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Abstract

In deriving an analytical model for the base transit time 7, for bipolar junction transistors (BJTs),

various non-ideal effects have to be considered. These effects include the bandgap narrowing
effects due to heavy doping, the Webster and the Kirk effects due to high injection and the effects
due to the position and field dependence of the transport parameters (i.e. carrier mobility and
carrier lifetime). The non-uniformity of the doping profile, and the doping levels make the
transport parameters to be position and field dependent. The electric field in the base is mainly
due to the non-uniformity of the doping profile. However, the field is modulated by the injection
levels, the gradient of the transport parameters and the majority carrier current density in the base.
For low doping levels, the effects of majority carrier current density are insignificant. When base
doping level is heavy (=10 cm™), the effects of majority carrier current density are no longer
negligible. Moreover, at such high base doping, recombination mechanisms and the lateral base
injection become significant, which also enhance the effects of majority carrier current density.

However, consideration of J , as well as all non-ideal effects results in a nonlinear,

nonhomogeneous, variable-coefficient differential equation, the solution of which is intractable.
In this work, a modified current equation reflecting the injection-level dependency has been
derived for the first time in the literature. The electric field term deduced in this equation is able
to identify the effects of the band-gap narrowing, the injection level and the majority carrier
current density. Concept of perturbation theory is applied to linearize the governing differential
equation. An exponential approximation technique is introduced to address the intractability
problem and used to convert this differential equation into a solvable form. The results of the

developed model shows that ./, has a significant effect on the base transit time. Close match with

the numerical simulation results and also with measurement data with two experimental setups

justifies the validity of the developed model.
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Chapter 1
Introduction

The base transit time is a very important parameter that determines several other
performance parameters of bipolar junction transistors. These parameters include the

maximum frequency of operation ( f, ), the cut-off frequency ( 7, ) and the noise figure, all

of which determine the high-frequency characteristics of a bipolar transistor. It is observed
that the high-frequency performance dominates over other performances of transistors. This
increasing requirement forces researchers to identify the effects that limit the high frequency
performance and to devise the technologies to overcome or at least circumvent these
limitations. In this context, therefore, the accurate modeling for the base transit time is
becoming important as the different technologies are evolving to improve the performance of
bipolar junction transistor. The physics underlying the modeling of this transit time is still
under rigorous research, as this knowledge can be applicable to the devices that involve p-n
junction(s) e.g. the hetero-junction bipolar transistor (HBT), photodiodes, phototransistors
etc.

The Base transit time depends on various factors among which the effects of majority carrier
current, flowing through the base, has been largely ignored in the literature. In this research
work, an analytical model is developed considering this effect that is applicable to all current
injection levels. In this chapter, first, the bipolar junction transistor and the base transit time

are briefly reviewed. Then the objective and scope of this work is presented. The



organization of the work is also included at the end of this chapter.

1.1 Bipolar Junction Transistor

Rapid advancement of solid state devices has started since the invention of the Bipolar
Junction Transistor (BJT) in 1948 by a research team of Bell Telephone Laboratories. Now a
days, semiconductor devices encompass almost all the aspects of modern life. Transistors are
now key elements in high speed computers, space vehicles, satellite, all modern
communication and power systems.

Transistors work on two different principles: bipolar operation and unipolar
operation. In the unipolar devices only one carrier, which is of majority, is involved. Field-
effect transistors (FET) are of this type. Operation of the other type involves both type of
carriers: electron and hole and hence it is called bipolar devices. Unipolar devices, specially
metal-oxide-semiconductor FETs find applications in the digital circuits specifically for their
excellent switching characteristics. On the other hand bipolar devices have applications
mostly in the analog circuits because of their better amplification of switching performances.
Therefore the research of modern BJT transistors needs to address the frequency limitations,
the high power effects and the switching behaviour.

Figure (1.1) shows the cross sectional view of an npn bipolar junction transistor. Two
p-n diodes connected back-to-back with a common n or p type region called the base
sandwiched between them operate in a way so that transistor operation becomes possible.
The carriers in one p-n diode are injected into the base. They travel through the base and
finally reach the other p-n diode. The contact from which carriers are injected is called
emitter and the contact where these carriers are reached is called collector. Based on the
biasing of these two diodes three modes of operation are possible. Of these modes, one mode

called the active forward mode is used for amplification purposes. This mode is obtained
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Figure 1.1: The Cross sectional view of a Typical npn Bipolar Junction Transistor showing

the Directions of current flow.



when one p-n diode, called base-emitter (B-E) junction, is forward-biased while the other
diode, known as base-collector (B-C) junction is reverse-biased. In this mode of operation,
majority carriers from the B-E junction are injected into the base region due to diffusion
aided by the bias. These carriers increase the concentration of minority carriers of the base
significantly. The strong electric field, caused by the reverse-biased B-C junction, is
responsible for transporting the increased carriers across the base and to reach the other end
of the transistor. Also, involved in the process are the minority carriers in the base that
control the current flow of the transistor. Although base region of a transistor is made thinner
for practical transistors, there exists several mechanisms and non-ideal effects which
influence the storage and speed of minority carriers in the base. As a result, the current gain
that determines the emitter efficiency, an important parameter for amplification, and the
transit time, which limits the high-frequency performance, are adversely affected.

The complete expressions for currents in bipolar junction transistors can be derived from the
following assumptions:

1. Injection level is low,

2. The electric field intensity in the bulk, region outside the depletion regions is so
small that the drift current of minority carriers in the bulk is negligible,

3. No recombination and generation takes place in the depletion region,

4. The widths of the emitter and collector regions are greater than the diffusion length
of the minority carriers so that the minority carrier densities reach their equilibrium
values at the contacts,

5. The collector area is much larger than the emitter area so as to collect all electrons
crossing the collector junction,

6. Each of the three bulk regions is uniformly doped and both junctions are considered

to be step junctions so that the change in impurity density, from one region to



another, is abrupt,

7. The emitter current is made up entirely on electrons; the emitter injection efficiency
is one and

8. The active part of the base and two junctions are of uniform cross sectional area;

current flow in the base is essentially one-directional from emitter to collector.

1.2 Base Transit Time

As mentioned in the previous section, the transistor performance analysis is mainly based on
emitter efficiency that depends on the current gain and the high frequency models based on
transit times. The analysis of emitter efficiency is beyond the scope of this thesis. This
research deals with base transit time modeling and identifies the limiting factors of high
frequency performance.

The high frequency performance is characterized by various figures of merit, e.g. the

maximum frequency of operation ( £, ), the beta cutoff frequency ( 7, ) and the alpha-cut
off frequency £, . These parameters are summarized as below:

e  Unity-gain Bandwidth frequency, f,: This is the frequency at which common-

. o . ol.. . .
emitter short-circuit current gain f=h,, (= al—c) 1s unity.
B

e  Beta Cutoff Frequency, f,: This is the frequency at which common-emitter short-
o . ol . . :
circuit current gain =4, (= 5) becomes 70.7% of the mid-band gain. For
B

practical amplifiers the usable limit for beta cutoff frequency is 0.1f; .

e  Alpha Cutoff Frequency, f,: This is the frequency at which common-base short-

circuit current gain & = h, (= g—c) becomes 70.7% of the mid-band gain. For
E

practical amplifiers, 1, = f; .



e  Maximum Frequency of Operation, f, . : This defines the maximum oscillation

frequency. It is the frequency at which unilateral gain becomes unity and can be

expressed as [1],

L
fre ~2S(27W0C0J (b

| =

% , Py 1s the average resistivity of the base layer

B

where S is the emitter stripe width, 7, =

and C, is the collector capacitance per unit areathe other parameters are constant and
defined in [1]. The above equation can be rewritten in terms of the base resistance R, and

the collector capacitance C. as

1
2
i L (1.2)
2\ 27R,C..
where
S
Ry =1y (1.3)
Cc=GSL (1.4)

From the above discussion, it is evident that the main characterizing parameter for high
frequency operation is the unity-gain-bandwidth frequency f;. This cutoff frequency
depends on the physical structure of transistor and can be defined through the total transit

time 7, as,

P

= 1.5
2rz,, (15)

where the the transit time 7, is the total time required for injected minority carriers to travel

from emitter to collector. This transit time can be divided in five components:

1. Emitter transit time, 7,



2. Base-emitter depletion layer charging time, 7,,

3. Base transit time, 7,

4.  Base-collector depletion layer charging time, 7,

5. Collector transit time, 7,
Therefore,

T, =Tp+T,+7,+7, +7, (1.6)
A rigorous analysis has been made by J. J. H. van der Beisen [2], where he showed that the
most influential component is the base transit time, which comprises almost 70% of the
total transit time. The next significant contribution comes from emitter transit time. All other
transit times are negligible. Of all these transit time components, the most complicated one is
the base transit time owing to inclusion of various non-ideal effects. However, a complete
analysis that includes all these effects is not available in the literature.
The average time taken by the minority electrons to travel through the base region is

called base transit time 7,. Mathematically, 7, can be defined as,

g n(x)

¢ J,)

T, =—q dx (1.7)

where W, is the base width. For the low and high injection regions, the analytical
formulation for the base transit time has been derived. For low injection, n(x) << N ,(x) and
for high injection region, n(x)>> N ,(x). For uniform base doping, the expressions for base

transit time is reduced to [3],

Wy
S 1.8
% 2D, (18
Wy
T, = 1.9
34D (1.9)

n

The base transit time depends on a number of factors such as



1. Type of Doping profile i.e. uniform, exponential, Gaussian etc,

2. Band-gap narrowing effect,

3. Doping, injection level and J, dependent electric field,

4. Doping and field dependent mobility,

5. Doping and injection level dependent minority carrier lifetime,
6. SRH and Auger Recombination in the base,

7. Webster effect,

8. Velocity saturation at the base-collector (B-C) junction,

9. Base width,

10. Base sheet resistance,

11. Collector current density,

12. Temperature etc.

1.3 Literature Review

In 1985 H. Kroemer [4] generalized the two integral relations deduced by Moll and Ross for
the current flowing through the base of a BJT to the case of a hetero structure bipolar
transistor with nonuniform energy gap in the base region and developed a base transit model.
He showed that the expression for base transit time for low injection region is reduced to
equation ( 8). J. J. H. van der Beisen [2] studied the base transit time as a function of base-
emitter bias and divided the total transistor time into five components. For this purpose he
used a regional analysis but did not provide any closed form expression. J. S. Yuan [5]
investigated the effect of base doping profile on the transit time for all levels of injection. He
numerically evaluated the base transit time using a proposed equation for minority carrier
profile and boundary conditions and therefore, his work is not concise.

K. Suzuki [6] developed a transit model for uniformly doped bipolar transistor for
high level of injection. In this model he considered the velocity saturation effect at the base-
collector junction. Later he [7] obtained an expression for base transit time with non-

uniformly doped base for high level injection before the onset of the Kirk effect using



perturbation theory. But, the equation form for base transit time is not concise and contains
several integrals.

Pingxi et. el. [8] proposed a model of transit time that included all of the above-
mentioned effects. However, their model is based on iterative techniques. Hence, the
obtained expressions in this work are not concise and are inconvenient to understand the
device physics. Later, a set of initial conditions was proposed by [9] based on unform doping
profile to reduce the computational time needed in the work [8]. This work is also
inconvenient since it too is based on the iterative method.

M. Z. R. Khan et. el. [10] proposed a model for all injection levels using best curve-
fitting technique, where intermediate injection level model was derived from the low and
high injection models. Therefore, these models are not accurate. Later Hassan et. el. [11]
developed the intermediate injection level model by extending the low injection models
using perturbation theory. This model also considered both the field and doping dependence
of the mobility.

Conventionally, derivation of all analytical models including the works [2, 3, 5-12]

for 7, were made by neglecting majority-carrier current in the quasi-neutral base. Liou et al.
[13, 14] in their work considered the role of J, in an npn transistor on 7, ; but their model is
based on simulation results of J, rather than a closed-form analytical expression and it uses
position-independent transport parameters and applies iterative approach for solution.

The works in References [15, 16] considered the J,-dependence in order to develop
an analytical model for base transit time. Although these works give a closed-form
expression for base transit time and consider all the non-ideal effects discussed in the

literature, the models are limited to low injection condition only. Moreover, these models do

not include the effects of recombination and the lateral base injection in the quasi-neutral
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base region, which must be included to properly investigate the effects of J . Including the

lateral base injection, Igbal and Hassan later developed models for nonuniform base doping
profile [17] under low-level injection. Later, including recombination mechanisms low-
level-injection model [18] and intermediate-level-injection model [19] have been developed
by the same authors. Although these models are applicable for non-uniform doping profile,

the models neglect J,-dependency.

1.4 Objective

In an npn transistor, its base Transit time 7, is a function of minority carrier concentration
n(x) and minority carrier current J, (x). n(x) and J, (x) depend on various factors among
which majority carrier current (/) dependence is not considered yet in the literature, as
previously mentioned. The main concern of this thesis is to investigate the effect of this J ,

flowing through the base, on 7,. An analytical model of the base transit time considering

this J, effect is therefore needed. This model must include all the non-ideal effects
incorporated so far in the in the literature. This helps understand the significance of J -

consideration in the analytical modeling of 7, . Since the recombination mechanism and the

lateral injection through the base have effects on J , the desired analytical model should
include their effects. However, incorporation of all these effects along with J, leads to a

nonlinear, nonhomogeneous and variable-coefficient differential equation. Therefore the
governing equation becomes mathematically intractable.

The main objective of this work is to resolve the mathematical intractability of the
analytical modeling by applying appropriate techniques and using reasonable
approximations. Next the effects of J, using the developed model are to be analyzed by

comparing with a reference model, which neglects the J -dependency only. Finally, the

validity of the developed model need to be justified against the numerical results and also,

with the experimental data.
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1.5 Scope of the Work

The analytical modeling presented in this thesis considers majority carrier current in the
base. The model includes all the non-ideal effects except plasma-induced band-gap
narrowing due to increased injected electrons in the base. The model also neglects the
temperature dependance. Therefore, the developed model is applicable for room

temperature.

1.6 Organization of the Work

The work described in this thesis is organized as follows. The overview of the basic
semiconductor equations as well as the brief description of various non-ideal effects are
presented in the Chapter 2. Chapter 3 details the problems and challenges for the
development of analytical modeling of base transit time. Chapter 4 describes the appropriate
techniques, methods and approximations needed to overcome these problems and
challenges. Chapter 5 details both the low injection modeling and the intermediate injection
modeling developed. The results and the accompanying discussions are presented in Chapter
6. Future suggestions for the derivation of the analytical modeling as well as concluding

remarks are given in the Chapter 7.
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Chapter 2
Theory: Equations,

Formulations and Models

In order to conceive the physics behind the non-ideal effects on the base transit time of
bipolar junction transistors, the basics of semiconductor theory need to be understood
clearly. Although the fundamental concept of semiconductors requires knowledge of
complicated physics, quasi-static and quasi-equilibrium approximations and Maxwell-
Boltzmann distribution for carriers are adequate to understand the physics of all non-ideal
effects in a quite simplistic manner. This chapter starts with the transport equations derived
from Poisson's equation and then gives a overview of various non-ideal effects on the
transport parameters i.e. mobility and lifetime. In doing so, physical models that exist in the

literature are also presented and discussed.

2.1 Device Equations

2.1.1 Poisson's Equation

The electric field is quasi-static in semiconductor devices i.e. time-derivatives are neglected
in non-homogeneous Helmholtz equations as the device dimensions are much smaller than
the wavelength associated with the operating frequency. Under this quasi-static assumption,
the electric and magnetic fields are decoupled and the Helmholtz equation reduces to well-

known Poisson's equation given by,
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Vip=-£ 2.1)

where p represents the space-charge density in semiconductors. This density can be

calculated from the knowledge of electron and hole concentrations in conduction and

valence band respectively and from the net ionized impurity concentration N =N, —-N, i.e.,
p=q(p—n+N) 2.2)

where n (p) is electron (hole) concentration.

2.1.2 Continuity Equations

Since the knowledge of n, p is defined under thermal equilibrium condition only, continuity

equations are needed to describe the model completely. These equations are given as,

VZ—q(%j =+qU (2.3a)

VJ, + q(%j =—qU (2.3b)

where U represents the net recombination rate per unit volume and J,, J, are the electron

and hole current densities, respectively. The detailed expressions for these current densities
require the understanding of the physical mechanisms involving electron transport in the
semiconductors. On the other hand, the net recombination rate includes several mechanisms
such as Shockley-Read-Hall (SRH) recombination, Auger recombination, optical generation
and impact ionization. Considering these mechanisms, the total recombination rate at
equilibrium condition can be given as [20],
U=R-G=(R-G)gy +(R-G),+(R—G)y -G, (2.4)

where (R—G)g, 1s due to Shockley-Read-Hall (SRH) recombination, (R—G), is due to

Auger recombination, (R—G),, is due to band-to-band radiative recombination and G, is

due to impact ionization.
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In order to develop the analytical modeling for a npn bipolar junction transistor, one
dimensional analysis is preferable as three dimensional analysis is difficult and there is no
simple way to solve the 3-D differential equations. For one dimensional case, the Equations

(2.3) reduce to

Gilfxn — 1 g(R-G) (2.5a)

dJ
L= _g(R-G) (2.5b)
dx

2.1.3 Transport Equations

The transport theory is described by the well-known Boltzmann transport equation (BTE).
This equation is based on the semi-classical view of carrier transport in semiconductors.
That is electron moves through a sequence of drifts in the electric field followed by
scattering events. The drifting time, the type of scattering process and the final state are
random quantities and are expressed in terms of transition rates due to various processes.
Still the free motion of electron is deterministic and depends on the spatial distribution of the
electric field. The BTE can be simplified by assuming the interaction among the carriers to
be weak (i.e the single-particle approximation), the energy bands to be parabolic, the
scattering processes to be elastic or isotropic and the carrier temperature to be uniform in
space and time. Applying the band theory and effective-mass theorem, the BTE can be

written as,
J, =qunF, (2.62)

J,=qu, PI‘T,, (2.6b)
where F, and F, are quasi-Fermi potentials. Using the definitions of the quasi-Fermi
potentials, equations (2.6) can be written in the familiar form:

J_n = q,unnE'Jr qD Vn (2.7a)

J,= q,uppE'—quVp (2.7b)

The current densities consist of the drift component caused by the electric field and the
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diffusion component caused by the carrier concentration gradient. ,, u, represent the
electron and hole mobility respectively and D,, D, represent the electron and hole diffusion

coefficient respectively. For non-degenerate semiconductors these parameters are related by

the Einstein relations:

D, = [k_Tj " (2.8a)
q

D, = (Hj 1, (2.8b)
q

kT . ) )
where — is called as thermal voltage, V;, k is the Boltzmann's constant and T is the
q

temperature in Kelvin. In 1-D form, the Equations (2.7) can be represented as,

J, = q,unnE +qD, dn (2.9a)
dx
- d
J,=qu,pE—qD, Ep (2.9b)

2.2 Physical Models
2.2.1 Heavy Doping Effect: Band-gap Narrowing

When doping density is large, band structure changes significantly. This is due to [21]
fluctuations of local potential for statistical distribution of impurities within the crystal
lattice and interaction between majority carriers and impurity atoms, between impurity
atoms themselves and between a minority carrier and the surrounding cloud of majority
carriers.

