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Abstract

A physically based, accurate model for the direct tunneling (DT) gate current

of nano-scale MOS devices considering quantum mechanical (QM) effects is

developed. Effect of wave function penetration into the gate-dielectric is also

taken into account. When electrons tunnel from the MOS inversion layer to

the gate, the system becomes quantized with finite lifetimes of the inversion

carriers. In such a system, the Eigen energies are complex quantities. The

imaginary part of these complex Eigen energies, r is required to estimate

the lifetimes of these states. r follows an exponential relationship with the

thickness of the gate-dielectric layer even in the sub-l-nm-thickness regime.

In this work, an empirical equation of r is developed as a function of

surface potential, rp., from a developed .self-consistent numerical simulator

(Schrodinger-Poisson solver) considering open boundary condition. Inversion

layer electron concentration is determined using Eigen energy, calculated

by modified Airy function approximation that considers wave function

penetration effect. Good agreement of the developed compact model with

self-consistent numerical simulator and experimental data for a wide range

of substrate doping densities and oxide thicknesses states the accuracy and

robustness of the developed modeL Though the developed model holds good

for only Si02 used as gate oxide, following the same methodology compact

model of DT gate current for MOS devices with high-k gate dielectric can also

, '.be developed.



Chapter 1

Introduction

Aggressive scaling of MOS devices in past decades has introduced the

feature size to nanometer regime. A methodology has been given in [1]

to show the scaling nature of MOS devices. As guided by the ITRS

(International Technology Roadmap for Semiconductors), the scaling down has

been accomplished by a decrease in gate-oxide thickness and increase in doping

density. A complete scenario of scaling features of device size, oxide thickness

and enhancement in doping concentration are given in ITRS [1].

Oxide current due to direct tunneling of carriers is increasingly becoming an

important component of the operation of devices in nanometer scale MOS

technologies [2]. The dielectric is now being scaled into a regime «2 nrn) where

leakage through the gate dielectric due to direct tunneling is becoming an

inevitable feature of device operation even at low operating voltages. Because

of this, there is a requirement to include gate current in compact MOS models

for circuit simulation. The most significant effect of gate current on the design of

digital circuits is the influence that it will have on off-state power consumption

[3]. In the on-state at high switching speeds, the contribution of the gate current

is probably going to be small. Analog circuits however, typically use longer

channel length devices and ratios of device geometries are used to achieve

performance targets. As a result, compact models, which include gate current

due to direct tunneling, will become of increasing importance for analog circuit

design in the immediate future.
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Ideally a compact model should be physically based. It should be based on

technologically relevant and measurable parameters and it should include the

main physical effects. In this way, it is hoped that such a model will have some

predictive capability for small process changes and also give some diagnostic

capability. A physical basis. also helps to ensure a clear path to physical

parameter extraction strategy.

However, in compact modeling the requirement for a physical basis must

be traded off against the sometimes conflicting requirement of speed and

simplicity. The goal of circuit simulation is to simulate large and relatively

complex circuits in a reasonable time. In order to reduce computation

time in compact models explicit equations in terms of the applied terminal

voltages are usually used and iterative or numerical calculations are generally

avoided.

Wave function. penetration and quantization are the two most important

phenomena for modeling ultrathin MOS devices. In this work a physically

based, accurate compact model for Direct Tunneling (DT) gate current is

developed considering quantum mechanical effect and incorporating wave

function penetration effect.

1.1 Literature Review

Current scaling of metal-oxide-semiconductor field effect transistors (MOSFET)

has led to the fabrication of devices in the sub-lOO-nm regime. In such devices, a

large gate current flows due to direct tunneling (DT) of inversion carriers. This

DT current is important from both device performance and characterization

points of view. However, even though there are many reports concerning the

effects of the gate leakage current to MOS transistor operations and numerical

modeling [4-8], fewer studies have been made regarding impacts of the gate

current to real circuit operations due to absence of an accurate circuit simulation

model for gate tunneling current.
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Hakim et al. [5] proposed an accurate and numerically stable quantum-

mechanical technique with open boundary conditions to calculate the direct

tunneling (DT) gate current in metal-oxide-semiconductor (MaS) structures

exploiting the numerically obtained exponential dependence of imaginary

part of complex eigen state, f, on the thickness of the gate-dielectric

layer. They have simplified the determination of f in devices where it

is too small to be calculated directly. They also showed that the MaS

electrostatics, calculated self-consistently with open boundary conditions, is

independent of the dielectric layer thickness provided that the other parameters

remain unchanged. Utilizing these findings, a computationally efficient

and numerically stable method is developed for calculating the tunneling

currentgate voltage characteristics.

Using both quantum mechanical calculations for the silicon substrate and a

modified WKB approximation for the transmission probability, Yang et al. [6]

have presented a model for direct tunneling currents across ultra-thin gate

oxides of MaS structures for electrons from the inversion layers in p-type Si

substrates.

Tunneling current from MaS inversion layer was studied by Lo et al. [4].

They have showed that for the purpose of modeling tunneling characteristics

of electrons exhibiting quasi two-dimensional character, the transmission

probability applicable to an incident Fermi gas of free electrons is no

more an acceptable concept and the well known WKB (Wentzel-Krammer-

Brioullion) approximation or the numerical integration of Airy function is

not valid. In their work an accurate determination of the physical oxide

thickness was achieved by fitting experimentally measured capacitance-

versus-voltage curves to quantum-mechanically simulated capacitance-versus-

voltage results. The lifetimes of quasi-bound states and the direct tunneling

current was calculated using a transverse resonant method, applicable

for electromagnetic waves in a non-uniform waveguide for solving the

Schrodingers equation.

t
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Shih et aL [9] have shown the viability of WKB approximation at low

biases. Tunneling rate calculations invoking the WKB approximation and

the numerical solution to the effective-mass Schrodinger equation have been

independently carried out in a post-processing fashion following a self-

consistent Schrdinger-Poisson solver. The direct-tunneling currents calculated

by these two distinct approaches have been compared with oxide thickness

ranging from 1.5 to 4 nm.

