly in comparison to that of the proposed method. The

performance of the proposed method remains quite consistent even in the low levels of

SNRs and level of performance degradation is not very significant till —15dB. However,

beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

Table 2.6: Vowel recognition accuracy

Feature Vector 10dB | —5dB
MFCC + Proposed Method | 93.33 | 90.00
MFCC + LPC-12 93.33 | 81.66
MFCC + TIMIT reference | 93.33 | 90.00
MFCC 93.33 | 81.66

By incorporating the estimated formants in a feature vector along with traditional

MFCC, significantly better vowel recognition accuracies are achieved compared to a fea-

ture vector consisting of MFCC and formants estimated by LPC, especially under the
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influence of noise. By using these formants along with the traditional 12 MFCC features
as a feature vector, vowel recognition was performed for the vowels /aa/, /ux/ and /ow/
from the TIMIT database. For the purpose of further comparison, vowel recognition
accuracies obtained by incorporating the noise free reference values of the formants are
incorporated in the feature vector along with MFCC features obtained from noisy speech.
It can be observed that up to —10dB, the performance of the proposed feature vector is
comparable even to the performance of feature vectors incorporating noise free formant
estimations. As formant ranges for male and female vowels vary significantly, they are
considered as separate classes for this LDA based classification operation. There are 20
utterances for for each vowel. Accuracies are calculated by leaving one sample out while
training the classifier and then testing the left out sample. This check is performed for
all the samples in the database, and it is found that the proposed feature vector offers
better performance in noisy conditions. The recognition accuracies for different vowels is
presented in Table 2.6l It can be concluded from the table that the proposed noise robust
formant estimation method, when used for vowel recognition, increases the recognition
accuracy for vowel recognition systems under the influence of noise.

As seen from these analysis, the proposed method offers a better performance over
the LPC and AF B methods in noise free as well as in noisy conditions. In order to
demonstrate the effectiveness of our proposed method, a spectrogram of the sentence
‘let him become honest and they discard him’ uttered by a male speaker taken from the
TIMIT database is shown in Fig. 2.23] The formant frequencies estimated at different
frames using the proposed method are shown over the spectrogram. In the tracking, only
the estimated formants of the vowels are shown. It can be observed from the figure that
the proposed method tracks the formant frequencies quite accurately. For the purpose of
comparison, the same sentence, under influence of —5dB background noise, is utilized to
obtain the spectrogram present in Fig. Here the presence of noise has completely
obscured the energy bands, but still the proposed method can successfully track the
formant frequencies. With the purpose of gaining a better insight, the formant frequencies

obtained from the —5dB noise corrupted speech are overlayed on the spectrogram for
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noise free speech, which is shown in Fig. 225l The resulting tracking lines obtained by
the proposed method is a clear indication of its high level of consistency as well as the

accuracy even in heavy noisy condition.

2.4 Conclusion

In this chapter, an effective method for formant frequency estimation of noise corrupted
voiced human speech using spectral model of autocorrelation of speech is deployed that
can find out the band of successive formant frequencies for pre-processed voiced speech
signals. Then autocorrelation is then performed on the speech signal, which strengthens
the dominant poles, and exponentially increases the peak-valley ratio at formant fre-
quencies of the magnitude response, canceling out the effects of noise. Instead of using
conventional peak picking to find formants from the spectrum of the ACF, a spectral
model of autocorrelated speech signal for a single formant is developed and model fitting
is employed to find out model parameters which lead to formant estimation. Natural vow-
els as well as some naturally spoken sentences in noisy environments are tested. Through
the simulation results on standard speech databases , it is shown that the developed
method is effective in maintaining a high success rate in formant estimation even in the

presence of a significant background noise.
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Chapter 3

Spectral Model of Repeated

Autocorrelation of Speech

In this chapter, the scheme for estimating the formant frequencies is further developed
using repeated autocorrelation. Repeated autocorrelation operation, which significantly
strengthens the dominant poles, and exponentially increases the peak-valley ratio at
formant frequencies of the magnitude response, is proposed to be employed with the
purpose of canceling out the effects of noise. Formant estimation is carried out in the
spectral domain where instead of direct peak-picking from the speech spectrum, a spectral
domain model of repeated ACF of speech signal is first proposed considering the vocal
tract to comprise of cascaded subsystem responsible for single resonant frequencies. A
spectral domain model fitting based algorithm is also developed to extract the model
parameters which in turn give the formant. Through the simulation results on standard
speech databases , it is shown that the developed method is effective in maintaining a
high success rate in formant estimation even in the presence of a significant background

noise.

3.1 Background

In order to estimate the formant frequencies from observed speech signal, it is sufficient

to restrict the analysis only for the voiced sound. In case of the voiced speech signals,
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considering the excitation as a periodic impulse-train, the overall vocal tract filter can
be represented by a P-th order autoregressive (AR) system with the following transfer
function
C
H(z) = — — (3.1)
[Tiei (1= piz™)

where p; denotes the pole of the AR system and C'is the gain factor. The vocal tract

system in (BJ) can exhibit P/2 formants. However, as far as formant estimation is
concerned, only the first three formants are significant and contain a very high portion
of the total energy. In this regard, it would be sufficient to consider the vocal tract to be
represented as a cascaded network of three separate subsystems, each causing a resonant

peak in the speech spectrum.

Figure 3.1: Voiced sound generation through a simplified model of vocal tract system

In Fig. B.1] a simplified vocal tract model consisting of three subsystems is shown.Each

individual subsystem in Fig. 3.1l can be represented as

Ci

H) = e ea =

(3.2)

Here for each pair of complex conjugate poles p; = r;el%) the magnitude r; and angle 6;

are related to a particular formant F; and the formant bandwidth B; as

ri=e Fs (3.3)
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_ 2nF;
- Fs

where Fs is the sampling frequency.

3.2 Proposed Formant Estimation Scheme

In this section, the effect of everyday noise on voiced speech is demonstrated. Then
methods for countering the effect of noise on formant estimation are evaluated and the
performance of repeated autocorrelation as a facilitator for better formant detection under
noise is demonstrated. It is shown that repeated autocorrelation works better than single
autocorrelation for the purpose of noise removal. Finally a model matching method is

developed for extracting the formants from the autocorrelation of band limited speech.

3.2.1 Effect of Repeated ACF in Noise

For noise-free voiced speech signal conventional peak picking formant estimation methods
may provide satisfactory results. However, presence of background noise is very common
in everyday situations and it affects the accuracy of traditional estimators.

For a voiced sound z(n) in the presence of additive noise v(n) with zero mean and

unit variance, the noise corrupted speech y(n) can be written as

y(n) = x(n) + v(n) (3.5)

In a time domain representation of the noise corrupted speech signal, it is very difficult
to distinguish the original speech samples even at a moderate level of noise. The presence
of additive noise completely destroys the original speech pattern resulting in a noise
like pattern. In order to show the effect of noise in time domain, in Fig. B.2(a) and
3.2[(b), a noise free speech x(n) and corresponding noise corrupted speech y(n) are shown,
respectively. Here the natural sound /iy/ is considered and its spectral representation is

presented in Fig. B.3|(a) for the noise free speech and in Figl33|(b) for the noisy speech.
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Figure 3.2: (a) Time domain waveform of an utterance /iy/ and (b) the same waveform
under —5dB background noise
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Figure 3.4: Effect of noise in the autocorrelation domain: plot of different autocorrelation

functions (a) ry(n), (b) ry(n), (c) ry(n), (d) ry,(n), (€) r4(n) and (f) ry.(n)

The autocorrelation function (ACF) of a voiced sound z(n) is defined as

re(17) = E[z(n)z(n — 7)] (3.6)

where 7 denotes the lag. ACF is an even function, with the output being symmetric with
respect to the amplitude axis. In practical application the ACF of z(n) is computed by
using the working formula given below

N—-1—|n|

ro(n) :% S aalk+ ) =0,1,2.. ... M-1 (3.7)
k=0

Using (B.5) and (B.6]), the ACF of noisy speech y(n) can be expressed as

(3.8)

Here r,(n) is the ACF of noise v(n) and r,,(n) and r,,(n) are the cross correlation terms.

In Figs. 8(a)-8(f), different ACFs, namely r,(n), ry(n), ry(n), ro(n), ra(n) and r,,(n)
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are plotted. From these figures, it can be concluded that in comparison to the effect of
v(n) on x(n) as shown in Fig. B2 the effect of r,(n) on ry(n) is drastically reduced
because of the autocorrelation operation.

Considering x(n) as an output of an LTI system with transfer function H(z), x(n)

can be written as

x(n) = h(n) * u(n) (3.9)

It can be shown that the ACF of z(n) can be expressed as

re(n) = rp(n) * ry(n) (3.10)

where 7,(n) is the ACF of u(n). As per the definition of the ACF provided in (3.6), the

ACF of h(n) can be written as

rn(n) = h(n) x h(—n) (3.11)

In view of analyzing the frequency domain effects, for simplicity, first the Z domain
representation is considered. The Z transform of rj,(n), as obtained from (B.I1)) is given

by

Ry(z) = H(z)H(z™) (3.12)

It is observed from (B.I2]) that the ACF operation produces a set of new poles with equal
number of the original system poles corresponding to H(z) and the new poles correspond-
ing to H(z7!) are located at the conjugate reciprocal location of the original poles. For a
clear understanding, a sample z-plane pole representation of H(z) having three pairs of
complex conjugate poles and corresponding Ry (z) are shown in Figs. B.5(a) and B.5(b)
respectively. It is seen that from the figure that at each angular position of the original
poles, one new pole is generated outside the unit circle. In order to present the effect of

spectral peak strengthening both in noise-free and noisy condition, in Fig. 3.6, spectra
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Figure 3.6: Effect of spectral strengthening because of autocorrelation operation. Spec-
trum of: (a) r,(n), (b) rsyna(n), (¢) rz(n) and (d) r4(n)

corresponding to r(n), 7syn.(n), r»(n) and r,(n) are shown. Strengthening of dominant
peaks is evident as the first formant peak is significantly strengthened. However, spurious
peaks are still present, and this may poses challenges under severely noisy conditions.

Realizing the effect of spectral peak strengthening, in this chapter, we propose to
generate more poles at the location of the original poles to further strengthen the spectral
peaks. In view of achieving this objective, the ACF operation can be repeated, which
not only strengthens the dominant peaks but also preserves pole locations.

Performing further autocorrelation operation on an ACF of a noise corrupted speech
signal will imitate duplication of poles at the original locations of the system. Hence,
the resulting double correlated signal is expected to exhibit more noise immunity and in
its spectrum, even under heavy noisy condition, the formant peaks will be significantly
enhanced. Considering the same noisy natural sound /iy/ as shown in Fig. B.2] the
spectral domain effect of Double ACF (DACF) on this speech signal is shown in Fig.

