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Abstract

Acoustic echo occurs in real life environment when speech signal coming out from

a loudspeaker is delayed, attenuated and reflected back to the source microphone.

Most communication systems are prone to acoustic echo which can severely degrade

the quality and intelligibility of the signals transferred through the communication

channels. In conventional acoustic echo cancellation (AEC) methods gradient based

adaptive filter algorithms, such as least mean squares (LMS) and normalized LMS

are employed where an error function is minimized to obtain the optimal filter

coefficients corresponding to the acoustic echo path. The main problem of these

methods is the necessity of the dual channels, one for the reference signal and the

other for the echo corrupted signal. However in many practical applications only one

channel is available, such as a conference hall environment with single microphone

and a loudspeaker. Due to the unavailability of separate reference signal in single

channel scenario, the task of echo cancellation becomes extremely difficult and is

attempted by a few researchers. In this thesis, first a single channel echo cancellation

scheme is developed based on the gradient based LMS adaptive filter algorithm,

where, unlike conventional dual channel schemes, a delayed version of an estimated

echo cancelled signal is utilized as a reference signal. In the proposed formulation,

the effect of flat delay, i.e. the time required to produce an echo, is incorporated

with a view to reduce the number of unknown parameters of the acoustic echo path,

which offers a faster convergence. Moreover, based on energy and cross-correlation

coefficients of the reference and current frames, a multi-step stopping criteria is

developed, which can efficiently control the updating procedure of the proposed

LMS adaptive filter. Extensive experimentation is carried out on real life speech

signals corrupted by echoes using the proposed single channel LMS algorithm with

and without the multi-step update constraints. It is found that the performance of

former one, the controlled LMS algorithm, is far better than that of the later one in
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terms of (a) the average echo return loss enhancement (ERLE) in dB and (b) the

difference between input- and output-signal to distortion ratio (SDR) in dB. In real

life applications, inclusion of noise with the speech signals is obvious in most of the

cases, which makes the task of single channel echo cancellation even more difficult.

In view of handling the challenging task of cancelling the echo in the presence of

noise, a two step algorithm is developed where a spectral subtraction based noise

reduction scheme is introduced after the single channel echo cancellation. It is

shown that even under severe noisy conditions in different acoustic environments

the proposed two-step single channel acoustic echo and noise cancellation (AENC)

method can significantly reduce the effect of both echo and noise.

As an alternate to the gradient based approaches, the problem of dual chan-

nel echo and/or noise cancellation can also be realized based on some optimization

algorithm driven adaptive filters. However, undoubtedly the problem would be

very difficult for the single channel scenario which is the case under consideration.

Thus, the single channel AEC problem is formulated as an optimization problem

introducing the particle swarm optimization (PSO) algorithm, which offers a quick

convergence to the desired solution. For proper operation of the PSO algorithm, a

frame by frame processing is required for which the overlap-add method is adopted.

In order to estimate the unknown coefficients of the acoustic echo path, the PSO

based algorithm is formulated both in the time and frequency domain separately

and it is found that the frequency domain approach performs better in comparison

to the time domain approach. The performance of the proposed PSO algorithms are

also investigated for different controlling parameters, namely number of particles,

maximum particle velocity etc. The PSO based algorithm is also extended for the

complicated case of adaptive echo and noise cancellation. From detailed simula-

tions it is found that the performance of the proposed PSO based AENC algorithm

outperforms that of the proposed gradient based algorithm under different noisy

conditions at various acoustic environments.
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Chapter 1

Introduction

Echo is the repetition of a waveform due to reflection from points where the charac-

teristics of the medium through which the wave propagates change. Acoustic echo

results from a feedback path set up between the speaker and the microphone in

a mobile phone, hands-free phone, teleconference or hearing aid system. Acoustic

echo can result from a combination of direct acoustic coupling and multi-path ef-

fect, where the sound wave is reflected from various surfaces, such as wall, ceiling

and floor of a room and then picked up by the microphone. If the time delay is

not too long, the acoustic echo may be perceived as a soft reverberation, which up

to a certain level, in some applications like concert halls and church halls, may be

acceptable. However, in its worst case, acoustic feedback can result in howling if a

significant proportion of the sound energy transmitted by the loudspeaker is received

back at the microphone and circulated in the feedback loop. Incorporation of an

acoustic echo canceller is thus a necessity for designing a communication channel or

establishing a conference room environment. Moreover, in real life scenarios, differ-

ent types of noise, for example machine noise, fan noise etc., are present everywhere

making the problem of acoustic echo cancellation more difficult. Therefore, design-

ing a generalized integrated acoustic echo and noise canceller for the enhancement

of speech signals has become challenging task for sound engineers for the past few

decades.

1



2

1.1 Need for Single-Channel Echo Cancellation

With the rapid growth of modern technology in recent decades, the whole dimension

of communications has been changed. Today people are more interested in hands-

free communication which allows a person to have both hands free and to move

freely in the room during a conversation. However, the presence of a large acoustic

coupling between the loudspeaker and microphone may produce a loud echo result-

ing disturbance in conversation. If the echo is produced from multiple surfaces it

may cause reverberation, which is, in effect, a multiplicity of echoes whose speed

of repetition is too quick for them to be perceived as separate from one another.

In real life scenarios, such as a talk in a large conference hall or in the public ad-

dress system of mosques, churches and trade fair, reverberation is a very common

phenomenon, which may degrade the quality of the speech signal to a great extent

leading to complete loss of intelligibility. An echo corrupted public address system

or conference room acoustic system could arise public annoyance and produce severe

sound pollution. Furthermore, the acoustic systems in these scenarios could become

instable, which would produce a loud howling noise.

Apart from these, in this new age of global communications, wireless phones

are regarded as essential communication tools and have a direct impact on people’s

day-to-day personal and business communications. As new network infrastructures

are implemented and competition among wireless carriers increases, digital wireless

subscribers are becoming more cautious about the service and voice quality they re-

ceive from network providers. Subscriber’s demand for enhanced voice quality over

wireless networks has driven a new and key technology termed echo cancellation,

which can provide a better voice quality across a wireless network. Now-a-days,

speech quality over the phone is treated as one of the most important as criteria for

assessing the overall quality of a wireless network. Regardless of whether the sub-

scriber’s opinion is subjective or not, it is the key to maintain subscriber’s loyalty.

For this reason, the effective removal of hybrid and acoustic echoes, which are inher-

ent within the telecommunication network infrastructure, is the key to maintaining

and improving the perceived voice quality of a call. The search for improved voice

quality has led to intensive research in the area of echo cancellation. Such research

is conducted with the aim of providing solutions that can reduce background noise
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and remove hybrid and acoustic echoes before any transcoder processing occurs.

By employing echo cancellation technology, the quality of speech can be improved

significantly.

Though the problem of automatic removal of acoustic echo in dual telephone

line or wireless communication links has been investigated by several researchers,

the more critical problem of single channel echo cancellation in large room envi-

ronment has rarely been attempted. Nevertheless, the acoustics engineers generally

employ different manual measures to suppress the room echoes, such as implement-

ing sound absorbers in room walls, reducing reflecting planes in a room or using

manually controlled filters in the path of sound propagation. Hence, development of

an automatic environment adaptive acoustic echo canceller for the purpose of single

channel echo cancellation us still in great demand.

1.2 Acoustic Echo and the Room

Delayed and attenuated version of an original sound being reflected back to the

source is termed as echo. In an acoustic room environment, sounds may get reflected

from the walls, ceiling, floor and other neighboring objects and result in multi-path

echo as well as multiple harmonics of echoes, which are transmitted back to the

listeners unless otherwise eliminated. If a direct coupling exists between the source

and the listener, the listener will listen the direct sound first, followed by reflections

of the nearby surfaces, the later being called early reflections. The acoustic echo

phenomenon is illustrated in Fig. 1.1 by a schematic diagram. If a reflected sound

arrives after a very short duration of the direct sound, it is considered as a spectral

distortion or reverberation. However, when the leading edge of the reflected sound

arrives a few tens of milliseconds after the direct sound, it is heard as a distinct echo.

In communication systems, acoustic echo arises when sound from a loudspeaker

is picked up by the microphone in the same room, for example, sound from the

earpiece of a telephone handset may be picked up by the microphone in the very

same handset. Examples of acoustic echo are found in everyday surroundings such

as: a. Hands-free car phone systems b. A standard telephone or cell-phone in

speaker-phone or hands-free mode c. Dedicated stand-alone conference phones d.
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Fig. 1.1: Sources of Acoustic Echo in a Room

Installed room systems which use ceiling speakers and microphones on the table e.

Physical coupling (vibrations of the loudspeaker transfer to the microphone via the

handset casing).

The difficulties in cancelling acoustic echo stem from the alteration of the origi-

nal sound by the ambient space. Acoustic echo cancellers greatly enhance the audio

quality of a multi-point hands-free communications system. They allow conferences

to progress more smoothly and naturally, keep the participants more comfortable,

and prevent listener fatigue. Acoustic echo is most noticeable (and annoying) when

delay is present in the transmission path. This would happen primarily in long dis-

tance circuits, or systems utilizing speech compression (such as in video-conferencing

or digital cellular phones). Even though this echo might not be as annoying when

there is no delay (such as with short links between conference rooms in the same

building or distance learning over fiber-optic cable), room acoustics will still affect

the sound and may hamper communication. Also, howling can occur if the micro-

phone is positioned too close to the speaker whether or not there is transmission

delay, and is eliminated by most acoustic echo cancellers [1] [2].
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The primary beneficiaries of an echo canceller are the people at the far (or

remote) end of the transmission path. The near (or local) echo canceller prevents

the echo of the remote peoples voices from being returned (i.e. echoed) to them

through the audio system. People speaking on the same (local) end as the AEC

should not notice the AEC if it is doing its job properly. While the people on the

far end receive the benefit of better audio quality, it also enables the conversation

to flow more smoothly, benefiting both parties.

An AEC solution that was designed to operate in an office may not work properly

in a conference room. If an echo canceller were compliant in one room and not

another, it would most likely be due to a tail length that was too short for the

second room. The tail length of an AEC is the length of time over which it can

cancel echoes. The tail length of the echo canceller should meet the requirements of

the room it is to be operated in. The flat delay, which is the time taken by the direct

sound to propagate from the loudspeaker to the microphone, is included in the tail

length. This is directly related to the reverberation time of the room. As the room

reverberation time increases, a longer tail length will be needed in that room. If the

reverberation time is much longer than the tail length, a significant amount of the

echo will remain audible. However, excess tail length will not improve or degrade

the performance of the canceller.

There are two main factors that affect the reverberation time of a room. They

are room size, and the materials used to construct the walls and objects in the room.

Most sound is absorbed when it strikes walls or other surfaces. If materials are used

that absorb sound well (such as carpet, curtains, or acoustic tile), the reverberation

will die out more quickly than if the room contains mostly reflective materials (hard

wood, glass, or plaster). If a room is small, the sound waves will bounce off the

walls more frequently, and will be absorbed more quickly [3].

Howling rejection is important in cases where both parties are using hands-free

communications systems. In these types of systems, it is very easy for the open

microphones and loudspeakers to produce acoustic feedback, resulting in squealing

tones (much like the feedback from a microphone in an auditorium). This obviously

prevents any useful conversation from taking place. The most common way to

avoid this problem is to implement howling rejection, typically done by shifting the
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Fig. 1.2: Acoustic echo cancellation in a communication channel using adaptive

filters

frequency of the signal as it goes through the canceller.

Acoustic echo cancellation (AEC) has widespread applications in many real-life

situations, such as cellular phone communication, hands-free phones, teleconfer-

ences, hearing aid systems, and in sound system for large conference halls, churches

etc..

1.3 Traditional Echo Cancellers

Echo suppressors, earphones and directional microphones have been conventionally

used in order to combat the problem of acoustic echo. However, these instruments

generally place physical restrictions on the talkers [4]. In order to mitigate this prob-

lem, now-a-days, adaptive filter algorithms are commonly employed in the acoustic

system for echo cancellation.

In communication system, an echo canceller is basically a device that detects and

removes the echo of the signal from the far end after it has echoed on the near ends

equipment. Despite the fact that adaptive echo cancellation was conceived by the

mid-1960s, practical implementation had to wait for the very large scale integration

(VLSI) systems.

Most of the AEC methods are based on estimating room impulse response us-

ing different adaptive filter algorithms. In Fig. 1.2 a general scenario of adaptive

acoustic echo cancellation is depicted. The adaptive filter at the near end speaker

saves some recent samples of the far end speech as reference and tries to produce an
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exact replica of the near end room response which is the acoustic echo path for the

far end signal. The difference between the echo corrupted near end speech signal

and the estimated echo produced by the adaptive filter is the error which consists of

the near end input speech along with some residual echo. The task of the adaptive

filter is to minimize this error signal by iterative estimation of the echo path, i.e.

by adapting the characteristic of the room response at near end. The situation is

different in case of closed room echoes or reverberations. There is only one channel

that has a single microphone in one end and a loud speaker in the other. Example

of such systems are conference hall sound systems, PA systems etc.. Modeling of

these single channel AEC problems with adaptive filters is difficult as there is no

channel for obtaining reference signals.

The most popular adaptive filter algorithms are the Least Mean Square (LMS)

algorithm, the Normalized Least Mean Square (NLMS) algorithm and Recursive

Least Square (RLS)algorithm [5]. Among these algorithms, RLS offers fastest con-

vergence. However, LMS based algorithms are more commonly used because of their

less computational burden [5]. Recently, proportionate NLMS and its variants are

employed for echo cancellation in sparse channels [6] [7].

1.4 Acoustic Echo and Noise

Usually, acoustic environments are surrounded with environmental noise. There-

fore, most effective echo cancellers should take into account the effects of noise too.

For adaptive filters, noise cancellation is a different task then echo cancellation, thus

only a single adaptive filter cannot cancel both. Adaptive signal processing methods

are also used for adaptive noise cancellation (ANC) [8]. However, in real life appli-

cations, when both echo and noise are present, an AEC or an ANC alone will not

be able to enhance the speech signal. Thus, an adaptive integrated echo and noise

canceller should be used. The echo cancellation part is similar to the basic AEC,

however the noise reduction task is not easily solved since a ”noise only” reference

signal which is sufficiently correlated to the noise within the microphone signal in

a typical acoustic environment can not be obtained. Besides this principal restric-

tion, the solutions using single microphone are favorable in most commercial mobile
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products. Thus, although the multi-microphone systems might yield better perfor-

mance, the single microphone spectral weighting techniques (e.g., Wiener filtering,

spectral subtraction, minimum mean square error (MMSE), etc.) are often pre-

ferred [9]. These methods, however, have well-known disadvantages such as limited

performance at low signal-to-noise ratio (SNR) environments and artificial sounding

residual called musical noise. The latter problem can be somewhat alleviated by

applying spectral floor [10].

An adaptive echo and noise cancellation (AENC) scheme is proposed in [11]

where a sub-band noise cancellation is incorporated.

1.5 Single Channel AENC

A major problem of all the adaptive filter algorithms, as stated previously, is that,

they require two channels, one for receiving echo corrupted signal and the other for

the reference signal. For example, in the AEC systems employed in communication

channels or multi-path systems, the near end signal, which is available at hand, is

fed to the adaptive filter as a reference. It is to be noted that the problem of AEC

would be much difficult if, instead of two channels, only a single channel is available,

which may arise in many other applications, such as acoustic echo in conference

room environment. Presence of environmental noise along with the echo causes

degradation of performance of the adaptive echo cancellation algorithms, making the

problem very much challenging and rarely addressed by researchers. Single channel

noise suppression problem, although difficult, has been dealt by many researchers

over the last decades [12]. However, the problem of single channel echo and noise

cancellation (AENC) is yet to be addressed.

1.6 Optimization methods for echo cancellation

LMS based echo cancellers lack the flexibility of controlling the convergence rate,

number of iterations, and tolerance consistency. Moreover, adaptive algorithms

generally do not allow modifying the possible ranges of the filter coefficients. In

this regard, use of an optimization algorithm could provide much more flexibility.
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Conventional optimization algorithms, for example genetic algorithm, Tabu search,

and simulated annealing are difficult to implement and they exhibit slow convergence

rate [13]. However, the particle swarm optimization algorithm (PSO), proposed by

Kennedy and Eberhart in 1995 [14], provides ease of implementation and faster

convergence rate [15]. The PSO is a stochastic search algorithm and unlike the

gradient-based algorithms, it can converge to solutions even for non-differentiable

systems if properly parameterized and constrained [16].

The implicit rules adhered to by the members of bird flocks and fish schools, that

enable them to move synchronized, without colliding, resulting in an amazing chore-

ography, was studied and simulated by several scientists [17] [18]. In simulations, the

movement of the flock was an outcome of the individuals (birds, fishes etc.) efforts

to maintain an optimum distance from their neighboring individuals [16]. The social

behavior of animals, and in some cases of humans, is governed by similar rules [19].

However, human social behavior is more complex than a flocks movement. Besides

physical motion, humans adjust their beliefs, moving, thus, in a belief space. Al-

though two persons cannot occupy the same space of their physical environment,

they can have the same beliefs, occupying the same position in the belief space,

without collision. This abstractness in human social behavior is intriguing and has

constituted the motivation for developing simulations of it. There is a general belief,

and numerous examples coming from nature enforce the view, that social sharing

of information among the individuals of a population, may provide an evolutionary

advantage. This was the core idea behind the development of PSO [16].

PSO is similar to EC techniques in that, a population of potential solutions to

the problem under consideration, is used to probe the search space [20]. However, in

PSO, each individual of the population has an adaptable velocity (position change),

according to which it moves in the search space. Moreover, each individual has a

memory, remembering the best position of the search space it has ever visited [16].

Thus, its movement is an aggregated acceleration towards its best previously visited

position and towards the best individual of a topological neighborhood. Since the

acceleration term was mainly used for particle systems in Particle Physics [21], the

pioneers of this technique decided to use the term particle for each individual, and

the name swarm for the population, thus, coming up with the name Particle Swarm
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for their algorithm [14].

Recently, the PSO is recieving much attention in areas of power system, com-

puter architecture, and control system [22], [23]. PSO was originally introduced by

Eberhent and Kennedy in 1995 [16]. This method rooted on the notion of swarm

intelligence of insects, birds, etc. Standard PSO (SPSO) has already been applied

successfully in many applications such as training of an artificial neural networks,

power flow scheduling [24] , generating interactive and improvised music [25], and

assigning tasks in distributed computing systems [26].

It can be expected that an integrated echo and noise canceller by utilizing an

optimization algorithm driven adaptive filter and a single channel noise suppressor

may certainly suggest an effective solution to the age-old problem of AENC.

1.7 Literature Review

Acoustic echo may lead to total unintelligibility of the near-end speaker in hands

free communication systems. Acoustic echo cancellation is the most important and

well-known technique to cancel the acoustic echo [27]. This technique enables one to

conveniently use a hands-free device while maintaining high user satisfaction in terms

of low speech distortion, high speech intelligibility, and acoustic echo attenuation.

The acoustic echo cancellation problem is usually solved by using an adaptive filter

in parallel to the acoustic echo path [27] - [30]. The adaptive filter is used to generate

a signal that is a replica of the acoustic echo signal. An estimate of the near-end

speech signal is then obtained by subtracting the estimated acoustic echo signal, i.e.,

the output of the adaptive filter, from the microphone signal. Sophisticated control

mechanisms have been proposed for fast and robust adaptation of the adaptive filter

coefficients in realistic acoustic environments [30], [31]. In practice, there is always

residual echo, i.e., echo that is not suppressed by the echo cancellation system.

The residual echo results from 1) the deficient length of the adaptive filter, 2) the

mismatch between the true and the estimated echo path, and 3) nonlinear signal

components.

It is widely accepted that echo cancellers alone do not provide sufficient echo

attenuation [29] - [32]. Approaches of combining acoustic echo cancellation and
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residual echo reduction have been considered to achieve sufficient quality of the

transmitted speech [33] [34]. The realization of such a combined system is, however,

a challenging task. The difficulties in canceling acoustic echo are caused by the high

computational complexity and some influences such as background noise, near-end

speech, and variations of the acoustic environment which disturb the adaptation

of the canceler [35]. In practice, especially in mobile hands-free applications where

all these factors play a significant role, the residual echo remains at the output of

an adaptive echo canceler due to the misadjustment of the adaptive algorithm and

the constraint of finite filter length [36]. Turbin et al. compared three postfiltering

techniques to reduce the residual echo and concluded that the spectral subtraction

technique, which is commonly used for noise suppression, was the most efficient [9].

