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ABSTRACT 

Automatic recognition of facial expressions can be an important component of natural 

human-machine interfaces; in behavioural sciences and in clinical practices. Expression 

recognition can be considered to consist of deformations of facial parts and their spatial 

relations or changes in the pigmentation of the face. The challenge of such recognition 

lies in classifying expressions both in the case of posed and spontaneous forms; where 

the former is an intentional expression and the latter is natural. Two major approaches of 

facial expression recognition include the holistic and landmark. This thesis deals with 

holistic based feature extraction since such approach considers the entire face images 

instead of selecting a few interested areas using computationally expensive algorithms 

for locating landmarks. Commonly used feature extraction techniques in holistic 

expression recognition methods include the principal component analysis (PCA), the 

linear discriminant analysis (LDA) and their variants, independent component analysis 

and even using the orthogonal moments. However, most of the existing approaches fail 

to consider either the local inherent spatial changes of the facial expression e.g., PCA or 

LDA. Although orthogonal moments carry local information of facial regions, the 

previously proposed methods select higher order moments heuristically without any 

justification. 

In this thesis, the Gauss-Hermite Moments (GHMs) are used for developing a holistic 

facial expression recognition algorithm since the GHMs are widely used in visual signal 

processing. Based on a novel concept of scattering ratio, moments are selected having 

higher discrimination power of expression in the GHM subspace. Further, due to the 

existence of significant correlations among certain expressions in the case of 

spontaneous form as compared to posed form, the GHM features are projected to a new 

expression subspace where the information are de-correlated using the PCA. Finally, 

these feature vectors are used to recognize the expressions using the well known support 

vector machine classifier. Experiments are carried out using two exhaustive databases, 

namely, the Cohn Kanade and Facial Recognition Grand Challenge, the former 

representing posed expressions while the latter spontaneous expressions. Experimental 

results on mutually exclusive subjects reveal that the proposed method can provide the 

recognition accuracies of at least 7 % and 4 % higher than the existing methods for 

posed and spontaneous expressions, respectively. 
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1 : INTRODUCTION 

 

1.1 Introduction 

In the 21
st
 century, deploying artificial intelligence in social and interpersonal 

communications has turned out into an intriguing and sizzling area of research. What 

just started as a monologue „dancing and speaking robot‟ for entertainment in the late 

twentieth century, the concept of human computer interfaces has now made its way 

to interactive lie-detecting and person-recognizing apps in smart-phones and even 

went on to building mood-meters and recognizing emotions by judging every now-

and-then activities of its „master‟. Today‟s researchers are exploring and developing 

new ways and algorithms to build more robust human computer interfaces from other 

characteristics of human; face, voices, pulse rate or even brain signals. The endeavor 

of this thesis is to build one such interactive system from facial expressions of 

humans. 

1.2 Expression Recognition: A Review 

1.2.1 Background 

Facial expression is one of the most powerful means for humans to communicate 

their emotions, intentions, and opinions to each other. Psychological study reveals 

that while overall impact of the text content of a conversation is limited to only 7% 

and the intonation of the voice contributes by 38%, the facial expressions carry the 

most part of the conveyed information, i.e., 55% [1].Thus, automated facial 

expression recognition has emerged as a highly active field of research in cognitive 

or behavioural science, with important applications in lie detection [2], intelligent 

communication in social media [3], and multimodal human-computer interface [4,5]. 

 

Facial expressions are outcomes of complex inter-relations of emotions of a person. 

A person may have a single expression for his/her mixed feelings such as a 

combination of happiness and surprise or that of disgust and contempt. Also each of 

the basic emotions can have multiple sub-classes. For examples, joy has several sub-

class emotions including the cheerfulness, zest, contentment, pride, optimism, 
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enthrallment and relief [6]. However, psychological studies reveal that basic 

emotions have corresponding universal facial expressions for all cultures. Most 

automatic facial expression analysis approaches found in the literature attempt to 

directly map facial expressions into one of the six basic emotion classes introduced 

by Ekman and Friesen [7]. The set of prototypic emotional expressions includes 

disgust, sad, fear, anger, surprise and happy. As a consequence, recent advances in 

image analysis and pattern recognition open up the possibility of automatic detection 

and classification of these six expressions of facial images [8]. 

1.2.2 Challenges 

While the human visual mechanisms for face detection are very robust, the same is 

not the case for interpretation of facial expressions. According to Bassili [9], a 

trained observer can correctly classify faces showing six basic emotions with an 

average of 87 percent. The result varies depending on several factors such as the 

familiarity with the face, that with the personality of the observed person, the general 

experience with different types of expressions, the attention given to the face or even 

the non visual cues including the context in which the expression appears. 

 

Although  humans  recognize  facial  expressions  virtually without  effort  or  delay,  

reliable  expression  recognition  by machine  is  still  a  challenge.  Most of the 

research efforts for automatic recognition are given in achieving  optimal  pre-

processing,  feature  extraction  or  selection,  and  classification, particularly under 

conditions  of  input  data  variability. To attain a good classification performance for 

expressions, a control over the imaging conditions has been tried. The controlling of 

imaging conditions is detrimental to the widespread deployment of expression 

recognition systems, because many real-world applications require operational 

flexibility. The challenging issues in real-world applications typically cover the 

following aspects: 

 Variations due to view or pose of the head: The process of capturing of 

face images can have an important consequence on expression recognition. 

Orientation and pose of subjects‟ head relative to the camera, in-plane and out 

of plane rotation of the head and misalignment of facial features with respect 

to each other and inter subjects‟ variation of facial dimension can have 
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adverse impact on feature extraction. Some of the temporary remedial steps 

to counter these effects include several registration algorithms, centroid 

adjustment, geometric transformation etc. However, research is still needed 

for transformation invariant expression recognition. 

 Variations due to environment clutter and illumination: Complex and 

uneven image background pattern, occlusion, and uncontrolled lighting 

variation (illumination and shadow) have a potentially negative effect on 

recognition. They may potentially cause the contamination of feature 

extraction by information not related to facial expression. Normally these 

variations are addressed by several image segmentation algorithms, 

illumination correction, enhancement algorithms (e.g. histogram equalization) 

etc. Uncluttered backgrounds and controlled illumination are often used 

during image capturing to counter the above mentioned effects. 

 Miscellaneous sources of facial variability: Facial characteristics display a 

high degree of variability due to a number of factors, such as differences 

across people (arising from age, illness, gender, or race, for example), growth 

or shaving of beards or facial hair, make-up, etc. These variations can also 

have negative impact on expression recognition. Efforts to minimize these 

unnecessary artifacts still remain under investigation. 

1.2.3 General Approach 

Researchers follow a common approach of steps for research in facial expression 

analysis. The three major steps in face expression analysis include the face detection, 

face expression data extraction and expression classification. There are several robust 

ways to detect face regions from an image or video sequence. After face detection, a 

mechanism must be devised for extracting the deformed content of facial images due 

to expression from the observations, either in static image or image sequence. There 

are two kinds of approaches to capture the deformation: appearance based and 

geometric based approach. While geometric based approach relies on the feature 

extraction from facial dimension (several facial characteristic points are sought in 

faces and stringent geometric normalization are carried out to measure deformation 

in expression [10,11]); appearance based approach relies more heavily on face 

models of appearance to capture deformation [12,13].Appearance based methods do 
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have to rely on neutral face images or face models in order to extract facial features 

that are relevant to facial actions and not caused by non-expression related factors, 

e.g., intransient wrinkles due to aging. In this thesis, discussion is limited to 

appearance based approach since it is expected to be a more pragmatic and less 

cumbersome way of feature extraction classification. 

 

Facial features in appearance based method can be classified as being 

permanent/intransient or transient. Permanent/intransient features are the features 

like eyes, lips, brows and cheeks which remain permanently but may be deformed 

due to facial expressions. Tissue texture, facial hair as well as permanent furrows 

constitute other types of permanent facial features. The transient features include 

facial lines, brow, wrinkles and deepened furrows that appear with changes in 

expression and disappear on a neutral face. The forefront and regions surrounding 

mouth and eyes are also prone to contain transient facial features. The facial features 

for expression recognition can be represented in various ways; e.g. face as a whole 

unit (holistic representation) or from certain fiducial points of the face (landmark 

representation). In landmark-based approach, fiducial points are localized at strategic 

blocks (cluster of neighboring pixels) of neutral face called Facial Action Units 

(FAUs) which display muscle movement with facial expression. The activities of 

FAUs are then measured in face image that occur with change in expression [14,15]. 

On the other hand, holistic spatial analysis is an approach that employs image 

dimensional gray-level texture filters on the entire portion of the face. Hybrid 

approach has also been adopted for facial expression recognition by applying local 

holistic approach on blocks of facial images defined by a given set of fiducial points 

[16]. 

 

Most of the researches are focused on 2D face expression recognition. However a 

few number of research investigation has been done on developing 3D face 

expression recognition. Normally in 3D based systems, the facial structure is 

described with the aid of 3D face models by trying to recover the 3D geometric 

information of the scene or facial surface from the 3D shape of the face, making it 

possible for accommodating high level description of facial activities [17,18]. There 

are two types of 3D models, namely muscle and motion models [19,20]. The latter 
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can significantly improve the precision of motion estimations, since only physically 

possible motion is considered. However, the 3D models often require complex 

mapping procedures that generate heavy computational requirements. Many 3D 

models are often generated by laser beam; but it must be noted that laser resolution 

and pixel resolution are not the same; it is not possible to acquire depth information 

for all pixels. In addition, widespread usage of laser beam for public experiments can 

pose serious health hazard issues. To avoid laser beams, accurate head and face 

models often are constructed manually, which is a tedious process. 

 

It must be noted that there are two major types of expression categories: posed and 

spontaneous. Posed expressions are the artificial expressions that a subject produces 

on request through a guided mechanism. On the other hand, in spontaneous 

expressions, the subject shows their day-to-day on the spot expressions without any 

guidance. Many psychologists have proved that the posed expressions are different 

from spontaneous expressions, in terms of their appearance, timing, temporal 

characteristics or the extent of exaggeration [6]. Genuine expressions are usually 

subtle and the differences between these two categories necessitate the need for 

developing expression recognition systems that performs well both in the 

spontaneous and posed expressions. 

1.2.4 Related Works 

In this section, several methodologies found in the literature for landmark based 

approach and holistic based approach for face expression recognition are discussed. 

Reasons for selecting the latter approach over the former in this thesis are also 

explained in this section. 