Vogel et aL [10]modeled the tunneling currents for insulators with an effective

oxide thickness of 2.0 nm using a numerical calculation of the WKB tunneling

current. Their model was shown to agree with previously determined

analytical WKB formulations of tunneling current for Si02.

A modified WKB approximation has been proposed by Register et aL [11]. It

modifies the usual tunneling probability predicted by WKB, by accounting the

reflections from potential discontinuity. In this model, the barrier height to

tunneling is taken to be a function only of the total electron energy and the

Si bandgap dispersion relation is modeled as a two band Franz-type.

Hou et aL [12] have presented a physical model to calculate the direct

tunneling hole current through ultrathin gate oxides from the inversion layer of

metaloxidesemiconductor field-effect transistors. A parametric self-consistency

method utilizing the triangular well approximation is used for the electrostatics

of the inversion layer and tunneling probability is calculated by a modified

WKB approximation.

A number of surface potential based compact model have been reported in the

literature [13-15]. Most of these models incorporate Quantum mechanical effect

without considering wave function penetration effect and utilize WKB [16]

approximation to obtain a simple analytical expression for the transparency.

In these models Quantum mechanical correction to the surface potential also

does not consider wave function penetration effect.

Gu et aL [13] have reported a physics-based compact model of gate current in

the n-MOSFET. They presented a simplified version of the Esaki-Tsu formula
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to calculate the tunneling current density, in which the original integral is

approximated to retain the essential physics. The channel component of the

gate current is physically partitioned into the source and drain parts using

a symmetrically linearized version of the charge-sheet model. This model

is surface potential-based and requires rigorous mathematical manipulation.

Register et al. [11) proposed a model for tunneling with the modified WKB

transparency.

Choi et al. [14) presented a compact direct tunneling current model for

circuit simulation to predict ultra-thin gate oxide CMOS circuit performance

by introducing the explicit surface potential model and quantum-mechanical

corrections. For quantum-mechanical corrections, they utilized the bandgap

widening approach of van Dort et al. [17).

Clerc et al. [15) presented a physically based, analytical, circuit simulation

model for direct tunneling from NMOS inversion layers in a MOS structure.

This model takes account of the effect of quantization on surface potential in

the silicon, the supply of carriers for tunneling and the oxide transmission

probability. The inclusion of quantum effects is based on a variational approach

to the solution of the Poisson and Schr6dinger equations in the silicon inversion

layer.

Li etal. [18) presented a physics-based compact modeling tool for tunneling

current through ultra-thin gate dielectrics utilizing the concept of impact

frequency. Sullivan et.al. [19) have reported a comprehensive study on the

compact modeling of gate tunneling current.

Physically based compact modeling of DT gate current of MOS devices for

a large range of oxide thicknesses considering quantum correction and wave

function penetration effect is yet to be reported in the literature.
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1.2 Objective of This Work

6

In this work, a physically based and accurate compact model to simulate

DT gate current for MOS devices considering quantum mechanical correction

and wave function penetration effect is developed. DT gate current will be

calculated using an equation reported by Kalam et. al [8]. An empirical

equation of r will be developed as a function of Quantum mechanically

corrected surface potential considering wave function penetration effect.

Concentration.of the inversion electron will be determined using Eigen energy,

calculated by modified Airy function approximation considering wave function

penetration effect [20], and the equation proposed by Stern [21]. Tobenchmark

the proposed compact model for DT gate current, a self-consistent numerical

simulator will be developed by solving the coupled Schrodinger-Poisson

equations. For incorporating wave function penetration effect, open boundary

condition will be applied in the gate-gate oxide interface. Results obtained

from the developed compact model will also be compared with the published

experimental data to show the validity of the modeL

1.3 Organization of The Thesis

In chapter 2 necessary theories to develop self-consistent model and compact

model for Direct Tunneling gate current are discussed. In chapter 3 different

device parameters, calculated by the developed compact model are compared

with numerical simulation results. Finally, Direct Tunneling gate current for a

wide range of doping densities and oxide thicknesses are compared with the

self-consistent numerical simulator and published experimental data to show

the accuracy and robustness of the developed modeL

.
..~J:~"~"4"
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Chapter 2

Direct Tunneling Gate Current and
Compact Model

This section describes Direct Tunneling (DT) Gate Current and its Compact

Modeling. Mechanism behind DT gate current of MOS devices is given. The

compact model of DT gate current considering Quantum Mechanical (QM)

effect and wave function penetration is also been presented.

2.1 MOS Structure

Metal-insulator-semiconductor (MIS) transistor is one of the most widely

used electronic devices, particularly in digital integrated circuits. These

types of devices are made using silicon as the semiconductor, Si02 as the

insulator and metal or polysilicon as the gate electrode. The term metal oxide

semiconductor field-effecttransistor (MOSFET)or MOS devices is used to refer

these devices.

Fig. 2.1 shows an n-channel enhancement-type MOS device. This device is

fabricated on a p-type substrate which is a single-crystal silicon wafer that

provides physical support for the device. Two heavily doped n-type regions

termed as source and drain regions are created in the substrate. A thin layer

of silicon dioxide (Si02) or any other material that is an excellent electrical

insulator is grown on the surface of the substrate, covering the area between

the source and drain regions. Metal acts as the electrode for the device. Metal
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contacts are also brought out the source region, the drain region and the

substrate also known as the body. Thus four terminals are brought out: the gate

terminal (G), the source terminal (5), the drain terminal (D), and the substrate

or body terminal (B).

G

S
•

n+

P-Substrate

B

o

n+

Fig.2.1: Cross section of an enhancement-type n-MOSFET.

2.2 Direct Tunneling Gate Current

Two components of gate current from the inversion layer of a n-M05FET is

illustrated in Fig. 2.2. The main component of the gate current is due to

tunneling of electrons from the conduction band of the silicon substrate into

the gate. In the valance band of the silicon, tunneling occurs by generation

of electron-hole pairs. Electron tunnels towards the positively biased gate and

hole form the substrate current in the device. However this current is usually

several orders of magnitude smaller than the conduction band component

because of the increased barrier height for tunneling from the valance band.