This single microphone spectral weighting technique, however, has well-known dis-

advantages such as limited performance at low signal-to-noise ratio (SNR) environ-

ments and artificial sounding residual called musical noise. The latter problem can

be somewhat alleviated by applying spectral floor [10]. In a reverberant environ-

ment, there can be a large amount of so-called late residual echo due the deficient

length of the adaptive filter. In [32], Enzner proposed a recursive estimator for the

short-term power spectral density (PSD) of the late residual echo signal using an es-

timate of the reverberation time of the room. The reverberation time was estimated

directly from the estimated echo path. The late residual echo was suppressed by

a spectral enhancement technique using the estimated short-term PSD of the late

residual echo signal.

In some applications, like hands-free terminal devices, environmental noise reduc-

tion becomes necessary due to the relatively large distance between the microphone

and the speaker. The first attempts to develop a combined echo and noise reduction

system can be attributed to Grenier et al. [37], [38] and to Yasukawa [11]. Both

employ more than one microphone. A survey of these systems can be found in [30]

and [39]. Beaugeant et al. [40] used a single Wiener filter to simultaneously suppress

the echo and noise. In addition, psychoacoustic properties were considered in order

to improve the quality of the near-end speech signal. They concluded that such

an approach is only suitable if the noise power is sufficiently low. In [41], Gustafs-

son et al. proposed two postfilters for residual echo and noise reduction. The first



12

postfilter was based on the log spectral amplitude estimator [42] and was extended

to attenuate multiple interferences. The second postfilter was psychoacoustically

motivated. When the hands-free device is used in a noisy reverberant environment,

the acoustic path becomes longer and the microphone signal contains reflections of

the near-end speech signal as well as noise. Martin and Vary proposed a system

for joint acoustic echo cancellation, dereverberation, and noise reduction using two

microphones [43]. A similar system was developed by Dörbecker and Ernst in [44].

In both papers, dereverberation was performed by exploiting the coherence between

the two microphones as proposed by Allen et al. in [45]. Bloom [46] found that

this dereverberation approach had no statistically significant effect on intelligibility,

even though the measured average reverberation time and the perceived reverbera-

tion time were considerably reduced by the processing.

It should however be noted that most hands-free devices are equipped with a

single microphone. A single-microphone approach for dereverberation is the ap-

plication of complex cepstral filtering of the received signal [47]. Bees et al. [48]

demonstrated that this technique is not useful to dereverberate continues reverber-

ant speech due to so-called segmentation errors. They proposed a novel segmentation

and weighting technique to improve the accuracy of the cepstrum. Cepstral averag-

ing then allows to identify the acoustic impulse response (AIR). Yegnanarayana and

Murthy [49] proposed another single microphone dereverberation technique in which

a time-varying weighting function was applied to the linear prediction (LP) residual

signal. The weighing function depends on the signal-to-reverberation ratio (SRR)

of the reverberant speech signal and was calculated using the characteristics of the

reverberant speech in different SRR regions. Unfortunately, these techniques are not

accurate enough in a practical situation and do not fit in the framework of the post-

filter which is commonly formulated in the frequency domain. Recently, practically

feasible single microphone speech dereverberation techniques have emerged. Lebart

proposed a single microphone dereverberation method based on spectral subtrac-

tion of the spectral variance of the late reverberant signal [50]. The late reverberant

spectral variance is estimated using a statistical model of the AIR. This method was

extended to multiple microphones by Habets [51]. Recently, Wen et al. presented

results obtained from a listening test using the algorithm developed by Habets [52].
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These results showed that the algorithm in [51] can significantly increase the subjec-

tive speech quality. The methods in [50] and [51] do not require an estimate of the

AIR. However, they do require an estimate of the reverberation time of the room

which might be difficult to estimate blindly. Furthermore, both methods do not

consider any interferences and implicitly assume that the sourcereceiver distance is

larger than the so-called critical distance, which is the distance at which the direct

path energy is equal to the energy of all reflections. When the sourcereceiver dis-

tance is smaller than the critical distance the contribution of the direct path results

in overestimation of the late reverberant spectral variance. Since this is the case in

many hands-free applications, the latter problems need to be addressed.

Global Optimization (GO) methods can be classified into two main categories:

deterministic and probabilistic methods. Most of the deterministic methods involve

the application of heuristics, such as modifying the trajectory (trajectory methods)

or adding penalties (penalty-based methods), to escape from local minima. On the

other hand, probabilistic methods rely on probabilistic judgements to determine

whether or not search should depart from the neighborhood of a local minimum [53]

- [60]. In contrast with different adaptive stochastic search algorithms, Evolutionary

Computation (EC) techniques [61] exploit a set of potential solutions, named popula-

tion, and detect the optimal problem solution through cooperation and competition

among the individuals of the population. These techniques often find optima in com-

plicated optimization problems faster than traditional optimization methods. The

most commonly met population-based EC techniques, such as Evolution Strategies

(ES) [62] - [70], Genetic Algorithms (GA) [71] [72], Genetic Programming [73] [74],

Evolutionary Programming [75] and Artificial Life methods, are inspired from the

evolution of nature. The Particle Swarm Optimization (PSO) method is a member

of the wide category of Swarm Intelligence methods [76], for solving GO problems. It

was originally proposed by J. Kennedy as a simulation of social behavior, and it was

initially introduced as an optimization method in 1995 [16] [14]. PSO is related with

Artificial Life, and specifically to swarming theories, and also with EC, especially

ES and GA. PSO can be easily implemented and it is computationally inexpensive,

since its memory and CPU speed requirements are low [16]. Moreover, it does not

require gradient information of the objective function under consideration, but only
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its values, and it uses only primitive mathematical operators. PSO has been proved

to be an efficient method for many GO problems and in some cases it does not suffer

the difficulties encountered by other EC techniques [16].

1.8 Objective

The objectives of this research are:

1. To develop single channel acoustic echo cancellation scheme using gradient

based adaptive filter algorithm.

2. To formulate the problem of single channel acoustic echo cancellation as an

optimization task and thereby use the Particle Swarm Optimization (PSO)

algorithm in time and frequency domain.

3. To incorporate a spectral subtraction based noise reduction method for single

channel acoustic echo and noise suppression using gradient based adaptive

filter algorithms.

4. To develop a scheme for single channel acoustic echo and noise cancellation

using the PSO algorithm in time and frequency domain.

The outcome of this thesis is a single channel combined echo plus noise cancel-

lation scheme based on the time and frequency domain PSO algorithm, which can

be used to enhance speech signals obtained from conference room environments, PA

systems or data communication channels with high degree of accuracy and efficiency

yet low computational burden.

1.9 Organization of the Thesis

First, the process of single channel acoustic echo generation in a large conference hall

environment is explained and then the problem of acoustic echo cancellation (AEC)

is formulated. A comparison between the single channel and a dual channel echo

cancellation scheme is also discussed. Afterwards, a novel AEC scheme based on the

conventional least mean squares (LMS) algorithm is proposed for single channel echo
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suppression. A detailed analysis on the iterative update procedure of the proposed

algorithm is carried out in order to develop a better adaptation criterion. A set

of update constraints is introduced resulting a modified scheme based on the LMS

algorithm for obtaining better echo cancellation performance. It is to be noted

that extensive experimentations is performed to evaluate the performance of the

proposed algorithms throughout the thesis on several speech frames taken from the

most commonly used standard TIMIT speech dataset [77].

In chapter 3, considering the problem of single channel AEC as an optimiza-

tion problem, the particle swarm optimization (PSO) algorithm is introduced. The

PSO algorithm is employed for both time and frequency domain echo cancellation.

In the simulation result section of this chapter a comparison of echo cancellation

performance between the proposed time domain PSO (PSO-TD), frequency domain

PSO (PSO-FD) and the previously proposed modified LMS method is compared in

terms of the signal to distortion ratio (SDR) difference between input and output

speech and the average echo return loss enhancement (ERLE). Also, variation in

echo cancellation performance by varying some important parameters of the PSO

algorithm is also observed and analyzed.

The problem of single channel AEC becomes more challenging in chapter 4 when

noise is introduced at the input speech signal. A modified LMS algorithm is pro-

posed in this chapter for developing a single channel integrated acoustic echo and

noise cancellation (AENC) scheme. A spectral subtraction based noise cancellation

method is employed for single channel noise cancellation.

The single channel AENC problem is again addressed in chapter 5 and this time

the proposed solutions are based on time and frequency domain representations

of the PSO algorithm, denoted as PSO-TD-AENC and PSO-FD-AENC, respec-

tively. A comparison of the performance of the PSO-TD-AENC, PSO-FD-AENC

and modified LMS algorithms in cancelling echo at noisy environment is presented

at the simulation section.

In the final chapter, chapter 6, the whole scenario of this literature is summarized

with some concluding remarks and some ideas of future improvements.



Chapter 2

Single Channel Acoustic Echo
Cancellation Based on Adaptive
LMS Algorithm

The phenomenon of acoustic echo occurs when the output speech signals from a

loudspeaker gets reflected from different surfaces, like ceilings, walls, and floors and

then fed back to the microphone. Due to these feedback paths, acoustic echo may

originate in several real-life applications, such as cellular phones, hands-free phones,

tele-conferences, hearing aid systems, and large conference halls [2]. In its worst

case, acoustic echo can cause howling of a significant portion of sound energy [2] [4].

Echo suppressors, earphones and directional microphones have been convention-

ally used in order to combat the problem of acoustic echo. However, these instru-

ments generally place restrictions on the talkers movement [4]. As an alternate of

such hardware based solutions, adaptive filter algorithms are widely being applied

for echo cancellation. Among different adaptive filter algorithms, the gradient based

least mean square (LMS) algorithm and its modifications, such as normalized least

mean square (NLMS) algorithm are well-known for their satisfactory performances

and less computational burden [78]. LMS/NLMS are popular for their ease of im-

plementation [5]. Besides these algorithms, the recursive least mean square (RLS)

algorithm is well-known for its fast convergence at the expense of computational

complexity [5]. A common problem of all these adaptive filter algorithms is that,

they require two channels, one for receiving echo corrupted signal and the other for

the reference signal. For example, in the adaptive echo cancellation (AEC) systems

employed in communication channels or multi-path systems, the near-end signal,

which is available at hand, is fed to the adaptive filter as a reference to cancel the

16
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far-end echoed signal. It is to be noted that the problem of AEC would be much

difficult in some applications where, instead of two channels, only a single channel

is available, such as acoustic echo in conference room environment [2]. In this case,

a desired reference signal is not available.

A single channel echo cancellation scheme is developed in this chapter, using

gradient based adaptive LMS algorithm. In the proposed formulation, unlike con-

ventional adaptive filter algorithms, the effect of flat delay is incorporated by pre-

calculating the number of filter coefficients corresponding to the flat delay based on

the distance between the speaker and the microphone. This offers advantage of a

huge reduction of unknown parameters of the room response. Utilizing the prior

information on flat delay, we propose necessary modification in the gradient based

adaptive algorithm to achieve a faster convergence [79].

Moreover, based on energy and cross-correlation coefficients of the reference and

current frames, we propose to impose a multi-step stopping criteria, which can

efficiently control the update sequence of the adaptive filter. In the proposed up-

dating algorithm, nine different critical scenario are taken into consideration de-

pending on the speech properties of the reference frame and the current frame.

For example, performance of the AEC when the reference and current frame are

voiced-unvoiced, voiced-voiced, voiced-pause, unvoiced-unvoiced, unvoiced-voiced,

unvoiced-pause etc. It is shown that the proposed algorithm can successfully handle

all these difficult conditions resulting in a high signal to distortion ratio (SDR) and

also a high average echo return loss enhancement (ERLE) in dB.

2.1 Dual Channel Vs. Single Channel Acoustic

Echo Cancellation

In a dual channel communication, generally two channels carry speech signals of

two different speakers. Along with the original speech signal of a particular speaker,

an echo signal generated from a reflected speech signal of the other speaker may

be mixed up, resulting in a echo-corrupted signal. The task of an AEC scheme, is

to reduce the effect of echo from the echo-corrupted signal by using some adaptive

algorithm, thereby transmitting a signal which is more close to the original signal.
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Fig. 2.1: Acoustic echo in dual channel communication systems.

In Fig. 2.1, a typical dual channel communication system is shown, where, s1(n)

and s2(n) are speech signals generated by two different persons talking at the two

ends of a communication link. The signal s2(n) from person 2, traveling through

one of the communication channels, reaches the other end to person 1 when played

through a loudspeaker. The output of the loudspeaker, if reflected from the walls,

ceiling and floor of a room and fed back to the microphone of person 1, could be

transmitted along with the speech signal s1(n) of person 1. As a result, instead of

listening only s1(n), person 2 will also hear a slightly attenuated form of his own

voice x2(n), known as an echo signal for person 2. In Fig. 2.1, for simplicity, echo

generation process in a dual channel communication system is demonstrated only

for person 2. A similar scenario is also applicable for the case of person 1.

In Fig. 2.2 a conventional echo cancellation block is introduced to remove the

effect of echo from the echo corrupted signal,

y1(n) = s1(n) + x2(n). (2.1)

For this purpose, most commonly the LMS adaptive filter algorithm is used, where

given a reference signal an estimate of the echo part x2(n) of y1(n) is generated

based on the minimization of an error function e1(n) defined as,

e1(n) = y1(n)− x̂2(n) (2.2)

= s1(n) + x2(n)− x̂2(n), (2.3)

As mentioned earlier, x2(n) is an attenuated and delayed version of s2(n) which,
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Fig. 2.2: LMS adaptive algorithm for dual channel acoustic echo cancellation in

communication systems.

based on linear prediction theory can be expressed as,

x2(n) = aT
ns2(n− k0) (2.4)

=

p∑
k=1

an(k)s2(n− k0 − k), (2.5)

where, s2(n−k0) = [s2(n−k0−1), s2(n−k0−2), . . . , s2(n−k0−p)]T is a vector of p

previous values of s2 with predefined flat delay k0 and an = [an(1), an(2), . . . , an(p)]
T

is the vector of the unknown room response coefficients. The number p of unknown

attenuation coefficients an(k) depends on the characteristics of the room.

Here, the task of an adaptive filter is to produce optimum values of unknown

filter coefficients ŵn from given s2(n−k0) such that the resulting signal x̂2(n) closely

matches x2(n), i.e,

x̂2(n) = ŵT
ns2(n− k0) (2.6)

=

p∑
k=1

ŵn(k)s2(n− k0 − k), (2.7)

Here, ŵn = [ŵn(1), ŵn(2) . . . ŵn(p)]
T is the estimated attenuation vector. The

value of p also signifies the number of unknown parameters to be estimated from

the system.

Under optimum condition, ŵn = an. For LMS adaptive filter algorithm, the

desired values of ŵn are estimated adaptively by using the following updated equa-

tion [5],

ŵn+1 = ŵn + 2µe1(n)s2(n− k0) (2.8)

An extremely important issue of designing adaptive echo cancelers for dual chan-

nel is to handle double talk, which occurs when the far-end and near-end talkers
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Fig. 2.3: Single channel adaptive acoustic echo cancellation in room environment.

are speaking simultaneously. In this case, the far end signal consists of both echo

x1(n) and far-end speech s2(n). During the double-talk periods, the error signal

e(n) described in (2.3) contains the residual echo and the near-end speech s1(n).

To correctly identify the characteristics of A(z), the near-end signal must originate

solely from its input signal from the far end. An effective solution, as shown in figure

2.2, is to detect the occurrence of double talk using a double talk detector (DTD)

and then to disable the adaptation of Ŵ (z) during the double-talk periods. If the

echo path does not change during the double-talk periods, the echo can be canceled

by the previously estimated Ŵ (z), whose coefficients are fixed during double-talk

periods.

The above scenario will be drastically changed for single channel echo environ-

ments such as, conference room environment and hearing aid systems. As shown in

Fig. 2.3, unlike the dual channel scenario, the speech signal s(n) itself is reflected

and fed back to the sole microphone as echo x(n), producing an echo corrupted sig-

nal y(n) = s(n) + x(n). Echo cancellation in single channel environment would be

extremely difficult in comparison to that in two channel case because of the following

reasons,

(1) In dual channel AEC, two channels are dedicated to receive inputs from two

different speakers and generally, a dual talk detector (DTD) is used. In this case,

one channel carries the speech signals from person 1, namely s1(n), along with the

echo signal corresponding to person 2, namely x2(n). Because of the presence of the
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DTD, the echo canceller can exploit the advantage of having a reference of echo-

free signal from channel 2, namely s2(n), to cancel the echo portion of the input

signal of channel 1, namely xs(n) and vice versa. On the other hand, single channel

AEC deals with a one speaker and the echo itself is originated by the same speaker

speaking in the microphone. Both speech and echo propagation is carried out by a

single channel. The most difficulty here, unlike the dual channel case, is to obtain

a separate reference signal for the AEC block to cancel out the echo portion from

the input echo-corrupted signal. There is no scope of receiving reference signals for

echo estimation from another channel.

(2) As a result, in the proposed single channel AEC scheme, a cleaned speech

sample is used as reference for the next samples. When suppressing echo in a

certain sample, there may be some residual echo present in the cleaned speech

(that is why it is denoted by ŝ(n) rather that s(n) itself). Thus, if the currently

cleaned speech sample is used as reference for cancellation of echo of a future sample,

it would obviously generate some error. So, getting a very high degree of echo

cancellation performance using only the traditional adaptive filter algorithms may

not be expected in case of single channel AEC.

(3) In case of single channel AEC, the speech from a speaker is contaminated

by attenuated previous samples of speech of the same speaker, which increases the

probability of the speech and echo to be correlated to some extent. Whereas, in the

case of two channel communication, since echo and speech signals are coming from

two different speakers, the degree of correlation would be much lower.

(4) In a real conference room environment, the flat delay k0 should be very large

for human perception to distinguish an echo from the original signal because when

dealing with audible frequencies, the human ear cannot distinguish an echo from the

original sound if the delay is less than 100 millisecond. Thus, the echo estimation

task has to deal with a large filter on the order of thousand coefficients. However, the

value of ŵn(p) is generally considered to be zero for lower values of p. That is why,

the variable k0 is introduced. The value of k0 can be thousand or more depending

on the room acoustic and it symbolizes the amount of flat delay (for which the value

of ŵn(p) is zero). On the other hand, in case of two channel communication, the

value of k0 may be as small as a single sample and is not significant at all. The goal
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Fig. 2.4: LMS based single channel acoustic echo cancellation in room environment.

of two channel echo cancellation is to cancel the echo from the other channel so that

the person speaking in one channel could not hear his/her own voice through the

loudspeaker while talking. It is not customary in this case for the room environment

of the other end, where the signal is being fed back to the microphone from the

loudspeaker, to be like a large conference hall which will produce large delay or long

echo trail. Dual channel echo occurs simply when, the loudspeaker output is coupled

to the microphone input in any end of the communication link in any possible way.

Hence, there is no doubt that simple use of a conventional adaptive filter algo-

rithm would not be sufficient to effectively suppress echo in single channel environ-

ment. In what follows, our objective is to develop an echo cancellation scheme to

reduce x(n) from y(n) based on adaptive filter algorithm. Since there is no direct

reference available for the adaptive filter, in this case, the most crucial part would

be to generate an appropriate reference signal given only the echo corrupted signal.

In the proposed scheme, we have considered a delayed versions of an estimated echo

cancelled signal as the reference signal to the adaptive filter and thereby established

the necessary update relations for the desired filter coefficients.
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2.2 Analysis of the proposed single channel AEC

based on LMS algorithm

2.2.1 Formulation of LMS Update Equation

In order to reduce the effect of echo, in the proposed scheme, the echo-corrupted

signal y(n) is passed through an adaptive filter block, as shown in Fig. 2.4.

As mentioned in section 2.1, unlike dual channel AEC problem, the echo signal

x(n) corrupting the speech signal s(n) is generated from the delayed and attenuated

version of the same signal s(n) and similar to equation (2.5) can be expressed as,

x(n) = aT
ns(n− k0) (2.9)

=

p∑
k=1

an(k)s(n− k0 − k), (2.10)

where, s(n − k0) = [s(n − k0 − 1), s(n − k0 − 2), . . . , s(n − k0 − p)]T is a vector of

p previous values of s(n) with predefined flat delay k0. The number p of unknown

attenuation coefficients an(k) depends on the characteristics of the room.

The task of the adaptive filter block is to produce an estimate of x(n) given

y(n) and a reference signal. Since, there is no scope to provide a separate reference

in single channel AEC problem, we intend to utilize some delayed versions of the

adaptive filter output as the reference signal. The error signal which the adaptive

filter tries to minimize can be defined as,

e(n) = y(n)− x̂(n) (2.11)

= s(n) + x(n)− x̂(n) (2.12)

where, x̂(n) is an estimate of the echo signal generated by the adaptive filter utiliz-

ing its coefficient vector ŵn and the echo suppressed input signal ŝ(n) and can be

expressed as

x̂(n) = ŵT
n ŝ(n− k0) (2.13)

=

k=p∑
k=1

ŵn(k)ŝ(n− k0 − k). (2.14)
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Here,the vector ŵn = [ŵn(1), ŵn(1), . . . , ŵn(p)]
T consists of the current estimate

of the room attenuation parameters. It is assumed that ŵn has p parameters corre-

sponding to p number of reflection paths and the values of the reflection parameters

vary from 0 to 1. It is to be mentioned that the reason behind considering ŝ(n− k0)

is that the task of AEC starts after the flat delay period of k0 samples. In the

adaptive filter algorithm, the effect of echo in y(n) is iteratively minimized utilizing

a certain number of previous samples of ŝ(n) as reference. In this iterative process

an estimate of s(n) can be written as

ŝ(n) = s(n) + ς(n), (2.15)

where ς(n) is an estimation error, which predominantly exhibits noise-like behavior.

