
Design of an FPGA Based High Precision Digital Energy and Power
Quality Meter

A thesis submitted to the Department of Electrical and Electronic Engineering (EEE)
of

Bangladesh University of Engineering and Technology (BUET)
in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC
ENGINEERING

by
Mohammad Ashraful Anam

_ ..•....•;=; =:=::::.~
4 ;:; •• ::::;:.'_JI =1:: ::::::::~~
I II II :::::::::1• •• •••••••••====;;;;;
• ••••••••==:::::'U;w'

IlEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
(EEE)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
(BUET)
2008

I1I1111111111111111111111111111111
#107250#

Member

The thesis titled "Design of an FPGA Based Iligh Precision Digital Energy and
Power Quality Meter" suhmitted by Mohammad Ashraful Anam, Roll No,:
0403061151', Session: April 2003 has beell accepted as satisfactory ill partial
fulfillment of tbe reqllirement for the degree of MASTER OF SCIENCE IN
ELECTRICAL AND ELECTRONIC ENGINImRING Oil Octo her 29, 2008.

BOARD OF EXAMINERS

I. Dr.~-R:;t It' ~~irman
Professor (Supervisor)
Department of Electrical and
Electronic Engineering
13UlOT,Dhaka-J 000.
Bangladesh.

2.D=~e:~~o)
Professor and Ilead
Department of Electrical and
Electronic Engineering
BUET, Dhaka-1000,

J~ _
Dr. Kazi Mujibur Rahman
Professor
Department of Eleelrical and
Electronic Engineering
BUET, Dhaka-I()OO.
Ban la Jesh.

-(

4.

Dr. M . sh filqur Raza
Associate Professor
Department of Electrical alld
Electronic Engineering
East West University. Dhaka
Bangladesh

Member
(External)

ii

Declaration

I hereby declare that this thesis or any part of it has not been submitted elsewhere
for the award of any degree or diploma.

Signature of candidate

.fkj{ln~
(Mohammad Ashraful Anam)
(Roll: 040306115P)

Dedication

ToMy Parents

iii

IV

Table of Contents

Dec larati on ii

Ded ication iii

Tab Ie 0 f Contents iV

List of Figures vi i

List of Abbreviations x

Acknow ledgem ent xi

Abstract. xi i

Chapter I Introduction I

1.1 Background and Prescnt State of the Problem 1

1.2 Literature Review 2

I .3 Thes is objecti ve 4

1.4 Organ izat ion 0 f the Thes is 4

Chapter 2 Energy Meters : 6

2.1 Basic Idea about energy Meter 6

2.2 Electrom ech an ica I meters 6

2.3 Electron ic Meters 7

2.4 Standard Construction of an energy meter 8

Chapter 3 The Proposed Meter I0

3.1 The Architecture of the Proposed Meter 10

3.2 Operating Principle 20

3.3 Design issues 21

Chapter 4 Implementation 23

v

4.1 Introd uction 23

4.2 FPGA Structure 23

4.2.1 Logic Blocks 24

4.2.2 Interconnection wires and switches 25

4.3 Design Procedure 26

4.4 Devi ce Sel ect ion 28

4.5 Design Architecture 30

4.5. I Analog to Digital Converter 31

4.6 Data Acqu isition FSM Block 33

4.6. I Interfac ing block.. 33

4.6.2 Storage Block 39

4.7 Soft Processor 4 I

4.8 Calculation Block: 42

4.9 DFTIF FT Block 45

4.9. I Fourier Trans form 45

4.9.2 Discrete Fourier Transform 45

4.9. 3 Fast Fau rier Trans form 47

4.10 Acceleration Unit.. 49

4. IO. I SDRAM 49

4.10.2 Dual Port on-chip RAM 50

4. I0.3 Hardware Mu1tip Iier 5 I

4. I 0.4 RAM Arb itrator 52

4.10.5 Other blocks 53

4. I I Storage Block 54

VI

4.12 Meter Specification 54

Chapter 5 Simulation and Results 59

5.1 Necessary Files and Tools 59

Chapter 6 Measured Data 65

6. I Cal ibration 65

6.2 Measured Form s 66

6.3 Measured Data 67

6.3. I Vol tage Variati on 68

6.3.2 Power Factor response 68

6.3.3 Harmon ic Distort ion 69

6.4 Com pari son 70

Chapter 7 Conclusion and Future Work 71

7.1 Conclusion 71

7.2 Future Work 71

References 73

Appendix A 77

Append ix B 79

Append ix C 82

Appendix D 89

Appendix E 92

Append ix F 94

Append ix G 96

VII

List of Figures

Figure 2.\ Block diagram ofa typical 3 phase energy meter 8

Figure 3.1 Typical voltage divider network 10

Figure 3.2 Typical AC current step down network II

Figure 3.3 Sequential or multiplexed sampling of current and voltage. 11

Figure 3.4 Simultaneous or aligned sampling of voltage and current. 12

Figure 3.5 Nios processor structure implemented in the FPGA 13

Figure 3.6 Simpler implementation using direct interface to ADC 13

Figure 3.7 Modified implementation with interfacing block 14

Figure 3.8 Final implementation with RAM and hardware multiplier 15

Figure 3.9 Cascadable Dedicated multiplier Register Transfer Level (RTL)
Circuit 16