 

The main objective of the land-mark based approach is to measure the 

activities/deformation of the AUs by locating fiducial points in the facial image. The 

next step is to create quantifiable description of emotions by Facial Action Coded 

System (FACS), developed by Ekman and Friesen [21]. FACs was designed based 

on human observations to detect subtle changes in facial features. Classification is 

done based on recognizing the AUs first and then using FACs to classify the 

expressions. Based on this concept, several other variants have also developed. Essa 
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et al. developed an optical flow based system to recognize action units from facial 

motions [19]. Lanitis et al. [22] for example, have developed a Point Distribution 

Model (PDM) from which the shape of the main features and their spatial 

relationships can be extracted. A parameterized description of shape for any instance 

of face is found to locate the features in new images. A wire frame model with 12 

facial motion measurements based on a 2D or 3D model proposed by Tao and Huang 

[23] is also used for facial expression recognition. However, in all these approaches, 

the data extraction process is computationally expensive. At the initial stage, for 

every subject, fiducial points have to be located manually in its neutral image which 

hinders automation and real time classification. Capturing localized patterns of facial 

expression brings sensitivity to noise and depend highly on pre-processed images 

since this kind of approaches require precise alignment of multiple internal features 

[24]. Also in constrained environments, several edge detectors, edge projection 

analysis and facial geometry distance measure have to be used prudently to extract 

the fiducial points accurately. 

 

Bartlett. et. al. [24] found that the holistic spatial analysis and motion analysis, 

outperformed the landmark-based method for facial action recognition in several 

other criterions including accuracy. Many of the approaches in holistic based 

approach employ data-driven kernels learned from the statistics of the face image 

ensemble [25]. An alternative to landmark based image analysis, holistic analysis, 

emphasizes preserving the original images as much as possible and allowing the 

classifier to discover the relevant features in the images [13,25]. This is because 

deformations of facial features are usually characterized by shape and texture 

changes of face images that lead to high spatial gradients. In holistic spatial 

representation, „eigenfaces‟ is based on the principal components of the image pixels 

[26,27]. The PCA finds an orthogonal set of dimensions that account for the principal 

directions of variability in the dataset. A low-dimensional representation of the face 

images with minimum reconstruction error is obtained by projecting the images onto 

the first few principal component axes. The PCA has been applied successfully to 

recognizing both facial identity [26,27], and facial expressions [28,29]. Another 

holistic spatial representation is obtained by a class-specific linear projection of the 

image pixels [30,31]. In such analysis, pre-processed images are subdivided into 
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several classes, and a set of images from each class is trained to seek a projection 

matrix that would maximally separate the between class while minimizing the within 

class variance. Gabor wavelet based filters [16,32,33], Local Binary Patterns [34],   

Local Directional Number Pattern [35] are some of the other local holistic based 

feature extraction methods where block based texture analysis of facial images are 

carried out. Feature extraction from holistic analysis has also been carried out by 

means of rotation and scale invariant orthogonal moments; Zernike [36], Tbechichef 

[37], Affine Moment invariants [38] and Krawtchouk Moments [39]. In all these 

approaches, the region of interest (face) is masked, the images are projected into the 

moment subspace, and then a set of moments are used as feature vectors which are 

finally used to train the classifiers. 

 

A good reference point to start the study of facial expression analysis is how human 

visual system reacts to facial expression. A good characteristic of human visual 

system is that face is perceived as a whole, not as a collection of facial features [40]. 

The presence of the features and their spatial relationship with each other appears 

more important than the details of the features [41]. Moreover, holistic gray level 

information appears to play an important role in human face processing [42], and 

may therefore contain important information for face image analysis by computer as 

well. Holistic spatial analysis is also used in systems when configuration and shape 

can be often difficult to parameterize. Since marking and selecting fiducial points can 

often be cumbersome, instead of considering fiducial points individually, a good ploy 

can be to utilize the holistic approach benefits by taking algorithm specific blocks of 

facial images to extract features; often known as hybrid approach. However, it is 

expected that the feature set that performs well for the holistic approach will also 

show a similar performance for the feature sets extracted from FAUs of landmark 

based approach or localized blocks of the hybrid approach. It can be argued that the 

importance of face expression lies in choosing the feature set rather than the 

approach whether it is holistic or landmark-based or hybrid.    

 

The final stage of any face expression recognition system is the classification stage. 

Several classifiers have been tested on extracted features. Some of the most effective 

and widespread classifiers to name are minimum distance classifiers [14,43], support 
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vector machine (SVM) [35,44], the naïve-Bayes classifier [45-46], artificial neural 

network [47]-[48] amongst the few. 

1.3 Scope of Works 

Existing holistic facial expression algorithms that extract features from the PCA, 

independent component analysis, LDA, mixture covariance matrixes (MCM) fail to 

address local facial deformation in the face image. Orthogonal moments such as 

Zernike, Tbechichef have also been tried as features with a view to capture the local 

spatial dynamics of the images. But these methods fail to recognize the discriminant 

information specifically due to the fact that the moments are chosen heuristically 

without any mathematical justification. To overcome these drawbacks a 

mathematical and experimental thorough study is necessary to develop an efficient 

orthogonal moment based facial expression algorithm. Among the existing various 

orthogonal moments, the two dimensional Gauss-Hermite Moments (GHM) can be 

chosen as initial face templates.In addition to its capacity to preserve information in 

compressed form, it is now being used widely for its efficient image reconstruction 

properties due to its orthogonality and geometrically invariant moment features. 

Also, it has the capacity to capture non-linear hidden structure of the data. It is also 

used popularly to model human visual signal processing, since the width of the 

Gaussian weight function of the Hermite polynomial expansion provides a flexibility 

in isolating the visual features just as human visual system does. After modelling the 

expression image in 2D GHMs, a feature selection strategy may be applied to extract 

relevant and effective feature for efficient expression classification. 

1.4 Objective 

With a view to developing a novel 2D GHM based face expression recognition 

algorithm, this thesis presents a detailed research study by maintaining the following 

specific objectives: 

 To build a robust feature extraction technique by exploiting the orthogonal 

moments of static holistic expression images using the 2D Gauss-Hermite 

basis functions (GHBF) which are popular in visual signal processing. 
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 To improve the classification accuracy by developing a feature selection 

strategy that can select orthogonal moments having high discrimination 

capacity with a specific target for posed type expressions.  

 To obtain expressive moment components from the prescribed neutral 

subspace to improve recognition accuracy in case of expression face images 

having highly correlated features (spontaneous expression). 

 To investigate the proposed methodology in detail on several established 

datasets so that drawbacks and future modes of improvement can be 

highlighted.  

 

In order to fulfil the above mentioned objectives, the 2D GHMs of static images are 

first estimated. After the moment estimation, a feature selection strategy is developed 

that can filter the more discriminant moments most representative of the expression 

subspace. Effectively, for posed expressions or images showing exaggerated 

expressions, using these selected moments in the feature space give a very good 

recognition rate. However, for spontaneous expressions of each class, which is 

correlated highly with the neutral expression, in addition to the developed feature 

vector, a neutral expression template is sought by projecting a set of neutral 2D 

GHMs of mutually exclusive subjects into a new feature space (called the neutral 

space) using PCA. It is expected that the interpersonal variation which is irrevelant 

and unnecessary in expression classification can also be filtered out in this feature 

space. Taking the virtual neutral expression subspace as reference, a difference 

component between neutral and expressive 2D GHMs is calculated. These difference 

components along with the discriminant moments (selected by scatter ratio) are then 

combined to form the feature vector of expressions of any class, which is referred to 

as the expressive GHM (EGHM). Finally these feature vectors are fed to a very 

reputed and online classifier, support vector machine (SVM), which is a widespread 

classifier for expression recognition. 

 

The methodology is tested on exhaustive and well known posed expression database 

namely; the Cohn Kanade (CK) and the spontaneous database namely; the Facial 

Recognition Grand Challenge (FRGC). In each of the expression class, subjects are 

all mutually exclusive so that no two subjects fall in the same class. Since, personal 
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identity information conveyed by a face is an unwanted source of variability in 

expression recognition, this ensures person independency of the methodology and 

gives it a universal application. Performance of the proposed GHM based expression 

recognition algorithm is compared with the existing PCA, LDA, Zernike based 

methods by evaluating the recognition accuracy, type I and type II errors as well as 

Receiver Operating Characteristics (ROC) curves.  

1.5 Outline 

The thesis is organized as follows.  

In Chapter 2, a brief review of 2D Gauss-Hermite moments, their reconstruction 

ability of images and the formation of rotation and translation invariance moments 

are given. 

In Chapter 3, the proposed recognition scheme both for the posed and spontaneous 

expression is elaborated by the help of illustrations, block diagrams and 

mathematical expressions. 

Chapter 4 presents the experimental results comparing the proposed method with the 

existing recognition methods.  

Finally, Chapter 5 provides the conclusion along with the scopes for future work. 
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2 :GAUSS-HERMITE MOMENTS--A REVIEW 

 

2.1 Introduction 

Moments and functions of moments have been widely used in pattern recognition 

[49,50], edge detection [51,52], image segmentation [53], texture analysis [54] and 

other domains of image analysis [55,56] and computer vision [57,58].Among all 

kinds of moments, the geometric one is firstly introduced and has been used due to 

its simplicity and explicit geometric meaning. In 1961, Hu first introduced moment 

invariants by using nonlinear combinations of geometric moments [59].However, the 

basis functions of geometric moments are not orthogonal and the recovery of the 

image from these moments is very difficult [35]. In general, for image analysis, the 

bases of the space, onto which the image function are projected, would be desirable 

to be orthogonal. The advantage of using orthogonal basis is that the orthogonality 

between the bases helps in reducing the calculation. Moreover, the error is easier to 

estimate when a limited number of projection is used and reconstruction could also 

be more simple [55].In the early 1980s of the last century, Teague introduced the 

orthogonal Legendre and Zernike moments using the corresponding Legendre 

polynomials and Zernike polynomials as kernel functions for image analysis [35]. 

Since then, many authors in literature have proposed to use orthogonal moments 

[60], based on the theory of orthogonal polynomials such as Legendre [61] , Zernike 

[62] and Tchebichef moments [63] for image reconstruction. 

As another kind of continuous orthogonal moments, the GHMs were firstly 

introduced by Shen [64]. The study of these moments is far from complete and 

mainly limited to their countable applications. Shen and Wu detected the moving 

objects using the moments [65,66,67]. Similarly, Wang and Dai[68]and Wang et 

al.[69]introduced the moments to the fingerprint classification in biometrics. Besides, 

other applications such as iris identification [70], SAR image segmentation [71] and 

stereo matching based on GHMs have recently been reported [72].Other applications 

include the character recognition [73], singular point detection of fingerprint images 

[74], recognition of 1D signals from iris images [75] and even in license plate 

analysis [76]. 