B.7. It is observed from this figure that because of the repeated ACF the resulting
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spectrum becomes almost free from spurious peaks around the enhanced first formant
peak. The enhancement of the first formant is quite prominent in Fig. 3.7 However,
enhancement also occurs for other two formant peaks which can be visible from the
enlarged figures shown inside Fig. B.7 In view of clear understanding of such spectral
peak enhancement, corresponding spectrogram is shown in Fig. B.8 It can be clearly seen
from the spectrogram representation that all three formant locations indicate a very high
spectral energy (dark red color in the figure). Hence, use of the spectrum corresponding
to the double correlated signal, instead that corresponding to the noisy signal, would
be much convenient for formant estimation. According to the definition of the ACF
mentioned in (3.6), the ACF of ,(n), namely the repeated ACF of z(n) can be expressed

as

pz(n) =ry(n) xr,(—n) (3.13)

using the definiton of r,(n) from (B.I0), it can be shown that

po(n) = pu(n) * pu(n) (3.14)

As discussed before, it would be sufficient to consider the detailed analysis of p,(n)
instead of p,(n). Using the definition in (3.11]), the Z Transform of p,(n) can be written

as

Piu(z) = Pp(2)Pu(z1) (3.15)

It is observed from (B.I5]) that the repeated ACF operation produces a set of new poles
with equal number of the poles corresponding to Ry (z) and the new poles corresponding
to Ry(z71) are located at the conjugate reciprocal location of the poles corresponding to
Rp(z). In a similar fashion as the effect of single autocorrelation operation on the system
poles is shown in Fig. B6l(b), the effect of repeated autocorrelation operation on system
poles is shown in Fig. B.6l(c). It is clearly observed that in the location of each pole in

Fig. B.6(b), instead of one, there exist two poles in Fig. B.6/(c) resulting from the double
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Figure 3.9: Time domain waveforms for (a) p,(n),(b) py(n), (c) pc.(n), and (d) pw,(n)

autocorrelation operation. As a result, in each formant frequency location, instead of
one, now there will be four poles, resulting in huge spectral energy.

It is to be mentioned that in the computation of the DACF, the double sided ACF
signal is provided as input. This is done in view of overcoming the adverse spectral domain
effect of conventional windowing to be used to obtain the single sided ACF from the given
two sided version. The advantage of using the DAC operation can also be demonstrated
in time domain as explained before in case of SAC operation. Further application of ACF
on the noise corrupted signal 7,(n) produces p,(n) which can be expressed as

py(n) = pz(n) + pe(n) (3.16)

pe(n) = pu(n) + pow(n) + pua(n)
wherep,(n) and p,(n) are the ACF of r,(n) and r,(n) and p.,(n) and p,.(n) are cross
correlation terms. It is expected that the effect of p.(n) on p,(n) is very negligible, as
there exists very little correlation between r,(n) and r,,(n), and r,(n) is quite insignificant

at points other than the zero lag. In Figs. B.9(a) - B9(d) , the DACFs p,(n), py(n), pc(n)

63



as well as p,(n) are shown. It is clearly observed that the values of p.(n) are extremely
small in comparison to that of p,(n) as expected. From these figures, it can be concluded
that in comparison to the effect of r,(n) on r,(n) as shown in Fig. B4l the effect of
pe(n) on p,(n) is significantly reduced because of the repeated autocorrelation operation.
Hence, it is advantageous to utilize p,(n) instead of r,(n) in spectral domain formant
estimation.

In the z domain, the ACF operation creates new poles at conjugate reciprocal po-
sitions. In the case of DACF, one major advantage is that new poles are created in
the original positions, in addition to the poles produced outside the unit circle after the
first autocorrelation operation. z-plane pole representation of H(z) having three pairs of
complex conjugate poles and corresponding Py (z) are shown in Figs. BI0(a) and BI0(b)
respectively. It is seen that from the figure that at the position of each of the original
poles, one new pole is generated, while two other poles corresponding to the same angular
frequency are present outside the unit circle. In spectral domain, the peak strengthening
effect, as discussed before for the ACF, is more prominent in case of DACF, resulting in
a spectral smoothing in the region of unwanted noise peaks. In view of demonstrating
the effect DACF on spectral peak strengthening both in noise-free and noisy conditions,
similar to the case of ACF as shown in Fig. [3.6] and in Fig. B.11] spectra corresponding
to pn(n), psynz(n), pz(n) and p,(n) are shown. In comparison to the spectra correspond-
ing to y(n) presented at Fig. B.2] It is clearly observed that the first peak in the spectra
corresponding to p,(n) exhibits an extremely large peak in comparison to other peaks
and significant spectral smoothing is observed in other zones of the normalized spectrum.
The pole strengthening effect is much more prominent here compared to single autocor-
relation function. It is to be noted that there are no spurious peaks around the dominant
first formant peak. This is to be expected as after DACF, the poles responsible for the
first formant peak are in effect doubled.

Similar to the spectral matching scheme described for the single autocorrelation func-
tion, to overcome the problems posed by extremely dominant first formant peak, we can

again consider the vocal tract to consist of separate subsystems each responsible for a
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Figure 3.11: Effect of spectral strengthening because of autocorrelation operation. Spec-
trum of: (a) pn(n), (b) p(n), (¢) pz(n) and (d)p(n)

single formant frequency. As higher formants become increasingly weak due to their low
energy concentration and the tilt caused by the lip radiation, it is sufficient to consider
only the first three formants. Then the impulse response h(n) of the whole system can

be written as

h(n) = hi(n) x ha(n) = hz(n) (3.17)

where hq(n), ha(n) and hg(n) are the impulse responses of the individual systems. After

performing double autocorrelation, the system impulse response becomes

pr(n) = pp1(n) * pra(n) * pps(n) (3.18)

The Z Transform of p,(n) , as obtained from (3.1I8)) is given by

Ph<2) = Ph1<Z)Ph2<Z>Ph3(Z) (319)
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The first formant peak is even more prominent in the spectrum of DACF presented in
[B.11] indicating that the effect of Pyo(2) and Pps(z) are negligible on Py (2). Using this
property, it can be assumed that the output response to closely match Py(z) around the
first formant peak. Thus instead of conventional peak picking, in this chapter, the task
of formant estimation is carried out through model fitting, which ensures that both the

frequency and bandwidth of formant peaks are matched.

3.2.2 Proposed Spectral Model of Repeated ACF

As seen from the previous section, the spectrum of the vocal tract response within a
particular formant band generally exhibits a prominent peak corresponding to the for-
mant. Considering the vocal tract as an AR system, a pair of complex conjugate poles is
responsible for generating a dominant peak in the spectral domain. Although the effect
of other pole pairs, unless otherwise located at a very close vicinity, may enhance the
spectral level, dominance of a particular formant peak is mostly because of the pole pair
located in that particular formant frequency. Hence it is sufficient to consider a band
limited speech signal corresponding to a particular formant band to analyze the effect of
an individual formant. In this regard, considering the vocal tract system as a cascade of
a set of subsystems, each subsystem that is responsible for generating a formant peak is
denoted as H;(z).

However, in noisy environments, presence of spurious peaks may cause difficulties in
identification of formant peaks even in the case of band limited signals. As discussed in
the previous section, the autocorrelation operation can reduce the effect of noise. More-
over, performing the ACF operation will definitely exhibit significant noise reduction. In
order to identify the formant peaks, especially under noisy condition, one possibility is to
consider a transfer function which can produce an impulse response that closely matches
the output ACF of the most prominent subsystem, namely H;(z). By limiting the com-
parison to only the zone where only the first formant frequency should be present, the
spectrum corresponding to that transfer function can then be used in a spectral matching

technique along with the spectrum obtained from the ACF of the noise corrupted signal.
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In this case, the transfer function of the subsystem responsible for the ACF spectrum

around the i-th formant peak as per (8.12]) can be represented as

CRZ'ZQ

Ryri(2) = (I —pizH(1 —piz=)(1 — piz)(1 — piz)

(3.20)

where Cg; is a constant.

ACF of Impulse Response
Impulse response of Model

Figure 3.12: Impulse response of the proposed model Ry;(z) and the ACF of the impulse
response

With the introduction of each new pole outside the unit circle, a trivial zero is also
introduced at the origin. The effect of these zeros is to introduce a delay in the output.
Thus a pair of zeros is incorporated in ([B.20). If the ACF of an impulse response for
a synthetic speech signal is taken, it is expected that this will match with an impulse
response obtained from a system which contains new poles in addition to the original
ones, as described above. This is evident in Fig. [B.12] where these two signals match
perfectly. Again, if the trivial zeros were not included while constructing the new system
for generating an impulse response similar to the ACF, we would have experienced a delay

between the signals, which can be observed at Fig. BI3l In a similar fashion, if instead
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Figure 3.13: ACF data and model impulse response without any trivial zeros used

of one, double ACF is used, as explained before, the effect of noise will be further reduced
and the transfer function corresponding to the DACF for the i-th subsystem according

to (B.I3]) can be represented as

CPZ‘Z6
{(1=piz=))(1 = piz= ) (1 = piz) (1 — pj2)}?

Pri(z) = (3.21)

where Cp; is a constant.

Similar to the ACF, impulse responses obtained from the model in (3.21]) should show
an exact match with the DACF of the impulse response of a single pole pair system. This
is confirmed in Fig. B.I4], where these two signals are shown to have a perfect match,

showing the validity of the proposed model generation approach.

3.2.3 Formant Estimation using Spectral Matching

In the proposed formant estimation method, a spectral model corresponding to the first

formant zone of the spectrum of the DACF of the speech signal is introduced, which is
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Figure 3.14: DACF data and model impulse response for a single formant band

utilized in a model matching technique to find out the model parameters that in turn will
provide the desired formant frequencies. The DACF of each band limited speech frame
y;(n) is computed and used in the proposed model matching technique. The z-transform
representation of the DACF of y;(n) in (8.21]) can have a Fourier transform representation
for the region of convergence r; < z < Ti , which is chosen as the model function of the

proposed method and given by

Ci6j6w
Pyi(e?) = . . . :
i) = A e A —pre A —pe)A—pra?  (3.22)
pi = rie?”"

The spectrum P,;(e?*) of the DACF of the band limited observed noisy signal y;(n)
is used in conjunction with the proposed model Py;(e’*) to form an objective function

based on the square of absolute difference of these spectra, namely
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) : Whe jw ) jw 2
Emin (75, 05) = min Soote . ([Pari(e)| = [Pi(e)])

<1 < T (3.23)
0, <0, <0

Minimization of the objective function is carried out within a restricted frequency
range wy. to wy. which depends on the range of the first formant zone. One may utilize
the —3dB points on the lower and higher sides of the peak in the spectrum of the model
to extract wy. and wp.. Within that specified range w;, < w < wp,, the optimum value
of the two variables r; and 6; is obtained at the minimum square absolute difference.
Based on the fundamental knowledge of traditional range of formants, one may restrict
the search range for the two variables i.e., r; < r < r, and 6, < 0 < 6, or adopt a coarse
and fine search approach [30]. Formant frequencies are estimated from the pole angle 6;
that produces the best match between the spectra using (3.4)).

Similar to the process described in the first chapter, once the first formant frequency
F1is obtained, (319) is utilized to estimate the second formant frequency F2. As P,(e/*)
can be taken as the product of P, (e?¥), Py(e’*) and P,3(e?*), the magnitude spectrum
of P,(e’*) is divided by Pyi(e’) so that the resulting spectrum P, (/) closely resembles
the product of Py(e?) and P,3(e?*). Then similar to the matching in the first formant
zone, matching is performed in the second formant zone and F2 is estimated. Then the
magnitude spectrum of P} (e/*) is divided by Py(e/*) to obtain P;(e’*). According to
the simplified modeling of the vocal tract presented above, Pyz(ej‘*’) should closely match
with P,3(e??), leading to a similar approach as described in (8:22) and (3.23)) to obtain
F3.