Figure 3.10 Block diagram of proposed meter 16

Figure 3.11 Block diagram of FFT processor of the proposed meter 18

Figure 3.12 Flow diagram of energy calculation of the proposed meter 19

Figure 4.1 General structure of an FGPA 24

Figure 4.2 Typical logic block of an FPGA 25

Figure 4.3 Logic Block Pin Locations for a 4 input LUT 25

Figure 4.4 Switch box interconnect topology in an FPGA 26

Figure 4.5 Typical CAD flow in FPGA design process 27

Figure 4.6 Cyclone II FPGA chip in DE2 board 29

Figure 4.7 Block diagram of the DE2 board used 111 the proposed meter
implementation 30

Figure 4.8 Hardware architecture of the proposed meter consisting of modular
components 30

Figure 4.9 Generation of aliasing signal at lower sampling frequency 31

viii

Figure 4.10 AD73360 in the proposed implementation 32

Figure 4. J 1 State Diagram of the Finite State Machine (FSM) interfacing
module 34

Figure 4.12 16 Bit structure of ADC control word 35

Figure 4.13 Signaling gates for write complete and read complete operation 38

Figure 4.14 Partial RTL of the interfacing block connected to GPIOs 39

Figure 4.15 Storage block of the interfacing module 40

Figure 4.16 Flow diagram of storage block of the interfacing module 4 J

Figure 4.17 AC Signal (Voltage and Current) 44

Figure 4.18 Sampled Voltage and Current Signal 44

Figure 4.19 Block diagram of hardware accelerated FFT calculation 48

Figure 4.20 FFT block synthesized using Verilog 48

Figure 4.21 SDRAM 10 Cell 50

Figure 4.22 PLL required for SDRAM 50

Figure 4.23 Synthesized RAM Block 51

Figure 4.24 Partial section of the on-chip memory 51

Figure 4.25 Hardware Multiplier 52

Figure 4.26 RAM Arbitrator 52

Figure 4.27 Accelerator Subroutine State Machine 53

Figure 4.28 CPU Accelerator Interface Instance 53

Figure 4.29 Block Diagram ofNios and FSM interconnect 57

Figure 4.30 Physical implementation of the entire design 58

Figure 5.1 State O. ADC reset. 60

Figure 5.2 State I. Turn on channel I and 2. 60

Figure 5.3 State 2. Turn on channel 3 and 4. 6 J

Figure 5.4 State 3. Channel 5 and 6 turned on. 61

Figure 5.5 State 4. Setting sampling rate 1kHz.

Figure 5.6 State 5. Setting non inverted mode of ADC.

Figure 5.7 State 6. Start data mode.

Figure 5.8 State 7. Readdata state

Figure 6.1 Input Voltage Data

Figure 6.2 Signal at Channell (voltage channel) of the ADC

Figure 6.3 Sampled voltage data received from ADC

Figure 6.4 Half cycle discrete voltage data as received from ADC

Figure 6.5 Meter Accuracy, voltage variation testing

Figure 6.6 Meter Accuracy, power factor testing

Figure 6.7 THD output from the meter

ix

62

62

63

63

66

66

67

67

68

69

70

Figure 6.8 Performance comparison of proposed meter and an induction meter 70

ASIC

CAD

CT
DFT

DSP

EPROM

FFT

FPGA

HD
HDL

LCD

LE
LUT

GCC

GNU

IEC

PT

RAM

RMS

RTC

SoC

THD

VLSI

List of Abbreviations

Application Specific Integrated Circuit

Computer Aided Design

Current Transformer

Discrete Fourier Transfonn

Digital Signal Processing

Erasable Programmable Read Only Memory

Fast Fourier Transform

Field Programmable Gate Array

Harmonic Distortion

Hardware Description Language

Liquid Crystal Display

Logic Elements

Look Up Table

GNU C Compiler

GNU's Not Unix

International Electrotechnical Commission

Potential Transformer

Random Access Memory

Root Mean Square

Real Time Clock

System on a Chip

Total Harmonic Distortion

Very Large Scale Integration

x

xi

Acknowledgement

I would like to express my profound and sincere gratitude to my supervisor

Dr. A.B.M Harun-ur-Rashid, Professor, Department of Electrical and Electronic

Engineering (EEE), Bangladesh University of Engineering and Technology

(BUET), Dhaka, Bangladesh, whose patient guidance and encouraging attitude

have motivated me much to have this thesis materialized.

J would also like to thank Professor Dr. AminuI Hoque, Head of the

Department of Electrical and Electronic Engineering (EEE), BUET, for providing

me the lab facilities.

I am also grateful to all the members of my family especially to my father

and mother for their cooperation.

Finally, I am grateful to the Almighty for giving me the strength and

courage to complete this thesis.