This work will therefore focus on model for tunneling from silicon conduction
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band.

9
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Metal
Gate Oxide

P-type SI
Substrate

Fig. 2.2: A schematic of the band diagram of a Metal/oxide/p-Si MOS structure
showing the electron quantization effect in the substrate and direct electron tunneling
from the substrate inversion layer to the gate.

In Fig. 2.2, a schematic band diagram is shown for a n-MOSFET in inversion

condition. Ee and Ev at the substrate side are the Si conduction and valence

band edges. Ef is the Fermi level in the Si substrate. Ee and Ev are the n+

polysilicon conduction and valence band edges. ECB and EVB are the electron

tunneling from conduction and valence band. rPb is the barrier height and rP, is
the surface potential. Vox is the oxide voltage drop.

2.3 Self Consistent Simulator

In this work, a self-consistent Schrodinger-Poisson solver is developed to

benchmark the compact model of DT gate current against it. This simulator

is also very much necessary to formulate empirical equation for the compact

model, explained in the next section, The self consistent simulator used is based

on Green's function formalization [22). Shams [23) presented a detail algorithm

of this simulator.

•
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2.3.1 Basic Model

Schrodinger solver

10

Stem [21] and Moglestue [24] described a self-consistent solution approach for

the first time. Three major assumptions by Stern were,

(1) Effective mass approximation is valid. So periodic potential need not be

taken into account.

(2)At the silicon surface envelop wavefunction vanishes.

(3)Surface states are neglected and any charge in the oxide near semiconductor

body can be replaced by an electric field.

By the effective mass approximation, Schrodinger's equation for the wave

function <POi; can be written as,

(2.1)

Here, m,-l is the effective mass tensor, V(z) the electrostatic potential, e is

electron charge magnitude and E;, is the energy. z is the direction in the

MOSFET from gate to the bulk body.

Stern [21] showed that the electronic wavefunction <POi; for the jth subband in

the ith valley can be expressed in terms of Bloch function traveling parallel

to the interface, constrained by an envelope function normal to it. This is

represented as,

where, kx and ky represents the component of the wave vector k in x and y

direction. ()depends on kx and kyo <Pij(Z) can be obtained from,
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(2.3)

where, mzi is the quantization effective mass and Eij is the eigenenergy of the

jth subband in the ith valley in the perpendicular direction.

Here two boundary conditions are used for the solution of (2.3). They are,

• 1/Jij(DC) = 0 deep inside the semiconductor

• 1/Jij(0) = 0 at the metal oxide interface.

Each eigenvalue Eij found from the solution of Eq. (2.3) is the bottom of

subband, with energy levels given by,

here mx and my are the effective masses in the transport plane. The conduction

band of silicon has six ellipsoidal valleys along the 100 direction of the Brillouin

zone. As a result there can be as many as three values of mz depending on

the surface orientation. From the effective mass approximation, the valleys are

degenerated in pairs. So the solution of Eq. (2.3) gives the eigenenergy Eij and

the envelope function 1/Jij (z).

2.3.2 Green's Function Formalism

The process of Schrodinger's equation solution as stated above is based on

Green's furiction [25]. Green's function is a technique for calculating an effect at

a certain point due to disturbance at any other point. In MOS devices retarded

Green's function for the i'th valley at a distance z is given by,

1'i2 82 "[E + -8 2 - eV(z) + iclGf(z, z; E) = 6(z - z)
2mzi z

(2.5)
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Here E is an infinitesimally small positive energy. Its value is in 10-12 range.

Retarded Green's function Gf(z, z'; E) is a wave function at z originated by

an .excitation at z'. An important fact here is this that Green's function is

continuous at z = z' and the derivative is discontinuous at z' by,.2mz;/ Ii?

One dimensional density of states, NID, eigenenergies E'j and normalized

wavefunctions, ,pij are calculated using the retarded Green's function. The

logarithmic derivative of the retarded Green's function GR is defined by,

Z,(z, z'; E) = 21i [8Gf(~,z'; E) /Gf(z, z'; E)]
. 'lmzi . z

(2.6)

Two boundary conditions are needed to estimate Zi(Z, z'; E) as Zi(Z, z'; E)

has a discontinuity at z = z'. Here we assume that potential profile is flat

inside the semiconductor and inside the metal at a distance far from the oxide

semiconductor interface. So if we have V( 00) is the constant potential at z = 00

(deep inside the semiconductor) and if V( -00) is the constant potential at

Z = -00 (deep inside the gate metal), Green's function may be expressed

as,

and

GR(z ----+ 00 z'. E) r...J el'i(OO)(Z-Z'), , ,

GR(z ---+ -00 z'. E) ~ e-~i(-OO)(Z-z'), , ,

(2.7)

(2.8)

where, 1',(:1:00) = iv(2mz;/1i2)(E - eV(:1:oo) + iE). The boundary conditions to

estimate Z, are determined from Eq. (2.7) and (2.8). These are,

and

Zi(Z ---+ 00, z'; E) = Zo,(oo),z > z' (2.9)
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Z;(z ---> -00, z'; E) = Zo'( -00), z < z'

13

(2.10)

where, Zo,(:l:oo) = (2fi/imz,)r;(:l:00). From the properties of 1D Green's

functions, it can be shown [26], for all z > z';

Z;(z, z'; E) = Z/(z; E)

for all z < z',

Z,(z, z'; E) = Z,-(z; E)

(2.11)

(2.12)

here, Z/(Z,-) does not depend on Z' as long as z > Z' (z < Zl). To calculate,

Z; method described by [27] is followed. Here microwave transmission line

analogy is used to find the eigenenergies for any quantum well. Use of this

technique in MOS quantum wells is given in [28].

The normalized wave function is calculated from retarded Green's function. We

have Gi' expressed as a function of complete set of eigenfunctions,

GR( I. E) = '" ,p;j(z),p;j(Z')
~ Z,Z, LEE .