One major advantage of the proposed model fitting approach over the conventional
peak picking method lies in the fact that an entire formant band is taken into consider-
ation instead of relying only on the magnitude of the peaks, which are extremely noise
sensitive. As a result the formant frequency that is chosen as the desired estimate should
provide the best match between the spectra within a formant band. This spectral match-

ing is very suitable especially when the level of noise is very severe and/or the formants
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are very closely spaced.

3.2.4 Vowel Recognition

After estimating formants in this manner, in the proposed scheme they are employed
in vowel recognition as features along with the commonly used mel frequency cepstral
coefficients (MFCC) coefficients. Linear discriminant analysis (LDA) based classifier is
used to accomplish this task. LDA based discriminants take into account the intra-cluster
scatter matrix computed from the training vectors pertaining to each of the classes. For
our proposed scheme, a frame by frame classification method is used, which offers vowel
recognition results for each voiced frame independently.

The classifier classifies the data into different groups generally, depending on the
significant characteristics of the group members. The quality of a classifier depends on its
ability to provide the compactness among the member within a cluster and the separation
between the members of different clusters in terms of feature characteristics. The task
of recognizer is to identify the class label of a test sample utilizing the classified data.
In a feature based scheme, classification is performed utilizing the extracted features of
the data, instead of directly employing the data themselves. In the proposed method,
the LDA is used to classify the vowel among the different classes (in our case, vowel)
available. A linear projection is determined that maximizes a ratio between the signal,
represented by the projected inter-cluster distance and the noise, represented by the
projected intra-cluster variance. Here the objective function is based on determining a
projection direction w to maximize the Fisher’s discriminant defined as

wT Syw

J(w) = (3.24)

w? Sy,w

where S, and Sy, are within and between-class scatter matrices, respectively[50] .
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3.3 Simulation Results and Discussion

In order to evaluate the recognition performance of the proposed methods, experiments
have been conducted on the same collection of utterances from the TIMIT acoustic-
phonetic continuous speech corpus, introduced in the previous chapter. For the purpose
of performance comparison, first the most widely used LPC' based formant estimation
method [53] is chosen, where the order of the LPC' is chosen as 12. Apart from the LPC
method, a state of the art adaptive filter bank (AF B) method is also chosen. In the
AF B method, formant estimation is carried out in sample by sample basis, and for the

purpose of comparison, average estimated formant values over a period is considered [32].

Table 3.1: Comparison of the estimation performance for synthetic vowels

5dB —5dB

Vowels Proposed | LPC | AFB | Proposed | LPC AFB
F1|4.92 21.57 | 43.65 | 6.04 24.53 | 47.17

Ja/ | F2 ] 9.74 7.24 25.74 | 7.47 99.56 | 27.25

F3 | 12.48 20.49 | 10.68 | 17.57 39.35 | 10.42

F1 | 4.56 61.38 | 124.73 | 4.56 73.15 | 21.63

Male Jo/ | F2 | 14.16 167.49 | 43.93 | 17.23 144.60 | 58.65
F3 | 17.90 36.74 | 12.54 | 17.90 37.68 | 11.66

F1]5.80 93.53 | 149.02 | 6.55 117.36 | 13.56

/u/ | F2 | 10.48 158.74 | 46.60 | 14.26 148.07 | 63.59

F3 | 2.59 69.03 | 38.05 | 2.82 72.38 | 19.40

F1|5.98 20.24 | 46.90 | 5.98 20.46 | 49.77

/a/ | F2 | 8.14 65.23 | 32.58 | 7.41 113.79 | 30.99

F3 | 7.78 17.80 | 8.45 11.35 34.02 | 9.84

F1 | 10.75 49.53 | 128.07 | 10.75 78.29 | 18.29

Female | /o/ | F2 | 10.05 138.88 | 20.42 | 15.79 133.29 | 46.61
F3 | 4.80 39.93 | 9.56 7.37 36.28 | 12.53

F1]9.43 72.96 | 109.00 | 9.52 98.29 | 12.98

/u/ | F2 | 9.39 116.33 | 14.62 | 13.89 121.92 | 33.72

F3 | 6.74 52.31 | 11.40 | 7.64 40.60 | 13.74

In the proposed model fitting approach, the model parameter limits are set accord-
ing to the general behavior of the vocal tract. The parameter r which determines the
bandwidth of the resulting formant has a limit of [0.8,0.99] for the purpose of our simu-
lation. The search range for 6 is set according to the determined formant band. Search
resolutions of Ar = 0.01 and Af = 0.0017 are used for r and 6, respectively.

At first results for three synthetic vowels /a/, /o/ and /u/ are presented in Table Bl

73



Table 3.2: Comparison of the estimation performance in terms of average error for male
speakers

—5dB 5dB
Vowel Proposed | LPC | AFB | Proposed | LPC | AFB
F1 | 14.90 30.53 | 30.88 | 14.07 26.48 | 17.74
Jaa/ | F2 | 12.00 82.19 | 36.42 | 11.47 45.44 | 21.87
F3 | 17.59 43.35 | 15.47 | 12.11 39.80 | 17.07
F1 | 15.36 31.64 | 24.12 | 14.83 24.65 | 16.31
Jah/ | F2 | 10.42 57.43 | 28.88 | 10.23 35.57 | 24.41
F3 | 13.37 39.21 | 13.09 | 9.78 37.72 | 11.61
F1 | 14.69 27.70 | 24.62 | 14.31 15.56 | 18.17
/eh/ | F2 | 17.80 33.30 | 24.18 | 10.98 18.03 | 18.17
F3 | 13.57 39.13 | 13.39 | 10.14 35.55 | 13.05
F1 | 14.15 37.19 | 24.84 | 13.14 12.22 | 28.69
/ix/ F2 | 16.41 31.84 | 24.89 | 10.74 21.27 | 23.10
F3 | 10.91 39.08 | 14.50 | 10.36 35.36 | 15.29
F1 | 16.05 22.63 | 35.49 | 15.28 19.72 | 37.77
Jow/ | F2 | 13.77 47.20 | 26.03 | 12.64 41.67 | 24.65
F3 | 14.24 36.68 | 14.20 | 12.62 37.74 | 14.00
F1 | 15.64 29.66 | 36.72 | 15.58 20.09 | 39.58
Juw/ | F2 | 13.10 40.36 | 23.14 | 12.77 36.45 | 22.49
F3 | 12.39 39.48 | 14.53 | 11.53 38.25 | 14.50

Table 3.3: Comparison of the estimation performance in terms of average error for female
speakers

—15dB 0dB
Vowel Proposed | LPC AFB | Proposed | LPC | AFB
F1 | 15.89 48.89 46.25 | 11.72 15.91 | 41.89
Jaa/ |[F2|20.74 83.33 | 21.40 | 11.74 50.37 | 25.37
F3 | 13.89 43.46 14.23 | 13.11 27.05 | 12.70
F1|22.93 50.77 | 37.88 | 13.16 12.32 | 35.70
Jah/ | F2 | 19.35 66.14 21.65 | 9.93 33.23 | 19.26
F3 | 13.28 34.12 16.12 | 13.35 22.09 | 14.33
F1 | 16.85 55.19 31.51 | 11.06 9.32 | 24.85
Jeh/ | F2 | 28.91 31.17 28.87 | 15.18 11.90 | 23.45
F3 | 13.74 28.41 12.15 | 9.79 19.62 | 12.65
F1 | 18.50 76.56 24.15 | 12.44 10.81 | 22.83
Jow/ | F2 | 27.01 41.29 31.59 | 14.56 25.46 | 27.60
F3 | 13.47 28.29 14.97 | 9.41 20.64 | 14.49
F1 | 17.17 77.76 24.67 | 12.88 11.46 | 22.14
Juh/ | F2 | 25.27 40.40 32.34 | 13.33 24.47 | 26.61
F3 | 13.04 28.21 15.12 | 8.50 20.88 | 13.60
F1 | 17.16 81.07 24.32 | 12.62 10.74 | 23.16
Juw/ | F2 | 25.09 40.34 | 32.41 | 13.50 23.79 | 27.00
F3 | 12.93 29.35 15.31 | 8.86 21.40 | 13.80
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Vowels with duration of 80 ms are synthesized using the Klatt synthesizer considering the
pitch values of 120 Hz and 220 Hz, respectively, for male and female speakers. Estimation
eroor for the first three formants are taken into consideration after performing estimation
for 10 independent trials. The estimatin error is shown for the three synthesized vowels
a SNRs of 5dB and—5dB for both male and female sounds, respectively. It is clearly
observed that the proposed method is able to reduce estimation error significantly in
comparison to the other methods, even with an increase in the level of background noise.

The estimation errors for utterances from the TIMIT database obtained by the pro-
posed method and that by the other two methods are presented under the influence of
white gaussian noise conditions for male and female speakers are presented in Tables
and 3.3l The estimation errors obtained by the proposed method and that by the
other two methods are presented under the influence of various levels of white gaussian
noise conditions for male and female speakers, respectively for a selection of vowels. For
each vowel, the estimation errors for three different formants, namely F'1, F'2 and F'3 are
listed. As can be seen from the tables, the proposed method offers better performance
than both 12 order LPC and AF' B methods under presence of background noise. It can
be observed that the estimation error obtained by the proposed method in comparison
to that of the other methods is extremely lower in such severe noisy conditions.

Similar to the first chapter, the proposed method offers very good estimation accura-
cies even for the third formant, for which estimation is generally quite difficult due to the
low level of energy in the spectrum. However, for the female vowels like /iy/ with closely
spaced second and third formants, the level of estimation accuracy is low for the second
formant. However, considering the level of noise, the estimation accuracy obtained by
the proposed method is quite acceptable. It is also observed that the estimation error
relatively increases in case of high pitch female speakers. As in previous chapter, formant
estimation is carried out frame by frame with a frame length of 512 samples and 10 ms
overlap between the successive frames.