 



 

12 

 

2.2 Image Representation by 2D Gauss-Hermite Moments 

In this section, a brief review of Hermite polynomials and their orthogonality 

relations with the Gaussian weighting function is given. The method of obtaining the 

orthogonal Gauss-Hermite moments of the face images from the polynomials and the 

reconstruction of images from these moments are presented next. 

2.2.1 Hermite Polynomials 

The Hermite polynomial of order p∈  ℤ1 on the real line x∈  ℝ1 is given by [77]  

2 2( ) ( 1) exp( ) exp( )
p

p

p p

d
H x x x

dx
  

  
                  (2.1) 

These polynomials may be computed efficiently using the following recursive 

relations 

0

1

1 1

( ) 1

( ) 2

( ) 2 ( ) 2 ( ) 1p p p

H x

H x x

H x xH x pH x p 





  
  

              (2.2) 

The Hermite polynomials satisfy the orthogonality property with respect to the 

weight function 2( ) exp( )w x x  such that 

2exp( ) ( ) ( ) 2 !p

p q pqx H x H x dx p 




                (2.3) 

where pq  is the Kronecker delta function. An orthonormal relation may be obtained 

by using a normalized version of the Hermite polynomials given by 

 2( ) 2 ! exp( / 2) ( )p

p pH x p x H x               (2.4) 

A generalized version of (4) may be obtained by using a spread factor  ( 0)   on 

the real line 
1x . In such a case, the so called generalized Gauss-Hermite (GH) 

polynomials may be written as 

 2 2( ; ) 2 ! exp( / 2 ) ( / )p
p pH x p x H x                 (2.5) 

for which the orthonormal relation is maintained as 

 ( ; ) ( ; )p q pqH x H x dx  




                 (2.6) 
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2.2.2 Gauss-HermiteMoments 

Let 2

2( , ) ( )I x y L   be a continuous square integrable 2D signal. The set of 2D 

GHMs of order 1 1( , )( )( )p q p q    denoted as 
pqM  may be obtained from 2D 

GH basis functions (GHBF) expressed in terms of two independent p-th and q-th 

order of GH polynomials (GHP) using the following relations [77] 

 
2

( , ) ( ; ) ( ; )p qpqM I x y H x H y dxdy  


                    (2.7) 

Fig.2.1showsfew shapes of several orders of 1D GHBFs. Each of the basis functions 

are orthogonal to each other.Fig.2.2 shows2D GHBF obtained from the tensor 

product of two separate set of 1D GHP along x and y axes. The GHMs of the 2D 

signal may be considered as the projections of the signal onto these 2D basis 

functions. Thus, these moments characterize the signal at different spatial modes 

those are defined by certain linear combinations of the derivatives of the Gaussian 

functions.  

2.2.2.1 Capacity to capture local information in an image 

GHM‟s base functions of different orders have different number of zero crossings 

and different shapes, so it is believed that they have the capacity to separate image 

features based on different modes, which is already a highly intriguing research in 

pattern analysis, shape classification and detection of moving objects. Moreover, the 

base functions of GHMs are much more smoothed; are less sensitive to noise and 

avoid the artifacts introduced by window function‟s discontinuity [78]. 

Fig.2.1clearly shows that the 1D modes have several zero crossings and with 

increase in order of modes, the density of the zero-crossings increase. Fig.2.2 shows 

how the tensor product of the modes behaves in 2D form, which is the region of our 

interest now. The figure reveals that due to local patches of brightness at several 

areas of the 2D frame, it has the ability to extract local information from several 

regions and positions of the image. So GHMs can work as local feature extractor. It 

must be noted that modes and order convey the same meaning. 
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Fig.2.1: 1-D Hermite Polynomial of different modes. 
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 (c)                                (d) 

 

  (e)                                                                            (f) 

 

(g)                                                                      (h) 

 

(i)                                                       (j) 
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    (k)                          (l)  

 

            (m)                                                                     (n) 

 

  (o)                                                                          (p)       

 

     (q)              (r) 

Figure continued on next page... 
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(s)                                                              (t)     

Fig.2.2: 2D Gauss-Hermite Polynomials of different modes. The intensity plot is 

shown in the left (a,c,e,g,i,k,m,o,q,s) and corresponding surface plot is shown in the 

right (b,d,f,h,j,l,n,p,r,t)). 

 

2.2.2.2 Reconstruction Capacity of GHMs 

An important aspect of GHM is the ability to reconstruct images based on its 

moment descriptors. GHMs have a high compression capacity which allows storing 

the image efficiently in reduced dimension. This helps to avoid the „curse of 

dimensionality‟ problem often faced by storing higher resolution gray level images. 

Fig.2.3helps describe how the moments can be again used to reconstruct the image in 

its gray level intensity. 

Ideally, from all possible moments, the 2D signal I(x,y) may be reconstructed without 

any error as 

 
0 0

( , ) ( ; ) ( ; )p qpq

x y

I x y M H x H y 
 

 

                  (2.8) 

It is to be noted that the GHMs are obtained from two real lines 
1x and 1y , 

and hence a modification is required for obtaining moments from the discrete 

coordinates of face images.  

In order to compute the moments for a digital image I(i,j) whose size is K K ,the 

normalized coordinates over the square image [ 1 , 1]x y    is recommended for a 

comparable evaluation of   selection: 

2 1

1

i K
x

K

 



and

2 1

1

j K
y

K

 



               (2.9) 
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The discrete version of Gauss-Hermite polynomial  ( , ; )pH i K   is computed on the 

interval [-1,1].It is in fact the equidistant sampling as a substitute for the continuous 

Gauss-Hermite polynomial: 





1/2 2 2

1/2 2 2

( , ; ) [2 ! ] exp( / 2 ) ( / )

( , ; ) [2 ! ] exp( / 2 ) ( / )

p
p p

q
q q

H i K p x H x

H j K q p y H y

   

   





 

            (2.10) 

In terms of discrete implementation, the 2D moments for the face images may be 

obtained as 

 
1 1

2
0 0

4
( , ) ( ; ) ( ; )

( 1)

K K

p qpq

i j

M I i j H i H j
K

 
 

 




            (2.11) 

And the image can be restored from its Gauss Hermite moments of order 

(0,0)upto(N,N)by 

 
0 0

( , ) ( , ; ) ( , ; )
N N

p qpq

p q

I i j M H i K H j K 
 

             (2.12) 

 

Note that the (a) in Fig.2.3represents the actual image and all the other images show 

the effect of reconstructing the images from low order (15, 15) GHMs to high order 

(50, 50) GHMs. 

The biggest motivation obtained from this quality of GHM is that PCA and LDA can 

also be used to reconstruct the gray level image, and since both the algorithms have 

been used in a wide scale in holistic image analysis, GHMs might also have the 

ability to extract features from holistic image analysis. 

A crucial choice for obtaining GHMs is the scale parameter   ( 0  ) that has to be 

selected before moment computation and image reconstruction. Generally speaking, 

given the same moments for image reconstruction, a large  can entertain more 

smooth regions and texture in the image, while a smaller   can capture very minute 

details of an image. Therefore, in order to have a better image reconstruction, we 

should take the influence of   into account and make a reasonable trade-off between 

smooth and detailed regions. Since the expression image may contain wrinkles or 

creases in forehead, we have kept  to fall within 0.1. 
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Fig.2.3: Image reconstruction capacity with GHM descriptors (a) represents the 

actual image of the subject, while (b) (c) (d) (e) and (f) represent the image 

reconstructed by lower to higher order of moments 15, 20, 25, 40, 50 in that order 

respectively. 

 

2.3 Translation and Rotation Invariants of Gauss-Hermite Moments 

Successful feature extraction from facial images may suffer due to misalignment and 

several postures of the subjects. In this section, our main objective is to find several 

combined translation and rotation invariant GHMs (RTIGHMs) of facial images that 

could be used to provide some robustness to the overall system of feature extraction. 
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2.3.1 Translation Invariant Moments 

The chief property of translation invariance is eliminating the effect due to the  subtle 

change of location of an image on moment computation. The chief step is the 

computation of Gauss-Hermite polynomials with translation of origin to the centroids 

in discrete case, which can be expressed by 

1/2 2 2

1/2 2 2

( , ; ) [2 ! ] exp( ( ) / 2 ) (( ) / )

( , ; ) [2 ! ] exp( ( ) / 2 ) (( ) / )

p
p p

p
q q

H i K p x x H x x

H j K p y y H y y

   

   





   

   
         (2.13) 

where ( , )x y  are centroid coordinates normalized over the interval [-1,1] and defined 

in the digital image by 

0

0

(2 1) / ( 1)

(2 1) / ( 1)

x i K K

y j K K

   

   
              (2.14) 

Here 0 0( , )i j  is the centroid coordinates of the digital image I(i,j): 

1 1 1 1

0

0 0 0 0

1 1 1 1

0

0 0 0 0

( , ) / ( , )

( , ) / ( , )

K K K K

i j i j

K K K K

i j i j

i i I i j I i j

j j I i j I i j

   

   

   

   



 

 

 



  (2.15)   

Gauss-Hermite translation invariant moments can then be computed with the 

subsequent equation: 

1 1

2
0 0

4
( , ) ( , ; ) ( , ; )

( 1)

K K

p qpq

i j

T I i j H i K H j K
K

 
 

 




  (2.16)         (2.17)           (2.18) 

2.3.2 Rotation Invariant Moments 

The main reason for using the rotation invariance forms of the Gauss-Hermite 

Moments is because during face acquisition, many subjects could have different 

poses and the subject photos could have been taken at different camera angles. We 

note that the extent to which rotation invariance moments could work for different 

poses is still not yet known and not under the purview of this thesis. 

The rotation invariant moments upto fifth order is calculated in this thesis. The 

higher order moments could also be derived, but it is found that they are more 

vulnerable to noises and variations of image intensity function [60,79]; also the basis 

of lower order is the most used in practice. So, as recommended by [77], in total 18 
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moments (moments upto 5
th

order)are found to have significant rotation invariance 

properties. 

The following equations are the formula to calculate the rotation invariant moments 

as given by [77].   

Second and third order Moments: 

1 20 02M M                  (2.19) 

2 2

2 30 12 21 03( ) ( )M M M M                                                   (2.20) 

2

3 20 02 30 12

2
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( )[( )
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               (2.21)
 

2 2
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               (2.22)
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          (2.23) 
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                         (2.24) 

Fourth Order Moments: 

7 40 22 042M M M                  (2.25) 
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Fifth Order Moments: 

2 2
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14 41 23 05 30 12 50 32 14 21 03( 2 )( ) ( 2 )( )M M M M M M M M M M                 (2.32) 
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(2.36) 

2.3.3 Combination of rotation and translation invariants 

The combination of rotation and translation invariants yields a kind of GHM 

invariants which is independent of transformations involving both rotation and 

translation. Replacing pqM in all the Eqs [2.19-2.36] by pqT in Eq [2.16] we obtain the 

combined rotation and translation invariants i , upto the fifth order. The rotation 

and translation invariant moments (RTIGHM) are expected to withstand the 

displacement of the images, if it does exist. The calculated moments are then 

concatenated with the original projected moment vectors to obtain the final Gauss-

Hermite feature vectors. 