Although, it may also posses speech-like characteristics, because of its low intensity

in comparison to the original signal s(n), such behavior can be considered insignif-

icant. With the increasing iterations towards an optimum solution, ς(n) tends to

vanish gradually resulting ŝ(n) = s(n).

Thus the objective function in this case can be defined as the mean square

estimation of the error function, namely,

Jn = E{e2(n)} = E{[y(n)− x̂(n)]2} (2.16)

= E{[s(n) + x(n)− x̂(n)]2} (2.17)

= E{s2(n)}+ E{[x(n)− x̂(n)]2}

+2E{[s(n)(x(n)− x̂(n))]}, (2.18)

where, the last term of right hand side of the objective function can be expressed as

2E{[s(n)(x(n)− x̂(n))]}

= 2

k=p∑
k=1

{(an(k)− ŵn(k))rss(k0 + k)− rsς(k0 + k)} (2.19)

where, rss(n) corresponds to the cross-correlation between s(n) and s(n − k0 − k)

and rsς(n) is the cross-correlation between s(n) and the noise-like term ς(n). The

magnitude of rss(n) strongly depends on speech characteristics and the amount of

flat delay k0. Optimal performance of the filter occurs when rss(n) is minimum, i.e.

the least possible correlation between s(n−k0−k) and s(n) is desired. In that case,
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the correlation between reverberant and non-reverberant part of the input signal

will also be minimum making the single channel echo cancellation problem easier.

On the other hand, as explained before, because of the noise-like characteristics of

ς(n), the term rsς(n) can also be neglected. As a result, the objective function in

equation (2.18) reduces to,

E{e2(n)} = E{s2(n)}+ E{[x(n)− x̂(n)]2} (2.20)

which may further be expanded as

E{e2(n)} = E{s2(n)}+ E{[
k=p∑
k=1

an(k)s(n− k0 − k)

−
k=p∑
k=1

ŵn(k)ŝ(n− k0 − k)]2} (2.21)

= E{s2(n)}

+E{[
k=p∑
k=1

(an(k)− ŵn(k))s(n− k0 − k)

+

k=p∑
k=1

ŵn(k)ς(n− k0 − k)]2} (2.22)

Note that, equation (2.22) reveals a more critical difference between dual channel

and single channel AEC. In dual channel AEC, the task of the adaptive filter is to

minimize the MSE by producing an estimate ŵn of the room response, such that

ŵn = an. However, this is not true for the single channel case, which can be clearly

observed from equation (2.22), where even in the case when ŵn = an an additional

term

k=p∑
k=1

ŵn(k)ς(n− k0− k) remains. Thus, an additional task of the adaptive filter

in this case is to diminish the estimation error term to zero while estimating the

optimum filter coefficient.

Minimization of the objective function (2.20) results in,

δJn

δŵT
n

= 0 (2.23)

E{[x(n)− x̂(n)]

k=p∑
k=1

ŝ(n− k0 − k)} = 0, (2.24)

Now, using (2.10), (2.14) and (2.15) and also employing the assumptions that
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rss(n) = 0 and rsς(n) = 0 we obtain,

E{x(n)s(n− k0 − k)} =
p∑

l=1

ŵn(l)E{s(n− k0 − l)s(n− k0 − k)}. (2.25)

The above equation is similar to Wiener-Hopf equation and its solution can be

written as

ŵn = Rss(n− k0)
−1rxs(n− k0), (2.26)

where, rxs is the cross-correlation matrix between x(n) and s(n), while Rss is the

auto-correlation matrix of s(n). There is no doubt that ŵn is the most optimum

solution possible. Hence it is shown that even for a single channel AEC problem, the

most optimum solution ŵn can be achieved under the assumptions stated earlier.

Note that, in real time implementation, the echo signal described in (2.10) will

be depending on every sample values of echo-reduced signal and can be expressed

as

x(n) = aT
n ŝ(n− k0) (2.27)

=

p∑
k=1

an(k)ŝ(n− k0 − k), (2.28)

As a result, the objective function defined in equation (2.21) will reduce to a simpler

form defined by

E{e2(n)} = E{s2(n)}+ E{[
k=p∑
k=1

an(k)ŝ(n− k0 − k)

−
k=p∑
k=1

ŵn(l)ŝ(n− k0 − k)]2} (2.29)

Proceeding in a similar fashion, similar optimum solution ŵn can be achieved.

However, the common problem in obtaining the Wiener-Hopf solution is the

inversion of the autocorrelation matrix. As an alternative adaptive filter algorithms

are very popular for iterative estimation of optimal filter coefficients, which does not

require any correlation measurements or matrix inversion. The update equation of

the weight vector is generally expressed as

ŵn+1 = ŵn − µ∇ξ(n) (2.30)
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where, µ is the step factor controlling the stability and rate of convergence, ξ(n)

is the cost function and ∇ is the gradient operator. The LMS algorithm simply

approximates the mean square error by the square of the instantaneous error, i.e.

ξ(n) = e2(n). Using (2.12), the gradient of ξ(n) can be written as

∇ξ(n) =
δξ(n)

δŵT
n

= −2e(n)ŝ(n− k0). (2.31)

Thus, the update equation for LMS from equation (4.29) is,

ŵn+1 = ŵn + 2µe(n)ŝ(n− k0) (2.32)

For the k-th unknown filter parameter at the n-th iteration,

ŵn+1(k) = ŵn(k) + 2µe(n)ŝ(n− k0 − k), (2.33)

where, k = 1, 2, . . . , p.

2.2.2 Convergence Analysis of the LMS Update

In this section, our objective is to show that the proposed LMS update equation

(2.32) for the single channel AEC converges to the optimum solution. In what

follows, starting from the proposed update equation (2.32) we show that the average

value of the weight vector ŵn converges to the Wiener-Hopf solution given by (2.26).

Considering expectation operation on both sides of equation (2.32) we obtain,

ŵn+1 = ŵn + 2µE{e(n)ŝ(n− k0)} (2.34)

where, ŵn = E{ŵn}. Now, for the k-th unknown weight vector(where k = 1, 2, . . . , p),

using (2.12) and considering rss(n) = 0 the term E{e(n)ŝ(n− k0)} of (2.34) can be

written as,

E{e(n)ŝ(n− k0)} = E{[x(n)− x̂(n)]ŝ(n− k0 − k)}. (2.35)

Similar to the procedure followed in the previous section, using (2.10), (2.14)

and (2.15), and also employing the assumptions that rss(n) = 0 and rsς(n) = 0 we

obtain,

E{[x(n)− x̂(n)]ŝ(n− k0 − k)} = rxs(n− k0)−Rss(n− k0)ŵn (2.36)
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Now, using (2.36), (2.34) can be written as

ŵn+1 = ŵn − 2µRss(n− k0)ŵn + 2µrxs(n− k0) (2.37)

In order to obtaion a homogeneous solution of equation (2.37), we consider,

ŵn+1 = ŵn − 2µRss(n− k0)ŵn (2.38)

For correlation matrix Rss, using eigenvalue decomposition we obtaion,

Rss = UΛUT (2.39)

where, each column of the matrix U consists of eigenvectors corresponding to eigen-

values constituting the diagonal elements of the matrix Λ and UTU = I. Now,

multiplying both sides of (2.38) by UT we get,

ŵU
n+1 = ŵU

n − 2µΛŵU
n (2.40)

where, UT ŵn = ŵU
n . The k-th coefficient of the weight vector can be expressed as,

ŵU
n+1(k) = (1− 2µλ(k))ŵU

n (k). (2.41)

Hence, the homogeneous solution can be obtained as

ŵh.s = Ck(1− 2µλ(k))n, (2.42)

where, Ck is a constant. Next, in order to obtain the particular solution for the k-th

coefficient, based on (2.37) one can get,

ŵp.s = ŵp.s − 2µλ(k)ŵp.s + 2µrU(k) (2.43)

For a particular solution ŵp.s = Kpr
U(k) (2.43) can be written as,

Kpr
U(k) = Kpr

U(k)− 2µλ(k)Kpr
U(k) + 2µrU(k)

(2.44)

which leads to Kp =
1

λ(k)
and the particular solution,

ŵp.s =
1

λ(k)
rU(k) (2.45)

Hence, the total solution of (2.40) becomes

ŵU
n+1(k) = Ck(1− 2µλ(k))n +

1

λ(k)
rU(k). (2.46)
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In the iterative update procedure, obviously the homogeneous part (1 − 2µλ(k))n

decays to zero with iterations. From the rest of the terms, it can be shown that,

ŵ = UΛ−1UT rxs = R−1
ss rxs. (2.47)

Thus, it is found that the average value of the weight vector converges to the wiener-

hopf, which is the optimum solution with increasing number of iteration.

2.3 Development of Adaptive Characteristics

In general, the common problems of an adaptive LMS algorithm are: (i) very slow

convergence (ii) fluctuation around a desired value (iii) in some cases, tendency of

not converging to an optimum solution or even diverging to a wrong solution. In

the proposed LMS based algorithm, one or more of these problems may occur, since

in some practical cases, the assumptions on the negligibility of the cross-correlation

terms rss(n) and rsς(n) may not strictly hold. One possible solution to overcome

these problems is to exploit some adaptive characteristics, which along with the pro-

posed LMS update algorithm can guarantee a better convergence performance. In

view of developing such adaptive characteristics, following three factors are consid-

ered in the proposed algorithm: (i) the degrees of the cross-correlation terms rss(n)

and rsς(n), (ii) the amount of signal power for the two signals under consideration:

the reference signal s(n−k0) and the current signal s(n), (iii) the mean square error

between consecutive estimates of the unknown filter coefficients.

In order to demonstrate the performance of the proposed LMS update algorithm,

speech samples of different characteristics, such as voiced, unvoiced and pause are

taken into consideration. It is found that the negligibility of the cross-correlation

terms rss(n) and rsς(n) strongly depends on the characteristics of the speech samples.

For example, because of the inherent periodicity of the voiced speech, the degree

of cross-correlation between two voiced speech frames of a person becomes higher

in comparison to that between two unvoiced speech frames which are random in

nature. In this case, ratio of power of two different speech frames may also carry

some significant information. For example, if we consider a voiced frame and an

unvoiced frame, their power ratio is generally higher in comparison to that of two

voiced speech frames.
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Fig. 2.5: A voiced frame followed by another voiced frame (a) Original Signal s(n)

(b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross

Correlation Coefficient between the reference frame and the current frame Crs(n)

(e) MSE of coefficient updated from ideal values MSEideal(n) .

Fig. 2.6: A voiced frame followed by an unvoiced frame (a) Original Signal s(n)

(b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross

Correlation Coefficient between the reference frame and the current frame Crs(n)

(e) MSE of coefficient updated from ideal values MSEideal(n)
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Fig. 2.7: A voiced frame followed by a pause (a) Original Signal s(n) (b) Power of

the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross Correlation

Coefficient between the reference frame and the current frame Crs(n) (e) MSE of

coefficient updated from ideal values MSEideal(n)

In Fig. 2.5(a), a male utterance /iy/−/r/ of a duration of 250 ms with a sampling

frequency of 16 kHz is shown. in this figure, a few samples of voiced phoneme are

followed by another few samples of voiced phoneme. The strong periodicity of the

utterance s(n) clearly indicates its voiced characteristics. Considering the flat delay

of k0 = 1000 samples, from the starting point of s(n), this utterance will act as a

reference signal for the generation of echo that corrupts the current samples at or

after k0 samples. Employing the proposed LMS algorithm on the echo-corrupted

signal y(n), an echo reduced signal ŝ(n) is obtained. In Fig. 2.5(b), power of the

reference signal ŝ(n − k0), namely Pref (n) is depicted, which is computed at every

input instances considering a window of M samples and is defined as

Pref (n) =

M
2
−1∑

i=−M
2

[ŝ(n− k0 + i)]2

M
(2.48)

. Here we consider k0 >> M and M = 100. In this connection, we also consider the

average power Psup(n) of the last M samples of the echo suppressed speech signal
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ŝ(n), which is defined as

Psup(n) =

M−1∑
j=0

[ŝ(n− j)]2

M
. (2.49)

The ratio of Pref (n) and Psup(n) is denoted as the power ratio Prs(n), which is

shown in Fig. 2.5(c). In Fig. 2.5(d) the cross correlation coefficient Crs(n) between

the reference signal ŝ(n − k0) and the current signal ŝ(n) is shown. A coefficient

of correlation, Crs(n), is a mathematical measure of how much one number can

expected to be influenced by change in another. It is defined as,

Crs(n) =
cov(ŝ(n− k0 + i)ŝ(n− j))

σŝ(n−k0+i)σŝ(n−j)

(2.50)

Here, −M/2 ≤ i ≤ M/2 − 1 and 0 ≤ j ≤ (M − 1). If Crs(n) = ±1 then there is

a strong positive/negative correlation between two signals. If it is zero then there

is no correlation among the matrices. In order to demonstrate the performance of

the proposed LMS update algorithm, in terms of convergence rate and parameter

estimation accuracy, in Fig 2.5(e), the mean square error MSEideal(n) between the

estimated coefficients wn and the true coefficients an is depicted.

In a similar fashion, in Fig. 2.6 and 2.7, first a voiced phoneme /ih/ followed by

an strong unvoiced phoneme /sh/ and then a voiced phoneme /ih/ followed by pause

are considered, respectively. It is to be mentioned that in these figures Fig. 2.5-Fig.

2.7, the reference signal is always a voiced frame and the current frame is voiced,

unvoiced or pause respectively. It is found that the power of the reference voiced

frame is always quite high in comparison to unvoiced or pause frames. However, the

power ratio not only depends on the power of the reference voiced frame but also on

the power of the echo suppressed signal. If the current frame is a pause or weakly

unvoiced frame then the power ratio is very high, otherwise, for voiced and strong

unvoiced frames the power ratio is lower. The correlation coefficient is very small

when measured between a voiced and a unvoiced frame, but is quite large for two

voiced frames.

The presence of voiced frame as a reference strongly governs the rate of conver-

gence and the estimation error of the proposed LMS algorithm. For example in Fig.

2.5, because of althrough presence of the voiced frame as reference, the convergence

performance becomes very poor and even in some cases the algorithm diverges and
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in all cases, the estimation error was higher. On the contrary, in Fig. 2.7 it is ob-

served that, when the current frame is pause, even in the presence of voiced reference

frame a very fast convergence is obtained with a small estimation error. Moreover,

in Fig. 2.7, as the current frame is unvoiced instead of pause, a slower convergence

is observed with a high estimation error.

It is quite interesting that the performance characteristics of the proposed LMS

update algorithm drastically changes when the reference frame is considered un-

voiced, as shown in Fig. 2.8, 2.9 and 2.10. In this case a very fast convergence is

obtained with a high level of estimation accuracy.

The reason behind this drastic change in characteristics can be explained based

on the cross-correlation that may exist between the reference frame and the current

frame. In case of voiced reference frame, a strong correlation persists between each

samples of the voiced frame, which makes it difficult for the LMS to estimate the

room response as the assumption of the negligibility of the cross-correlation terms

rss(n) and rsς(n) does not hold anymore. Moreover, when the current frame has

a high energy speech along with the echo, i.e. when the power ratio is lower, the

convergence performance of the LMS algorithm may degrade because of the chances

of suppression of the input speech. In the case when the current frame is pause,

no matter whether the reference frame is voiced or unvoiced, a fast convergence

with high estimation accuracy is achieved using the proposed LMS algorithm. The

reasons behind are, (i) negligible cross-correlation between reference frame and cur-

rent speech frame and (ii) a comparatively higher power ratio. In case of unvoiced

reference frame, because of existence of a little correlation between the input and

the reference frame the convergence performance of the proposed LMS algorithm

is found quite satisfactory irrespective of the power of the reference signal(strong

unvoiced or weakly unvoiced).

Finally, in Fig. 2.11, 2.12 and 2.13 the outcomes of three different cases when

the references are always from a pause or stop frame are shown. As can be seen from

the figures, the presence of pause or stop as reference, no significant update occurs

in the proposed LMS algorithm and in some cases, as expected, the convergence

performance degrades. This is because of the lack of reference data as well as signal

energy, which are required for LMS updates.
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Fig. 2.8: An unvoiced frame followed by a voiced frame (a) Original Signal s(n)

(b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross

Correlation Coefficient between the reference frame and the current frame Crs(n)

(e) MSE of coefficient updated from ideal values MSEideal(n)

Fig. 2.9: An unvoiced frame followed by another unvoiced frame (a) Original Signal

s(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d)

Cross Correlation Coefficient between the reference frame and the current frame

Crs(n) (e) MSE of coefficient updated from ideal values MSEideal(n)
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Fig. 2.10: An unvoiced frame followed by a pause (a) Original Signal s(n) (b) Power

of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross Correlation

Coefficient between the reference frame and the current frame Crs(n) (e) MSE of

coefficient updated from ideal values MSEideal(n)

Fig. 2.11: A pause followed by a voiced frame (a) Original Signal s(n) (b) Power

of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross Correlation

Coefficient between the reference frame and the current frame Crs(n) (e) MSE of

coefficient updated from ideal values MSEideal(n)
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Fig. 2.12: A pause followed by an unvoiced frame (a) Original Signal s(n) (b) Power

of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross Correlation

Coefficient between the reference frame and the current frame Crs(n) (e) MSE of

coefficient updated from ideal values MSEideal(n)

Fig. 2.13: A pause followed by another pause (a) Original Signal s(n) (b) Power of

the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d) Cross Correlation

Coefficient between the reference frame and the current frame Crs(n) (e) MSE of

coefficient updated from ideal values MSEideal(n)
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2.4 Proposed Update Constraints

The insight obtained from extensive experimentation on several such case as pre-

sented in Fig. 2.5 - Fig. 2.13 are summarized in table 2.1. It is clearly observed

from the table that in many cases the performance of the proposed algorithm is not

satisfactory or even poor, e.g. when the reference and the input signal both are

voiced frames, when the reference signal is pause etc.. In view of overcoming these

cases we are going to propose some conditions which will guarantee a fast conver-

gence with a low estimation error. It is obvious that if the proposed algorithm is

used, there is always a possibility to obtain poor convergence or even in some cases

divergence with a high estimation error. Based on the results obtained from Table

2.1 and some more experimentation we hereby propose three conditions on LMS

update, which are designed to indicate whether the updating should be carried out

or halted. Implementation of these conditions in the proposed LMS update will

provide assurance of fast convergence with a high estimation accuracy.

Following conditions are proposed for constraining the LMS update,

Condition 1: Prs(n) ≥ ζ and Pref (n) ≥ β

Condition 2: Crs(n) ≤ Υ and Pref (n) ≥ β

Condition 3: ecoeff (n) ≤ ℵ

where, ζ, β, Υ and ℵ are threshold values and ecoeff (n) is the mean square error of

the estimations of successive iterations defined as,

ecoeff (n) =

p∑
K=1

(ŵn(k)− ŵn−1(k))
2/p. (2.51)

The update of the proposed LMS algorithm will be carried out if any one of the first

two conditions is true. The third condition will be checked after each estimation

and if it is true the new estimation will take effect. Now, let us discuss the facts

behind choosing these three conditions for our proposed method.

2.4.1 Condition 1: The Power Ratio and Reference Power

Constraint

From Table 2.1 we know that the performance of the LMS is best when the reference

sample ŝ(n − k0) is from a voiced or unvoiced segment with high energy while the
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Table 2.1: Dependence of LMS update on the acoustic characteristics of the reference

and current speech frame

Reference

Speech

Speech at the Echo

Corrupted Sample

LMS Update

performance

Voiced Voiced unsatisfactory

Voiced Unvoiced unsatisfactory

Voiced Pause satisfactory/excellent

Unvoiced Voiced excellent

Unvoiced Unvoiced excellent

Unvoiced Pause excellent

Pause Voiced poor

Pause Unvoiced poor

Pause Pause poor
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Fig. 2.14: Power ratio when reference and current sample both are from pause/stop.

current sample s(n) + x(n) is from a speech pause or stop. This fact leads us

to decision that updating the LMS at high power ratios only, will improve the

performance of the adaptive algorithm as it will ensure upto a certain limit that the

reference frame is a high energy frame (whether voiced or unvoiced) and the current

frame may be a stop or a pause. Thus, condition 1 is aimed to ensure that,

Prs(n) or,
Pref (n)

Psup(n)
or,

Pvoiced(n)

Ppause(n)
or,

Punvoiced(n)

Ppause(n)
≥ ζ (2.52)

However, considering a high power ratio may not always be the sufficient con-

dition to ensure that the reference has a high energy. For example consider Fig.