xii

Abstract

Traditional analog energy metcrs arc unable to copc with the rapidly

changing load and cannot measure energy consumed by high frequency harmonic

contents of the power. Singlc phase digital energy meters havc bccn devcloped for

this purpose but these use separate energy calculation chip and other pcripheral

chips. These make the meter largc in size and costly. Besides, these meters arc

unable to measure the quality of powcr. This thesis prcsents a complete digital

design of a three phasc energy meter in a singlc Ficld Programmable Gate Array

(FPGA) chip with additional capability to measure the quality of the power. The

proposed cncrgy meter measures all thc harmonic contcnts of thc power including

the fundamental component. As a result the accuracy of the meter is vcry high even

in the presence of harmonics in the power grid. Having a single chip FPGA dcsign

makes it cost cffective and at the samc timc achieves additional advantages like

less power consumption, less space and components requirements. This also makes

the entire system programmable, reconfigurable and upgradcablc based on

changing requirements at any point in future even after the meters have been

deployed at user premises. The energy meter is further optimized with fast on-chip

memory and parallel path processing so that it will be able to perform all

calculations including voltage measurement, current measurement, power

measurement, phase difference measurement in real-time. An on-chip Fast Fourier

Transform (1'1'1') processor is also designed to calculate and display the third

harmonic distortion. Design synthesis of the meter is done in Veri log Hardware

Descriptive Language (HDL) and the design tool used is Quartus II. The meter is

implemcnted on Altera DE2 board containing Cyclone II FPGA chip. A 16 bit 6

channel simultaneous sampling AID converter AD73360 is used as the only

external component in the meter. The energy meter operates at 3.3 V and draws its

power from the power line. The entire design required 8317 logic elements, 3493

dedicated logic register, 32 embedded multiplier, 4 digital PLL, 388 K memory

units and J MB SDRAM memory. Finally the performance of the meter is

compared with a traditional analog meter. While extreme precision was not

achieved duc to lack of external component precision, the meter was able to

achieve 0.2 class.

Chapter 1

Introduction

1.1 Background and Present State of the Problem

Electromechanical induction meters whose operation is based on counting

the rotation of a disk, has been the predominant energy measurement method for

decades. These analog meters are unable to perform properly with the changing

loads of today which comprise of non sinusoidal inputs. However recent

advancement on measurement technology and very large scale integration (VLSI)

technologies has lead smaller smart meters that are able to perform better than

these conventional analog meters. These digital energy meters use a

microcontroller for control purpose, a separatc energy calculation chip for energy

measurements and other peripheral chips. These make the meter large in size and

costly. Again, the calculations of RMS voltage, current, power and energy require

a number of multiplication, addition and division operations. Current generation of

microcontroller based design is able to perform only a limited number of these

mathematical operations per second. As a result these energy meters are used

mostly for single phase energy measurement. Again, additional features like power

quality analysis require a lot of computational power that cannot be performed

with these types of designs. To implement signal analysis features as well as

energy measurement features within a single hardware implementation, it is

required to reduce computational time. The computation time ean be minimized by

using hardware multipliers that requires less clock cycles than a microcontroller

implementation. For signal analysis all sine and cosine calculations can be pre-

calculated which reduces calculations significantly. Moreover the whole system

has to be reduced to a single chip in order to make the system cost effective.

2

1.2 Literature Review

The earliest energy measurement technique applied to meters is the

magnetie flux based single phase induction meters where a disk rotates based on

the intensity of the flux produced by voltage and current [1,2]. This technique is

capable of providing energy measurement of considerable accuracy but only for

sinusoidal voltage and currents. A comparative analysis of the performances of

both a traditional induction meter and various types of other commercial meters in

the presence of harmonic distortion reveals this seenario [3]. In accordance with

current standards, these meters are designed to operate in sinusoidal conditions and

their performance is not tested gencrally in the presence of harmonic distortion [4-

7]. However, with the increase of pollution levcls in power systems, the same

meters may be used even in the presence of distorted voltages and/or currents; in

such cases, their accuracy is very different from the nominal conditions, and the

various mcters may lead to different measurements of energy for the same load

conditions. Electric energy meters have been always designed to account energy

under sinusoidal conditions and therefore no uncertainty specification was

provided outside these conditions. This was considered acceptable when voltage

and current distortion levels were low and the old, well known induction meters

were used. In fact, under these conditions, the measurement errors caused by

distortion did not, generally, penalize the customers [8]. The present situation is,

however, quite different: distortion is not negligible any longer, especially in low

voltage systems, and the modern electronic energy meters can be much more

sensitive to distortion [9-16] than the induction ones, depending on the

implemented measurement algorithm.

To remedy some of the drawbacks inherent in analog meters, digital meters

were introduced. These meters operate by continuously measuring the

instantaneous voltage and current. The voltage and current is constantly sampled at

a certain rate [17,18]. The voltage is dropped down to an acceptablc level through

a potential transformer and current usually through a current transformer.

,
•

3

Multiplying thc two instantancous values gIve instantaneous electrical power

which is then integratcd against time to give energy in kilowatts.

The digital meter usually comprises of integrated single board consisting of

hardware for automated measurement and billing system for public utilities [19-

21]. Newcr systems might have a combination of hardware and softwarc structures.

The hardware structure consists of a digital energy mcter module which is

interfaced to a single microcontrollcr chip. The software structure runs thc entire

proccss via the microcontroller input/output ports. This type of meter does not

contain any rotating parts, and thc energy consumption is usually shown in a four-

digit display. Besides that, energy consumption is stored in thc microcontroller's

EPROM or Flash memory. Early implemcntation of these kinds of meter has about

98% accuracy. Recent implementation has improved its accuracy to near 100% for

sinusoidal loads.

Nowadays, with the increasing diffusion of powcr electronics, the typical

characteristics of supply networks are far from being sinusoidal. Oriesen, J., Van

Craencnbroeck, T., Van Oommelen, O. has shown that there is considerable

measurement error of energy meters operating undcr harmonic distortion [23].

Their generated curves show that the third harmonic componcnt has the highest

magnitude but the total summation of thc other higher harmonics also plays a

considerable role. Other follow up research confirm this situation [24-25].