. - ij + '/,E
. J

(2.13)

If E'(j+l) - Eij > > E for all j, only one term dominates when E -+ Eij, as the

discrete eigenenergies are degenerate. For the diagonal elements of Gi', we
obtain

(2.14)

Equating imaginary parts of (2.14) and putting E = E;j,
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It has been shown in [26] that,

From (2.16) in (2.15),

2 4E ( i )
l1/Jij(Z)1 = film Z+( . E) - Z:-(z' E)

't Z, 'tJ t' 'tJ

14

(2.15)

(2.16)

(2.17)

Again 1D state of density NID is related to the diagonal part of GR. NIDi (z; E),

in terms of retarded Green's function, Gf is given by,

NID,(z;E) = -~lm[Gf(z,z';E)] (2.18)

When E -> 0+, the density-of-states (DOS), NIDi (z; E), becomes a delta function

at the eigenenrgies, E = Eij in a bound system with the amplitude equal to the

probability density at that energy,i.e.,

NID,(z; E) = L l1/Jij(ZWo(E - Eij)
j

Final expression of NIDi is given by,

Using Eq. (2.18), NlD can be expressed in terms of the logarithmic Z/' [26]:

(2.19)

(2.20)

(2.21)
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Poisson solver
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Poisson solver is needed to obtain the potential profile V (z). This is the starting

phase of the self-consistent simulator. Here Poisson's equation is solved by

finite difference method considering nonuniform grid spacing. Grid spacing is

finer near oxide semiconductor interface.

d2V(z) [Pdepl(Z) + Pinv(Z)] for Z > Tox (2.22)
dz2 EsiEO

d2V(z) [Pinv(Z)] for Z S; Tox (2.23)
dz2 EoxEO

Here, E,i is the dielectric constant of semiconductor, Eox is the dielectric

constant of oxide, Pdepl(z) is the depletion charge and Pinv(Z) is the inversion

charge distribution along z. Inversion charge is calculated with wave-function

penetration effect consideration. Once proper charge distributions are known

accurate determination of the potential profile is done. Pinv (z) is calculated from

eigenenergies and wave-function values. It is given by,

Pinv =L Nijl1Pij(z)12
if

(2.24)

(2.25)

Here, nvi is the valley degeneracy and mdi is the density of states effective mass

of the ith valley as shown in the previous section. EF is the Fermi leveL

Depletion charge density Pdepl (z) is given by,
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(
Z) = { -e(NA - ND), 0 < Z < Zd

Pdepl 0 . Z > Z, d

here, Zd is the depletion layer thickness which is given by,

16

(2.26)

2EsiEO<Pd

e(NA - ND)
(2.27)

where <Pd is the depletion charge band bending. <Pd is given by,

(2.28)

Here, <Psis the total band bending of the semiconductor. Ninv is the total

inversion charges per unit area in the inversion layer. It is expressed as,

Ninv =,L .Nij
ij

(2.29)

Again Zavg is the average distance of the inversion charge from the silicon-oxide

interface and it is given by,

Zavg = (1INinv) LNij / ZI'l/Jijl2dz

'J

Boundary conditions are used for the solution of Eq. (2.22). These are,

(2.30)

• V(O) = Vg, at the metal oxide interface. Here Vg acts as the gate voltage

input.

• At the oxide semiconductor interfaceFs = FoX' where,
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F
s
= e(Ninv + Ndep1) Fox = e(Ninv + Ndepd

E.sica toxEO

are the surface electric fields and,

is the number of charge per unit area in the depletion layer.

2.3.3 Coupling Schriidinger and Poisson's Equation

17

(2.31)

(2.32)

Self-consistent simulation is done for each gate bias for a MOS device. Here gate

bias acts as the input. First for a particular gate bias Poisson's equation 2.22 is

solved by finite difference method. According to finite difference method,

(2.33)

Here, n+2, n+1 and n are different grid space points. Pn is the value of

total charge in space point nand E is the dielectric constant for oxide or the

semiconductor. Solving the Poisson's equation, voltage profile for a particular

gate bias is gained. From it potential profile is estimated. Schrodinger's

equation is solved by retarded Green's function to get the eigen states and from

that inversion charges are calculated for each state and for each valley (2.36).

From these charges pinv is estimated. Taking the full charge profile, (Pin", Pdepl)

Poisson's equation is solved again. A new potential profile is generated by

taking 96% percent of the older profile and 4% of the newer profile. Whole

calculation is done again. This procedure is repeated until error between the

two successive profiles is less than 0.01%.

v
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For higher gate voltages starting potential profile for the calculation is taken as

the last converged profile of previous gate voltage.

2.3.4 Calculation of DT Gate Current

Calculation of rij

Many different models have been proposed to calculate rij. In [7),Schrodingers

equation has been discretized using a finite difference technique. As a

consequence of using open boundary conditions, the Hamiltonian matrix,

defined over a finite region of interest, becomes non-Hermitian. Numerical

determination of the complex eigenvalues of the non-Hermitian matrix

provides an estimation of rij. Gildenblat et. al [29) has shown that the

energy derivative of the phase of the reflection coefficient (determined using

the transfer matrix formalism) around the energies of each quasi-bound state

has a Lorentzian form and its full width at half-maximum (FWHM) is equal

to rij. This method has been applied in [3D) and [31) to calculate the lifetimes.

However, from a numerical standpoint, direct calculation of such a derivative is

difficult [31). Therefore, a suggestion has been made in [31) to calculate rij from

the diagonal element of the transfer matrix. But the transfer matrix method

itself suffers from numerical instability. In a truly bound system, the ID local

DOS, NlD , is given by a series of delta functions at the eigenenergies. When

leakage occurs, NlD broadens in energy and becomes a Lorentzian function. rij

can be estimated from the FWHM of the energy broadened NlD . The Greens

function formalism is applied to estimate NlD. The ID local DOS, by definition,

is related to the diagonal element of the retarded Greens function GR [26)which

is shown in Eq. (2.16).

The diagonal element of GR can easily be calculated with open boundary

conditions using the logarithmic derivative technique, which has been

described in detail in [26). An advantage of this technique is that it is

free from any matrix manipulation, and consequently, it is computationally
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efficient .and numerically stable. Although rij and Tij can be calculated in a

straightforward way using Eq. (2.16), it requires NlD to be resolved in energy

with sufficient accuracy to calculate the FWHM. Normally, in devices with gate-

oxide thickness (Tox) equal or less than 2.5 nm, this poses no serious limitation.