In order to present the overall formant estimation errors over the entire range of

SNRs considered in the experimental setup, in Figs. B.15 [3.16] B.17 and B.18], average of
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-10dB -5dB 0dB 5dB 10dB

Proposed e |P(C == AFB

Figure 3.15: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for male speakers

-10dB -5dB 0dB 5dB 10dB

Proposed e====|PC == AFB

Figure 3.16: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for male speakers
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-10dB -5dB 0dB 5dB 10dB

Proposed e |P(C === AFB

Figure 3.17: Third formsnt estimation performance in terms of percentage error in for-
mant estimation under various noise levels for male speakers

-10dB -5dB 0dB 5dB 10dB

Proposed e |P(C e AFB

Figure 3.18: Estimation performance in terms of percentage error in formant estimation
under various noise levels for male speakers
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-15dB -10dB -5dB 0dB 5dB

Proposed e |PC == AFB

Figure 3.19: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for female speakers

-15dB -10dB -5dB 0dB 5dB

Proposed e |P(C e AFB

Figure 3.20: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for female speakers
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-15dB -10 dB -5dB 0dB 5dB

Proposed e==|PC == AFB

Figure 3.21: Estimation performance in terms of percentage error in formant estimation
under various noise levels for female speakers

-15dB -10 dB -5dB 0dB 5dB

Proposed e |P(C e AFB

Figure 3.22: Estimation performance in terms of percentage error in formant estimation
under various noise levels for female speakers
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Figure 3.23: Estimation performance in terms of percentage error in formant estimation
under various noise levels
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Figure 3.24: Spectrogram of the utterance ‘His technique is genuinely masterful’ , with
formant frequencies estimated using the proposed method
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Figure 3.25: Spectrogram of the utterance ‘His technique is genuinely masterful’ , under
—5dB of background noise with formant frequencies estimated using the proposed method
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Figure 3.26: Spectrogram of the utterance ‘His technique is genuinely masterful’ , with for-
mant frequencies estimated under —5dB of Background noise using the proposed method
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estimation error of all vowels for all three formants are shown for the the proposed method
and the LPC — 12 based method considering only male speakers. In this case, the SNR
levels considered are ranging from —10 to +10dB. In a similar way, in Figs. .19 .20
3.2 and [3.22] the average estimation error are shown for the female speakers for a SNR
range of —15 to +5dB. Finally, in Fig. [3.23] the average estimation error considering
both male and female speakers is shown. It is observed that the formant estimation
performance obtained by the three methods remains similar in case of high level of SNR.
However, with the decrease in SNR level, the estimation performance of the other two
methods deteriorates significantly in comparison to that of the proposed method. The
performance of the proposed method remains quite consistent even in the low levels of
SNRs and level of performance degradation is not very significant till —15dB. However,
beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

Table 3.4: Vowel recognition accuracy

Feature Vector 10dB | —5dB
MFCC + Proposed Method | 93.33 | 88.33
MFCC + LPC-12 93.33 | 81.66
MFCC + TIMIT reference | 93.33 | 90.00
MFCC 93.33 | 81.66

By incorporating the estimated formants in a feature vector along with traditional
MFCC, vowel recognition accuracies marginally improved compared to a feature vector
consisting of MFCC and formants estimated by LPC, especially under the influence of
noise. By using these formants along with the traditional 12 MFCC features as a feature
vector, vowel recognition was performed for the vowels /aa/, /ow/ and /ux/ from the
TIMIT database. For the purpose of further comparison, vowel recognition accuracies
obtained by incorporating the noise free reference values of the formants are incorporated
in the feature vector along with MFCC features obtained from noisy speech. It can be
observed that up to —10dB, the performance of the proposed feature vector is comparable
even to the performance of feature vectors incorporating noise free formant estimations.

The recognition accuracies for different vowels is presented in Table [3.4]
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As seen from these analysis, the proposed method offers a better performance over
the LPC and AF B methods in noise free as well as in noisy conditions. In order to
demonstrate the effectiveness of our proposed method, a spectrogram of the sentence
‘His technique is genuinely masterful” uttered by a male speaker taken from the TIMIT
database is shown in Fig. [3.24l The formant frequencies estimated at different frames
using the proposed method are shown over the spectrogram. In the tracking, only the
estimated formants of the vowels are shown. It can be observed from the figure that
the proposed method tracks the formant frequencies quite accurately. For the purpose of
comparison, the same sentence, under influence of —5dB background noise, is utilized to
obtain the spectrogram present in Fig. Here the presence of noise has completely
obscured the energy bands, but still the proposed method can successfully track the
formant frequencies. With the purpose of gaining a better insight, the formant frequencies
obtained from the —5dB noise corrupted speech are overlayed on the spectrogram for
noise free speech, which is shown in Fig. B.26l The resulting tracking lines obtained by
the proposed method is a clear indication of its high level of consistency as well as the

accuracy even in heavy noisy condition.

3.4 Conclusion

In this chapter, a formant estimation scheme based on frequency domain modeling of
repeatedly autocorrelated speech. An adaptive band recognition system is deployed that
can find out the band of successive formant frequencies for pre-processed voiced speech
signals. The speech signal is then passed through an adaptive filter designed to separate
the responses of different formants. Repeated autocorrelation, which strengthens the
dominant poles, and exponentially increases the peak-valley ratio at formant frequencies
of the magnitude response, canceling out the effects of noise, is then performed on the
filtered speech signals. Formant estimation is carried out in the spectral domain where
instead of direct peak-picking from the speech spectrum, a spectral domain model of

ACF of speech signal is first proposed considering the resonances of the vocal tract. A
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spectral domain model fitting based algorithm is also developed to extract the model
parameters which in turn give the formant. Through the simulation results on standard
speech databases , it is shown that the developed method is effective in maintaining a
high success rate in formant estimation even in the presence of a significant background

noise.
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Chapter 4

Spectral Model of Repeated
Autocorrelation of Band Limited

Speech

In this chapter, an adaptive band recognition system is deployed that can find out the
band of successive formant frequencies for pre-processed voiced speech signals. The speech
signal is then passed through an adaptive filter designed to separate the responses of differ-
ent formants. As seen in the previous chapters, repeated autocorrelation strengthens the
dominant poles and exponentially increases the peak-valley ratio at formant frequencies
of the magnitude response. In order to exploit this characteristic, a formants estima-
tion method involving the repeated autocorrelation of band limited speech is developed.
Formant estimation is carried out in the spectral domain where instead of direct peak-
picking from the speech spectrum, a spectral domain model of ACF of speech signal is
first proposed considering the resonances of the vocal tract. A spectral domain model
fitting based algorithm is also developed to extract the model parameters which in turn
give the formant. Through the simulation results on standard speech databases as well as
synthetic speech signals, it is shown that the developed method is effective in maintaining
a high success rate in formant estimation even in the presence of a significant background

noise.
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4.1 Background

In order to estimate the formant frequencies from observed speech signal, it is sufficient to
restrict the analysis only for the voiced sound, as described in the previous chapters. In
case of the voiced speech signals, considering the excitation as a periodic impulse-train,
the overall vocal tract filter can be represented by a P-th order autoregressive (AR)

system comprising of with the following transfer function

C
Hf:1<1 —pizt)

where p; denotes the pole of the AR system and C' is the gain factor. This system can

H(z) =

(4.1)

be further subdivided into individual cascaded subsystems whose transfer function can

be presented as

C
(1 =piz7)(1 = piz7t)

Hi(z) = (4.2)

Here the magnitude r; and angle 6; of each pair of complex conjugate poles p; = r;el7%)

are related to a particular formant F; and the formant bandwidth B; as

ri=-e Fs (4.3)
27 F;

92‘ == . 4.4
P (4.4)

where Fs is the sampling frequency.
For a voiced soundz(n)in the presence of additive noise v(n) with zero mean and unit
variance, the noise corrupted speech y(n) can be written as
y(n) = z(n) +v(n) (4.5)

In a time domain representation of the noise corrupted speech signal, it is very difficult

to distinguish the original speech samples even at a moderate level of noise. The presence
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of additive noise completely destroys the original speech pattern resulting in a noise like
pattern. As described before, the autocorrelation operation on the noisy signal may
reduce the effect of noise. The autocorrelation function of a voiced sound x(n) is defined

as

R.(7) = E[z(n)x(n — 7)] (4.6)

where 7 denotes the lag. ACF is an even function, with the output being symmetric with
respect to the amplitude axis.
The ACF of noisy speech y(n) can be expressed as

ry(n) = 1r4(n) + 14 (n) (4.7)

where r,(n) =ry(n) + ryz(n) + ryon)

Here r,(n) is the ACF of noise v(n) and r,.(n) and r,(n) are the cross correlation
terms. Since the autocorrelation is a pole preserving operation and it exhibits higher
noise immunity, it is advantageous to deal with the ACF of y(n) instead of directly using
y(n) in spectral domain formant estimation.

Considering x(n) as an output of an LTI system with transfer function H(z), x(n)

can be written as

z(n) = h(n) * u(n) (4.8)

And it can be shown that the ACF of x(n) can be expressed as

re(n) = rp(n) * ry(n) (4.9)

where r,(n) is the ACF of u(n). As per the definition of the ACF provided in (L), the

ACF of h(n) can be written as

rn(n) = h(n) x h(—n) (4.10)
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In view of analyzing the frequency domain effects, for simplicity, first the Z domain
representation is considered. The Z Transform of r,(n) , as obtained from (4.1I0]) is given

by

Ry(2) = H(z)H(z™") (4.11)

According to the definition of the ACF mentioned in (4.6]), the ACF of r,(n), namely

the repeated ACF of z(n) can be expressed as

po(n) = 12(n) % 12(—n) = pu(n) * pu(n) (4.12)

As discussed before, it would be sufficient to consider the detailed analysis of pp,(n)
instead of p,(n). Using the definition in (£10), the Z Transform of p,(n) can be written

as

Pu(2) = Rp(2)Rp(z™ 1) (4.13)

Further application of ACF on the noise corrupted signal r,(n) produces p,(n) which

can be expressed as

py(n) = pa(n) + pe(n) (4.14)
pe(n) = puw(n) + pew(n) + pua(n)

wherep,(n) and p,(n) are the ACF of r,(n) and r,(n) and pg,(n) and p,.(n) are cross
correlation terms. As per discussions from the previous chapter, the effect of p.(n) on
pz(n) is significantly reduced because of the repeated autocorrelation operation. Hence,
it is advantageous to utilize p,(n) instead of 7,(n) in spectral domain formant estimation.
In comparison to the spectra corresponding to y(n), It is clearly observed that the
first peak in the spectra corresponding to p,(n) exhibits an extremely large peak in com-
parison to other peaks and significant spectral smoothing is observed in other zones of

the spectrum. One major concern in double autocorrelation operation is that it makes

the effect of a strong pole more stronger shadowing the effect of relatively weak poles.
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Figure 4.1: Spectrum of (a) natural utterance /eh/ under the influence of —5dB white
noise and (b) the DACF of the same utterance

This phenomenon is also observed in Fig. A1l In comparison to the increase in the first
formant peak, the spectral peaks corresponding to other formants remain very weak. This
becomes a great problem in case of severe noise if spectral peak picking is used for formant
estimation. In that case, several spurious peaks may appear in the spectrum with magni-
tudes greater than the desired peaks. In view of overcoming this problem, one practical
solution is to divide the full band signal into a number of sub-bands. The sub-bands
should be formulated in such a way that each sub-band corresponds to approximately
one formant, in other words it should contain the effect of one dominant pole pair only.
Number of sub-bands to be made depends on the number of formants to be estimated.
Higher formants become increasingly weak due to their low energy concentration and the
tilt caused by the lip radiation. Thus, the first three formants are mostly considered for
real life applications. Unlike conventional formant analysis methods, in this paper, the
task of formant estimation is carried out on the band-limited speech signal instead of the

full-band signal.
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4.2 Effect of Bandlimiting on Repeated ACF of Speech

Performing autocorrelation on a speech segment significantly increases the strength of
the most dominant peak with respect to other peaks, thus amplifying the effect of first
formant with respect to other formants on the spectrum of a voiced speech segment.
Although the autocorrelation operation can significantly reduce the effect of noise on the
first formant peak, it obscures the second and third formant peaks. In order to overcome
this problem, a method of localized searching for each formant based on filtered speech
signal is proposed. It offers the advantage of dealing with a band limited speech signal
possessing only one dominant peak within a band. In this regard, a set of band-pass filters
must be employed to extract the band-limited signal from the pre-processed speech signal,
where each filter corresponds to a conventional band of frequency for respective formants.
It is expected that the filters utilized for the purpose of band-limiting exhibit sharp cut-
offs and low passband ripples. The main advantage of dealing with a band-limited signal
for extracting a specific formant lying in a particular band is its robustness against the
interference of nearby formants and other spurious frequencies that may exhibit in the
presence of noise. The band-limited signal is obtained by applying bandpass filters that
are tuned to the first three formant frequency bands. The z-transform of the band-limited

signal x;(n) obtained by using the i-th filter transfer function B;(z) is given by

Xi(z) = X(2)Bi(2) (4.15)

In the proposed method, in order to obtain the sharp cutoff and low ripple while
keeping the filter order low, instead of using a bandpass filter, separate lowpass and
highpass filters are employed. In view of designing the required bandpass filter, highpass
and lowpass filters are used in cascade. Different types of filters with varying filter
orders are tested. It is found that the elliptic filters with order 10 can provide the most
satisfactory filter characteristics. In case of cascaded configuration, the filter transfer

function B;(z) can be represented as
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B;(2) = Bin(2) Ba(2) (4.16)

where By, (z) and By(z) correspond to the transfer function of the highpass and lowpass
filters, respectively.