Interaction between impurity atoms at large concentrations causes impurity levels to
broaden into a band. This broadening is further enhanced by the statistical fluctuations of the
local potential caused by the random distribution of impurities. This impurity-band-

formation theory was developed by Morgan [22] using semiclassical approach. The shape of
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the impurity band is nearly Gaussian. The width of this band depends on doping density and
is affected by the screening of majority carriers. From the work of Mertens ez. el. [21] it can
be inferred that, when impurity concentrations becomes very large, the impurity band starts
to shrink and eventually merges into the conduction band. At high doping densities
formation of band tails also occur due to the statistical fluctuations of local potential and the
interaction of low-energy wave packets. The theory of this band tail formation was
developed by Kane [23]. Also, rigid shift of band-edges occur as a consequence of
interaction between majority carriers and between the minority and majority carriers.
Combining the above-mentioned effects leads to an effective bandgap narrowing
AE , which in turn increases the product of the equilibrium electron and hole concentrations

as follows:

AkG
n;, = nge 7 (2.10)

where 7% is the product of the equilibrium electron and hole concentrations without
considering band-gap narrowing. An empirical expression for AE, was suggested by

Slotboom and De Graaf [24-27] as follows:
[a+\/a2+0.5)]eV (2.11)

AE, = E

bgn

[ Ni ]
a=lIn
Nn,ref

and N, =N, 6+ N, represents the total impurity concentration for uncompensated material.

where,

The parameter values are given as,

E,

bgn

=0.009V

N . =1.0x10" cm™

n,ref
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Later [27] these values are corrected to

E,, =0.0069%V

N . =1.3x10"7 cm’®

n,ref
and with these parameters, Equation (2.11) can be applicable for both n-type and p-type

materials.
Since base doping density N ,(x) varies from 5x10" to 2x10" ¢m™ in practical

use [28], the expression for n,(x) can be approximated as [28],

np(x) = nf{N"—(x)} 2.12)

where,
n,=1.194x10° cm™

¥, =0.5323

2.2.2 Carrier Mobility: Position and Field Dependance

Carrier mobility is defined as,

u=j§ (2.13)

e

where m. is the effective mass and 7 is the mean scattering time. In order to determine 7

and hence u , various scattering mechanisms are included. The most important mechanisms
for non-polar semiconductors like Si and Ge are deformation-potential acoustic phonon,
non-polar optical phonon and intervalley scattering. Impurity scattering and electron-hole
scattering becomes important for these materials when impurity concentration is relatively

large. Using Mathiessen's rule, the low-field mobility g, due to these scattering mechanisms

can be combined as,
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L=L+L+i (2.14)
luO /uac Iuop Iui

where u,., u,,, w4 represent mobility due to acoustic phonon, optical phonon and inter-

valley scattering respectively. Although Equation (2.14) interprets the general behaviour
fairly in a qualitative manner, the quantitative agreement is not satisfactory and hence
empirical expressions containing fitting parameters are used for device-simulation purposes.
Selberherr [29] exhaustively studied various mobility models proposed in the literature. One
of the most widely used mobility model for silicon was proposed by Caughey and Thomas

[30] as,

/’lmax _lumin
Nr

To include the temperature dependence of the four parameters involved in Equation (2.15),

IIJO = Ilein + (215)

slight modifications are made by several authors [Baccarani and Ostoja [31], Arora et. el.
[32] etc.]. Selberherr has shown that the modified equations are entirely equivalent to

Equation (2.15), where the parameters are defined as,

—0.57
T
Hhin 8(300}

-2.33
T
=4 +1253 —
o = 1 125 51
2.546
N =1.43210] -
300

a=1

for electrons and

-0.57
T
=543
ﬂml)‘l {300j
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-2.33
T
=u. +407 —
b = #4075

T 2.546
N, =2.67x10"| —
300

a=1
for holes.
These models are not convenient for use in the analytical formulation of the base

transit time of bipolar junction transistor. For practical base doping density range mentioned

in section (2.2.1) the low-field doping density dependent electron mobility z , model is

approximated as [28],

_D,O(N,®)"
e {—NWJ (2.16)

with
D, (0)=20.72cm’ (V.s)™
N, . =1.0x107 cm™
7,=0.42

D (0)

where, u,(0) = IZT is the electron mobility without considering doping and field

dependency.

For low-field hole mobility s,,, Verhoff and Simke [33], Lu and Kuo [34] used

equivalent doping dependent model, which can be rearranged in following form

_D,O)(N,m)" @2.17)
kT \ N, '

with

_ 2 -1
D,(0)=12.5727Tcm" (V.s)
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7,=0.38

D (0
where, ,up(O)ZIZ—;) is the hole mobility without considering doping and field

dependency.
The electric field dependency of the carrier mobility is expressed by the widely used

Caughey-Thomas-Thornber [30, 35] expression given by,

[>= o (2.18)

T

where, v, is the saturation velocity and E is the electric field with

v, =1.04x10" cmis
p=2
for electrons and

v, = 8.37x10° cmi/s
p=1
for holes.
The field dependent mobility expression for electron g, i1s further simplified for
using analytical formulation. This simplification was originally suggested by Kull ef al. [36]
and later modified by Chen and Kuo [37] as,

\%

Sn

u, = (2.19)

\%
a, | E, |+—"-
n0

where, a, =0.7743and. This empirical expression is used in the work done by Hassan et al.

[11] and also in this work. On the other hand, for the field dependent mobility expression for

hole x,, Equation (2.18) can be rearranged as,
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p=—r (2.20)

v
s
|E, |+
PO

2.2.3 Recombination-Generation

Recombination-generation processes in semiconductors are influenced by various
mechanisms which includes photon absorption-emission (radiative transitions), trap-assisted
recombination, three-particle Auger-impact transitions, plasmon interaction etc.

In direct gap semiconductors i.e. those having conduction and valence band maxima
at same crystal momentum, electron transition predominantly occur through photon
absorption-emission. But this is not the case for indirect-gap semiconductors, such as Ge and
Si. For these materials, electrons at the conduction band edge have nonzero momentum, but
holes at the valence band edge have zero momentum and hence, a direct transition that
conserves both energy and momentum is impossible without a lattice interaction (phonon)
occurring simultaneously 1.e. direct transition requires simultaneous interaction of three
particles: the electron, the hole and the phonon. The three-particle interaction occurs when
electron and hole densities are very high and is generally termed as Auger recombination.

Two-particle interactions are more likely in Si and Ge, as there are ample localized
energy states within the forbidden energy gap into which electron or holes can make
transitions. These localized states are always available due to crystal imperfections and
metallic impurities. There are four processes through which free carriers can interact with

localized states: electron capture R, , electron emission, G,, hole capture, R, and hole
capture, R,. At thermal equilibrium, R, =G, and R,=G,, since thermal equilibrium

requires every process must be balanced by its reverse process. When non-equilibrium

occurs, R, #G, and R, #G,. Under this situation, the localized state will act as either a trap

or a recombination center. In the former case, carriers will return to conduction or valence
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band, whereas, in the latter case carriers will recombine at the localized state. Of these two,

recombination centers are generally considered.

SRH Recombination

The theory of trap-assisted recombination-generation was developed by Shockley and Read
[38] and independently by Hall [39] and therefore the theory was known as "SRH Theory".
According to this theory, the overall population of the recombination centers are not greatly
affected as the states are nearly full with majority carriers whether equilibrium or non-
equilibrium occurs. At steady-state condition, SRH model reads the net recombination rate

as (for acceptor-like SRH centers),

2
(R=G) gy = PR e
TpO(n+ nl) +Tn0(p +pl)
where,
EI—E[
n =mne T (2.22a)
Ei_Et
p=ne (2.22b)
T0=C, (2.22¢)
T,=c, (2.22d)

where, E, is the energy level of traps, 7, ,, is the electron/hole lifetime and ¢, , is the

capture probability represented by,

where, o,  is the electron/hole capture cross-section, v, is the thermal velocity and N, is

the trap density. For metallic impurities the trap density and hence, the carrier lifetime is
independent of the doping density, whereas, for nonmetallic impurities they depend on the
doping density. Fossum et. el. [40] showed that there is an upper limit for carrier lifetime due
to presence of some fundamental crystal defects which act as recombination centers. The

equilibrium concentration for such defects varies nearly linearly with doping density.

(2.21)

t (2.23)
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Incorporating these defects Fossum suggested an empirical expression for carrier lifetime

7,, 8,

7, =t (2.24)

The parameters values are given in the work of Fossum [41] as,

70 =3.95x107" sec
70 =3.52x10" sec
N,, =7.1x10° cm™

A slightly modified expression for lifetime was proposed by Anheier and Engl [42] as,

NO- an,p
=1, { ”f} (2.25)

T”,P n,p N

1

with &, , =0.5. Later, Engl and Driks [43] suggested a possible range of values for «, , as

0.3<a,, <0.6.

Auger Recombination

For a highly doped silicon, the probability of recombination involving direct transitions is
negligible as compared with the probability of recombination through traps (SRH
recombination). This direct recombination is called Auger recombination. In Auger
recombination, three carriers are involved, either two electrons and a hole or two holes and
an electron. Two of the carriers recombine and the third carrier carries away the momentum
of the incoming carrier and energy released by the recombination process. Because of these
three- carrier interaction Auger recombination is likely to occur when doping density is very
high.

Auger recombination can be of band-to-band (phonon-assisted) or trap-assisted. A
thorough investigation made by Fossum et.el. [44] led to the conclusion that, at any impurity

concentration, trap-assisted auger recombination does not appreciably change the carrier
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lifetime. Therefore, band-to-band Auger recombination gets attention at high doping density.
In this work, it has been shown that minority carrier lifetime turns out to be inversely
proportional to the square of impurity concentrations, when impurity concentration becomes
very high, indicating dominance of Auger recombination.

In the Auger recombination four partial processes are involved:

1. R, : An electron moves to the valence band from the conduction band where it
neutralizes a hole, and delivers the energy between its initial and final states to
another conduction band electron.

2. G, : An electron from the valence band is hit by a high-energy electron, and is
excited to the conduction band.

3. R,: A electron moves to the valence conduction band from the conduction band
where it neutralizes a hole, and delivers the energy between its initial and final
states to another hole which is excited to high-energy state (deeper in the valence
band).

4. G,: Anelectron from the valence band is hit by a high-energy hole, and is
excited to the conduction band.
At thermal equilibrium, R, =G, and R, =G,. When non-equilibrium occurs, R, # G, and
R, #G,. At steady-state condition, the net Auger recombination rate can be expressed as,
(R=G),=(C,n+C,,p)(pn—n) (2.26)
where, C,, = are the Auger coefficients and can be determined from electrical or optical

carrier lifetime measurements. Dziewior and Schmid [45] performed determination of these
coefficients from photoluminescence decay measurements following laser excitation. Their
results show that Auger coefficients are less temperature-sensitive between 77 —400 K with

room temperature values being
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C,, =2.8x107" cm® sec™
C,,=9.9x1 07 cm® sec™

By including the temperature dependence, the Auger coefficients can be expressed as,

C,, =0.67x107" +8.16x107** T —2.44Ex107 T*

C,,=0.72x10"" —0.15x107> T+2.92x107" T*

2.3 Conclusion

In this chapter the basic semiconductor equations and the physical models associated with
transport parameters are briefly reviewed. These equations are device-independent.
Appropriate application of these equations are very important in order to analytically
formulate the model of the device characteristics. In the next chapter, these equations are
discussed in the context of an npn bipolar transistor with non-uniformly doped base under
arbitrary injection level so that the problems of the base transit time modeling can be

understood.
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Chapter 3

Problems and Challenges of
Base Transit Time Modelling

In the previous chapter the fundamental equations and models are discussed that are
applicable for any semiconductor device. For an npn bipolar transistor all these are to be
reviewed so that the limiting effects on the base transit time can be understood. In this
chapter equations and the models are discussed in the context of an npn bipolar transistor
under arbitrary injection-level condition and for arbitrary doping profile. The problems and

challenges that have to be overcome for accurate modelling are examined.

3.1 Non-ldeal Effects

The base transit time of a bipolar transistor depends on the velocity of minority carriers and
the base width. The velocity depends on the mobility and the electric field. Both these
factors are strongly influenced by the doping profile and the injection level. The mobility is
dependent on the electric field when electric field crosses a critical limit. Furthermore,
various non-ideal effects affect the electric field; these include the band-gap narrowing
effect, the Webster effect, the Kirk-effect, velocity saturation at the base-collector junction,
majority carrier current density in the base, lateral current injection through the base and
recombination in the base. Therefore, an accurate model of electric field acting on the

minority carriers in the base is almost a formidable task considering all these factors. Since,
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high frequency operation of bipolar transistors is mainly limited by the base transit time that
gets reduced with increased electric field, a clear physical understanding of electric field and
the role of other factors is a must. In this section, this objective is explored.

The problem of modelling electric field in the base for bipolar transistors with low
and uniform base doping profile is simple, since all the above-mentioned effects become
negligible. Therefore, in this case, the electric field can be assumed to be zero. But when
doping profile becomes nonuniform, the electric field can no longer be neglected. Actually,
nonuniform base doping profile is often engineered to enhance the minority carrier flow
towards the collector. When base doping profile is nonuniform, majority carriers tend to
diffuse towards the collector due to concentration gradient. This tendency is counterbalanced
by an electric field which retards the majority carrier flow. The electric field is created in a

direction such that the minority carriers in the base are quickly swept to the collector. This is
termed as built-in electric field. If the doping profile is kept low i.e. of the order of 10" cm™

to 10'® cm™, the above-mentioned effects, except the injection-level dependency, can still be
neglected [1, 2, 5, 13, 14, 49] and the majority carrier current density can be considered as

zero. For an npn bipolar transistor this assumption can be read as,
_ dp _
Jp—q,uppE—quE—O 3.1)

where, J, is the majority carrier current density, p(x)=n(x)+N,, N, is the acceptor

doping concentration in the p-type base and n(x) is the injection-level dependent minority

carrier concentration. This assumption, therefore, can be used to evaluate electric field as,

—=——"~=—1Inp(x) (3.2)
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Here, the complexity arises due to the injection-level dependency. Fortunately, this is
not a severe problem since the injection level can be considered as low i.e, n(x)<<N, for
base doping levels less than an order of 10" ¢cm™ for an operating base-emitter voltage V,,
up to 0.75 V. For V,, higher than 0.8 V, high injection effects occur which causes base-
widening. Therefore, base width W, no longer remains constant. Under high-injection
conditions, transit-time modelling is done, in the literature, by assuming that n(x)>> N, .
Since, the intermediate region between these low and high level regions is very narrow, the
consideration of such region for low base doping levels (<107 cm™) can be safely
neglected. This greatly reduces the complexity of analytical modelling for such base doping
levels, since at this intermediate region the assumptions, n(x) << N, or n(x)>> N, is no
longer valid.

If base doping concentration exceeds the limit of 10" ¢m™, none of the non-ideal
effects can be neglected. Hence, the physics behind these effects has to be addressed for

accurate modelling of base transit time. In the following subsections these effects are briefly

described.

3.1.1 Band-gap Narrowing Effect

At high doping level, band-edge shifts for both valence and conduction bands which is
known as the band-gap narrowing effect. Since, the doping profile in the base is nonuniform,
the band-gap narrowing becomes position-dependent and it decreases from emitter side to
the collector side. As a result, the energy band diagram in the base becomes position-
dependent for which two important modifications need to be incorporated. One is the
modification of the intrinsic carrier concentration and the other is the presence of an electric

field that retards the built-in electric field. The effective intrinsic carrier concentration 7,

can be modeled by considering the various interactions among the carriers and therefore, the
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expression becomes very complex. A simplified expression can be used for n, at high

doping levels, following the empirical expression suggested by Slotboom et. el. [24-27], as
shown below [Section (2.1)]

1;.(X) ”io|: N :| (3.3)

The estimation of the retarding fields caused by band-gap narrowing becomes complicated

since both valence and conduction band-edges are shifted by AE. and AE),, respectively.

One way to resolve this complexity is to derive the current transport equations by first
considering the band-edge shifts and then determine the retarded electric field from the
deviation observed from the current transport equations that ignore the band-gap narrowing
effect. This derivation was first carried out by Van Overstracten et.el. [46], where the
generalization of the transport equations are made for the case of a position-dependent band-
gap by employing the Fermi-Dirac distribution function. This generalized transport
equations become simplified for Maxwell-Boltzmann distribution and also if equal band-
edge shifts are assumed for valence and conduction bands. Since, base doping concentration
is limited below 10" ¢m™ for device considerations, this simplified transport equations can
be employed to describe the effect of band-gap narrowing. From these simplified transport
equations, it can be inferred that the electric field acting on minority carriers is less than that

acting on majority carriers and the relation between these fields can be expressed as,

E 2
2 =—L——1In(n,) (3.4a)
V. V., d
E d
r_ 4y 3.4b
_VT T np(x) ( )

for p-type base in an npn transistor and,

E
L= ﬂ—iln(nfe) (3.5a)
V., V., dx
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E_4d Inn(x) (3.5b)
V, dx

for n-type base in a pnp transistor and where, E, and E, are the electric fields acting on

the electrons and holes, respectively. The logarithmic derivative term in these expressions is
due to the position-dependent band-gap narrowing and therefore, represents the retarding

component of electric field.

3.1.2 Velocity Saturation Effect

The Velocity saturation of the minority carriers near the base-collector (B-C) junction has to
be incorporated in the analytical models. The commonly used assumption of zero minority
carrier concentration at B-C junction can no longer be justified at high doping levels
because, it leads to an unrealistic situation in which the minority carriers are required to
cross the B-C junction at an infinite velocity. For an npn bipolar transistor, this can be
explained from the relations given by,

J (x)=gux)n(x) atanyxinthebaseand (3.6a)

nWy;)=0 (3.6b)
Since, the minority carriers cross the B-C junction at x =W, the electron current density
J, at the B-C junction is not zero, which leads to

V(W) = oo (3.7)
Therefore, the minority carriers that cross the B-C junction should have a finite velocity.
Since, the electric field at the base-collector junction is higher than a critical limit, the
velocity of the minority carriers must be saturated near the B-C junction. Roulston et. el.
[47] investigated this phenomena and suggested that the electron current density at the B-C
junction for a bipolar transistor can be expressed as,

J Wy)=qv,n(W,) npnbipolartransistor (3.82)

J,Wy)=qv,,pWy) pnpbipolartransistor (3.8b)
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where, v, and v, are the saturation velocities for electron and holes respectively and

x =W, denotes the base-collector junction. Equations (3.8) can be used as a boundary

condition for determining minority carrier concentration profile in the base. Although the
minority carrier velocity saturates before reaching the B-C junction, there is yet no analytical
expression to determine the exact location in the base near the B-C junction where the

velocity saturation occurs.

3.1.3 Webster Effect

Webster [48] showed that the electric field in the base is modulated by the minority carriers
in the base as injection level increases. This modulation of electric field is negligible for low
injection levels in which minority carrier concentration is much smaller than base doping

concentration i.e. n(x)<<N (x). However, as injection level increases, this assumption

leads to erroneous results [6, 7, 11].

The pn-product for any extrinsic semiconductor under non-equilibrium condition can

be expressed as [1, 49],

V(x)

p(n(x) =i (x)e " (3.9
where, the effective carrier concentration 7, is used to include the band-gap narrowing

effect and the local voltage is V(x). As the electric field in the base region varies from the
emitter side to the collector side, so does the local voltage V(x). Since the distribution of
minority carriers in the base is unknown, the electric field and hence, the voltage V(x)

cannot be determined. However, the voltage across the base-emitter junction V,, is known.