Luo, Xu and Zheng proposed a new calculation algorithm bascd on

harmonic load that is able to reduce error duc to non sinusoidal voltage and

currcnt. Their implementation requires a DSP and discrete Fourier transform

(OFT) [26]. This is further improved by Ovidiu and Gabriel [27] whose solution

using microcontrollers and DSP facilitatcs the transition from widely-used

mechanical mcters that yield limited data, to elcctronic mcters that provide

extensive information on customcr energy usage. Simultaneous sampling of both

voltage channel and current arc performed and cnergy computations consist mainly

of multiplication and addition operations, easily be handled by this DSP. To

increase accuracy, high sampling rate is used [28-29].

4

A built in switching regulator with microcontroller can be modified as an

energy meter [30]. For many systems that have a built-in switching regulator,

adding a single wire between the regulator and the microcontroller enables real-

time energy metering by counting the switching cycles of the regulator.

Furthermore these regulators can be built within an FrGA [31-33]. But even

though the relationship between load current and switching frequency is quite

linear and this simple design can be applied to a variety of regulators, this can

achieve a maximum accuracy of class 1.

1.3 Thesis objective

The objectives of this thesis are to develop a single chip three phase digital

energy meter which is capable of measuring the true energy consumed by the load

including the harmonic contents of the power. The meter should also measure the

quality of the power by calculating and displaying the harmonic distortion of the

power. The entire system should be programmable, reconfigurable and

upgradeable based on changing requirements at any point in future even after the

meter have been deployed at user premises. In order to implement the whole

system in a single chip, algorithm and designs are devised that reduce the

calculation time required for energy calculation by off loading real time

multiplications to dedicated multiplier blocks and by storing the pre-calculated sine

and cosine values in a ROM table. Enhancements to increase accuracy with all

types of sinusoidal and non sinusoidal inputs are also devised.

1.4 Organization of the Thesis

Chapter two describes the basic electro mechanical energy meter. It also

introduces the newer digital energy meters and its components. Chapter three

analyzes the hardware architccture based on the target goal. Chapter four provides

the implementation of the design over a DE2 FrGA board with Cyclone II

processor. Chapter live provides a FrGA simulation of the proposed meter

5

scheme. Timing analysis is also shown in this chapter. Chapter six compares the

implementation with a standard induction meter. Finally, chapter seven concludes

the thesis with some recommendations for future research.

6

Chapter 2

Energy Meters

2.1 Basic Idea about energy Meter

An electric energy meter is a device that measures the amount of electrical

energy supplied to a residence or business. The most common type is properly

known as a kilowatt-hour meter or a joule meter. Utility companies record the

power consumption values measured by these meters and charge the users

accordingly. Modern electricity meters operate by continuously measuring the

instantaneous voltage (volts) and current (amperes) and finding the product of

these to calculate instantaneous electrical power (watts) which is then integrated

over time to give energy used Uoules, kilowall-hours etc). Energy meters fall into

two basic categories, electromechanical and electronic.

2.2 Electromechanical metel's

The most common type of electricity meter IS the electromechanical

induction meter. This technology has been used for decades to calculate energy

consumption by the utility companies. The electromechanical induction meter

operates by counting the revolutions of an aluminium disc which is made to rotate

at a speed proportional to power. The number of revolutions is thus proportional to

the energy usage. The meter itself also consumes a small amount of power,

typically around two walls.

The metallic disc is acted upon by two coils. One coil produces a magnetic

flux in proportion to the voltage and the other produces a magnetic flux in

proportion to the current. This produces a circulating flow of electrons, or a current

within the disk known as eddy current. The effect of this is a force exerted on the

disc in proportion to the product of the instantaneous current and voltage. This

7

causes the disc to rotate at a speed proportional to the power being used. A

permanent magnet exerts an opposing foree proportional to the speed of rotation of

the disc and this force acts as a brake which causes the disc to stop spinning when

power stops being drawn rather than allowing it to spin faster and faster.

The aluminium disc is supported by a spindle which has a worm gear

driving a counter register. The register is a series of dials which records the amount

of energy used. The dials may be of the cyclometer type, an odometer-like display

that is easy to read where for each dial a single digit is shown through a window in

the face of the meter, or of the pointer type where a pointer indicates each digit.

The amount of energy represented by one revolution of the disc is denoted by watt-

hours per revolution.

2.3 Electronic Meters

Electronic meters can be analog or digital but most are a combination ofthe

two and use mostly solid state devices. These meters operate by continuously

measuring the instantaneous voltage and current usually through a potential

transformer (PT) and current transformer (CT) respectively. Calculating the

product of these two give instantaneous electrical power which is then integrated

against time to give energy in kilowatt-hour. Most electronic meters use a current

transformcr as transducer to measure the current. This feature enables the

placement of the CT even outside the meter. The mcter can be located remotely

from the main current-carrying conductors, which is a particular advantage in

large-power installations. It is also possible to use remote current transformers with

electromechanical meters though this is less common. In addition to measuring

electricity used, solid state meters can also record other parameters of the load and

supply such as maximum demand, power factor and reactive power used etc. They

can also include electronic clock mechanisms to compute a value, rather than an

amount, of electricity consumed, with the pricing varying by the time of day, day

of week, and season.

8

2.4 Standard Construction of an energy meter

Modern meters typically consist of power supply, transformers, a metering

engine, a processing and communication engine i.e a microcontroller, other add-on

modules such as RTC, LCD display and communication ports/modules. A block

diagram of a typical meter [34] is shown in figure 2.1.