2.4 Conclusion 

The above properties of GHMs indicate that these moments have some very 

interesting attributes to use them as features for facial expression recognition. Aside 

from the capacity to preserve local information in images, it also possesses 

orthogonal, translation, rotation and scale invariant properties that can be used to our 

advantage for feature extraction. 
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3 : EXPRESSION RECOGNITION USING GHMS 

 Equation Chapter 3 Section 1 

3.1 Introduction 

In Chapter 1, a general description of facial expression recognition and some of the 

related works in this field are explained. Chapter 2 goes more specific by discussing 

the literature review of GHMs in pattern recognition and how it can be utilized for 

efficient feature extraction. This chapter delineates the proposed methodology and 

describes how it best represents the expression characteristics by utilizing both the 

localized spatial information and distinguishing moments of interest amongst the 

several expression classes at the same time. The chapter highlights some of the 

concept diagrams and mathematical expressions that motivate us to formulate this 

proposition. At the end of the chapter, we kept scatter plot of typical members of 

expression classes for both the databases to illustrate the effectiveness of our method 

in expression recognition. 

3.2 Feature Extraction and Selection 

For each expression, the initial moment vector is formed by all the GHMs upto order 

N where , 0,1,2, ,p q N  and the rotation and translation invariant GHMs 

(RTIGHM) described in Chapter 2. We consider RTIGHMs of length R . If x  

becomes the initial moment vector, 
pq

M  be the GHM of order ,p q  and 
i

  be 

thei
th

RTIGHM, X can be written as follows: 

[ ]v vx M Ψ                    (3.1) 

where 

00 01 0 10 0 11
[ , , , , , , , , , ]v

N N NN
M M M M M M MM               (3.2) 

and 

1 2
[ , , , ]v

R
   Ψ                  (3.3) 

Here 
v

M  and 
v

Ψ  denote the normal GHM vector and RTIGHM vectors 

respectively. The total length of moment vector in x is 
2( 1)L N R   . 

From this feature space in GHM domain, the work of the thesis is now to build 

effective feature space that can recognize expression with improved ability. 
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The major contribution of this thesis is two fold. First, we propose a feature space for 

expression recognition where the moments of higher discrimination amongst all the 

moments in xof the given expression classes are selected. Based on the 

discrimination power, the moments are sorted and around two hundred to two fifty 

sorted moments are then fed to Sequential Forward Feature Selection (SFFS), a 

wrapper approach of feature selection that select only few features based on 

improved classification accuracy. By this step, feature dimension is set to reduce by a 

wide margin. 

 

Second, we propose to establish a neutral subspace within the GHM space which can 

be exploited by extracting the differential information amongst all the expression in 

the neutral space. It is believed that this information can be used as an added 

advantage to find the minute details of expression indistinguishable even by human 

visualization. In this section, the concept of feature extraction procedure is discussed 

in two separate subsections. 

3.2.1 Discriminant Analysis Using Scattering Ratio 

Discriminant analysis is a statistical technique to classify objects into mutually 

exclusive and exhaustive groups based on a set of measurable object‟s features. The 

term discriminant analysis comes with different names with different fields of study. 

It is often called pattern recognition, supervised learning or supervised classification. 

In the proposed method, an off-line automatic learning method is adopted to select 

discriminant GHMs from the GHMs of the entire training data. Generally the concept 

of scattering is based on the interclass and intra class distance of separation amongst 

the member classes. We propose a customization of both the between class and 

within class scatter distances to make it fit to our method. Since GHBF are 

orthogonal and independent, we consider the mean and variances of each of the 

moments independently and utilize these statistics for finding out the distinguishing 

information. The following figure gives a concept diagram of the between class and 

within class distance of separation amongst the member classes. 
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Fig.3.1: Aschematic diagram of within and between scatter distances. 

 

InFig.3.1, it is seen that there are three member classes in the feature space. Different 

sizes and shape of the ellipse indicate the degree of variability of the feature of its 

members in the respective classes. Each of the ellipses generates around the mean of 

each class. Here „o’ marker indicates the mean of each class, while „O’ marker 

represents the grand mean of all the classes. The distance between „o’ and „O’ is 

termed as the interclass distance, also referred to as between class scatter SB, while 

the degree/distance of separation of each member from its class is parameterized by 

intra class distance, or within-class scatter SW. 

In the proposed method, the between class or interclass scatter for a moment of a 

particular order is obtained as: 

1

| |
C

B i i

r r r
i

S   


  0,1,2, ,r L 
 (3.4) 

where
i  is the number of members in each class, L  the length of features in the 

initial moment space x. 
i

r
 and

r
  are the class mean and grand mean respectively. 

The grand mean is calculated by taking the weighted average of the class mean of 

each class, and is defined as follows: 

1 1

/
C C

i i i

r r
i i

   
 

                  (3.5) 
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The within class or intra-class parameter 
W

r
S  of the order of r is defined as: 

2 2

1 1

| ( ( )) ( ) |
i

C
W i i

r r r
i j

S x j



 

    (3.6)  

( )i

r
x j is the moment of order r of class i, and jth member of ith class, and 

2( )i

r
  is 

the variance of the moment of order r for that particular class i. The variance is 

calculated by  

2 2( ) ( ) / ( 1)i i i i

r r r
x       (3.7) 

which is an unbiased estimator of the variance of population from which 
i

r
x  is 

drawn. 

There is justification for using the mean and variance in calculating the between class 

scatter and within class scatter respectively. It is apparent that the distance between 

variance of all the groups/classes (grand variance) and the variance of within 

groups/classes (group variance) does not provide a clear picture of the inter-distance 

boundary and the location of each class in the feature space while calculating the 

between class scatter. On the other hand, the major reason for using variance in 

calculating the within-class scatter is because due to large number of members in 

each class, it is expected that the discriminant information is in the variance of the 

members instead of the class mean. Variance measures the spread or variability of 

the distribution and calculating the distance of samples from this parameter might 

give a better idea of the stretchness of the data. So we use the variance for calculating 

the within class scatter. 

The scatter ratio of all the moments for a given training expression GHM set is 

obtained as 

B

r

r W

r

S
SR

S
 , 1,2, ,r L    (3.8)  

Now, the objective of this scatter ratio is to seek for features that maximize this ratio. 

This means that the algorithm wants only those features that can maximize the 

between class scatter distance (signifying that the class mean should be as far as 

possible from the grand mean) and minimize the within class scatter distance 

(signifying minimizing the compactness/spreadness of the data so that overlapping 
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with another class can be reduced) at the same time. As a result, the 
r

SR  elements 

are arranged in descending order.  

Let xS be the sorted 1D feature vector of a single expression of a particular class 

according to the descending order of 
r

SR , containing L number of moments. From 

the sorted xS, we select features upto a particular threshold after which taking any 

further features does not bear any more significance. We define the finally selected 

feature vector as  sx  where 

 {1,2, , 1, , 1, , }s
s

L   x x                            (3.9) 

 is the least of the selected feature numbers in  sx  from 
S

x  which can be used as 

selection threshold. 

Such an arrangement of the moments in 
s

x  ensures that only the first few elements 

of moments would be sufficient for obtaining appreciable accuracy in expression 

recognition. 

3.2.1.1 Forward Feature Selection 

After the feature vector  sx  is formed, we now apply SFFS algorithm to further 

reduce the dimensionality of the features. Proposed by Pudit et al. [80], SFFS 

algorithm is gaining widespread attention due to its contribution to substantial 

improvement in classification accuracy [81]. It must be noted that SFFS is an offline 

learning algorithm that is performed prior to feeding the features on the classifier. As 

a result, real time application is no way affected by this procedure. Instead of feeding 

the entire feature vector sx , we feed  Sx  since SFFS is a cumbersome process; even 

though it is an offline method, it can take significant amount of learning time if it has 

to select from huge number of features. So instead of sx , we give the truncated 

feature set  sx  to SFFS for learning.  Feature vector selected after SFFS is given by: 

( )Ss FSelectF x                           (3.10) 

SFFS is performed on the feature vector 
s

x based on a convenient fraction of the rest 

of the dataset (other than the training set used for forming the scattering ratio).The 

feature element with the maximum value of scattering ratio is first chosen. New 
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features from  sx are then added to a forward search procedure if they improve the 

classification rate. Feature that worsens the classification or does not change it, given 

the ones that are already selected, are not included. From the SFFS algorithm, only 

those elements from  sx are preserved that contribute to significant improvement in 

recognition accuracy and only those elements are used to form the feature space
S

F . 

These features are expected to boost recognition accuracy to a significant extent. 

3.2.1.2 Block Diagram of Feature Extraction from the Scattering Ratio 

Fig.3.2 gives an overall view of the steps used to extract features from the scattering 

ratio. It must be noted that the scatter ratio is calculated from training set. After 

calculating the scatter ratio, we scale the features according to the scatter ratio and 

then sort the features in descending order. Finally by forward feature selection, we 

select only the features that will be finally used for feeding the classifier. 

3.2.2 Differential Expressive Moments from Neutral Subspace 

In posed expressions as discussed in Chapter 1, the expressions from each class are 

highly exaggerated, and as a result, there are no significant correlations amongst the 

classes themselves. The moments of each class preserve unique information of each 

expression class by virtue of its orthogonality and independent properties, and so 

they can be easily selected by means of scattering ratio. But for spontaneous 

expressions, it is often found that differences between each expression class are very 

subtle and often hard to distinguish even by human visualization. There exist 

significant similarity between each class which is hard to separate by orthogonal 

projection of moments alone. 

 

In such scenarios, we propose a new feature vector in addition to FS that can extract 

the difference information amongst the expression classes by decorrelating the 

features and utilizing the difference for improved recognition accuracy. In this thesis, 

the primary importance is given in decorrelating information between neutral and all 

other expressions since all expressions ensue from its corresponding neutral offset. 
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Fig.3.2: Block diagram of feature extraction method by novel scattering ratio. 