2.14. The marked area in the figure , though shows a high power ratio, comes from

an initial silence where only a very little amount of noise was present. Obviously,

the reference was also from a speech pause as the person has not started speaking

yet and coincidentally the power of the reference (though very small) was very large

compared to the current frame which is also a silence. To prevent the update of

LMS at these situations, we also employ a threshold on the reference frame power,

which is, LMS would update if, Pref (n) ≥ β.

2.4.2 Condition 2: Effect of Cross-Correlation Coefficient

In case of single channel AEC, the reference and the echo corrupted signal may both

be speech signals of the same person. Thus, it is very much probable that the two
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signals may be correlated. If the reference is also correlated with the speech input,

then it is certain that the adaptive algorithm would try to suppress speech also and

its update equation would show unusual degradation. The first part of condition

2 is employed to ensure that LMS will only update its estimation when the cross-

correlation between the reference and the current frame is smaller than a certain

threshold Υ.

Now, there is another critical scenario which needs to be addressed. In Fig. 2.8,

it can be seen that though the power ratio is very small, the update is quite good for

LMS, where as, in Fig. 2.6, the power ratio is small and the update is poor. In both

cases the correlation coefficient is very small. The reference frame power is, however,

quite high. If we set condition 1 for these scenarios, LMS update would be halted

for low power ratio, though correlation coefficient and reference power are high. To

prevent this, we set a combined condition. If the reference power Pref (n) ≥ β and

the correlation coefficient Crs(n) >≥ Υ, LMS would update itself irrespective of

condition 1.

2.4.3 Condition 3: Effect of change in estimated coefficients

It has been observed that, in case of single channel adaptive echo cancellation, the

previous two conditions could not always prevent the degradation of performance.

As the cleaned signal at present time is stored as reference for the future, there

is always an estimation error (however small that is) present in echo cancellation.

Thus, using this cleaned signal as reference may degrade the update of LMS even

though the reference has a high energy and the signal currently being processed

is a pause. To limit these degradations, a condition on the variation of updated

estimation is employed which dictates the LMS update in a way, that any abrupt

and huge change in the estimated coefficients is not allowed. Thus, if there is a huge

difference between the currently estimated coefficients of the LMS algorithm and

the immediate previous estimation, LMS would discard the current estimation and

hold on to the previous estimation.
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Fig. 2.15: True coefficients of the impulse response of echo path

2.5 Simulation Results

2.5.1 Room response and flat delay

For simulation purpose an FIR filter an of length 1016 taps was chosen. The coeffi-

cients of an(k) are shown in Fig. 2.15. The coefficients were obtained as [80],

an(k) = (
R

B
)e−20Ak, 1001 ≤ k ≤ Length (2.53)

= 0, otherwise

where R being a random number between −1 and 1, Length = 1016, A = 0.004 and

B = 1. With 16kHz sampling frequency, the time span of the entire filter length

(1016 samples) is about 63.5ms. However, the response differs significantly from

zero for about 1ms. Thus there is a lengthy leading zero part in the response (not

shown in Fig. 2.15, known as the flat delay. The length of the flat delay is equal

to the round-trip delay between the echo canceller and the point of echo reflection.

Usually the flat delay is many times the length of the significant part [81].

The conventional echo canceller which uses the FIR structure just depends on

increasing the numbers of filter tap to cover the whole echo path impulse response

region, these greatly degrade the cancellation performance, resulting a long conver-

gence time and large residual echo error. The most effective technique to handle

flat delay is to introduce the idea of a delay buffer, where the time delay is pre-

calculated from the measured distance between the microphone and the speaker. In

this way, the computational time is greatly reduced [2]. In Fig.2.16, the parameters

involved in the pre-calculation is shown. Considering that, there is a distance d
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Fig. 2.16: Pre-calculation of delay coefficients.

meters between microphone and speaker, sampling frequency is Fs Hz, the sound

propagation time to traverse this distance is tp = d/S with the speed of sound

through air S = 332 m/s, the required number of zeros k0 (delays) in the filter can

be computed as

k0 = tp × Fs. (2.54)

In our simulation, an acoustic room environment is simulated using a tap-delay-

line filter, where it is assumed that the speaker to microphone distance is d = 20.75m,

which according to (2.54) for a sampling frequency of 16 KHz corresponds to a delay

of 1000 taps. Obviously, the coefficients corresponding to these taps are all zero.

Thus, although the overall filter length is usually very large for acoustic echoes,

because of the implicit zeros which correspond to a specified delay, it is evident that

a few number of unknown coefficients has to be determined.

2.5.2 Speech Sample and Performance Measure

Simulations were performed on two different speech signals uttering (1) ”Good ser-

vice should be rewarded by big tips” by a male voice and (2) ”She had your dark

suit in greasy wash water all year” another male voice. Both of the speech were

taken from the TIMIT database [77]. The step size for the LMS adaptive filter was

varied from 1/p to 0.02 where p is the number of unknown coefficients of the room

response.

The echo return loss enhancement (ERLE) in dB is computed as a performance

measure. ERLE is a smoothed measure of the amount (in dB) that the echo has

been attenuated. It is defined as the ratio of the power of the residual echo signal

and the input echo signal power [2],

ERLE = −10 log
E((echoresidual(n))

2)

E((echooriginal(n))2)
, (2.55)
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The ERLE indicates the amount of loss introduced in the echo cancellation process

by the adaptive filter alone. The average value of ERLE over time is used as a

criteria of performance evaluation in this experiment.

Another criteria for performance evaluation termed Signal to Distortion Ratio

(SDR) expressed in dB is defined as,

SDR = 10 log
Ps(n)

Pd(n)
, (2.56)

where Ps(n) is the original signal power and Pd(n) is the amount of distortion (noise

and echo) present in a distorted signal. The difference of SDR in system output

and input is an indicator of the system performance. The higher the SDR difference

the better is the improvement. In case of single channel echo cancellation, even

the reference signal is corrupted with noise-like residual echo, which effects the

performance of the adaptive algorithm to a great extent. Thus, SDR provides a

better view of the echo cancellation performance over the traditional ERLE in this

particular case.

2.5.3 Results and Comments

Based on the limitations in update imposed by characteristics of speech frame,

three conditions are employed in the proposed LMS based adaptive echo cancellation

method for controlling the update of the adaptive algorithm, as discussed previously.

In Fig. 2.17.a and Fig. 2.17.b a plot of the original echoless speech signal 1 s(n)

and the power ratio Prs for a room response with 2 unknown coefficients and 1000

sample flat delay is shown. It can easily be seen that the power ratio is very high in

speech pauses and stops. From the figure, we can assume the value of ζ to be around

2.0 for equation (2.52). However, if the current frame power is too small than the

reference frame the ratio would be very high, irrelative of the order of magnitude.

This fact led to another condition based on the power of reference frame, which

would ensure that the reference frame is a high energy voiced or unvoiced frame at

high power ratios. From Figure 2.17.c, the value of β can be considered to be near

0.003 for the condition Pref ≥ β for LMS update.

In Fig. 2.18.a, the original speech signal 1 s(n) is shown, while, in Fig. 2.18.b

and Fig. 2.18.c the values of Crs for M = 100 and the values of MSEideal(n) are
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Fig. 2.17: (a) Echoless signal s1 (b) Power ratio Prs(M=100) (c) Power of the refer-

ence frame Pref .

shown. In case of the second condition, related to the correlation coefficient Crs, we

considered the value of Υ to be 0.25 which ensures that no speech is being suppressed

by confusing it with the echo.

Now, the two conditions, condition 1 and 2 have been simultaneously applied to

the nine different cases of voiced, unvoiced and pause frames described in section

2.3, and the results are shown in Fig. 2.19- Fig.2.27.

As can be seen from these figures, the application of condition 1 and condition 2 in

the proposed method improved the convergence performance of the LMS algorithm

to a large extent. The MSEideal(n) curve is now totally non-diverging and the

estimation error is minimized in every cases.

For continuous speech signals, it has been observed that extreme changes in

coefficient estimation resulted in degradation of SDR improvement and ERLE in

the retrieved signal. Large and abrupt fluctuation of the filter estimate increases

estimation error and makes the system unstable. Thus, condition 3 is introduced

to suppress abrupt change in coefficient estimation of the LMS algorithm. If the

change in updated coefficients is smaller then a threshold (0.7e−4) then LMS would

update, otherwise the algorithm would hold the previous coefficients.
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Fig. 2.18: LMS update on speech signal 1(2 unknown coefficients, no conditions ap-

plied) (a) Original Signal s(n) (b) Power of the reference frame Pref (n) (c) Power ra-

tio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference frame and

the current frame Crs(e) MSE of coefficient updated from ideal values MSEideal(n)

.

Fig. 2.19: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 2.20: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a unvoiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 2.21: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 2.22: MSE of estimation coefficients from ideal values for a unvoiced frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 2.23: MSE of estimation coefficients from ideal values for a unvoiced frame

in reference and a unvoiced frame in current samples (a) without applying any

condition (b) applying condition 1 and 2.
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Fig. 2.24: MSE of estimation coefficients from ideal values for a unvoiced frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 2.25: MSE of estimation coefficients from ideal values for a pause frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 2.26: MSE of estimation coefficients from ideal values for a pause frame in

reference and a unvoiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 2.27: MSE of estimation coefficients from ideal values for a pause frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 2.28: MSE of LMS estimations from ideals on speech signal 1 (2 unknown

coefficients) (a) Without any condition (b) With condition 1, 2 and 3 simultaneously

applied

Fig. 2.29: LMS update on speech signal 2(2 unknown coefficients, no conditions

applied) (a) Original Signal s1 (b) Power of the reference frame Pref (c) Power ratio

Prs(M=100) (d) Cross Correlation Coefficient between the reference frame and the

current frame (e) MSE of coefficient updated from ideal values .
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Fig. 2.30: MSE of LMS estimations from ideals on speech signal 2(2 unknown co-

efficients) (a) Without any condition (b) With condition 1, 2 and 3 simultaneously

applied

In Fig. 2.28.a the MSE of coefficient estimates of LMS with respect to ideal

values of unknown coefficients without applying any conditions is shown, while in

Fig. 2.28.b the MSE with conditions 1, 2 and 3 simultaneously applied is depicted.

It can easily be seen that the update of LMS has been stabilized to better results

robustly when the conditions are applied and degradation of estimation is prevented.

In Fig. 2.29 and 2.30 the reference power, power ratio, correlation coefficients and

LMS update with and without conditions for speech signal 2 is illustrated. These

figures also demonstrates the efficiency of the applied conditions in controlling the

update of LMS algorithm for producing better results.

In Table 2.2 and Table 2.3 the performance of the proposed LMS algorithm

in terms of ERLE and SDR with application of the three conditions in different

combinations is shown for speech sample 1 at 2 and 15 unknown parameters of

room response respectively. As can be seen from tables, applying all the three

conditions (condition 1, 2 and 3) gives the consistent better results in terms of SDR

improvement and ERLE in both cases. A combination of any two conditions or

applying any one of the three conditions may also give good results in some unusual

cases.

In Table 2.4 and Table 2.5 the performance of the proposed LMS update method
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Table 2.2: Performance for two unknown coefficient on speech singal 1(µ is varied

from 0.5 to 0.02)

Method SDR improve-

ment

ERLE (dB)

No Condition 4.2383 4.9455

Condition 1 8.1188 7.7073

Condition 2 4.0429 6.0975

Condition 3 7.3819 6.6764

Condition 1,2 4.0584 5.4551

Condition 1,3 11.0503 9.0704

Condition 2,3 9.0494 7.1331

Condition 1,2,3 9.4747 7.1320
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Table 2.3: Performance for fifteen unknown coefficient on speech signal 1(µ is varied

from 0.5 to 0.02)

Method SDR improve-

ment

ERLE (dB)

No Condition 6.8771 1.9387.

Condition 1 6.9705 1.4418

Condition 2 4.6360 0.4678

Condition 3 7.1388 2.0022

Condition 1,2 4.9232 0.8749

Condition 1,3 6.9379 1.4370

Condition 2,3 6.3789 0.9437

Condition 1,2,3 7.0163 1.2941
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Table 2.4: Performance for increasing number of unknown coefficients for the input

speech signal 1(µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3

No. of SDR ERLE SDR ERLE

coefficients Improvement (dB) Improvement (dB)

(dB) (dB)

2 4.2383 4.9455 9.4747 7.132

4 3.2086 0.7677 4.2036 1.7477

6 7.3659 3.4404 8.4879 4.5733

8 4.7824 -0.6398 3.6733 -1.5853

10 4.836 -0.1011 4.2362 -0.8793

12 5.4874 0.8732 5.5778 0.1671

14 6.806 2.0228 6.9683 1.5306
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Table 2.5: Performance for increasing number of unknown coefficients for the input

speech signal 2(µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3

No. of SDR ERLE SDR ERLE

coefficients Improvement (dB) Improvement (dB)

(dB) (dB)

2 -1.2179 5.7513 6.1706 9.5454

4 1.7307 3.4837 4.4491 4.6295

6 6.0433 5.2986 10.1695 7.7976

8 2.9494 1.2432 5.0501 1.1656

10 3.202 1.6676 5.2221 1.5762

12 5.1768 2.503 6.9767 2.4338

14 6.6419 3.667 7.685 3.4796
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with and without applying the three proposed conditions is compared in terms of

SDR difference (dB) and ERLE (dB). Performance is evaluated for different number

of unknown coefficients ranging from 2 to 14 for speech signal 1 and 2 respectively.

The tables clearly demonstrate the superiority of the proposed LMS algorithm with

update constraints over that without any constraints.

2.6 Conclusion

In this chapter, a novel approach of single channel acoustic echo cancellation scheme

using gradient based adaptive LMS algorithm is proposed. The proposed scheme

differs from dual channel adaptive algorithm in several critical issues which are

highlighted through comparison between these two schemes. Afterwards, the validity

of the proposed scheme was proved mathematically by showing that the estimated

coefficients obtained by the proposed scheme may reach wiener-hopf solution in the

long run based on two critical assumptions. Later, the LMS update equation for the

proposed scheme was derived and validated mathematically. The two assumptions

on signal correlation that degrades the performance of the proposed scheme in reality

were handled next by setting some constraints in the update procedure of the LMS

algorithm. The constraints were obtained by analyzing the properties of speech

frames and also by following the mean square change in consecutive estimations of

the LMS filter. In the simulation section, performance of the proposed scheme is

evaluated based on improvement of the Signal to distortion ratio (SDR) in dB and

also based on the traditional Echo Return Loss Enhancement (ERLE) parameter

measured in dB. It is shown in the result section that the performance of the single

channel echo cancellation scheme is enhanced to a great extent if the proposed

conditions are applied.



Chapter 3

Single Channel Acoustic Echo
Cancellation Based on Particle
Swarm Optimization Algorithm

The traditional gradient-based adaptive algorithms, such as LMS, Normalized LMS

and Recursive-Least-Square (RLS) that have been used in speech enhancement are

not suitable for multi-modal error surface, as they are likely to stick in local optima.

Moreover, they may sometimes lack the flexibility of controlling some major char-

acteristic parameters: i. the convergence rate, ii. number of iterations, iii. range

of variation of filter coefficients, and iv. tolerance consistency. An alternative to

gradient-based techniques is the class of stochastic optimization algorithms which

are popular in a wide variety of applications. In these algorithms, the probability

of encountering the global optimum instead of the local ones is increased and much

more flexibility of controlling the characteristic parameters can be achieved.

Conventional optimization algorithms, for example genetic algorithm, Tabu search,

and simulated annealing are difficult to implement and they exhibit slow convergence

rate [82]. Recently, the particle swarm optimization algorithm (PSO), proposed by

Kennedy and Eberhart in 1995 [16], is receiving much attention in areas of power

system, computer architecture, and control system [22], [23]. The reason behind

choosing PSO as an optimization tool is that it can provide an ease of implemen-

tation and a faster convergence rate in comparison to many other optimization

algorithms [15].

The main idea in this chapter is to model the task of single channel echo cancel-

lation as an optimization problem instead of employing the conventional gradient-

based adaptive filter algorithms. For this purpose, we propose to employ the PSO

57
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Fig. 3.1: Implementation of the Particle Swarm Optimization (PSO) Algorithm for

acoustic echo cancellation in a conference room environment.

algorithm that can efficiently handle the task of multi-variable coefficient optimiza-

tion. In the proposed PSO based echo cancellation scheme, the filter parameters

corresponding to the room response are obtained via an iterative coefficient adapta-

tion while minimizing an error function. The performance of the echo cancellation

scheme with respect to the variation of some PSO parameters, such as number of

particles and maximum particle velocity is investigated. In order to reduce the com-

putational cost, the flat delay is pre-calculated based on the distance between the

speaker and the microphone [2], [4]. Both time domain and frequency domain PSO

based echo cancellation schemes have been tested under various acoustic environ-

ments [83] [84]. Moreover, the performance of the proposed technique is compared

with that of traditional adaptive filter algorithms, namely LMS.

3.1 Proposed Scheme of Adaptive Echo Cancella-

tion

In the previous chapter, it is shown that, in order to solve the single channel acoustic

echo cancellation problem gradient based adaptive filter algorithms can be used.

However, in this section our objective is to develop a scheme based on the PSO

algorithm to handle the echo cancellation problem. In Fig. 3.1, a schematic diagram

of the proposed PSO based echo cancellation scheme is shown. Here the microphone

input signal y(n) consists of the input speech signal s(n) and the corresponding echo
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signal x(n). As stated in the previous section, the echo signal x(n) corrupting the

speech signal s(n) is generated from the delayed and attenuated version of the same

signal s(n) and can be expressed as

x(n) = aT
ns(n− k0) (3.1)

=

p∑
k=1

an(k)s(n− k0 − k), (3.2)

where s(n− k0) = [s(n− k0 − 1), s(n− k0 − 2), . . . , s(n− k0 − p)]T is a vector of p

previous values of s(n) with predefined flat delay k0. The number p and the values

of unknown attenuation coefficients an(k) depend on the characteristics of the room.

The task of the adaptive filter block is to produce an estimate of x(n) given y(n)

and a reference signal. Since there is no scope to provide a separate reference signal

in case of single channel AEC problem, we propose to utilize some delayed versions

of the adaptive filter output as the reference signal. However, in case of optimization

algorithm based processing, a frame by frame based operation is required. Given

a flat delay of k0 samples, the optimization process starts from k0 samples and

continues frame by frame with a certain percentage of overlap between successive

frames. For a frame of N samples, the sum square error Est(l) between the input

(l+ 1)-th frame and the corresponding reference frame that the adaptive filter tries

to minimize can be defined as

Est(n) =
r=N−1∑
r=0

[y(n− lN − r)− x̂(n− lN − r)]2 (3.3)

=
r=N−1∑
r=0

[s(n− lN − r) + x(n− lN − r)− x̂(n− lN − r)]2 (3.4)

where, l = 0, 1, 2 . . . corresponds to the frame number. Here the reference signal

x̂(n) is an estimate of the echo signal generated by the adaptive filter utilizing its

estimated coefficient vector ŵn and the echo suppressed input signal ŝ(n) and can

be expressed as

x̂(n) = ŵT
n ŝ(n− k0) (3.5)

=

k=p∑
k=1

ŵn(k)ŝ(n− k0 − k). (3.6)

In the proposed method, unlike conventional approaches, we propose to optimize

the objective function stated in equation (3.4) using the particle swarm optimization

algorithm (PSO).
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Note that unlike sample by sample operation involved in gradient based adaptive

filter algorithm, in the proposed PSO based AEC the speech is processed frame by

frame with a certain overlap. In order to further demonstrate this frame by frame

operation, in Fig. 3.2, the process of estimating the third frame of original input

speech from the first and second frames is shown. It can be seen that the first

frame has direct effect on the third frame because of the flat delay present in the

room response. In this figure, a time shifting window is taken where 25% overlap

between successive frames are considered. For frame 2, only frame 1 is available at

hand, so we could convolve frame 1 with the estimated room response wn and get

some output. Then again frame 1 is shifted by 25% of its length and the output

is obtained. This way the frames are shifted and after shifting it for certain times

the output of the whole frame 2. An overlap and add scheme is employed on the

resulting outputs to generate a proper estimation of the echo at frame 2. Similar

procedure is followed for successive frames as shown in Fig. 3.2. The overlapped

segments are obtained by considering time shifted windows from frame 1 and frame

2 as inputs of the estimated filter and thus the echo at frame 3 is obtained.