4 Quadran! Metrotogy
Processor for Active and
Reactive PowerlEnergy •••.•
Measurement

CONTROL PROCESSOR
• Data Processing
• Display
• Memory Ivlanagement
• Serial

Comm.micati on

1

I Memcry I
1 RTCe O,ti,,1 port

IB BIB B B

Potential DiVld.,- (P1)
& Power SupplYlMlli
Protecb. on and filters

I
Current
Transformer

1

I
Current

TransfOlme:r
2

Current
Transfo:rrne:r

3

1
I

Current
Transformer

4

1

TERMINAL

R I Phase I

n. Ll

~
:1Nl
V ~u~~,y

BLOCK

B Phase I Neutral
RS232
Port

JLil....
JL2L
-
L3 ~

=
N

L' ~u

Figure 2.1 Block diagram of a typical 3 phase euergy meter

9

A short description of the different ports of an energy meter is givcn below:

Power supply: This part is responsible for powering the meter itself. Usually it is

derived from the supply line. Some meters have backup battery so that the meter

can operate even when there is no powcr in the supply lines.

Transformers: Usually these are step down transformers that produce a lower

current and voltage suitable for the electronic part to sense and measure. Potential

transformers (PT) are required to step down the voltage and current transformer

(CT) to produce a voltage proportional to the current through the transformer.

Metering Engiue: The metering engine takes voltage and current as inputs and has

a voltage reference, samplers and quantizers followed by an ADC section to yield

the digitized equivalents of all the inputs. These inputs are then processed using a

Digital Signal Processor (DSP) to calculate the various metering parametcrs such

as power, energy etc.

Processing and communication section: This section calculates various derived

quantities from the digital values generated by the metering engine. It also

manages communication using various protocols and interfaces with other add.on

modules connected as slaves to it like PC interface module or bluetoolh module to

transmit data.

RTC and other add-on modules: These are attached as slaves to the processing

and communication section for various input/output functions. On a modern meter

most, if not all of this will be implemented inside the microprocessor, such as the

Real Time Clock (RTC), LCD controller and memory.

10

Chapter 3

The Proposed Meter

3.1 The Architecture of the Proposed Meter

Digital implementation of any system that operates on analog signal

requires that the analog signals involved be sampled and digitized. In case of a

three phase energy meter the signals involved are the three phases of voltage and

three phases of current. These voltage and current signals need to be converted into

their digital equivalent before any operation can be performed on them. But the

voltage and current signals are too high to be measured directly, so they need to be

stepped down to a lower values that an analog to digital converter (ADC) is able to

measure. To step down voltage, a simple voltage divider network (Pigure 3.1) is

used.

Input voltage ., .3
To samplecircuit-

Full peak to peak voltage .2 c Stepped down voltage

Figure 3.1 Typical voltage divider network

Using simple divider network instead of any special transducer has the

advantage that these resistors do not exhibit any non linear characteristics and

hence do not introduce any error in the stepped down signal which is inherent in

any PT. The signal is also passed through a low pass filter.

Current inputs also require stepping down to a level that can be sampled by

the analog to digital converter. The current signal also needs to be converted to

voltage signal since it is easier to measure voltage values. A high accuracy current

transformer with typical turn ration of 1000: I is used to reduce the current and then

11

this current is passed through a resistor of low resistance. This produces a voltage

across the resistor which is proportional to the input current. This voltage is

sampled by the ADC to measure the input current (Figure 3.2).

To sample circuit

Input current R

Figure 3.2 TYllical AC current stell down network

,
7:00:01.000 PM
13/0412008

-I -I
7:00:00.000 PM
13/04/2008

u 0.25--g
'a 0-
~ -0.25-

.0.5-

-0.75-

0.75-

0.5-

After both voltage and current is stepped down and converted to a voltage

that can be directly sampled by the analog to digital converter (ADC), these inputs

are fed into a high resolution 16 bit six channel ADC. The ADC used in this design

is AD73360 which is a six-input channel analog front-end processor featuring six

16-bit AID conversion channels each of which provides 77 dB SNR over a dc to 4

kHz signal bandwidth. Each channel also features a programmable input gain

amplifier (PGA) with gain settings in eight stages between 0 dB to 38 dB. The

AD73360 is particularly suitable for our purpose as each channel samples

synchronously, ensuring that there is no (phase) delay between the conversions.

ella,..,.1 1 .,

SEQUENTIAL SAMPLING ella,..,.12 ~

Time

Figure 3.3 SC<luential or multilllexed samilling of current and voltage.

12

Figure 3.3 shows a typical sampled signal that is sequential and not simultaneously

sampled. If we considcr channell as voltage signal and channel2 as current signal,

then we can see that thcre is a phase difference between the sampled current and

voltage channels. If we use this value to calculate instantaneous power by

multiplying the sampled current and voltage value, this will give the wrong power

calculation as the voltage and current are not of the exact same instant.

SIMULTANEOUS SAMPLING

0.75-

0.5-

•• 0.25-
"5

"" 0-

~ '0.25-

-0.5-

,0.75-

-1 -.
7:00:00.000 PM
13/0412008

Tome

I
):00:01.000 PM
13/04/2008

Figure 3.4 Simultaneous or aligned sampling of voltage and eurrent.

