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Abstract    

In deriving an analytical model for the base transit time B  for bipolar junction transistors (BJTs), 

various non-ideal effects have to be considered. These effects include the bandgap narrowing 

effects due to heavy doping, the Webster and the Kirk effects due to high injection and the effects 

due to the position and field dependence of the transport parameters (i.e. carrier mobility and 

carrier lifetime). The non-uniformity of the doping profile, and the doping levels make the 

transport parameters to be position and field dependent. The electric field in the base is mainly 

due to the non-uniformity of the doping profile. However, the field is modulated by the injection 

levels, the gradient of the transport parameters and the majority carrier current density in the base. 

For low doping levels, the effects of majority carrier current density are insignificant. When base 

doping level is heavy ( 318 10  cm ), the effects of majority carrier current density are no longer 

negligible. Moreover, at such high base doping, recombination mechanisms and the lateral base 

injection become significant, which also enhance the effects of majority carrier current density. 

However, consideration of pJ  as well as all non-ideal effects results in a nonlinear, 

nonhomogeneous, variable-coefficient differential equation, the solution of which is intractable. 

In this work, a modified current equation reflecting the injection-level dependency has been 

derived for the first time in the literature. The electric field term deduced in this equation is able 

to identify the effects of the band-gap narrowing, the injection level and the majority carrier 

current density. Concept of perturbation theory is applied to linearize the governing differential 

equation. An exponential approximation technique is introduced to address the intractability 

problem and used to convert this differential equation into a solvable form. The results of the 

developed model shows that pJ  has a significant effect on the base transit time. Close match with 

the numerical simulation results and also with measurement data with two experimental setups 

justifies the validity of the developed model. 
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Chapter 1  

Introduction 
 

 

The base transit time is a very important parameter that determines several other 

performance parameters of bipolar junction transistors. These parameters include the 

maximum frequency of operation ( maxf ), the cut-off frequency ( Tf ) and the noise figure, all 

of which determine the high-frequency characteristics of a bipolar transistor. It is observed 

that the high-frequency performance dominates over other performances of transistors. This 

increasing requirement forces researchers to identify the effects that limit the high frequency 

performance and to devise the technologies to overcome or at least circumvent these 

limitations. In this context, therefore, the accurate modeling for the base transit time is 

becoming important as the different technologies are evolving to improve the performance of 

bipolar junction transistor. The physics underlying the modeling of this transit time is still 

under rigorous research, as this knowledge can be applicable to the devices that involve p-n 

junction(s) e.g. the hetero-junction bipolar transistor (HBT), photodiodes, phototransistors 

etc. 

The Base transit time depends on various factors among which the effects of majority carrier 

current, flowing through the base, has been largely ignored in the literature. In this research 

work, an analytical model is developed considering this effect that is applicable to all current 

injection levels. In this chapter, first, the bipolar junction transistor and the base transit time 

are briefly reviewed. Then the objective and scope of this work is presented. The 
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organization of the work is also included at the end of this chapter.  

1.1 Bipolar Junction Transistor 

Rapid advancement of solid state devices has started since the invention of the Bipolar 

Junction Transistor (BJT) in 1948 by a research team of Bell Telephone Laboratories. Now a 

days, semiconductor devices encompass almost all the aspects of modern life. Transistors are 

now key elements in high speed computers, space vehicles, satellite, all modern 

communication and power systems. 

Transistors work on two different principles: bipolar operation and unipolar 

operation. In the unipolar devices only one carrier, which is of majority, is involved. Field-

effect transistors (FET) are of this type. Operation of the other type involves both type of 

carriers: electron and hole and hence it is called bipolar devices. Unipolar devices, specially 

metal-oxide-semiconductor FETs find applications in the digital circuits specifically for their 

excellent switching characteristics. On the other hand bipolar devices have applications 

mostly in the analog circuits because of their better amplification of switching performances. 

Therefore the research of modern BJT transistors needs to address the frequency limitations, 

the high power effects and the switching behaviour. 

Figure (1.1) shows the cross sectional view of an npn bipolar junction transistor. Two 

p-n diodes connected back-to-back with a common n or p type region called the base 

sandwiched between them operate in a way so that transistor operation becomes possible. 

The carriers in one p-n diode are injected into the base. They travel through the base and 

finally reach the other p-n diode. The contact from which carriers are injected is called 

emitter and the contact where these carriers are reached is called collector. Based on the 

biasing of these two diodes three modes of operation are possible. Of these modes, one mode 

called the active forward mode is used for amplification purposes. This mode is obtained 
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Figure 1.1:  The Cross sectional view of a Typical npn Bipolar Junction Transistor showing 

the Directions of current flow. 
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when one p-n diode, called base-emitter (B-E) junction, is forward-biased while the other 

diode, known as base-collector (B-C) junction is reverse-biased. In this mode of operation, 

majority carriers from the B-E junction are injected into the base region due to diffusion 

aided by the bias. These carriers increase the concentration of minority carriers of the base 

significantly. The strong electric field, caused by the reverse-biased B-C junction, is 

responsible for transporting the increased carriers across the base and to reach the other end 

of the transistor. Also, involved in the process are the minority carriers in the base that 

control the current flow of the transistor. Although base region of a transistor is made thinner 

for practical transistors, there exists several mechanisms and non-ideal effects which 

influence the storage and speed of minority carriers in the base. As a result, the current gain 

that determines the emitter efficiency, an important parameter for amplification, and the 

transit time, which limits the high-frequency performance, are adversely affected. 

The complete expressions for currents in bipolar junction transistors can be derived from the 

following assumptions: 

1. Injection level is low,  

2. The electric field intensity in the bulk, region outside the depletion regions is so 

small that the drift current of minority carriers in the bulk is negligible,  

3. No recombination and generation takes place in the depletion region,  

4. The widths of the emitter and collector regions are greater than the diffusion length 

of the minority carriers so that the minority carrier densities reach their equilibrium 

values at the contacts,  

5. The collector area is much larger than the emitter area so as to collect all electrons 

crossing the collector junction,  

6. Each of the three bulk regions is uniformly doped and both junctions are considered 

to be step junctions so that the change in impurity density, from one region to 
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another, is abrupt,  

7. The emitter current is made up entirely on electrons; the emitter injection efficiency 

is one and  

8. The active part of the base and two junctions are of uniform cross sectional area; 

current flow in the base is essentially one-directional from emitter to collector.  

1.2 Base Transit Time 

As mentioned in the previous section, the transistor performance analysis is mainly based on 

emitter efficiency that depends on the current gain and the high frequency models based on 

transit times. The analysis of emitter efficiency is beyond the scope of this thesis. This 

research deals with base transit time modeling and identifies the limiting factors of high 

frequency performance. 

The high frequency performance is characterized by various figures of merit, e.g. the 

maximum frequency of operation ( maxf ), the beta cutoff frequency ( Tf ) and the alpha-cut 

off frequency f . These parameters are summarized as below: 

 Unity-gain Bandwidth frequency, Tf : This is the frequency at which common-

emitter short-circuit current gain )( =
B

C
fe I

Ih



  is unity.  

 Beta Cutoff Frequency, f : This is the frequency at which common-emitter short-

circuit current gain )( =
B

C
fe I

Ih



  becomes 70.7%  of the mid-band gain. For 

practical amplifiers the usable limit for beta cutoff frequency is Tf0.1 .  

 Alpha Cutoff Frequency, f : This is the frequency at which common-base short-

circuit current gain )( =
E

C
fb I

Ih



  becomes 70.7%  of the mid-band gain. For 

practical amplifiers, Tff  .  
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 Maximum Frequency of Operation, maxf : This defines the maximum oscillation 

frequency. It is the frequency at which unilateral gain becomes unity and can be 

expressed as [1],  

 
2
1

0022
1













Cr
f

S
f T

max


 (1.1) 

where S is the emitter stripe width, 
B

B

W
r 
0 , B  is the average resistivity of the base layer 

and 0C  is the collector capacitance per unit areathe other parameters are constant and 

defined in [1]. The above equation can be rewritten in terms of the base resistance BR  and 

the collector capacitance CC  as  

 
2
1

22
1













CB

T
max CR

ff


 (1.2) 

where  

 
L
SrRB 0=  (1.3) 

 SLCCC 0=  (1.4) 

From the above discussion, it is evident that the main characterizing parameter for high 

frequency operation is the unity-gain-bandwidth frequency Tf . This cutoff frequency 

depends on the physical structure of transistor and can be defined through the total transit 

time ec  as,  

 
ec

Tf
2
1=  (1.5) 

where the the transit time ec  is the total time required for injected minority carriers to travel 

from emitter to collector. This transit time can be divided in five components:   

1. Emitter transit time, E   
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2. Base-emitter depletion layer charging time, eb   

3. Base transit time, B   

4. Base-collector depletion layer charging time, bc   

5. Collector transit time, C   

Therefore,  

 CbcBebEec  =  (1.6) 

A rigorous analysis has been made by J. J. H. van der Beisen [2], where he showed that the 

most influential component is the base transit time, which comprises almost 70%  of the 

total transit time. The next significant contribution comes from emitter transit time. All other 

transit times are negligible. Of all these transit time components, the most complicated one is 

the base transit time owing to inclusion of various non-ideal effects. However, a complete 

analysis that includes all these effects is not available in the literature. 

The average time taken by the minority electrons to travel through the base region is 

called base transit time B . Mathematically, B  can be defined as,  

 dx
xJ
xnq

n

BW

B )(
)(=

0  (1.7) 

 where BW  is the base width. For the low and high injection regions, the analytical 

formulation for the base transit time has been derived. For low injection, )(<<)( xNxn A  and 

for high injection region, )(>>)( xNxn A . For uniform base doping, the expressions for base 

transit time is reduced to [3],  

 
n

B
B D

W
2

=
2

  (1.8) 

 
n

B
B D

W
4

=
2

  (1.9) 

The base transit time depends on a number of factors such as   
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1. Type of Doping profile i.e. uniform, exponential, Gaussian etc,  

2. Band-gap narrowing effect,  

3. Doping, injection level and pJ  dependent electric field,  

4. Doping and field dependent mobility,  

5. Doping and injection level dependent minority carrier lifetime,  

6. SRH and Auger Recombination in the base,  

7. Webster effect,  

8. Velocity saturation at the base-collector (B-C) junction,  

9. Base width,  

10. Base sheet resistance,  

11. Collector current density,  

12. Temperature etc.   

1.3 Literature Review 

In 1985 H. Kroemer [4] generalized the two integral relations deduced by Moll and Ross for 

the current flowing through the base of a BJT to the case of a hetero structure bipolar 

transistor with nonuniform energy gap in the base region and developed a base transit model. 

He showed that the expression for base transit time for low injection region is reduced to 

equation ( 8). J. J. H. van der Beisen [2] studied the base transit time as a function of base-

emitter bias and divided the total transistor time into five components. For this purpose he 

used a regional analysis but did not provide any closed form expression. J. S. Yuan [5] 

investigated the effect of base doping profile on the transit time for all levels of injection. He 

numerically evaluated the base transit time using a proposed equation for minority carrier 

profile and boundary conditions and therefore, his work is not concise. 

K. Suzuki [6] developed a transit model for uniformly doped bipolar transistor for 

high level of injection. In this model he considered the velocity saturation effect at the base-

collector junction. Later he [7] obtained an expression for base transit time with non-

uniformly doped base for high level injection before the onset of the Kirk effect using 
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perturbation theory. But, the equation form for base transit time is not concise and contains 

several integrals. 

Pingxi et. el. [8] proposed a model of transit time that included all of the above-

mentioned effects. However, their model is based on iterative techniques. Hence, the 

obtained expressions in this work are not concise and are inconvenient to understand the 

device physics. Later, a set of initial conditions was proposed by [9] based on unform doping 

profile to reduce the computational time needed in the work [8]. This work is also 

inconvenient since it too is based on the iterative method. 

M. Z. R. Khan et. el. [10] proposed a model for all injection levels using best curve-

fitting technique, where intermediate injection level model was derived from the low and 

high injection models. Therefore, these models are not accurate. Later Hassan et. el. [11] 

developed the intermediate injection level model by extending the low injection models 

using perturbation theory. This model also considered both the field and doping dependence 

of the mobility. 

Conventionally, derivation of all analytical models including the works [2, 3, 5-12] 

for B  were made by neglecting majority-carrier current in the quasi-neutral base. Liou et al. 

[13, 14] in their work considered the role of pJ  in an npn transistor on B ; but their model is 

based on simulation results of pJ  rather than a closed-form analytical expression and it uses 

position-independent transport parameters and applies iterative approach for solution. 

The works in References [15, 16] considered the pJ -dependence in order to develop 

an analytical model for base transit time. Although these works give a closed-form 

expression for base transit time and consider all the non-ideal effects discussed in the 

literature, the models are limited to low injection condition only. Moreover, these models do 

not include the effects of recombination and the lateral base injection in the quasi-neutral 
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base region, which must be included to properly investigate the effects of pJ . Including the 

lateral base injection, Iqbal and Hassan later developed models for nonuniform base doping 

profile [17] under low-level injection. Later, including recombination mechanisms low-

level-injection model [18] and intermediate-level-injection model [19] have been developed 

by the same authors. Although these models are applicable for non-uniform doping profile, 

the models neglect pJ -dependency.  

1.4 Objective 

In an npn transistor, its base Transit time B  is a function of minority carrier concentration 

n(x) and minority carrier current )(xJn . n(x) and )(xJn  depend on various factors among 

which majority carrier current ( pJ ) dependence is not considered yet in the literature, as 

previously mentioned. The main concern of this thesis is to investigate the effect of this pJ , 

flowing through the base, on B . An analytical model of the base transit time considering 

this pJ  effect is therefore needed. This model must include all the non-ideal effects 

incorporated so far in the in the literature. This helps understand the significance of pJ -

consideration in the analytical modeling of B . Since the recombination mechanism and the 

lateral injection through the base have effects on pJ , the desired analytical model should 

include their effects. However, incorporation of all these effects along with pJ  leads to a 

nonlinear, nonhomogeneous and variable-coefficient differential equation. Therefore the 

governing equation becomes mathematically intractable. 

The main objective of this work is to resolve the mathematical intractability of the 

analytical modeling by applying appropriate techniques and using reasonable 

approximations. Next the effects of pJ  using the developed model are to be analyzed by 

comparing with a reference model, which neglects the pJ -dependency only. Finally, the 

validity of the developed model need to be justified against the numerical results and also, 

with the experimental data. 
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1.5 Scope of the Work 

The analytical modeling presented in this thesis considers majority carrier current in the 

base. The model includes all the non-ideal effects except plasma-induced band-gap 

narrowing due to increased injected electrons in the base. The model also neglects the 

temperature dependance. Therefore, the developed model is applicable for room 

temperature. 

1.6 Organization of the Work 

The work described in this thesis is organized as follows. The overview of the basic 

semiconductor equations as well as the brief description of various non-ideal effects are 

presented in the Chapter 2. Chapter 3 details the problems and challenges for the 

development of analytical modeling of base transit time. Chapter 4 describes the appropriate 

techniques, methods and approximations needed to overcome these problems and 

challenges. Chapter 5 details both the low injection modeling and the intermediate injection 

modeling developed. The results and the accompanying discussions are presented in Chapter 

6. Future suggestions for the derivation of the analytical modeling as well as concluding 

remarks are given in the Chapter 7. 
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Chapter 2  

Theory: Equations, 

Formulations and Models 
 

 

In order to conceive the physics behind the non-ideal effects on the base transit time of 

bipolar junction transistors, the basics of semiconductor theory need to be understood 

clearly. Although the fundamental concept of semiconductors requires knowledge of 

complicated physics, quasi-static and quasi-equilibrium approximations and Maxwell-

Boltzmann distribution for carriers are adequate to understand the physics of all non-ideal 

effects in a quite simplistic manner. This chapter starts with the transport equations derived 

from Poisson's equation and then gives a overview of various non-ideal effects on the 

transport parameters i.e. mobility and lifetime. In doing so, physical models that exist in the 

literature are also presented and discussed. 

  

2.1 Device Equations 

2.1.1 Poisson's Equation 

The electric field is quasi-static in semiconductor devices i.e. time-derivatives are neglected 

in non-homogeneous Helmholtz equations as the device dimensions are much smaller than 

the wavelength associated with the operating frequency. Under this quasi-static assumption, 

the electric and magnetic fields are decoupled and the Helmholtz equation reduces to well-

known Poisson's equation given by,  
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


  =2  (2.1) 

 where   represents the space-charge density in semiconductors. This density can be 

calculated from the knowledge of electron and hole concentrations in conduction and 

valence band respectively and from the net ionized impurity concentration AD NNN =  i.e.,  

 )(= Nnpq   (2.2) 

 where n (p) is electron (hole) concentration. 