However, in structures with Tox ~ 3 nm, rij is very small and its determination

demands precisions which are much higher than usual thus requiring very high

computational time. Hakim et. al [5] presented an alternate way to perform

this calculation which is utilized in this work to produce a compact model of

DT gate current, described in the next section.

2.4 Compact Model

When tunneling occurs in the MOS inversion layer, the system becomes

quasibound with finite lifetimes of the inversion carriers. In such a system,

the eigenenergies are complex quantities: Eij =? Eij + jr ij' Here, the real part

Eij is the energy of the jth quasi-bound state in the ith valley and the imaginary

part rij is related to the lifetime Tij of the corresponding state following the

relationship

(2.34)

According to the QM methods, the DT current is calculated from the known

values of Tij using Eq. (2.35):

J = '""' qNij
.L..t T.'

ij 'tJ

(2.35)

Here, Nij , the concentration of the inversion electrons in the jth state of the ilh

valley.
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2.4.1 Calculation of Nij
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The concentration of the inversion electrons in the jth state of the ith valley is

given by

(2.36)

Here, n"i is the valley degeneracy and mdi is the density of states effective mass

of the ith valley. For lower valley n"l = 2, mdl = 0.190mo and for higher valley

nvh = 4, mdh = 0.417mo where mo = 9.1-31kg is the electron rest mass. EF is the

Fermi level and k is the Boltzman constant.

In this Work inversion electron concentration of first two states of the lower

valley and only first state of the upper valley is considered. To calculate the

energy separation between fermi level and eigen states, modified Airy function

approach is used. According to the Airy function approximation, the energies

of the quantized states are proportional to (Fox)2(3, where Fox is the oxide

electric field. However, for the state-of-the-art nano-scale MOSFETs, the 2/3

power law is not accurate. It has been shown recently that the quantized

energies of the quasi-bound states, as functions of Fox, follow a power-law

relationship (even though different from 2/3, as predicted by the Airy function

approximation) even when wave function penetration effect into the gate

dielectric is considered [32].

According to [32],The energy of the quasi-bound states Eij, measured from the

respective band edge, is expressed as

E ..~ :1:( .. (I Fox Iem)>"!
'J 'J MV (2.37)

Here, (ij and Aij are the empirically fitted parameters. According to [32],

(ll = 77 meV, All = 0.61 for electrons and (ll = 88 meV, All = 0.64 for holes

incorporating wave function penetration effect where suffix 11 represents the

r
"
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ground state of lower valley. Here (+) sign is for electrons and (-) sign is for

holes. Fox = -Qs/EOEox, where Qs is the total charge density in Si. EO is the

absolute permittivity and Eox is the relative permittivity of oxide.

Qs can be calculated by Eq. (2.38)

(2.38)

here Cox = EoEox/Tox is the oxide capacitance and Tox is the oxide thickness. Vg is

the gate voltage and Vfb is the flatband voltage. Surface potential (cPs) is a very

important parameter. cPs< considering Quantum Mechanical (QM) correction,

can be calculated as

cPs[qm] = cPs[sc]+ 6cPs. (2.39)

Here cPs[sc] is the semiclassical surface potential neglecting QM effects. cPs!sc] can

be estimated from the well known Pao-Sah equation [33]. 6cPs can be calculated

from the second order solution of an implicit equation of 6cPs as

(2.40)

where'Y = ,j2qEoEs;NA/Cox is the body factor.Here, 6cP;, the first order solution

is

(2.41)

EP1' F~x are the zeroth order terms and Eh, F,;x are the first order terms,

respectively. These are given by

EO-? (IF~xlcm).\l1
11-'11 MV ' (2.42)
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EI _, (I F;x Icm) All (2.43)
11- ,II MV '

F;x = Cox[Vg - Vfb - (<Pslsc] + o<p;)]. (2.45)
EOEox

By the above formulas, a quantum mechanically correct, accurate <P, - Vg

characteristics can be determined

In this work a self-consistent numerical method incorporating wave function

penetration effect (explained in previous section) is used to find the values of

(ij and Aij for first eigen state of the lower valley «(12 and A12) and ground state

of the higher valley «(hI and Ahl). For ground eigen state of the lower valley,

values given in [32] kept unchanged.

For first eigen state of lower valley (12 = 10-0 86eV and Al2

empirical constants.

0.54 are two

For ground eigen st~te of the higher valley, if a constant value of (hI is

considered then while calculating Ehl from Eq. (2.37) does not match well with

the self-consistent numerical solution. It is observed that (hI varies with N A. SO,

an empirical equation of (hI is formulated based on the results obtained from

the self-consistent numerical solution as

where,

d = aNb + c.

(2.46)

(2.47)
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Here, a = 0.04086, b = 0.4087, c = 0.8923 are empirical constants and N =
NA(cm-3)/1017 where NA is the substrate doping density. Fig. 2.3 shows the

filling of the parameter d with data set obtained using self-consistent numerical

solution. Ahl is treated as a constant parameter with value 0.56.

1.00

"0 0.98
..:
OJ-OJ
E 0.96
~
t1l
c-
Ol 0.94c

""-u:
0.92

0.90

o self-consistent numerical
-- fitted with Eq. (2.47)

o 2 4 6 8 10

Substrate doping density, N
A
x10-17 (cm.3)

Fig. 2.3: Filling of parameter d with variation of N A

Energy separation between eigen energy and fermi energy can be calculated

as

(2.48)

Here, Eg is the band gap energy and <Pi = (kT/q) In(NA/Ni) is the quasi fermi

potential where Ni is the intrinsic carrier concentration.

2.4.2 Calculation of f ij

Hakim and Haque [5] presents an efficient way to calculate fij, which can

be applied for MOS devices with very small oxide thicknesses to large oxide

thicknesses, as
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(2.49)

Here, rOij and Lij are fitting parameters. In this work rOij and Lij

are formulated empirically using the self-consistent numerical simulation

presented in the previous section.