In the following section two new echo cancellation schemes using PSO in time

and frequency domain are proposed.

3.1.1 PSO Approach in Time Domain for Solving AEC

PSO is a population based search procedure in which the individuals, called par-

ticles, adjust their position to search through the solution space. Particle swarm

adaptation has been shown to successfully optimize a wide range of continuous

functions (Angeline, 1998; Kennedy and Eberhart, 1995; Kennedy, 1997; Kennedy,

1998; Shi and Eberhart, 1998). The algorithm, which is based on a metaphor of

social interaction, searches a space by adjusting the trajectories of individual par-

ticles which can be considered as moving points in multidimensional space. The

individual particles are drawn stochastically toward the positions of their own pre-

vious best performance and the best previous performance of their neighbors. PSO

is a computational intelligence-based technique that is not largely affected by the

size and nonlinearity of the problem, and can converge to the optimal solution in

many problems where most analytical methods fail to converge [85].
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Fig. 3.2: Overlapping and averaging procedure for obtaining proper estimation of

echo suppressed signal for frame by frame processing approach
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Fig. 3.3: Flowchart of PSO steps

In order to obtain a set of filter coefficients from a given frame, the PSO algorithm

performs a number of iterations and in each iteration two major parameters of the

particles are updated namely the position vector and the velocity vector. In case

of modeling the echo cancellation problem with PSO, the position vector represents

the vector of unknown room response which are to be estimated adaptively by the

proposed algorithms. At t-th iteration the i-th particle P i
t has a position vector

wi
t and a velocity vector vi

t, where wi
t = (wi

t(1), w
i
t(2), ..., w

i
t(k), ...w

i
t(p)) and vi

t =

(vit(1), v
i
t(2), ..., v

i
t(p)). Here, p is the number of unknowns filter coefficients. At

each iteration the particle learns from its own previous best position λi
t and the

best position of all the other particles χi
t in the swarm, and updates its’ velocity

and position. The update equation for the i-th particle in order to obtain the k-th

unknown filter coefficient at the (t+ 1)-th iteration can be written as

vit+1(k) = ∆tv
i
t(k) + c1r

i
1t(k)(λ

i
t(k)− wi

t(k))

+c2r
i
2t(k)(χ

i
t(k)− wi

t(k)), k = 0, 1, . . . , p (3.7)

wi
t+1(k) = wi

t(k) + vit+1(k), k = 0, 1, . . . , p (3.8)
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where c1 and c2 are the cognitive and social scaling parameters, respectively, and

ri1t(k) and ri2t(k) are random numbers in the range of [0, 1] generated at the t-th

iteration. In (3.7), the inertia weight ∆t at the t-th iteration is used to maintain the

particles’ momentum. The update equation for the inertia weight at the (t + 1)-th

iteration can be expressed as

∆t+1 = ∆initial −
∆initial −∆final

tmax

.t, (3.9)

where tmax represents the maximum number of iterations. ∆initial and ∆final are the

maximum and minimum values of the inertia weight, respectively.

The role of the inertia weight ∆t, in (3.7), is considered critical for the PSOs

convergence behavior. The inertia weight is employed to control the impact of the

previous history of velocities on the current one. Accordingly, the parameter w regu-

lates the trade-off between the global (wide-ranging) and local (nearby) exploration

abilities of the swarm. A large inertia weight facilitates global exploration (searching

new areas), while a small one tends to facilitate local exploration, i.e., fine-tuning

the current search area [20]. A suitable value for the inertia weight ∆t usually pro-

vides balance between global and local exploration abilities and consequently results

in a reduction of the number of iterations required to locate the optimum solution.

The parameters c1 and c2, are not critical for PSOs convergence. However, proper

fine-tuning may result in faster convergence and alleviation of local minima [76]. As

default values, c1 = c2 = 2 were proposed, but experimental results indicate that

c1 = c2 = 0.5 might provide even better results. Recent work reports that it might

be even better to choose a larger cognitive parameter, c1, than a social parameter,

c2, but with c1 + c2 ≤ 4 [86]. The parameters ri1t(k) and ri2t(k) are used to maintain

the diversity of the population.

As there are very few parameters to be adjusted in the PSO algorithm compared

to other evolutionary optimization algorithms and the updating procedure involves

only simple arithmetic operations, it is a good choice for fast optimization [15] [20].

In Fig. 3.4, a detailed view of the position and operation of the PSO-TD algo-

rithm block in the proposed scheme is shown. The PSO-TD algorithm block takes

a frame from the current input signal y(n) and another reference frame from the

previously enhanced signal ŝ(n−k0). Its position and velocity vectors are randomly

initialized, which means at the beginning the algorithm considers a random estimate
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Fig. 3.4: An insight of the PSO-TD algorithm block of the proposed single channel

AEC.

of the room response. From this estimate, an error Est(n) is calculated using equa-

tion (3.4). The PSO-TD algorithm then updates the velocity and position vectors of

each particles and again calculates the sum square error Est(n) for all the particles.

This iterative process of error calculation and parameter update continues until a

maximum number of iteration is reached or the difference between two successive

updates become stable for a certain number of iteration. The best positional value,

i.e. the best estimate of the room response filter coefficient thus obtained, is trans-

ferred to the Ŵ (z) block to be used for final echo suppression, as shown by the

dotted lines.

It is to be mentioned that the main controlling parameters of the PSO algorithm

affecting the echo cancellation performance are the number of particles, maximum

particle velocity, and number of iterations. Initially a set of randomly chosen val-

ues within a certain range depending on the characteristic of the room response is

assigned to position and velocity vectors of each particle. These values of position

and velocity vectors are updated iteratively to find the best position among all the

particles which corresponds to the optimum filter parameters. Setting a narrower

search region by intelligent decision may enhance the iterative procedure. It is ex-

pected that the PSO algorithm will converge quickly to the desired values with a

very low level of estimation error.
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Fig. 3.5: Schematic of proposed PSO based frequency domain echo cancellation

scheme

3.1.2 Proposed PSO-Based Frequency-Domain AEC

In many practical applications, it is found that the frequency domain analysis be-

comes more insightful and provides ease of operation. Proceeding in a similar fashion

as followed in the case of time domain analysis, in what follows our objective is to

develop the proposed PSO based AEC scheme (PSO-FD) frequency domain.

In the proposed PSO based frequency domain analysis the discrete fourier trans-

form (DFT) of each frame of input data y(n) is performed which is defined as

Y (l) =
+∞∑

n=−∞

y(n)e−j 2πfn
N

l (3.10)

In Fig. 3.5 a schematic diagram of the proposed frequency domain AEC method is

shown. A frame of the input signal y(n) is supplied to the PSO-FD algorithm block

while another frame of echo suppressed signal ŝ(n−k0) is supplied as reference. The

particles are initialized with random position and velocities. The position vector, the

current frame and the reference frame - all are transformed into the frequency domain

by discrete fourier transform and are represented as W (l), Y (l) and Ŝ(l).e−j
2πk0l

N ,

respectively. As the time domain convolution becomes multiplication in frequency

domain, the new estimate of the echo in frequency domain X̂(l) can be denoted as

X̂(l) = Ŵ (l).Ŝ(l).e−j
2πk0l
M , (3.11)
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Thus, the error E(l) is defined in the discrete frequency domain as

E(l) = Y (l)− X̂(l), (3.12)

Now, the objective function for optimization can be defined as the sum of the square

of the error Esf (l), i.e,

Esf (l) =
N−1∑
l=0

(|Y (l)− X̂(l)|)2

The PSO adaptive algorithm tries to minimize this error by varying the position

of its particles, i.e. by varying the estimated echo path filter coefficients. Here it

can be seen that, though the proposed method calculates the mean square error in

the frequency domain, it updates the time domain form of the FIR filter ŵn not its

frequency response. The update of the velocity and position vectors of the particles is

an iterative process. The PSO-FD block takes a frame of input signals and calculates

the sum square error for the present positions of all the particles. Then according to

the rules of the PSO algorithm update, it updates the velocity and position of all the

particles. The sum square error is calculated again for the new position vectors and

the position update and error calculation is repeated unless a predefined maximum

number iteration is reached or the difference between two consecutive updates are

stable for a certain number of iterations. The error function is minimized when

the filter coefficients of the model echo path ŵn are perfectly tuned with the room

impulse response an. The updated position wn which is finally obtained is then

used as the estimated filter coefficients Ŵ (z) of the room response (as shown by the

dotted line between the two blocks in Fig. 3.5)to minimize the effect of echo from the

current input signal frame. Since time domain convolution becomes multiplication

in the frequency domain approach, it is expected that frequency domain modeling

of the echo cancellation problem will involve less computation resulting in faster

convergence.

3.2 Simulation Results

Extensive experimentation has been carried out in order to investigate the echo

cancellation performance of the proposed PSO based time domain (PSO-TD) and
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Fig. 3.6: Performance comparison of the proposed PSO-TD, PSO-FD and LMS

algorithms with increasing coefficients in terms of ERLE (dB) and SDR difference

(dB).

frequency domain (PSO-FD) approaches and results are compared with the state-of-

the-art adaptive LMS filer algorithm based scheme proposed in chapter 2. Thus, for

the purpose of simulating various acoustic environments, the room impulse response

defined in the simulation section of chapter 2 is considered. The two test speech

samples are also the same as in chapter 2. The improvement of signal to distortion

ratio (SDR) in dB and the average echo return loss enhancement (ERLE) in dB are

used as basis for performance evaluation.

3.2.1 Performance Comparison

In Fig. 3.6 and Fig. 3.7 echo cancellation performance obtained by different methods

are presented considering the number of unknown coefficients incrementing from 2

to 14. As performance measurement criteria, we consider the ERLE (dB) and the

SDR difference (dB). In our experimentation, different sets of PSO parameters have

been used. However, the results obtained from the proposed methods in these

figures utilize the following PSO parameters: number of particles is 10 for PSO-TD

and 40 for PSO-FD, tolerance between two consecutive global best values = 10−30,

search range for coefficients is [−1 1], maximum number of iterations is 40, c1 = 2,

c2 = 2, winitial = 0.9, wfinal = 0.4, and maximum particle velocity vmax = 0.2.



68

Fig. 3.7: Performance comparison of the proposed PSO-TD, PSO-FD and LMS

algorithms with increasing coefficients in terms of ERLE (dB) and SDR difference

(dB).

Iterations terminate if tolerance is stable for 5 iterations. From the figures, it can

be observed that, the performance in terms of the ERLE (dB) is consistently good

for the proposed PSO-TD method than that of the LMS algorithm. Moreover, the

proposed PSO-FD approach is found to be superior to other two methods in terms

of both ERLE and SDR difference.

3.2.2 Performance Analysis by Varying PSO Parameters

It is found that among all the PSO parameters, the most influential one is the

number of particles. In Fig. 3.8, the effect of variation in number of particles on the

ERLE obtained for both the proposed PSO-TD and PSO-FD approaches are shown.

Similarly the effect of variation of number of particles on SDR improvement is shown

in Fig. 3.9. In both cases, the number of filter coefficients was set to 14, keeping

the other parameters same as before. The experiments show that the values of both

ERLE and SDR difference remain quite stable after a certain number of particles.

Also, it is obvious that with the increasing number of particles, the processing time

per iteration would increases, which is illustrated in Fig. 3.10. Thus, the number

of particles to be chosen to obtain a better performance is governed by the time

constrain, if any. It is evident from Fig. 3.10 that PSO-FD is a faster algorithm
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Fig. 3.8: Effect of variation of number of particles on ERLE (dB)

Fig. 3.9: Effect of variation of number of particles on SDR improvement (dB)
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Fig. 3.10: Processing time per iteration vs. number of particles

Fig. 3.11: Effect of variation of maximum particle velocity on (a) ERLE (dB) and

(b) SDR difference
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Fig. 3.12: Effect of variation of maximum particle velocity on time per iteration

(sec)

than PSO-TD. Which allows us to take the liberation of using a good number of

particles when using PSO-FD and still get a very good cancellation performance

within a short time. In Fig. 3.11, the effect of variation in the maximum particle

velocity on the ERLE (dB) and also the SDR difference (dB) obtained for both the

proposed PSO-TD and PSO-FD approaches are shown. It is evident from the figure

that smaller values of maximum particle velocity produces better results. However,

it is understandable that the smaller the velocity the more time will the particles take

to converge. So, for a limited number of iterations a decision has to be made about

choosing a proper maximum particle velocity. Logically, the change in maximum

particle velocity has no effect on the time per iteration as can be seen from Fig.

3.12.

3.3 Conclusion

In this chapter, a novel approach of single channel acoustic echo cancellation scheme

using an optimization algorithm is proposed. Then a frame by frame overlap-add

method is illustrated for window based processing. For fast and accurate optimiza-

tion the renowned particle swarm optimization(PSO) algorithm is chosen for the

scheme. PSO is a population based search technique which is superior to some
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other evolutionary algorithms, namely genetic algorithm, taboo search etc. After a

brief introduction on PSO, two different PSO based schemes were proposed for sin-

gle channel AEC. One is based on time domain operation of PSO while the other is

based on frequency domain transformation of the signals before applying optimiza-

tion algorithm. In the simulation section, the performance of the proposed schemes

were evaluated in terms of ERLE and SDR difference by comparing with one another

and with the previously described LMS based single channel AEC technique. It is

found that the performance of the PSO based frequency domain single channel echo

cancellation scheme (PSO-FD) outperforms both PSO-TD and traditional LMS and

offers a great reduction of estimation error. Also, an analysis of the parameters of

PSO showed that the echo cancellation performance becomes quite stable after a

certain number of particles. An analysis of time per iteration revealed that PSO-FD

is much faster than PSO-TD and thus it can easily fulfill many time constraints

when PSO-TD may fail.



Chapter 4

Single Channel Integrated
Acoustic Echo and Noise
Cancellation Based on Adaptive
LMS Algorithm

In this chapter we deal with a very difficult single channel scenario of acoustic echo

cancellation (AEC) where apart from the echo signal environment noise is added

with the input speech signal. As a result the problem is not only to remove the

echo signal but also to reduce the environmental noise. Unlike conventional adap-

tive echo cancellation schemes where it is assumed that two channels are available,

the problem at hand becomes extremely difficult as both echo and noise have to be

suppressed given only a single channel input data. We propose a two stage scheme

where first the echo cancellation is performed based on adaptive least mean square

(LMS) algorithm and then a spectral subtraction based single channel noise suppres-

sion technique is incorporated in the design to cancel out the noisy parts of the echo

suppressed signal and to produce an enhanced speech [87]. It is to be mentioned

that the LMS based adaptive filter algorithm developed for adaptive echo cancel-

lation under noise free condition in chapter 2 has been modified considering the

effect of additive noise and corresponding adaptive characteristics have been further

investigated. Performance of the proposed scheme has been tested for various echo

corrupted speech signal under different noisy conditions.

73
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Fig. 4.1: LMS based single channel integrated acoustic echo and noise cancellation

in room environment.

4.1 Single Channel Integrated Echo and Noise Can-

celler

4.1.1 Problem Formulation

In this section an effective solution of the rarely addressed problem of single channel

acoustic echo cancellation at noisy room environment using gradient based adaptive

filtering methods is developed. The scenario is extremely difficult to handle as it

assumes that no reference channel is available for neither echo nor noise cancella-

tion. Conference room environment and hearing aid systems are examples of such

situations, where the speech signal itself is reflected and their attenuated version is

fed back to the sole microphone as echo. In addition, environmental noise, which

degrades the intelligibility of the speech, is needed to be suppressed too. In Fig.

4.1 a schematic diagram demonstrating the proposed single channel integrated echo

and noise cancellation scheme (AENC) is shown. As seen from the figure, the input

speech s(n) is contaminated with environmental noise v(n). In addition, the echo

signals are fed to the input microphone. Note that, both speech and noise signals

will be reflected back and produce echo signals independently considering the prin-

ciple of linearity holds. The echo signals corresponding to s(n) and v(n), denoted

as xs(n) and xv(n) in Fig. 4.1, being mixed with the noise corrupted input signal
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results in the combined input signal given by

y(n) = s(n) + v(n) + xs(n) + xv(n). (4.1)

The main idea of the proposed echo cancellation algorithm under noisy condition is

to adaptively obtain estimate of the the echo portions of the combined input signal

y(n), namely x̂s(n) + x̂v(n). In this regard our task is to produce optimum values

of unknown filter coefficients ŵn from given previous echoless samples of the noisy

speech, such that the resulting signal x̂s(n) + x̂v(n) closely matches xs(n) + xv(n).

The error signal e(n) thus obtained is given by

e(n) = y(n)− [x̂s(n) + x̂v(n)], (4.2)

where the estimate of the echo signal can be expressed as

x̂s(n) + x̂v(n) = ŵT
n [̂s(n− k0) + v̂(n− k0)] (4.3)

=

k=p∑
k=1

ŵn(k)[ŝ(n− k0 − k) + v̂(n− k0 − k)]. (4.4)

One possible way is to develop a gradient based adaptive algorithm to obtain an

accurate estimate of the room response coefficient by minimizing the error e(n).

Resulting echo free signal is then fed to the noise cancellation block to reduce the

effect of v(n). However, the complete elimination of the echo part under noisy

condition may not be possible which may leave a residual echo signal along with the

noise corrupted speech. In this case, the error signal in 4.2 can be expressed as

e(n) = s(n) + v(n) + xs(n) + xv(n)− x̂s(n)− x̂v(n) (4.5)

= s(n) + v(n) + δs(n) + δv(n) (4.6)

= (s(n) + δs(n)) + (v(n) + δv(n)) (4.7)

= ŝ(n) + v̂(n) (4.8)

Here, the terms δs(n) and δv(n) are introduced to represent the residual echo of the

speech and noise portions of the input signal, respectively and it is assumed that

these signals exhibit the properties of white gaussian noise. Next, this error signal is

fed to the noise subtraction block. In the proposed method, a spectral subtraction

based noise suppression algorithm is used, where an accurate estimation of noise

spectral floor is a difficult task depending on the noise characteristics. If v(n) is



76

Fig. 4.2: Single channel noise canceller followed by an echo canceller.

assumed to be a white Gaussian noise, it is expected that the outcome of the noise

suppression operation would be s(n) + Ψ(n) ≈ s̃(n), which is close to the clean

speech s(n) as the other three parts of equation (4.6) would be minimized. Since

the amount of residual echo and noise, denoted as Ψ(n), is very small after the

operation of the noise suppressor, the audience would experience echo and noise-less

speech of good quality.

In case of single channel AENC schemes, an important issue is the order of per-

forming the tasks of echo cancellation and noise reduction. In the proposed scheme,

as shown in Fig. 4.1 acoustic echo cancellation operation is performed before the

noise cancellation. As an alternative approach, the noise reduction operation can

be performed before the acoustic echo cancellation (shown in Fig. 4.2), which is

being used in some dual channel noise-sensitive adaptive echo cancellation applica-

tions [35].

However, for single channel AENC scheme, as shown in Fig. 4.2, because of

possible nonlinearities introduced by the prior noise reduction block, no proper ref-

erence would be available for the AEC block to cancel echo from the outputs of

the noise reduction block. On the contrary, when the acoustic echo cancellation is

performed before the noise reduction operation there is no chance of introduction of

nonlinearity prior to AEC operation. Moreover in this approach, the noise reduction

block will serve as a post-processor for attenuating the residual echo. Therefore, in

the proposed single channel AENC scheme a noise reduction block is used after the

adaptive echo cancellation block.

4.1.2 Dual Channel vs. Single Channel AENC

In Fig. 4.3 a conventional dual channel integrated echo and noise cancellation block

is introduced [35] to remove the effect of echo from the echo corrupted signal,

y1(n) = s1(n) + v1(n) + x2(n), (4.9)
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Fig. 4.3: LMS adaptive algorithm for dual channel AENC scheme in communication

system.

where s1(n) is the input speech of the near-end speaker, v1(n) is the input environ-

mental noise at the near end and x2(n) is the echo of the far end signal s2(n). For

minimizing the echo signal, some adaptive filter algorithm can be used, where given

a reference signal an estimate of the echo part x2(n) of y1(n) is generated based on

the minimization of an error function e1(n) defined as,

e1(n) = y1(n)− x̂2(n) (4.10)

= s1(n) + v1(n) + x2(n)− x̂2(n), (4.11)

As mentioned earlier, x2(n) is an attenuated and delayed version of s2(n) which,

based on linear prediction theory can be expressed as,

x2(n) = aT
ns2(n− k0) (4.12)

=

p∑
k=1

an(k)s2(n− k0 − k), (4.13)

where, s2(n−k0) = [s2(n−k0−1), s2(n−k0−2), . . . , s2(n−k0−p)]T is a vector of p

previous values of s2 with predefined flat delay k0 and an = [an(1), an(2), . . . , an(p)]
T

is the vector of the unknown room response coefficients. The number p of unknown

attenuation coefficients an(k) depends on the characteristics of the room.