2.1.2 Continuity Equations 

Since the knowledge of n, p is defined under thermal equilibrium condition only, continuity 

equations are needed to describe the model completely. These equations are given as,   

 qU
t
nqJn 











 =  (2.3a) 

 qU
t
pqJ p 











 =  (2.3b) 

where U represents the net recombination rate per unit volume and nJ , pJ  are the electron 

and hole current densities, respectively. The detailed expressions for these current densities 

require the understanding of the physical mechanisms involving electron transport in the 

semiconductors. On the other hand, the net recombination rate includes several mechanisms 

such as Shockley-Read-Hall (SRH) recombination, Auger recombination, optical generation 

and impact ionization. Considering these mechanisms, the total recombination rate at 

equilibrium condition can be given as [20],  

 IIBBASRH GGRGRGRGRU  )()()(==  (2.4) 

 where SRHGR )(   is due to Shockley-Read-Hall (SRH) recombination, AGR )(   is due to 

Auger recombination, BBGR )(   is due to band-to-band radiative recombination and IIG  is 

due to impact ionization. 
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In order to develop the analytical modeling for a npn bipolar junction transistor, one 

dimensional analysis is preferable as three dimensional analysis is difficult and there is no 

simple way to solve the 3-D differential equations. For one dimensional case, the Equations 

(2.3) reduce to   

 )(= GRq
dx
dJ n   (2.5a) 

 )(= GRq
dx

dJp
  (2.5b) 

2.1.3 Transport Equations 

The transport theory is described by the well-known Boltzmann transport equation (BTE). 

This equation is based on the semi-classical view of carrier transport in semiconductors. 

That is electron moves through a sequence of drifts in the electric field followed by 

scattering events. The drifting time, the type of scattering process and the final state are 

random quantities and are expressed in terms of transition rates due to various processes. 

Still the free motion of electron is deterministic and depends on the spatial distribution of the 

electric field. The BTE can be simplified by assuming the interaction among the carriers to 

be weak (i.e the single-particle approximation), the energy bands to be parabolic, the 

scattering processes to be elastic or isotropic and the carrier temperature to be uniform in 

space and time. Applying the band theory and effective-mass theorem, the BTE can be 

written as,   

 nnn FnqJ =  (2.6a) 

 ppp FpqJ =  (2.6b) 

where nF  and pF  are quasi-Fermi potentials. Using the definitions of the quasi-Fermi 

potentials, equations (2.6) can be written in the familiar form:   

 nqDEnqJ nnn =  (2.7a) 

 pqDEpqJ ppp =  (2.7b) 

  The current densities consist of the drift component caused by the electric field and the 
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diffusion component caused by the carrier concentration gradient. n , p  represent the 

electron and hole mobility respectively and nD , pD  represent the electron and hole diffusion 

coefficient respectively. For non-degenerate semiconductors these parameters are related by 

the Einstein relations:   

 nn q
kTD 








=  (2.8a) 

 pp q
kTD 








=  (2.8b) 

  where 
q

kT  is called as thermal voltage, TV , k is the Boltzmann's constant and T is the 

temperature in Kelvin. In 1-D form, the Equations (2.7) can be represented as,   

 
dx
dnqDEnqJ nnn =  (2.9a) 

 
dx
dpqDEpqJ ppp =  (2.9b)  

2.2 Physical Models 

2.2.1 Heavy Doping Effect: Band-gap Narrowing 

When doping density is large, band structure changes significantly. This is due to [21] 

fluctuations of local potential for statistical distribution of impurities within the crystal 

lattice and interaction between majority carriers and impurity atoms, between impurity 

atoms themselves and between a minority carrier and the surrounding cloud of majority 

carriers. 

Interaction between impurity atoms at large concentrations causes impurity levels to 

broaden into a band. This broadening is further enhanced by the statistical fluctuations of the 

local potential caused by the random distribution of impurities. This impurity-band-

formation theory was developed by Morgan [22] using semiclassical approach. The shape of 
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the impurity band is nearly Gaussian. The width of this band depends on doping density and 

is affected by the screening of majority carriers. From the work of Mertens et. el. [21] it can 

be inferred that, when impurity concentrations becomes very large, the impurity band starts 

to shrink and eventually merges into the conduction band. At high doping densities 

formation of band tails also occur due to the statistical fluctuations of local potential and the 

interaction of low-energy wave packets. The theory of this band tail formation was 

developed by Kane [23]. Also, rigid shift of band-edges occur as a consequence of 

interaction between majority carriers and between the minority and majority carriers. 

Combining the above-mentioned effects leads to an effective bandgap narrowing 

GE , which in turn increases the product of the equilibrium electron and hole concentrations 

as follows:  

 kT
GE

iie enn


2
0

2 =  (2.10) 

 where 0
2

in  is the product of the equilibrium electron and hole concentrations without 

considering band-gap narrowing. An empirical expression for GE  was suggested by 

Slotboom and De Graaf [24-27] as follows:  

  eVaaEE bgng  )0.5= 2   (2.11) 

 where,  

 














refn

i

N
Nlna

,

=  

 and dAi NNN =  represents the total impurity concentration for uncompensated material. 

The parameter values are given as,  

 eVEbgn  0.009=  

 317
,  101.0=  cmN refn  
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 Later [27] these values are corrected to  

 eVEbgn  0.00692=  

 317
,  101.3=  cmN refn  

 and with these parameters, Equation (2.11) can be applicable for both n-type and p-type 

materials. 

Since base doping density )(xNA  varies from 16105  to 318 102  cm  in practical 

use [28], the expression for )(xnie  can be approximated as [28],  

 
2

,

2
0

2 )(=)(














refn

A
iie N

xNnxn  (2.12) 

 where,  

 310
0  101.194=  cmni  

 0.5323=2  

2.2.2 Carrier Mobility: Position and Field Dependance 

Carrier mobility is defined as,  

 *=
em

q
  (2.13) 

 where *
em  is the effective mass and   is the mean scattering time. In order to determine   

and hence  , various scattering mechanisms are included. The most important mechanisms 

for non-polar semiconductors like Si and Ge are deformation-potential acoustic phonon, 

non-polar optical phonon and intervalley scattering. Impurity scattering and electron-hole 

scattering becomes important for these materials when impurity concentration is relatively 

large. Using Mathiessen's rule, the low-field mobility 0  due to these scattering mechanisms 

can be combined as,  
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iopac 

111=1

0

  (2.14) 

 where ac , op , i  represent mobility due to acoustic phonon, optical phonon and inter-

valley scattering respectively. Although Equation (2.14) interprets the general behaviour 

fairly in a qualitative manner, the quantitative agreement is not satisfactory and hence 

empirical expressions containing fitting parameters are used for device-simulation purposes. 

Selberherr [29] exhaustively studied various mobility models proposed in the literature. One 

of the most widely used mobility model for silicon was proposed by Caughey and Thomas 

[30] as,  

 


















r

i

minmax
min

N
N1

=0  (2.15) 

 To include the temperature dependence of the four parameters involved in Equation (2.15), 

slight modifications are made by several authors [Baccarani and Ostoja [31], Arora et. el. 

[32] etc.]. Selberherr has shown that the modified equations are entirely equivalent to 

Equation (2.15), where the parameters are defined as,  

 
0.57

300
88=










 T
min  

 
2.33

300
1252=













T
minmax   

 
2.546
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300
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 1=  

 for electrons and  
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2.33

300
407=













T
minmax   

 
2.546

7

300
102.67= 










TNref  

 1=  

 for holes. 

 These models are not convenient for use in the analytical formulation of the base 

transit time of bipolar junction transistor. For practical base doping density range mentioned 

in section (2.2.1) the low-field doping density dependent electron mobility 0n  model is 

approximated as [28],  

 
1

,
0

)((0)=




















refm

An
n N

xN
kT

D  (2.16) 

 with  

 12 ).(  20.72=(0) sVcmDn  

 317
,  101.0=  cmN refm  

 0.42=1  

 where, 
kT

Dn
n

(0)=(0)  is the electron mobility without considering doping and field 

dependency. 

For low-field hole mobility 0p , Verhoff and Simke [33], Lu and Kuo [34] used 

equivalent doping dependent model, which can be rearranged in following form  

 
3

,
0

)((0)
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


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refm
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 (2.17) 

 with  

 12 ).(  12.5727=(0) sVcmDp  
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 0.38=3  

 where, 
kT

Dp
p

(0)
=(0)  is the hole mobility without considering doping and field 

dependency. 

The electric field dependency of the carrier mobility is expressed by the widely used 

Caughey-Thomas-Thornber [30, 35] expression given by,  

 







 1/

0

0

||1

=


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





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


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




sv
E

 (2.18) 

 where, sv  is the saturation velocity and E is the electric field with  

 scmvsn / 101.04= 7  

 2=  

 for electrons and  

 scmvsp / 108.37= 6  

 1=  

 for holes. 

The field dependent mobility expression for electron n  is further simplified for 

using analytical formulation. This simplification was originally suggested by Kull et al. [36] 

and later modified by Chen and Kuo [37] as,  

 

0

||
=

n

sn
ne

sn
n vEa

v







 (2.19) 

 where, 0.7743=ea  and. This empirical expression is used in the work done by Hassan et al. 

[11] and also in this work. On the other hand, for the field dependent mobility expression for 

hole p , Equation (2.18) can be rearranged as,  
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 (2.20) 

2.2.3 Recombination-Generation 

Recombination-generation processes in semiconductors are influenced by various 

mechanisms which includes photon absorption-emission (radiative transitions), trap-assisted 

recombination, three-particle Auger-impact transitions, plasmon interaction etc. 

In direct gap semiconductors i.e. those having conduction and valence band maxima 

at same crystal momentum, electron transition predominantly occur through photon 

absorption-emission. But this is not the case for indirect-gap semiconductors, such as Ge and 

Si. For these materials, electrons at the conduction band edge have nonzero momentum, but 

holes at the valence band edge have zero momentum and hence, a direct transition that 

conserves both energy and momentum is impossible without a lattice interaction (phonon) 

occurring simultaneously i.e. direct transition requires simultaneous interaction of three 

particles: the electron, the hole and the phonon. The three-particle interaction occurs when 

electron and hole densities are very high and is generally termed as Auger recombination. 

Two-particle interactions are more likely in Si and Ge, as there are ample localized 

energy states within the forbidden energy gap into which electron or holes can make 

transitions. These localized states are always available due to crystal imperfections and 

metallic impurities. There are four processes through which free carriers can interact with 

localized states: electron capture nR , electron emission, nG , hole capture, pR  and hole 

capture, pR . At thermal equilibrium, nn GR =  and pp GR = , since thermal equilibrium 

requires every process must be balanced by its reverse process. When non-equilibrium 

occurs, nn GR   and pp GR  . Under this situation, the localized state will act as either a trap 

or a recombination center. In the former case, carriers will return to conduction or valence 
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band, whereas, in the latter case carriers will recombine at the localized state. Of these two, 

recombination centers are generally considered. 

SRH Recombination 
The theory of trap-assisted recombination-generation was developed by Shockley and Read 

[38] and independently by Hall [39] and therefore the theory was known as "SRH Theory". 

According to this theory, the overall population of the recombination centers are not greatly 

affected as the states are nearly full with majority carriers whether equilibrium or non-

equilibrium occurs. At steady-state condition, SRH model reads the net recombination rate 

as (for acceptor-like SRH centers), 
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ie
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


 (2.21) 

 where,   

 kT
iEtE

ieenn


=1  (2.22a) 

 kT
tEiE

ieenp


=1  (2.22b) 

 1
0 = 

nn c  (2.22c) 

 1
0 = 

pp c  (2.22d) 

  where, tE  is the energy level of traps, 0, pn  is the electron/hole lifetime and pnc ,  is the 

capture probability represented by,  

 tthpnpn Nvc ,, =  (2.23) 

 where, pn,  is the electron/hole capture cross-section, thv  is the thermal velocity and tN  is 

the trap density. For metallic impurities the trap density and hence, the carrier lifetime is 

independent of the doping density, whereas, for nonmetallic impurities they depend on the 

doping density. Fossum et. el. [40] showed that there is an upper limit for carrier lifetime due 

to presence of some fundamental crystal defects which act as recombination centers. The 

equilibrium concentration for such defects varies nearly linearly with doping density. 
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Incorporating these defects Fossum suggested an empirical expression for carrier lifetime 

pn,  as,  
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 The parameters values are given in the work of Fossum [41] as,  

 secn  103.95= 40   

 secp  103.52= 50   

 3150  107.1=  cmNref  

A slightly modified expression for lifetime was proposed by Anheier and Engl [42] as,  
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 with 0.5=, pn . Later, Engl and Driks [43] suggested a possible range of values for pn,  as 

0.6<<0.3 , pn . 

 

Auger Recombination 

For a highly doped silicon, the probability of recombination involving direct transitions is 

negligible as compared with the probability of recombination through traps (SRH 

recombination). This direct recombination is called Auger recombination. In Auger 

recombination, three carriers are involved, either two electrons and a hole or two holes and 

an electron. Two of the carriers recombine and the third carrier carries away the momentum 

of the incoming carrier and energy released by the recombination process. Because of these 

three- carrier interaction Auger recombination is likely to occur when doping density is very 

high. 

Auger recombination can be of band-to-band (phonon-assisted) or trap-assisted. A 

thorough investigation made by Fossum et.el. [44] led to the conclusion that, at any impurity 

concentration, trap-assisted auger recombination does not appreciably change the carrier 
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lifetime. Therefore, band-to-band Auger recombination gets attention at high doping density. 

In this work, it has been shown that minority carrier lifetime turns out to be inversely 

proportional to the square of impurity concentrations, when impurity concentration becomes 

very high, indicating dominance of Auger recombination. 

In the Auger recombination four partial processes are involved:   

1. nR : An electron moves to the valence band from the conduction band where it 

neutralizes a hole, and delivers the energy between its initial and final states to 

another conduction band electron.  

2. nG : An electron from the valence band is hit by a high-energy electron, and is 

excited to the conduction band.  

3. pR : A electron moves to the valence conduction band from the conduction band 

where it neutralizes a hole, and delivers the energy between its initial and final 

states to another hole which is excited to high-energy state (deeper in the valence 

band).  

4. pG : An electron from the valence band is hit by a high-energy hole, and is 

excited to the conduction band.  

At thermal equilibrium, nn GR =  and pp GR = . When non-equilibrium occurs, nn GR   and 

pp GR  . At steady-state condition, the net Auger recombination rate can be expressed as,  

 ))((=)( 2
ieApAnA npnpCnCGR   (2.26) 

where, pAnC ,  are the Auger coefficients and can be determined from electrical or optical 

carrier lifetime measurements. Dziewior and Schmid [45] performed determination of these 

coefficients from photoluminescence decay measurements following laser excitation. Their 

results show that Auger coefficients are less temperature-sensitive between 40077   K with 

room temperature values being  
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 1631   102.8=  seccmCAn  

 1632   109.9=  seccmCAp  

By including the temperature dependence, the Auger coefficients can be expressed as,  

 2373431  102.44 108.16100.67= TETCAn
   

 2373431  102.92 100.15100.72= TTCAp
   

2.3 Conclusion 

In this chapter the basic semiconductor equations and the physical models associated with 

transport parameters are briefly reviewed. These equations are device-independent. 

Appropriate application of these equations are very important in order to analytically 

formulate the model of the device characteristics. In the next chapter, these equations are 

discussed in the context of an npn bipolar transistor with non-uniformly doped base under 

arbitrary injection level so that the problems of the base transit time modeling can be 

understood. 
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Chapter 3  

Problems and Challenges of 

Base Transit Time Modelling 
 

 

In the previous chapter the fundamental equations and models are discussed that are 

applicable for any semiconductor device. For an npn bipolar transistor all these are to be 

reviewed so that the limiting effects on the base transit time can be understood. In this 

chapter equations and the models are discussed in the context of an npn bipolar transistor 

under arbitrary injection-level condition and for arbitrary doping profile. The problems and 

challenges that have to be overcome for accurate modelling are examined. 

 

3.1 Non-Ideal Effects 
 
The base transit time of a bipolar transistor depends on the velocity of minority carriers and 

the base width. The velocity depends on the mobility and the electric field. Both these 

factors are strongly influenced by the doping profile and the injection level. The mobility is 

dependent on the electric field when electric field crosses a critical limit. Furthermore, 

various non-ideal effects affect the electric field; these include the band-gap narrowing 

effect, the Webster effect, the Kirk-effect, velocity saturation at the base-collector junction, 

majority carrier current density in the base, lateral current injection through the base and 

recombination in the base. Therefore, an accurate model of electric field acting on the 

minority carriers in the base is almost a formidable task considering all these factors. Since, 
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high frequency operation of bipolar transistors is mainly limited by the base transit time that 

gets reduced with increased electric field, a clear physical understanding of electric field and 

the role of other factors is a must. In this section, this objective is explored. 