For ground eigen state of lower valley

where

and

Here

Pxll = 2.386 X 10-6

Pxl2 = -7.723 x 10-5

Pxl3 = 0.0007175

Pxl4 = -0.001965

PXl5 = 0.002143

Pyll = -0.001066

Pyl2 = 0.03436

Pyl3 = -0.2982

Pyl4 = 0.6519

Pyl5 = 16.38

(2.50)

(2.51)

(2.52)
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Fig. 2.4: Fitting of parameter Xl with variation of NA
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Fig. 2.5: Fitting of parameter Yl with variation of N A

Fig. 2.4 shows the best possible fitting of parameter Xl and Fig. 25 shows

the best possible fitting of parameter Yl for different values of NA and these

empirical fittings hold good for substrate doping densities beyond 1018 cm-3,

which may be considered as practical substrate doping dertsity range.

(\1"'.,
'r'

"i,".
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For first eigen state of lower valley fOl2 = 5.5 X 10-19 J. For ground eigen state

of higher valley

where

and

Here

Pxhl = 9.056 X 10-5

Pxh2 = -0.002857

Pxh3 = 0.02588

Pxh4 = -0.06703

PXh5 = 0.04967

Pyhl = -0.001541

Pyh2 = 0.04952

Pyh3 = -0.4249

Pyh4 = 0.8905

Pyh5 = 15.12

(2.53)

(2.54)

(2.55)

Fig. 2.6 shows the best possible fitting of parameter Xh and Fig. 2.7 shows

the best possible fitting of parameter Yh for different values of N A and these

empirical fittings hold good for substrate doping densities beyond 1018cm -3,

which may be considered as practical substrate doping density range.
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Fig. 2.7: Filling of parameter Yh with variation of N A

The value of Lij is very little sensitive to the change in substrate doping density

and remains. constant for all the cases. Empirically calculated constant value of

Lij is 7.5 X 10-11 m.
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2.4.3 Calculation of DT Gate Current, J

28

Direct Tunneling gate current contributed by the first two eigen states of

the lower valley and lowest eigen state of higher can be almost accurately

approximated as the total DTgate current. Tll, Tl2 and Thl is calculated using

already calculated values of rll, fl2 and fhl. The values of Jll, Jl2 and Jhl

is calculated using Eq. (2.35) from the values of Nll, Nt2, Nhl, Tll, Tl2 and Thl'

Finally DT gate current is calculated by adding the currents that tunnel from

the considered eigen states as

(2.56)

Developed compact model is surface potential (1Js) based i.e. the input

parameter is 1Js' Using the 1Js - Vg characteristics and Eq. (2.56), J - Vg

characteristics can be determined.



Chapter 3

Results and Discussions.

In this chapter various device parameters, calculated from both self-consistent

Schrodinger-Poisson solver and developed compact model, are shown. Results

obtained from these two methods of calculations show very good agreement.

Finally, the direct tunneling gate current, calculated using developed compact

model, is compared with self-consistent numerical solution and experimental

data taken from published sources. To show the robustness of the compact

model a large range of substrate doping densities are considered. For low,

moderate and high doping density, values 5 x 1016 cm -3, 1017 cm -3 and 1018

cm -3 are considered respectively.

3.1 Eigen States, Eij

Ground eigen state of lower valley is calculated using Eq. (2.37) with the same

parameters values proposed in [32). Figs. 3.1,3.2 and 3.3 show ground eigen

state Ell as a function of oxide electric field Fox- calculated by Eq. (2.37) and self-

consistent numerical simulator for three different substrate doping densities.

Results shows a good agreement between these two forms of calculations for all

the cases considering low, moderate and high substrate doping densities.
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Fig. 3.1: Ground Eigen state of lower valley vs. Oxide electric field for MOSFET with
AI/Si02/Si structure. Here, N A = 5 X 1016 cm-3 and Tax = 1.46 nm.
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Fig. 3.2: Ground Eigen state of lower valley vs. Oxide electric field for MOSFET with
AI/Si02/Si structure. Here, NA = 1017 cm-3 and Tax = 1.46 nm.

First eigen state of lower valley is calculated using Eq. (2.37) with empirical

constants (12 = 1O-o.86eV and ),12 = 0.54. Figs. 3.4, 3.5 and 3.6 show first

eigen state EI2 as a function of oxide electric field Fox, calculated by Eq. (2.37)

and self-consistent numerical simulator for low, moderate and high substrate ,"',
",)
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Fig. 3.3: Ground Eigen state of lower valley vs. Oxide electric field for MOSFETwith
AI/Si02/Si structure. Here,NA = 1018 cm-3 and Tox = 1.46nm.

doping densities respectively. Results shows a good agreement between these

two forms of calculations for all the cases.
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Fig. 3.4: First Eigen state of lower valley vs. Oxide electric field for MOSFETwith
AI/Si02/Si structure. Here, NA = 5 X 1016 cm-3 and Tox = 1.46nm.
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Fig. 3.5: First Eigen state of lower valley vs. Oxide electric field for MOSFETwith
AI/Si02/Si structure. Here,NA = 1017 cm-3 and Tox = 1.46nm.
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Fig. 3.6: First Eigen state of lower valley vs. Oxide electric field for MOSFETwith
AI/Si02/Si structure. Here, NA = 1018 cm-3 and Tox = 1.46nm.

Ground eigen state of higher valley is calculated using Eq. (2.37) where

empirical parameter (hI is calculated using Eq. (2.46) and .\hl is an empirical

constant with value 0.56. Figs. 3.7, 3.8 and 3.9 show ground eigen state Ehl as

a function of oxide electric field Fox, calculated by Eq. (2.37) and self-consistent

"'"--> •
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numerical simulator for low, moderate and high substrate doping densities

respectively and results shows a good agreement between these two forms of

calculations for all the cases.
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Fig. 3.7: Ground Eigen state of upper valley vs. Oxide electric field for MOSFET with
Al/Si02lSi structure. Here, NA = 5 x 1016 cm-3 and Tox = 1.46 nm. .
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Fig. 3.8: Ground Eigen state of upper valley vs. Oxide electric field for MOSFET with
AI/Si02/Si structure. Here, NA = 1017 cm-3 and Tox = 1.46 nm.
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Fig. 3.9: Ground Eigen state of upper valley vs. Oxide electric field for MOSFETwith
AI/Si02/Si structure. Here, NA = 1018 crn-3 and Tax = 1.46 nrn.