Therefore, the equation (3.9) can be used to determine the boundary value of minority carrier

concentration. For an npn bipolar transistor, this boundary value can be expressed as,

v
2 _BE
_ nie(O)e vy

0
"= 0

(3.10)
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where, x=0 denotes the base-emitter junction and V(0)=V,,.. Under low-injection

conditions, p(0)~ N ,(0). Therefore, the equation (3.10) can be approximated as,

v
2 _BE
nie(O)e vy

n,(0)= N (0)

(3.11)

where, n,(0) denotes the boundary value under low-injection condition. When injection
level increases, n(x) cannot be neglected compared to N ,(x) and hence the relation

p(0)=n(0)+ N ,(0) must be used. Therefore, the equation (3.10) results in a second order

linear equation of n(0) as,

vV

72(0)+ n(0)N,(0)=n (0T =0 (3.12)

The solution of this equation gives the expressions for n(0) and p(0) as,

VBE

_N,0), \/Nj(0)+ 42 (0T
2

n(0)= 5

(3.13a)

"BE
_ NL(0) VNG(O0)+4n (0 7
2

p(0) 5

(3.13b)

Substituting the value of p(0) in the equation (3.10) and rearranging the terms in the

denominator gives the boundary value of n(x) at the base-emitter junction as,

V
2 _BE
nie(o) e VT

N,(0)

n(0)= — =n,(0)f, (3.14)
1o a7 7
S| e ' T
2 |4 {NA(O)}
where, the factor £, is expressed by
1
fo= (3.15)

1 Jl [(0)}
e e e 2
2 4 | N,(0)
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reflects the injection-level dependency of the boundary value. Under low-injection this factor
becomes unity; but as the injection level increases, this factor decreases from unity. Since,
the minority carrier distribution throughout the base region decreases from the value of n(0),
this distribution in the base decreases as the injection level increases. This decreasing trend
of n(x) with injection level results in a lower gradient of n(x) and hence, of p(x). Since,
electric field is the logarithmic derivative of p(x) (Equation 3.2), it can be concluded that the

electric fields in the base decrease as injection level increases.

3.1.4 Kirk Effect

Kirk effect [50] occurs at high-injection level condition i.e. when minority carrier
concentration becomes greater than the base doping levels. For an npn bipolar transistor, this
condition is expressed as n(x)>> N,(x). Under such condition the number of electrons
entering the base-collector depletion region cannot be neglected compared to the
concentration of negatively charged acceptor ions present in the B-C depletion region. Thus,
the total number of negative charges at the base side of this depletion layer increases
significantly. In order to accommodate this increase of negative charges compared to the
positive charges at the collector side, the depletion layer at the base side has to shrink which
in turn causes the increase in base width. This phenomena is termed as the base-width
modulation. The result of this phenomena is the increase of the base transit time. The onset
of the Kirk effect is determined from this phenomena, which can be used as an indication of
high-injection effects. The Kirk effect occurs when the number of minority carriers that cross

the B-C junction n(W,) is comparable to the base doping concentration N ,. However, for
device considerations, N, must be higher than the collector doping concentration N,..

Therefore, the condition for not triggering the high injection effect for an npn bipolar
transistor can be given as,

n(W,) << N, (3.16)
From the Equation (3.9) it is evident that the above condition can be achieved by increasing
base doping concentration as minority carrier concentration is inversely proportional to the

base doping density. From the same equation it is also evident that n(,) becomes
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comparable to N, at higher bias levels for heavy doping since n(W,) can be increased by

increasing the bias. In other words, high injection level occurs at a higher voltage level for

heavy base doping. Therefore, the n(/#,) and hence, the electron current density J,

becomes much higher for heavy doping than that found at lower doping. Hence, the current
capability of bipolar transistors can be increased up to hundred times using high base doping
levels. This increased current capability reduces the base transit time considerably even at
the high bias levels despite the retarding effect of high injection effects.

Another significant effect of heavy base doping is that it introduces an intermediate
injection level. This intermediate injection level for such doping can no longer be negligible.

Under intermediate injection level condition n(x) is comparable to N, and hence, the

analytical model for this region becomes further intractable. This intractability problem can
be overcome by first deriving the low injection model which can then be extended to

intermediate injection levels by the use of perturbation theory as suggested by Suzuki [28].

3.1.5 Doping and Field Dependence of Mobility

At low base doping density, the minority carrier mobility in the base can be regarded as
constant i.e. independent of doping density and independent of electric field. As base doping
increases beyond the order of 10" ¢m™, the position and field dependency of mobility
cannot be neglected. For an npn bipolar transistor with a high doping density, the electron

mobility considering both these dependency can be expressed as [section 2.2.2],

= "—v (3.17a)
a,|E, |+
n0
D, N,x))"
_ n A X
= 4 3.17b
/unO kT [Nm’ref J ( )

where, u,, represents the low-field electron mobility. For convenience, the equations

(3.17a) and (3.17b) can be expressed in terms of diffusivity as,
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1 __1 a. |E, (3.18a)
an qDHO qun VT

1 _ 1 (V@Y (3.18b)
anO an (0) Nm,ref

3.1.6 Recombination Effects

As discussed in Section (2.2.3), recombination-generation mechanisms include SRH
recombination, trap-assisted Auger recombination, radiative recombination and impact
ionization. For Si bipolar transistors, the first two mechanisms are significant when the base
doping density is high. Of these, Auger recombination becomes more dominant as doping
density increases. For indirect semiconductors, such as silicon, the radiative recombination is
insignificant [20] due to small photon momentum. The Impact ionization is the reverse
process of Auger recombination. For the neutral bulk region this term can be omitted
because there is no spontaneous generation in this region. Therefore for the bulk silicon of
highly doped base, the total recombination rate can be written as,

R_G:(R_G)SRH +(R_G)Auger (319)

where,

2
pn_nie

R-G =
( Jows Tp(n+nl)+rn(p+pl)

(3.20a)

(R - G)Auger = (CAnn + CApp)(pn_ nlze) (320b)

where, 7, are the doping-dependent electron and hole lifetime. The empirical expressions

of these electron and hole lifetimes given in Section (2.2.3) are rewritten for the base region

of an npn bipolar transistor as,

e (3.21a)
TN
1+—5
Nref

” (3.21b)
T, = N,
1+ 5
Nc

For the neutral base region, traps can be considered as shallow-level i.e trap-centers are very

close to the intrinsic Fermi level. Therefore, n>>mn, and p >> p,. Incorporating these
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considerations the Equations (3.20) can be modified as,

2

1 n
(R~ G) gy =———— pln—"5) (3.22a)
Tpn +7,p p
n’
(R - G)Auger = (CAnn + CApp)p(n - f) (322b)

Applying the charge-neutrality condition in the base i.e p=n+ N, these expressions can be

reorganized as,

1

_ z, n? (3.23a)
(R=G) gy = Axroms N, px(n—?)
n’
(R=G) yger = Cypi(1+1)n+ N} px(n— ;) (3.23b)
where,
0
T
y o= CAn
CAP

Combining these two recombination mechanisms, the current continuity equations in the

base region can be expressed as,

dJ n?
&~ gR (n-"1) (3.24a)
dx p
as,
=—qR (n——<) (3,24b)
dx p
where,
- 2
r (3.25)

+C  [(I+r)n+ N, ] |x(n+N,)

x

T"
(+r)n+N,

The physical significance of the term R_ can be appreciated if the Equation (3.24a) is

compared with the electron continuity equation given in standard text books for electron
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continuity equation under low-level injection condition given by

daJ, _qn (3.26)
dx 7

n

where, 7, is the minority electron lifetime. The term R_ can be labeled as Inverse Life Time

in this context.

3.1.7 Lateral Injection Through Base

The work of G.T Wright and P. P Frangos [51], concerning high power npn bipolar junction
transistors, has shown that the analysis for minority electron concentration profile and
minority electron current density that neglect the lateral base current density for operation in
saturation region is not valid. Therefore, the authors have added the majority carrier current
density in their analysis.

In order to develop a simple analytical model for bipolar junction transistor, some
means must be found to incorporate the lateral injection of base current into the active base

region. This can be done by the use of an approximate source function G, suggested by B.

V. Gokhale [52]. The hole current continuity equation in the base region for an npn bipolar
junction transistor can be modified as,

dJ 2

n.
2 =R (n-")+4G, (3.27)
dx p

The physical model for the source function G, is not clearly understood. Gokhale [52]

proposed a constant for this function within an effective electrical base width. A better and
intuitively acceptable description is to assume that the lateral base current, and hence the
source function is proportional to local concentration of the majority carriers in the base
[51], as given by

G, = gp(x) (3.28)
where the coefficient g is the rate constant which describes the lateral injection of base

current. In this way, the physical mechanism of majority carrier current flow can be
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incorporated in the model. Divergence of majority (hole) current given by Equation (2.5b)

can be reformulated as,

Wy 4R | ny——T5eD |, oty N, () (3.29)
dx : n(x)+ N, (x) !

where locally valid charge-neutrality condition is used.

3.1.8 Majority Carrier Current Dependence

Conventionally the majority carrier current density in the base region is neglected in the
analytical modelling of base transit time. This is justified for low base doping densities,
since the contribution of this current density towards the electric field and hence, the base
transit time is insignificant. But, the contribution becomes increasingly significant as base
doping level is increased. Since inclusion of this majority carrier current density makes the
analytical modelling rather complicated, this is usually neglected in the literature, even for
heavy base doping. The modifications required in this regard are presented in this
subsection.

If majority carrier density is not neglected, the hole electric field in the base region of
an npn bipolar transistor can be expressed, as an alternative to the expression given in

Equation (3.4b), as

£, _d Inp(x)+ —Jp )

—+£ (3.30)
V, dx gD, p(x)

Due to heavy base doping, the hole mobility is both doping level and electric field

dependent. Considering this fact, the hole mobility then can be expressed as [section 2.2.2],

3.31
1w, :Lv ( a)
|E, |+—7
PO
D,(0)( N, (x)) "
_ p A X
=+ 42 3.31b
/LlpO kT [Nm’ref ] ( )

where, 4, represents the low-field electron mobility. For convenience, the above equations

can be expressed in terms of diffusivity as,
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E
L_ &% (3.32a)
qu quO qu VT
] 1 (N
- 4(%) (3.32b)
quO qu(O) Nm,ref

where,

Since E, is negative in the base region, a minus sign is used to make it positive i.e.
E,=—|E,|. Substituting the expression of F£, given by Equation (3.30) in the Equation

(3.32a) results,

J
L_ 1 e fd, oy LD (3.33)
qu quO qun d'x qup(x)

Now, rearranging the terms in the above equation gives an expression for diffusivity as,

1 a, d
I K7 danid (3:34)
70 PG+ 2 g, ()
g Vsn

Using this expression for hole diffusivity in the Equation (3.30), the hole electric field £,

can be obtained in terms of J (x) and p(x) as,

1 a4 3.35
P T, (0= Lq B o lnp(x)J (3.35)
L = — Inp(x) + L :
Voooodx PO+ T (50
9 Vs
The simplification of Equation (3.33) results in
dp 1

£, dxt S (3.36)
Voo poo+ e

x<J (x
v » ()

sn

Using charge neutrality condition p(x)=n(x)+ N ,(x), the Equation (3.36) can be further

rearranged as,
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dn AN, | g (yx (3.37)
£,  dx dx ’ qD,,
Voo no+ N, O+ 22 < T, (%)
9 Vs,
The electron electric field £, can be found from the Equation (3.4a) as,
dn  dN4 | g ey L (3.38)
E dx dx ” gD, d 5
== = 20— In(n2)
Vro (o) + N, () + q“h < J,(x) 4x
The electron mobility given by Equation (3.18a) can be expressed as,
% v dy T, (% (3.39)
L 1 4 e i i =00 —iln(n,i,)

a,

x<J,(x) x
9V,

qD, aD,, gV, n(x)+ N (x)+

which is further rearranged by using the Equation (3.18b) to reflect the dependency of

diffusivity on n(x), N,(x) and J,(x) as,

B dn AN, (3.40)
1 1 N () 4 e dx dx aD,0 _d 1n(n2)
a b, qaD,(0) IV, . LVen | pp(x) + N, (x) + Dn dx “

=< J,(x)
av,
An expression for J, is required to determine the electric fields and mobilities. In order to

obtain this expression for J,, the hole current continuity equation given by Equation (3.29)

can be integrated as,

J,(x)=K-— quRx |:n(x) — m)f—%\f(x)}dij qg_.-ox[n(x) +N, (x)]dx (3.41)

The integration constant K and the generation rate g can be determined from the boundary

values of J, at x=0 and at x=W; i.e. J,(0) and J,(W},). Of these two constants K can
be determined easily as,

K=-J,00) (3.42)
The minus sign is introduced in the above equation as J, is negative for an npn bipolar

transistor. The other constant g can be determined by performing the two integration of the

right side of Equation (3.41), which require knowledge of n(x), N, (x) and R, .
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Considering unform doping profile in the emitter and collector regions, the boundary
values for J (x) i.e. J,(0) and J,(W;) can be given for the forward-active mode operation

of an npn bipolar transistor as,

gD, (0) >, *5e

J (0=~ T e (3.43a)

4D, (0) 2.

J, (W)=
» W) W N

(3.43b)
where,

D, =the holemobilityin the emitterregion

D, =the holemobilityin the collectorregion

n, . =theeffectiveintrinsic concentraionin the emitterregion

n,,. =theeffectiveintrinsicconcentratonin the collectorregion

N, =theemitterdopingconcentraion

N, =thecollectordopingconcentraton

W, =theemitterwidthand

W, =the collectorwidth

The hole mobility in n-type silicon is different from the hole mobility in p-type silicon. As
suggested by the works [53, 54], the mobility ratio for holes can be taken as,

holemob%liy%nn— types?l?ccm —99 (3.44)
holemobiliyinp-typesilicm

Using the above relation, D, .(0) and D,.(0) can be calculated from the following

relations:
D,,.(0)=2.2x D, (0)x| -2z (3.452)
L NVorer |
) o
D, (0)=2.2x D, (0)x| e (3.45b)
_Nm,rgf n
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For a n" -p-n transistor, emitter doping level is higher than the base doping level and
collector doping level is comparable with the base doping level. Therefore, effective intrinsic
carrier concentrations in the emitter and collector regions must include the band-gap

narrowing effect. Considering this fact n,,.(0) and n,.(0) can be calculated from the

following relations:

nip(0)=nfo[ e ] (3.46a)
) Ns'tff

. (N P

o (3.46b)

For the non-unform doping profile in the emitter, the expression for J,(0) need to be

modified. Since the emitter doping level is very high (of the order of 10 cm™), low-
injection condition prevails there under normal operating condition. Therefore,
recombination in the emitter can safely be neglected, majority carrier current in the emitter

J, can be assumed as zero and the field-dependency of the carrier mobility can be ignored.

All these considerations lead the governing differential equation for minority hole
concentration in the emitter

E J
@_p_P:__P (3.47)
dx V, qD

§4

to

J
ap p{i In N_zd} __ (3.48)
dx dx n qD

ie P

where electric field £, is expressed considering bandgap narrowing effect as

S~
32

In (3.49)

S|

]

where N, is the emitter doping concentration. The boundary conditions for the emitter

region are given as
VBE

_n2(0) v, 3.50
p(0) —Nd(o)e (3.50)

p(Wy) =0 (3.51)
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where x =0 and x =W, are assumed at the emitter side of the base-emitter junction and the

emitter surface side, respectively. Using the boundary conditions result in the expression for

J , as g o 1 (3.52)
IWE& 1
0 nf@ qu

dx

This expression for J, in the emitter region can be used as the boundary value for J i.e
J,(0) at the base side of the base-emitter junction in the base region. For uniform doping

profile, this expression leads to the expression given by the Equation (3.43a). For

exponential and Gaussian doping profiles, J,(0) can be obtained as,

)
I 0y — PO i (0, (1=ys +75) 55 (3.53a)
p.exp WE NE 1— u;;’;z +73
SO L= W (O P (S S N R ey AT AN O (3.53b)
P.gauss W N § _
E E \/;eif(\/nE(lWyz_'_yS))
E

where the emitter doping for exponential and Gaussian profile can be assumed as

X
_”EW7E

N, N e N ou, (3.54a)

.exp

i 2
_ NEe‘”E[WEJ (3.54b)

d,gauss

where 77, 1s the logarithmic slope of the doping profile given by

N
= E 3.55
s Zog(Nd(WE)} ( )

where N, and N,(W,) are the emitter doping concentrations at x=0 and x=W,,

respectively.

3.2 Problems and Challenges of Base
Transit Time Modelling

In the previous section, the physical models of various non-ideal effects have been briefly
reviewed. Inclusion of these models make the analytical modelling complicated. When

majority carrier density is considered in the modelling, whether it is intended to do under
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low injection condition or intermediate injection level condition, the degree of complexity
increases so much that the modelling becomes intractable. In this section, the problems and

the difficulty level of this modelling effort are explored.

In order to obtain an expression for the base transit time for an npn bipolar transistor,

the minority electron concentration n(x) and the electron current density J, (x) need to be

determined. Conventionally, the determination procedure involves the expression for
electron current given by Equation (2.9a), which is recalled here as,

J,=qnu E +qD, % (3.56)

By dividing each term by gD, , a first order differential equation of n(x) is formed as,

n

dx V., gD

n

an E, _J,() (3.57)

The solution of this equation gives n(x) and J, (x). The above equation therefore can be

treated as the working differential equation for the base transit modelling. This apparently
simple differential equation becomes very much complicated when majority carrier current
density, recombination and all other non-ideal effects are included. Using the expression of

E and D, transforms the differential equation as,

i P
dn dx dx qD,, d
+

—_— ———In(n2) |n
a J e

dx n+ N, + =2 dx
aVsy,

dn  dN, J
+ + —=—

dn  dN,

3.58
_ 1 [NA(x)T‘ LG |dx  dx Dy d o (3.58)
n ] J ie
qD, (O N, Do | N, 4 Dlp dx
qv,,
The above equation can be rearranged as,
J
204 N, + a,J, adnN, 4T
qv,, |dn dx qD,, d >
W T —M_jln(ni") n
n+ N, +—122 x n+ N, +—122 x
dn  dN, /,
1 N, a |dx dx gD, d 2 (3-59)
= Jn D (0 N -+ < a.J _di ln(nie)
q n( ) ref 9V, n+NA + h” p X

The analytical solution of this differential equation is intractable, because
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¢ The differential equation is non-linear and non-homogeneous.

o The expression of J, requires knowledge of n(x) as is evident from Equation (3.41),
which in turn requires the knowledge of J .

e As seen from the expression for R given by Equation (3.25), inclusion of

recombination mechanisms makes the expression a complex one, which requires

knowledge of n(x). Therefore, the integration of the term containing R_ of Equation

(3.41) becomes intractable.
e The term representing lateral injection through base of Equation (3.41) imposes

further complexity in deriving the expression for J .

e As recombination is considered, J, can no longer be treated as constant as used

conventionally.

e For low-level injection n(x) << N (x) assumption can be used, which simplifies the
solution greatly. But for intermediate injection level condition this assumption cannot
be used.

e Since, dependency of doping and electric field is considered for electron mobility,
the right hand side of the above differential equation is not a simple one as obtained

when J -dependency of electric field is not considered.

e Since, the base doping profile is non-uniform, the analytical solution becomes
impossible.
e Since the coefficients of the differential equation is variable, the determination of
integrating factor to solve this equation is not simple and easy.
In order to obtain a tractable solution of the differential equation given by the Equation
(3.59), following challenges have to be overcome:

o The differential equation contains two unknown variables J,(x) and J (x). Since
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recombination and lateral base injection are considered, both these terms are no
longer constant.

One way to remove J, (x) from the differential equation is to differentiate the

equation (3.59) and then using the electron current continuity equation given by the

Equation (3.24a). But the coefficients of n(x) and J (x) contain n(x) and its

derivative as well as J (x). Again, J, (x) itself is included in the coefficient of Z—n
X

Therefore, further differentiation makes the non-linearity problem of the differential

equation even more complicated and hence, removal of J (x) is a big issue.
Another major issue is the determination of J,. The expression for J (x) given by

Equation (3.41) shows that that the integration of the terms is analytically impossible
because these terms contain unknown n(x).
The non-linearity of the differential equation is due to the presence of the terms n(x)

and J,(x). Some means must be made to overcome the problem by approximating

n(x) without the loss of generality.

The non-homogeneity problem can be replaced by removing J, which is not easy.

I

Moreover, since Y term is multiplied with J (x), a simplified form of this term is
qL,

needed to resolve the non-homogeneity problem.

Since the variable coefficients of the above-mentioned differential equations are
complicated in nature, these terms must be converted into suitable forms for
achieving tractability.