The problem of modelling electric field in the base for bipolar transistors with low 

and uniform base doping profile is simple, since all the above-mentioned effects become 

negligible. Therefore, in this case, the electric field can be assumed to be zero. But when 

doping profile becomes nonuniform, the electric field can no longer be neglected. Actually, 

nonuniform base doping profile is often engineered to enhance the minority carrier flow 

towards the collector. When base doping profile is nonuniform, majority carriers tend to 

diffuse towards the collector due to concentration gradient. This tendency is counterbalanced 

by an electric field which retards the majority carrier flow. The electric field is created in a 

direction such that the minority carriers in the base are quickly swept to the collector. This is 

termed as built-in electric field. If the doping profile is kept low i.e. of the order of 314 10 cm  

to 316 10 cm , the above-mentioned effects, except the injection-level dependency, can still be 

neglected [1, 2, 5, 13, 14, 49] and the majority carrier current density can be considered as 

zero. For an npn bipolar transistor this assumption can be read as,  

 0==
dx
dpqDpEqJ ppp   (3.1) 

 where, pJ  is the majority carrier current density, ANxnxp )(=)( , AN  is the acceptor 

doping concentration in the p-type base and n(x) is the injection-level dependent minority 

carrier concentration. This assumption, therefore, can be used to evaluate electric field as,  

 )( =)(1= xlnp
dx
d

dx
xdp

pV
E

T

 (3.2) 

 where, TV  is the thermal voltage and is defined in section 2.1.3 as,  
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Here, the complexity arises due to the injection-level dependency. Fortunately, this is 

not a severe problem since the injection level can be considered as low i.e, ANxn )(  for 

base doping levels less than an order of 317  10 cm  for an operating base-emitter voltage BEV  

up to 0.75  V. For BEV  higher than 0.8  V, high injection effects occur which causes base-

widening. Therefore, base width BW  no longer remains constant. Under high-injection 

conditions, transit-time modelling is done, in the literature, by assuming that ANxn )( . 

Since, the intermediate region between these low and high level regions is very narrow, the 

consideration of such region for low base doping levels ( 317 10< cm ) can be safely 

neglected. This greatly reduces the complexity of analytical modelling for such base doping 

levels, since at this intermediate region the assumptions, ANxn )(  or ANxn )( , is no 

longer valid. 

If base doping concentration exceeds the limit of 317  10 cm , none of the non-ideal 

effects can be neglected. Hence, the physics behind these effects has to be addressed for 

accurate modelling of base transit time. In the following subsections these effects are briefly 

described. 

3.1.1 Band-gap Narrowing Effect 

At high doping level, band-edge shifts for both valence and conduction bands which is 

known as the band-gap narrowing effect. Since, the doping profile in the base is nonuniform, 

the band-gap narrowing becomes position-dependent and it decreases from emitter side to 

the collector side. As a result, the energy band diagram in the base becomes position-

dependent for which two important modifications need to be incorporated. One is the 

modification of the intrinsic carrier concentration and the other is the presence of an electric 

field that retards the built-in electric field. The effective intrinsic carrier concentration ien  

can be modeled by considering the various interactions among the carriers and therefore, the 



 

 

29 

 

expression becomes very complex. A simplified expression can be used for ien  at high 

doping levels, following the empirical expression suggested by Slotboom  et. el. [24-27], as 

shown below [Section (2.1)]  
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The estimation of the retarding fields caused by band-gap narrowing becomes complicated 

since both valence and conduction band-edges are shifted by CE  and VE , respectively. 

One way to resolve this complexity is to derive the current transport equations by first 

considering the band-edge shifts and then determine the retarded electric field from the 

deviation observed from the current transport equations that ignore the band-gap narrowing 

effect. This derivation was first carried out by Van Overstraeten et.el. [46], where the 

generalization of the transport equations are made for the case of a position-dependent band-

gap by employing the Fermi-Dirac distribution function. This generalized transport 

equations become simplified for Maxwell-Boltzmann distribution and also if equal band-

edge shifts are assumed for valence and conduction bands. Since, base doping concentration 

is limited below 318 10 cm  for device considerations, this simplified transport equations can 

be employed to describe the effect of band-gap narrowing. From these simplified transport 

equations, it can be inferred that the electric field acting on minority carriers is less than that 

acting on majority carriers and the relation between these fields can be expressed as,   
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 )( = xlnp
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p  (3.4b) 

   for p-type base in an npn transistor and,   
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 )( = xlnn
dx
d

V
E

T

n  (3.5b) 

  for n-type base in a pnp transistor and where, nE  and pE  are the electric fields acting on 

the electrons and holes, respectively. The logarithmic derivative term in these expressions is 

due to the position-dependent band-gap narrowing and therefore, represents the retarding 

component of electric field. 

3.1.2 Velocity Saturation Effect 

The Velocity saturation of the minority carriers near the base-collector (B-C) junction has to 

be incorporated in the analytical models. The commonly used assumption of zero minority 

carrier concentration at B-C junction can no longer be justified at high doping levels 

because, it leads to an unrealistic situation in which the minority carriers are required to 

cross the B-C junction at an infinite velocity. For an npn bipolar transistor, this can be 

explained from the relations given by,   

 andbasetheinxanyatxnxqvxJn )()(=)(  (3.6a) 

 0=)( BWn  (3.6b) 

 Since, the minority carriers cross the B-C junction at BWx = , the electron current density 

nJ  at the B-C junction is not zero, which leads to  

 =)( BWv  (3.7) 

 Therefore, the minority carriers that cross the B-C junction should have a finite velocity. 

Since, the electric field at the base-collector junction is higher than a critical limit, the 

velocity of the minority carriers must be saturated near the B-C junction. Roulston  et. el.  

[47] investigated this phenomena and suggested that the electron current density at the B-C 

junction for a bipolar transistor can be expressed as,   

 transistorbipolarnpnWnqvWJ BsnBn )(=)(  (3.8a) 

 transistorbipolarpnpWpqvWJ BspBp )(=)(  (3.8b) 
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where, snv  and spv  are the saturation velocities for electron and holes respectively and 

BWx =  denotes the base-collector junction. Equations (3.8) can be used as a boundary 

condition for determining minority carrier concentration profile in the base. Although the 

minority carrier velocity saturates before reaching the B-C junction, there is yet no analytical 

expression to determine the exact location in the base near the B-C junction where the 

velocity saturation occurs. 

3.1.3 Webster Effect 

Webster [48] showed that the electric field in the base is modulated by the minority carriers 

in the base as injection level increases. This modulation of electric field is negligible for low 

injection levels in which minority carrier concentration is much smaller than base doping 

concentration i.e. )()( xNxn A . However, as injection level increases, this assumption 

leads to erroneous results [6, 7, 11]. 

The pn-product for any extrinsic semiconductor under non-equilibrium condition can 

be expressed as [1, 49],  

 TV
xV

ie exnxnxp
)(

2 )(=)()(  (3.9) 

where, the effective carrier concentration ien  is used to include the band-gap narrowing 

effect and the local voltage is V(x). As the electric field in the base region varies from the 

emitter side to the collector side, so does the local voltage V(x). Since the distribution of 

minority carriers in the base is unknown, the electric field and hence, the voltage V(x) 

cannot be determined. However, the voltage across the base-emitter junction BEV  is known. 

Therefore, the equation (3.9) can be used to determine the boundary value of minority carrier 

concentration. For an npn bipolar transistor, this boundary value can be expressed as,  

 TV
BEV

ie e
p

nn
(0)
(0)=(0)

2

 (3.10) 
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where, 0=x  denotes the base-emitter junction and BEVV =(0) . Under low-injection 

conditions, (0)(0) ANp  . Therefore, the equation (3.10) can be approximated as,  

 TV
BEV

A

ie
l e

N
nn

(0)
(0)=(0)

2

 (3.11) 

 where, (0)ln  denotes the boundary value under low-injection condition. When injection 

level increases, n(x) cannot be neglected compared to )(xNA  and hence the relation 

(0)(0)=(0) ANnp   must be used. Therefore, the equation (3.10) results in a second order 

linear equation of (0)n  as,  

 0=(0)(0)(0)(0) 22 TV
BEV

ieA enNnn   (3.12) 

 The solution of this equation gives the expressions for n(0) and p(0) as,   
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Substituting the value of p(0) in the equation (3.10) and rearranging the terms in the 

denominator gives the boundary value of n(x) at the base-emitter junction as,  
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where, the factor wf  is expressed by  
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reflects the injection-level dependency of the boundary value. Under low-injection this factor 

becomes unity; but as the injection level increases, this factor decreases from unity. Since, 

the minority carrier distribution throughout the base region decreases from the value of n(0), 

this distribution in the base decreases as the injection level increases. This decreasing trend 

of n(x) with injection level results in a lower gradient of n(x) and hence, of p(x). Since, 

electric field is the logarithmic derivative of p(x) (Equation 3.2), it can be concluded that the 

electric fields in the base decrease as injection level increases. 

3.1.4 Kirk Effect 

Kirk effect [50] occurs at high-injection level condition i.e. when minority carrier 

concentration becomes greater than the base doping levels. For an npn bipolar transistor, this 

condition is expressed as )()( xNxn A . Under such condition the number of electrons 

entering the base-collector depletion region cannot be neglected compared to the 

concentration of negatively charged acceptor ions present in the B-C depletion region. Thus, 

the total number of negative charges at the base side of this depletion layer increases 

significantly. In order to accommodate this increase of negative charges compared to the 

positive charges at the collector side, the depletion layer at the base side has to shrink which 

in turn causes the increase in base width. This phenomena is termed as the base-width 

modulation. The result of this phenomena is the increase of the base transit time. The onset 

of the Kirk effect is determined from this phenomena, which can be used as an indication of 

high-injection effects. The Kirk effect occurs when the number of minority carriers that cross 

the B-C junction )( BWn  is comparable to the base doping concentration AN . However, for 

device considerations, AN  must be higher than the collector doping concentration CN . 

Therefore, the condition for not triggering the high injection effect for an npn bipolar 

transistor can be given as,  

 CB NWn )(  (3.16) 

From the Equation (3.9) it is evident that the above condition can be achieved by increasing 

base doping concentration as minority carrier concentration is inversely proportional to the 

base doping density. From the same equation it is also evident that )( BWn  becomes 
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comparable to CN  at higher bias levels for heavy doping since )( BWn  can be increased by 

increasing the bias. In other words, high injection level occurs at a higher voltage level for 

heavy base doping. Therefore, the )( BWn  and hence, the electron current density nJ  

becomes much higher for heavy doping than that found at lower doping. Hence, the current 

capability of bipolar transistors can be increased up to hundred times using high base doping 

levels. This increased current capability reduces the base transit time considerably even at 

the high bias levels despite the retarding effect of high injection effects. 

Another significant effect of heavy base doping is that it introduces an intermediate 

injection level. This intermediate injection level for such doping can no longer be negligible. 

Under intermediate injection level condition n(x) is comparable to AN  and hence, the 

analytical model for this region becomes further intractable. This intractability problem can 

be overcome by first deriving the low injection model which can then be extended to 

intermediate injection levels by the use of perturbation theory as suggested by Suzuki [28]. 

3.1.5 Doping and Field Dependence of Mobility 

At low base doping density, the minority carrier mobility in the base can be regarded as 

constant i.e. independent of doping density and independent of electric field. As base doping 

increases beyond the order of 316 10 cm , the position and field dependency of mobility 

cannot be neglected. For an npn bipolar transistor with a high doping density, the electron 

mobility considering both these dependency can be expressed as [section 2.2.2],   
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  where, 0n  represents the low-field electron mobility. For convenience, the equations 

(3.17a) and (3.17b) can be expressed in terms of diffusivity as,   
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3.1.6 Recombination Effects 

As discussed in Section (2.2.3), recombination-generation mechanisms include SRH 

recombination, trap-assisted Auger recombination, radiative recombination and impact 

ionization. For Si bipolar transistors, the first two mechanisms are significant when the base 

doping density is high. Of these, Auger recombination becomes more dominant as doping 

density increases. For indirect semiconductors, such as silicon, the radiative recombination is 

insignificant [20] due to small photon momentum. The Impact ionization is the reverse 

process of Auger recombination. For the neutral bulk region this term can be omitted 

because there is no spontaneous generation in this region. Therefore for the bulk silicon of 

highly doped base, the total recombination rate can be written as,  

 AugerSRH GRGRGR )()(=   (3.19) 

 where,   
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ieApAnAuger npnpCnCGR   (3.20b) 

where, pn,  are the doping-dependent electron and hole lifetime. The empirical expressions 

of these electron and hole lifetimes given in Section (2.2.3) are rewritten for the base region 

of an npn bipolar transistor as,   
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For the neutral base region, traps can be considered as shallow-level i.e trap-centers are very 

close to the intrinsic Fermi level. Therefore, 1nn   and 1pp  . Incorporating these 
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considerations the Equations (3.20) can be modified as,   
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Applying the charge-neutrality condition in the base i.e ANnp = , these expressions can be 

reorganized as,   
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where,  
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Combining these two recombination mechanisms, the current continuity equations in the 

base region can be expressed as,   
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The physical significance of the term xR  can be appreciated if the Equation (3.24a) is 

compared with the electron continuity equation given in standard text books for electron 
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continuity equation under low-level injection condition given by  
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where, n  is the minority electron lifetime. The term xR  can be labeled as Inverse Life Time 

in this context. 

3.1.7 Lateral Injection Through Base 

The work of G.T Wright and P. P Frangos [51], concerning high power npn bipolar junction 

transistors, has shown that the analysis for minority electron concentration profile and 

minority electron current density that neglect the lateral base current density for operation in 

saturation region is not valid. Therefore, the authors have added the majority carrier current 

density in their analysis. 

In order to develop a simple analytical model for bipolar junction transistor, some 

means must be found to incorporate the lateral injection of base current into the active base 

region. This can be done by the use of an approximate source function bG  suggested by B. 

V. Gokhale [52]. The hole current continuity equation in the base region for an npn bipolar 

junction transistor can be modified as,  

 b
ie

x
p qG

p
nnqR

dx
dJ

 )(=
2

 (3.27) 

The physical model for the source function bG  is not clearly understood. Gokhale [52] 

proposed a constant for this function within an effective electrical base width. A better and 

intuitively acceptable description is to assume that the lateral base current, and hence the 

source function is proportional to local concentration of the majority carriers in the base 

[51], as given by  

 )(= xgpGb  (3.28) 

where the coefficient g is the rate constant which describes the lateral injection of base 

current. In this way, the physical mechanism of majority carrier current flow can be 



 

 

38 

 

incorporated in the model. Divergence of majority (hole) current given by Equation (2.5b) 

can be reformulated as,  
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where locally valid charge-neutrality condition is used. 

3.1.8 Majority Carrier Current Dependence 

Conventionally the majority carrier current density in the base region is neglected in the 

analytical modelling of base transit time. This is justified for low base doping densities, 

since the contribution of this current density towards the electric field and hence, the base 

transit time is insignificant. But, the contribution becomes increasingly significant as base 

doping level is increased. Since inclusion of this majority carrier current density makes the 

analytical modelling rather complicated, this is usually neglected in the literature, even for 

heavy base doping. The modifications required in this regard are presented in this 

subsection. 

If majority carrier density is not neglected, the hole electric field in the base region of 

an npn bipolar transistor can be expressed, as an alternative to the expression given in 

Equation (3.4b), as  
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Due to heavy base doping, the hole mobility is both doping level and electric field 

dependent. Considering this fact, the hole mobility then can be expressed as [section 2.2.2],   
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where, 0p  represents the low-field electron mobility. For convenience, the above equations 

can be expressed in terms of diffusivity as,   
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where,  
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Since pE  is negative in the base region, a minus sign is used to make it positive i.e. 

||= pp EE  . Substituting the expression of pE  given by Equation (3.30) in the Equation 

(3.32a) results,  
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Now, rearranging the terms in the above equation gives an expression for diffusivity as,  
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Using this expression for hole diffusivity in the Equation (3.30), the hole electric field pE  

can be obtained in terms of )(xJ p  and )(xp  as,  
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The simplification of Equation (3.33) results in  
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Using charge neutrality condition )()(=)( xNxnxp A , the Equation  (3.36) can be further 

rearranged as,  
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The electron electric field nE  can be found from the Equation (3.4a) as,  

 
)( 

)()()(

1)(
= 20

ie

p
sn

h
A

p
p

A

T

n nln
dx
d

xJ
qv
axNxn

qD
xJ

dx
dN

dx
dn

V
E





  (3.38) 

The electron mobility given by Equation (3.18a) can be expressed as,  
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which is further rearranged by using the Equation (3.18b) to reflect the dependency of 

diffusivity on n(x), )(xNA  and )(xJ p  as,  
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An expression for pJ  is required to determine the electric fields and mobilities. In order to 

obtain this expression for pJ , the hole current continuity equation given by Equation (3.29) 

can be integrated as,  
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The integration constant K and the generation rate g can be determined from the boundary 

values of pJ  at 0=x  and at BWx =  i.e. (0)pJ  and )( Bp WJ . Of these two constants K can 

be determined easily as,  

 (0)= pJK   (3.42) 

The minus sign is introduced in the above equation as pJ  is negative for an npn bipolar 

transistor. The other constant g can be determined by performing the two integration of the 

right side of Equation (3.41), which require knowledge of )(xn , )(xNA  and xR . 
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 Considering unform doping profile in the emitter and collector regions, the boundary 

values for )(xJ p  i.e. (0)pJ  and )( Bp WJ  can be given for the forward-active mode operation 

of an npn bipolar transistor as,   
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where,  

 regionemittertheinmobilityholetheDpE =  

 regioncollectortheinmobilityholetheDpC =  

 regionemittertheinionconcentratintrinsiceffectivethenieE =  

 regioncollectortheinionconcentratintrinsiceffectivethenieC =  

 ionconcentratdopingemittertheNE =  

 ionconcentratdopingcollectortheNC =  

 andwidthemittertheWE =  

 widthcollectortheWC =  

The hole mobility in n-type silicon is different from the hole mobility in p-type silicon. As 

suggested by the works [53, 54], the mobility ratio for holes can be taken as,  
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  (3.44) 

Using the above relation, (0)pED  and (0)pCD  can be calculated from the following 

relations:   
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For a n -p-n transistor, emitter doping level is higher than the base doping level and 

collector doping level is comparable with the base doping level. Therefore, effective intrinsic 

carrier concentrations in the emitter and collector regions must include the band-gap 

narrowing effect. Considering this fact (0)ieEn  and (0)ieCn  can be calculated from the 

following relations:   
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For the non-unform doping profile in the emitter, the expression for (0)pJ  need to be 

modified. Since the emitter doping level is very high (of the order of 320 10 cm ), low-

injection condition prevails there under normal operating condition. Therefore, 

recombination in the emitter can safely be neglected, majority carrier current in the emitter 

nJ  can be assumed as zero and the field-dependency of the carrier mobility can be ignored. 