3.2 Concentration of the Inversion Electrons, Nij

•

Inversion layer electron concentration for the ground eigen state of lower valley,

Nll is calculated from Eq. (2.36). Figs. 3.10,3.11 and 3.12 show inversion layer

electron concentration of ground eigen state of lower valley Nll as a function of

quantum mechanically corrected surface potentialrj;" calculated by Eq. (2.36)

and self-consistent numerical simulator as well for low, moderate and high

substrate doping densities respectively and results show a good agreement

between these two forms of calculations for all the cases. For high substrate

doping densities, two results show little discrepancies in moderate and strong

inversion region. But it does not considerably affect the end result.

f
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Fig. 3.10: Inversion electron concentration of ground state of lower valley vs. surface
potential forMOSFETwith Al/Si02/Si structure. Here, NA = 5 X 1016 cm-3 and Tox =
1.46 nm.
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Fig. 3.11: Inversion electron concentration of ground state of lower valley vs. surface
potential forMOSFETwith Al/Si02/Si structure. Here, NA = 10'7 cm-3 and Tox = 1.46
nm.

Inversion layer electron concentration for the first eigen state of lower valley,

Nl2 is calculated from Eq. (2.36). Figs. 3.13,3.14 and 3.15 show inversion layer

electron concentration of first eigen state of lower valley Nl2 as a function of
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Fig. 3.12: Inversion electron concentration of ground state of lower valley vs. surface
potential for MOSFETwithAI/Si02/Si structure. Here, NA = 1018 cm-3 and Tax = 1.46
nm.
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Fig. 3.13: Inversion electron concentration of first eigen state of lower valley vs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA = 5 X 1016 cm-3 and Tax =
1.46 nm.

quantum mechanically corrected surface potential cP" calculated by Eq. (2.36)

and self-consistent numerical simulator as well for low, moderate and high

substrate doping densities respectively and results show a good agreement
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between these two forms of calculations for all the cases. In this case also,

for high substrate doping densities, two results show little discrepancies in

moderate and strong inversion region and it has very little effect on the end

result i.e. DT gate current.
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Fig.3.14:Inversionelectronconcentrationoffirst eigen state of lower valleyvs. surface
potential forMQSFETwith Al/Si02/Si structure. Here,NA = 1017 crn-3 and Tox = 1.46
nrn.
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Fig. 3.15: Inversion electron concentration of first eigen state of lower val1eyvs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA ; 1018 cm~3 and Tox; 1.46
nm.
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Fig. 3.16: Inversion electron concentration of ground state of upper val1ey vs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA ; 5 X 1016 cm-3 and Tox ;
1.46nm.

Inversion layer electron cOncentration for the ground eigen state of higher

valley, Nhl is calculated from Eq. (2.36). Figs. 3.16,3.17 and 3.18 show inversion

layer electron concentration of ground eigen state of higher valley Nltl as a
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function of quantum mechanically corrected surface potential q,,, calculated by
Eq. (2.36) and self-consistent numerical simulator as well for low, moderate

and high substrate doping densities respectively and results show a good

agreement between these two forms of calculations for all the cases. For high

substrate doping densities, two results show little discrepancies in depletion

and weak inversion region.
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Fig. 3.17: Inversion electron concentration of ground state of upper' valley vs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA = 1017 crn-3 and Tox = 1.46
nrn.
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Fig. 3.18: Inversion electron concentration of ground state of upper valley vs. surface
potential for MOSFETwith Al/Si02/Si structure. Here, NA ~ 1018 cm-3 and Tox ~ 1.46
nm.

3.3 Imaginary Part of Eigen Energy, fij

Imaginary Part of eigen Energy for the ground eigen state of lower valley, fll is

calculated by Eq. (2.49) and with the help of Eq. (2.50)-(2.52). Figs. 3.19, 3.20

and 3.21 show imaginary Part of eigen Energy of ground eigen state of lower

valley fll as a function of quantum mechanically corrected surface potentialcf;"

calculated by developed equations and self-consistent numerical simulator as

well for low, moderate and high substrate doping densities respectively and

results show a good agreement between these two forms 6f calculations for all

the cases.
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Fig. 3.19: Imaginary part of complex ground eigen state of lower valley vs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA = 5 X 1016 cm-3 and Tox =
1.46 nm.
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Fig. 3.20: Imaginary part of complex ground eigen state of lower valley vs. surface
potential for MOSFETwith AI/Si02/Si structure. Here, NA = 1017 cm-3 and Tox = 1.46
nm.

Imaginary Part of eigen Energy for the first eigen state of lower valley, fl2 is

calculated by Eq. (2.49) and using constant fitting parameter f 012 = 5.5 X 10-19 J
and imaginary Part of eigen Energy for the ground eigen state of higher valley,
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Fig. 3.21: Imaginary part of complex ground eigen state of lower valley vs. surface
potential for MOSFETwith Al/Si02/Si structure. Here, NA = 1018 crn-3 and Tox = 1.46
nrn.

fh1 is cakulatedby Eq. (2.49) and with the help of Eqs. (2.53)-(2.55). Figs.

3.22, 3.23 and 3.24 show imaginary Part of eigen Energy of ground eigen state

of higher valley f hI as a function of quantum mechanically corrected surface

potential cP., calculated by Eq. (2.49) and self-consistent numerical simulator

as well for low, moderate and high substrate doping densities respectively and

results show a good agreement between these two forms of calculations for all

the cases.
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Fig. 3.22: Imaginary part of complex ground eigen state of upper valley vs. surface
potential for MOSFET with AI/Si02/Si structure. Here, NA = 5 x 1016 cm-3 and Tox =
1.46 nm.
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Fig. 3.23: Imaginary part of complex ground eigen state of upper valley vs. surface
potentiaifor MOSFETwith AI/Si02/Si structure. Here, NA = 1017 cm-3 and Tox = 1.46
nm.
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Fig. 3.24: Imaginary part of complex ground eigen state of upper valley vs. surface
potential forMOSFETwith AtlSi02 lSi structure. Here, NA = 10'8 cm-3 and Tox = 1.46
nm.