Resolving all the above-mentioned challenges still leaves an analytically unsolvable
differential equation. It is therefore intended to devise some transformation

techniques so that the differential equation becomes solvable.
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3.3 Conclusion

This chapter briefly describes the various non-ideal effects on base transit time modelling.
These non-ideal effects are not strictly additive and therefore, not only make their effects
difficult to understand but also present a lot of problems and challenges for analytical
modelling. The problems and the challenges that are observed due to these effects have been
investigated in this chapter. Resolving the problems and overcoming the challenges is the
next job to do. This requires the choice to devise appropriate method and techniques. By
explaining the origin and cause of these difficulties, this chapter creates a foundation for

successful analytical modelling presented in the following chapter.
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Chapter 4
Methodology

In the previous chapter the problems and the challenges that are to be addressed faced in
order to derive an analytical model of base transit time have been discussed. The challenges
are mainly due to the nonlinearity, non-homogeneity and presence of complicated variable
coefficients in the governing differential equation. In order to overcome these challenges,
suitable techniques and appropriate approximations are needed. The techniques and
approximations must be such that the physics is not ignored while making the model
mathematically tractabe. Even then some transformation methods must be devised to make
the working differential equation into familiar form. Keeping all these constraints in mind,
this chapter aims to find out the roots of the problems and then proposes techniques and

approximations to overcome the challenges.

4.1 Nonlinearity Problem: Solution

Techniques

The first-order differential equation derived considering all the non-ideal effects in section

(3.2) is repeated here for convenience.

a,J dN J,
2n+ N, + £ +
qv, dn dx qD,, d 5
a jn 7+ —Cli]——ln(n,(,) n
I’Z+NA+ " p X n+NA+ Y p
9V 9V
dn
— +dN
dx . + b (41)
71
S TR Sy (P s, =S S
n » J ie
qD,(0) N, DVor | i N+ L0 dx
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The nonlinearity of this differential equations is due to the presence of n(x). Therefore, to

overcome the nonlinearity removal of n(x) is a necessary. For this concept of perturbation

) . ) dn .
theory is used. Moreover, presence of J, term in the coefficient of . complicates the
X

nonlinearity. This also should be carefully resolved and an approximation for diffusivity is,
therefore, needed. In the following subsections, the techniques of overcoming the problems

are explored.

4.1.1 The Perturbation Theory

The expression for electron electric field derived in the previous chapter is recalled here:

@+dNA +J,(x)x
%: dx dx quO _iln(nlze) (42)

T+ N )+ (x) 9X

sn

This expression shows that electric field depends on both the concentration and the gradient
of the base doping profile, the minority carrier concentration as well as on the band-gap
narrowing effect and the majority carrier density. Since, the concentration and the gradient
of minority carrier concentration changes as bias voltage changes, the electric field has a
strong dependency on the injection level. All of these dependencies need to be identified
clearly in the expression for electric field. Concept of perturbation theory using Webster
effect [48] can be used for this purpose.

In order to reflect the injection level dependency of electric field, the Equation (3.38)
has to be modified further. For this purpose, the perturbation theory is used. Since, the low
injection (LI) level solution can be obtained directly, intermediate injection level solution
can be obtained from the perturbed LI solution using the Webster effect [48]. Webster
showed that the electric field in the quasi-neutral base is modulated by the minority carrier

concentration. Again, the injected minority carriers at the base emitter junction (i.e x=0)
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n(0) is modified from its low-injection value 7,(0) by a voltage dependent factor f,

(described in the section (3.1.3), which is insignificant under LI conditions but has to be
incorporated under intermediate and high level injections, given by
n(0)=n,(0)f, (4.3)

Although this expression holds at x =0, it is expected that the same holds throughout the
base region provided a correction term is incorporated. This correction term is needed since
the electric field throughout the base is not uniform due to change in the carrier
concentration with increased injection level as was shown by Webster. This correction term
is therefore both position and voltage dependent. This is the basis for applying perturbation
theory and was introduced by Suzuki [7]. According to this theory the minority carrier
concentration at any position in the base under any injection level n(x) can be determined
provided that the same can be obtained under low-injection condition (#,(x)) and the
position and voltage dependent correction term is known. Mathematically, this can be

expressed as,

n(x) =n(x) [, +06,(x) (4.4)
where, 0, (x) represents the correction term and £, is introduced to incorporate Webster
effect. Although &, (x) increases with the injection level and with the position in the base,
for the accuracy of model derivation, this J,(x) must be such that

5,(0)=n(x)f,+N, (4.5)
instead of o, (x) <<n,(x)f, . As aresult, the hole concentration in the base can be expressed
as,

p(x)=n,(x)+N, (4.6)
where, n,(x)=n,(x)f, . It is also important to note that the application of the perturbation

theory is limited to intermediate injection level only. This is not applicable to high injection
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condition since under that condition n(x)>> N ,(x) and therefore, condition (4.5) is not
valid. Hence, the intermediate injection model using perturbation theory is limited by the
onset of the Kirk effect. However, using the perturbation theory the terms containing

n(x)+ N ,(x) can be replaced by n,(x)+ N ,(x) and therefore, the non-linearity problem

can be resolved.

4.1.2 Approximation of Electron Diffusivity

Using the concept of perturbation theory, the first order differential equation of minority
carrier concentration can be rewritten as,

ahJP &—FL

dx D
qv.\'n @—F q pO _iln(nlze) n

2n,, + N, +

a,J a,J
n,+N,+-1"2 dx n,+ N, +-1=2 dx
qv"’ qv_\'n
dn  dN. 7,
.’ an  dN. 4.7)
— 1 [NA (x)] 4G dx dx 9D, d n(n2)
. T ie
aD, (O N, DV | oy e dx
qv,,
where, n, represents n,, and n, under respective conditions as listed in Table (4.1). The
. . 1 . dn .
coefficient of J, , which represents the term ——, contains a a term — which cannot be
qD, dx
known without the knowledge of n(x). An alternative way of representing the above
equation is
a,J dN. J,
2n, + N, +- 222 vy @y e
qv?n qvm dn dx qD])O d 2
a,J, 7+ a,J —d—ln(n,.(,) "
n, + N+ Yo n, N, e A
qv,, qVy,
dN. J
" R (4.8)
_ 1 N () a, dx gD, d 2
=J, — — L In(n2)
aD,(0O)\ N, ., qv,, S, dx

n, + N, +

where minus sign is used to reflect the negative direction of electron electric field. Here, the

. d . . . : .
coefficient of d—n contains the term J, which can be known if n(x) is known. Either
X

representation [Equation (4.7) or (4.8)] of the governing differential equation suffers with the
problem of unknown coefficients. A suitable approximation can resolve this problem. In the

representation given by Equation (4.7) the concept of perturbation theory can be used by



52

dp _d(n+N,) as d(n,+N,)

approximating the term =

in the right hand side of the

Equation (4.7). In the representation, given by Equation (4.8), no such approximation can be

applied for the unknown term J, (x) contained in the coefficient of i’_n The approximation
X

to be applied for the term dap contained in L was first used and examined by Suzuki in

dx qD,
his work [7], where he showed that this approximation does not lead to any significant error
compared to simulation results. Therefore, the electron mobility can be expressed in terms of

electron diffusivity as,

d(n, "']VA)+ Jp

11 [NA(X)]yl _ a, dx 9Dy d (4.9)
, J ie
9D, gD, (0)( N, . Do | N+ e dx
qv,,
Under the low-injection condition, the above expression is reduced to,
dNA + Jp
11 N, a | ax gD, d In(n) (4.10)
gD, qD,(0) Nm,re/' qV, N, + ah‘]p dx m
q Ve
Using the approximated diffusivity, the governing differential equation can be rewritten as,
a,J dN, J
P NV A4 4 P
" 4 gy dn dx aD,, d R J (41 1)
= an 7+ 5 —d—ln(nl.g) n :7D“
n,+ N, +22e |9y N e 94X qD,
q Vs, q Ve,

4.2 Derivation of /,)

The electron electric field £, is related to the hole electric field £, which in turn depends
on majority carrier current density J,. But the knowledge of £, and D, is required to
obtain J,. The problem becomes more complicated since D, and E, are interrelated. To

solve this problem, the hole current continuity equation must be solved, which requires the
knowledge of recombination mechanism and lateral base injection mechanism. However, the
recombination indeed depends on the minority electron concentration which is a parameter
yet to be determined. Under these circumstances, use of the perturbation theory and
appropriate approximations resolves the problem.

The hole current continuity considering recombination and lateral base injection is

given by
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aJ, n
o IR [ras Y (4.12)
where,
x
R = ﬁ+CAI,[(1+ra)n+NA] x(n+N,) (4.13)
rn+N,

2
Under low-injection condition n =N, and using the condition n?—¢ due to heavy doping,
P

this equation simplifies to

dJ

dpl =—qRn +qgN, (4.14)
X

where, J

2> R, and g, are the majority current density, recombination term and generation

rate respectively under low-injection condition and

1

T

R, = =+ C N, |}V,
N ’
1
=T—+CApr1 (4.15)

n

The equation (4.14) is still analytically unsolvable since #,(x) has to be known, which in
turn cannot be determined without knowing J . This problem can be overcome as follows.

At first, the recombination mechanism is neglected to determine majority carrier density.
This reduces the Equation (4.14) to

aJ,,
dx

~qg,N, (4.16)

Using this J,, in the differential equation results in an expression for 7,,(x), the minority

carrier concentration under low-injection condition neglecting recombination mechanism.

The minority carrier concentration considering recombination 7,(x) cannot be deviated

significantly from #n,,(x) which neglects recombination under low-injection condition.
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Therefore, concept of perturbation theory can be applied to determine #,(x) and the relation
between these two can be expressed as,

1, (xX) = 1y5(x) + Iy (x) (4.17)
where, on,(x) represents the deviation. Assuming the same consideration for accuracy of

model derivation as is made for intermediate injection model derivation, the majority hole

concentration under low injection can be given as,

p,=nm+N,

=n,,(x)+Mmy(x)+ N,

~n,+N, (4.18)
where,

ony,(x)=n,,+ N, (4.19)

is assumed as before. Now, this assumption is further extended so that
(I+7r)n+N, =(1+r)n,+N, (4.20a)
(I+7r)n +N,~(1+r)n,+N, (4.20b)
Therefore, the term R, can be expressed as

1

T
R, = 4 +C +r)n,+N,]|x(n,+N 4.21
o T, Tl N1 < + N, (421)

The hole continuity equation under low-injection condition given by Equation (4.14) then
becomes,

dJ

dp[ =—qR [n,, +ony(x)]+qg,(n,, +ony(x)+N,) (4.22)
X

The above equation can be rearranged as,
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dJ
a,;j =qg,N,+q(g — R, )n,(x)+q(g, — R,)on,(x) (4.23)

Extending the assumption given in (4.19), it can be inferred that

gN +(g, —R )Ny (x)?2(g, — R,y (x) (4.24)

This assumption simplifies the hole continuity equation under low-injection as,

del
E ~qgN,+q(g — R, )ny(x) (4.25)

Integrating the above equation results in an expression for majority carrier current density

under low-injection with recombination mechanisms incorporated. Using this

expression, minority carrier concentration #,(x) under the same condition can be estimated.

Following the same procedure, the majority carrier density J,(x) under intermediate

injection-level condition can be derived. The exception that exists between these procedures

is that in the former case minority carrier concentration is perturbed by the recombination

mechanism, whereas, in the later case the same is perturbed by injection levels based on

Webster effect i.e. n,, is now replaced with #,,. The governing equations under intermediate

injection-level condition are summarized as follows:

* The term inverse lifetime R_ can be expressed as

1

R = (1+r)2n Y +C [(1+r)n, + N, |x(n, +N,) (4.26)
N 12 A

where following assumptions are made
(I+7)n+N,~=(+r)n,+N, (4.27a)
(I+7)n+N,~=(+r)n,+N, (4.27b)
e The hole continuity current equation can be expressed as,

dJ,
i qgN,+q(g—R)n,(x) (4.28)

where the following assumption is used.
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gN, +(g =R )n,(x)?(g — R, )on(x) (4.29)
In summary, the minority carrier concentration, minority carrier current density and the

majority carrier density are to be determined is a sequence of three steps, which are tabulated

as below:

Minority Carrier Majority Carrier Minority Carrier

Step Concentration, n(x) | Current Density, J (x) | Current Density, .J, (x)

Low-injection level
. o Mo S ot S oo
neglecting recombination

Low-injection level

. . n, =n,,+on J J
considering recombination Lo e o l
Intermediate-injection level n=n,,+on J, J,

Table 1: Minority carrier concentration, and minority and majority carrier current densities

in different steps

4.3 Formation of Modified Electron Current
Equation

The equation (4.11) is now rearranged as,

ANy Sy
d D
dn 1| v 4D d ol

J, (4.30)
ah JP dx F] an

where,

4.31)

Since F, contains injection-level dependent term #,, under intermediate injection level
condition in the form of #n, , the new equation (4.30) can be treated as modified electron

current equation incorporating the injection-level dependency and is valid for both low and
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intermediate injection level conditions. This is shown for the first-time in the literature. In

comparison with the original electron current equation given by

dn E J
—+—n(x)=—=
dx V, qD,

this equation shows that the coefficients of n(x) and J (x) are the electron electric field and

electron diffusivity, respectively. These terms are then termed as effective electron electric

field, £, , and D, , and can be given by
dNA + J["
Epey _ 1| _dx Dy _d o (4.32a)
J ie
Vr £ n,+N, Gy dx
qVS}’I
D,y =HhD, (4.32b)

From these equations following conclusions can be made:
* The lowest value of F| is unity and is obtained under low-level injection.
* This factor increases from unity as injection level increases.

* E, ; decreases with injection level, as it is determined by dividing the factor 7.

This means that injection level has a retarding effect on the electron electric field.

* Dn,ej] ’

the effective mobility, increases with increasing injection level, as the
factor F| is multiplied to determine this effective mobility.

Using these effective terms, the modified current equation can be obtained in a simplified

form as,

E .
@4_ n.efff n(x)= ‘]n

dx V, gD, .5

(4.33)

4.3.1 Effective Electron Electric Field

The effective intrinsic concentration #,, is rewritten as,

2

n2(x) = —0 N7 (x) (4.34)

72
n,ref

The logarithmic derivative of 7., is,
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d d
E;hﬂni)ZVZE;hKAQ) (4.35)

1
The term — can be rearranged as,
1

1 n
—=1- i (4.36)
Fi ah']p
2n, + N, +
qvy,
The first term in Equation (4.32a) of the effective electric field can be rearranged as,
J J
ANy +—2 N, A InN, +—2*%
dx qD,, _ dx qD,,
a,J a,J
n, + N, +-L n, + N+
qV, qV,
a,J J a,J, d
g+ N+ 70y N ey ey D gy
_ qv,, X qD,, qv,, ~dx
N a,J
n, + N, +-"=r
q‘}S’l
a,J,. d J
+ LN, -2
d (n;, av. ) dx n AN 4 aD,, (437)
=—1Ihn N A —
X ath
n, +N  +—="
qv,,
The effective electric field then can be expressed as,
_ ) _
72,y — Jp quO - <
= = I NV, g Vs
mer | 1 72,4 <|1—y, —
J
Vo 252, + v, + L2l 1, + N, + 22l
V., V.,
d
x—In N, (4.38)
dx
Finally, the effective electron electric field can be rearranged as,
[ 1 ]
J,; quO o <<,
' ZIrz NV L Ve
Eil,()f'/' P dx d
VV = 1— 2, + — xdxlnNA
z r2,, + N _, + LT
g Vi
L |
i : | 4.39
.39a
72,4 *J,) quO — S ( )
= _In N, g Vsn .
n
—| 2=y, — <—17I0In N , =< 1
n,,+NA+a”7J" dx 2n,,+NA+a"7J"
qv,, qv.,,
=E,,—E, ., (4.39b)

where E ,; is the effective built-in electric field and E

n,inj

is the injection-level dependent
electric field and can be given by
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_ 1 _
> 4.40a
7 g > O <, ( )
P
L 7s2 NV, L Var
. >4
=, ., = 1— 25 + = 7 >< g lrz IV
72,, + N , + " 2
A Vi,
1 (4.40b)
qD/’U a,
rn,, — ‘IP 7 —
“_In N, 9 Vin
_ d 5
FE ; = 2 Vs a;,J,, > g In N , < a;,J,,
n, + N +——" 2n, + N +—7"
9 Ve 9 Vs,

It can be inferred from the expression of effective electron electric field given by Equation

(4.39a) that the square bracket terms are multiplied by a term a4, N ,- This term represents
dx

a normalized electric field (since logarithmic derivative of concentration is equal to the
electric field divided by ¥} ) and this is the field that is resulted from the non-uniform base
doping profile. For practical base doping profile, this field is negative. The terms in the
square brackets indeed modulate this field and represents the effects such as band-gap

narrowing, majority carrier current density .J,, recombination and injection level. From this
equation, it is evident that J, increases the electric field, since J, is negative and the

logarithmic derivative of base doping profile is negative. The first component £, ,; aids the

L

electric field, whereas, the second component E .. retards the electric field. The second

n,inj
component becomes dominant as injection level increases, but is insignificant under low-
injection. Retarding effect of band-gap narrowing is included through p, in both these
components. It also shows that retarding effect of band-gap narrowing and aiding effect of

J, increases as injection level increases. Since, the value of square-bracket term is greater

for £

n,inj

than that for E, ,, electric field decreases with injection level. For low-injection

condition, E

n,inj

— 0 because n,, =N, and hence,

(4.41)

=4 Irz IV
7>
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4.4 Exponential Approximation Technique

The expression of effective electron electric field given by Equation (4.39a) shows that this
expression becomes complicated for three reasons. The first one is due to the presence of the

field term < ,, 5, . The second occurs due to the presence of the terms containing J, and

dx

the third reason is related to the injection-level dependency.

For an exponential base doping profile, the field term <, N, 1s a constant and for
dx

other profiles, this term is position-dependent. Clearly, the expression for electric field
becomes simpler for exponential base doping profile. Therefore, a suitable approximation
technique must be employed to convert the exponential-like doping profiles (i.e. Gaussian,
complementary error function etc.) into exponential one and hence, the first issue can be
resolved.

A closer look in the electric field expression reveals that the third term in the square
brackets is the cause of both the second and third problems. The injection level-dependent

term E

.y causes an additional problem. If these terms can be expressed in a simple
function, then both these problems can be resolved. Since, exponential functions has an
elegant property that it retains the same after differentiation or integration with constant
multiplication factor, the above terms then can be exponentially approximated. This
approximation is justified because the terms depend on the doping profile, which takes an
exponential form. For the same reasoning, the effective electron diffusivity represented by
Equation (4.32b) can be approximated as a simple exponential. Therefore, by devising a
suitable exponential approximation technique, the complicated nature of variable coefficients
of the modified current equations can be simplified. This approximation technique is
described below.

In the work [55], Guoxin Li et. el. has showed that approximating Gaussian doping

profile by a simple exponential profile results in only an insignificant error in the charge-
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control analysis. This idea can be extended to the doping and field dependent transport
parameters and to the expressions which contain two or more exponential terms. The
approximation of various quantities by using simple exponential can significantly reduce the
mathematical complexity without any significant loss of physical understanding.

The base doping profile is now considered as exponential and can be expressed as,

—nx

N,(x)=N ,(0)e"® (4.42)
Introducing a convenient variable u which gives the exponential dependence of the doping

profile, the Equation (4.42) becomes,

N, (x)=N,(0u(x) (4.43)
where,
u(x)=e"? (4.44)
where,
_ N,(0)
n log{NA(WB)} (4,45)

1s the logarithmic slope of the doping profile and N ,(0) and N, (W,) are the doping
densities at x =0 and x =W, 1.e. at the base edges of B-E and B-C junctions.