 

We build a neutral reference space by performing principal component analysis on 

the neutral training set GHMs. By this process, a projection matrix is learnt that can 

take any expression into a neutral subspace with the mostly decorrelated information 

of each feature. Thus a neutral subspace is formed by eigenvector decomposition of 

neutral expression moments represented by 
Nt

X containing the variations present in 

the neutral moments. Whenever any moment is projected on this subspace, it is 

expressed as a linear combination of eigen-moments corresponding to neutral 

expression moments. Basically projection on neutral subspace splits the test image 

into two components; one representing its neutral component and the other 

representing the expression component. 

3.2.2.1 Interpersonal Variability Reduction in Neutral Subspace 

The goal of principal component analysis is to transform the GHM set of L  

dimension of any expression to an alternative data set of dimension ( )l l L . In 
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order to obtain it, we have to obtain a transformation matrix from a neutral 

expression training set, and as a result the transformed space is also called the neutral 

space. In order to do this, we organize the GHM data set. The neutral training set are 

arranged a set of n GHM vectors 
1 2
, , ,

n
x x x with each xi representing a single 

grouped observation of L  variables (the dimension of xi is1 L ). So, the neutral 

training set is written as: 

Nt

 
 
 
 
 
 
  

1

2

3

n

x

x

X x

x



                           (3.11) 

where
Nt

X is a ( )n L neutral expression GHM training matrix. 

 

To find a principal component basis that minimizes the mean square error of 

approximating the data, we have to perform mean subtraction [82].Here we calculate 

the empirical mean along each dimension 1,2 ,j L  . The mean vector is then 

given as u of dimension (1 L ). 

Subtracting the empirical mean vector u from each row of data matrix 
Nt

X , we find 

the ( L L ) empirical covariance matrix as follows: 

1
[ ] [ ]

1

T

Nt Nt
n

  


C X u X u
  

(3.12)   

We now find the orthonormal matrix WNt of eigenvectors which diagonalizes the 

covariance matrix C as given by: 

T

Nt Nt
W CW Λ

  (3.13)
   

whereΛ is the diagonal matrix of eigen-values of C. 

In other words, the empirical covariance matrix of the original GHM matrix can be 

also written as: 

T

Nt Nt
C W ΛW

  (3.14)
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matrixΛwill take the form of( L L )diagonal matrix containing the eigenvalues 

usually in sorted order. 
Nt

W can be also called the transformation matrix that 

switches from GHM space to the neutral space. 

Since neutral expression must have the minimum amount of variation, we now seek 

to find the eigenvectors that represent the minimum variation in neutral space. For 

reducing variability of neutral features due to interpersonal difference (facial features 

like shape of eyes, nose etc may vary from one person to another in many regions of 

the face), we ignore the components with the highest energy of eigenvalues in the 

neutral space (expected to contain the maximum variations of interpersonal change in 

faces) and instead seek the eigen-vectors with lower variation. But we reject the 

lowest eigen-values that might represent noisy features. So we select band of 

eigenvectors corresponding to the eigenvalues where energy value is flat/variation is 

nil for a considerable number of eigen-values (found to occur in the mid-region of 

the eigen-value curve Fig. 3.3). 

The new feature matrix of the neutral training set can be defined in the neutral space 

as: 

 T

Nt
Nt Nt
F X W   (3.15)   

Where FNt has the dimension of n x l. 

3.2.2.2 Differentially Expressive Moments 

We define the generalized GHM matrix
Ex

X as: 

Ex

m

 
 
 
 
 
 
  

1

2

3

x

x

X x

x



                (3.16) 

Where 
Ex

X is a ( )m L all expression testing matrix,  and  

where ( , , , , , , )Ex Sad Happy Angry Fear Surprise Disgust Neutral  and 

m is the number of samples in the testing set. We note that it also contains moment 

vector sets of all other expressions apart from the neutral training set used for  
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Fig. 3.3: The Energy-Eigenvalue curve in neutral/expression invariant subspace. 
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Fig.3.4: The concept diagram of projected expressive GHM into neutral subspace. 
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obtaining the transformation matrix, we can obtain the new differential expressive 

moment features given by 


Nt

T

Nt
Exp Ex F

  F X W μ
  

(3.17)   

where 
NtF

  is the mean of the feature matrix FNt in the neutral space and has 

dimension of (1 l ). 

Fig.3.4 illustrates the phenomena when any expression GHM is projected into the 

neutral subspace for l=2. Let us consider an expression feature vector 

1 2
[ , ]

e
X XX to be projected on a neutral subspace. After projection, the 

transformed feature vector becomes 
' ' '

1 2
[ , ]

e
X XX .If we consider the mean 

neutral vector in the neutral subspace as 
1 2

[ , ]N N N μ  , then the differential 

expressive component of the expression in the neutral subspace is given by: 

' '

1 1 2 2

N N

Exp
X X      F              (3.18) 

 

Eq. (3.18) is expected to extract useful differential information for each expression 

for improving the recognition accuracy. The concept can be extended to l

dimensions where l  is the maximum number of dimensions selected in the neutral 

subspace. 

 

Fig.3.5 gives the block diagram of the process of feature extraction from evaluation 

of expressive differential moments. The neutral expression from the 2D GHM 

training set is selected for forming a feature transformation matrix by PCA that 

would take GHM moment vectors of any expression (both training and testing set) to 

the neutral space. The difference component 
Exp


F  is then obtained by subtracting the 

mean of the components of the neutral expression of training set in neutral space 

from the components of expression in the neutral space. 
Exp


F

 
is then preserved for 

later forming the joint feature vector with the features found from the scattering ratio, 

and the combination is explained in the later section. 



 

34 

 

 

Fig.3.5: Block diagram of feature extraction by differential expressive moments 

 

3.2.3 Feature Fusion 

After we obtain the two feature vectors 
S

F  and
Exp


F , one from the sorted scattering 

ratio and the other from the difference component between neutral GHM and 

expression GHM in the neutral subspace respectively, we form the resultant feature 

vector 
S


F for all expressions by combining the two feature vectors 

S
F  and 
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The resultant feature vector 
S


F  is named as the expressive GHM (EGHM). For all 

the expressions, its feature vector 
S


F  is then used to feed the classifier to detect the 

expression classes. In order to evaluate the discriminative capacity of the proposed 

expression oriented moment-based feature, we present the scatter plot of typical 

samples of expression in well known Cohn-Kanade [83] and FRGC database [84] 

respectively. The scatter plot is obtained in reduced two dimensions by means of 

multi-dimensional scaling [85], a very common and effective data visualization 

technique that can produce representation of data in reduced dimensions. Fig.3.6 and 

Fig.3.7 show how the distribution of features for each class formed from the feature 

vector 
S


F  looks like in compressed two dimensions. As can be seen, the expression 

class „happy‟ and „sad‟ are in the opposite side of the neutral expression, which is 

considered to be the offset for every expression. Since „happy‟ and „sad‟ are two 

opposite expressions (happiness is mouth bent on the upper side while sad means 

mouth bent on the down side), it is very natural to fall on opposite side of each other. 

It must be noted that the scatter plot is built taking features of some samples from the 

feature space. Of course classes have overlaps, and as a result, the classification 

accuracy for both the database are found to be around 80%. The details of the results 

are discussed in the next chapter. 

3.3 Feature Classification 

There are two types of classification; supervised and unsupervised. Supervised 

classification involves using the samples of known identity to identify the samples of 

unknown identity. We use supervised classifier for classification purpose since we 

have all the emotion labels at our disposal and we have extensive prior knowledge of 

expression class for each static image. Amongst the various classification schemes 

that have been employed to recognize facial expression the famous ones include the 

minimum distance classifier [14,43], the support vector machine (SVM) [35,44], the 

naïve-Bayes classifier [45-46], and the artificial neural network [47-48]. We choose 

the SVM classifier for its simplicity, faster classification capacity, lesser time 

required for training the dataset, and ability to handle nonlinear data at the same time 

[35,44,86-87]. 
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Fig.3.6: Scatter plot of typical samples of expression in Cohn-Kanade database. 

 

 

Fig.3.7: Scatter plot of typical samples of expression in FRGC database 

 

SVM is a well founded statistical learning theory that has been successfully applied 

in various classification tasks in computer vision. SVM performs an implicit 

mapping of data into a higher dimensional feature space and finds a separating 

hyper-plane with maximal margin to separate the data. Recognized as a binary 

classifier, multi-class classification can be achieved by adopting the one-against-rest 

or one-against-one approach. One against one approach is found to be more accurate 

and competitive approach for multiclass classification [88]. We selected a suitable 



 

37 

 

kernel and carried out grid-search on the hyper-parameters in a cross-validation 

approach for selecting the parameters, as suggested in [88].  

3.4 Conclusion 

This chapter explains in depth the concept and use of the proposed methodology for 

feature extraction of facial expression of still images. It describes how two different 

feature space
S

F
 
and 

Exp
F 

, the former generated from the concept of scattering ratio 

and the later formed by the differential information between meaningful expression 

and neutral expression in the neutral subspace, are formed and how the two could be 

combined to boost recognition accuracy of the expression classification. 

Mathematical expressions are used with the help of several illustrations and block 

diagrams to make the concept meaningful to the reader.  
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4 : EXPERIMENTAL SETUP AND RESULTS 

 

4.1 Introduction 

In Chapter 3, the proposed methodology to be used for expression recognition is 

being described in detail with illustrations and intermediate results. This chapter 

highlights how the datasets are organized keeping the real-life and online 

implementation in perspective. The chapter also divulges the achieved results and go 

on to elaborate further the effectiveness of the achieved results with adequate figures, 

plots and illustrations.  

4.2 Database Description 

We selected the two renowned and standard datasets for our experiments; namely the 

Face Recognition Grand Challenge (FRGC) dataset (ver. 2), and the Cohn-Kanade 

(CK) dataset (ver. 1) respectively. By using these two datasets, we ensure that the 

subjects to be used in our experiments have blends of different ethnicity, age and sex 

in our setup which ensure that our methods have the capacity to tackle these 

variations. Considering these variations by itself is a very challenging task in 

expression recognition [22].   

4.2.1 Face Recognition Grand Challenge Dataset 

Mostly used as a defacto standard for face recognition, Face Recognition Grand 

Challenge (FRGC v.2) is a huge collection of colored still images consisting of 

50,000 recordings. Assembled at the University of Notre Dame, the data corpus 

contains high resolution still images taken under controlled lighting conditions and 

with unstructured illuminations, 3D scans, and contemporaneously collected still 

images. The subject‟s session consists of four controlled still images, two 

uncontrolled still images and one 3D image. The controlled images were taken in a 

studio setting, are full frontal facial images taken under two lighting conditions (two 

or three studio lights) and with several facial expressions. The uncontrolled images 

were taken in various illumination conditions; hallways, atria or even outdoors. Still 

images were taken by a 4 Mega-pixel Canon Power Shot G2. Images are either 

1704 2272 pixels or1200 1600 pixels. Images are in JPEG format and storage size 

ranges from 1.2 Mbytes to 3.1 Mbytes. The dataset contains blend of subjects of 
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different ethnicity, age groups and sex groups (Male and Female); Asian 22%, White 

68%, Other 10%, of different ages; 65% subjects within 18-22 years old, 18% 

subjects within 23-27 years old and 17% above 28 years old, and finally male 

constituting 57% and female 43% of the subjects respectively [84]. 