This problem is solved by simultaneous or aligned sampling (Figure 3.4) of

all 6 channels which givcs the value of all 6 channels in the exact same moment.

Other useful features of the ADC are an on-chip reference voltage, programmable

sampling rates, a serial communication port and a signal conditioner [35).

The sampled data of the ADC needs to be collected and processed to

calculate RMS voltage, current, power and energy. The ADC has a serial port

(SPORT) with predefined signal structure to communicate from external sources.

Using this signaling scheme, the ADC can be programmed to operate based on our

requirement. Sampled data can also be collected Ii-om the ADC using this signaling

scheme. To interface with the ADC and transfer data from it, a Nios II

microprocessor is implemented in the FPGA chip (Figure 3.5) which also

calculates power and energy from this data.

INIOS II processorl

t
Parallel
Interface

t
Avalon ™ Switch Fabric

IRA "'II Ethernet B IFlash IUART
Figure 3.5 Nios processor structure implemeuted in the FI'GA

13

The Nios II processor has parallel [0 pins that can be used directly to

interface with AD73360 ADC. ADC signaling scheme is coded in the

microprocessor using assembly or ANS[C code. [0 pins is evaluated like memory

and interfaced with the ADC. [n this method, the processor is responsible for

constantly polling the [0 lines and collect the data from the ADC. When each set

of data is received, it is saved in the separate voltage and current buffer memory.

When ten cycle of data is collected, the processor calculates the RMS values of

signal as well as the energy. This scheme has the benefit that it is simpler to

implement and requires very few components. Also any changes required, can be

made virtually instantaneously as no additional hardware is synthesized within the

FPGA except the Nios processor. The new firmware can be directly programmed

into the Nios processor. The block diagram of this simplified interface is shown in

Figure 3.6.

10 ports

ADC k ~
Nios

Processor

Figure 3.6 Simpler implementation using direct interface to ADC

14

Ilowcver, a disadvantagc of this simpler implementation is that when

sampling rate is increased, the processor becomes too busy to perform all the

required calculations within the short duration it gcts. In this constant polling

method, about 50% of the CPU cycle is used to interfacc with the ADC. This

Icaves less time for the processor to perform all the required calculations. This

situation becomes worse when sampling frequency is increased or sample length is

increased from ten to a twcnty or more.

A revision of the structure of data collection from the ADC is necessary to

solve this problem. A scparate digital block is introduced in the system that is

responsible for interfacing with the ADC. This block is dcsigned digitally and

synthesized within the FPGA block. The utility of this block is twofold:

• Interface with the ADC directly freeing up resource of the

microprocessor

• Intcrrupt the processor only when one sct of all six channel data has

been collected.

Interfacing
10 ports and 10 ports

ADC < > Data < > Nios
collection Processor

Block

Figurc 3.7 Modified implementation with interfacing block

Figure 3.7 shows the block diagram of the modified implcmentation to overcome

the limitation of the initial dcsign. Since thc interfacing block is responsible for

interfacing with thc ADC, this trees up the processor for more intensive operations

like calculation of nns current, rms voltage and energy. Using this scheme the

processor overhead is reduced to about 12% for data collection from the

interfacing block. This implementation has been tested to operator up to IkHz

sampling rate, 50 cycle frame data and for single phase energy measurement. This

modcl also fails whcn all three phase (6 channel) data are processed and when

15

additional functions like signal processing is introduced. To remedy this situation

the following performance bottlenecks are identified:

• Critical calculation like multiplying is performed by the microprocessor

which takes most of the time

• Processor is unable to perform parallel multiplication operation

• The processor need not be interrupted at every set of data

ADC

10 ports
Interfacing

and
Data

collection
Block

10 ports

RAM

Nios
Processor

Hardware
Multiplier

Figure 3.8 Final implementation with RAM and hardware multiplier

To remedy this situation, a Random Access Memory (RAM) block is added to the

design. Instead of interrupting the processor whenever one set (6 samples) of data

is available, the processor is only interrupted when a complete set of data for one

second is available (Figure 3.8). Since the ADC is constantly supplying data, for a

sampling frequency of IkHz, there will be 6000 samples of data in one second for

all six channels. This sampled data is saved in RAM instead of interrupting the

processor 6000 times per second. The design consists of two RAM blocks each

capable of storing all the sampled data of one second duration. When a complete

set of data has been collected and saved in the RAM blocks, the interfacing block

interrupts the processor signaling it that data is ready while continuing to save

incoming data from the ADC to the other RAM block. This makes sure that none

of the sampled data is lost and increases measurement accuracy. The Nios

processor when interrupted, performs calculation over the sampled data in RAM

but this time the processor has a entire second to perform all the calculations and

16

during this time it will not be interrupted for any other operation. Instead of

processing the data sequentially as in traditional microprocessor, the proposed

implementation uses hardware acceleration to speed up calculation. It achieves this

by using the dedicated multipliers (Figure 3.9) in parallel and moving data directly

from RAM instead of through the processor.

A A""'=,.....,f-------jf---<""'=
DataOut [17... 0]

DataA [8 ... 0]

DataB [8 ... 0]
DataA [17... 0]

DataOul

l- ----' r 17 ... 01

Figure 3.9 Cascadable Dedicated multiplier Register Transfer Level (RTL)

Circuit

The block diagram of the overall system is shown in Figure 3.10 on the next page.