An expression or a transport parameter, which depends on the doping profile given

by Eqn. (4.42), is assumed such that

f(x)=Fu™ + Fu™ (4.46)
This expression can be approximated by a simple exponential function such that

f(x)= Fouﬂo (4.47)
where, 17/, is the logarithmic slope and hence, can be obtained from the boundary values of

f(x) as,

L[ 7o)
= Zlog| L) 4.48
Fo =y lo8 {f(%)} (4.48)

and £ can be obtained from the fact that the areas under the original curve and the
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approximated curve must be equal. Therefore, F can be expressed as,

F,=—" x)d 4.49
OW(luﬂo)jﬂ)x (4.49)

where, u, =u(W,).

4.5 Differential Equation: Solution Techniques

The intractable nonlinear, nonhomogeneous and complicated-variable-coefficient differential
equation given by Equation (4.11) can be transformed into a linear, homogeneous and
simple-variable-coefficient equation by using the techniques described in the previous
sections. Unfortunately, this differential equation is not yet solvable. This section deals the
techniques that transforms his equation into a solvable form.

Since, the derivation of J (x) is a three-step process as described in the section

(4.2), the solution of the differential equation also needs in three steps. The solution

technique for each steps are described in the following subsections.

4.5.1 Low-injection Model Neglecting Recombination

Under this condition, n,,(x) << N ,(x) and

dJ
dZO = R o1(x) = 0 (4.50)

which leads to J,,, as constant. Therefore, non-homogeneous problem does not matter

under this condition and the equations remains first order with variable coefficients as,

dnzo(x)+ Oy (x) = o (4.51)
dx Vr 9D,

where, E,, and

can be given as,
nl0
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_ 1 _
D
Vo =2 — (4.52a)
e In NV, 9V
X d
FE ~|1— P
nto Y2 + ~ a7, delnNA
- Y,
dN J
4, r

. [NA(X)]yl_ a, | dx quo_d

~ L () 4.52b)
anIO an (O) Nref ahJP d‘x (

q vSI’l NA +
q vsn

Since these terms can be exponentially approximated as discussed in section (4), the
integrating factor required to solve the differential equation can be determined in the form of
exponentials. Finally, the solution of the differential equation can be obtained in terms of

confluent hypergeometric functions.

4.5.2 Low-injection Model Considering Recombination

When recombination is included, J,,(x) is no longer a constant, instead it becomes a

function of position. A differentiation is used to remove this term from the first order

differential equation of n(x) which is rewritten here as,

| dn, E,
il +n
dx V.

qD

}: J, (%) (4.53)

Differentiating the above equation results in

42
ql)n[ d rzl[+}’li ﬁ _{_i% + ﬂ"‘n[ﬂ i(ql)nl)
_dx dx\ 7, V, dx dx Ve |dx

dJ ,(x n
= u () = qu{nl (x)— 16} (4.54)
dx b
where electron current continuity equation given by
dJ ,(x n’
4ty (%) ZqKC{n,(x)—i} (4.55)
dx ;
is used. For heavy base doping, it can be justifiably assumed that
2
1, (x) >> e (4.56)
P

Using this assumption, dividing both sides of the Equation (182) by gD, and rearranging

the results in a second order differential equation as,
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2
dny By _dgf 1 \ldn JdfE)) Eydf 1) GR | 4570
dx VT dx anz dx dx VT VT dx anz qD

nl

2
d "4 P(x) O, (x)=0 (4.57b)
X dx
where,
P(x)= Ey_d In ! (4.58a)
V., dx gD,
Q(x)zi Ey _ﬂim 4Ry (4.58b)
dx VT VT dx anI anl

Therefore, the non-homogeneity problem of the differential equation is resolved. But, the
problem of intractability still remains. This needs suitable transformation techniques. Since
the working differential equation is a second order and there are no analytical formulation to
solve a variable-coefficient of second or higher order differential equations other than special
functions (i.e. Bessel function, modified Bessel function, Hankel function etc.),
transformation to any of these special function has to be made. For this the format of Bessel
differential equation can be chosen since the solution of this equation has a quasi-
exponential form. The transformation steps ate described below:

1. First, the variable n,(x) is assumed as a product of two variables v, and w,
n, (x) = v,(x)w, (x) (4.59)

so that the differential equation given by Equation (4.57a) can be expressed as

2

d’v, | 2 dw
+| = +
dx w

dv, 1 |d*w,
dx’ dx

+ P(x)} + P(x) % +O0(x)w;(x) v, (x)=0 (4.60)

w, dx
The governing equation for w, is given as,

2
_%er(x) =constantpartof P(x)
X

w
=4, (Let) (4.61)

Using the expression of w, thus obtained one converts Equation (4.60) into
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2
—cfixvf +4 % +[B,(x)+C v, (x) =0 (4.62)

where, B,(x) and constant C, can be obtained by substituting w, in the coefficient of v,(x).
It is worth mentioning that Equation (4.62) is the governing equation for v,(x). Then
n,(x) =w,(x)v,(x) is now solvable.
2. Using the exponential approximation technique, B,(x) can be expressed as,
B, (x) = B,u'™ (4.63)

Therefore, the differential equation of (4.62) turns into

d*v dv,
dle + 4, d—; +[Byu™ +C v, (x) =0 (4.64)

3. Next, the independent variable x is changed to z by letting

Por
z=u? (4.65)

This converts the above equation into

dv, a dv, 1
Z;Jr;fd—zwz—z[bf +¢,v(2)=0 (4.66)

where a,, b, and c, are constants.
4. Finally, the variable v,(z) is further assumed as a product of two other variables ¢, and
Y

vi(2)=y,(2),(2) (4.67)

so that the differential equation given by Equation (4.66) can be expressed as,

d’y, |2dy a |dy 1|d% 144 ( 1., )
IRl arsnasnl sl Dbl Bl L) -0 4.68
dzz |:tl dz z |dz tl dZZ z dz Zz[ 7 Cl] ](Z) yz(Z) ( )

. . . . d :
The variable ¢, can be obtained by equating the coefficient of % to unity as,
z
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244 4y (4.69)
t,dz z

Using the expression of ¢, thus obtained one converts the differential equation given by the

Equation (4.68) into a Bessel differential equation as,

d? 1d 1
CN 2O B - By (2)=0 (4.70)
dz zdz =z

where, f, is the order of the Bessel function. The solution of this equation contains Bessel

function of the first and the second kind (J 5 and Y, 5 ).

5. The total solution of #,(x) then can be found as,

n (x) = w,(x)z,(x) [Cll‘]ﬂl + szypl ] (4.71)

4.5.3 Intermediate-injection Model

The solution technique under this condition is same as that outlined for the low-injection

condition with recombination. The only difference is that here the term #, is used instead of

ny,(x) to determine J,(x).

4.6 Conclusion

In this chapter, an elaborate discussion of techniques, approximations and transformation
methods is presented that are used to overcome the challenges to derive an analytical model
of the base transit time. The techniques, approximations and transformation methods are
chosen such that the mathematical tractability becomes possible without sacrificing the
underlying physics of the non-ideal effects and without loss of generality. Therefore, the
model thus derived is indeed general and can be useful for understanding the physics of base
transport mechanisms. Moreover, the model can be applicable to other devices that use the

principle of bipolar transistor operation.
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Chapter 5
Model Derivations

From the rigorous discussions of the previous chapters, it should be very obvious that the
analytical modeling of base transit time by including the majority carrier current density in
the base, is indeed a challenging job. These challenges occur not only from the complicated
physics behind the underlying mechanisms and physical models that exist in the literature,
but also from the mathematical intractability of the resulting equations. Keeping the physical
models intact often makes the mathematical tractability as impossible a feat. Therefore,
assumptions and approximations must be made so that the underlying physics will not be
compromised while keeping the mathematics as simple as possible. A thorough but
thoughtful and careful research is, therefore, carried out to preserve the physics as well as to
make the mathematics tractable. This chapter deals with the analytical development of the
base transit time model using the techniques described in the previous chapter.

This chapter starts with the development of the required equations for exponential
base doping profile from the general equations for arbitrary doping profile. Then the three-

step process of model development will be elaborated in the subsequent sections.
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5.1 Modified Equations for Exponential
Doping Profile

In the previous chapter, the differential equation and all other related equations have been
derived for arbitrary doping profile. Since, the logarithmic derivative of exponential doping
profile becomes constant, these equations for this doping profile becomes relatively easy to
handle. Moreover, using the exponential approximation technique, [section (4.4)], any
exponential-like doping profile i.e. Gaussian, Complementary error function etc. can also be
approximated by an exponential function. Therefore, an exponential base doping profile is

assumed for model derivation. For this profile, the fundamental relations are:

N,(x)=N,(0(x) (5.1a)
u(x) = o (5.1b)
%ln N, =—WiB 5.1¢)
() == (5.1)

where, 7 is the logarithmic slope of the profile and can be defined in section (4.4) as,

_ N,(0)
n log[NA(WB)} (5.2)

Using these relations, the effective electron electric field E, , can be given as,

En,eff :_l 1_7/ _ Jp(Fhu73 +Gh)
Ve Wl T NI G
WB 11 A ph
, oy,
J,(Fu”+G, i
P PR L D (5.32)
Wy n n
(n”+N )+J,G, W(zn,l+NA)+Jth
B
1 n,apparen
= — e (5.3b)
F 7V

where,



o, n
LIPS Ws
F
! VVlB(zn,1 +N)+J,G,

n 73
——n,+J, (Fu?+G),)

En,apparent :l 1_7/ _ WB v

Vr Wyl T

W, (n, +NA)+Jth

The effective electron diffusivity can be expressed as,

n,approx
e

an,ejf Fi 77 VT
1

£ gD,

where,

1 _ Fu}’l + WBGe En,appmx

an 77 VT
ny  n ., J (Fu’® +Gh)
n,approx  _ _l 1_}/2 . dx WB
Ve Ws T (ny+ N )+ J,G,
Wy
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(5.4a)

(5.4b)

(5.52)

(5.5b)

(5.6a)

(5.6b)

In these equations [Equation (5.3) to Equation (5.6)], the constants F,, F,, G, and G, are

defined as,

s
o1 (MO
‘ an (O) Nm,ref

e 1 [NO)
! qu(O) Nm,ref

G =1 4
WB qun

Gh -1 4
WB qun

(5.7)

(5.8)

(5.9)

(5.10)

The majority hole current density J, can be estimated from the following equation which is

obtained by integrating the hole continuity equation given by (4.28) as,

J,(0)=K—q| Ron,(x)dx+qg][ [n,(0)+ N, (x)kx

(5.11)

where, K and g can be determined using the boundary conditions for J, and the inverse

lifetime R_can be expressed as,

1

T
R = m+C4p[(1+’2,)”/1 + N, <0y, + Ny
K 11 A

(5.12)
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The perturbed n, represents n,, under low-level injection condition with recombination
neglected and 7, under intermediate injection level condition using Webster effect. This J,

can be used to determine £, ., and D

ey - F1nally, the minority electron concentration can be

derived from the following differential equation:

E
n | Bnett pyy= 2 (5.13)
dx V, gD, .;

The minority electron current density J, is the source of non-homogeneity of the

differential equation. Therefore, the electron current continuity equation is used to overcome
the problem of non-homogeneity. For exponential doping profile, this continuity equation
can be expressed as,

dJ
dxn =R n,(x) (5.14)

5.2 Low Injection Level Model Derivation

Without Considering Recombination

The development of low-injection (LI) model is a two-step process. First the effect of lateral
base injection is considered, while recombination is excluded in the analysis. All other
effects and considerations are used. Second, the recombination mechanism is then included
using a perturbation approach.

Since, recombination mechanism is neglected in the first step, the minority electron

current density J,,, can be regarded as constant. But this does not hold true for J ,(x),

since the presence of lateral base injection current. Therefore, the hole continuity equation

must be solved to determine J,,(x). Equation (219) under low injection condition

[ p(x) = N, (x)] gives,

w,
JplO(x):K+quO TBNA(O)(I_”) (5.15)
Applying the boundary conditions for hole current density at x =0 and x =W, gives,
K=-J,,00) (5.16)
J 10(0)—=J (W,
glo :l plO( ) plO( B) (517)

Wy gN,(0)(1-u,)
The majority hole current density then can be rearranged as,
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JplO(x) =Jo1o —J 1ol (5.18)
where,
S oo (O, =J 10 (W)
oo =—2 28 (5.19)
I-u,
J 0(0)=J (W,
JUO _ plO( ) plO( B) (520)
l-u,
Under low-injection condition n = N, and hence,
F,—>1 (5.21)
d d
E(H”JFNA)_)ENA (5.22)
These approximations reduce the E,, .., term in the effective electron field E,
[Equation (5.3)] and the approximate electric field term £, in the effective electron
diffusivity D, , [Equation (5,5)] to low-injection electric field £, as follows:,
7
L J§1°(x)(Fhu %) (5.23a)
! 5 WNA +J,0(X)G,
B
— T btb, ()] (5.23b)
W dxl0 :
B
where,
b=1-y, (5.24a)
J Fu” +G
buso(¥) == poWEy” +Gy) (5.24b)

Wl N +J,10(X)G,

B
At this stage, the required parameters needed to solve the first order differential equation
[Equation (5.13)] are found. Using their approximations and rearranging the terms results in

a first order variable-coefficient differential equation of minority electron concentration n(x)

as,
E
ary + 1y Euo = JnlOF;uyl +J 0 W5, 0 (5.25)
dx V, n |V
The integrating factor (I.F.) of this equation is given as,

20

I.F.Ze'[ T



/N 7|
—W—dex—W— Jb el (V)
=e 'B B

b
nx |70 n
Wy A K

b Vi (X)
:ulO xelO

where,

Vio(x)=— Wi Ibdxlo (x)dx
B

Integrating the differential equation (5.25) w.r.t x gives,

by v v X bty v
10,7710 — 10 10771 ,°10
n(x)u e’’’ = [n,o (x)e Lo + anoFe_L” e'dx

E

nl0

4 WsJ 10 G. J‘x

b v
Ou 10 e l()dx
n

T
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(5.26)

(5,27)

(5.28)

(5.29)

. . E
The integral terms are non-integrable because of the complex form of b,,, and also of =2 .

Using the exponential approximation of these terms transforms these into simple exponential

terms and therefore, makes the integral possible. Now, in order to obtain a tractable closed

form solution of the differential equation (5.25), the terms b,,,(x) and

approximated using an exponential form:

B
byeso(X) = b you™™
M = iEluﬂll
VT WB
where,
5L Zog{ b0 (0) }
n byio (W)
EnlO (O)
1 V.
ﬂll n § EnlO (WB))
VT
and,

_ 15 s
Do WB(I—uf(”)J-O b g (X)dx

_W,| 1B Vs B, (%)]
F =8 il 10 d
o e [

can be

(5.30a)

(5.30b)

(5.31a)

(5.31b)

(5.32a)

(5.32b)

Using the exponentially approximated form of bdx/0(x) [Equation (5.30a)], the term v,,(x)
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can be expressed as,

V3o (%) = V™ (5.33)
where,
¥, = b (5.34)
Do

Using these exponential approximations, results in a solvable form of the equation given by

(5.29) as,

o (u0e™ = [nlo (x)e™ Lo + anoF;I:“blo+y] e"dx (5.35)

+ 10 GLF, [ u0 e dx (5.36)

The general form of the integration terms results in a confluent hypergeometric functions as

[Appendix (A.1)]

nc or  Poi

x w, a « o
I=J-Ou“evlodxz——B{u“M(—;—jtl;vlﬂ (5.37)

Yoi
where M (x) 1s the confluent hypergeometric function. Using this result along with
Kummar's relation [56, 57],

e'M,(a;b;v)=M(b—a;b;—v) (5.38)

and solving for appropriate boundary conditions at x =0 and x =W, given by,

RON
n(0)= N.(0) : (5.39a)
! \/l{nm(m} "
2 4 | N,0)
n(W,)= EAUA) (5.39b)
q‘}Sﬂ

and finally, rearranging the terms, an expression of minority carrier concentration n(x) can

be obtained as,

Mo (X) =—=J 0 [Au”ylMu (x)+ AzluﬁlMZI (x)+ As/”_bloe_vm ] (5.40)
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where,
_ by +7

M,(x)=M|1;——=+1:v,,(x) (5.41a)

0/
M, (x)= M(l LotPu ;—vlo(x)j (5.41b)

ﬁOl

and,

S0 == A1(0) (5.42)

—byy Vo,V
u 10 0

4, = w (5.43)

o 1 1o Vo1 " wi
-H ,+H,u,6 e

qv;
H, = All”QMllw + Azz”\f”lew (5.44)
Hy = A4,M,,+A4,M,, (5.45)

Here 'w' in the subscript denotes the value at x =W, and

Wy r,

=5 ¢ (5.46)
! n(byy +71)
4, = —WBE]G@ (5.47)
n(byy + By)

1 %
4, = [_ -A,M,, - Alezlo)e o (5.48)

low
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5.3 Low Injection Level Model Derivation

Considering Recombination

In order to develop a low injection that includes recombination, the minority carrier

concentration n,, obtained for J, # 0 and without considering recombination is extended by
adding a correction term such that n,(x)=n,(x)+n,(x). Here n, is minority carrier
concentration for J, #0 and Recombination # 0. For the accuracy of derivation dn,(x)

must be =(n,,+ N ,). Therefore the inverse lifetime R_ given by Equation (5.12) becomes

as,
€
_ [ (5.49)
R, (1+ ),y + N, +CAp[(l+ra)n/0+NA]
x(n,,+N,) (5.50)
and the Equation (5.11) reduces to,
J () =K =q[ Ry (¥)dx+qg] o (x)+ N ,(x)Jdx (5.51)

Taking the exponential approximation of the terms (since there is no direct closed form
integral), the right hand side of the Equation (5.51) results in,

WB

m, W
J,(x)=K—q—2R,,(1-u °f)+qg,73p1,<1—uk”> (5.52)

o1 nry,

where, R n, and p=n, + N, are exponentially approximated as,

R 1y = Ryu™ (5.53)

o+ N, =pu'" (5.54)
where,

moz(k):llog{ R,,(0)n,(0) } (5.55)

n R, (Wy)n,(Wy)
k, =L iog 1O+ N,(0) (5.56)
n n(Wy)+N,(Wy)
and,
m W
Ry =—TRL PR  (x)mq(x)dx (5.57)

WB( 1- ui:lOl )
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P = [ (o) + N, () @)dx (5.58)

W (1 kll)

Applying the boundary conditions for hole current density at x =0 and x =W, gives,

=—J,(0) (5.59)
m0/
Tu @)+ b, 560
b, (1-ul")
where,
L (5.61)
nomy
b, =e 4Py (5.62)
n ky
The majority hole current density then can be rearranged as,
J ()= dgy =T +b ™ (5.63)
where,
Jo = _Jpl (0)-b, +g,by, (5.64)
Jy = gby (5.65)

5.3.1 Derivation of Electric Field

The expression for effective electron electric field given by Equation (5.3) can be rearranged

as,
1C275) 4T () (FEu” +G,)
En,eff 77 1 WB
Vr Wy T on (x)+ N, (x)+J ., (x)G
W 10 A pl h
B
_ 7
__WB[b_'_bdxl(x)] (5.66)
where,

b=1-y, (5.67a)
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n(2-7,) no(X)+J,, () (Fu’® +G,)
P (5.67b)
Wi(2nlo (X)+ N, (x)+J, ()G,

B

5.3.2 Solution of Differential Equation
Differentiating the electron current density equation given by (5.13) and then combining
with the Equation (5.14) results in a a second order variable-coefficient differential equation

of minority electron concentration »,(x) given as,

d2
dx 2 Gu() +G21(x)”1 (5.68)
where,

E,

G, (x)=—"2L . (5.692)
Vi dx \ K, 4D,

E E

G, (x)=-L| S | L ARy Bwep d 1 1 (5.69b)

dx\ Vr E, 4D, V; dx \F,qD,

Using the electric field expression given by Equation (5.66), the terms G,, and G,, can be

expressed as,

n d 1 1
G =——(b+b,,)+—In — 5.70
1(x) |‘WB( ) +Dyr) dx n(El D, JJ ( a)
G () =L (b, 41, ) L by 1 4R, (5.70b)
Wy dx Fu gD, ) Wy dx F,qD,

Letting n,(x)=v,(x)w,(x) in the Equation (5.68) results in a second order differential
equation of v,(x) as,

dv,
dx

d*v, J{idwl

dx> | w, dx

! {dz +G,(x ) +G21(X)W1}v1 0 (5.71)

G (x >} o

. . dv
In order to make the variable coefficient of E[ a constant, let

2 G ()= _%bz (5.72)

w, dx f
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Substituting G,,(x) from Equation (5.70a) gives,
AL/ B RS S A S | S (5.73)
w, dx | Wy dx \ F, qD

Rearranging the terms results,

dw _wd L L1,
dx 2 |dx F], gD, ] W,

1

2

w4 L] dx+ljibdx,dx
W dx \ F, 9D, 2°W,

~

(1 1
=Inw =In| —
F, 9D,

1
——b , ,dx
[Flqu] J. el
Loy,
11 )2 3 ha
e B

F, gD,

Lo )
= w(x)= F 4D, e ? (5.74)
v 4

where, b, (x) can be obtained from Equation (5.67b) as follows:

2]
j +— j Wl b, dx [Integratig bothsides w.r.t.respectivevariables
B

=>w(x)=e

SWJ(X):(

by(x) = Wibdx,dx (5.75)
B

Since b,, is not integrable, integration in the above equation can be performed on the

exponentially approximated form of b,,. This leads to,

b, (x)= ﬂu"’ﬂﬂ (5.76)
my
where,
my = l[bdd—(())} (5.77)
N 6w (W)
by =——"" [P, dx (5.78)

Wy (1=, ")
Then, upon substituting the expression for w,(x) in the differential equation of v,(x)

[Equation (5.71)] results,

d’v, _nb dv

02 dv dx — 4Gy (X, = (5.79)
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where

2 2
G3[(x)=—l a1 1 _ 1 gy
4\ dx \ F, gD, 4\ W,

_Lpady, 1d, (L;J

n
2W, dx 2dx’ \F, qD,
_ L gRy  Lnmby|mb_d 1 1 (5.80)
El anl 2 WB WB dx an[

G,, contains derivatives, logarithmic derivatives and derivative of logarithmic derivatives.