Here, the task of an adaptive filter for echo cancellation is to produce optimum

values of unknown filter coefficients ŵn from given s2(n−k0) such that the resulting

signal x̂2(n) closely matches x2(n), i.e,

x̂2(n) = ŵT
ns2(n− k0) (4.14)

=

p∑
k=1

ŵn(k)s2(n− k0 − k), (4.15)
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Here, ŵn = [ŵn(1), ŵn(2) . . . ŵn(p)]
T is the estimated attenuation vector. The

value of p also signifies the number of unknown parameters to be estimated from

the system.

Under optimum condition, ŵn = an. Next the task of the noise reduction block is

to suppress the input noise v1(n) from the echo reduced signal. Finally the noise and

echo suppressed signal s̃1(n) is obtained which mostly represents the input signal

s(n) with some additional residual echo and noise.

An extremely important issue of designing adaptive echo cancelers for dual chan-

nel is to handle double talk, which occurs when the far-end and near-end talkers are

speaking simultaneously. In this case, the far end signal consists of both echo x1(n)

and far-end speech s2(n). During the double-talk periods, the error signal e(n) de-

scribed in Equation (4.11) contains the residual echo and the near-end speech s1(n).

To correctly identify the characteristics of A(z), the near-end signal must originate

solely from its input signal from the far end. An effective solution, as shown in figure

2.2, is to detect the occurrence of double talk using a double talk detector (DTD)

and then to disable the adaptation of Ŵ (z) during the double-talk periods. If the

echo path does not change during the double-talk periods, the echo can be canceled

by the previously estimated Ŵ (z), whose coefficients are fixed during double-talk

periods.

Now, proper formulation of a single channel AENC scheme would be extremely

difficult in comparison to that in dual channel case because of the following reasons,

(1) In dual channel AENC, two channels are dedicated to receive inputs from

two different speakers and generally, a dual talk detector (DTD) is used. In this

case, one channel carries the noisy speech signals from person 1, namely s1 + v1(n),

along with the echo signal corresponding to person 2, namely x2(n). Because of

the presence of the DTD, the echo canceller can exploit the advantage of having a

reference of echo-free signal from channel 2 s2(n) to cancel the echo portion of the

input signal of channel 1, namely xs(n) and vice versa. On the other hand, single

channel AEC deals with a one speaker and the echo itself is originated by the same

speaker speaking in the microphone. Both the noisy speech and echo propagation

is carried out by a single channel. The most difficulty here, unlike the dual channel

case, is to obtain a separate reference signal for the AEC block to cancel out the echo
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portion from the input echo-corrupted noisy signal. There is no scope of receiving

reference signals for echo estimation from another channel.

(2) As a result, in the proposed single channel AENC scheme, a echo suppressed

noisy speech sample is used as reference for the next samples. When suppressing echo

in a certain sample, there may be some residual echo present in the cleaned speech

(that is why it is denoted by ŝ(n)+ v̂(n) rather that s(n)+ v(n) itself). Thus, if the

echo reduced current noisy speech sample is used as reference for cancellation of echo

of a future sample, it would obviously generate some error leading to suppression

of speech signal along with noise in the noise reduction block. So, getting a very

high degree of overall system performance using only the traditional adaptive filter

algorithms may not be expected in case of single channel AENC.

(4) In case of single channel AENC, the input speech is contaminated with noise

and the noise part is also reflected and fed to the microphone along with the speech.

Therefore, noise reference is also needed to adaptively cancel the reflected noise

xv(n) from current sample. That is why, the reference is taken before the final

noise suppression. To suppress the additive noise input at the current sample, a

noise reduction block is introduced which minimizes the current noise v(n) as well

as some parts of the residual echo δs(n) + δv(n).

(3) In case of single channel AENC, the speech from a speaker is contaminated

by attenuated previous samples of speech of the same speaker, which increases the

probability of the speech and echo to be correlated to some extent. Whereas, in the

case of two channel communication, since echo and noisy speech signals are coming

from two different speakers, the degree of correlation would be much lower.

(7) In Fig. 2.4 the room acoustic response is denoted by A(z) and its estimation

for echo cancellation by the adaptive LMS filter is denoted by Ŵ (z). The number p

of unknown attenuation coefficients of the room an(k) depends on the characteristics

of the room. The duration of the room response also depends on flat delay of k0

samples, which is the minimum time taken by a speech sample to travel from the

loudspeaker to the microphone. In a real conference room environment, the value

of k0 has to be very large for human perception to distinguish an echo from the

original signal because when dealing with audible frequencies, the human ear cannot

distinguish an echo from the original sound if the delay is less than 100 millisecond.
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Thus, the echo estimation task has to deal with a large filter on the order of thousand

coefficients. However, the value of the room response ŵn(k) is generally considered

to be zero for lower values of k. That is why, the variable k0 is introduced. The value

of k0 can be thousand or more depending on the room acoustic and it symbolizes

the amount of flat delay (for which the value of ŵn(k) is zero). On the other hand,

in case of two channel communication, the value of k0 may be as small as a single

sample and is not significant at all. The goal of two channel echo cancellation is to

cancel the echo from the other channel so that the person speaking in one channel

could not hear his/her own voice through the loudspeaker while talking. It is not

customary in this case for the room environment of the other end, where the signal is

being fed back to the microphone from the loudspeaker, to be like a large conference

hall which will produce large delay or long echo trail. Dual channel echo occurs

simply when, the loudspeaker output is coupled to the microphone input in any end

of the communication link in any possible way.

4.2 Analysis of the proposed single channel inte-

grated echo and noise canceller based on LMS

algorithm

The echo signals xs(n) and xv(n) corrupting the noisy input signal s(n) + v(n) is

generated from the delayed and attenuated version of the signals s(n) and v(n)

respectively and can be expressed as,

xs(n) = aT
ns(n− k0) (4.16)

=

p∑
k=1

an(k)s(n− k0 − k) (4.17)

xv(n) = aT
nv(n− k0) (4.18)

=

p∑
k=1

an(k)v(n− k0 − k), (4.19)

where, s(n − k0) = [s(n − k0 − 1), s(n − k0 − 2), . . . , s(n − k0 − p)]T is a vector of

p previous values of s(n) with predefined flat delay k0. Similarly, v(n − k0) is a
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vector of p previous values of the input noise v(n) with predefined k0 flat delay. The

number p of unknown attenuation coefficients an(k) depends on the characteristics

of the room.

The task of the adaptive filter block is to produce estimates of xs(n) and xv(n)

given y(n) and a reference signal. Similar to the single channel AEC problem stated

in chapter 2, we intend to utilize some delayed versions of the adaptive filter output

as the reference signal. The error signal which the adaptive filter tries to minimize

shown in equation (4.6). Thus, in the adaptive filter algorithm, the effect of echo

in y(n) is iteratively minimized utilizing a certain number of previous samples of

ŝ(n) and v̂(n) as reference. The outcome of the adaptive filter block is ŝ(n) + v̂(n),

where, ŝ(n) = s(n) + δs(n) and v̂(n) = v(n) + δv(n), i.e. both the original input

signal and original input noise are contaminated with some estimation error which

predominantly exhibits noise-like behavior. With the increasing iterations towards

an optimum solution, δs(n)+δv(n) tends to vanish gradually resulting ŝ(n)+ v̂(n) =

s(n) + v(n).

Thus the objective function in this case can be defined as the mean square

estimation of the error function, namely,

Jn = E{e2(n)} = E{[y(n)− x̂s(n)− x̂v(n)]
2} (4.20)

= E{[s(n) + v(n) + xs(n) + xv(n)− x̂s(n)− x̂v(n)]
2} (4.21)

= E{(s(n) + v(n))2}+ E{[xs(n) + xv(n)− x̂s(n)− x̂v(n)]
2}

+2E{[(s(n) + v(n))(xs(n) + xv(n)− x̂s(n)− x̂v(n))]}, (4.22)

where, the last term of right hand side of the objective function can be expressed as

2E{[(s(n) + v(n))(xs(n) + xv(n)− x̂s(n)− x̂v(n))]}

= 2

k=p∑
k=1

{(an(k)− ŵn)(rss(k0 + k) + rsv(k0 + k) + rvs(k0 + k) + rvv(k0 + k))

−rsδs(k0 + k)− rsδv(k0 + k)− rvδs(k0 + k)− rvδv(k0 + k)} (4.23)

where, rss(n) corresponds to the cross-correlation between the input signal s(n) and

its previous samples s(n − k0 − k). The magnitude of rss(n) strongly depends on

speech characteristics and the amount of flat delay k0. Similarly, rsv(n) corresponds

to the cross-correlation between s(n) and v(n − k0 − k), rvs(n) corresponds to the

cross-correlation between v(n) and s(n − k0 − k) and vsv(n) corresponds to the
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cross-correlation between v(n) and v(n − k0 − k). As we have considered v(n) to

be a white noise, it has no correlation with itself and with s(n). Thus, the terms

rsv(n), rvs(n) and rvv(n) all tends to zero. Also, the terms δs(n) and δv(n) have

noise-like characteristics, thus in equation (4.23), we can assume that rsδv(n) ≈

rvδs(n) ≈ rvδv(n) ≈ 0. So, we can easily comprehend that optimal performance of

the filter occurs when rss(n) is minimum, i.e. the least possible correlation between

s(n− k0 − k) and s(n) is desired. In that case, the correlation between reverberant

and non-reverberant part of the input signal will also be minimum making the

single channel echo cancellation problem easier. As a result, the objective function

in equation (4.22) reduces to,

E{e2(n)} = E{(s(n) + v(n))2}+ E{[xs(n) + xv(n)− x̂s(n)− x̂v(n)]
2}(4.24)

Minimization of the objective function (4.24) results in,

δJn

δŵT
n

= 0 (4.25)

E{[xs(n) + xv(n)− x̂s(n)− x̂v(n)]

k=p∑
k=1

(ŝ(n− k0 − k) +

v̂(n− k0 − k))} = 0, (4.26)

Now, employing the assumptions that rss(n) = 0 and rsδv(n) ≈ rvδs(n) ≈ rvδv(n) ≈ 0

we obtain,

E{(xs(n) + xv(n))(s(n− k0 − k) + v(n− k0 − k))} =
p∑

l=1

ŵn(l)E{(s(n− k0 − l) + v(n− k0 − l))(s(n− k0 − k) +

v(n− k0 − k))}. (4.27)

The above equation is similar to Wiener-Hopf equation and its solution can be

written as

ŵn = R(s+v)(s+v)(n− k0)
−1r(xs+xv)(s+v)(n− k0), (4.28)

where, r(xs+xv)(s+v)(n − k0) is the cross-correlation matrix between the echo signal

xs(n) + xv(n) and the noisy input signal s(n) + v(n), while R(s+v)(s+v) is the auto-

correlation matrix of s(n) + v(n). There is no doubt that ŵn is the most optimum

solution possible. Hence it is shown that even for a single channel noise corrupted

AEC problem, the most optimum solution ŵn can be achieved under the assumptions

stated earlier.
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4.2.1 Formulation of LMS Update Equation

From Chapter 2 we know that, adaptive filter algorithms are very popular for iter-

ative estimation of optimal filter coefficients, which do not require any correlation

measurements or matrix inversion. The update equation of the weight vector is

generally expressed as

ŵn+1 = ŵn − µ∇ξ(n) (4.29)

where, µ is the step factor controlling the stability and rate of convergence, ξ(n)

is the cost function and ∇ is the gradient operator. The LMS algorithm simply

approximates the mean square error by the square of the instantaneous error, i.e.

ξ(n) = e2(n). Using (4.4), (4.6) and (4.8), the gradient of ξ(n) can be written as

∇ξ(n) =
δξ(n)

δŵT
n

= −2e(n)ŷ(n− k0). (4.30)

Thus, the update equation for LMS from equation (4.29) is,

ŵn+1 = ŵn + 2µe(n)ŷ(n− k0) (4.31)

= ŵn + 2µe(n)(ŝ(n− k0) + v̂(n− k0)) (4.32)

For the k-th unknown filter parameter at the n-th iteration,

ŵn+1(k) = ŵn(k) + 2µe(n)ŷ(n− k0 − k) (4.33)

= ŵn(k) + 2µe(n)(ŝ(n− k0 − k) + v̂(n− k0 − k))

where, k = 1, 2, . . . , p.

4.2.2 Convergence Analysis of the LMS Update

In this section, our objective is to show that the proposed LMS update equation

(4.32) for the single channel noise corrupted AEC converges to the optimum solution.

In what follows, starting from the proposed update equation (4.32) we show that

the average value of the weight vector ŵn converges to the Wiener-Hopf solution

given by (4.28).

Considering expectation operation on both sides of equation (4.32) we obtain,

ŵn+1 = ŵn + 2µE{e(n)(ŝ(n− k0 − k) + v̂(n− k0 − k))} (4.34)
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where, ŵn = E{ŵn}. Now, for the k-th unknown weight vector(where k = 1, 2, . . . , p),

using (4.2) and considering rss(n) = 0 the term E{e(n)(ŝ(n−k0−k)+ v̂(n−k0−k))}

of (4.34) can be written as,

E{e(n)(ŝ(n− k0 − k) + v̂(n− k0 − k))} = E{[xs(n) + xv(n)− x̂s(n)− x̂v(n)]

(ŝ(n− k0 − k) + v̂(n− k0 − k))}.(4.35)

Similar to the procedure followed in the previous section, employing the assump-

tions that rss(n) = 0 and rss(n) = 0 and rsδv(n) ≈ rvδs(n) ≈ rvδv(n) ≈ 0 we obtain,

E{e(n)(ŝ(n−k0−k)+ v̂(n−k0−k))} = r(xs+xv)(s+v)(n−k0)−R(s+v)(s+v)(n−k0)ŵn

(4.36)

Now, using (4.36), (4.34) can be written as

ŵn+1 = ŵn − 2µR(s+v)(s+v)(n− k0)ŵn + 2µr(xs+xv)(s+v)(n− k0) (4.37)

In order to obtain a homogeneous solution of equation (4.37), we consider,

ŵn+1 = ŵn − 2µR(s+v)(s+v)(n− k0)ŵn (4.38)

For correlation matrix R(s+v)(s+v), using eigenvalue decomposition we obtain,

R(s+v)(s+v) = UΛUT (4.39)

where, each column of the matrix U consists of eigenvectors corresponding to eigen-

values constituting the diagonal elements of the matrix Λ and UTU = I. Now,

multiplying both sides of (4.38) by UT we get,

ŵU
n+1 = ŵU

n − 2µΛŵU
n (4.40)

where, UT ŵn = ŵU
n . The k-th coefficient of the weight vector can be expressed as,

ŵU
n+1(k) = (1− 2µλ(k))ŵU

n (k). (4.41)

Hence, the homogeneous solution can be obtained as

ŵh.s = Ck(1− 2µλ(k))n, (4.42)

where, Ck is a constant. Next, in order to obtain the particular solution for the k-th

coefficient, based on (4.37) one can get,

ŵp.s = ŵp.s − 2µλ(k)ŵp.s + 2µrU(k) (4.43)
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For a particular solution ŵp.s = Kpr
U(k) (4.43) can be written as,

Kpr
U(k) = Kpr

U(k)− 2µλ(k)Kpr
U(k) + 2µrU(k)

(4.44)

which leads to Kp =
1

λ(k)
and the particular solution,

ŵp.s =
1

λ(k)
rU(k) (4.45)

Hence, the total solution of (4.40) becomes

ŵU
n+1(k) = Ck(1− 2µλ(k))n +

1

λ(k)
rU(k). (4.46)

In the iterative update procedure, obviously the homogeneous part (1 − 2µλ(k))n

decays to zero with iterations. From the rest of the terms, it can be shown that,

ŵ = UΛ−1UT r(xs+xv)(s+v) = R−1
(s+v)(s+v)r(xs+xv)(s+v). (4.47)

Thus, it is found that the average value of the weight vector converges to the wiener-

hopf, which is the optimum solution with increasing number of iteration.

4.2.3 Noise Cancellation by Spectral Subtraction

In the previous section, after performing the proposed adaptive echo cancellation

algorithm on the input signal corrupted by noise and echo, the noise part of the

signal will still remain. In what follows, we develop a scheme in order to suppress

that residual noise from the echo reduced signal using a spectral subtraction method,

which is a popular approach for single channel noise reduction [88] - [92].

The idea of spectral subtraction is to estimate the noise spectra and then perform

a frequency domain subtraction of the noise spectra from the spectra of the noisy

signal. In the proposed scheme, the echo reduced noisy signal ŝ(n) + v̂(n) is first

obtained by applying the adaptive LMS algorithm and then it is passed through

a noise suppression block, as can be seen from Fig. 4.1. A frame by frame noise

reduction operation is then carried out.

The outcome of the echo canceller is a noisy signal e(n) which is composed of

two components as described in equation (4.8). Here, the signal portion consists of

the original speech signal s(n) along with the residual echo of the speech signal δs(n)
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and the noise portion consists of input additive noise v(n) along with the residual

echo of the noise signal δv(n). For the i-th frame, the error signal can be written as

ei(n) = ŝi(n) + v̂i(n). (4.48)

In the frequency domain, the error signal can be expressed as

Ei(f) = Ŝi(f) + V̂i(f). (4.49)

Each short-time (usually overlapped) successive frames (windows of e(n) ) needs

to be processed individually, and the resulting signal will be suitably reconstructed

to obtain noise reduced signal [93]. The magnitude squared spectrum of the signal

| Ŝi(f) |2 can be obtained as

| Ŝi(f) |2=| Ei(f) |2 − | V̂i(f) |2 −V̂i(f)Ŝ
∗
i (f)− Ŝi(f)V̂

∗
i (f), (4.50)

where, [·]∗ represents complex conjugation. It is desired to choose an estimate S̃i(f)

that will minimize the magnitude squared error at each frequency (f) given by

Erri(f) =|| S̃i(f) |2 − | Ŝi(f) |2| . (4.51)

. Note that the last three terms in equation (4.50) are not known and therefore can

be replaced by their expected values. Since the noise is assumed to be zero mean

and uncorrelated with the signal, the expected values of the last two terms of (4.50)

can be neglected. Thus, (4.51) can be expressed as

Erri(f) =|| S̃i(f) |2 − | Êi(f) |2 +E{| V̂i(f) |2} |, (4.52)

where E{} represents the expectation operator. This expression of Erri(f) can be

minimized by choosing

| S̃i(f) |2=| Êi(f) |2 −E{| V̂i(f) |2}. (4.53)

Equation (4.53) is the basic representation of spectral subtraction operation consid-

ering magnitude squared spectrum which can be generalized [92] as

| S̃i(f) |a=| Êi(f) |a −kE{| V̂i(f) |a}, (4.54)



87

Fig. 4.4: Flow Diagram of the Spectral Subtraction Process.

where a > 0 and k > 0 are constants. Hence, an estimate of the magnitude spectrum

| S̃i(f) | of the signal can be obtained from (4.53) and (4.54) provided an estimate

of noise spectrum E{| V̂i(f) |a} is available. Then the signal spectrum S̃i(f) can be

computed as

S̃i(f) =| S̃i(f) | ejarg[Ei(f)], (4.55)

where the phase of the signal spectrum arg[Ei(f)] is assumed to be the phase of

the noise corrupted signal in (4.49), which may not cause significant degradation in

terms of loss of intelligibility of the speech signal [89]. Thus, our objective is now

to obtain an estimate of noise spectrum V̂i(f) which is generally computed during

the periods when speech is known a priori not to be present.

A flow diagram of the general spectral subtraction process is shown in Fig. 4.4.

The output of the noise subtraction s̃i(n), which is composed of the original input

speech signal si(n) and some residual noise-like signal Ψi(n), is the final output of

the overall AENC system. The signal Ψi(n) is very small in magnitude, however it

may still contain some signature of the input noise v(n), the residual echo δs(n) and

the residual noise δv(n).

A major problem of the conventional spectral subtraction method is that it

may introduce a musical noise depending on the randomness of the noise [10]. It

sounds metallic and distracts the attention of the listener. The fact behind this is

that the noise floor which is subtracted is a smoothed estimate whereas the short

time power spectrum of the actual noise may include peaks and valleys. Thus,

after the noise subtraction there remains peaks in the noise spectrum. Some of
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those peaks, which are large spectral excursions, are perceived as time varying notes

referred as musical noise. On the other hand, the wider peaks are perceived as

time varying broad band noise, which is referred as residual noise. In addition to

these problems, there always exists a chance of subtracting some portions of the

speech signal, especially when the speech and noise characteristics are quite similar,

leading to speech distortion. In order to overcome these limitations, several modified

spectral subtraction algorithms are available in literature. Among them, one of the

most effective methods is suggested by Berouti [10], which is capable of offering

a better noise suppression than the conventional spectral subtraction technique.