V~"g.&C"~ CT/PT ADC73360
Input (3 phay (6 Channel)

Flash

IA ,
tnl6rrvpl
Challnol

NIOS2
I~ ~

ADCControland
Processor Data HoldFSM

Data
Ctlflnl1el

Jl
1'1 V

FFT LCD DalaProcessor Display Memory

FPGA
Figure 3.10 Block diagram of proposed meter

17

The design (Figure 3.10) consists of a currcnt transformer (CT) and voltage

divider block for each phase, low-pass filter, analog to digital converter (ADC),

control unit, Fast Fourier Transform (FFT) unit and LCD display. The three-phase

AC current and voltage input signal goes through the CTs and divider network

respectively and is converted to OV-I V signal. This is then passed through a low

pass filter and fed into thc 16 bit six channel ADC (AD73360).

A control block is implemented which controls the ADC and latches the

data for the Nios processor. This block also controls AID sampling frequency,

signal start and stop and the memory interface. The Nios II is a soft processor from

Altera that is implemented over an FPGA. It is a 32-bit RISC soft-core architecture

and can be implemented entirely in the logic and memory blocks of an Altera

FPGA. One of the major advantages of the Nios II processor is that a designer can

specify and generate a custom Nios II core specially designed for his specific

requirements and application. A system designer can even extend the Nios II

processor's functionality by defining custom instructions, custom peripherals or

memory management units. The soft Nios processor implemented in our FPGA

processes the data received from the ADC and outputs useful data to the LCD

block like voltage, current and energy. The Nios processor also communicates and

supplies data to the FFT block. Block diagram of the FFT unit is show in Figure

3. I I. The FFT block processes the digital data from the Nios and performs FFT

transform operation. This final processed data is also relayed back to the Nios

processor and displayed on the LCD unit. The overall process is shown in the flow

diagram of figure 3.12.

FFT Control
Logic

=
"'o
Z

"i
FFT Output

FFT Processor
Core

18

FFT Processor Block

Data Memory

Figure 3.11 Block diagram of FFT processor of the proposed meter

Initialize ADC,
Control Unit, Clock

Read Data Values

No Identity Phase n

19

Is Phase(n)
buffer full? No

Y s

Calculate FFT of
sa.mpled data

Calculate rms voltage(n)
and current(n) and store

data in rms(n) buffer

Yes

Save data to FFT
Buffer

Yes

Calculate
Instantaneous

Power

Calculate Energy

Yes
N

Output to LCD and
reset all buffers

Figure 3.12 Flow diagram of energy calculation of the proposed meter

20

3.2 Operating Principle

The operating principle of the meter is the same as any other meter.

Voltage and currents are simultaneously sampled at a certain interval. The sampled

data is then digitized giving discrete values for each sample of voltage or current.

The instantaneous power for discrete signal is defined as:

Instantaneous Power = V,I,

Average power is given by

~:tVI
N 11=1 ' I

where N is the number of sample over one period of the wave and V; and I; are

voltage and current respectively of a phase at instant i.

Instantaneous energy = V,I,!"t

(3.1)

(3.2)

(3.3)

Where "'t is the sampling interval. Total energy over a period is equal to

summation of instantaneous energy over that period.

N

Energy = L V,I, "'t
11=1

(3.4)

The rms values of the voltage and eurrent are derived from calculating the square

root of the mean value of the square of input voltages and currents respectively

over one period of the wave. The equation ofrms value of voltage and current with

respect of sampled discrete signals, arc given by

N I
I - ""-xl'
rl/1,\' ~N 11

(3.5)

(3.6)

21

After all the required values from each set of sampled voltage and current

has been calculated, one cycle will be extracted from each of the sampled data and

its Fourier transform (FFT) performed to determine the power quality.

To measure the wave shape distortion, we can use the quantity of the Total

Harmonic Distortion, THD (Eqn. 3.7). THD is the ratio of the power of harmonic

components to the power of fundamental frequency. To measure THD of currcnt

waveform, we can just find the sum of the rms of the harmonic components, In and

the rms of the fundamental frequency, I,.

THD=

N

2.J,~
-xIOO
I'I

(3.7)

where In is the rms value of the nth harmonic current. Most of the harmonic

problem is caused by the third component since the third harmonic is the second

highest encrgy from the fundamental component. We can calculate third harmonic

distortion (HD) of current waveform using the following equation:

3.3 Design issues

I
HD = --.Lx 100

I,
(3.8)

A complete digital implcmentation of such a large and complex system

rcquircs a lot of attention and planning. It is sometimes a lot more complex to

design a digital filter than an analog filter. Since our entire system is implemented

over a single FPGA, every component, system, filter, block, signal processor has to

be implemented and realized digitally. Another major issue is timing requirements.

The system has to be able to sample data in real time, calculate voltage and current

rms values, instantaneous power and complex FFT operation on sampled data all

within a very short time. Meeting this timing requirement was a major issue. Also

the largest source of long-term errors in the meter is drift in the preamp, followed

by the precision of the voltage reference. Both of these vary with temperature as

22

well, and vary wildly because most meters are outdoors. Characterizing and

compensating ror these is a major part or meter design.

23

Chapter 4

1mplementation

4.1 Introduction

Design of VLSI (Very Large Scale Integration) circuits at register level is

vcry timc consuming and costly. This method is rarely implemented nowadays

specially in designing prototypes. To speed up design process and add versatility

and portability to designs, high levels languages are bcing introduced in the

hardware dcsign processes. Veri log is one such hardware descriptive languages

(I-IOL) that enables the design of modular process independent VLSI circuits.