. 1 : . —
Since the terms o F, and b,, are not simple functions, these types of derivative
q nl
become cumbersome. Exponential approximation can be used for the terms whose
logarithmic derivatives are required to reduce the complexity, since logarithmic derivative of

exponential functions is a constant. For this purpose, the exponential approximation of ——

anl
and F|, are determined as follows:
Lanlu’”rﬂ (5.81)
anl
Fy=Fu™ (5.82)
where,
!
m, = llog —qD”l’ © (5.83)
n
L anl (WB)
m,, = llog O (5.84)
n _F11 W)
and,
Ell = Umnl m J.WB 1 dx (5‘85)
WB(l_uwnI) 0 anl(x)
/4
Fo=—T8[F, (x)dx (5.86)
WB ( 1 - uw” )
where, can be expressed as,
anl
g + L py+J (Fu” +Gh)
1 , dx W, P
—— =Fu" +G|1-7,- : (5.87)
90, l(nlo +NA)+JplGh
W, |
where,
dn n Y .
— == [7’1Alzuy1 M, + B Au "M,y —byAyu e ]

dx W,
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B
_ij ﬂozvloAu”hle n A" H,y,
w, "o b10+71+1 b10+1311+1
Do B

where, H's are the confluent hypergeometric functions given by,

+ Ay e 10 (5.88)

H,(x)= M(l Doty 2;—v]0(x)J (5.892)

0/
b+ By
b

0/

H, (x)= M(l +25-v, (x)} (5.89b)

Using the exponential approximation technique for the term G;,,, a position dependent term

F;, and a constant term 'c' can be separated as,

2
Fy(x)= _l(ﬂbdle _ll db,,

4\ W, 2W, dx
(7Y 1 gR.
__(lJ (b, +m,; —my)b,, e (5.90a)
2\ W, F, 4D,
. 2
n
c= E[WB (m,, — moz)} (5.90b)

In order to convert the differential equation into a solvable form F,(x) is exponentially

approximated as,

Fyy(x) = Fyu™ (5.91)
where,

By = llog{—}gl(o) } (5.92)

n F,(Wy)
and,
_ nby g
Ey,y =—5 | "PF, (x)dx (5.93)
301 WB(I—us{”)J.O 31

The differential equation [Equation (5.79)] can be rewritten as

&, b, dv,

+[F, —clv,=0 5.94
de  dr dx [Fy,(x)—c]v, ( )



Changing the independent variable x to z by letting

)
=3

the differential equation [Equation (5.94)] becomes as,

2
dvl+&dvl

1
+?[b§1 —¢ v, =0

dz* z dz
where,
2
ay =1 ﬁ
3/
2W
by = —F N
np,
¢ = (2WB jc
npy
Letting

v (%) =y, (%), (x)

gives a second order differential equation of y, in terms of, ¢, as

dzyz{2ﬁ+aoz}@+i{ﬁ+ﬂﬁ !

dz |t dz z |dz t|dZ  z dz z

Then, letting the coefficient of first derivative of y, as,

t,dz z z

gives,

ﬁ:l l_aO[ t
dz 2 z :

2
+— [y — < 1

i|yl:0

The solution of this differential equation gives an expression for #,(x) as,

81

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)
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Substituting the expression for ¢, in the differential equation [Equation (5.101)] results in a

Bessel equation as,

d? 1d 1
dzy; +;d—yzf+? -y, =0 (5.105)
where,
5 =2 +nz,_— my (5.106)
3/

The solution of the Bessel equation consists of Bessel functions of the first and the second

kind (J/, and Y,) and can be given as,
v (x)= C”Jﬁz (by2) + CzlYﬂl (by,2) (5.107)

Therefore, the minority carrier concentration under low injection case can be obtained from

the relation n,(x) =wgt,y, as,

~b, —
11 )2
n(x)=u? [F D J [CllJﬂl (bOIZ)"'szYﬂI (by,2)] (5.108)

u 4
The minority electron current density can be obtained from the following relation [after

arranging the Equation (5.13)],

E X
‘]nl(‘x) = anl (x) Fil('x)%-i_Mnl(‘x) (5109)
dx v,
where,
Wl no +J , (Fu”® +Gh)
n,z;iparent _ _Wi 1_7/2 + 1;’7 (51 10)
T B W(nlo-i—NA)—i-Jp,Gh
B
dn, 1npg
d_)é = 57;/ Wltl[clzfll(x) + szfzz (x)] (5'1 1 1)

where,
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d ( 1 1 j 1 En/,apparent
In| — |-~ Sntapaen
dx F, 9D, vy Vr

:| Jﬁl (by,2)

5.112

fu= i(bOIZ)[Jﬂ a(by2)=J 45 (bOIZ)]+ ( a)
w, 1 ‘ i,g
w, 7

[afm(l ! ]_IEMWWMﬂ}

dx F, 9D, Fy Vr 5.112b

[ = WL (bOIZ)[Yﬂl+1 (by,2) — Yﬂfl (bOIZ)]+ n Yﬂ/ (bo,2) ( )
B Wﬁy

Using the appropriate boundary conditions at x =0 and x =W,, the constants C,, and C,,
can be obtained as,

G, =-5,C, (5.113)
n(0)
C. = w;,(0)
Y, Y, (b
/’z( oz)‘:Bsz ﬁl( 01)
=n(0)C,, (5.114)
where,
S+ Aleﬂl (byi2,,)
= (5.115)
S+ 4,7, B, (byiz,,)
4 _2W, S,+E,, (5.116)
“on B
3/
Sz=quVS (5.117)
nlw
1
Cy = #,(9) (5.118)
J B, (bo))— B,Y, B ()
and,
d (1 1 j 1 E,,
“m _
W dx Fw anw FW V
fiIWZTB 11 ﬂl Yt Jﬁ,(bozzw) (5.119)
31
J 5 abyz,) =T 5 1 (y2,,)
+(bOIZw){ At : A (5.120)
dln( 1 1 j_ 1 Enllw
d F, gD E_V
ny:% X 11wagzw uw VT Yﬁl(bOIZW) (5.121)
3/
Y, bz ) =Y, 1(By,)
+(b0,zw){ e (5.122)
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The minority electron concentration then can be expressed as,

n(x) = n(ow[Fi y ~ J [, (by2)~ .Y, (b 2)IC (5.123)

nl

5.3.3 Intermediate Injection Level Model Derivation

The low injection (LI) minority carrier concentration, 7,(x) can be extended to the

intermediate regime by using perturbation theory. Using this theory, the LI minority carrier
concentration can be expressed as

n(x)=mn, f, +on(x)=n[2+dn(x) (5.124)
where n,, is obtained using the Webster effect. For the accuracy of model derivation, on is
chosen such that on=n, +N,.
Changing the variable n, to n,, the LI model developed in section (5.3) with

considering recombination can be used for intermediate level model derivation. Therefore,
the model equations under intermediate injection level are exactly same as those for the

model described in section (5.3), with 'I' dropped in the subscript of all the equations.

5.4 Model Derivation Considering Separate

Effects of ,, and Recombination Mechanisms

In order to investigate the separate effects of majority carrier current density J, and the

recombination mechanisms, other than the model derived in the previous sections, models

considering ./, only and considering recombination mechanisms only have to be developed.
In the following sections, these models are presented. The first model concerns only the J,

to reflect the role of base current by incorporating the lateral base injection. The second
model deals with only the recombination mechanisms. In both cases, first a low-injection

(LI) model is deduced, which is later used to derive the intermediate-level (IT) model.
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In this model, only the effect of lateral base injection is considered. Recombination is

excluded in the analysis. All other effects and considerations are used. In order to develop

the model, the LI model developed in Section (5.2) is extended by using perturbation theory

to derive the intermediate-injection level model.

Integration of Eqn. (4.28) under intermediate injection condition [n(x)is comparable

with N ,(x)] and using Equation (4.6) gives

W,
Jp<x>=1<+qg73pl<1—u"l>

1

(5.125)

where p~n,+N, is exponentially approximated as plukl. Applying the boundary

conditions for hole current density at x =0 and x =W, gives
K=-J,0)

PRAOSAUA
Wy gqp(1-u))

g:

The majority hole current density then can be rearranged as

k
J,(x)=J,=Ju'

where
(0, =7, (W)
Jy = -
l-u/
J — Jp(o)_Jp(WB)
1
l—uf;1

Using this expression for J in the term E, |

Ju'' = J)Fu" +G,)

k
Wipl -J,Gu' +J,G,
B

o
W, (

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

Since, (i )2 —J]Gh)ukl?JoGh, the denominator term can be expanded into a binomial
W,

B

series. Neglecting the second and higher order terms, the Equation (5.131) can be
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approximated as

E, z—WiB[b+bdo(x)] (5.132)
where
b=1-y,+y, (5.133)
by (x) = iah oy (5.134)
p=
where y, =J,J,G,, J, = ;, J,=J,G,J:,
gn —J,G,
a,(1)=—(J,J, +J,J,)G, (5.135)
a,(2)=J,J,G, (5.136)
a,(3)=J,J,F, (5.137)
a,(4)=—(JJ,+J,J,)F, (5.138)
a,(5)=J,J,F, (5.139)

and g,(1)=-k,, g,(2)=-2k,, g,(3)=75, g,(H)=r;—k and g,(5)=y; —2k,.
In order to obtain analytical tractability, the terms b,(x) and b,(x) are exponentially

approximated as

5 5
>b, k) =>bu'"" (5.140)
k=0 k=0
b,(x)=hb,u" (5.141)

E .
Therefore, electric field term, I’/l—e// given by Equation (5.66) can be given as
T

1 E, n >
— L =——\1l=y,+y,+b,, + Eb k)—=b 5.142
£V, WB|: V2T Vo T by £ 1 (k) e:| ( )

Using the above equation for electric field and the the mobility (Equation 4.9) in the electron

current density equation (5.13) results in a first order variable-coefficient differential
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equation of minority electron concentration n(x) as

En3
n V
dn gL En_ g | El )y WG [P (5.143)
dx K V; 1 n k
The integrating factor of this equation is given as
1 E
LF.=e 1T =y (5.144)
where
5 &y (k) Td (k) Te
b(x) = Z a,(k)u N b, (k)u N b,u (5.145)
| & (k) r, (k) 7,

Integrating the differential equation (5.194) w.r.t x gives

n(x)u’e’ = [n(x)e”]xzo +JanJ:uﬂlevdx (5.146)
WG ;g [u”edx (5.147)
77 0
nl
Fu" Ve ) ) .
where the terms b, (x), — and are exponentially approximated to obtain a

b K

solvable form for the differential equation and are given by

b.(x)= V" = v(x) (5.148)
"
LR (5.149)
2
En3
VT P
= Fu' 5.150
F 3 ( )

Following the same procedure outlined for LI model, an expression of minority carrier

concentration n(x) for intermediate injection level can be obtained as

n(x)=-J, AluﬁlM1 (x)+ AzuﬁzM2 (x)+ Au e (5.151)
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where
J, ==A,,n(0) (5.152)
b VO—VW
A = “y © (5.153)
——H +Hu'e
qv,
H,=Au>M,, + Au>M,, (5.154)
H, =AM, + A,M,, (5.155)
and
= by (5.156)
nb+p5)
= el (5.157)
n(b+ )
A, =£ ! —AM,, —AZMZOJeVO (5.158)
high

5.4.2 Model Derivation Considering Recombination Only

In this model, only the effect of recombination mechanisms is considered. The effect of J,

is neglected in developing this model. All other effects and considerations are used. Again,
in order to develop the model, first LI is model is derived and then, this LI model is extended

by using perturbation theory to derive the intermediate-injection level model.
Low Injection Level Model Derivation
Under low injection condition, #n, =N ,. Therefore the R, term in the electron current

continuity equation becomes as

R,= 1, C,,N; (5.159)
T

n

and the Equation (3.24) reduces to
dJ
i = gR n, (5.160)

2
where for heavy doping, n >> N—’e is assumed.
A

Now, differentiating the electron current density equation given by (2.9a) and then
combining with the Equation (5.14) results in a a second order variable-coefficient

differential equation of minority electron concentration n(x) as



d’n, |E, d 1 dn,
+| 2 ——1In —
dx’ Ve, dx (gD, )|dx

(B Ead () ar, |
dx\ V; Ve dx \qD,) qD,

Using the electric field expression for LI case, the above equation becomes
Ay by L1 ) dm
dx Wy dx \qD, )|dx

WB dx anl anl_
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(5.161)

(5.162)

(5.163)

(5.164)

where b, =1-y,. Now, letting #,(x)=v,(x)w;(x) results in a second order differential

equation of v(x) as

2
o —Fdwf Gy (x )}dfé

dx> | w, dx

d*w
+_{d I+Gll() +G21(X)W1}V1 0

W

Gl,(x)=—77—b’+iln( 1 ]
W, dx \gD,

b, d 1
O e
W dx anl anl

where

) ) dv .
In order to make the variable coefficient of E’ a constant, it can be assumed that

2 dw b
——>+Gy(x)= -

w, dx w,

w(x) = (anzj

and the differential equation of v,(x) as

This gives

(5.165)

(5.166)

(5.167)

(5.168)

(5.169)

(5.170)
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d’v, nb, dv,
———=F_v,=0 5.171
dx2 dx d 3x171 ( )
where
2
B =t 4yl L || _Llmnd 1 (5.172)
4\ dx \¢gD, 2w, dx \qD,
2
—1‘121;1 L AL (5.173)
2dx anl anl

Using the exponential approximation of F; ; as Fyuﬁ” and then changing the independent

variable x to z by letting z = " , the differential equation of v,(x) becomes

2
dv,+ﬂdvl

? - dx —bg,vl =0 (5174)
where,
a, :1+128—b’ (5.175)
3/
w,
by = ?7/;3 JE, (5.176)
31

Again, assuming v,(x) = y,(x)¢,(x) gives a second order differentia equation of y, in terms
of ¢,. Then, letting the coefficient of first derivative of y, to unity results in a modified

Bessel equation of y, as

d’y, ldy 1
pEl e CAL e
where
b
t,=u? (5.178)
b
B =L (5.179)
"By

The solution of the modified Bessel equation consists of Bessel functions of first and second

kind (1, and K ) and can be given as
Vi = Cll]ﬁl (by2)+ CZlKﬂ‘l (by2) (5.180)

Therefore, the minority carrier concentration under LI case can be obtained from the relation
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n,(x) =wt,y, as

m(x)=u{%}2[culﬂ, (by2)+ CoK (b 2)] (5.181)

nl

Using the appropriate boundary conditions, the constants C,, and C,, can be obtained as

G, =-4,C, (5.182)
n(0)
= (0) (5.183)
1 B (by)— B, K B (Do)
where
fu’ +A\/VI (b ZW)
P i A (5.184)
Sow + Aleﬂl (by,2,)
A, :%M (5.185)
n By
qv,
g = 1% 5.186
: anlW ( )
and
b,+Wlen[ ; J
noax \qL,,
fiw = 8 [ Iﬂl (by2,,) (5.187)
3/
1y, (byz,)+1, (byz,)
_(bozzw)I: e (5.188)
b/+Wlen( l; ]
noax \qb,,
fon = S Ky Bz) (5.189)
3/
K, . (byz, )+ K, (byz,)
+(b012w)|: At : A (5.190)
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Intermediate Injection Level Model Derivation

Under intermediate injection condition, n(x) is comparable with N ,. In this case, the R_

term in the electron current continuity equation becomes

1
T
R = - +C, [(1+7r)n,+N 5.191
| T+ Gl + ] (5.191)
x(n,+N,) (5.192)
and the Equation (3.24) reduces to
W, _ =gR.n (5.193)
dx
2
where for heavy doping, n >>—< is assumed.