All these considerations lead the governing differential equation for minority hole 

concentration in the emitter  
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where electric field pE  is expressed considering bandgap narrowing effect as  
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where dN  is the emitter doping concentration. The boundary conditions for the emitter 

region are given as  
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where 0=x  and EWx =  are assumed at the emitter side of the base-emitter junction and the 

emitter surface side, respectively. Using the boundary conditions result in the expression for 

pJ  as  
dx

qDn
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pie
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20

 (3.52) 

This expression for pJ  in the emitter region can be used as the boundary value for pJ  i.e 

(0)pJ  at the base side of the base-emitter junction in the base region. For uniform doping 

profile, this expression leads to the expression given by the Equation (3.43a). For 

exponential and Gaussian doping profiles, (0)pJ  can be obtained as,   
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where the emitter doping for exponential and Gaussian profile can be assumed as   
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where E  is the logarithmic slope of the doping profile given by  
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where EN  and )( Ed WN  are the emitter doping concentrations at 0=x  and EWx = , 

respectively. 

 

3.2 Problems and Challenges of Base 

Transit Time Modelling 
In the previous section, the physical models of various non-ideal effects have been briefly 

reviewed. Inclusion of these models make the analytical modelling complicated. When 

majority carrier density is considered in the modelling, whether it is intended to do under 
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low injection condition or intermediate injection level condition, the degree of complexity 

increases so much that the modelling becomes intractable. In this section, the problems and 

the difficulty level of this modelling effort are explored. 

 In order to obtain an expression for the base transit time for an npn bipolar transistor, 

the minority electron concentration n(x) and the electron current density )(xJn  need to be 

determined. Conventionally, the determination procedure involves the expression for 

electron current given by Equation (2.9a), which is recalled here as,  
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 By dividing each term by nqD , a first order differential equation of n(x) is formed as,  
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 The solution of this equation gives n(x) and )(xJn . The above equation therefore can be 

treated as the working differential equation for the base transit modelling. This apparently 

simple differential equation becomes very much complicated when majority carrier current 

density, recombination and all other non-ideal effects are included. Using the expression of 

nE  and nD  transforms the differential equation as,  
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The above equation can be rearranged as,  
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The analytical solution of this differential equation is intractable, because   
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 The differential equation is non-linear and non-homogeneous.  

 The expression of pJ  requires knowledge of n(x) as is evident from Equation (3.41), 

which in turn requires the knowledge of pJ .  

 As seen from the expression for xR  given by Equation (3.25), inclusion of 

recombination mechanisms makes the expression a complex one, which requires 

knowledge of n(x). Therefore, the integration of the term containing xR  of Equation 

(3.41) becomes intractable.  

 The term representing lateral injection through base of Equation (3.41) imposes 

further complexity in deriving the expression for pJ .  

 As recombination is considered, nJ  can no longer be treated as constant as used 

conventionally.  

 For low-level injection )()( xNxn A  assumption can be used, which simplifies the 

solution greatly. But for intermediate injection level condition this assumption cannot 

be used.  

 Since, dependency of doping and electric field is considered for electron mobility, 

the right hand side of the above differential equation is not a simple one as obtained 

when pJ -dependency of electric field is not considered.  

 Since, the base doping profile is non-uniform, the analytical solution becomes 

impossible.  

 Since the coefficients of the differential equation is variable, the determination of 

integrating factor to solve this equation is not simple and easy.  

In order to obtain a tractable solution of the differential equation given by the Equation 

(3.59), following challenges have to be overcome:   

 The differential equation contains two unknown variables )(xJn  and )(xJ p . Since 
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recombination and lateral base injection are considered, both these terms are no 

longer constant. 

 One way to remove )(xJn  from the differential equation is to differentiate the 

equation (3.59) and then using the electron current continuity equation given by the 

Equation (3.24a). But the coefficients of n(x) and )(xJn  contain n(x) and its 

derivative as well as )(xJ p . Again, )(xJn  itself is included in the coefficient of 
dx
dn . 

Therefore, further differentiation makes the non-linearity problem of the differential 

equation even more complicated and hence, removal of )(xJn  is a big issue. 

 Another major issue is the determination of pJ . The expression for )(xJ p  given by 

Equation (3.41) shows that that the integration of the terms is analytically impossible 

because these terms contain unknown n(x). 

 The non-linearity of the differential equation is due to the presence of the terms n(x) 

and )(xJ p . Some means must be made to overcome the problem by approximating 

n(x) without the loss of generality. 

 The non-homogeneity problem can be replaced by removing nJ  which is not easy. 

Moreover, since 
nqD

1  term is multiplied with )(xJn , a simplified form of this term is 

needed to resolve the non-homogeneity problem. 

 Since the variable coefficients of the above-mentioned differential equations are 

complicated in nature, these terms must be converted into suitable forms for 

achieving tractability. 

 Resolving all the above-mentioned challenges still leaves an analytically unsolvable 

differential equation. It is therefore intended to devise some transformation 

techniques so that the differential equation becomes solvable. 
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3.3 Conclusion 

This chapter briefly describes the various non-ideal effects on base transit time modelling. 

These non-ideal effects are not strictly additive and therefore, not only make their effects 

difficult to understand but also present a lot of problems and challenges for analytical 

modelling. The problems and the challenges that are observed due to these effects have been 

investigated in this chapter. Resolving the problems and overcoming the challenges is the 

next job to do. This requires the choice to devise appropriate method and techniques. By 

explaining the origin and cause of these difficulties, this chapter creates a foundation for 

successful analytical modelling presented in the following chapter. 
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Chapter 4  

Methodology 
 

 

In the previous chapter the problems and the challenges that are to be addressed faced in 

order to derive an analytical model of base transit time have been discussed. The challenges 

are mainly due to the nonlinearity, non-homogeneity and presence of complicated variable 

coefficients in the governing differential equation. In order to overcome these challenges, 

suitable techniques and appropriate approximations are needed. The techniques and 

approximations must be such that the physics is not ignored while making the model 

mathematically tractabe. Even then some transformation methods must be devised to make 

the working differential equation into familiar form. Keeping all these constraints in mind, 

this chapter aims to find out the roots of the problems and then proposes techniques and 

approximations to overcome the challenges. 

4.1 Nonlinearity Problem: Solution 

Techniques 

The first-order differential equation derived considering all the non-ideal effects in section 

(3.2) is repeated here for convenience. 
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The nonlinearity of this differential equations is due to the presence of n(x). Therefore, to 

overcome the nonlinearity removal of n(x) is a necessary. For this concept of perturbation 

theory is used. Moreover, presence of nJ  term in the coefficient of 
dx
dn  complicates the 

nonlinearity. This also should be carefully resolved and an approximation for diffusivity is, 

therefore, needed. In the following subsections, the techniques of overcoming the problems 

are explored. 

4.1.1 The Perturbation Theory 

The expression for electron electric field derived in the previous chapter is recalled here:  
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 (4.2) 

This expression shows that electric field depends on both the concentration and the gradient 

of the base doping profile, the minority carrier concentration as well as on the band-gap 

narrowing effect and the majority carrier density. Since, the concentration and the gradient 

of minority carrier concentration changes as bias voltage changes, the electric field has a 

strong dependency on the injection level. All of these dependencies need to be identified 

clearly in the expression for electric field. Concept of perturbation theory using Webster 

effect [48] can be used for this purpose. 

In order to reflect the injection level dependency of electric field, the Equation (3.38) 

has to be modified further. For this purpose, the perturbation theory is used. Since, the low 

injection (LI) level solution can be obtained directly, intermediate injection level solution 

can be obtained from the perturbed LI solution using the Webster effect [48]. Webster 

showed that the electric field in the quasi-neutral base is modulated by the minority carrier 

concentration. Again, the injected minority carriers at the base emitter junction (i.e 0=x ) 
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(0)n  is modified from its low-injection value (0)ln  by a voltage dependent factor wf  

(described in the section (3.1.3), which is insignificant under LI conditions but has to be 

incorporated under intermediate and high level injections, given by  

 wl fnn (0)=(0)  (4.3) 

Although this expression holds at 0=x , it is expected that the same holds throughout the 

base region provided a correction term is incorporated. This correction term is needed since 

the electric field throughout the base is not uniform due to change in the carrier 

concentration with increased injection level as was shown by Webster. This correction term 

is therefore both position and voltage dependent. This is the basis for applying perturbation 

theory and was introduced by Suzuki [7]. According to this theory the minority carrier 

concentration at any position in the base under any injection level n(x) can be determined 

provided that the same can be obtained under low-injection condition ( )(xnl ) and the 

position and voltage dependent correction term is known. Mathematically, this can be 

expressed as,  

 )()(=)( xfxnxn nwl   (4.4) 

where, )(xn  represents the correction term and wf  is introduced to incorporate Webster 

effect. Although )(xn  increases with the injection level and with the position in the base, 

for the accuracy of model derivation, this )(xn  must be such that  

 Awln Nfxnx )()( =  (4.5) 

instead of wln fxnx )()(  . As a result, the hole concentration in the base can be expressed 

as,  

 Al Nxnxp  )()( 2  (4.6) 

where, wll fxnxn )(=)(2 . It is also important to note that the application of the perturbation 

theory is limited to intermediate injection level only. This is not applicable to high injection 
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condition since under that condition )()( xNxn A  and therefore, condition (4.5) is not 

valid. Hence, the intermediate injection model using perturbation theory is limited by the 

onset of the Kirk effect. However, using the perturbation theory the terms containing 

)()( xNxn A  can be replaced by )()(2 xNxn Al   and therefore, the non-linearity problem 

can be resolved. 

4.1.2 Approximation of Electron Diffusivity 

Using the concept of perturbation theory, the first order differential equation of minority 

carrier concentration can be rewritten as,  
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where, 1ln  represents 0ln  and 2ln  under respective conditions as listed in Table (4.1). The 

coefficient of nJ , which represents the term 
nqD

1 , contains a a term 
dx
dn  which cannot be 

known without the knowledge of n(x). An alternative way of representing the above 

equation is  
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where minus sign is used to reflect the negative direction of electron electric field. Here, the 

coefficient of 
dx
dn  contains the term nJ  which can be known if n(x) is known. Either 

representation [Equation (4.7) or (4.8)] of the governing differential equation suffers with the 

problem of unknown coefficients. A suitable approximation can resolve this problem. In the 

representation given by Equation (4.7) the concept of perturbation theory can be used by 
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approximating the term 
dx

Nnd
dx
dp A)(=   as 

dx
Nnd Al )( 2   in the right hand side of the 

Equation (4.7). In the representation, given by Equation (4.8), no such approximation can be 

applied for the unknown term )(xJn  contained in the coefficient of 
dx
dn . The approximation 

to be applied for the term 
dx
dp  contained in 

nqD
1  was first used and examined by Suzuki in 

his work [7], where he showed that this approximation does not lead to any significant error 

compared to simulation results. Therefore, the electron mobility can be expressed in terms of 

electron diffusivity as,  
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 Under the low-injection condition, the above expression is reduced to,  
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Using the approximated diffusivity, the governing differential equation can be rewritten as,  
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4.2 Derivation of )(xJ p  
The electron electric field nE  is related to the hole electric field pE  which in turn depends 

on majority carrier current density pJ . But the knowledge of pE  and pD  is required to 

obtain pJ . The problem becomes more complicated since pD  and pE  are interrelated. To 

solve this problem, the hole current continuity equation must be solved, which requires the 

knowledge of recombination mechanism and lateral base injection mechanism. However, the 

recombination indeed depends on the minority electron concentration which is a parameter 

yet to be determined. Under these circumstances, use of the perturbation theory and 

appropriate approximations resolves the problem. 

The hole current continuity considering recombination and lateral base injection is 

given by  
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 where,  
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 Under low-injection condition ANn =  and using the condition 
p

nn ie
2

?  due to heavy doping, 

this equation simplifies to  

 Allxl
pl NqgnqR

dx
dJ

  (4.14) 

 where, plJ , xlR  and lg  are the majority current density, recombination term and generation 

rate respectively under low-injection condition and  
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 (4.15) 

The equation (4.14) is still analytically unsolvable since )(xnl  has to be known, which in 

turn cannot be determined without knowing plJ . This problem can be overcome as follows. 

At first, the recombination mechanism is neglected to determine majority carrier density. 

This reduces the Equation (4.14) to  

 Al
pl Nqg

dx
dJ

0
0
  (4.16) 

Using this 0plJ  in the differential equation results in an expression for )(0 xnl , the minority 

carrier concentration under low-injection condition neglecting recombination mechanism. 

The minority carrier concentration considering recombination )(xnl  cannot be deviated 

significantly from )(0 xnl  which neglects recombination under low-injection condition. 
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Therefore, concept of perturbation theory can be applied to determine )(xnl  and the relation 

between these two can be expressed as,  

 )()(=)( 00 xnxnxn ll   (4.17) 

where, )(0 xn  represents the deviation. Assuming the same consideration for accuracy of 

model derivation as is made for intermediate injection model derivation, the majority hole 

concentration under low injection can be given as,  

 All Nnp =  

 Al Nxnxn  )()(= 00   

 Al Nn  0  (4.18) 

where,  

 Al Nnxn 00 )( =  (4.19) 

is assumed as before. Now, this assumption is further extended so that   

 AlsAls NnrNnr  0)(1)(1  (4.20a) 

 AlaAla NnrNnr  0)(1)(1  (4.20b) 

Therefore, the term xlR  can be expressed as  
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The hole continuity equation under low-injection condition given by Equation (4.14) then 

becomes,  

 ))(()]([= 0000 Alllxl
pl NxnnqgxnnqR

dx
dJ

   (4.22) 

The above equation can be rearranged as,  
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 )()()()(= 00 xnRgqxnRgqNqg
dx

dJ
xlllxllAl

pl
  (4.23) 

Extending the assumption given in  (4.19), it can be inferred that  

 )()()()( 00 xnRgxnRgNg xlllxllAl  ?  (4.24) 

This assumption simplifies the hole continuity equation under low-injection as,  

 )()( 0 xnRgqNqg
dx

dJ
lxllAl

pl
  (4.25) 

Integrating the above equation results in an expression for majority carrier current density 

plJ  under low-injection with recombination mechanisms incorporated. Using this 

expression, minority carrier concentration )(xnl  under the same condition can be estimated. 