Moreover, it can eliminate the musical noise and can adapt to a wide range of signal

to noise ratio. In this case, the main modifications made to the conventional spectral

subtraction method are: (a) subtracting an overestimate of the noise power spectrum

and (b) preventing the resultant spectrum from going below a preset minimum level

(spectral floor). These modifications lead to minimizing the perception of the narrow

spectral peaks by decreasing the spectral excursions and thus lower the musical noise

perception.

The algorithm of conventional spectral subtraction from (4.53) can be written

as

| S̃i(f) |2 = | Êi(f) |2 −E{| V̂i(f) |2}, if | S̃i(f) |2> 0

= 0, otherwise (4.56)

Based on Berouti’s modification one can rewrite the expression as

| S̃i(f) |2 = | Êi(f) |2 −αssE{| V̂i(f) |2}, if | S̃i(f) |2> βss{| V̂i(f) |2}

= βss{| V̂i(f) |2}, otherwise (4.57)

with αss ≥ 1 and 0 ≥ βss ≤ 1.

where αss is the subtraction factor and βss is the spectral floor parameter.

With αss > 1 the subtraction can remove all of the broadband noise by eliminat-

ing most of the wide peaks. But deep valleys surrounding the narrow spectrum will

remain in enhanced speech. This can be further reduced by filling-in the valleys.

This objective is achieved by the keeping the spectral floor,

For βss > 0, the valleys between the peaks are not as deep as for the case βss = 0.
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Thus the spectral excursions of noise peaks are reduced, and hence the musical noise

lowered.

An important aspect is the noise power spectral density detection from speech

silence. In this regard, a major task is to estimate the power spectral density of

nonstationary noise when a noisy speech signal is given. In [94] a new minimum

statistics noise estimator is introduced where a power spectral density smoothing

algorithm is used which employs a time varying smoothing parameter. The ad-

vantage of this algorithm is that it can track the variance of the smoothed power

spectral density in frequency bands, and offer a bias compensation for minimum

power spectral density estimates.

4.3 Development of Adaptive Characteristics

Similar to single channel acoustic echo cancellation, the adaptive part of the inte-

grated echo-noise canceller may suffer slow convergence and fluctuation due to the

assumptions rss(n) = 0 and rsδv(n) ≈ rvδs(n) ≈ rvδv(n) ≈ 0, which may not strictly

hold in reality. Therefore, similar to chapter 2, we will exploit some adaptive char-

acteristics, which along with the proposed LMS update algorithm can guarantee a

better convergence performance. In view of developing such adaptive characteris-

tics, three factors will be considered in the proposed algorithm similar to those of

chapter 2: (i) the degrees of the cross-correlation term rss(n) (ii) the amount of sig-

nal power for the two signals under consideration: the reference signal s(n−k0) and

the current signal s(n), (iii) the mean square error between consecutive estimates of

the unknown filter coefficients.

In order to demonstrate the performance of the proposed LMS update algorithm,

speech samples of different characteristics, such as voiced, unvoiced and pause are

taken into consideration. It is found that the negligibility of the cross-correlation

terms rss(n), rsδv(n), rvδs(n) and rvδv(n) strongly depends on the characteristics of

the speech samples and the input noise. For example, because of the inherent pe-

riodicity of the voiced speech, the degree of cross-correlation between two voiced

speech frames of a person becomes higher in comparison to that between two un-

voiced speech frames which are random in nature. In this case, ratio of power of two
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Fig. 4.5: A voiced frame followed by another voiced frame (a) Original noisy in-

put Signal s(n) + v(n) (b) Power of the reference frame Pref (n) (c) Power ra-

tio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference frame

and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

MSEideal(n).

Fig. 4.6: A voiced frame followed by an unvoiced frame (a) Original noisy in-

put Signal s(n) + v(n) (b) Power of the reference frame Pref (n) (c) Power ra-

tio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference frame

and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

MSEideal(n).
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Fig. 4.7: A voiced frame followed by a pause (a) Original noisy input Signal s(n) +

v(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d)

Cross Correlation Coefficient between the reference frame and the current frame

Crs(n)(e) MSE of coefficient updated from ideal values MSEideal(n).

different speech frames may also carry some significant information. For example,

if we consider a voiced frame and an unvoiced frame, their power ratio is generally

higher in comparison to that of two voiced speech frames. Moreover, for simplicity,

let us assume that the input noise v(n) is an additive white gaussian noise which

emphasizes that the cross correlation of the speech signal with the noise tends to

zero.

In Fig. 4.5(a), a male utterance /iy/−/r/ [77] of a duration of 250 ms corrupted

by 15dB white noise and with a sampling frequency of 16 kHz is shown. in this figure,

a few samples of voiced phoneme are followed by another few samples of voiced

phoneme. The strong periodicity of the utterance s(n) clearly indicates its voiced

characteristics. Considering the flat delay of k0 = 1000 samples, from the starting

point of s(n), this utterance will act as a reference signal for the generation of echo

that corrupts the current samples at or after k0 samples. Employing the proposed

LMS algorithm on the noise and echo-corrupted signal y(n), an echo reduced signal

ŝ(n) + v̂(n) is obtained. In Fig. 4.5(b), power of the reference signal ŝ(n − k0) +

v̂(n − k0), namely Pref (n) is depicted, which is computed at every input instances
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considering a window of M samples and is defined as

Pref (n) =

M
2
−1∑

i=−M
2

[ŝ(n− k0 + i) + v̂(n− k0 + i)]2

M
. (4.58)

Here we consider k0 >> M and M = 100. In this connection, we also consider the

average power Psup(n) of the last M samples of the echo suppressed speech signal

ŝ(n), which is defined as

Psup(n) =

M−1∑
j=0

[ŝ(n− j) + v̂(n− j)]2

M
. (4.59)

The ratio of Pref (n) and Psup(n) is denoted as the power ratio Prs(n), which is shown

in Fig. 4.5(c). In Fig. 4.5(d) the cross correlation coefficient Crs(n) between the

noisy reference signal ŝ(n−k0)+ v̂(n−k0) and the current noisy signal ŝ(n)+ v̂(n) is

shown. A coefficient of correlation, Crs(n), is a mathematical measure of how much

one number can expected to be influenced by change in another. It is defined as,

Crs(n) =
cov((ŝ(n− k0 + i) + v̂(n− k0 + i))(ŝ(n− j) + v̂(n− j)))

σŝ(n−k0+i)+v̂(n−k0+i)σŝ(n−j)+v̂(n−j)

(4.60)

Here, −M/2 ≤ i ≤ M/2 − 1 and 0 ≤ j ≤ (M − 1). If Crs(n) = ±1 then there is

a strong positive/negative correlation between two signals. If it is zero then there

is no correlation among the matrices. In order to demonstrate the performance of

the proposed LMS update algorithm, in terms of convergence rate and parameter

estimation accuracy, in Fig 4.5(e), the mean square error MSEideal(n) between the

estimated coefficients wn and the true coefficients an is depicted.

In a similar fashion, in Fig. 4.6 and 4.7, first a voiced phoneme /ih/ followed

by an strong unvoiced phoneme /sh/ and then a voiced phoneme /ih/ followed by

pause are considered respectively for 15dB white gaussian noise at input. It is to

be mentioned that in these figures Fig. 4.5-Fig. 4.7, the reference signal is always a

voiced frame and the current frame is voiced, unvoiced or pause respectively. It is

found that the power of the reference voiced frame is always quite high in comparison

to unvoiced or pause frames. However, the power ratio not only depends on the

power of the reference voiced frame but also on the power of the echo suppressed

signal. If the current frame is a pause or weakly unvoiced frame then the power
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ratio is very high, otherwise, for voiced and strong unvoiced frames the power ratio

is lower. The correlation coefficient is very small when measured between a voiced

and a unvoiced frame, but is quite large for two voiced frames.

The presence of voiced frame as a reference strongly governs the rate of conver-

gence and the estimation error of the proposed LMS algorithm. For example in Fig.

4.5, because of althrough presence of the voiced frame as reference, the convergence

performance becomes very poor and even in some cases the algorithm diverges and

in all cases, the estimation error was higher. On the contrary, in Fig. 4.7 it is ob-

served that, when the current frame is pause, even in the presence of voiced reference

frame a very fast convergence is obtained with a small estimation error. Moreover,

in Fig. 4.7, as the current frame is unvoiced instead of pause, a slower convergence

is observed with a high estimation error.

It is quite interesting that the performance characteristics of the proposed LMS

update algorithm drastically changes when the reference frame is considered un-

voiced, as shown in Fig. 4.8, 4.9 and 4.10. In this case a very fast convergence is

obtained with a high level of estimation accuracy. The reason behind this drastic

change in characteristics can be explained based on the cross-correlation that may

exist between the reference frame and the current frame. In case of voiced reference

frame, a strong correlation persists between each samples of the voiced frame, which

makes it difficult for the LMS to estimate the room response as the assumption of

the negligibility of the cross-correlation term rss(n) does not hold anymore. More-

over, when the current frame has a high energy speech along with the echo, i.e.

when the power ratio is lower, the convergence performance of the LMS algorithm

may degrade because of the chances of suppression of the input speech. In the case

when the current frame is pause, no matter whether the reference frame is voiced

or unvoiced, a fast convergence with high estimation accuracy is achieved using the

proposed LMS algorithm. The reasons behind are, (i) negligible cross-correlation

between reference frame and current speech frame and (ii) a comparatively higher

power ratio. In case of unvoiced reference frame, because of existence of a little

correlation between the input and the reference frame the convergence performance

of the proposed LMS algorithm is found quite satisfactory irrespective of the power

of the reference signal(strong unvoiced or weakly unvoiced).
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Fig. 4.8: An unvoiced frame followed by a voiced frame (a) Original noisy in-

put Signal s(n) + v(n) (b) Power of the reference frame Pref (n) (c) Power ra-

tio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference frame

and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

MSEideal(n).

Finally, in Fig. 4.12, 4.11 and 4.13 the outcomes of three different cases when the

references are always from a pause or stop frame are shown. Because of the additive

white noise present in the input signal, the pause or stop frame may contain sufficient

energy to produce a good estimation of the room response given that the power of

noise is quite high. Otherwise, no significant update occurs in the proposed LMS

algorithm and in some cases, as expected, the convergence performance degrades.

This is because of the lack of reference data as well as signal energy, which are

required for LMS updates.

4.4 Proposed Update Constraints

The insight obtained from extensive experimentation on several such case as pre-

sented in Fig. 4.5 - Fig. 4.13 are summarized in table 4.1. It is clearly observed

from the table that in many cases the performance of the proposed algorithm is not

satisfactory or even poor, e.g. when the reference and the input signal both are

voiced frames, when the reference signal is pause etc.. In view of overcoming these
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Fig. 4.9: An unvoiced frame followed by another unvoiced frame (a) Original noisy

input Signal s(n) + v(n) (b) Power of the reference frame Pref (n) (c) Power ra-

tio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference frame

and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

MSEideal(n).

Fig. 4.10: An unvoiced frame followed by a pause (a) Original noisy input Signal

s(n)+v(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100)

(d) Cross Correlation Coefficient between the reference frame and the current frame

Crs(n)(e) MSE of coefficient updated from ideal values MSEideal(n).
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Fig. 4.11: A pause followed by an unvoiced frame (a) Original noisy input Signal

s(n)+v(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100)

(d) Cross Correlation Coefficient between the reference frame and the current frame

Crs(n)(e) MSE of coefficient updated from ideal values MSEideal(n).

Fig. 4.12: A pause followed by a voiced frame (a) Original noisy input Signal s(n)+

v(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d)

Cross Correlation Coefficient between the reference frame and the current frame

Crs(n)(e) MSE of coefficient updated from ideal values MSEideal(n).
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Fig. 4.13: A pause followed by another pause (a) Original noisy input Signal s(n)+

v(n) (b) Power of the reference frame Pref (n) (c) Power ratio Prs(n)(M=100) (d)

Cross Correlation Coefficient between the reference frame and the current frame

Crs(n)(e) MSE of coefficient updated from ideal values MSEideal(n).

cases we are going to propose some conditions which will guarantee a fast conver-

gence with a low estimation error. It is obvious that if the proposed algorithm is

used, there is always a possibility to obtain poor convergence or even in some cases

divergence with a high estimation error. Based on the results obtained from Table

4.1 and some more experimentation we hereby propose three conditions on LMS

update, which are designed to indicate whether the updating should be carried out

or halted. Implementation of these conditions in the proposed LMS update will

provide assurance of fast convergence with a high estimation accuracy.

Similar to the single channel adaptive echo cancellation scheme described in

chapter 2, the following conditions are proposed for constraining the LMS update,

Condition 1: Prs(n) ≥ ζ and Pref (n) ≥ β

Condition 2: Cxy(n) ≤ Υ1 and Pref (n) ≥ β

Condition 3: Cxy(n) ≤ Υ2

Condition 4: ecoeff (n) ≤ ℵ

where, ζ, β, Υ1, Υ2 and ℵ are threshold values and ecoeff (n) is the mean square
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Table 4.1: Dependence of LMS update on the acoustic characteristics of the frame

in case of noisy input signal

Reference

Speech Sam-

ple

Speech at the

noise and Echo

Corrupted Sample

LMS Update

Voiced Voiced unsatisfactory

Voiced Unvoiced unsatisfactory

Voiced Pause satisfactory/excellent

Unvoiced Voiced excellent

Unvoiced Unvoiced excellent

Unvoiced Pause excellent

Pause Voiced unsatisfactory

Pause Unvoiced unsatisfactory

Pause Pause unsatisfactory
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error of the estimations of successive iterations defined as,

ecoeff (n) =

p∑
K=1

(wn(k)− wn−1(k))
2/p. (4.61)

The only difference between these conditions and those of chapter 2 is condition 3.

In case of single channel echo cancellation at noisy environment, there is always a

certain level of noise present irrespective of the speech signal. The presence of noise

can be used to our advantage at speech pause where in the ideal echo cancellation

case we stopped the update. Now that a signal is present, the proposed algorithm

can easily update its estimates. Moreover, as noise is considered uncorrelated to

itself, the assumption made at frames where only noise is present would infact be

quite satisfactory. As the usual performance of the algorithm is unsatisfactory when

the speech pauses are taken as reference, the value of Υ2 should be very small so

that update would take place only when the reference and the current frame are

very much uncorrelated and thus it would be ensured that the estimate would not

degrade. Moreover, the convergence would be much faster at noisy frames when the

input noise level is high, i.e. at low SNR, then speech pauses would contain high

energy noise and which would infact assist the proposed algorithm to converge to

a suitable solution more quickly. The update of the proposed LMS algorithm will

be carried out if any one of the first three conditions is true. The fourth condition

will be checked after each estimation and if it is true the new estimation will take

effect. The facts behind choosing these four conditions for our proposed method are

already discussed in chapter 2.

4.5 Simulation Results and Comments

Simulations were performed on two different speech signals uttering (1) ”Good ser-

vice should be rewarded by big tips” by a male voice and (2) ”She had your dark

suit in greasy wash water all year” another male voice. Both of the speech were

taken from the TIMIT database [77]. The room response illustrated in chapter 2 is

adopted here for simulation. The step size for the LMS adaptive filter was varied

from 1/p to 0.02 where p is the number of unknown coefficients of the room response.

The echo return loss enhancement (ERLE) in dB is computed as a performance

measure. ERLE is a smoothed measure of the amount (in dB) that the echo has
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been attenuated. It is defined as the ratio of the power of the residual echo signal

and the input echo signal power [2],

Another criteria for performance evaluation termed Signal to Distortion Ratio

(SDR) is also computed. SDR is quite like measuring signal to noise ratio (SNR).

The only difference is that in our case the output signal is contaminated not only

with noise but also some residual echo, which we termed distortion in this case.

Similar to the AEC problem stated in chapter 2, in case of integrated echo-noise

suppression the following values of the update constrain parameters are chosen:

• ζ = 2.0

• β = 0.003

• Υ1 = 0.25

• Υ2 = 0.1

• ℵ = 0.7e−4

Thus the update constraints for our simulation is set to,

i. Prs(n) ≥ 2.0 and Pref (n) ≥ 0.003

ii. Crs(n) ≤ 0.25 and Pref (n) ≥ 0.003

ii. Crs(n) ≤ 0.1

iii. ecoeff (n) ≤ 0.7e−4

Now, the first three constraints, constraints i, ii and iii have been simultaneously

applied to the nine different cases of voiced, unvoiced and pause frames and the

results are shown in Fig. 4.14 - Fig. 4.22. As can be seen from these figures, the

application of condition 1 and constraint iv in the proposed method improved the

convergence performance of the LMS algorithm to a large extent. The MSEideal(n)

curve is now totally nondivarging and the estimation error is minimized in every

cases.

For continuous speech signals, large and abrupt fluctuation of the filter estimate

increases estimation error and makes the system unstable. Thus, condition 3 is

employed to suppress abrupt change in coefficient estimation of the LMS algorithm.
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Fig. 4.14: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 4.15: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a unvoiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 4.16: MSE of estimation coefficients from ideal values for a voiced frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 4.17: MSE of estimation coefficients from ideal values for a unvoiced frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 4.18: MSE of estimation coefficients from ideal values for a unvoiced frame

in reference and a unvoiced frame in current samples (a) without applying any

condition (b) applying condition 1 and 2.

Fig. 4.19: MSE of estimation coefficients from ideal values for a unvoiced frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 4.20: MSE of estimation coefficients from ideal values for a pause frame in

reference and a voiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

Fig. 4.21: MSE of estimation coefficients from ideal values for a pause frame in

reference and a unvoiced frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.
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Fig. 4.22: MSE of estimation coefficients from ideal values for a pause frame in

reference and a pause frame in current samples (a) without applying any condition

(b) applying condition 1 and 2.

If the change in updated coefficients is smaller then a the threshold (0.7e−4) then

LMS would update, otherwise the algorithm would hold the previous coefficients.

In Fig. 4.23 the reference power, power ratio, correlation coefficients and LMS

update without conditions for speech signal 1 is illustrated. In Fig. 4.24.a the MSE

of coefficient estimates of LMS with respect to ideal values of unknown coefficients

without applying any conditions is shown, while in Fig. 4.24.b the MSE with con-

straints i, ii and iii simultaneously applied is depicted. It can easily be seen that

the update of LMS has been stabilized to better results robustly when the condi-

tions are applied and degradation of estimation is prevented. Similar results are

obtained for speech signal 2 as can be seen from Fig. 4.25 and 4.26. These figures

also demonstrates the efficiency of the applied conditions in controlling the update

of LMS algorithm for producing better results.

In Table 4.2 and Table 4.3 the performance of the proposed LMS update method

with and without applying the three proposed conditions is compared in terms of

SDR difference (dB) and ERLE (dB). Performance is evaluated for different number

of unknown coefficients ranging from 2 to 14 for speech signal 1 and 2 respectively.

The tables clearly demonstrates the superiority of the proposed LMS algorithm with

update constraints over that without any constraints.

In Table 4.4 and Table 4.5 the performance of the proposed LMS update method
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Fig. 4.23: LMS update on speech signal 1(2 unknown coefficients, no conditions

applied) (a) Original Signal s(n) (b) Power of the reference frame Pref (n) (c)

Power ratio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference

frame and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

(MSEideal(n).

Fig. 4.24: MSE of LMS estimations from ideals on speech signal 1 (2 unknown

coefficients) (a) Without any condition (b) With condition 1, 2 and 3 simultaneously

applied
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Fig. 4.25: LMS update on speech signal 2(2 unknown coefficients, no conditions

applied) (a) Original Signal s(n) (b) Power of the reference frame Pref (n) (c)

Power ratio Prs(n)(M=100) (d) Cross Correlation Coefficient between the reference

frame and the current frame Crs(n)(e) MSE of coefficient updated from ideal values

(MSEideal(n).