A
Now, differentiating the electron current density equation given by (5.13) and then

combining with the Equation (5.14) results in a a second order variable-coefficient

differential equation of minority electron concentration n(x) as

2
d—’f+ 1E, 4,1 1 dn (5.194)
dx FV, dx \F gD, )|dx
L A(L E, | VE, @, [1 1| 14R | _, (5.195)
dx\F v, ) RV, dx \FqD,) F qD,
Using the electric field expression and rearranging the terms, the above equation becomes
2
d_’;_ l(b—b€)+iln 1.1 }jan (5.196)
dx w, dx \ F, gD, )|dx
B N LS 7Sy B S L N L M (5.197)
W, dx W, dx \F 4D, ) F gD,

where b, =1-y,. Now, letting n(x)=v(x)w(x) results in a second order differential

equation of v(x) as

d2 2 dw

el [wd +G (x )} (5.198)

+l{£v2v+Gl(x)d—w+G2(x)w}v=0 (5.199)
dx dx

where
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Gi(x) = L b=ty +L i (5.200)
W, dx \ gD,
Gy=- b 1 g gy L1 aR (5.201)
W, dx W, dx \F gD, ) gD,
In order to make the variable coefficient of ? a constant,
X
2 G my=-T1 (5.202)
w dx W,
is assumed. This gives
% b (x)
Ww(x) = LI e (5.203)
£ gD,
and the differential equation of v(x) as
d*v nbdv
————-G;(x)v=0 5.204
dx’  dxdx () ( )

where b,(x) is exponentially approximated to b,(x)=b.u"" in order to obtain the integral

of its non-integrable form, and

2 2
G3(x)=l iln L +l . (5.205)
4| dx \ F qD, 4\ W,
2
_lid_’%_ld_zln 11 (5.206)
2W, dx 2dx F gD,
L LR Nnmbmb _d 1 (5.207)
FqgqD, 2W,|W, dx \gD,

To obtain an analytically tractable solution of the differential equation (5.204), the

. . . 1 m m m .
exponential approximation of —— as Fu ", b,(x) as b,ju ,and F as Fu '. This makes
qL,

the logarithmic terms of G,(x) position independent. Therefore, the term G, can be

decomposed into a variable F;(x) and a constant term c as given by

2
4\ W, 2W, dx
2
e L) oty — b, + - e (5.209)
2 WB Fi an

AN/4

B

c=l{l(mn—ml)} (5.210)
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F(x) can be exponentially approximated as F30uﬂ 3 to convert the differential equation into

a solvable form as,

d*v nbdv
————+[F(x)—clv=0 5.211
1 dxdx[3() ] (5.211)
Changing the independent variable x to z by letting z=uﬂ3/2, the differential equation
becomes
dv a,dv 1 _,
—+——+—[by—c,Jv=0 5.212
dz*  z dx 22[ bl ( )
where,
a0=1+2—b (5.213)
3
b, = 2ﬁ,/1’730 (5.214)
s,
¢ = (2WB jc (5.215)
np,

Again, assuming v(x) = y(x)¢(x) gives a second order differential equation of y in terms of

t. Then, letting the coefficient of first derivative of y to unity results in a Bessel equation of

y as

d’y ldy 1

y+;£+?[bg—ﬁ2]y=o (5.216)
where,

b
t=u 2 (5.217)
8= b+”2‘_ml (5.218)
3

The solution of the Bessel equation consists of Bessel functions of first and second kind

(J, and Yj) and can be given as
Y(x)=CJ 5(byz) + C,Y;5(by2) (5.219)

Therefore, the minority carrier concentration under intermediate injection case can be



obtained from the relation n(x) =wty as

201 1 )2
n(x)=u? (F ?] [C\J 5(byz) + C,Y 5 (by2)]

1 n

Using the appropriate boundary conditions, the constants C, and C, can be obtained as

1 T
- Jﬁl (byiz,,)

¢, =-BC
n(0)
_ w(0)
L) = BY,(by)
where
ﬁ _ f{w+AwJ (bOZw)
* fr, +A4Y (bOZW)
4, = 2w, S+E
n Bs
S = qvs
qD,,
and
iln 1 1 B 1 F
f‘ :% d'x Elw anlw F V
1w
B
J s bz, )=, (byz,)
B +1\T01“w B-1\70/“w
+(b012w)|: l > .
d ln( 11 j_ | E
f :% dx Filw anlw Filw VT
2w
n B
Yy 1 (byz,) =Y, (byz,)

5.5 Conclusion
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(5.220)

(5.221)

(5.222)

(5.223)

(5.224)

(5.225)

(5.226)

(5.227)

(5.228)

(5.229)

In this chapter, the model equations for base transit time for an npn bipolar transistor are

derived. In doing so, position and field dependence of transport parameters are considered.

Moreover, heavy-doping effects such as band-gap narrowing, high injection effects such as

the Webster and the Kirk effects and velocity saturation at the base-collector junction are
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also considered in this model. Although considering all these effects makes the modeling
effort more intractable, appropriate application of the exponential approximation technique

and perturbation theory allows one to arrive at a closed-form solution.
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Chapter 6
Results and Discussion

The presence of majority carrier current and recombination in the quasi-neutral base has an
influence on the value of the base transit time of a BJT. This impact is due to the alteration
of minority carrier profile which affects the electric field and hence the minority carrier
current density. These changes then results in a significant change on the base transit time.

In this chapter, a quantitative analysis of the effects of the majority carrier current
and the recombination process in the base is presented. Also, presented in this chapter is the
deviations of these results compared with the results obtained without considering these
factors. Justifications of these results are finally analyzed, which will establish the relative
importance and significance of the majority carrier current and recombination on the base
transit time.

A recently published work by Hassan et. al. [11] is chosen as reference to compare
the results obtained using the proposed model of this work. Both this model and the
developed models consider the same factors i.e. the velocity saturation at the base collector
junction, the Webster and the Kirk effects, the bandgap narrowing effect and doping and

field dependance of the mobility.
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6.1 Results

This section presents the results of the developed model that include the majority carrier
current density and the recombination process in the base. This will be called the Present
Model for the rest of the thesis. The results are compared against the model developed by

Hassan ez. al. [11] where J, =0 is assumed and the recombination mechanism in the base is

neglected. Henceforth, Ref. [11] will be called the Previous Model. All other effects are
same in both these models.

In this section, first, the results of both the present and previous models are
compared. The effects of the variation of two important parameters (i.e. the peak base
doping density and the logarithmic slope of the base doping profile) are also presented and

analyzed in this section.

6.1.1 The Present Model vs. The Previous Model [11]

Estimation of the majority carrier density, J,(x), is a major challenge due to the reasons

mentioned in Section (3.2). However, a technique is utilized in the present model to

overcome this challenge [Section (4.2)]. Figure (6.1) shows the plot of J, (x) using this

technique, where the base doping density is considered as a parameter. Although the

boundary conditions J,(0) and J, (W) are related to the emitter and collector parameters
(doping level and width) respectively, J,(W,) is almost unaffected by the collector
parameters. This is because J,(W,) ~0 under active-mode operation of an npn BJT. Hence,
the plot for J,(x) is affected both by the emitter doping level, N, as well as the emitter

width, W, . In this work, a uniform emitter doping profile is assumed. However, the shape of
the J,-plot in the base region is affected by the minority carrier injection level and by the
base doping level. The figure shows that the higher is the peak doping level, the lower is the

J, within the base. This is due to the increase in the majority hole current density gradient

when N ,(0) increases [Equation (3.29)].



Figure 6.1: Majority Hole Current Density in the base for N ,(0)=1x10®cm™ and

N,(0)=2x10%cm™,
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In the following subsections, simulation results for the electric field, the minority electron
concentration, the minority electron current density, the collector current density and the

base transit time are presented. The simulation uses a base width of 100 nm and a base
emitter voltage of 0.9 V. Two peak doping densities are considered: N ,(0)=1x10%cm"
and N,(0)=2x10%cm . In both cases, two values of logarithmic slope of the doping

profile is chosen. These are: 77 =3.00 and 77 =3.69, respectively.
Effects on the Electron Electric Field

The majority carrier current density J, aids the electric field in the base, as explained in the

section (4.3.1). On the other hand, due to the recombination mechanism the minority

electron concentration in the base is reduced, which in turn increases the minority carrier
. ) dn . . . .
concentration gradient, e thereby increasing the electric field [Equation (3.38)].
X

Furthermore, the recombination decreases the majority carrier density gradient in the base
[Equation (3.29)]. This results in an increase of majority carrier current in the base, which
further enhances the electric field in the base [(Equation 3.38)]. Therefore, when both
recombination and majority carrier current density are incorporated in the analytical
modeling, the electric field is found to be higher than that when one or both or are not

considered. Figure (6.2) shows the variation of electron electric field E, in the base. In this
figure, E  is shown as negative to reflect its actual direction in the base. As expected, the

calculated electric field is found to be higher throughout the base region than that obtained

using the previous model.
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Figure 6.2: Electron Electric Field variation in the base for N ,(0)=2x10%cm™.
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Effects on n(x) and J,(x)

Figures (6.3) and (6.4) show variations of the minority carrier density n(x) and the minority
carrier current density J, (x), respectively. The latter figure displays the absolute value of
J, . Since both J and recombination aid the electric field in the base, more electrons are

swept to the collector side. This decreases the base stored charge and increases the current.
In comparison with the previous model the present model, therefore, shows a lower electron

density in Figure (6.3) and a higher electron current density J in most of the base region in
Figure (6.4).

The Figure (6.4) also shows that J, decreases near the collector side and becomes
lower than the value of J, of the previous model. The first effect is due to the lowering of

the electron mobility due to increased electric field [Equations (3.18a) and (3.18b)] near the
collector side as seen in Figure (6.2). The second one is expected since the present model
includes the recombination mechanism for which a negative gradient for J, is used
[Equation (3.24a) where J, is negative for an npn BJT]. The previous model neglects the

recombination mechanism in the base.
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Figure 6.3: Minority Electron Concentration in the base for N ,(0)=2x10%cm™
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Figure 6.4: Minority Electron Current Density in the base for N ,(0)=2x10"%cm.
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6.1.2 Effects on the Collector Current Density

The collector current density J,. can be expressed as,

Jo=J,Wp)+J,(Wy)

~J,(0W,) (6.1)
where,

J,(Wy)=qv,n(Wy) (6.2)
From the above equations it is evident that J. is directly proportional to n(W¥,). On the
other hand, using Equations (3.14) and (5.123), it can be inferred that n(W,) varies
exponentially with V,,. Therefore, J. has an exponential dependence on V,,. This
exponential dependence is observed in the Figure (6.5) which plots the collector current
density J, against the variation of base-emitter voltage V,, . These figures also indicate that
J. for the present model is lower than that for the previous model. This is expected since

Jo=J,(Wy) and J (x) is brought down as one approaches to the collector (as explained in

the previous subsection).

The lowering of J. in the present model compared to the previous model suggests

that the emitter efficiency and hence, the current gain for an npn BJT transistor is lower than

those of the previous model. In fact, inclusion of both the J, dependency and the

recombination mechanism leads to a decrease in the current gain. Therefore, the previous

model overestimates the emitter efficiency and the current gain, since it neglects both the J,
dependency and the recombination mechanism. The lowering tendency of J, as collector is
approached may lead to an erroneous conclusion that J, will be zero if base-width is
increased. But this will not be the case, since n(W,) is reduced due to recombination (which
causes J, to reduce) and never be zero, as then electron has to cross the B-C junction with

infinite velocity.
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Figure 6.5: Collector Current Density vs. base emitter voltage for N ,(0)=2x10%cm .
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6.1.3 Effects on the Base Transit Time
For convenience the definition of the base transit time is recalled as,

_ Wy n(x)
T, =—q jo mdx (6.3)

For the previous model, J, becomes position independent and hence, can be taken out of the
integral term. Since the present model includes both the J dependency and the
recombination mechanism, J, is position dependent and therefore must remain within the
integral term of Equation (6.3). Therefore, the lowering of J, near the collector side for the
current model does not lead to an increase of 7. Instead, the base transit time 7, should
decrease for the present model since J, is observed to be higher in most part of the base

(except for a narrow region near the collector side)[Figure (6.4)] and n(x) is observed lower
throughout the base [Figure (6.3)] due to the aiding electric field. The expected decrease in

7, 1s observed in the Figure (6.7).

From the above discussion, the simulation proves that the inclusion of both the J,
and the recombination mechanism decreases both the the collector current density J. and
the base transit time 7, . The reduction of J. means a corresponding reduction in the emitter

efficiency as well as in the small-signal common base and common emitter current gains. On

the other hand, the reduction of 7, results in a decrease in the total transit time, 7,, and
hence, in an increase in the unity-gain-bandwidth frequency, f, [Equations (1.5) and (1.6)].
This is expected since the gain-bandwidth product is equal to f; and hence, a decrease in

the gain results in a corresponding increase in the bandwidth. Furthermore, the inclusion of

both the J, and the recombination mechanism in the analytical modeling results in more

improved gain-bandwidth product than that obtained neglecting those dependencies.
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Figure 6.6: Base transit time vs. base emitter voltage for N,(0)=2x10%cm>.
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6.1.4 Effects Due to the Variation of Peak Base Doping
Density, ~,0)
In this subsection, the effects of peak doping density N ,(0) on the base transit time is
investigated. For this analysis, the logarithmic slope of the doping profile (7) is kept
constant. Therefore increasing N ,(0) results in a corresponding increase in N (W) to
maintain the 7 constant.
Increased N ,(0) results in more doping concentration in the base and hinders the

carrier movement which results in a decrease in the carrier mobility [Equations (3.18a) and
(3.18b)]. The electron electric field in the base is dependent on the logarithmic slope of the

base doping profile (for exponential doping profile which is defined as 7 and is affected by
the band-gap narrowing effect, the injection level and the majority carrier current density

[Section (4.3.1)]. The increased N ,(0) results in a decrease of the injection level and
thereby decreasing the retarding field caused by the injection level. Since J,(x) in the base
decreases when N ,(0) increases [Figure (6.1)], it has a lowered aiding effect on the electric
field. The electric field can be greatly affected by the base doping gradient 7, since electric
field is proportional to 7 [Equation (3.38)]. For this case, N ,(0) increases keeping 7 as
constant. Therefore when N ,(0) increases, the increase in the electric field is less dominant
over the decrease in the carrier mobility. This causes the minority electron current density
J (x) to decrease more than the decrease in the minority carrier concentration [when N ,(0)
increases, n(x) decreases since pnocn’ for a fixed bias as seen in the Equation (3.14)].
Thus, when N ,(0) increases while keeping 7 as constant, the base transit time increases.

Figure (6.7) also shows this increase of 7,. This results are consistent with those shown in

Ref. [11].
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Figure 6.7: Base transit time vs. base emitter voltage for N ,(0)=1x10"*cm™ and

N ,(0)=2x10"cm. Here 77 is kept as constant.
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6.1.5 Effects Due to the Variation of Logarithmic Slope
of the Base Doping Profile, 7

The logarithmic slope of the doping profile can be increased by increasing the peak doping
density N ,(0) while keeping the N ,(W;) as constant. From the arguments presented in the
previous subsection, it can be inferred that the increase in the electric field for the present

case dominates over the decrease in the carrier mobility, since both 7 and N ,(0) are
increased. For this case, the base transit time decreases when N ,(0) increases. This fact is

observed in the Figure (6.8). The same is also supported by the Ref. [14].

From the Figure (6.8), it is observed that the base transit time 7, increases when N ,(0)
increases from N, (0)=1x10%cm> to N,(0)=2x10%cm™ keeping 7 as constant
(17=3.00). On the other hand, 7, decreases if 7 is increased from 3.00 to 3.69 keeping

N ,(0) as constant (N ,(0)=2x10"*cm™). Therefore, both N,(0) and 1 must be increased

in order to reduce the base transit time.
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Figure 6.8: Base transit time vs. base emitter voltage for the variation of N ,(0) and 7.
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6.2 Model Verification

The proposed model in this thesis has been verified by the simulation results and also by an

experimental data. The verifications are presented in this section.

6.2.1 Comparison with the Numerical Simulation Results

A numerical simulation was carried out to verify the current model. The procedure for this
simulation is detailed in the Appendix (A.2). The approximations that include the application
of perturbation theory to overcome the nonlinearity problem, and the approximation for
electron diffusivity and the exponential approximation to overcome the mathematical
intractability are used in the present model. However, no additional approximations were
used while performing this numerical simulation. In this subsection numerically computed
results are compared against the results of the present analytical model.

Figures (6.9) and (6.10) show the comparison of the base transit times obtained from
the current model and the simulation result for the two values of logarithmic slope of the

base doping profile. The Figure (6.9) shows the results for a peak doping concentration of
N,(0)=2x10%cm™, while the Figure (6.10) shows the results for a peak doping
concentration of N ,(0)=1x10"cm>. Both of these figures show better agreements in the
base transit time with the simulation results when 7 is lower i.e. 77 =3.00. However, when
n 1s high and the base doping level is low, the results of the present model deviates from the

numerical simulation results to some extent. An error analysis for these plots are also
presented in the Figures (6.11) and (6.12) respectively. The error is defined as the percentage

deviation in the base transit time 7, of the present model from that of the numerical

simulation as a fraction of 7, of the numerical simulation 1.e.

% Of EI”I’OI" — TB,numen'cal simulation z-B, present model x 1 00%

TB, numerical simulation

(6.4)
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For the peak doping level of N ,(0)=2x10"cm™> with 1 =3.69, the highest error is

found as ~2.8% . Even this error is within the limit of 3% and is found for a narrow range
of bias levels (0.86—0.9 V). For other cases, the error is within a limit of 2% . Therefore,

the approximations made in developing the present model are well justified.
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Figure 6.9: Base transit time vs. base emitter voltage for the current model and for the

numerical simulation for N ,(0)=2x10"%cm™.
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Figure 6.10: Base transit time vs. base emitter voltage for the current model and for the

numerical simulation for N,(0)=1x10%cm™.
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Figure 6.11: Relative error in the base transit time compared against the simulation. Here

N, (0)=2x10%cm™.
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Figure 6.12: Relative error in the base transit time compared against the simulation. Here

N, (0)=1x10%cm™.
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6.2.2 Experimental Verification

The present model proposed in this work is verified against two experimental setups. The
first setup was done by H. Stii bing and H. M. Rein [58, 59] is used and the second one by T.
Fuse [60].

First Experimental Setup
The doping profile used in the first setup [58, 59] is shown in Figure (6.13). The physical

parameters for this experimental setup are listed in the Table (6.1).

Parameter Feature Size
W, 0.24 um
W, 0.26um
/8 0.50um

E-B Area 50 pom’
Ng, 4.8x107 em™
N, 1.0x10"° cm™
N, 2.0x10* cm™

Table 6.1: Physical parameters for the experimental setup carried out in Ref. [58, 59]

Figure (6.14) shows the experimental data obtained from Reference [59] to validate the
proposed model. This figure also presents the results of the previous model [11]. From this
figure it is evident that the proposed model agrees with the experimental data in the most

part except for a narrow region of 0.70<V,,. <0.75 V. The discrepancy observed in the

low-injection region can be attributed to the approximations made for low-injection
modeling. However, as injection level increases the present model matches more closely
with the experimental data. It is also observed that the results for the current model is in
better agreement with the experimental data when compared with those of the the previous

model.
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Figure 6.13: Profile of the Doping Concentration used in the Experiment done in [58, 59].
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Figure 6.14: Collector current vs. Base Emitter Voltage. The plot compares the data for the
current model with the Experimental data from Ref. [59]. The figure also shows the data for

the previous model [11].
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Second Experimental Setup

In this setup [60], the emitter-to-collector transit time (7, ) was calculated from the

measured cutoff frequency ( f; ) using the following definition:

1

T, = % (65)

The model [60] was developed by considering the base pushout in the presence of velocity
overshoot and also, the emitter current-crowding and carrier-spreading effects. The model

defined 7, as a sum of four different components, namely
1. Base-emitter junction capacitance charging time, 7,,

2. Base transit time, 7,

(98]

. Epi-collector space-charge region transit time, 7.,
4. Base-collector junction capacitance charging time, 7.

and, which can be expressed as,

T, =Tpp+Tp+ T +Tpe (6.6a)
T Z&CIE (6.6b)
IE
T5 = fouTr (6.6¢)
T = We-AW: (6.6d)
v
Tpe = RCje (6.6¢)

where, C,., R. and C,. are the base-emitter junction capacitance, buried collector
resistance and base-collector junction capacitance, respectively. f,,, represents the two-
dimensional base pushout factor, 7, 1is the low-current forward-base transit time and

W, —AW,. is the epi-collector space charge region width due to base pushout. The velocity v



is the maximum overshoot velocity and is corrected later by Liou [61] as,

y=2vy

max
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where, v, =1.1x10" cm/s. The related physical parameters for this setup are listed in the

Table (6.2).

Parameter

Feature Size

0.03m

0.17 tam
0.80m

7.5 um*

7.5 um*
2.1x10% em™

1.0x10"° em™
2.1x10%° em™
10.0( fF)

13.0(fF)
30.0(Q)

Table 6.2: Physical parameters for the experimental setup carried out in Ref. [60]

Figure (6.15) shows the experimental data obtained from Reference

[60] as well as the

results of the the present model. From this figure it is evident that the proposed model

closely matches with the experimental data in almost all collector-current densities except

for a region where base push-out condition commences. This slight deviation is due to the

fact that the proposed model did not critically consider the effects of the emitter current

crowding and the collector current-spreading. However, this result is consistent with the

results of the model developed in Ref. [61].