As mentioned previously, it is more insightful to investigate the effects of filtering on
the impulse response of the vocal tract system instead of the speech signal for the purpose
of formant estimation. In that case, within a particular formant band, if the effect of
frequency peaks outside the band is neglected, one can assume that a pair of pole of the
vocal tract system is mainly responsible for the frequency spectrum of a band-limited
signal. As a result, the spectrum corresponding to the bad-limited signal, denoted by
X;(e??), will exhibit formant peaks at exactly the same location of the spectrum for
H;(z) where it is assumed that the bandlimiting operation on H(z) with the i-th filter
produces H;(z). It is to be mentioned that the DACF operation which offers more peak-
strengthening effect in comparison to the ACF, is more capable of handling the severe
noisy condition. Thus before performing the autocorrelation operation on the speech
frame, it would be definitely advantageous to extract the band-limited signal containing
only the region that is directly associated with a single formant. However, formant
frequencies and bandwidths vary widely between different phonemes, and across genders.
Therefore, the upper and lower cutoffs for the filters have to be adjusted for frequency
domain characteristics of individual frames. First each formant band is selected as per
the conventional global formant band limits expected to be suitable for all voiced sounds
[1], which are typically broad frequency bands. Within such a wide band, the region
of interest for searching the formant could be a smaller zone containing higher spectral
energy. In the proposed method, instead of considering the broad bands, a spectral energy
based adaptive searching is carried out to determine such narrow bands, which are then
used in the model matching algorithm for formant estimation.

In this approach, problems arise due to overlapping formant zones. For instance, for
the phonemes uttered by female speakers, in case of /u/ the second formant is at around

950 Hz, and the third formant is at around 2600 Hz, while for /i/, the second formant
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is at around 2800 Hz and the third formant is at around 3300 Hz. On the other hand,
for male /u/, the first three formants are located at around 400 Hz, 950 HZ and 2200
Hz. Therefore setting up a hard limit for formant boundaries is not a good approach,
rather an adaptive band limiting algorithm is required. The proposed adaptive band
selection algorithm consists of two major steps, namely, gender detection and correction
of false band selections. One major advantage of prior gender detection is that it greatly
reduces the complexity arising due to overlapping formant ranges. Even then, situations
may arise when no formants are present within the broad search area. Then the selected
high energy frequency zone eventually may not provide an estimate of the true formant.
Once the three high energy frequency zones are selected, an adaptive control algorithm
is developed to avoid false zone selection. Due to the natural spectral roll off, spectral
energy around the formant decreases with the increase in frequency. In view of utilizing
such spectral energy property, the pre-emphasis operation is avoided. According to this
property, if the estimated third formant zone contains higher spectral energy compared
to that of the estimated second formant zone, the estimated second formant zone is
considered as a false estimation and therefore, the third formant zone is treated as the
new estimation for the second one. Then a search for the third formant zone is performed
in frequencies higher than the new second formant zone. This ensures that banding works

even under extreme cases.

x(n) > BPF, By(2) —> xy(n)

> BPF, Bz(Z) % Xz(n)

> BPF, Bs(2) —> X3(n)

Figure 4.2: Banding using filters

In order to demonstrate the banding operation explained above, in Fig. L. 2the process
for bandlimited signal generation using three bandpass filters is shown. Considering a

noise-free voiced speech /eh/ uttered by a male speaker taken from the TIMIT database,
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Figure 4.9: Spectrum for the DACF of the output of the three bandpass filters

three bandlimited outputs corresponding to Fig. 1.2, namely xi(n),xs(n),x3(n) is pre-
sented in Fig. 13l The typical frequency responses of three bandpass filters used in Fig.
tuned to the formant zones are shown in Fig. .4l The pass band for each filter is
chosen in such a way that it covers the conventional formant bands. The spectra corre-
sponding to the output of each bandpass filter are shown in Fig. [L.5] It is clearly observed
that in the spectrum of a band limited signal, even for the third formant, the formant
peak is clearly distinguishable for a noise-free signal. Next the effect of performing the
autocorrelation operation on the bandlimited signal is demonstrated in time and spectral
domain. In Fig. A6 the ACFs r,1(n),ra(n),rzs3(n), corresponding to the bandlimited
signals are presented. It is observed that the autocorrelation function of each bandlimited
signal preserves the corresponding signal property as expected. In Fig. .7, the spectra
corresponding to the ACF of bandlimited signal are shown. In comparison to the spec-
trum of the ACF of signal z(n) as shown in Fig. 210 in the spectrum of the ACF of
the bandlimited signal, the formant peaks, especially the second and third formants are

significantly enhanced. In a similar fashion, in Figs. .8 and .9 the effect of DACF is
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demonstrated in time and spectral domain, respectively. Similar to Fig. 4.6l in Fig. .8t
is observed that the DACF operation on the bandlimited signal also preserves the signal
properties. The peak strengthening obtained by the DACF operation is quite prominent
as seen in Fig. 1.9

In what follows, a frequency domain model is going to be developed which will be used
as a target function in a model matching approach where the DACF of the bandlimited

signal will be utilized.

4.3 Proposed Spectral Model

As seen from the previous section, the spectrum of the vocal tract response within a
particular formant band generally exhibits a prominent peak corresponding to the for-
mant. Considering the vocal tract as an AR system, a pair of complex conjugate poles is
responsible for generating a dominant peak in the spectral domain. Although the effect
of other pole pairs, unless otherwise located at a very close vicinity, may enhance the
spectral level, dominance of a particular formant peak is mostly because of the pole pair
located in that particular formant frequency. Hence it is sufficient to consider a band
limited speech signal corresponding to a particular formant band to analyze the effect of
an individual formant. In this regard, considering the vocal tract system as a cascade of
a set of subsystems, each subsystem that is responsible for generating a formant peak is
denoted as H;(z).

However, in noisy environments, presence of spurious peaks may cause difficulties in
identification of formant peaks even in the case of band limited signals. As discussed in
the previous section, the autocorrelation operation can reduce the effect of noise. More-
over, performing the DACF operation will definitely exhibit significant noise reduction.
However, band limiting should be performed before the DACF operation as it would pre-
vent the dominant formant peak from overshadowing other formant peaks. In order to
identify the formant peaks, especially under noisy condition, one possibility is to consider

a transfer function which can produce an impulse response that closely matches the ACF
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of the band limited signal. The spectrum corresponding to that transfer function can
then be used in a spectral matching technique along with the spectrum obtained from
the ACF of band limited noise corrupted signal. For the band limited case, the transfer

function corresponding to the ACF as per (d.I1]) can be represented as

CRZ'ZQ

Bu(z) = (1= piz1)(1 = prz=)(1 = piz)(1 — pj2)

(4.17)

where Cg; is a constant.

With the introduction of each new pole outside the unit circle, a trivial zero is also
introduced at the origin. The effect of these zeros is to introduce a delay in the output.
Thus a pair of zeros is incorporated in (AI7)). If the ACF of an impulse response for
a synthetic speech signal is taken, it is expected that this will match with an impulse
response obtained from a system which contains new poles in addition to the original
ones, as described above. In a similar fashion, if instead of one, double ACF is used,
as explained before, the effect of noise will be further reduced and the transfer function

corresponding to the DACF according to (AI3]) can be represented as

CPZ‘ZG
{(1=piz=H) (A = piz7 ) (1 = piz)(1 — pj2)}?

Pu(z) = (4.18)

where Cp; is a constant.
Similar to the ACF, impulse responses obtained from the model in (AI8]) should show

an exact match with the DACF of the impulse response of a single pole pair system.

4.3.1 Proposed Model Matching Scheme

In the proposed formant estimation method, a spectral model corresponding to the spec-
trum of the DACF of the bandlimited speech signal is introduced, which is utilized in
a model matching technique to find out the model parameters that in turn will provide
the desired formant frequencies. First, the given noise corrupted voiced frame of speech
signal y(n) is filtered out using the BPFs so that in the speech spectrum, only one formant

range is present. Next, the DACF of each band limited speech frame y;(n) is computed
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and used in the proposed model matching technique. The z-transform representation of
the DACF of y;(n) in (£I8]) can have a Fourier transform representation for the region of
convergence r; < z < ri , which is chosen as the model function of the proposed method

and given by

Ciej&u

{(1 = r;effie 39)(1 — rie=1%e i) (1 — reffieiv) (1 — r;e=i%eiv)}2

Py (e??) = (4.19)

The spectrum P,;(e?*) of the DACF of the band limited observed noisy signal y;(n)
is used in conjunction with the proposed model Py (e’*) to form an objective function

based on the square of absolute difference of these spectra, namely

Whe
jw jw 2
emin(ris05) = min 5 ((1Pu(@)] = 1Pae))’) (4.20)
T <r;<<Trp W = Wie

01<0i<0h

As in the case of spectral matching without band limiting, minimization of the objec-
tive function is carried out within a restricted frequency range wj. to wy. which depends
on the range of the band obtained during the band limiting operation described in pre-
vious sections. One may utilize the —3dB points on the lower and higher sides of the
peak in the spectrum of the model to extract w;. and wy.. Within that specified range
wee < w < Wpe, the optimum value of the two variables r; and 6; is obtained at the
minimum square absolute difference. Based on the fundamental knowledge of traditional
range of formants, one may restrict the search range for the two variablesi.e., r, < r <y
and 6, < 0 < 6, or adopt a coarse and fine search approach [30]. Formant frequencies

are estimated from the pole angle 6; that produces the best match between the spectra

using (4.4]).
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One major advantage of the proposed model fitting approach over the conventional
peak picking method lies in the fact that an entire formant band is taken into consider-
ation instead of relying only on the magnitude of the peaks, which are extremely noise
sensitive. As a result the formant frequency that is chosen as the desired estimate should
provide the best match between the spectra within a formant band. This spectral match-
ing is very suitable especially when the level of noise is very severe and/or the formants

are very closely spaced.