Ranges of expression category in the dataset include Sad, Disgust, Surprise, 

Happy/Smile, Blank-Stare and Neutral. Based on prototypic expressions set by 

Ekman et. al [7] which are defined to be constant among all cultures and races, we 

selected the available four expressions (Sad, Disgust, Surprise and Happy) besides 

Neutral subset from the dataset to incorporate in our experimental setup and the 

results are established based on these five classes (including Neutral). 

Fig.4.1displays the five expression images for five typical subjects used in our 

experiments. It can be clearly seen the expressions vary from one person to another, 

some subjects exhibit happy faces almost explicitly (opening of mouth), while others 

show subdued form of this expression, bending up but closing their mouth at the 

same time. Differences are also seen for other expressions, for example in Sad 

expression, some show a frozen dejected look while others bend down their mouth to 

express this emotion. Though it is a huge dataset consisting of large number of 

individuals, we consider a generic FRGC dataset ensuring that the mutually 

exclusive subjects found in the expressions Sad, Disgust and Surprise combined are 

selected from the Neutral and Happy classes of the entire dataset to form our own 

classes Neutral and Happy to be used later in our experiment. The generic dataset 

contains 161 image samples in Sad, 241 samples in Surprise, 179 samples in 

Disgust, 272 samples in Happy and Neutral Expression sets respectively. 

4.2.2 Cohn-Kanade Dataset 

The best known database for facial expression analysis has been developed at 

Carnegie Mellon University, and is known as CMU-Pittsburgh Action Unit Coded 

(AUC) Facial Expression Database, or Cohn-Kanade (CK v.1) Database [86,83]. It 

provides a large, representative test-bed for comparative studies of different 

approaches to facial expression analysis. Version 1.0, the initial release of this 

database, which has been used for our research, includes approximately 486 image 

sequences from 97 subjects. Each sequence begins with a neutral expression and 

proceeds to a peak expression. The subjects are university students enrolled in 
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introductory psychology classes. They ranged in age from 18 to 30 years. All the 

subjects are trained to display specific particular expression. The subject distribution 

across genders is 69% female and 31% male. In terms of racial distribution, 81% of 

the subjects are Euro-American, 13% are Afro-American, and 6% belong to other 

races. The Cohn-Kanade database was created in an observation room equipped with 

a chair for the subject and two Panasonic WV3230 cameras, each connected to a 

Panasonic S-VHS AG-7500 video-recorder with a Horita synchronized time-code 

generator. The cameras were located directly in front of the subject. 

We obtain six expressions in this version of dataset besides Neutral, viz. Happy, 

Surprise, Disgust, Sad, Anger and Fear, all classes falling in the Ekman et al.‟s [7] 

universal category of facial expressions for exhibiting emotions. Instead of the class 

labels tagged for every expression in the FRGC dataset, this version of dataset 

supplies Facial Action Codes (FACs) for Action Units (AUs) of facial muscles of 

peak expression for each subject from which the expressions have to be interpreted 

and classified. The dataset contains the variants of FACs for every expression 

available in its corpus. By translating the AUs for every expression by means of 

FACs, the expressions are classed into seven categories (including Neutral). Fig.4.2 

shows the seven expressions of five typical subjects found in the dataset. Since the 

subjects are trained prior to each session, it can be found all the subjects exhibit 

nearly similar styles of expression, i.e. for Happy class, all the subjects open their 

mouth and smile, for Sad class, all the subjects bend down their mouth and give a 

dejected look. In all the classes, it is clearly seen that the expressions are clearly 

exaggerated by the subjects. Although each class of expression have different 

number of members in each set (Fear class having only 35 members while Neutral 

class having 97 members), we ensure that set of members in each class have 

mutually exclusive subjects. We form a generic dataset containing 97 image samples 

in Neutral, 89 samples in Happy, 51 samples in Surprise, 73 samples in Disgust, 

42 samples in Anger, 69 samples in Sad and 32 samples in Fear expression set 

respectively. 
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Fig.4.1: Typical expressions of FRGC dataset for five subjects. Each of (a),(b),(c),(d) 

and (e) represent specific persons with different expressions. Left to right columns in 

the figure represent Sad, Surprise, Disgust, Happy, and Neutral expressions, 

respectively. 
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Fig.4.2: Typical expressions of Cohn-Kanade dataset for five subjects. Each of 

(a),(b),(c),(d) and (e) represent specific persons with different expressions. Left to 

right columns in the figure represent Neutral, Happy, Disgust, Surprise, Anger, Sad, 

and Neutral expressions, respectively. 
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Fig.4.3: Comparison of typical variants of each expression in FRGC dataset with 

Cohn-Kanade dataset. (a), (b), (c), (d) and (e) represent expressions of Sad, Surprise, 

Disgust, Happy and Neutral respectively. Col. 1-5 represents images from FRGC 

Dataset while Col. 6 represents the concerned expression image from Cohn-Kanade 

Dataset. 
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4.2.3 Posed versus Spontaneous Expression 

In chapter 1 and 3, the concept of posed and spontaneous form of expression is 

already explained. This section now illustrates these two types of expression with the 

help of two datasets used in our experiments. 

Fig.4.3 shows the comparison of typical variants of spontaneous expression in the 

FRGC dataset with a typical expression image found in the Cohn-Kanade dataset. 

There are many other variants of spontaneous expression, but only typical ones of 

significance have been chosen to represent FRGC dataset. Subjects from both the 

datasets are made aware that they are being monitored.  But unlike a designated style 

of expression as often found in the Cohn-Kanade dataset, FRGC dataset contains 

many variants of a particular expression since no trainer is been employed to specify 

what look an expression is bound to show. As a result, the subject has the 

independence to choose their style of expression, which brings spontaneity to these 

expression images. On the other hand, in Cohn-Kanade dataset, each subject has 

been trained to undergo a particular expression, as a result, instead of the 

spontaneous look, a touch of exaggeration exist for all the expressions and for all 

subjects. Difference between spontaneous and posed expression can be clearly seen 

in this figure. In (d) of Fig.4.3 for example, it is seen that the subjects  show happy 

faces (as labelled by the dataset), but their degree of expressing the happy faces vary, 

some opening their mouth and exhibiting their teeth to express happiness, others are 

more reserved and show a subtle change of facial muscles around their mouth to 

express happiness. The degrees of correlation amongst several classes are more 

enhanced in spontaneous expression than in posed expression. For example, col.1 

image of IV (Happy Expression) and col.2 image of V (Neutral Expression) have 

high degree of correlation amongst themselves in the lip region of the face.  

Fig.4.4 and Fig.4.5 show the scattering ratio of moments calculated from the training 

set for FRGC and CK dataset respectively. While the ratio of maximum discriminant 

moment is around 1, it is seen that for CK the ratio of maximum discriminant 

moment goes as high as 80. It clearly shows the degree/extent of discrimination 

among expression classes in the CK dataset. To counter this low discrimination 

power in FRGC dataset, we hence propose the concept of differential expressive 

GHM as explained in Chapter 3. We argue that the differential expressive GHM does 

not only provide a de-correlated neutral feature space, it captures the subtle  
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Fig.4.4: Calculated scattering ratio of moments (In decreasing order) for FRGC 

dataset 

 

 

 

 

Fig.4.5: Calculated scattering ratio of moments (in decreasing order) for Cohn-

Kanade dataset 
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difference of expression that may be objectively present and prominent amongst the 

several expression classes; and as a result it increases the robustness of expression 

classification. 

4.3 Experimental Setup 

4.3.1 Dataset Setup 

Having set the methodology, images from the dataset are assembled for experimental 

setup. Each expression for both the datasets contains mutually exclusive subjects, 

indicating each expression set contains no duplicate subject but common subjects 

may be found across different expression sets. By this setup, the influence of same 

person in a particular expression set has been eliminated by excluding multiple 

number of samples of the same subject; since it is possible that it might enhance the 

unique characteristics/features of the person rather than the expression characteristics 

itelf; resulting in a convoluted result. The concept of person independency and 

person dependency is also introduced in our setup. We consider the neutral mug-shot 

images of all the persons to be available beforehand for person dependency setup. 

This means that the neutral subspace is created from the neutral GHM set of all the 

available persons in the dataset. For person independency setup, we consider that 

only one third (neutral expression GHM of all the subjects from the training set to be 

discussed later) of the subjects are known beforehand to the system. 

 

Having generated the expression sets for both the datasets, the pre-processing is then 

carried out so that the region of interest (face) is now extracted. In both the datasets, 

the background of the image is found to be almost uniform throughout all the images. 

Also as a result, no background subtraction is considered necessary. Based on the 

nose coordinates as supplied by the datasets, the images are cropped so that the 

approximate face regions (from forehead to chin vertically and from left ear to right 

ear horizontally) are highlighted. Since geometric normalization is avoided, we hope 

to counter the misalignment of faces (eye and nose at fixed coordinates) by 

introducing rotation and translation invariant RTIGHM in the feature space. 

Histogram equalization is then carried out to combat any illumination variation. 

Finally the image is scaled and converted to a 160 160  2-D image block by bicubic 

interpolation. 
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The pre-processed images are divided into two major sets; one for training and the 

other for testing. One third of the images are used for training and the rest used for 

testing. The testing set comprises again of two sub-sets; gallery and the probe 

images. The training set is basically acquired to learn the discriminating power and 

order of scattering ratio indices. From the training set, the neutral expression GHMs 

are selected for learning the transformation matrix that would take any expression 

GHM features into the neutral subspace. On the other hand, the testing set is 

basically acquired for classification purpose; the gallery set used to train the 

classifier and the probe set used to test the classifier performance and thereby the 

overall performance of the methodology. Gallery set contains 80% of the testing set 

while probe set contains 20% of the testing set respectively. Forward feature 

selection algorithm is applied on a random 30% of the testing set to provide a 

threshold of feature selection from the GHMs. These features sets are finally used in 

evaluating the classifier performance.  