Fig. 4.26: MSE of LMS estimations from ideals on speech signal 2 (2 unknown

coefficients) (a) Without any conditio (b) With condition 1, 2 and 3 simultaneously

applied
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Table 4.2: Performance for increasing number of unknown coefficients for the input

speech signal 1 at 15dB white gaussian noise(µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3+4

No. of SDR ERLE SDR ERLE

coefficients Improvement (dB) Improvement (dB)

(dB) (dB)

2 4.9921 8.8496 6.9848 10.6772

4 4.9027 2.0696 5.7731 2.2787

6 8.391 4.6507 9.2744 5.0313

8 6.4551 2.4214 6.3558 2.2797

10 6.3507 2.6341 6.173 2.454

12 6.7127 3.0277 7.0978 3.0048

14 7.8763 3.7481 8.2515 3.6909
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Table 4.3: Performance for increasing number of unknown coefficients for the input

speech signal 2 at 15dB white gaussian noise(µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3+4

No. of SDR ERLE SDR ERLE

coefficients Improvement (dB) Improvement (dB)

(dB) (dB)

2 1.7666 7.8907 6.3291 13.3284

4 3.6895 1.715 6.6418 2.599

6 6.8115 4.1443 10.3025 5.3981

8 4.6745 2.2157 6.8105 2.7603

10 4.7391 2.4094 7.0343 2.9192

12 6.248 2.8372 8.1278 3.253

14 7.517 3.6158 8.8414 3.8667
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Table 4.4: Performance for increasing input white gaussian noise level for input

speech signal 1 (µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3+4

Input Noise SDR ERLE SDR ERLE

Level (dB) Improvement (dB) Improvement (dB)

(dB) (dB)

25 7.4065 3.183 7.8189 3.0759

20 7.613 3.5382 7.9346 3.4171

15 7.8763 3.7481 8.2515 3.6909

10 8.2085 3.5999 8.386 3.5064

5 8.2434 3.0533 8.8839 3.0765

0 8.7968 2.4493 9.4557 2.542

-5 8.2259 2.0032 10.5136 1.5912
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Table 4.5: Performance for increasing input white gaussian noise level for input

speech signal 2 (µ is varied from 1/p to 0.02)

No Conditions With Conditions 1+2+3+4

Input Noise SDR ERLE SDR ERLE

Level (dB) Improvement (dB) Improvement (dB)

(dB) (dB)

25 7.0807 3.8534 8.5601 3.7745

20 7.2175 3.8054 8.0401 3.7295

15 7.517 3.6158 8.8414 3.8667

10 7.7662 3.3768 8.8286 3.5394

5 8.584 2.8765 9.306 3.0344

0 9.1721 2.3696 9.6731 2.5163

-5 10.1367 1.8799 10.618 1.4358



112

with and without applying the three proposed conditions is evaluated for different

level of input SNR ranging from 25dB to −5dB for speech signals 1 and 2 respec-

tively. Stationary additive white gaussian noise is applied at the input. It can be

seen that the proposed method works quite satisfactorily even for a high energy

input noise level. The tables clearly demonstrates the superiority of the proposed

LMS algorithm with update constraints over that without any constraints.

4.6 Conclusion

In this chapter, a novel approach of single channel acoustic echo cancellation scheme

for noisy environment using gradient based adaptive LMS algorithm is proposed.

The proposed scheme differs from ideal single channel AEC at noiseless environ-

ment and from dual channel adaptive algorithm in several critical issues which are

highlighted in this chapter. Afterwards, the validity of the proposed scheme was

proved mathematically by showing that the estimated coefficients obtained by the

proposed scheme may reach wiener-hopf solution in the long run based on several

critical assumptions. Later, the LMS update equation for the proposed scheme was

derived and validated mathematically. The assumption on signal correlation that de-

grades the performance of the proposed scheme in reality is handled next by setting

some constraints in the update procedure of the LMS algorithm. The constraints

were obtained by analyzing the properties of speech frames and also by following the

mean square change in consecutive estimations of the LMS filter. Next, a modified

single channel spectral subtraction method for noise cancellation is described, which

was adopted for noise cancellation for its robust performance and ability to reduce

musical noise. In the simulation section, performance of the proposed scheme is

evaluated based on improvement of the Signal to distortion ratio (SDR) in dB and

also based on the traditional Echo Return Loss Enhancement (ERLE) parameter

measured in dB. It is shown in the result section that the performance of the sin-

gle channel echo cancellation scheme for increasing length of room response and for

decreasing SNR is enhanced to a great extent if the proposed conditions are applied.



Chapter 5

Single Channel Integrated
Acoustic Echo and Noise
Cancellation Based on Particle
Swarm Optimization Algorithm

Finally, the problem of single channel acoustic echo and noise cancellation (AENC)

is going to be modeled by an optimization algorithm, namely the previously intro-

duced Particle Swarm Optimization Algorithm. We already realized that there is a

basic difference in the processing scheme of the gradient based approach and the op-

timization algorithm based approach. The gradient based approach propagates sam-

ple by sample whereas the proposed optimization based algorithm operates frame

by frame. Thus, similar to chapter 3, the overlap add method would be adopted in

this chapter. As before, The Particle Swarm Optimization (PSO) algorithm would

be formulated for both time domain (PSO-TD) and frequency domain (PSO-FD)

and the performance of these two formulations would be evaluated in the results

section. In addition to the PSO based echo canceller a spectral subtraction based

single channel noise suppression technique is incorporated in the design to cancel

out the noisy parts of the signal and to produce an enhanced speech [95] [96]. The

results would be evaluated for different input noise level and compared with those

of gradient based algorithms.

113
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Fig. 5.1: Basic Setup of PSO algorithm based single channel integrated echo and
noise canceller for enhancing echo corrupted speech produced at noisy environment
in the time domain.

5.1 Proposed Scheme of Integrated Acoustic Echo

and Noise Cancellation

In Fig. 5.1, a schematic diagram of the proposed PSO algorithm based echo cancella-

tion scheme for noisy environment (PSO-TD-AENC) is shown. Here the microphone

input signal y(n) consists of the input speech signal s(n), the environmental noise

v(n) and the corresponding echo signals xs(n) and xv(n). The input environmental

noise v(n) is considered as white gaussian noise in this scheme. As stated in the pre-

vious section, the echo signals xs(n) and xv(n) corrupting the original input signals

s(n) and v(n) are generated from the delayed and attenuated version of the same

signals s(n) and v(n) and can be expressed as

xs(n) = aT
ns(n− k0) (5.1)

=

p∑
k=1

an(k)s(n− k0 − k), (5.2)

xv(n) = aT
nv(n− k0) (5.3)

=

p∑
k=1

an(k)v(n− k0 − k), (5.4)

where s(n− k0) = [s(n− k0 − 1), s(n− k0 − 2), . . . , s(n− k0 − p)]T and v(n− k0) =

[v(n− k0 − 1), v(n− k0 − 2), . . . , v(n− k0 − p)]T are vectors of p previous values of

s(n) and v(n), respectively, with predefined flat delay k0. The number p and the

values of unknown attenuation coefficients an(k) depend on the characteristics of

the room.
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The task of the adaptive filter block is to produce an estimate of xs(n) + xv(n)

given y(n) and a reference signal. Since there is no scope to provide a separate

reference signal in case of single channel AEC problem, we propose to utilize some

delayed versions of the adaptive filter output as the reference signal. However, in

case of optimization algorithm based processing, a frame by frame based operation

is required. Given a flat delay of k0 samples, the optimization process starts from k0

samples and continues frame by frame with a certain percentage of overlap between

successive frames. For a frame of N samples, the sum square error Est(n) between

the input (l + 1)-th frame and the corresponding reference frame that the adaptive

filter tries to minimize can be defined as

Est(n) =
r=N−1∑
r=0

[y(n− lN − r)− x̂s(n− lN − r)− x̂v(n− lN − r)]2 (5.5)

=
r=N−1∑
r=0

[s(n− lN − r) + v(n− lN − r) + xs(n− lN − r) + xv(n− lN − r)

−x̂s(n− lN − r)− x̂v(n− lN − r)]2 (5.6)

where, l = 0, 1, 2 . . . corresponds to the frame number. Here the reference signal

x̂s(n) − x̂v(n) is an estimate of the echo signal generated by the adaptive filter

utilizing its estimated coefficient vector ŵn and the echo suppressed input signal

ŝ(n) + v̂(n) and can be expressed as

x̂s(n) + x̂v(n) = ŵT
n [̂s(n− k0) + v̂(n− k0)] (5.7)

=

k=p∑
k=1

[ŵn(k)ŝ(n− k0 − k) + ŵn(k)v̂(n− k0 − k)]. (5.8)

In the proposed method, unlike conventional approaches, we propose to optimize

the objective function stated in equation (5.6) using the particle swarm optimization

algorithm (PSO).

The basics of the PSO algorithm is already discussed in chapter 3. In Fig.

5.1, a detailed view of the position and operation of the PSO-TD algorithm block

in the proposed scheme is shown. The PSO-TD algorithm block takes a frame

from the current input signal y(n) and another reference frame from the previously

enhanced signal ŝ(n − k0) + v̂(n − k0). Its position vector wi
t and velocity vector

vi
t are randomly initialized, which means at the beginning the algorithm considers

a random estimate of the room response. From this estimate, an error Est(n) is
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Fig. 5.2: Basic Setup of PSO based single channel integrated echo and noise canceller
for enhancing echo corrupted speech produced at noisy environment in the frequency
domain.

calculated using equation (5.6). The PSO-TD algorithm then updates the velocity

and position vectors of each particles according to the following equations,

vit+1(k) = ∆tv
i
t(k) + c1r

i
1t(k)(λ

i
t(k)− wi

t(k))

+c2r
i
2t(k)(χ

i
t(k)− wi

t(k)), k = 0, 1, . . . , p (5.9)

wi
t+1(k) = wi

t(k) + vit+1(k), k = 0, 1, . . . , p. (5.10)

Then the sum square error Est(n) is again calculated for all the particles. This iter-

ative process of error calculation and parameter update continues until a maximum

number of iteration is reached or the difference between two successive updates be-

come stable for a certain number of iteration. The best positional value, i.e. the

best estimate of the room response filter coefficient thus obtained, is transferred to

the Ŵ (z) block to be used for final echo suppression, as shown by the dotted lines.

Proceeding in a similar fashion as followed in the case of time domain analysis,

the proposed PSO based AENC scheme (PSO-FD-AENC) is developed in frequency

domain in view of getting better performance as expected from the result section of

chapter 3.

In the proposed PSO based frequency domain analysis the discrete fourier trans-

form (DFT) of each frame of input data y(n) is performed which is defined as

Y (l) =
+∞∑

n=−∞

y(n)e−j 2πfn
N

l (5.11)
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In Fig. 5.2 a schematic diagram of the proposed frequency domain AENC method

(PSO-FD-AENC) is shown. A frame of the input signal y(n) is supplied to the PSO-

FD algorithm block while another frame of echo suppressed noisy signal ŝ(n− k0)+

v̂(n−k0) is supplied as reference. The particles are initialized with random position

and velocities. The position vector, the current frame and the reference frame -

all are transformed into the frequency domain by discrete fourier transform and

are represented as W (l), Y (l) and (Ŝ(l) + V̂ (l)).e−j
2πk0l

N , respectively. As the time

domain convolution becomes multiplication in frequency domain, the new estimate

of the echo of the input speech and noise in frequency domain X̂s(l) + X̂v(l) can be

denoted as

X̂s(l) = Ŵ (l).Ŝ(l).e−j
2πk0l
M , (5.12)

X̂v(l) = Ŵ (l).V̂ (l).e−j
2πk0l
M , (5.13)

Thus, the error E(l) is defined in the discrete frequency domain as

E(l) = Y (l)− X̂s(l)− X̂v(l) (5.14)

= S(l) + V (l) +Xs(l) +Xv(l)− X̂s(l)− X̂v(l) (5.15)

Now, the objective function for optimization can be defined as the sum of the square

of the error Esf (l), i.e,

Esf (l) =
N−1∑
l=0

(|S(l) + V (l) +Xs(l) +Xv(l)− X̂s(l)− X̂v(l)|)2

The PSO adaptive algorithm tries to minimize this error by varying the position

vectors of its particles, i.e. by varying the estimated echo path filter coefficients.

Here it can be seen that, though the proposed method calculates the mean square

error in the frequency domain, it updates the time domain form of the FIR filter ŵn

not its frequency response. The update of the velocity and position vectors of the

particles is an iterative process. The PSO-FD block takes a frame of input signals

and calculates the sum square error for the present positions of all the particles.

Then according to the rules of the PSO algorithm update, it updates the velocity

and position of all the particles. The sum square error is calculated again for the

new position vectors and the position update and error calculation is repeated unless
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a predefined maximum number iteration is reached or the difference between two

consecutive updates are stable for a certain number of iterations. The error func-

tion is minimized when the filter coefficients of the model echo path ŵn are perfectly

tuned with the room impulse response an. The updated position wn which is finally

obtained is then used as the estimated filter coefficients Ŵ (z) of the room response

(as shown by the dotted line between the two blocks in Fig. 5.2)to minimize the

effect of echo from the current input signal frame. Since time domain convolution

becomes multiplication in the frequency domain approach, it is expected that fre-

quency domain modeling of the echo cancellation problem at noisy environment will

involve less computation resulting in faster convergence.

The echo suppressed noisy signal is then fed to the noise suppression block where

the input noise v(n) and the residual noise are suppressed as shown in Fig. 5.1 and

Fig. 5.2 . The modified spectral subtraction method proposed by Berouti et. al [10],

described in chapter 4, is employed as the noise cancellation method. The output of

the noise subtraction s̃w(n), which is composed of the original input speech signal

sw(n) and some residual noise-like signal Ψw(n), is the final output of the system.

The signal Ψw(n) is very small in magnitude, however it may still contain some

signature of the input noise v(n) and the residual echo and noise δs(n) and δv(n).

5.2 Simulation Results

Extensive experimentation has been carried out in order to investigate the echo can-

cellation performance of the proposed PSO algorithm based time domain (PSO-TD-

AENC) and frequency domain (PSO-FD-AENC) approaches and results are com-

pared with the state-of-the-art adaptive LMS filer algorithm based scheme proposed

in chapter 4. Thus, for the purpose of simulating various acoustic environments, the

room impulse response defined in the simulation section of the previous chapters

is considered. The two test speech samples are also the same as in the previous

chapters. The improvement of signal to distortion ratio (SDR) in dB and the aver-

age echo return loss enhancement (ERLE) in dB are used as basis for performance

evaluation.

In Fig. 5.3 and Fig. 5.4 echo cancellation performance obtained by different

methods are presented considering the number of unknown coefficients incrementing
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Fig. 5.3: Performance comparison of PSO-TD-AENC, PSO-FD-AENC and LMS
based integrated acoustic echo and noise canceller based on ERLE (dB) and SDR
difference(dB) for Speech sample 1.

Fig. 5.4: Performance comparison of PSO-TD-AENC, PSO-FD-AENC and LMS
based integrated acoustic echo and noise canceller based on ERLE (dB) and SDR
difference(dB) for Speech sample 2.
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Fig. 5.5: Performance comparison of PSO-TD-AENC, PSO-FD-AENC and LMS
based integrated acoustic echo and noise canceller based on ERLE (dB) and SDR
difference(dB) for different input SNR (dB) for Speech sample 1.

from 2 to 14. As performance measurement criteria, we consider the ERLE (dB) and

the SDR difference (dB). In our experimentation, different sets of PSO parameters

have been used. However, the results obtained from the proposed methods in these

figures utilize the following PSO parameters: number of particles is 10 for PSO-

TD-AENC and 40 for PSO-FD-AENC, tolerance between two consecutive global

best values = 10−30, search range for coefficients is [−1 1], maximum number of

iterations is 40, c1 = 2, c2 = 2, winitial = 0.9, wfinal = 0.4, and maximum particle

velocity vmax = 0.2. Iterations terminate if tolerance is stable for 5 iterations. The

input noise was additive white gaussian and the input signal to noise ratio was 15dB.

From the figures, it can be observed that, the performance in terms of the ERLE

(dB) is consistently good for the proposed PSO-TD-AENC method than that of the

LMS algorithm. Moreover, the proposed PSO-FD-AENC approach is found to be

superior to other two methods in terms of both ERLE and SDR difference.

In Fig. 5.5 and Fig. 5.6 echo cancellation performance obtained by different

methods are presented considering the input SNR being varied from 25dB to −5dB.

It can be seen that the proposed PSO algorithm based methods work quite satisfac-

torily even for a high energy input noise level. The figures clearly demonstrate the

superiority of the proposed PSO-FD-AENC algorithm over the proposed PSO-TD-

AENC method and the proposed LMS method with update constraints.

In view of demonstrating the quality of the reconstructed speech obtained by

using the proposed methods, in Fig. 5.7, the time waveform of the original speech
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Fig. 5.6: Performance comparison of PSO-TD-AENC, PSO-FD-AENC and LMS
based integrated acoustic echo and noise canceller based on ERLE (dB) and SDR
difference(dB) for different input SNR (dB) for Speech sample 2.

Fig. 5.7: The input speech s(n), echo and noise corrupted speech y(n) and out-
come of the proposed PSO based single channel integrated echo-noise canceller in
frequency domain s̃(n).
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s(n), the noise and echo corrupted speech y(n) and the reconstructed speech s̃(n)

obtained using the proposed PSO-FD-AENC approach are shown. The number of

unknown was 14 and the input SNR was set to 15dB. The sample speech used in

this experiment contains the speech sample 1. It is vividly seen from this figure

that the effect of echo and noise has been completely removed in the reconstructed

signal.

5.3 Conclusion

In this chapter, a novel approach of single channel acoustic echo cancellation scheme

using an optimization algorithm is proposed for noisy environment. For fast and ac-

curate optimization the renowned particle swarm optimization(PSO) algorithm is

chosen for the scheme. PSO is a population based search technique which is superior

to some other evolutionary algorithms, namely genetic algorithm, taboo search etc.

Two different PSO based schemes were proposed for single channel AEC at noisy

environment. One is based on time domain operation of PSO while the other is

based on frequency domain transformation of the signals before applying optimiza-

tion algorithm. The well-known spectral subtraction method is adopted for noise

cancellation operation. In the simulation section, the performance of the proposed

schemes were evaluated in terms of ERLE and SDR difference by comparing with

one another and with the previously described LMS based single channel integrated

echo and noise cancellation technique. It is found that the performance of the PSO

based frequency domain single channel integrated echo and noise cancellation cancel-

lation scheme (PSO-FD-AENC) outperforms both PSO-TD-AENC and traditional

LMS and offers a great reduction of estimation error. It is shown in the result

section that the performance of the single channel integrated echo and noise echo

cancellation scheme for increasing length of room response and for decreasing SNR

is enhanced to a great extent for the proposed PSO algorithm based approach in

frequency domain.



Chapter 6

Conclusion

6.1 Summary

The main idea in this thesis work is to develop a single channel acoustic echo can-

cellation scheme employing the gradient based LMS algorithm and the PSO algo-

rithm. Further improvement of the proposed scheme is suggested by incorporating

frequency domain formulation of the PSO algorithm for the scenario and by ex-

tending the capability of the proposed method for noisy environment through the

addition of a single channel noise suppression block. For the proposed LMS based

technique, the power and correlation properties of different speech frames are taken

into consideration, based on which some condition on the LMS update are proposed

for further improvement in convergence performance. Next, it was shown that opti-

mization algorithm based approach i.e. PSO based approach does not require such

conditions to produce a good result, as they do not require to consider the speech

properties for update. PSO only tries to match the reference speech frame with the

echo corrupted speech frame by varying the position of its particles, i.e. by varying

the coefficients of several estimates. In the development of the proposed scheme,

effect of variation of some major PSO parameters has been also taken in consider-

ation along with different acoustic environments. The acoustic environments were

distinguished by changing the number of unknown coefficients and by employing

different input SNR. In order to handle the extremely long filter response of the

room, a pre-calculation of the delay has been adopted. Echo cancellation perfor-

mance has been tested considering different variations in filter parameters resulting

in various acoustic operating conditions and the outcomes have been compared with

123
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that of some of the standard techniques, such as the LMS and the NLMS adaptive

algorithms. It has been shown that, the proposed PSO based schemes, especially

the one designed in frequency domain, exhibit superior performance under various

acoustic conditions in terms of time per iteration, the ERLE and the SDR differ-

ence in comparison to that obtained by other methods. Moreover, the proposed

method provides a precise control on the rate of convergence, number of iterations,

and quality of output, which enables the user to modify the overall system as par

the requirement.

6.2 Future Design Modifications

Now a days, sub-band adaptive filtering is getting much popularity because of the

huge reduction in computational burden and thus faster adaptation. The proposed

problem of adaptive echo cancellation can be modeled with sub-band adaptive filters

using both LMS and PSO algorithms. Performance of the proposed AEC and AENC

systems will be evaluated using traditional NLMS and RLS algorithms.

On the other hand, the driving algorithm of the proposed optimization algorithm

based adaptive filter in this literature is the well-known particle swarm optimization

algorithm (PSO). The system will be evaluated replacing PSO by other contem-

porary evolutionary search algorithms such as ant colony algorithm [97] [98], bee

algorithm [99] [100] etc..

The proposed AENC system is modeled to handle white noise only, which may

not be the scenario in real life. Incorporation of a more efficient noise subtraction

algorithm, such as MMSE estimation method [42] or an unified framework corre-

sponding to the ML, MMSE, and MAP optimization criteria [101], for detection and

suppression of non-white noise in the AENC system may enhance the performance

of the proposed system.
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