Following the same procedure, the majority carrier density )(xJ p  under intermediate 

injection-level condition can be derived. The exception that exists between these procedures 

is that in the former case minority carrier concentration is perturbed by the recombination 

mechanism, whereas, in the later case the same is perturbed by injection levels based on 

Webster effect i.e. 0ln  is now replaced with 2ln . The governing equations under intermediate 

injection-level condition are summarized as follows:   

     • The term inverse lifetime xR  can be expressed as  
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where following assumptions are made   
 AlsAs NnrNnr  2)(1)(1  (4.27a) 
 AlaAa NnrNnr  2)(1)(1  (4.27b) 
 The hole continuity current equation can be expressed as,  

 )()( 2 xnRgqqgN
dx

dJ
lxA

p
  (4.28) 

where the following assumption is used.  
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 )()()()( 2 xnRgxnRggN xlxA  ?  (4.29) 

In summary, the minority carrier concentration, minority carrier current density and the 

majority carrier density are to be determined is a sequence of three steps, which are tabulated 

as below:   

Step Minority Carrier 
Concentration, n(x) 

Majority Carrier 
Current Density, )(xJ p  

Minority Carrier 
Current Density, )(xJn  

Low-injection level 
neglecting recombination 0ln  0plJ  0nlJ  

Low-injection level 
considering recombination 00= nnn ll   plJ  nlJ  

Intermediate-injection level nnn l 2=  pJ  nJ  

Table  1: Minority carrier concentration, and minority and majority carrier current densities 

in different steps 

  

4.3 Formation of Modified Electron Current 

Equation 

The equation (4.11) is now rearranged as,  
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 where,  
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 Since 1F  contains injection-level dependent term 2ln  under intermediate injection level 

condition in the form of 1ln , the new equation (4.30) can be treated as modified electron 

current equation incorporating the injection-level dependency and is valid for both low and 
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intermediate injection level conditions. This is shown for the first-time in the literature. In 

comparison with the original electron current equation given by  
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 this equation shows that the coefficients of n(x) and )(xJn  are the electron electric field and 

electron diffusivity, respectively. These terms are then termed as effective electron electric 

field, effnE ,  and effnD ,  and can be given by   
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 neffn DFD 1, =  (4.32b) 
  From these equations following conclusions can be made:   

    • The lowest value of 1F  is unity and is obtained under low-level injection.  

    • This factor increases from unity as injection level increases.  

    • effnE ,  decreases with injection level, as it is determined by dividing the factor 1F . 

This means that injection level has a retarding effect on the electron electric field.  

    • effnD , , the effective mobility, increases with increasing injection level, as the 

factor 1F  is multiplied to determine this effective mobility.  

Using these effective terms, the modified current equation can be obtained in a simplified 

form as,  
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4.3.1 Effective Electron Electric Field 

The effective intrinsic concentration ien  is rewritten as,  
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 (4.34) 

 The logarithmic derivative of 2
ien  is,  



 

 

58 

 

 )( =)( 2
2

Aie Nln
dx
dnln

dx
d

  (4.35) 

 The term 
1

1
F

 can be rearranged as,  
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 The first term in Equation (4.32a) of the effective electric field can be rearranged as,  
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 The effective electric field then can be expressed as,  
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 Finally, the effective electron electric field can be rearranged as,   
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 (4.39a) 

 injnbin EE ,,=   (4.39b) 
where binE ,  is the effective built-in electric field and injnE ,  is the injection-level dependent 
electric field and can be given by   
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It can be inferred from the expression of effective electron electric field given by Equation 

(4.39a) that the square bracket terms are multiplied by a term 
ANln

dx
d   . This term represents 

a normalized electric field (since logarithmic derivative of concentration is equal to the 

electric field divided by TV ) and this is the field that is resulted from the non-uniform base 

doping profile. For practical base doping profile, this field is negative. The terms in the 

square brackets indeed modulate this field and represents the effects such as band-gap 

narrowing, majority carrier current density pJ , recombination and injection level. From this 

equation, it is evident that pJ  increases the electric field, since pJ  is negative and the 

logarithmic derivative of base doping profile is negative. The first component binE ,  aids the 

electric field, whereas, the second component injnE ,  retards the electric field. The second 

component becomes dominant as injection level increases, but is insignificant under low-

injection. Retarding effect of band-gap narrowing is included through 2  in both these 

components. It also shows that retarding effect of band-gap narrowing and aiding effect of 

pJ  increases as injection level increases. Since, the value of square-bracket term is greater 

for injnE ,  than that for binE , , electric field decreases with injection level. For low-injection 

condition, 0, injnE  because Al Nn =1  and hence,  
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4.4 Exponential Approximation Technique 

The expression of effective electron electric field given by Equation (4.39a) shows that this 

expression becomes complicated for three reasons. The first one is due to the presence of the 

field term 
ANln

dx
d   . The second occurs due to the presence of the terms containing pJ  and 

the third reason is related to the injection-level dependency. 

For an exponential base doping profile, the field term 
ANln

dx
d    is a constant and for 

other profiles, this term is position-dependent. Clearly, the expression for electric field 

becomes simpler for exponential base doping profile. Therefore, a suitable approximation 

technique must be employed to convert the exponential-like doping profiles (i.e. Gaussian, 

complementary error function etc.) into exponential one and hence, the first issue can be 

resolved. 

A closer look in the electric field expression reveals that the third term in the square 

brackets is the cause of both the second and third problems. The injection level-dependent 

term injnE ,  causes an additional problem. If these terms can be expressed in a simple 

function, then both these problems can be resolved. Since, exponential functions has an 

elegant property that it retains the same after differentiation or integration with constant 

multiplication factor, the above terms then can be exponentially approximated. This 

approximation is justified because the terms depend on the doping profile, which takes an 

exponential form. For the same reasoning, the effective electron diffusivity represented by 

Equation (4.32b) can be approximated as a simple exponential. Therefore, by devising a 

suitable exponential approximation technique, the complicated nature of variable coefficients 

of the modified current equations can be simplified. This approximation technique is 

described below. 

In the work  [55], Guoxin Li et. el. has showed that approximating Gaussian doping 

profile by a simple exponential profile results in only an insignificant error in the charge-
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control analysis. This idea can be extended to the doping and field dependent transport 

parameters and to the expressions which contain two or more exponential terms. The 

approximation of various quantities by using simple exponential can significantly reduce the 

mathematical complexity without any significant loss of physical understanding. 

 The base doping profile is now considered as exponential and can be expressed as,  

 BW
x

AA eNxN


(0)=)(  (4.42) 

 Introducing a convenient variable u which gives the exponential dependence of the doping 

profile, the Equation (4.42) becomes,  

 )((0)=)( xuNxN AA  (4.43) 
 where,  

 BW
x

exu


=)(  (4.44) 
 where,  

 




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

)(
(0)=

BA
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WN
Nlog  (4,45) 

 is the logarithmic slope of the doping profile and (0)AN  and )( BA WN  are the doping 

densities at 0=x  and BWx =  i.e. at the base edges of B-E and B-C junctions. 

 An expression or a transport parameter, which depends on the doping profile given 

by Eqn. (4.42), is assumed such that  

 2
2

1
1=)(  uFuFxf   (4.46) 

 This expression can be approximated by a simple exponential function such that  

 0
0)( uFxf   (4.47) 

 where, 0  is the logarithmic slope and hence, can be obtained from the boundary values of 

f(x) as,  
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
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 and 0F  can be obtained from the fact that the areas under the original curve and the 
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approximated curve must be equal. Therefore, 0F  can be expressed as,  

 dxxf
uW

F BW

wB

)(
)(1

=
00

0
0 




  (4.49) 

 where, )(= Bw Wuu . 

4.5 Differential Equation: Solution Techniques 

The intractable nonlinear, nonhomogeneous and complicated-variable-coefficient differential 

equation given by Equation (4.11) can be transformed into a linear, homogeneous and 

simple-variable-coefficient equation by using the techniques described in the previous 

sections. Unfortunately, this differential equation is not yet solvable. This section deals the 

techniques that transforms his equation into a solvable form. 

Since, the derivation of )(xJ p  is a three-step process as described in the section 

(4.2), the solution of the differential equation also needs in three steps. The solution 

technique for each steps are described in the following subsections. 

4.5.1 Low-injection Model Neglecting Recombination 

Under this condition, )()(0 xNxn Al   and  

 0)(= 00
0 xnqR

dx
dJ

lxl
nl  (4.50) 

 which leads to 0nlJ  as constant. Therefore, non-homogeneous problem does not matter 

under this condition and the equations remains first order with variable coefficients as,  
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 where, 0nlE  and 
0

1

nlqD
 can be given as,   
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Since these terms can be exponentially approximated as discussed in section (4), the 

integrating factor required to solve the differential equation can be determined in the form of 

exponentials. Finally, the solution of the differential equation can be obtained in terms of 

confluent hypergeometric functions.  

4.5.2 Low-injection Model Considering Recombination 

When recombination is included, )(xJnl  is no longer a constant, instead it becomes a 

function of position. A differentiation is used to remove this term from the first order 

differential equation of n(x) which is rewritten here as,  
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 Differentiating the above equation results in  
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 where electron current continuity equation given by  
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 is used. For heavy base doping, it can be justifiably assumed that  
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Using this assumption, dividing both sides of the Equation (182) by nlqD  and rearranging 

the results in a second order differential equation as,   
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where,   
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Therefore, the non-homogeneity problem of the differential equation is resolved. But, the 

problem of intractability still remains. This needs suitable transformation techniques. Since 

the working differential equation is a second order and there are no analytical formulation to 

solve a variable-coefficient of second or higher order differential equations other than special 

functions (i.e. Bessel function, modified Bessel function, Hankel function etc.), 

transformation to any of these special function has to be made. For this the format of Bessel 

differential equation can be chosen since the solution of this equation has a quasi-

exponential form. The transformation steps ate described below: 

1.  First, the variable )(xnl  is assumed as a product of two variables lv  and lw   

 )()(=)( xwxvxn lll  (4.59) 

 so that the differential equation given by Equation (4.57a) can be expressed as  
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The governing equation for lw  is given as,  

 )(=)(2 xPofpartconstantxP
dx
dw

w
l

l

  

 )(= LetAl  (4.61) 

Using the expression of lw  thus obtained one converts Equation (4.60) into  
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xvCxB
dx
dvA

dx
vd

lll
l

l
l   (4.62) 

where, )(xBl  and constant lC  can be obtained by substituting lw  in the coefficient of )(xvl . 

It is worth mentioning that Equation (4.62) is the governing equation for )(xvl . Then 

)()(=)( xvxwxn lll  is now solvable. 

2.  Using the exponential approximation technique, )(xBl  can be expressed as,  

 l
ll uBxB 0

0)( 
  (4.63) 

 Therefore, the differential equation of  (4.62) turns into  
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3.  Next, the independent variable x is changed to z by letting  
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 (4.65) 

 This converts the above equation into  
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 where la , lb  and lc  are constants. 

4.  Finally, the variable )(zvl  is further assumed as a product of two other variables lt  and 

ly   

 )()(=)( ztzyzv lll  (4.67) 

so that the differential equation given by Equation (4.66) can be expressed as,  
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The variable lt  can be obtained by equating the coefficient of 
dz
dy l  to unity as,  
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  (4.69) 

Using the expression of lt  thus obtained one converts the differential equation given by the 

Equation (4.68) into a Bessel differential equation as,  

 0=)(][11 22
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2

zyb
zdz
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yd
lll

ll   (4.70) 

 where, l  is the order of the Bessel function. The solution of this equation contains Bessel 

function of the first and the second kind (
l

J   and 
l

Y ).  

5.  The total solution of )(xnl  then can be found as,  

 ])[()(=)( 21 lllllll YCJCxtxwxn    (4.71) 

4.5.3 Intermediate-injection Model 

The solution technique under this condition is same as that outlined for the low-injection 

condition with recombination. The only difference is that here the term ln  is used instead of 

)(0 xnl  to determine )(xJ pl . 

4.6 Conclusion 

In this chapter, an elaborate discussion of techniques, approximations and transformation 

methods is presented that are used to overcome the challenges to derive an analytical model 

of the base transit time. The techniques, approximations and transformation methods are 

chosen such that the mathematical tractability becomes possible without sacrificing the 

underlying physics of the non-ideal effects and without loss of generality. Therefore, the 

model thus derived is indeed general and can be useful for understanding the physics of base 

transport mechanisms. Moreover, the model can be applicable to other devices that use the 

principle of bipolar transistor operation. 
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Chapter 5  

Model Derivations 
 
 
 

From the rigorous discussions of the previous chapters, it should be very obvious that the 

analytical modeling of base transit time by including the majority carrier current density in 

the base, is indeed a challenging job. These challenges occur not only from the complicated 

physics behind the underlying mechanisms and physical models that exist in the literature, 

but also from the mathematical intractability of the resulting equations. Keeping the physical 

models intact often makes the mathematical tractability as impossible a feat. Therefore, 

assumptions and approximations must be made so that the underlying physics will not be 

compromised while keeping the mathematics as simple as possible. A thorough but 

thoughtful and careful research is, therefore, carried out to preserve the physics as well as to 

make the mathematics tractable. This chapter deals with the analytical development of the 

base transit time model using the techniques described in the previous chapter. 

This chapter starts with the development of the required equations for exponential 

base doping profile from the general equations for arbitrary doping profile. Then the three-

step process of model development will be elaborated in the subsequent sections. 
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5.1 Modified Equations for Exponential 

Doping Profile 

In the previous chapter, the differential equation and all other related equations have been 

derived for arbitrary doping profile. Since, the logarithmic derivative of exponential doping 

profile becomes constant, these equations for this doping profile becomes relatively easy to 

handle. Moreover, using the exponential approximation technique, [section (4.4)], any 

exponential-like doping profile i.e. Gaussian, Complementary error function etc. can also be 

approximated by an exponential function. Therefore, an exponential base doping profile is 

assumed for model derivation. For this profile, the fundamental relations are:   

 )((0)=)( xuNxN AA  (5.1a) 
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where,   is the logarithmic slope of the profile and can be defined in section (4.4) as,  
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Using these relations, the effective electron electric field effnE ,  can be given as,   
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where,   
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The effective electron diffusivity can be expressed as,   
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In these equations [Equation (5.3) to Equation (5.6)], the constants eF , hF , eG  and hG  are 

defined as,  
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The majority hole current density pJ  can be estimated from the following equation which is 

obtained by integrating the hole continuity equation given by  (4.28) as,  
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where, K  and g  can be determined using the boundary conditions for pJ  and the inverse 

lifetime xR  can be expressed as,  
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The perturbed 1ln  represents 0ln  under low-level injection condition with recombination 

neglected and 2ln  under intermediate injection level condition using Webster effect. This pJ  

can be used to determine effnE ,  and effnD , . Finally, the minority electron concentration can be 

derived from the following differential equation:  
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The minority electron current density nJ  is the source of non-homogeneity of the 

differential equation. Therefore, the electron current continuity equation is used to overcome 

the problem of non-homogeneity. For exponential doping profile, this continuity equation 

can be expressed as,  

 )(= 1 xnR
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n  (5.14) 

 

5.2 Low Injection Level Model Derivation 

Without Considering Recombination 

The development of low-injection (LI) model is a two-step process. First the effect of lateral 

base injection is considered, while recombination is excluded in the analysis. All other 

effects and considerations are used. Second, the recombination mechanism is then included 

using a perturbation approach. 

Since, recombination mechanism is neglected in the first step, the minority electron 

current density 0nlJ  can be regarded as constant. But this does not hold true for )(0 xJ pl , 

since the presence of lateral base injection current. Therefore, the hole continuity equation 

must be solved to determine )(0 xJ pl . Equation  (219) under low injection condition 

[ )()( xNxp A ] gives,  

 )(0)(1=)( 00 uNWqgKxJ A
B
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 (5.15) 

 Applying the boundary conditions for hole current density at 0=x  and BWx =  gives,  
 (0)= 0plJK   (5.16) 
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 The majority hole current density then can be rearranged as,  
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 uJJxJ llpl 01000 =)(   (5.18) 
 where,  
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Under low-injection condition ANn =  and hence,  
 11 F  (5.21) 

 AAl N
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d

 )( 1  (5.22) 

These approximations reduce the apparentnE ,  term in the effective electron field effnE ,  

[Equation (5.3)] and the approximate electric field term approxnE ,  in the effective electron 

diffusivity effnD ,  [Equation  (5,5)] to low-injection electric field 0nlE  as follows:,   
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  where,   

 21= b  (5.24a) 
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At this stage, the required parameters needed to solve the first order differential equation 

[Equation (5.13)] are found. Using their approximations and rearranging the terms results in 

a first order variable-coefficient differential equation of minority electron concentration n(x) 

as,  
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 The integrating factor (I.F.) of this equation is given as,  
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 where,  
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Integrating the differential equation  (5.25) w.r.t x  gives,  
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The integral terms are non-integrable because of the complex form of 0dxlb  and also of 
T

nl

V
E 0 . 