4.3.2 Vowel Recognition

For After estimating formants in this manner, in the proposed scheme they are employed
in vowel recognition as features along with the commonly used mel frequency cepstral
coefficients (MFCC) coefficients. Linear discriminant analysis (LDA) based classifier is
used to accomplish this task. In LDA, a linear projection is determined that maximizes
a ratio between the signal, represented by the projected inter-cluster distance and the
noise, represented by the projected intra-cluster variance. Here the objective function

is based on determining a projection direction w to maximize the Fisher’s discriminant

defined as

J(w) = w Sy (4.21)

w? Sy,w

where S, and Sy, are within and between-class scatter matrices, respectively[50] .

4.4 Simulation Results and Discussion

Similar to the previous chapters, formant estimation errors are reported for the 2726
utterances of phonemes used from the VTR subset of the TIMIT database. Results are
also reported for LPC based formant estimation method [53] is chosen, where the order
of the LPC' is chosen as 12 and for the adaptive filter bank (AF B) method [32].

In the proposed model fitting scheme, the range of the model parameters are set

according to the general behavior of the vocal tract. The possible range of the parameter
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Table 4.1: Comparison of the estimation performance for synthetic vowels

5dB —bdB

Vowels Proposed | LPC | AFB | Proposed | LPC AFB
F1|4.70 21.57 | 43.65 | 4.70 24.53 | 47.17

/a/ | F2 | 5.18 7.24 25.74 | 2.74 99.56 | 27.25
F3]6.33 20.49 | 10.68 | 6.32 39.35 | 10.42

F1 | 4.56 61.38 | 124.73 | 5.82 73.15 | 21.63

Male Jo/ | F2 | 3.72 167.49 | 43.93 | 5.49 144.60 | 58.65
F3|6.71 36.74 | 12.54 | 6.71 37.68 | 11.66

F1]5.80 93.53 | 149.02 | 7.86 117.36 | 13.56

/u/ | F2 | 3.00 158.74 | 46.60 | 3.92 148.07 | 63.59
F3]9.43 69.03 | 38.05 | 13.56 72.38 | 19.40

F1 | 4.56 20.24 | 46.90 | 4.56 20.46 | 49.77

Ja/ | F2 | 4.09 65.23 | 32.58 | 3.43 113.79 | 30.99

F3 | 2.58 17.80 | 8.45 6.95 34.02 | 9.84

F1]11.85 49.53 | 128.07 | 12.05 78.29 | 18.29

Female | /o/ | F2 | 6.39 138.88 | 20.42 | 11.83 133.29 | 46.61
F316.70 39.93 | 9.56 9.48 36.28 | 12.53

F1 | 10.40 72.96 | 109.00 | 12.79 98.29 | 12.98

Ju/ | F2 | 6.35 116.33 | 14.62 | 8.43 121.92 | 33.72

F3 | 9.57 52.31 | 11.40 | 11.78 40.60 | 13.74

Table 4.2: Comparison of the estimation performance in terms of average error for male
speakers

—5dB 10dB
Vowel Proposed | LPC | AFB | Proposed | LPC | AFB
F1 | 11.66 19.84 | 27.67 | 11.04 13.22 | 12.33
Jae/ | F2 | 12.22 29.64 | 23.60 | 7.59 13.06 | 15.36
F3 | 13.76 35.94 | 1225 | 7.24 29.24 | 11.61
F1 | 13.30 27.70 | 24.62 | 12.94 14.05 | 17.07
Jeh/ | F2 | 14.45 33.30 | 24.18 | 8.78 11.95 | 17.91
F3 | 13.04 39.13 | 13.39 | 7.53 33.11 | 11.67
F1 | 14.83 38.52 | 23.47 | 14.64 12.40 | 23.98
/ih/ | F2 | 15.64 27.12 | 25.50 | 7.97 15.16 | 20.05
F3 | 11.55 39.50 | 13.45 | 7.48 32.66 | 11.34
F1 | 13.77 37.19 | 24.84 | 13.40 11.37 | 27.44
/ix/ F2 | 14.28 31.84 | 24.89 | 8.79 17.13 | 22.73
F3 | 10.66 39.08 | 14.50 | 7.63 34.03 | 13.79
F1 | 15.12 22.63 | 35.49 | 14.99 18.78 | 36.11
Jow/ | F2 | 12.39 47.20 | 26.03 | 11.62 34.22 | 22.37
F3 | 12.92 36.68 | 14.20 | 10.56 36.92 | 14.15
F1 | 15.50 20.14 | 36.49 | 15.40 19.21 | 36.59
Juh/ | F2 | 11.76 38.02 | 23.49 | 11.50 35.66 | 22.50
F3 ] 10.39 37.24 | 13.89 | 10.26 37.06 | 14.07

101



Table 4.3: Comparison of the estimation performance in terms of average error for female
speakers

—15dB 0dB
Vowel Proposed | LPC AFB | Proposed | LPC | AFB
F1 | 19.44 50.77 | 37.88 | 12.47 12.32 | 35.70
Jah/ | F2 | 16.88 66.14 21.65 | 15.04 33.23 | 19.26
F3 | 12.30 34.12 16.12 | 11.00 22.09 | 14.33
F1 | 13.60 55.19 31.51 | 11.10 9.32 | 24.85
Jeh/ | F2 | 27.00 31.17 28.87 | 19.01 11.90 | 23.45
F3 | 8.78 28.41 12.15 | 8.17 19.62 | 12.65
F1 | 15.33 76.56 24.15 | 12.47 10.81 | 22.83
Jow/ | F2 | 27.48 41.29 31.59 | 15.85 25.46 | 27.60
F3 | 11.88 28.29 14.97 | 10.23 20.64 | 14.49
F1 | 1545 77.76 24.67 | 13.40 11.46 | 22.14
Juh/ | F2 | 27.36 40.40 32.34 | 16.24 24.47 | 26.61
F3 | 12.07 28.21 15.12 | 9.89 20.88 | 13.60
F1 | 15.34 81.07 24.32 | 13.07 10.74 | 23.16
Juw/ | F2 | 27.77 40.34 | 32.41 | 16.38 23.79 | 27.00
F3 | 12.30 29.35 15.31 | 10.18 21.40 | 13.80

r is changed within the limit 0.8 to 0.99, which covers even a very rapidly decaying
impulse for the purpose of our simulation. The search range for # is set according to the
determined formant band. Search resolutions for r and 6 are chosen asAr = 0.01 and
Af = 0.0017, respectively.

Results for three synthetic vowels /a/, /o/ and /u/ in the presence of white Gaussian
noise with SNR 5dB and —5dB are presented in Table [L.1l where the estimation error, the
mean average deviation between the estimated formant frequency fr and the reference

formant frequency fo is defined as

E=|

Jo — fo\ x 100% (4.22)
fo
it can be observed that the proposed method offers far superior performance in the
presence of noise for both male and female synthetic vowels.
The estimation errors obtained by the proposed method and that by the other two
methods are presented under the influence of white gaussian noise conditions for male and

female speakers in Tables [£.2] and 4.3] . Similar to the analysis from previous chapters,

the analysis is performed for different noise levels. For each vowel, the estimation errors
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for three different formants, namely F'1, F2 and F'3 are listed. As can be seen from
the tables, the proposed method offers better performance than both thel2 order LPC
and the AF' B methods under presence of background noise. It can be observed that the
estimation error obtained by the proposed method in comparison to that of the other
methods is extremely lower in such severe noisy conditions.

It is clearly observed that the estimation performance for the third formant, which
is by nature very difficult to estimate because of low spectral magnitude, is significantly
enhanced by the proposed method. In some cases it is found that the estimation accuracy
decreases for the cases when the two formants are very closely spaced, for example in case
of vowel /ih/. However, considering the level of noise, the estimation accuracy obtained
by the proposed method is quite acceptable. It is also observed that the estimation error

relatively increases in case of high pitch female speakers.

Table 4.4: Comparison of the estimation performance for synthetic vowels

5dB —5dB

Vowels Proposed | LPC | AFB | Proposed | LPC AFB
F1|4.95 21.57 | 43.65 | 4.95 24.53 | 47.17

Ja/ | F2 | 11.66 7.24 25.74 | 9.10 99.56 | 27.25

F3 | 7.47 20.49 | 10.68 | 12.28 39.35 | 10.42

F1|5.43 61.38 | 124.73 | 7.36 73.15 | 21.63

Male Jo/ | F2 | 4.41 167.49 | 43.93 | 4.41 144.60 | 58.65
F3 | 14.92 36.74 | 12.54 | 4.53 37.68 | 11.66

F1|5.84 93.53 | 149.02 | 10.08 117.36 | 13.56

Ju/ | F2 | 3.03 158.74 | 46.60 | 3.41 148.07 | 63.59

F3 | 5.24 69.03 | 38.05 | 10.91 72.38 | 19.40

F1 | 4.56 20.24 | 46.90 | 4.56 20.46 | 49.77

/a/ | F2 | 3.85 65.23 | 32.58 | 3.46 113.79 | 30.99
F3|4.13 17.80 | 8.45 6.59 34.02 | 9.84

F1|]11.85 49.53 | 128.07 | 12.05 78.29 | 18.29

Female | /o/ | F2 | 4.66 138.88 | 20.42 | 9.64 133.29 | 46.61
F3 | 7.80 39.93 | 9.56 9.11 36.28 | 12.53

F1 | 10.40 72.96 | 109.00 | 12.79 98.29 | 12.98

/u/ | F2 | 5.60 116.33 | 14.62 | 7.86 121.92 | 33.72

F3 | 9.41 52.31 | 11.40 | 11.40 40.60 | 13.74

The proposed band limited approach is also applied to once performed ACF. in that
case, the model (2I8]) from chapter 1 is utilized for a matching approach with the ACF

of the band limited speech. The results for this simulation are presented for synthetic
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Table 4.5: Comparison of the estimation performance in terms of average error for male
speakers

—5dB 10dB
Vowel Proposed | LPC | AFB | Proposed | LPC | AFB
F1 | 11.15 19.84 | 27.67 | 10.71 13.22 | 12.33
Jae/ | F2 | 18.89 29.64 | 23.60 | 13.77 13.06 | 15.36
F3 | 14.00 35.94 | 12.25 | 10.87 29.24 | 11.61
F1 | 14.60 27.70 | 24.62 | 14.44 14.05 | 17.07
Jeh/ | F2 | 17.15 33.30 | 24.18 | 10.18 11.95 | 17.91
F3 | 13.99 39.13 | 13.39 | 10.34 33.11 | 11.67
F1 | 14.27 38.52 | 23.47 | 13.45 12.40 | 23.98
/ih/ F2 | 19.08 27.12 | 25.50 | 7.81 15.16 | 20.05
F3 | 13.39 39.50 | 13.45 | 11.00 32.66 | 11.34
F1 | 14.04 37.19 | 24.84 | 13.28 11.37 | 27.44
/ix/ F2 | 15.35 31.84 | 24.89 | 8.52 17.13 | 22.73
F3 | 12.04 39.08 | 14.50 | 11.04 34.03 | 13.79
F1 | 17.09 22.63 | 35.49 | 16.37 18.78 | 36.11
Jow/ | F2 | 12.80 47.20 | 26.03 | 11.88 34.22 | 22.37
F3 | 15.44 36.68 | 14.20 | 12.47 36.92 | 14.15
F1 | 17.10 20.14 | 36.49 | 16.81 19.21 | 36.59
Juh/ | F2 | 12.08 38.02 | 23.49 | 11.93 35.66 | 22.50
F3 | 12.55 37.24 | 13.89 | 12.15 37.06 | 14.07