4.3.2 Classifier Setup 

As explained in Chapter 3, we use Support Vector Machine (SVM) as a classifier for 

evaluating the performance of our feature extraction methodology. The testing set 

(two-thirds of the data samples divided into gallery set and the probe set) is used 

exclusively for training and testing the classifier. We use LibSVM toolbox [89], a 

freely available toolbox to implement SVM. Out of the several kernels (linear, 

polynomial, Radial Basis Function (RBF), sigmoid etc) used in SVM, we use the 

RBF kernels since it has the capacity to handle nonlinear data by mapping 

nonlinearly samples into higher dimensional space, and also because the feature 

dimension in our case is moderate compared to number of instances/observations 

[90]. Values of hyper-parameters such as the regularization parameters and width of 

radial basis functions are selected from cross-validation performed on30% of the 

testing set as suggested by [90], and samples in this set are selected randomly. 

Complexity that may arise from unbalanced number of members in each class is 

prudently handled by introducing a weighting factor for each class to compensate the 

biasness of classifier towards classes having greater members in their sets [89]. The 

best parameters selected from tuning the cross-validation set are then used for 

training the whole gallery set in the classifier. 
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4.4 Performance Evaluation 

The performance evaluation of the proposed methodology is now explained in this 

section. The section is divided into two sub-topics; one containing short description 

of the existing methods with which the performance is evaluated and the other 

section contains the tools used to assess its merit.  

4.4.1 Comparison with existing methods 

We have compared our method with three other existing methods used for holistic 

facial expression recognition. 

 

Method 1 [91]: MCM of training set are used for expression recognition. The MCM 

are formed by linear combination of sample group and pooled covariance matrixes. 

The classifier used in this method is Gaussian Maximum Probability classifier.  

 

Method 2 [92]: LDA is applied to the PCA components of face images. LDA creates 

a linear combination of given feature dimensions that yields large mean differences 

between the desired classes. Finally, SVM is used as the classifier for expression 

classification. 

 

Method 3 [93]: Zernike Moments (ZM), one kind of orthogonal invariant moment, 

are used as feature extractor. Moments are selected heuristically. Classification 

works optimum for moments selected for 52 order (number of dimensions 756 for 

each instance of expression). Instead of Naive Bayes Classifier, we use SVM for 

expression recognition. 

 

Method 4: 2-D Gauss-Hermite Moments, another kind of orthogonal moment, are 

used as feature extractor. Moments are selected heuristically. Classification works 

best for order N around 25~30. SVM is used as classifier for expression recognition. 

 

4.4.2 Evaluation Criteria and Results 

We used three evaluation criteria to compare the classification performance of the 

methods considered in the experiments; Classification Accuracy amongst all the 

methods. Since accuracy is not a reliable metric for the real performance of a 
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classifier (it might yield misleading results if the data set is unbalanced (that is, when 

the number of samples in different classes vary greatly), we incorporate Receiver 

Operating Characteristics (ROC) curve to evaluate the performance of each 

expression, and finally Confusion Table to indicate which expression are confused 

for other expressions in this setup. 

4.4.2.1 Classification Accuracy 

Based on the experimental setup ( one random testing set containing gallery set of 

80% of test images and probe set comprising the rest 20% of test images), the 

classification accuracy is evaluated for all the available expressions in each dataset 

and for all the methods. The two tables (Table 4.1 for FRGC dataset and Table 4.2 

for CK dataset) clearly show the proposed method outperforms the existing methods 

used for comparison. Accuracy for each expression is calculated by noting how many 

correct members are classified for each class (Number of Correct Members in each 

Expression Class/Total number of members in each Expression Class). The overall 

accuracy is calculated by considering the ratio of overall correct members for all the 

classes by total number of members in the probe set used for testing the classifier. 

Table 4.1for FRGC dataset indicates that for each expression, except for Neutral 

Expression Training Set, all other methods outperform the existing methods. This 

can be explained by the fact  due to large number of variation in the neutral 

expression training set (as explained in Sec 4.2.3) our method gets more biased 

towards classifying meaningful expression images rather than neutral images. Table 

4.2 for CK dataset confirms our observation. Since in CK the expression set in each 

class are more or less clearly defined and each class have far lesser variation within 

themselves, the classification accuracy for each expression (including neutral 

expression) beats all other methods. 
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TABLE 4.1: CLASSIFICATION ACCURACY SHOWING COMPARISON OF SEVERAL 

METHODS WITH OUR PROPOSED METHOD (FRGC DATASET): 

Expression MCM PCA+LDA+SVM  ZM+SVM  GHM+SVM  DGHM+SVM  

Sad 18.75 31.25 25 50 62.5 

Surprise 43.75 81.25 75 81.25 93.75 

Disgust 58.82 70.59 58.82 64.71 81.25 

Happy 73.53 79.41 58.82 82.35 85.29 

Neutral 86.67 86.66 83.33 83.33 83.33 

Overall Accuracy 62.83 73.45 62.83 75.22 81.41 

 

TABLE 4.2:CLASSIFICATION ACCURACY SHOWING COMPARISON OF SEVERAL 

METHOD WITH OUR PROPOSED METHOD (CK DATASET) 

Expression MCM PCA+LDA+SVM ZM+SVM GHM+SVM DGHM+SVM 

Neutral 21.05 73.68 68.42 68.42 78.95 

Happy 58.33 92.30 83.33 92.30 92.30 

Disgust 33 66.67 66.67 66.67 100 

Surprise 58.33 75 91.67 83.33 100 

Sad 33.33 41.66 58.33 58.33 58.33 

Fear  14.28 50 50 50 66.67 

Anger 14.28 50 33.33 58.33 66.66 

Overall Accuracy: 32.86 65.71 68.57 70.42 78.87 

 

4.4.2.2 Confusion Table 

 A confusion matrix, also known as a contingency table or an error matrix, is a 

specific table layout that allows visualization of the performance of an algorithm, 

typically a supervised learning one. Each column of the matrix represents the 

instances in a predicted class, while each row represents the instances in an actual 

class. The name stems from the fact that it makes it easy to see if the system is 

confusing two or multiple classes (i.e. commonly mislabelling one as other). 
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Typically, it is a table with two rows and two columns that reports the number 

of false positives (type I error), false negatives (type II error), true positives, and true 

negatives. This allows more detailed analysis than mere proportion of correct guesses 

(accuracy). 

This section shows the confusion matrix of our proposed method for both the 

datasets used in the experimental setup. The confusion matrix are generated selecting 

one random testing set containing gallery set of 80% of test images and probe set 

comprising the rest 20% of test images. Data in the confusion matrix show the 

normalized correct and misclassification rates for each expression respectively. 

As can be seen in Table 4.3, the Sad Expression is confused often with surprise and 

disgust. Since all these expressions show negative expressions, they are very close to 

each other in the feature space and so their jumbling with each other is often 

justified. Happy and Neutral Expression are confused amongst themselves, this can 

be explained by the fact that in some of the neutral mug-shot face images, some of 

the subject‟s mouth are found to be open which is often confused with Happy 

expression class and vice versa.   

Table 4.4 for CK dataset shows a slightly different picture. As can be seen from the 

table, Surprise and Disgust expressions can be recognized with 100% accuracy. 

Unlike the FRGC dataset, the neutral expression are being confused more often with 

the Sad faces instead of the Happy faces; The expression suffering the most 

confusion is Sad faces and it is confusing themselves with Surprise, Disgust and 

Neutral; it shows that the method fails to recognize the bent down mouth of the 

subjects in Sad expression (the chief property of the Sad expression). As a result, so 

many misclassifications occur. Similar things also occur for Anger and Fear. We 

presume that the misclassification may occur due to lower number of samples 

compared to other expressions which have ample members in the training set (see 

Sec 4.3 for number of samples in each class). 
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TABLE 4.3:CONFUSION MATRIX FRGC: 

 Sad  Surprise Disgust Happy Neutral 

Sad 0.625 0.250 0.125 0 0 

Surprise 0.062 0.938 0 0 0 

Disgust 0.059 0.176 0.765 0 0 

Happy 0 0 0 0.853 0.147 

Neutral 0 0 0 0.167 0.833 

 

TABLE 4.4:CONFUSION MATRIX CK: 

 Neutral Happy Disgust Surprise Anger  Sad Fear 

Neutral 0.789 0 0 0 0 0.211 0 

Happy 0.077 0.923 0 0 0 0 0 

Disgust 0 0 1.000 0 0 0 0 

Surprise 0 0 0 1.000 0 0 0 

Anger 0 0.167 0.167 0 0.667 0 0 

Sad 0.167 0 0.167 0.083 0 0.583 0 

Fear 0.167 0.167 0 0 0 0 0.667 

 

4.4.2.3 Receiver Operating Characteristics (ROC) Curve 

Receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot 

which illustrates the performance of a binary classifier system as its discrimination 

threshold is varied. It is created by plotting the fraction of true positives out of the 

total actual positives (TPR = true positive rate) vs. the fraction of false positives out 

of the total actual negatives (FPR = false positive rate), at various threshold settings. 

An ROC curve demonstrates several things [94]: 

 It shows the trade-off between sensitivity (true positive rate) and specificity 

(1-false positive rate) (any increase in sensitivity will be accompanied by a 

decrease in specificity). 

 The closer the curve follows the left-hand border and then the top border of 

the ROC space, the more accurate the test. 
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 The closer the curve comes to the 45-degree diagonal of the linear ROC 

space, the less accurate the test. 

 The area under the curve is a measure of classification accuracy; i.e. it 

evaluates the performance of the classifier to correctly classify a single 

expression from several expression classes. 

Since our method employs a multi-class classifier (several expression classes needs 

to be classified), we build a customized binary class classifier for each expression to 

generate ROC space. Such cases are handled by considering all other expressions as 

the negative class, while the expression of interest is considered to be positive 

class.ROC curve is obtained by using the probability estimates given by the classifier 

on each test instance of the dataset during classification. Instead of choosing a 

random testing set (gallery set comprising 80% of test set and probe set comprising 

20% of test set)for generating the ROC curve, we jumble samples in the testing set 

several times (around 14-20 times) so that different samples have the chance to form 

the gallery and the probe sets while evaluating the classifier. This ensures that more 

or less all the samples are used for training and testing the classifier and thus give a 

better picture of the classifier performance (in case we have numerous outliers/bad 

samples in the gallery or probe sets at a time that can seriously belie the performance 

of all the methods used alongside our proposed method). The following figures 

(Fig.4.6-Fig.4.19) show the ROC curve for each expression. To evaluate ROC curve 

objectively for all the methods in each of the dataset, the area under the curves 

(Table 4.5-Table 4.6) are also calculated to determine the margins of elevation of 

the ROC curve from the horizontal line. Finally the overall ROC curve which 

indicates the average classification performance of all the binary classifiers is 

obtained to determine the overall performance of the proposed methodology with the 

other methods.  