Using the exponential approximation of these terms transforms these into simple exponential 

terms and therefore, makes the integral possible. Now, in order to obtain a tractable closed 

form solution of the differential equation  (5.25), the terms )(0 xbdxl  and 
T

nl

V
E 0  can be 

approximated using an exponential form:   
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where,   
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  and,   
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Using the exponentially approximated form of )0(xbdxl  [Equation  (5.30a)], the term )(0 xvl  
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can be expressed as,  
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ll uVxv 0

00 =)(   (5.33) 
where,  
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Using these exponential approximations, results in a solvable form of the equation given by 

(5.29) as ,  
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The general form of the integration terms results in a confluent hypergeometric functions as 

[Appendix (A.1)]  
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where )(xM  is the confluent hypergeometric function. Using this result along with 

Kummar's relation [56, 57],  
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v   (5.38) 

and solving for appropriate boundary conditions at 0=x  and BWx =  given by,   
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and finally, rearranging the terms, an expression of minority carrier concentration n(x) can 

be obtained as,  

  00
32

1
21

1
100 )()(=)( lvlb

lllllnll euAxMuAxMuAJxn 


  (5.40) 



 

 

74 

 

where,   
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  and,  

 (0)=0 llownl nAJ   (5.42) 
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 Here ' w ' in the subscript denotes the value at BWx =  and  
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5.3 Low Injection Level Model Derivation 

Considering Recombination 

In order to develop a low injection that includes recombination, the minority carrier 

concentration 0ln  obtained for 0pJ  and without considering recombination is extended by 

adding a correction term such that )()(=)( 00 xnxnxn ll  . Here ln  is minority carrier 

concentration for 0pJ  and Recombination 0 . For the accuracy of derivation )(0 xn  

must be )( 0 Al Nn = . Therefore the inverse lifetime xR  given by Equation (5.12) becomes 

as,  
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 and the Equation (5.11) reduces to,  
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Taking the exponential approximation of the terms (since there is no direct closed form 

integral), the right hand side of the Equation (5.51) results in,  
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 where, 1lxlnR  and Al Nnp  0  are exponentially approximated as,  
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 Applying the boundary conditions for hole current density at 0=x  and BWx =  gives,  

 (0)= plJK   (5.59) 
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 The majority hole current density then can be rearranged as,  
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 where,  

 lllpll bgbJJ 210 (0)=   (5.64) 

 lll bgJ 21 =  (5.65) 

 
 

5.3.1 Derivation of Electric Field 

The expression for effective electron electric field given by Equation (5.3) can be rearranged 

as,  
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 where,   
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5.3.2 Solution of Differential Equation 

Differentiating the electron current density equation given by  (5.13) and then combining 

with the Equation (5.14) results in a a second order variable-coefficient differential equation 

of minority electron concentration )(xnl  given as,  
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Using the electric field expression given by Equation (5.66), the terms lG1  and lG2  can be 

expressed as,   
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Letting )()(=)( xwxvxn lll  in the Equation (5.68) results in a second order differential 

equation of )(xvl  as,  
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In order to make the variable coefficient of 
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dvl  a constant, let  
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Substituting )(1 xG l  from Equation (5.70a) gives,  
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Rearranging the terms results,  
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 where, )(xbil  can be obtained from Equation (5.67b) as follows:  
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 Since dxlb  is not integrable, integration in the above equation can be performed on the 

exponentially approximated form of dxlb . This leads to,  
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Then, upon substituting the expression for )(xwl  in the differential equation of )(xvl  

[Equation (5.71)] results,  
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where  
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lG3  contains derivatives, logarithmic derivatives and derivative of logarithmic derivatives. 

Since the terms 
nlqD

1 , lF1  and dxlb  are not simple functions, these types of derivative 

become cumbersome. Exponential approximation can be used for the terms whose 
logarithmic derivatives are required to reduce the complexity, since logarithmic derivative of 

exponential functions is a constant. For this purpose, the exponential approximation of 
nlqD

1  

and lF1  are determined as follows:  

 nlm
nl

nl

uF
qD


1  (5.81) 

 lm
ll uFF 0
011   (5.82) 

 where,  

 



















)(
1

(0)
1

1=

Bnl

nl
nl

WqD

qDlogm


 (5.83) 

 








)(
(0)1=

1

1
0

Bl

l
l WF

Flogm


 (5.84) 

 and,  

 dx
xqDuW

mF
nl

BW

nlm
wB

nl
nl )(

1
)(1

=
0

  (5.85) 

 dxxF
uW

mF l
BW

lm
wB

l
l )(

)(1
= 101

1
01 



  (5.86) 

 where, 
nlqD

1  can be expressed as,  

 

























hplAl
B

hpll
B

l

ee
nl GJNn

W

GhuFJn
Wdx

dn

GuF
qD )(

)(
1=1

0

3
0

0

2
1









  (5.87) 

 where,  

  00
302

1
211

1
110

0 = lvlb
lll

l
llllnl

B

l euAbMuAMuAJ
Wdx

dn 





  



 

 

80 

 

 






























 00

3

0

10

2
1

2

0

10

1
1

100
0

11
lvlb

l

l

ll

l
l

l

l

l

llll
nl

B

euAb
HuA

b
HuAvJ

W











 (5.88) 

where, H's are the confluent hypergeometric functions given by,   
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 Using the exponential approximation technique for the term lG3 , a position dependent term 

lF3  and a constant term 'c' can be separated as,   
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In order to convert the differential equation into a solvable form )(3 xF l  is exponentially 

approximated as,  
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The differential equation [Equation (5.79)] can be rewritten as  
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Changing the independent variable x to z by letting  

 /23= luz   (5.95) 

the differential equation [Equation (5.94)] becomes as,  
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Letting  

 )()(=)( xtxyxv lll  (5.100) 

gives a second order differential equation of ly  in terms of, lt  as  
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Then, letting the coefficient of first derivative of ly  as,  
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gives,  
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 The solution of this differential equation gives an expression for )(xtl  as,  
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Substituting the expression for lt  in the differential equation [Equation (5.101)] results in a 

Bessel equation as,  
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where,  
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The solution of the Bessel equation consists of Bessel functions of the first and the second 

kind ( J  and Y ) and can be given as,  
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Therefore, the minority carrier concentration under low injection case can be obtained from 

the relation llll ytwxn =)(  as,  
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The minority electron current density can be obtained from the following relation [after 

arranging the Equation (5.13)],  
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Using the appropriate boundary conditions at 0=x  and BWx = , the constants lC1  and lC2  
can be obtained as,  
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The minority electron concentration then can be expressed as,  
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5.3.3 Intermediate Injection Level Model Derivation 

The low injection (LI) minority carrier concentration, )(1 xnl  can be extended to the 

intermediate regime by using perturbation theory. Using this theory, the LI minority carrier 

concentration can be expressed as  

 )(2=)(=)( 1 xnlnxnfnxn wl    (5.124) 

 where 2ln  is obtained using the Webster effect. For the accuracy of model derivation, n  is 

chosen such that Al Nnn 2= . 

Changing the variable 0ln  to 2ln , the LI model developed in section (5.3) with 

considering recombination can be used for intermediate level model derivation. Therefore, 

the model equations under intermediate injection level are exactly same as those for the 

model described in section (5.3), with 'l' dropped in the subscript of all the equations. 

 

5.4 Model Derivation Considering Separate 

Effects of pJ  and Recombination Mechanisms 

In order to investigate the separate effects of majority carrier current density pJ  and the 

recombination mechanisms, other than the model derived in the previous sections, models 

considering pJ  only and considering recombination mechanisms only have to be developed. 

In the following sections, these models are presented. The first model concerns only the pJ  

to reflect the role of base current by incorporating the lateral base injection. The second 

model deals with only the recombination mechanisms. In both cases, first a low-injection 

(LI) model is deduced, which is later used to derive the intermediate-level (II) model. 
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5.4.1 Model Derivation Considering pJ  Only 

In this model, only the effect of lateral base injection is considered. Recombination is 

excluded in the analysis. All other effects and considerations are used. In order to develop 

the model, the LI model developed in Section (5.2) is extended by using perturbation theory 

to derive the intermediate-injection level model. 

Integration of Eqn. (4.28) under intermediate injection condition [n(x)is comparable 

with )(xNA ] and using Equation (4.6) gives  
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 where Al Nnp  2  is exponentially approximated as 1
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kup . Applying the boundary 

conditions for hole current density at 0=x  and BWx =  gives  
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 The majority hole current density then can be rearranged as  
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Using this expression for pJ  in the term ,11nE   
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Since, h
k

h
B

GJuGJp
W 0

1
11 )( ?

 , the denominator term can be expanded into a binomial 

series. Neglecting the second and higher order terms, the Equation (5.131) can be 
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approximated as  
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 hh FJJa 21=(3)  (5.137) 

 hh FJJJJa )(=(4) 2031   (5.138) 

 hh FJJa 30=(5)  (5.139) 

and 1=(1) kgh  , 12=(2) kgh  , 3=(3) hg , 13=(4) kgh   and 13 2=(5) kgh  . 

In order to obtain analytical tractability, the terms )(xbd  and )(xbe  are exponentially 

approximated as  
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Therefore, electric field term, 
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Using the above equation for electric field and the the mobility (Equation 4.9) in the electron 

current density equation  (5.13) results in a first order variable-coefficient differential 
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equation of minority electron concentration n(x) as  
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 The integrating factor of this equation is given as  
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Integrating the differential equation  (5.194) w.r.t x gives  
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solvable form for the differential equation and are given by  
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Following the same procedure outlined for LI model, an expression of minority carrier 

concentration n(x) for intermediate injection level can be obtained as  
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 where  
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5.4.2 Model Derivation Considering Recombination Only 

In this model, only the effect of recombination mechanisms is considered. The effect of pJ  

is neglected in developing this model. All other effects and considerations are used. Again, 

in order to develop the model, first LI is model is derived and then, this LI model is extended 

by using perturbation theory to derive the intermediate-injection level model. 

Low Injection Level Model Derivation 

Under low injection condition, Al Nn = . Therefore the xR  term in the electron current 

continuity equation becomes as  
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 and the Equation (3.24) reduces to  
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 where for heavy doping, 
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N
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n
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  is assumed. 

Now, differentiating the electron current density equation given by  (2.9a) and then 

combining with the Equation (5.14) results in a a second order variable-coefficient 

differential equation of minority electron concentration n(x) as  
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 Using the electric field expression for LI case, the above equation becomes  
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In order to make the variable coefficient of 
dx
dvl  a constant, it can be assumed that  
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Using the exponential approximation of xlF3  as l
luF 3

3
  and then changing the independent 

variable x to z by letting /23= luz  , the differential equation of )(xvl  becomes  
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Again, assuming )()(=)( xtxyxv lll  gives a second order differentia equation of ly  in terms 

of lt . Then, letting the coefficient of first derivative of ly  to unity results in a modified 

Bessel equation of ly  as  
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The solution of the modified Bessel equation consists of Bessel functions of first and second 

kind ( I  and K ) and can be given as  

 )()(= 0`201 zbKCzbICy lllllll    (5.180) 

Therefore, the minority carrier concentration under LI case can be obtained from the relation 
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Using the appropriate boundary conditions, the constants lC1  and lC2  can be obtained as  

 lsll CC 12 =   (5.182) 
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Intermediate Injection Level Model Derivation 

Under intermediate injection condition, )(xn  is comparable with AN . In this case, the xR  

term in the electron current continuity equation becomes  
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and the Equation (3.24) reduces to  
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where for heavy doping, 
A
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N
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n
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  is assumed. 

Now, differentiating the electron current density equation given by  (5.13) and then 

combining with the Equation (5.14) results in a a second order variable-coefficient 

differential equation of minority electron concentration n(x) as  
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Using the electric field expression and rearranging the terms, the above equation becomes 
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 where 21= lb . Now, letting )()(=)( xwxvxn  results in a second order differential 

equation of v(x) as  
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In order to make the variable coefficient of 
dx
dv  a constant,  
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 and the differential equation of )(xv  as  
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 where )(xbe  is exponentially approximated to im
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of its non-integrable form, and  
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To obtain an analytically tractable solution of the differential equation (5.204), the 

exponential approximation of 
nqD

1  as nm
nuF , )(xbe  as em

e ub 0 , and 1F  as 1
10

muF . This makes 

the logarithmic terms of )(3 xG  position independent. Therefore, the term 3G  can be 

decomposed into a variable )(3 xF  and a constant term c as given by  
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)(3 xF  can be exponentially approximated as 3
30

uF  to convert the differential equation into 

a solvable form as,  
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Changing the independent variable x to z by letting /23= uz , the differential equation 

becomes  
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Again, assuming )()(=)( xtxyxv  gives a second order differential equation of y  in terms of 

t . Then, letting the coefficient of first derivative of y  to unity results in a Bessel equation of 

y  as  
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 The solution of the Bessel equation consists of Bessel functions of first and second kind 

( J  and Y ) and can be given as  

 )()(=)( 0201 zbYCzbJCxy    (5.219) 

Therefore, the minority carrier concentration under intermediate injection case can be 
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obtained from the relation wtyxn =)(  as  
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Using the appropriate boundary conditions, the constants 1C  and 2C  can be obtained as  
 12 = CC s  (5.221) 
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5.5 Conclusion 

In this chapter, the model equations for base transit time for an npn bipolar transistor are 

derived. In doing so, position and field dependence of transport parameters are considered. 

Moreover, heavy-doping effects such as band-gap narrowing, high injection effects such as 

the Webster and the Kirk effects and velocity saturation at the base-collector junction are 
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also considered in this model. Although considering all these effects makes the modeling 

effort more intractable, appropriate application of the exponential approximation technique 

and perturbation theory allows one to arrive at a closed-form solution. 
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Chapter 6  

Results and Discussion 
 

 

 

The presence of majority carrier current and recombination in the quasi-neutral base has an 

influence on the value of the base transit time of a BJT. This impact is due to the alteration 

of minority carrier profile which affects the electric field and hence the minority carrier 

current density. These changes then results in a significant change on the base transit time. 

In this chapter, a quantitative analysis of the effects of the majority carrier current 

and the recombination process in the base is presented. Also, presented in this chapter is the 

deviations of these results compared with the results obtained without considering these 

factors. Justifications of these results are finally analyzed, which will establish the relative 

importance and significance of the majority carrier current and recombination on the base 

transit time. 

A recently published work by Hassan et. al. [11] is chosen as reference to compare 

the results obtained using the proposed model of this work. Both this model and the 

developed models consider the same factors i.e. the velocity saturation at the base collector 

junction, the Webster and the Kirk effects, the bandgap narrowing effect and doping and 

field dependance of the mobility. 
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6.1 Results 

This section presents the results of the developed model that include the majority carrier 

current density and the recombination process in the base. This will be called the Present 

Model for the rest of the thesis. The results are compared against the model developed by 

Hassan et. al. [11] where 0=pJ  is assumed and the recombination mechanism in the base is 

neglected. Henceforth, Ref. [11] will be called the Previous Model. All other effects are 

same in both these models. 

In this section, first, the results of both the present and previous models are 

compared. The effects of the variation of two important parameters (i.e. the peak base 

doping density and the logarithmic slope of the base doping profile) are also presented and 

analyzed in this section. 

6.1.1 The Present Model vs. The Previous Model [11] 

Estimation of the majority carrier density, )(xJ p , is a major challenge due to the reasons 

mentioned in Section (3.2). However, a technique is utilized in the present model to 

overcome this challenge [Section (4.2)]. Figure (6.1) shows the plot of )(xJ p  using this 

technique, where the base doping density is considered as a parameter. Although the 

boundary conditions (0)pJ  and )( Bp WJ  are related to the emitter and collector parameters 

(doping level and width) respectively, )( Bp WJ  is almost unaffected by the collector 

parameters. This is because 0)( Bp WJ  under active-mode operation of an npn BJT. Hence, 

the plot for )(xJ p  is affected both by the emitter doping level, EN  as well as the emitter 

width, EW . In this work, a uniform emitter doping profile is assumed. However, the shape of 

the pJ -plot in the base region is affected by the minority carrier injection level and by the 

base doping level. The figure shows that the higher is the peak doping level, the lower is the 

pJ  within the base. This is due to the increase in the majority hole current density gradient 

when (0)AN  increases [Equation (3.29)]. 
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Figure  6.1: Majority Hole Current Density in the base for 318101=(0)  cmNA  and 

318102=(0)  cmNA . 
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In the following subsections, simulation results for the electric field, the minority electron 

concentration, the minority electron current density, the collector current density and the 

base transit time are presented. The simulation uses a base width of 100 nm and a base 

emitter voltage of 0.9 V. Two peak doping densities are considered: 318101=(0)  cmNA  

and 318102=(0)  cmNA . In both cases, two values of logarithmic slope of the doping 

profile is chosen. These are: 3.00=  and 3.69= , respectively. 

Effects on the Electron Electric Field 

The majority carrier current density pJ  aids the electric field in the base, as explained in the 

section (4.3.1). On the other hand, due to the recombination mechanism the minority 

electron concentration in the base is reduced, which in turn increases the minority carrier 

concentration gradient, 
dx
dn , thereby increasing the electric field [Equation (3.38)]. 

Furthermore, the recombination decreases the majority carrier density gradient in the base 

[Equation (3.29)]. This results in an increase of majority carrier current in the base, which 

further enhances the electric field in the base [(Equation 3.38)]. Therefore, when both 

recombination and majority carrier current density are incorporated in the analytical 

modeling, the electric field is found to be higher than that when one or both or are not 

considered. Figure (6.2) shows the variation of electron electric field nE  in the base. In this 

figure, nE  is shown as negative to reflect its actual direction in the base. As expected, the 

calculated electric field is found to be higher throughout the base region than that obtained 

using the previous model. 
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Figure  6.2: Electron Electric Field variation in the base for 318102=(0)  cmNA . 
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Effects on n(x) and )(xJn  

Figures (6.3) and (6.4) show variations of the minority carrier density n(x) and the minority 

carrier current density )(xJn , respectively. The latter figure displays the absolute value of 

nJ . Since both pJ  and recombination aid the electric field in the base, more electrons are 

swept to the collector side. This decreases the base stored charge and increases the current. 