Table 4.6: Comparison of the estimation performance in terms of average error for female
speakers

—15dB 0dB
Vowel Proposed | LPC AFB | Proposed | LPC | AFB
F1 | 19.16 50.77 | 37.88 | 13.12 12.32 | 35.70
Jah/ | F2 | 17.61 66.14 21.65 | 14.70 33.23 | 19.26
F3 | 13.19 34.12 16.12 | 11.68 22.09 | 14.33
F1 | 15.13 55.19 31.51 | 10.78 9.32 | 24.85
Jeh/ | F2 | 26.72 31.17 28.87 | 18.14 11.90 | 23.45
F3|9.33 28.41 12.15 | 8.26 19.62 | 12.65
F1 | 16.06 76.56 24.15 | 13.23 10.81 | 22.83
Jow/ | F2 | 26.64 41.29 31.59 | 15.24 25.46 | 27.60
F3 | 13.40 28.29 14.97 | 10.88 20.64 | 14.49
F1 | 16.17 77.76 24.67 | 14.14 11.46 | 22.14
Juh/ | F2 | 26.35 40.40 32.34 | 15.67 24.47 | 26.61
F3 | 13.88 28.21 15.12 | 10.61 20.88 | 13.60
F1 | 16.08 81.07 24.32 | 13.82 10.74 | 23.16
Juw/ | F2 | 26.79 40.34 | 32.41 | 15.74 23.79 | 27.00
F3 | 14.09 29.35 15.31 | 10.96 21.40 | 13.80
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vowels is presented in Table 4.4l In the case of male speakers, the results are presented in
Tables and for female speakers, in Table It can be observed from the results that
this method also exhibits significantly better performance in comparison to the LPC" and
AF B based methods. However, in the presence of severe noise, the DACF based method
offers improved performance.
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Figure 4.10: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for male speakers
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Figure 4.11: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for male speakers

In order to present the overall formant estimation errors over the entire range of
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Figure 4.12: Third formant estimation performance in terms of percentage error in for-
mant estimation under various noise levels for male speakers
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Figure 4.13: Estimation performance in terms of percentage error in formant estimation
under various noise levels for male speakers
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Figure 4.14: First formant estimation performance in terms of percentage error in formant
estimation under various noise levels for female speakers
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Figure 4.15: Second formant estimation performance in terms of percentage error in
formant estimation under various noise levels for female speakers
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Figure 4.16: Third formant estimation performance in terms of percentage error in for-
mant estimation under various noise levels for female speakers
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Figure 4.17: Estimation performance in terms of percentage error in formant estimation
under various noise levels for female speakers
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Figure 4.18: Estimation performance in terms of percentage error in formant estimation
under various noise levels
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Figure 4.19: Spectrogram of the utterance ‘Perhaps this is what gives the aborigine his
odd air of dignity’ , with formant frequencies estimated using the proposed method
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Frequency

Figure 4.20: Spectrogram of the utterance ‘Perhaps this is what gives the aborigine his
odd air of dignity’ , under —5dB of background noise with formant frequencies estimated

using the proposed method
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Figure 4.21: Spectrogram of the utterance ‘Perhaps this is what gives the aborigine his
odd air of dignity’ , with formant frequencies estimated under —5dB of Background noise
using the proposed method
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SNRs considered in the experimental setup, in Figs. 410l [4.11] and [4.13] average of
estimation error of all vowels for all three formants are shown for the the proposed method
and the LPC — 12 based method considering only male speakers. In this case, the SNR
levels considered are ranging from —10 to +10dB. In a similar way, in Figs. 14| [4.15]
and L.I7 the average estimation error are shown for the female speakers for a SNR
range of —15 to +5dB. Finally, in Fig. [L.18] the average estimation error considering
both male and female speakers is shown. It is observed that the formant estimation
performance obtained by the three methods remains similar in case of high level of SNR.
However, with the decrease in SNR level, the estimation performance of the other two
methods deteriorates significantly in comparison to that of the proposed method. The
performance of the proposed method remains quite consistent even in the low levels of
SNRs and level of performance degradation is not very significant till —15dB. However,
beyond that the performance of the proposed method is not satisfactory because of the

severe noise corruption, leading to complete failure for the conventional methods.

Table 4.7: Vowel recognition accuracy

Feature Vector 10dB | —5dB
MFCC + Proposed Method | 93.33 | 86.66
MFCC + LPC-12 93.33 | 81.66
MFCC + TIMIT reference | 93.33 | 90.00
MFCC 93.33 | 81.66

Finally, the recognition accuracies for different vowels is presented in Table .7l It can
be concluded from the figure that the proposed noise robust formant estimation method,
when used for vowel recognition, increases the recognition accuracy for vowel recognition
systems under the influence of noise.

As seen from these analysis, the proposed method offers a better performance over
the LPC and AF B methods in noise free as well as in noisy conditions. In order to
demonstrate the effectiveness of our proposed method, a spectrogram of the sentence
‘Perhaps this is what gives the aborigine his odd air of dignity’ uttered by a female
speaker taken from the TIMIT database is shown in Fig. The formant frequencies

estimated at different frames using the proposed method are shown over the spectrogram.
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In the tracking, only the estimated formants of the vowels are shown. It can be observed
from the figure that the proposed method tracks the formant frequencies quite accurately.
For the purpose of comparison, the same sentence, under influence of —5dB background
noise, is utilized to obtain the spectrogram present in Fig. Here the presence
of noise has completely obscured the energy bands, but still the proposed method can
successfully track the formant frequencies. With the purpose of gaining a better insight,
the formant frequencies obtained from the —5dB noise corrupted speech are overlayed on
the spectrogram for noise free speech, which is shown in Fig. L.21l The resulting tracking
lines obtained by the proposed method is a clear indication of its high level of consistency

as well as the accuracy even in heavy noisy condition.

4.5 Conclusion

In this paper, a formant estimation scheme based on frequency domain modeling of re-
peatedly autocorrelated speech is presented. An adaptive band recognition system is
deployed that can find out the band of successive formant frequencies for pre-processed
voiced speech signals. The speech signal is then passed through an adaptive filter de-
signed to separate the responses of different formants. Repeated autocorrelation, which
strengthens the dominant poles, and exponentially increases the peak-valley ratio at for-
mant frequencies of the magnitude response, canceling out the effects of noise, is then
performed on the filtered speech signals. Formant estimation is carried out in the spectral
domain where instead of direct peak-picking from the speech spectrum, a spectral domain
model of ACF of speech signal is first proposed considering the resonances of the vocal
tract. A spectral domain model fitting based algorithm is also developed to extract the
model parameters which in turn give the formant. Even in the presence of a significant
background noise, the developed method is effective in maintaining a high success rate

in formant estimation.
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Chapter 5

Conclusion

5.1 Contribution of the Thesis

e The main objective of this thesis work is to develop a formant frequency estima-
tion method that can provide robust performance even in the presence of severe
background noise. In order to achieve this target, one important property of the
autocorrelation operation that it can strengthen the dominant formant peaks in
the spectrum of speech, removing the effect of spurious noise peaks is utilized. The
spectrum of the autocorrelation function offers better noise immunity in identifying
the formant peaks. The reason behind is that the autocorrelation operation on
a signal offers a similar advantage of increasing the poles in the transfer function

generating the signal.

e First, formant estimation is carried out in the spectral domain where instead of
direct peak-picking from the speech spectrum, a spectral domain model of auto-
correlation function of speech signal is introduced. In this case the vocal tract is
considered to be comprised of cascaded subsystems where each subsystem is re-

sponsible for single resonant frequency.

e For the purpose of finding out the formant frequencies, instead of employing an
exhaustive search method, practical knowledge of formant ranges is utilized. An

iterative spectral domain model fitting algorithm is developed to extract the model
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parameters which in turn give the formants.

Since the autocorrelation operation causes replication of original poles resulting in
spectral peak strengthening, instead of single autocorrelation, the idea of double
autocorrelation is introduced for further spectral peak enhancement, especially in
severely noisy condition. An iterative spectral model fitting is employed for formant

estimation.

Although double autocorrelation works well in providing noise robust performance
for the purpose of formant estimation, the significant enhancement of the first
formant peak in some cases affects the estimation performance regarding other
formants with relatively lower spectral energy. In order to overcome such a problem,
a band limiting technique is presented that offers significantly improved estimation
performance with regard to the iterative approach. As repeated autocorrelation
significantly increases the strength of the most dominant peak, because of the band
limiting operation each formant corresponding to the dominant peak of a band,

thereby the estimation accuracies for the other formants are significantly improved.

A filter bank based on the developed band limiting algorithm is employed to sep-
arate the speech signal into frequency bands containing single formants. After
performing repeated autocorrelation on the signal, a spectral model of repeatedly
autocorrelated filtered speech signal with only a single formant frequency is devel-
oped and model fitting is employed to find out the model parameters required for

formant estimation.

In order to demonstrate the estimation performance, a very large number of voiced
utterances are used which are taken from the most widely used TIMIT naturally
spoken continuous speech corpus. The experimental results demonstrate a far su-
perior performance obtained by the proposed scheme in comparison to some of the

existing methods at low levels of signal-to-noise ratio.

As an application of the proposed formant estimation scheme, vowel recognition

scheme is also developed based on linear discriminant analysis. It is observed that
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5.2

because of the increased accuracy obtained by the proposed formant estimation
scheme in comparison to some of the existing methods, a better vowel recognition

accuracy is achieved in noisy environment.

Scope & Future Work

One potential future work could be to develop a separate spectral domain noise
subtraction block prior to formant estimation, which may further increase the for-
mant estimation accuracy. Such a preprocessing is especially very useful in view of

handling different types of environmental noises.

The effect of noise whitening could also be investigated in case of dealing with

different types of practical noises.

115



Bibliography

[1] D. O’Shaughnessy, Speech Communications Human and Machine, 2nd ed. NY:
IEEE Press, 2000.

[2] D. Y. Wong, J. D. Markel, and A. H. Gray, “Least squares glottal inverse filtering
from the acoustic speech waveform,” IEEFE Trans. Acoust., Speech, Signal Processing,

vol. 27, no. 4, pp. 350-355, Aug. 1979.

[3] A. K. Krishnamurthy and D. G. Childers, “Two-channel speech analysis,” [EEE

Trans. Acoust., Speech, Signal Processing, vol. 34, no. 4, pp. 730-743, 1986.

[4] D. G. Childers and C. K. Lee, “Voice quality factors: Analysis synthesis and percep-
tion,” J. Acoust. Soc. Amer., vol. 90, pp. 23942410, 1991.

[5] J. D. Markel and J. A. H. Gray, Linear Prediction of Speech. New York: Springer-
Verlag, 1976.

[6] G. E. Kopec, A. V. Oppenheim, and J. M. Tribolet, “Speech analysis by homomorphic
prediction,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 25, no. 1, pp. 40—
49, Feb. 1977.