The following illustration shows except for the neutral and disgust expression 

(Fig.4.6 and Fig.4.10) in the FRGC dataset, ROC curves for all other expressions 

(for both the datasets) show satisfactory performance of our proposed methodology. 

While we reason our method‟s biasness towards classifying expressive images than 

neutral mug shot images (see Sec 4.4.2.1) for the down-performance in ROC curve 

of Neutral Expression, the case for Disgust expression is hard to explain. We assume 

due to the large variation in Disgust expression, it is more often confused with Sad 
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and Surprise expression (as evident in the confusion matrix, see Table 4.1). As a 

result, the ROC curve slightly lowers with respect to the method 2 [92], the most 

competitive method after our proposed method. 

The ROC curves for other expressions (both for FRGC and CK) reveal the 

domination of our method. While Fig.4.13 shows that method 3 [93] is slightly ahead 

of our method upto a certain range, for the rest of the range it is then outplayed by 

the proposed method in significant margin. It is also evident from Table 4.6, which 

show that curve of our method bounds more area under it compared to method 3, 

which is a clear indication of superiority of our method. 
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Fig.4.6: ROC curve for neutral expression in FRGC dataset 

 

 

 

Fig.4.7: ROC curve for neutral expression in CK dataset 
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Fig.4.8: ROC curve for happy expression in FRGC dataset 

 

 

 

 

 

 

Fig.4.9: ROC curve for happy expression in CK dataset 
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Fig.4.10: ROC curve for disgust expression in FRGC dataset. 

 

 

 

 

 

Fig.4.11: ROC curve for disgust expression in CK dataset. 
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Fig.4.12: ROC curve for surprise expression in FRGC dataset. 

 

 

 

 

 

 

Fig.4.13: ROC curve for surprise expression in CK dataset. 

 

 

 



 

59 

 

 

Fig.4.14: ROC curve for sad Expression in FRGC dataset. 

 

 

 

Fig.4.15: ROC curve for sad Expression in CK dataset. 
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Fig.4.16: ROC curve for anger expression in CK dataset. 
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Fig.4.17: ROC curve for fear expression in CK dataset. 
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Fig.4.18: ROC curve for overall expression in FRGC dataset. 

 

 

 

 

 

 

Fig.4.19: ROC curve for overall expression in CK dataset. 
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TABLE 4.5:AREA UNDER ROC CURVE (FRGC): 

Expression MCM PCA+LDA+SVM ZM+SVM GHM+SVM DGHM+SVM 

Sad 0.6859 0.8893 0.8191 0.8772 0.8956 

Surprise 0.6152 0.9238 0.8803 0.9250 0.9286 

Disgust 0.7193 0.9102 0.8514 0.8995 0.9038 

Happy 0.6499 0.9219 0.8890 0.9232 0.9303 

Neutral 0.7570 0.9713 0.9438 0.9696 0.9706 

Overall 0.6855 0.9250 0.8767 0.9189 0.9258 

 

 

 

TABLE 4.6:AREA UNDER ROC CURVE (CK): 

Expression MCM PCA+LDA+SVM ZM+SVM GHM+SVM DGHM+SVM 

Neutral 0.6541 0.8601 0.8313 0.8809 0.8901 

Happy 0.5589 0.9673 0.9745 0.9796 0.9831 

Surprise 0.4677 0.92 0.8709 0.9276 0.9331 

Disgust 0.4970 0.9611 0.9589 0.9716 0.9761 

Anger 0.5120 0.6927 0.6815 0.7763 0.7810 

Sad 0.6509 0.7471 0.8493 0.8597 0.8694 

Fear 0.5109 0.6948 0.7506 0.8231 0.8349 

Overall 0.5502 0.8347 0.8453 0.8884 0.8954 

 

4.4.2.4 Significance of using Combined Feature Space 

The following table (Table 4.7) shows the average classification accuracy using the 

features from each feature space (
s Exp
and 

F F  ) individually and in combined state. 

It can be clearly seen that though 
S

F  outperforms 
Exp

F 
 individually by significant  
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TABLE 4.7: AVERAGE ACCURACY USING THE PROPOSED FEATURE SPACE: 

Data-Set Features from 

Scattering Ratio  

S
F  

Features from  

transformation 

in neutral space 

Exp


F  

Combined Feature 

Space  

s s Exp

    F F F  

FRGC 76.16 75.35 78.37 

CK 77.53 46.16 77.37 

 

margin, in combined space it provides significant improvement for FRGC dataset, 

but reduces for CK dataset. It is assumed that since there is significant variation 

amongst within class members, the de-correlated differential expressive information 

provides significant information to the classifier and as a result, the accuracy 

increases. However, for CK dataset, since the variations between within class 

members are negligible (apart from subjects‟ unique appearance, no significant 

variation is seen in expression), the differential expressive features provide redundant 

information and as a result, instead of boosting the classification accuracy, the 

accuracy slightly falls. It must be noted that the average classification accuracy is 

attained by considering different (around 14-20 sets) gallery and probe sets for the 

classifier, where instances/observations in the gallery and probe sets are selected 

randomly for each case from the testing set. 

4.4.2.5 Performance comparison between Person Independent and Person 

Dependent Setup 

In this setup, experiments are carried out to determine what effect the proposed 

method would have had it known all the subjects‟ neutral mug-shot images prior to 

recognizing expression. This is set by taking into consideration the neutral images of 

all the subjects to build the neutral space. Since the expressions of the neutral 

subjects are considered, it is expected that the neutral space contains all the 

information that results in minimum variation across several regions of face images. 

As a result, the differential expressive features provide significant boost to 

classification accuracy. As shown in Table 4.8, in both the datasets, it is seen that for 

person dependent setup, the accuracy figures rise up around 5-10%, compared to the 

classification rate  
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TABLE 4.8: AVERAGE ACCURACY USING PERSON INDEPENDENCY AND PERSON 

DEPENDENCY: 

Database Person Independent Setup Person Dependent Setup 

FRGC 78.37 83.35 

CK 77.43 87.61 

 

during person independent setup. In this case also, the average classification 

accuracy is attained by considering different gallery/probe sets for the classifier. 

4.5 Conclusion 

The chapter touched several achievements of the proposed methodology by 

highlighting the results from different aspects. Different state-of-the-art performance 

metrics are used for evaluating its effectiveness. From all the results and illustrations, 

it is clearly seen that the proposed methodology has the capacity to outperform many 

of the existing holistic facial expression recognition approaches.  
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5 : CONCLUSIONS  

 

5.1 Conclusions and Discussions 

 

Automatic facial expression recognition has turned into an emerging and challenging 

field of research for scientists and engineers. An effective expression recognition 

strategy can go a long way in making successful automatic mood-meters and lay 

foundation of successful human-machine interactive systems or even introducing 

artificial intelligence in the social media. In this thesis, considerable attention has 

been given to making a sound, robust and low complexity based expression 

recognition. Out of the two most recognized methods used for recognizing static 

facial expression images; viz. holistic and landmark based approach, we selected 

holistic based approach due to its low computational burden in locating and selecting 

features, less demanding face acquisition tools and low pre-processing requirement 

of face images. The limitations found from existing holistic expression recognition 

methodologies have been tried to overcome in this proposition. 2D-GHM moment 

coefficients, which have ability to capture local texture of an image have been 

calculated and selected based on the higher discrimination capacity amongst the 

expression classes by means of scattering ratio. For spontaneous expressions, a 

neutral de-correlated subspace has been created and features have been selected from 

that subspace based on the expectation to minimizing the variation caused due to 

interpersonal change of facial images and highlighting the differential content 

amongst each expression and the neutral expression. 

Although the feature extraction methodology is the major topic of research, several 

effective and less demanding automatic face acquisition techniques (e.g. Viola Jones) 

can be easily incorporated with the method. We ensured the person independency of 

the methodology (method does not depend on prior knowledge of person/subjects) by 

including mutually exclusive subjects in each expression class set of images. The 

challenging concept of recognizing posed and spontaneous expressions are also 

being addressed by using two exhaustive datasets; CK dataset for posed expressions 

and FRGC dataset for spontaneous expressions respectively. We have also selected 

the datasets since they represent subjects of diverse ethnicity, age, sex and colors; 

another challenging aspect of expression recognition problems. And it is found that 
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the method works equally effective for both posed and spontaneous facial expression 

images. 

For performance evaluation, we have used three existing and popular methods used 

in facial holistic expression recognition systems. State of the art performance metrics 

such as the likes of ROC curves and type I and type II errors are used alongside 

classification accuracy tables to illustrate the possible impact and acceptance of the 

proposed methodology. Results are also shared what impact the individual feature 

space and the combined feature space would have on the posed and spontaneous 

expression data corpus respectively. Based on the results, it is found that the 

proposed methodology outperforms many of the existing facial expression 

recognition methods. 

5.2 Future Works 

There are tremendous scopes of future works by analyzing facial expression in 

Gaussian Hermite Moment space. Some of the scopes are listed out: 

 We also would like to investigate feature extraction using GHMs locally on 

eye, nose and mouth regions to see whether localizing these areas increase 

chances of expression recognition. For example, Pentland et. al. have used 

modular eigen-spaces for face recognition and have found some very 

promising results using this approach [95]. It is yet to be seen whether 

assigning a higher “priority” to the upper face features than to the lower face 

features have any significant effect on our method since it is found that upper 

face features play a more important role in facial expression interpretation as 

opposed to lower face features [96]. 

 Although humans can recognize facial expressions quite well from static 

graylevel images, expression recognition improves with motion information 

[97]. Static images in many cases, do not clearly reveal subtle changes in 

faces and it is therefore essential to measure also the dynamics of facial 

expressions. In our future endeavour, we plan to explore the motion 

sequences of facial images and like to see if the differences in projected 

moments of video sequences of particular subjects have any impact on 

boosting recognition capacity. 

 Our future endeavour will also include recognizing expression of faces at 

different poses and orientation of the faces. It is yet to be seen completely or 
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to which extent utilizing the rotation and scale invariant properties of GHM 

have any effect on changes in pose or orientation of the faces since the 

datasets used in the thesis are all frontal face images.   

 We are yet to see how the Gauss-Hermite polynomials would behave if 

instead of finding the moments, we treat the basis functions as moment filters 

and convolute the image with some of the orders of these polynomials. In 

addition to rotation, scale invariance and orthogonal properties, these 

polynomials could be a very competitive basis functions compared to gabor 

functions/filters. 

 Since many expressions often come in several blended emotions (surprise and 

happiness, sad and angry, etc), an emotion index is likely to be created that 

would objectively measure the level of a particular emotion in an expression 

by using the probability estimates of the classifier about each class.
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