In the present model recombination in the base is considered which results in position

dependent J, in the base. Therefore, 7,, can be calculated from 7/, =J, (0)4,, instead of

(6.7)
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I, ~=1.=J,(Wy)Ay,, where, 4,, is the base-emitter area. A better result may be obtained if

the /, can be calculated from the emitter current modelling.

From the verifications of the present model with the above-mentioned experimental
setups, it is proved that the majority carrier current density which is enhanced by the
recombination mechanism should not be neglected in the analytical modelling of the base

transit time.
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Figure 6.15: Comparison of emitter-to-collector transit time z,. for the present model and

the Experimental data from Ref. [60].
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Investigation of Further Effects
In the previous sections the proposed model has been compared against a model developed

in [11]. In this section the proposed model is compared against the J,-only model and the
recombination-only model to investigate the separate effects of J, and the recombination

mechanisms. Effects of emitter doping profile and the base doping level are also observed

and analyzed in this section.

6.2.3 Separate Effects of /» and Recombination

This section presents the effects of J, and recombination on the transit times and high

frequency parameters of BJT along with that on electric fields, energy band and currents.

Effects on the Electric Field and on the Energy Band

In the previous section, it has been mentioned that J, has an aiding effect on the electron

electric field, E,. The recombination mechanism has also aiding effect on E, , since

recombination causes an increase in the carrier density gradient. Therefore, for the model

that considers only J,, only recombination mechanisms or both J, and recombination, an

increase in E, is expected over the model that does not consider any of these factors. The

expected increase is observed in Figure (6.16) compared with that of the previous model.
Since gradient of potential i.e. energy represents the existance of an electric field and
the quasi-neutral base region has electric fields due to non-uniform doping profile and also
due to the carrier-density gradient, the energy band diagram must have a gradient in the
quasi-neutral base. This gradient in the energy band is observed in Figure (6.17) for all four
models. The depletion layer for base-emitter junction is entirely due to base doping, since

emitter doping is almost of two-order higher magnitude. Moreover, this length is excluded
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from the base width since the length is negligible when compared with the base width. The
figure also shows that the band diagram is almost identical for all the four models. This is
due to the fact that the change in energy band is negligible when compared to the total band
diagram of the transistor. The change are evident if the band diagram is zoomed to the base
region only. A closer view for the base region plotted in Figure (6.18) reveals that the higher
the electric field the higher the gradient in the energy band. Therefore, the most bending is
observed in the recombination-only model whereas the least bending is found for the

previous model.
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Figure 6.16: Comparison of electron electric field E (x) for the present model, previous

model [11], J -only model and recombination-only model. In this figure,

N (0)=2x10" cm™, n=3.69 and V,, = 0.9V . Uniform emitter doping profile is assumed.
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Figure 6.17: Comparison of energy band diagram for conduction band E,. for the present

model, previous model [11], J,-only model and recombination-only model. In this figure,

N (0)=2x10" cm™, n=3.69and V,, = 0.9V . Uniform emitter doping profile is assumed.
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Effects on the Emitter and Collector Currents

Emitter current /, is the sum of the currents, J, and J, at x=0. For a given doping level,
this current increases when electric field at x =0 i.e. £, (0) increases. Since, at x=0, J is
maximum and recombination is zero, E, at this position is seen higher for J,-only model
and the present model, whereas, E, is lower for recombination-only model and the previous

model [Figure (6.16)]. Therefore, higher /, is observed in Figure (6.19) for J,-only model

and the present model than the other models.

On the other hand, collector current /. decreases due to recombination mechanism,
since recombination is the highest at x =W, . Due to recombination, a lower /. is, therefore,

observed in Figure (6.20) for the recombination-only model and the present model compared
to the other models. Again, as one moves to the collector, a higher mobility is expected due

to reduction of doping level. Lowering of electric field E, at x =W, further increases the
mobility. Therefore, increase in the mobility overwhelms the reduction of E, and increases
I, . These facts justify the observed results shown in Figure (6.20).

Since, recombination mechanisms are neglected for the J, -only model and the

previous model, common-base current gain « is unity and hence, the common-emitter

current gain h, or 3 approaches infinity (S = IL). Therefore, h,, for these two models

cannot be derived and hence, not be plotted in Figure (6.21). However, /4, can be defined as

the ratio of /. and the base current, /,. Due to lateral injection through the base, the

divergence of majority hole current density is defined as [Equation (3.29)]

dJ

= =—qRn+qgp(x)
dx

(6.8)
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where the second term of the right hand side represents the divergence due to the lateral
injection through the base. Therefore, the total lateral injection current can be defined as the

base current /, and can be given as,

g
Iy = Ay, x—qg[ " p(x)dx (6.9)

According to this definition, the base current increases when either the generation rate 'g' or

the stored base charge given by

"
O, = qJ.O n(x)dx (6.10)
or both increases. When recombination mechanisms are considered, both 'g' and O, and
henceforth, 7/, decreases. The expected increase in hfe for the present model is, therefore,

observed in the Figure (6.21). Since recombination mechanisms becomes significant as

injection level increases, the increase of /7, for the present model over the J -only model is

observed under high-bias condition.
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Figure 6.19: Comparison of emitter current /, for the present model, previous model [11],
J,-only model and recombination-only model. In this figure, N,(0)=2x10" cm™,

n=3.69and V,, =0.9V . Uniform emitter doping profile is assumed.



134

< A
é y - =
- /’
£
0
5
0
8 - - -Previous Model [11]
2 -+ ++J -Only Model
8 == Recombination-Only Model

— Present Model

' | ' T T
0.85 0.90 0.95

Base Emitter Voltage, V__ (V)

Figure 6.20: Comparison of collector current /. for the present model, previous model [11],
J ,-only model and recombination-only model. In this figure, N,(0)=2x10" cm,
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Effects on the Transit Times

Base transit time 7, increases when the electric field E, decreases. Since E, is the highest

for the recombination-only model and lowest for the previous model [Figure (6.16)], the
lowest and the highest 7, are expected for these models, respectively. Figure (6.22) also

supports this expectation.

Total transit time z,, mainly depends on the emitter transit time 7, and the base
transit time 7. 7, is dominant under low-bias condition and increases with decreasing /,,
whereas, 7, is prominent under high bias condition and increases with decreasing /.. Since
both /, and /. are lower for recombination-only model and the previous model than for the
J ,-only model and the present model, fau,, is found higher for the former models under all

bias conditions. This fact is shown in Figure (6.23).
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Figure 6.22: Comparison of base transit time 7, for the present model, previous model [11],

J,-only model and recombination-only model. In this figure, N,(0)=2x10" cm™,

n=3.69and V,, =0.9V . Uniform emitter doping profile is assumed.
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Figure 6.23: Comparison of emitter-to-collector transit time z,. for the present model,

previous model [11], J -only model and recombination-only model. In this figure,

N (0)=2x10" cm™, n=3.69 and V,, = 0.9V . Uniform emitter doping profile is assumed.
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Effects on High-Frequency Parameters

Unity-gain cutoff frequency f, is inversely related to the total transit time 7,,. A small
change in 7, due to I, or I. is, therefore, reflected by this parameter. Due to the

explanations described earlier in this section, Figure (6.24) shows higher f, for the present

model the J, -only model than that for the other models.

The maximum frequency of operation f, ax is defined in Equation (2 as
1
2
£ = _fr (6.11)
2\ 27R,C,.
where the base resistance R, can be defined as

S
R,=p, —— 6.12
B pBLWB (6.12)

where p, is the average resistivity of the base layer. For the p-type base, this can be

expressed as

1 1
", d 6.13
P W, .[o {qn(x):un(x)"‘qp(x)yp(x)“ X (6.13)

The above expression can be expressed in terms of diffusivity as

1 1

1 IWB gD, 4D,

n(x) ! + ! +NA
. 4D, 49D,) 4D,

(6.14)

n

The above expression for p, shows that R, depends not only on the dimensions of BJT, but
also on the injection level, mobility and the doping level. For a given doping level p,

decreases as injection level increases and as mobility increases. Since injection level

increases under high bias condition, p, is expected to decrease under high bias condition.
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This fact is observed in Figure (6.25) which shows the variation of R, under various bias
conditions. Again, electric field decreases the mobility and hence, increases the p, under
high bias conditions. Since the recombination-only model and the present model show
higher electric field than the other models, these models, therefore, show the higher base

resistance R, than the other models under high bias conditions. Figure (6.25) also shows
this fact.

It is evident from Equation (6.11) that maximum frequency of operation strongly
depends on the base resistance R,. Indeed, the dependence of f, ~on f, is strongly
modulated by the small change in bias-dependent R,. Therefore, the recombination-only
model and the present model shows the lower value of £, than the other models under

high bias conditions. From the Figure (6.26), the same observation can be made.
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Figure 6.24: Comparison of unity-gain cutoff frequency f, for the present model, previous

model [11], J -only model and recombination-only model. In this figure,

N (0)=2x10" cm™, n=3.69and V,, = 0.9V . Uniform emitter doping profile is assumed.
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Figure 6.25: Comparison of base resistance R, for the present model, previous model [11],
J,-only model and recombination-only model. In this figure, N,(0)=2x10" cm,
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Figure 6.26: Comparison of maximum frequency of operation f,  for the present model,
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6.2.4 Effects of Emitter Doping Profile

Earlier in this chapter it has been mentioned that majority carrier current J, (x) has

dependency on the emitter region parameters such as emitter width, emitter doping level and
emitter doping profile. In this section, the effects of emitter doping profile on the base transit
time has been investigated. Three doping profiles are used: uniform, exponential and
Gaussian.

Uniform doping profile offers zero electric field in the emitter region. Gaussian
profile introduces a linearly decreasing field, whereas, exponential profile a constant field is
developed throughout the emitter region. Since electric field enhances the carrier flow and
hence, the current, exponential emitter doping profile causes the highest and the uniform
doping causes the lowest current in the emitter region, where all the parameters are kept
constant. Due to low-injection condition prevailed in the emitter region because of heavy
doping level, recombination in the emitter is neglected. Therefore, the emitter current can be
treated as the boundary value for the J, in the base region.

From the above discussion, it is evident that for the exponential emitter doping
profile the J (x) in the base is expected to be higher in magnitude than that for the other
two profiles. This is also verified by the Figure (6.27) which plots the majority carrier
current density in the base for the uniform, exponential and Gaussian emitter doping profile.

Since, J,(x) has an aiding effect on the electron electric field E,, a lower base

transit time 7, and a higher unity gain cutoff frequency f, is expected for exponential

emitter doping profile than for the other profiles. Figures (6.28) and (6.29) also verify this
statement. From the Figure (6.28) it is seen that the lowest, the medium and the highest

values for 7, are obtained for the exponential, Gaussian and uniform emitter profile. The

opposite case is seen for f, from the Figure (6.29).
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Figure 6.27: Effects on majority hole current density J,(x) for uniform, exponential and

Gaussian emitter doping profile. In this figure, N ,(0)=2x10" cm™, 7=3.69 and

Ve =0.9V . Exponential base doping profile is assumed.
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Figure 6.28: Effects on base transit time 7, for uniform, exponential and Gaussian emitter

doping profile. In this figure, N ,(0)=2x10" cm™, 7=3.69 and V,, =0.9¥ . Exponential

base doping profile is assumed.
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6.2.5 Effects of Base Doping Levels on Emitter and

Collector Currents

In this section effects of base doping levels on the transistor currents are investigated. In

doing so, the logarithmic slope of the profile 7 is kept constant. This results in negligible
change in the electron electric field E, in the base. However, increasing the peak doping

concentration N ,(0) keeping the slope 7 constant increases the doping level throughout the

base region. As a result, the mobility throughout the base region decreases. The subsequent
effect is, therefore, a decrease in the carrier currents in the base. This effect is seen in the

Figure (6.30) for the emitter current /, and in the Figure (6.31) for the collector current /..
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and V,, = 0.9V . Uniform emitter doping profile is assumed.
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6.3 Conclusion

In this chapter, simulation results for the minority carrier profile, the minority and the
majority carrier current densities, the collector current density and the base transit time are

presented. The results establish that the consideration of both the ./, and the recombination

mechanism has distinct and significant effects on the base transit time. The results show that

both J, and the recombination oppose the retarding field caused by an increase in injection

level and hence, the base transit time at intermediate injection level becomes closer to its
low-injection value. The numerical simulation results and the measurement data obtained
from two experimental setups closely match with those of the proposed model. Therefore,
the approximations used in this model are justified. These approximations are made to
overcome the nonlinearity and the mathematical intractability. However, due to close
matching of the proposed model data with the numerical and experimental data establishes
the claim that majority carrier density along with the recombination mechanism has a
significant effect on the base transit time and hence, must be included in the analytical

model.
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Chapter 7
Conclusion

In this work analytical expressions for the minority electron concentration profile, the
minority electron current density, the majority hole current density and the base transit time
have been developed by including the majority carrier density in the base of a bipolar
junction transistor. The recombination mechanisms which include the SRH recombination
and the Auger recombination as well as the lateral injection through the base are
incorporated in the analytical modeling. The model also includes band-gap narrowing effects
due to heavy doping, the Webster effect due to high injection level and considers velocity
saturation, and doping and field dependance of the carrier mobility. The developed model is
applicable to all levels of injection just before the onset of the Kirk effect. Therefore, the
model can be characterized by its completeness and wide applicability.

This chapter gives a summary of the contributions of the current modeling effort.

Suggestions are also given for future reference.

7.1 Contributions

A lot of challenges has to be overcome in developing the analytical model that does not
ignore the majority carrier current through and the recombination in the base. These
challenges include:

1. Inclusion of J, that makes the estimation of £, complicated.

2. Both electron and hole mobilities have to be incorporated to determine the electric
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fields.

Unlike the models where only doping-dependency is considered the electron and
hole carrier mobilities are not a simple exponential function of position, since both
doping profile and electric field dependencies are considered in the present model.
For lifetime, inclusion of both SRH and Auger recombination leads to further
complication.

Incorporation of all the effects results in a non-linear, non-homogeneous, variable-
coefficient second order differential equation, the solution of which is analytically
intractable.

For low injection, n(x) << N ,(x) and for high injection, n(x) >> N ,(x). However,
for intermediate injection levels, n(x) is comparable to N ,(x).

Mobility, electric field and J, all are coupled and also depend on the minority

carrier profile.

Conversion of a nonlinear, non-homogeneous and complicated-function variable-
coefficient differential equation into a linear, homogeneous and simple-function
variable coefficient one has to be made.

For analytical tractability, solution techniques have to be devised to solve the

resulting differential equation.

To overcome these challenges, some innovative approaches are taken, which represents the

major contributions of this work. These are listed as follows:

1.

Different electric fields are considered for electrons and holes in the analytical
modeling.
Both SRH and Auger recombination are simultaneously considered in the

analytical modeling.
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3. Exponential approximation technique is introduced for analytical modeling.

4.  Lateral base injection is suitably incorporated.

5. An approximate analytical expression for majority hole current density is derived.

6.  The electric field expression is approximately derived from which its dependance
on the doping profile, the band-gap narrowing, the majority carrier current density
and the injection-level is identified.

7. The governing differential equation for the minority electron carrier concentration
is modified to include the intermediate-injection-level effect.

8. For the electron mobility, an approximate electric field is used to make the solution
tractable.

9. A confluent hypergeometric function is utilized as a solution when only J, is

considered for low injection. A homogeneous Bessel equation is solved when

recombination and injection-level dependency are incorporated. used.

7.2 Suggestions for Future Work

The analytical models developed in this work neglects the effects due to plasma-induced
band-gap narrowing, which exists when injection level is high. Base push out is another
effect to be considered, especially when bias levels approach 0.9 V or more. This mechanism
leads to accurate modeling of two-dimensional effects such as emitter current-crowding and
collector current-spreading. In this work, the velocity saturation is assumed to be occurred

exactly at the x =W, , which is not the case. Indeed, this saturation occurs in the base region

near the collector side. These modifications could be incorporated in the model in the future.
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7.3 Conclusion

The analytical model developed in this work include almost all the important effects
investigated so far in the literature. However, the main achievement of this model is the
inclusion of both the majority carrier current density and the recombination mechanism as
well as the lateral injection into the base which were neglected by the analytical models
reported in the literature. The proposed model is compared against numerical simulation
results as well as experimental setups and was found to be in excellent agreement. It can be
concluded, therefore, the developed model provides a better physical insight into the physics

behind the base transit time.
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Appendix

A.1 Derivation of Confluent Hypergeometric

Function

Confluent hypergeometric function is defined as [57],

. . — 0 (a)n x_n
M(a;b;x)=%", b). (A1)

where, (a),, (), are Pochhammer symbol defined as

(a+n-1)!
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Now, the integral term I obtained in Section (5.2) can be rearranged by substituting 'x' with

the variable 'v' as,
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(A.4)

where the definition of confluent hypergeometric function given by Equation (A.1) is used.

A.2 Simulation Procedure

Three first order differential equations for n(x), J,(x) and J (x) are solved numerically.

The equations are:

d_” _ En,ejf('x) n(x) + J,(x)
dx Vr q Dn,q/]" (x)
aJ,(x) _ o m®)

I qR, (x){n(x) ")+ N (x)}
dJ » (x)

dx

(%)

n(x)+N,(x)

=—qR, (X)[n(x) -

where,
Egg® _ 1 71 EyX)
Vi Kx) W, V;

1 1 Fu}/l +GJEI1O(X)+

} +qgin(x)+ N (x)}

4D, ,(x) F®)| Y @ N}, (06,

B

NA (x)+N0,re{f

(A.5a)

(A.5b)

(A.5¢)

(A.6a)

(A.6b)

R (x)= o Vory Copl(+7)n(x)+ N, ()} | {n(x)+ N, (x)}  (A.6¢)

= +
(1+7)n(x)+ N, (x)

where,
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T 2n(x)+ N ,(x)}+J,(x)G,
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Following four boundary conditions are needed to solve the the Equations (A.5)(one

additional boundary condition is needed to determine g):

v
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Equations (A.5b) and (A.5¢) offer boundary problem, whereas, Equation (A.5a) offer initial

value problem. Therefore, two iterative procedures are required: one for J, and the other for
J, . Matlab routines are used to perform the iteration process. The iteration procedure is
outlined below:

1. First, an initial guess of J (0) is chosen. J, obtained using the model (Ref. [11]) is

used for this guess.
2. Second, an initial guess for the generation rate g is required. For this, the Equation
(A.7¢) is used by letting n(x)=0.

3. The Equations (A.5) are then solved.
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11.

12.

13.

14.
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Using the new J (W) and n(x) obtained in the preceding step, the new value of g is

calculated from the Equation (A.7¢c).

Since J,(W;) and J,(W,) thus obtained do not satisfy the boundary conditions
given by the Equations (A.8b) and (A.8d), an iterative procedure is required.
The Equations (A.5) are again solved using the new values.

A new value of J,(W,) is obtained, which may be higher or lower than the previous

value. Since J,(W;) ~0, this value should be lowered down. When the new value is

higher than the previous value, this lowering can be achieved by continually dividing
it by a number (i.e 10) until it lowers down from the previous value; otherwise, the
new value is preserved.

A new ‘g’ is calculated and the Equations (A.5) are again solved.

This iteration process is continued until the value of J,(W,) is reached very close to
zero. This satisfies the boundary condition given by the Equation (A.8b).

A second iteration is required to satisfy the other boundary condition given by the
Equation (A.8b).

The value of J (0) is then increased by a very small factor (0.01% ) if

J, (W) <qv,n(Wy) and it is decreased by the same factor if J, (W,)>qv, n(W,).

The steps (6) to (9) are repeated for this new value of J (0).

‘]n(WB)_qunn(WB)|X100 iS
J, (W)

The iteration is continued until the percentage error

reached within a prescribed limit (i.e. within the 0.01% ).

The base transit time is then calculated using the numerically solved n(x) and J (x).
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