In comparison with the previous model the present model, therefore, shows a lower electron 

density in Figure  (6.3) and a higher electron current density nJ  in most of the base region in 

Figure (6.4). 

The Figure (6.4) also shows that nJ  decreases near the collector side and becomes 

lower than the value of nJ  of the previous model. The first effect is due to the lowering of 

the electron mobility due to increased electric field [Equations (3.18a) and (3.18b)] near the 

collector side as seen in Figure (6.2). The second one is expected since the present model 

includes the recombination mechanism for which a negative gradient for nJ  is used 

[Equation (3.24a) where nJ  is negative for an npn BJT]. The previous model neglects the 

recombination mechanism in the base. 
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Figure  6.3: Minority Electron Concentration in the base for 318102=(0)  cmNA   
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Figure  6.4: Minority Electron Current Density in the base for 318102=(0)  cmNA .  
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6.1.2 Effects on the Collector Current Density 

The collector current density CJ  can be expressed as,  

 )()(= BpBnC WJWJJ   
 )( Bn WJ  (6.1) 

 where,  
 )(=)( BsnBn WnqvWJ  (6.2) 

From the above equations it is evident that CJ  is directly proportional to )( BWn . On the 

other hand, using Equations (3.14) and (5.123), it can be inferred that )( BWn  varies 

exponentially with BEV . Therefore, CJ  has an exponential dependence on BEV . This 

exponential dependence is observed in the Figure (6.5) which plots the collector current 

density cJ  against the variation of base-emitter voltage BEV . These figures also indicate that 

CJ  for the present model is lower than that for the previous model. This is expected since 

)( BnC WJJ   and )(xJn  is brought down as one approaches to the collector (as explained in 

the previous subsection). 

The lowering of CJ  in the present model compared to the previous model suggests 

that the emitter efficiency and hence, the current gain for an npn BJT transistor is lower than 

those of the previous model. In fact, inclusion of both the pJ  dependency and the 

recombination mechanism leads to a decrease in the current gain. Therefore, the previous 

model overestimates the emitter efficiency and the current gain, since it neglects both the pJ  

dependency and the recombination mechanism. The lowering tendency of nJ  as collector is 

approached may lead to an erroneous conclusion that nJ  will be zero if base-width is 

increased. But this will not be the case, since )( BWn  is reduced due to recombination (which 

causes nJ  to reduce) and never be zero, as then electron has to cross the B-C junction with 

infinite velocity. 
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Figure  6.5: Collector Current Density vs. base emitter voltage for 318102=(0)  cmNA . 
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6.1.3 Effects on the Base Transit Time 

For convenience the definition of the base transit time is recalled as,  

 dx
xJ
xnq

n

BW

B )(
)(=

0  (6.3) 

For the previous model, nJ  becomes position independent and hence, can be taken out of the 

integral term. Since the present model includes both the pJ  dependency and the 

recombination mechanism, nJ  is position dependent and therefore must remain within the 

integral term of Equation (6.3). Therefore, the lowering of nJ  near the collector side for the 

current model does not lead to an increase of B . Instead, the base transit time B  should 

decrease for the present model since nJ  is observed to be higher in most part of the base 

(except for a narrow region near the collector side)[Figure (6.4)] and n(x) is observed lower 

throughout the base [Figure (6.3)] due to the aiding electric field. The expected decrease in 

B  is observed in the Figure  (6.7). 

From the above discussion, the simulation proves that the inclusion of both the pJ  

and the recombination mechanism decreases both the the collector current density CJ  and 

the base transit time B . The reduction of CJ  means a corresponding reduction in the emitter 

efficiency as well as in the small-signal common base and common emitter current gains. On 

the other hand, the reduction of B  results in a decrease in the total transit time, ec  and 

hence, in an increase in the unity-gain-bandwidth frequency, Tf  [Equations (1.5) and (1.6)]. 

This is expected since the gain-bandwidth product is equal to Tf  and hence, a decrease in 

the gain results in a corresponding increase in the bandwidth. Furthermore, the inclusion of 

both the pJ  and the recombination mechanism in the analytical modeling results in more 

improved gain-bandwidth product than that obtained neglecting those dependencies. 
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Figure  6.6: Base transit time vs. base emitter voltage for 318102=(0)  cmNA .  
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6.1.4 Effects Due to the Variation of Peak Base Doping 

Density, (0)AN  

In this subsection, the effects of peak doping density (0)AN  on the base transit time is 

investigated. For this analysis, the logarithmic slope of the doping profile ( ) is kept 

constant. Therefore increasing (0)AN  results in a corresponding increase in )( BA WN  to 

maintain the   constant. 

Increased (0)AN  results in more doping concentration in the base and hinders the 

carrier movement which results in a decrease in the carrier mobility [Equations (3.18a) and 

(3.18b)]. The electron electric field in the base is dependent on the logarithmic slope of the 

base doping profile (for exponential doping profile which is defined as   and is affected by 

the band-gap narrowing effect, the injection level and the majority carrier current density 

[Section (4.3.1)]. The increased (0)AN  results in a decrease of the injection level and 

thereby decreasing the retarding field caused by the injection level. Since )(xJ p  in the base 

decreases when (0)AN  increases [Figure (6.1)], it has a lowered aiding effect on the electric 

field. The electric field can be greatly affected by the base doping gradient   since electric 

field is proportional to   [Equation (3.38)]. For this case, (0)AN  increases keeping   as 

constant. Therefore when (0)AN  increases, the increase in the electric field is less dominant 

over the decrease in the carrier mobility. This causes the minority electron current density 

)(xJn  to decrease more than the decrease in the minority carrier concentration [when (0)AN  

increases, n(x) decreases since 2
ienpn  for a fixed bias as seen in the Equation (3.14)]. 

Thus, when (0)AN  increases while keeping   as constant, the base transit time increases. 

Figure (6.7) also shows this increase of B . This results are consistent with those shown in 

Ref. [11].  
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Figure  6.7: Base transit time vs. base emitter voltage for 318101=(0)  cmNA  and 

318102=(0)  cmNA . Here   is kept as constant.  
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6.1.5 Effects Due to the Variation of Logarithmic Slope 

of the Base Doping Profile,   
 

The logarithmic slope of the doping profile can be increased by increasing the peak doping 

density (0)AN  while keeping the )( BA WN  as constant. From the arguments presented in the 

previous subsection, it can be inferred that the increase in the electric field for the present 

case dominates over the decrease in the carrier mobility, since both   and (0)AN  are 

increased. For this case, the base transit time decreases when (0)AN  increases. This fact is 

observed in the Figure (6.8). The same is also supported by the Ref. [14].  

   

From the Figure (6.8), it is observed that the base transit time B  increases when (0)AN  

increases from 318101=(0)  cmNA  to 318102=(0)  cmNA  keeping   as constant 

( 3.00= ). On the other hand, B  decreases if   is increased from 3.00  to 3.69  keeping 

(0)AN  as constant ( 318102=(0)  cmNA ). Therefore, both (0)AN  and   must be increased 

in order to reduce the base transit time. 
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Figure  6.8: Base transit time vs. base emitter voltage for the variation of (0)AN  and  . 
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6.2 Model Verification 
 

The proposed model in this thesis has been verified by the simulation results and also by an 

experimental data. The verifications are presented in this section. 

6.2.1 Comparison with the Numerical Simulation Results 

A numerical simulation was carried out to verify the current model. The procedure for this 

simulation is detailed in the Appendix (A.2). The approximations that include the application 

of perturbation theory to overcome the nonlinearity problem, and the approximation for 

electron diffusivity and the exponential approximation to overcome the mathematical 

intractability are used in the present model. However, no additional approximations were 

used while performing this numerical simulation. In this subsection numerically computed 

results are compared against the results of the present analytical model. 

Figures (6.9) and (6.10) show the comparison of the base transit times obtained from 

the current model and the simulation result for the two values of logarithmic slope of the 

base doping profile. The Figure (6.9) shows the results for a peak doping concentration of 

318102=(0)  cmNA , while the Figure (6.10) shows the results for a peak doping 

concentration of 318101=(0)  cmNA . Both of these figures show better agreements in the 

base transit time with the simulation results when   is lower i.e. 3.00= . However, when 

  is high and the base doping level is low, the results of the present model deviates from the 

numerical simulation results to some extent. An error analysis for these plots are also 

presented in the Figures (6.11) and (6.12) respectively. The error is defined as the percentage 

deviation in the base transit time B  of the present model from that of the numerical 

simulation as a fraction of B  of the numerical simulation i.e.  

 100%=  %
  ,

  ,  ,




simulationnumericalB

modelpresentBsimulationnumericalBErrorof



 (6.4) 
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For the peak doping level of 318102=(0)  cmNA  with 3.69= , the highest error is 

found as 2.8% . Even this error is within the limit of 3%  and is found for a narrow range 

of bias levels ( 0.90.86   V). For other cases, the error is within a limit of 2% . Therefore, 

the approximations made in developing the present model are well justified.  
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Figure  6.9: Base transit time vs. base emitter voltage for the current model and for the 

numerical simulation for 318102=(0)  cmNA . 

  

 



 

 

116 

 

   

 

 

 

Figure  6.10: Base transit time vs. base emitter voltage for the current model and for the 

numerical simulation for 318101=(0)  cmNA . 
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Figure  6.11: Relative error in the base transit time compared against the simulation. Here 

318102=(0)  cmNA . 

  

 



 

 

118 

 

   

 

 

 

Figure  6.12: Relative error in the base transit time compared against the simulation. Here 

318101=(0)  cmNA . 

  

 



 

 

119 

 

  

6.2.2 Experimental Verification 

The present model proposed in this work is verified against two experimental setups. The 

first setup was done by H. St u bing and H. M. Rein [58, 59] is used and the second one by T. 

Fuse [60]. 

First Experimental Setup 
The doping profile used in the first setup [58, 59] is shown in Figure (6.13). The physical 

parameters for this experimental setup are listed in the Table (6.1). 

Parameter Feature Size 

EW  m 0.24  

BW  m 0.26  

CW  m 0.50  

E-B Area 2 50 m  

0BN  317  104.8  cm  

CN  316 101.0  cm  

EN  320 102.0  cm  

Table  6.1: Physical parameters for the experimental setup carried out in Ref. [58, 59] 

Figure (6.14) shows the experimental data obtained from Reference  [59] to validate the 

proposed model. This figure also presents the results of the previous model [11]. From this 

figure it is evident that the proposed model agrees with the experimental data in the most 

part except for a narrow region of 0.75<<0.70 BEV  V. The discrepancy observed in the 

low-injection region can be attributed to the approximations made for low-injection 

modeling. However, as injection level increases the present model matches more closely 

with the experimental data. It is also observed that the results for the current model is in 

better agreement with the experimental data when compared with those of the the previous 

model. 
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Figure  6.13: Profile of the Doping Concentration used in the Experiment done in  [58, 59]. 
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Figure  6.14: Collector current vs. Base Emitter Voltage. The plot compares the data for the 

current model with the Experimental data from Ref. [59]. The figure also shows the data for 

the previous model [11]. 
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Second Experimental Setup 

In this setup [60], the emitter-to-collector transit time ( ec ) was calculated from the 

measured cutoff frequency ( Tf ) using the following definition:  

 
T

ec f


2
1=  (6.5) 

 The model [60] was developed by considering the base pushout in the presence of velocity 

overshoot and also, the emitter current-crowding and carrier-spreading effects. The model 

defined ec  as a sum of four different components, namely   

    1.  Base-emitter junction capacitance charging time, BE   

    2.  Base transit time, B   

    3.  Epi-collector space-charge region transit time, SCR   

    4.  Base-collector junction capacitance charging time, BC   

 and, which can be expressed as,   

 BCSCRBBEec  =  (6.6a) 

 jE
E

T
BE C

I
V=  (6.6b) 

 FBMB f  =  (6.6c) 

 
v

WW CC
SCR

=  (6.6d) 

 jCCBC CR=  (6.6e) 

  where, jEC , CR  and jCC  are the base-emitter junction capacitance, buried collector 

resistance and base-collector junction capacitance, respectively. BMf  represents the two-

dimensional base pushout factor, F  is the low-current forward-base transit time and 

CC WW   is the epi-collector space charge region width due to base pushout. The velocity v 
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is the maximum overshoot velocity and is corrected later by Liou [61] as,  

 maxvv 2=  (6.7) 

 where, scmvmax / 101.1= 7 . The related physical parameters for this setup are listed in the 

Table (6.2). 

Parameter Feature Size 

EW  m 0.03  

BW  m 0.17  

CW  m 0.80  

E-B Area 2 7.5 m  
B-C Area 2 7.5 m  

0BN  318 102.1  cm  

CN  316 101.0  cm  

EN  320 102.1  cm  

jEC  )( 10.0 fF  

jCC  )( 13.0 fF  

CR  )( 30.0   

 

Table  6.2: Physical parameters for the experimental setup carried out in Ref.  [60] 

  

Figure (6.15) shows the experimental data obtained from Reference  [60] as well as the 

results of the the present model. From this figure it is evident that the proposed model 

closely matches with the experimental data in almost all collector-current densities except 

for a region where base push-out condition commences. This slight deviation is due to the 

fact that the proposed model did not critically consider the effects of the emitter current 

crowding and the collector current-spreading. However, this result is consistent with the 

results of the model developed in Ref. [61]. 

In the present model recombination in the base is considered which results in position 

dependent nJ  in the base. Therefore, BE  can be calculated from BEnE AJI (0)=  instead of 
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BEBnCE AWJII )(= , where, BEA  is the base-emitter area. A better result may be obtained if 

the EI  can be calculated from the emitter current modelling. 

From the verifications of the present model with the above-mentioned experimental 

setups, it is proved that the majority carrier current density which is enhanced by the 

recombination mechanism should not be neglected in the analytical modelling of the base 

transit time. 
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Figure  6.15: Comparison of emitter-to-collector transit time ec  for the present model and 

the Experimental data from Ref. [60]. 
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Investigation of Further Effects 

In the previous sections the proposed model has been compared against a model developed 

in  [11]. In this section the proposed model is compared against the pJ -only model and the 

recombination-only model to investigate the separate effects of pJ  and the recombination 

mechanisms. Effects of emitter doping profile and the base doping level are also observed 

and analyzed in this section. 

6.2.3 Separate Effects of pJ  and Recombination 

This section presents the effects of pJ  and recombination on the transit times and high 

frequency parameters of BJT along with that on electric fields, energy band and currents.  

 

Effects on the Electric Field and on the Energy Band 

In the previous section, it has been mentioned that pJ  has an aiding effect on the electron 

electric field, nE . The recombination mechanism has also aiding effect on nE , since 

recombination causes an increase in the carrier density gradient. Therefore, for the model 

that considers only pJ , only recombination mechanisms or both pJ  and recombination, an 

increase in nE  is expected over the model that does not consider any of these factors. The 

expected increase is observed in Figure (6.16) compared with that of the previous model. 

Since gradient of potential i.e. energy represents the existance of an electric field and 

the quasi-neutral base region has electric fields due to non-uniform doping profile and also 

due to the carrier-density gradient, the energy band diagram must have a gradient in the 

quasi-neutral base. This gradient in the energy band is observed in Figure (6.17) for all four 

models. The depletion layer for base-emitter junction is entirely due to base doping, since 

emitter doping is almost of two-order higher magnitude. Moreover, this length is excluded 
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from the base width since the length is negligible when compared with the base width. The 

figure also shows that the band diagram is almost identical for all the four models. This is 

due to the fact that the change in energy band is negligible when compared to the total band 

diagram of the transistor. The change are evident if the band diagram is zoomed to the base 

region only. A closer view for the base region plotted in Figure (6.18) reveals that the higher 

the electric field the higher the gradient in the energy band. Therefore, the most bending is 

observed in the recombination-only model whereas the least bending is found for the 

previous model.  
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Figure  6.16: Comparison of electron electric field )(xEn  for the present model, previous 

model [11], pJ -only model and recombination-only model. In this figure, 

318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.17: Comparison of energy band diagram for conduction band CE  for the present 

model, previous model [11], pJ -only model and recombination-only model. In this figure, 

318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.18: Comparison of energy band diagram for conduction band CE  in the base 

region for the present model, previous model [11], pJ -only model and recombination-only 

model. In this figure, 318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter 

doping profile is assumed. 
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Effects on the Emitter and Collector Currents 

Emitter current EI  is the sum of the currents, nJ  and pJ  at 0=x . For a given doping level, 

this current increases when electric field at 0=x  i.e. (0)nE  increases. Since, at 0=x , pJ  is 

maximum and recombination is zero, nE  at this position is seen higher for pJ -only model 

and the present model, whereas, nE  is lower for recombination-only model and the previous 

model [Figure (6.16)]. Therefore, higher EI  is observed in Figure (6.19) for pJ -only model 

and the present model than the other models. 