3.4 Direct Tunneling Gate Current, J

Finally, Direct Tunneling Gate Current, J is calculated by adding the currents

that tunnel from the considered eigen states using Eq. (2.56). Figs. 3.25,

3.26 and 3.27 show Direct Tunneling gate current as a function of gate voltage

Vg, calculated by developed' compact model and self-consistent numerical

simulator as well for low, moderate and high substrate doping densities

respectively and results show very good agreement between these two forms

of calculations for all the cases.
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Fig. 3.25:Direct Tunneling gate current vs. Gate voltage forMOSFETwith AI/Si02/Si
structure. Here, NA = 5 X 1016 cm-3 and Tox = 1.46 nm.
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Fig. 3.26:Direct Tunneling gate current vs. Gate voltage for MOSFETwith AI/Si02/Si
. structure. Here, NA = 1017 cm-3 and Tox = 1.46 nm.

Figs. 3.28 and 3.29 show Direct Tunneling gate current as a function of

gate voltage \1;" calculated by developed compact model and self-consistent

numerical simulator for low and high substrate doping densities respectively

with oxide thickness Tox = 1.55 nm. Results show very good agreement
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Fig. 3.27: Direct Tunneling gate current vs. Gate voltage for MOSFETwith AI/Si02/Si
structure. Here, NA = 10'8 crn-3 and Tox = 1.46 nrn.

between these twoforrns of calculations in both figures .
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Fig. 3.28: Direct Tunneling gate current vs. Gate voltage for MOSFETwith AI/SiOz/Si
structure. Here, NA = 8 X 1016 crn-3 and Tox = 1.55 nrn.

Figs. 3.30 and 3.31 compares Direct Tunneling gate current as a function of

gate voltage Vg, calculated by developed compact model and self-consistent
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Fig. 3.29: Direct Tunneling gate current vs. Gate voltage for MOSFETwith AI/Si02/Si
structure. Here, NA = 8 X 1017 cm-3 and Tox = 1.55 nm.

numerical simulator, with experimental data taken from [6] for two different

oxide thickness. Results show very good agreement between these two forms

of calculations and with experimental data as well in both figures.
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Fig. 3.30: Direct Tunneling gate current vs. Gate voltage for MOSFETwith AI/Si02/Si
structure. Here, NA = 5 X 1017 cm-3 and Tox = 1.46 nm.
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Fig. 3.31: Direct Tunneling gate current vs. Gate voltage for MOSFET with Al/SiOz lSi
structure. Here, NA = 5 x 1017 cm-3 and Tox = 1.55 nm.
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Fig. 3.32: Direct Tunneling gate current vs. Gate voltage for MOSFET with Al/SiOz lSi
structure. Here, NA = 5 X 1017 cm -3 and Tox = 1.79 nm.

Tovalidate the robustness of the developed compact model, Figs. 3.32,3.33 and

3.34 compare Direct Tunneling gate current J, as a function of gate voltage Vg,

calculated by developed compact model with experimental data for different

oxide thicknesses and substrate doping densities. In Figs. 3.32 and 3.33
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experimental data is taken from [6] and in Figs. 3.34 experimental data is taken

from [13]. Here also the results show very good agreement with experimental

data in both figures.
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Fig. 3.33: Direct Tunneling gate current vs. Gate voltage for MOSFET with Al/SiOz lSi
structure. Here, NA = 5 X 1017 cm -3 and Tox = 2 nm.
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Fig. 3.34: Direct Tunneling gate current vs. Gate voltage for MOSFET with Al/SiOz/Si
structure. Here, NA = 4.1 X 1017 cm-3 and Tox is taken as 1.78 nm.



Chapter 4

Conclusion

4.1 Summary

An accurate, physics based compact model of direct tunneling gate current is

developed considering quantum mechanical effects. Wave function penetration

effect is also taken into account. The developed model is surface potential

based. A self-consistent numerical simulator considering wave function

penetration effect is also developed for benchmarking purpose. The direct

tunneling gate current, calculated using the developed compact model is

compared with the numerical simulator and experimental data from published

journals.

The existing compact models for direct tunneling gate current utilize Wentzel-

Kramers-Brillouin (WKB) approximation to calculate transparency and use

complex mathematical manipulations. These models do not consider the wave

function penetration effect. The developed compact model is based on a

novel methodology. When electrons tunnel out of a MOS inversion layer,

the system becomes quantized with finite lifetimes of the inversion carriers.

In such a system, the Eigen energies are complex quantities. Knowledge of

the imaginary part of these complex Eigen energies is required to estimate

the lifetimes of these states. The developed compact model exploits the

exponential dependence of r on the thickness of the gate-dielectric layer.

In this work, an empirical equation of r is developed as a function of
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quantum mechanically corrected surface potential considering wave function

penetration effect. Concentration of the inversion electron is determined using

Eigen energy, calculated by modified Airy function approximation considering

wave function penetration effect. And finally the direct tunneling gate current

is calculated. The developed compact model exhibits good agreement with the

self-consistent numerical simulator and published experimental data.

4.2 Suggestion for Future Works

In this work, only the directtunneling (DT) gate current for electron tunneling

is discussed. Similarly analytical expressions for DT gate current as a function

of gate voltage for holes can also be developed. Though the developed model

is expected to simulate the DT gate current for devices with high-k gate

. oxide with reasonable accuracy, incorporation of the dependence of r on the

band offset, !S.Ec should give more accurate results. This will require a three

dimensional curve fitting technique. Moreover, other than conventional single

gate MaS devices, that is used in this work, Sal and double gate MaS devices

are also emerging for integrated chips. This compact model can be extended to

Sal and double gate MaS devices, to simulate DT gate current.
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