[7] I. Konvalinka and M. Matausek, “Simultaneous estimation of poles and zeros in
speech analysis and itif-iterative inverse filtering algorithm,” IEEE Trans. Acoust.,

Speech, Signal Processing, vol. 27, no. 5, pp. 485-492, Oct. 1979.

[8] Y. Miyanaga, N. Miki, N. Nagai, and K. Hatori, “A speech analysis algorithm which
eliminates the influence of pitch using the model reference adaptive system,” IEEE

Trans. Acoust., Speech, Signal Processing, vol. 30, no. 1, pp. 88-96, Feb. 1982.

116



19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Morikawa and H. Fujisaki, “System identification of the speech production pro-
cess based on a state-space representation,” IEEFE Trans. Acoust., Speech, Signal

Processing, vol. 32, no. 2, pp. 252-262, Apr. 1984.

S. McCandless, “An algorithm for automatic formant extraction using linear predic-
tion spectra,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 22, no. 2, pp.
135-141, Apr. 1974.

M. Lee, J. V. Santen, B. Mobius, and J. Olive, “Formant tracking using context-
dependent phonemic information,” IEEE Trans. Speech Audio Processing, vol. 13,

no. 5, pp. 741-750, Sept. 2005.

R. C. Snell and F. Milinazzo, “Formant location from LPC analysis data,” IFEFE

Trans. Speech Audio Processing, vol. 1, no. 2, pp. 129-134, Apr. 1993.

L. Deng, A. Acero, and I. Bazzi, “Tracking vocal tract resonances using a quantized
nonlinear function embedded in a temporal constraint,” IEEE Trans. Audio Speech

Lang. Process., vol. 14, no. 2, pp. 425-434, Mar. 2006.

I. Bazzi, A. Acero, and L. Deng, “An expectation maximization approach for for-
mant tracking using a parameter-free non-linear predictor,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Processing (ICASSP), vol. 1, Apr. 2003, pp. 464-467.

J. Darch, B. Milner, X. Shao, S. Vaseghi, and Q. Yan, “Predicting formant frequencies
from mfcc vectors,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
(ICASSP), vol. 1, Mar. 2005, pp. 941-944.

A. Watanabe, “Formant estimation method using inverse-filter control,” IEEE Trans.

Speech Audio Processing, vol. 9, no. 4, pp. 317-326, May 2001.

J. Malkin, X. Li, and J. Bilmes, “A graphical model for formant tracking,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), vol. 1, Philadelphia,
PA, Mar. 2005, pp. 913-916.

117



18]

[19]

[20]

[21]

23]

[24]

[25]

[26]

Y. Zheng and M. H. Johnson, “Formant tracking by mixture state particle filter,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), vol. 1, Mon-
treal, Canada, Mar. 2004, pp. 565-568.

D. J. Nelson, “Cross-spectral based formant estimation and alignment,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), vol. 2, Montreal,
Canada, Mar. 2004, pp. 621-624.

Y. Shi and E. Chang, “Spectrogram-based formant tracking via particle filters,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), vol. 1, Hong
Kong, Apr. 2003, pp. 168-171.

Z. Yan and H. Zhao, “Formant estimation algorithm based on digital waveguide
models,” in Information Engineering and Computer Science (ICIECS), 2010 2nd

International Conference on. IEEE, 2010, pp. 1-4.

B. Yegnanarayana and R. N. J. Veldhuis, “Extraction of vocal-tract system charac-
teristics from speech signals,” IEEE Trans. Speech Audio Process., vol. 6, no. 4, pp.
313-327, July 1998.

T. V. Sreenivas and R. J. Niederjohn, ‘Zero-crossing based spectral analysis and svd
spectral analysis for formant frequency estimation in noise,” IEEE Trans. Speech

Audio Processing, vol. 40, no. 2, pp. 282-293, Feb. 1992.

I. C. Bruce, N. V. Karkhanis, E. D. Young, and M. B. Sachs, “Robust formant track-
ing in noise,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP),
vol. 1, May 2002, pp. 281-284.

B. Chen and P. C. Loizou, “Formant frequency estimation in noise,” in Proc. IEEFE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 1, Montreal, Canada,
May 2004, pp. 581-584.

B. S. Atal, “A model of Ipc excitation in terms of eigenvectors of the autocorrelation
matrix of the impulse response of the Ipc filter,” in Proc. IEEFE Int. Conf. Acoust.,
Speech, Signal Processing (ICASSP), vol. 1, May 1989, pp. 45-48.

118



27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Rao and R. Kumaresan, “On decomposing speech into modulated components,”

IEEFE Trans. Speech Audio Processing, vol. 8 no. 3, pp. 240-254, May 2000.

L. Welling and H. Ney, “Formant estimation for speech recognition,” IEEFE Trans.

Speech Audio Processing, vol. 6, no. 1, pp. 3648, Jan. 1998.

T. Wang and T. Quatieri, “High-pitch formant estimation by exploiting temporal
change of pitch,” IEEE Trans. Audio Speech Lang. Processing, vol. 18, no. 4, pp.
171-186, 2010.

S. A. Fattah, W. P. Zhu, and M. O. Ahmad, “An approach to formant frequency
estimation at a very low signal-to-noise ratio,” in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), vol. 4, Honolulu, HI, Apr. 2007, pp. 469-472.

E. Ozkan, 1. Ozbek, and M. Demirekler, “Dynamic speech spectrum representa-
tion and tracking variable number of vocal tract resonance frequencies with time-
varying dirichlet process mixture models,” IEEE Trans. Audio Speech Lang. Process-

ing, vol. 17, no. 8, pp. 15181532, 2009.

K. Mustafa and I. C. Bruce, “Robust formant tracking for continuous speech with
speaker variability,” IEEE Trans. Audio, Speech Language Processing, vol. 14, no. 2,
pp- 435-444, Mar. 2006.

W. Tiffany, “Vowel recognition as a function of duration, frequency modulation and
phonetic context,” Journal of speech and hearing disorders, vol. 18, no. 3, p. 289,

1953.

K. H. Davis, R. Biddulph, and S. Balashek, “Automatic recognition of spoken digits,”
J. Acoust. Soc. Am., vol. 24, no. 6, pp. 637-42, 1952.

J. Suzuki and K. Nakata, “Recognition of japanese vowels preliminary to the recog-

nition of speech,” J.Radio Res.Lab, vol. 37, no. 8, pp. 193-212, 1961.

119



[36]

37]

38

[39]

[40]

[42]

[43]

[44]

F. Itakura, “Minimum prediction residual principle applied to speech recognition,”
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 23, no. 1, pp.
67-72, 1975.

S. Davis and P. Mermelstein, “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences,” Acoustics, Speech and

Signal Processing, IEEE Transactions on, vol. 28, no. 4, pp. 357-366, 1980.

J. Holmes, W. Holmes, and P. Garner, “Using formant frequencies in speech recog-
nition,” in Fifth European Conference on Speech Communication and Technology,

1997.

M. Naito, L. Deng, and Y. Sagisaka, “Speaker clustering for speech recognition using

vocal tract parameters,” Speech Communication, vol. 36, no. 3, pp. 305-315, 2002.

X. Wang and K. Paliwal, “Feature extraction and dimensionality reduction algo-
rithms and their applications in vowel recognition,” Pattern recognition, vol. 36,

no. 10, pp. 2429-2439, 2003.

R. Summers, P. Bailey, and B. Roberts, “Effects of the rate of formant-frequency
variation on the grouping of formants in speech perception,” JARO-Journal of the

Association for Research in Otolaryngology, pp. 1-12, 2011.

A. Vuppala, J. Yadav, S. Chakrabarti, and K. Rao, “Vowel onset point detection for
low bit rate coded speech,” Audio, Speech, and Language Processing, IEEE Trans-

actions on, vol. 20, no. 6, pp. 1894-1903, 2012.
A. Waibel, Readings in speech recognition. Morgan Kaufmann, 1990.

A. Erell and M. Weintraub, “Energy conditioned spectral estimation for recognition
of noisy speech,” Speech and Audio Processing, IEEE Transactions on, vol. 1, no. 1,

pp. 84-89, 1993.

120



[45] J. Hernando and C. Nadeu, “Linear prediction of the one-sided autocorrelation se-
quence for noisy speech recognition,” IEEFE Trans. Speech Audio Processing, vol. 5,

no. 1, pp. 80-84, Jan. 1997.

[46] B. T. Meyer and B. Kollmeier, “Robustness of spectro-temporal features against
intrinsic and extrinsic variations in automatic speech recognition,” Speech Commu-

nication, vol. 53, no. 5, pp. 753-767, 2011.

[47] Y. Wang and L. Guan, “Recognizing human emotional state from audiovisual sig-

nals,” IEEE Trans. Multimedia, vol. 10, no. 10, pp. 936-946, Aug. 2008.

[48] G. Muhammad, M. Alsulaiman, A. Mahmood, and Z. Ali, “Automatic voice disorder
classification using vowel formants,” in Proc. IEEE Int. Conf. Multimedia and Expo

(ICME), July 2011, pp. 1-6.

[49] S. M. Kay and S. L. Marple, “Spectrum analysis a modern perspective,” Proceedings
of The IEEFE, vol. 69, pp. 1380-1419, 1981.

[50] R. Duda and P. Hart, Pattern Classification. John Wiley, 2001.

[51] J. Garofolo, L. L. W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue, “TIMIT

acoustic-phonetic continuous speech corpus,” in Proc. Ling. Data Consort., 1993.

[52] L. Deng, X. Cui, R. Pruvenok, J. Huang, S. Momen, Y. Chen, and A. Alwan, “A
database of vocal tract resonance trajectories for research in speech processing,” in
Proc. IEEFE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 1, Toulouse,
France, Apr. 2006, pp. 369-372.

[53] S. M. Kay, Modern Spectral Estimation, Theory and Application. Englewood Cliffs,
NJ: Prentice-Hall Ltd., 1988.

121



	Acknowledgements
	Abstract
	Introduction
	Background
	Vocal Tract System
	Voiced and Unvoiced Speech
	Formants
	Problems in Formant Estimation

	Vowel Recognition
	Literature Review
	Formant Estimation Methods
	Vowel Recognition Using Formants

	Objective of the Thesis
	Organization of the Thesis

	Spectral Model of Autocorrelation of Speech
	Background
	Proposed Method
	Spectral Representation of the Vocal Tract System
	Formant Estimation in Noise
	Proposed Spectral Model of ACF of Speech
	Proposed Spectral Matching Technique
	Vowel Recognition

	Simulation Results and Discussion
	Conclusion

	Spectral Model of Repeated Autocorrelation of Speech
	Background
	Proposed Formant Estimation Scheme
	Effect of Repeated ACF in Noise
	Proposed Spectral Model of Repeated ACF
	Formant Estimation using Spectral Matching
	Vowel Recognition

	Simulation Results and Discussion
	Conclusion

	Spectral Model of Repeated Autocorrelation of Band Limited Speech
	Background
	Effect of Bandlimiting on Repeated ACF of Speech
	Proposed Spectral Model
	Proposed Model Matching Scheme
	Vowel Recognition

	Simulation Results and Discussion
	Conclusion

	Conclusion
	Contribution of the Thesis
	Scope & Future Work

	Bibliography