On the other hand, collector current CI  decreases due to recombination mechanism, 

since recombination is the highest at BWx = . Due to recombination, a lower CI  is, therefore, 

observed in Figure (6.20) for the recombination-only model and the present model compared 

to the other models. Again, as one moves to the collector, a higher mobility is expected due 

to reduction of doping level. Lowering of electric field nE  at BWx =  further increases the 

mobility. Therefore, increase in the mobility overwhelms the reduction of nE  and increases 

CI . These facts justify the observed results shown in Figure (6.20). 

Since, recombination mechanisms are neglected for the pJ -only model and the 

previous model, common-base current gain   is unity and hence, the common-emitter 

current gain   orhfe  approaches infinity ( )
1

=






. Therefore, feh  for these two models 

cannot be derived and hence, not be plotted in Figure (6.21). However, feh  can be defined as 

the ratio of CI  and the base current, BI . Due to lateral injection through the base, the 

divergence of majority hole current density is defined as [Equation (3.29)]  

 )(= xqgpnqR
dx

dJ
x

p
  (6.8) 
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where the second term of the right hand side represents the divergence due to the lateral 

injection through the base. Therefore, the total lateral injection current can be defined as the 

base current BI  and can be given as,  

 dxxpqgAI BW

baseB )(=
0  (6.9) 

According to this definition, the base current increases when either the generation rate 'g' or 

the stored base charge given by  

 dxxnqQ BW

B )(=
0  (6.10) 

 or both increases. When recombination mechanisms are considered, both 'g' and BQ  and 

henceforth, BI  decreases. The expected increase in eh f  for the present model is, therefore, 

observed in the Figure (6.21). Since recombination mechanisms becomes significant as 

injection level increases, the increase of feh  for the present model over the pJ -only model is 

observed under high-bias condition. 
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Figure  6.19: Comparison of emitter current EI  for the present model, previous model [11], 

pJ -only model and recombination-only model. In this figure, 318 102=(0)  cmNA , 

3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.20: Comparison of collector current CI  for the present model, previous model [11], 

pJ -only model and recombination-only model. In this figure, 318 102=(0)  cmNA , 

3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.21: Comparison of common-emitter current gain feh  for the present model and the 

pJ -only model. In this figure, 318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform 

emitter doping profile is assumed. 
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Effects on the Transit Times 

Base transit time B  increases when the electric field nE  decreases. Since nE  is the highest 

for the recombination-only model and lowest for the previous model [Figure (6.16)], the 

lowest and the highest B  are expected for these models, respectively. Figure (6.22) also 

supports this expectation. 

Total transit time ec  mainly depends on the emitter transit time E  and the base 

transit time B . E  is dominant under low-bias condition and increases with decreasing EI , 

whereas, B  is prominent under high bias condition and increases with decreasing CI . Since 

both EI  and CI  are lower for recombination-only model and the previous model than for the 

pJ -only model and the present model, ectau  is found higher for the former models under all 

bias conditions. This fact is shown in Figure (6.23).  
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Figure  6.22: Comparison of base transit time B  for the present model, previous model [11], 

pJ -only model and recombination-only model. In this figure, 318 102=(0)  cmNA , 

3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.23: Comparison of emitter-to-collector transit time ec  for the present model, 

previous model [11], pJ -only model and recombination-only model. In this figure, 

318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Effects on High-Frequency Parameters 

Unity-gain cutoff frequency Tf  is inversely related to the total transit time ec . A small 

change in ec  due to EI  or CI  is, therefore, reflected by this parameter. Due to the 

explanations described earlier in this section, Figure (6.24) shows higher Tf  for the present 

model the pJ -only model than that for the other models. 

The maximum frequency of operation axfm  is defined in Equation (2 as  

 
2
1

22
1













CB

T
max CR

ff


 (6.11) 

where the base resistance BR  can be defined as  

 
B

BB LW
SR =  (6.12) 

where B  is the average resistivity of the base layer. For the p-type base, this can be 

expressed as  

 dx
xxqpxxqnW pn

BW

B
B








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
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 The above expression can be expressed in terms of diffusivity as  
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The above expression for B  shows that BR  depends not only on the dimensions of BJT, but 

also on the injection level, mobility and the doping level. For a given doping level B  

decreases as injection level increases and as mobility increases. Since injection level 

increases under high bias condition, B  is expected to decrease under high bias condition. 
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This fact is observed in Figure (6.25) which shows the variation of BR  under various bias 

conditions. Again, electric field decreases the mobility and hence, increases the B  under 

high bias conditions. Since the recombination-only model and the present model show 

higher electric field than the other models, these models, therefore, show the higher base 

resistance BR  than the other models under high bias conditions. Figure (6.25) also shows 

this fact. 

It is evident from Equation (6.11) that maximum frequency of operation strongly 

depends on the base resistance BR . Indeed, the dependence of maxf  on Tf  is strongly 

modulated by the small change in bias-dependent BR . Therefore, the recombination-only 

model and the present model shows the lower value of maxf  than the other models under 

high bias conditions. From the Figure (6.26), the same observation can be made. 
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Figure  6.24: Comparison of unity-gain cutoff frequency Tf  for the present model, previous 

model [11], pJ -only model and recombination-only model. In this figure, 

318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.25: Comparison of base resistance BR  for the present model, previous model [11], 

pJ -only model and recombination-only model. In this figure, 318 102=(0)  cmNA , 

3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.26: Comparison of maximum frequency of operation maxf  for the present model, 

previous model [11], pJ -only model and recombination-only model. In this figure, 

318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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6.2.4 Effects of Emitter Doping Profile 

Earlier in this chapter it has been mentioned that majority carrier current )(xJ p  has 

dependency on the emitter region parameters such as emitter width, emitter doping level and 

emitter doping profile. In this section, the effects of emitter doping profile on the base transit 

time has been investigated. Three doping profiles are used: uniform, exponential and 

Gaussian. 

Uniform doping profile offers zero electric field in the emitter region. Gaussian 

profile introduces a linearly decreasing field, whereas, exponential profile a constant field is 

developed throughout the emitter region. Since electric field enhances the carrier flow and 

hence, the current, exponential emitter doping profile causes the highest and the uniform 

doping causes the lowest current in the emitter region, where all the parameters are kept 

constant. Due to low-injection condition prevailed in the emitter region because of heavy 

doping level, recombination in the emitter is neglected. Therefore, the emitter current can be 

treated as the boundary value for the pJ  in the base region. 

From the above discussion, it is evident that for the exponential emitter doping 

profile the )(xJ p  in the base is expected to be higher in magnitude than that for the other 

two profiles. This is also verified by the Figure (6.27) which plots the majority carrier 

current density in the base for the uniform, exponential and Gaussian emitter doping profile. 

Since, )(xJ p  has an aiding effect on the electron electric field nE , a lower base 

transit time B  and a higher unity gain cutoff frequency Tf  is expected for exponential 

emitter doping profile than for the other profiles. Figures (6.28) and (6.29) also verify this 

statement. From the Figure (6.28) it is seen that the lowest, the medium and the highest 

values for B  are obtained for the exponential, Gaussian and uniform emitter profile. The 

opposite case is seen for Tf  from the Figure (6.29). 
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Figure  6.27: Effects on majority hole current density )(xJ p  for uniform, exponential and 

Gaussian emitter doping profile. In this figure, 318 102=(0)  cmNA , 3.69=  and 

VVBE  0.9= . Exponential base doping profile is assumed. 
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Figure  6.28: Effects on base transit time B  for uniform, exponential and Gaussian emitter 

doping profile. In this figure, 318 102=(0)  cmNA , 3.69=  and VVBE  0.9= . Exponential 

base doping profile is assumed. 
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Figure  6.29: Effects on unity-gain cutoff frequency Tf  for uniform, exponential and 

Gaussian emitter doping profile. In this figure, 318 102=(0)  cmNA , 3.69=  and 

VVBE  0.9= . Exponential base doping profile is assumed. 
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6.2.5 Effects of Base Doping Levels on Emitter and 

Collector Currents 

In this section effects of base doping levels on the transistor currents are investigated. In 

doing so, the logarithmic slope of the profile   is kept constant. This results in negligible 

change in the electron electric field nE  in the base. However, increasing the peak doping 

concentration (0)AN  keeping the slope   constant increases the doping level throughout the 

base region. As a result, the mobility throughout the base region decreases. The subsequent 

effect is, therefore, a decrease in the carrier currents in the base. This effect is seen in the 

Figure (6.30) for the emitter current EI  and in the Figure (6.31) for the collector current CI .  
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Figure  6.30: Effects on emitter current EI  for three peak base doping levels: 

317318318  105=(0) , 101=(0) , 102=(0)   cmNcmNcmN AAA . In this figure, 3.69=  

and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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Figure  6.31: Effects on collector current CI  for three peak base doping levels: 

317318318  105=(0) , 101=(0) , 102=(0)   cmNcmNcmN AAA . In this figure, 3.69=  

and VVBE  0.9= . Uniform emitter doping profile is assumed. 
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6.3 Conclusion 
 

In this chapter, simulation results for the minority carrier profile, the minority and the 

majority carrier current densities, the collector current density and the base transit time are 

presented. The results establish that the consideration of both the pJ  and the recombination 

mechanism has distinct and significant effects on the base transit time. The results show that 

both pJ  and the recombination oppose the retarding field caused by an increase in injection 

level and hence, the base transit time at intermediate injection level becomes closer to its 

low-injection value. The numerical simulation results and the measurement data obtained 

from two experimental setups closely match with those of the proposed model. Therefore, 

the approximations used in this model are justified. These approximations are made to 

overcome the nonlinearity and the mathematical intractability. However, due to close 

matching of the proposed model data with the numerical and experimental data establishes 

the claim that majority carrier density along with the recombination mechanism has a 

significant effect on the base transit time and hence, must be included in the analytical 

model. 

 



 

 

152 

 

Chapter 7  

Conclusion 
  

 

In this work analytical expressions for the minority electron concentration profile, the 

minority electron current density, the majority hole current density and the base transit time 

have been developed by including the majority carrier density in the base of a bipolar 

junction transistor. The recombination mechanisms which include the SRH recombination 

and the Auger recombination as well as the lateral injection through the base are 

incorporated in the analytical modeling. The model also includes band-gap narrowing effects 

due to heavy doping, the Webster effect due to high injection level and considers velocity 

saturation, and doping and field dependance of the carrier mobility. The developed model is 

applicable to all levels of injection just before the onset of the Kirk effect. Therefore, the 

model can be characterized by its completeness and wide applicability. 

This chapter gives a summary of the contributions of the current modeling effort. 

Suggestions are also given for future reference. 

 

7.1 Contributions 

A lot of challenges has to be overcome in developing the analytical model that does not 

ignore the majority carrier current through and the recombination in the base. These 

challenges include:   

1. Inclusion of pJ  that makes the estimation of pE  complicated.  

2. Both electron and hole mobilities have to be incorporated to determine the electric 
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fields.  

3. Unlike the models where only doping-dependency is considered the electron and 

hole carrier mobilities are not a simple exponential function of position, since both 

doping profile and electric field dependencies are considered in the present model.  

4. For lifetime, inclusion of both SRH and Auger recombination leads to further 

complication.  

5. Incorporation of all the effects results in a non-linear, non-homogeneous, variable-

coefficient second order differential equation, the solution of which is analytically 

intractable.  

6. For low injection, )(<<)( xNxn A  and for high injection, )(>>)( xNxn A . However, 

for intermediate injection levels, n(x) is comparable to )(xNA .  

7. Mobility, electric field and pJ  all are coupled and also depend on the minority 

carrier profile.  

8. Conversion of a nonlinear, non-homogeneous and complicated-function variable-

coefficient differential equation into a linear, homogeneous and simple-function 

variable coefficient one has to be made.  

9. For analytical tractability, solution techniques have to be devised to solve the 

resulting differential equation. 

 

To overcome these challenges, some innovative approaches are taken, which represents the 

major contributions of this work. These are listed as follows:   

1. Different electric fields are considered for electrons and holes in the analytical 

modeling.  

2. Both SRH and Auger recombination are simultaneously considered in the 

analytical modeling.  
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3. Exponential approximation technique is introduced for analytical modeling.  

4. Lateral base injection is suitably incorporated.  

5. An approximate analytical expression for majority hole current density is derived.  

6. The electric field expression is approximately derived from which its dependance 

on the doping profile, the band-gap narrowing, the majority carrier current density 

and the injection-level is identified.  

7. The governing differential equation for the minority electron carrier concentration 

is modified to include the intermediate-injection-level effect.  

8. For the electron mobility, an approximate electric field is used to make the solution 

tractable.  

9. A confluent hypergeometric function is utilized as a solution when only pJ  is 

considered for low injection. A homogeneous Bessel equation is solved when 

recombination and injection-level dependency are incorporated. used.  

 

 

7.2 Suggestions for Future Work 

The analytical models developed in this work neglects the effects due to plasma-induced 

band-gap narrowing, which exists when injection level is high. Base push out is another 

effect to be considered, especially when bias levels approach 0.9 V or more. This mechanism 

leads to accurate modeling of two-dimensional effects such as emitter current-crowding and 

collector current-spreading. In this work, the velocity saturation is assumed to be occurred 

exactly at the BWx = , which is not the case. Indeed, this saturation occurs in the base region 

near the collector side. These modifications could be incorporated in the model in the future. 
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7.3 Conclusion 

The analytical model developed in this work include almost all the important effects 

investigated so far in the literature. However, the main achievement of this model is the 

inclusion of both the majority carrier current density and the recombination mechanism as 

well as the lateral injection into the base which were neglected by the analytical models 

reported in the literature. The proposed model is compared against numerical simulation 

results as well as experimental setups and was found to be in excellent agreement. It can be 

concluded, therefore, the developed model provides a better physical insight into the physics 

behind the base transit time. 
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Appendix 
  

A.1  Derivation of Confluent Hypergeometric 

Function 

Confluent hypergeometric function is defined as [57],  
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Now, the integral term I obtained in Section (5.2) can be rearranged by substituting 'x' with 

the variable 'v' as,  
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 Expanding the exponential term and then, integrating and rearranging results in,  
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 where the definition of confluent hypergeometric function given by Equation (A.1) is used. 

A.2    Simulation Procedure 

Three first order differential equations for n(x), )(xJn  and )(xJ p  are solved numerically. 

The equations are:   
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Following four boundary conditions are needed to solve the the Equations (A.5)(one 

additional boundary condition is needed to determine g):   
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Equations (A.5b) and (A.5c) offer boundary problem, whereas, Equation (A.5a) offer initial 

value problem. Therefore, two iterative procedures are required: one for pJ  and the other for 

nJ . Matlab routines are used to perform the iteration process. The iteration procedure is 

outlined below:   

1. First, an initial guess of (0)nJ  is chosen. nJ  obtained using the model (Ref. [11]) is 

used for this guess.  

2. Second, an initial guess for the generation rate g is required. For this, the Equation 

(A.7c) is used by letting 0=)(xn .  

3. The Equations (A.5) are then solved.  
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4. Using the new )( Bp WJ  and n(x) obtained in the preceding step, the new value of g is 

calculated from the Equation (A.7c).  

5. Since )( Bn WJ  and )( Bp WJ  thus obtained do not satisfy the boundary conditions 

given by the Equations (A.8b) and (A.8d), an iterative procedure is required.  

6. The Equations (A.5) are again solved using the new values.  

7. A new value of )( Bp WJ  is obtained, which may be higher or lower than the previous 

value. Since 0)( Bp WJ , this value should be lowered down. When the new value is 

higher than the previous value, this lowering can be achieved by continually dividing 

it by a number (i.e 10) until it lowers down from the previous value; otherwise, the 

new value is preserved.  

8. A new ‘g’ is calculated and the Equations (A.5) are again solved.  

9. This iteration process is continued until the value of )( Bp WJ  is reached very close to 

zero. This satisfies the boundary condition given by the Equation (A.8b).  

10. A second iteration is required to satisfy the other boundary condition given by the 

Equation (A.8b).  

11. The value of (0)nJ  is then increased by a very small factor ( 0.01% ) if 

)(<)( BsnBn WnqvWJ  and it is decreased by the same factor if )(>)( BsnBn WnqvWJ .  

12. The steps  (6) to  (9) are repeated for this new value of (0)nJ .  

13. The iteration is continued until the percentage error 100
)(

)()(




Bn

BsnBn

WJ
WnqvWJ  is 

reached within a prescribed limit (i.e. within the 0.01% ).  

14. The base transit time is then calculated using the numerically solved n(x) and )(xJn .  
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