Design process like platform independence and fitting can also be automated using

this methodology. This chaptcr prcsents the rcalization of the meter in a FPGA

chip using Verilog.

4.2 FPGA Structure

FPGAs contain programmable logic components called "logic blocks", and

a hierarchy of rcconfigurable interconnects that allow the blocks to bc "wircd

together", somewhat likc a one-chip programmable breadboard. Logic blocks can

bc configurcd to pcrform complex combinational functions, or merely simplc logic

gates like AND and XOR. In most FPGAs, the logic blocks also include memory

clements, which may be simple flip-flops or more complete blocks of memory. An

FPGA contains three main types of resource: logic blocks, I/O blocks for

connecting thc pins of the package and interconnection wires and switchcs. The

general structure of an FPGA is shown in Figure 4.1. Field Programmable Gate

Array (FPGA) is named so because its architecture rescmbles thc gate array, but it

can bc programmed by the customer to perform a specific function. With an

FPGA, the array consists of logic blocks that contain memories used to implement

logic, multiplexers to select signal sources, and flip-flops. Becausc thcse arc

24

programmed by the user, all the routing is placed on the chip. This is done by

placing metal traces all over the chip but keeping them unconnected. At junctions

between unconnected traces are transistors that can be turned on by setting a bit in

the chip, thus creating a slow but definite connection between the traces.

Logic Btock
Interconnect ion
Resources

Figure 4.1 General structure of an FGPA

4.2.1 Logic Blocks

1/0 Cell

Each logic blocks in an FPGA has a limited number of inputs and one

output. A very common type of block is the look up table (LUT) which contains

storage cells. A classic FPGA logic block consists of a 4-input lookup table (LUT),

and a flip-flop, as shown in Figure 4.2 [36]. Recently manufacturers have started

moving to 6-input LUTs in their high performance parts. There is only one output,

which can be either the registered or the unregistered LUT output. The logic block

has four inputs for the LUT and a clock input. Since clock signals are normally

routed via special-purpose dedicated routing networks in commercial FPGAs, they

and other signals are separately managed.

V1....,
:l
0-c

4-lnput
Look-Up
Table

D Flio-
Clock Flop

25

Figure 4.2 Typical logic block of an FPGA

The storage cells in LUTs arc volatile and they lose their content as soon as

power is removed. For this reason the FPGA has to be programmed every time it is

powered on. To make the programming permanent, usually an erasable

programmable read only memory (EPROM) or Flash memory is used with the

FPGA. The storage cell values are loaded automatically at each power up into the

FPGA. The logic cell fan out of pins of Figure 4.2 is shown in Figure 4.3.

in3

in2
in4

out

inl out

Figure 4.3 Logic Block Pin Locations for a 4 input LUT

4.2.2 Interconnection wires ond switches

Each input in an FPGA is accessible from one side of the logic block, while

the output pin can connect to routing wires in both the channel to the right and the

channel below the logic block. Each logic block output pin can connect to any of

the wiring segments in the channels adjacent to it. This interconnection between

wires is done by programmable switches.

Generally, the FPGA routing is unsegmented so that each wiring segment

spans only one logic block before it terminates in a switch box. By turning on

some of the programmable switches within a switch box, longer paths can be

26

constructed. For higher speed interconnect, some FPGA architectures use longer

routing lines that span multiple logic blocks.

Whenever a vertical and a horizontal channel intersect, there is a switch

box. In this architecture, when a wire enters a switch box, there are three

programmable switches that allow it to connect to three other wires in adjacent

channel segments. The pattern, or topology, of switches used in this architecture is

the planar or domain-based switch box topology. Figure 4.4 illustrates the

connections in a switch box.

,1: / / /
-' - - -

r, ,
rr Wire

Se'Jrnenl

Figure 4.4 Switch box interconnect topology in an FPGA

4.3 Design Procedure

In any system designed by Veri log or any other HDL, the system is

partitioned into smaller unique components that perform a specific task. These

individual components are then designed one by one by Verilog code. After

designing all the components, the interconnection between these components are

defined. This effectively combines these components into a larger complex system

or a single large circuit. Computer Aided Design (CAD) software makes it easy to

implement a desired logic circuit by using a programmable logic device, such as a

27

field-programmable gate array (FPGA) chip. A typical FPGA CAD now is shown

in Figurc 4.5.

Design Entry

Synthesis

Functional Simulation

No

No

Yes

I Fitting I
--l--
Timing Analysis and Simulation

Programming and Configuration

Figure 4.5 Typical CAD now in FI'GA design proccss

Thc computer aided design now of Figure 4.5 involves thc following steps:

28

• Design Entry: The desired circuit is specified either by means of a

schematic diagram, or by using a hardware description language, such as

Yerilog or YHDL.

• Synthesis: The entered design is synthesized into a circuit that consists of

the logic elements (LEs) provided in the FPGA chip.

• Functional Simulation: The synthesized circuit is tested to verify its

functional correctness; this simulation does not take into account any

timing issues.

• Fitting: The CAD Fitter tool determines the placement of the LEs defined

in the netlist into the LEs in an actual FPGA chip; it also chooses routing

wires in the chip to make the required connections between specific LEs.

• Timing Analysis: Propagation delays along the various paths in the fitted

circuit are analyzed to provide an indication of the expected performance of

the circuit.

• Timing Simulation: The fitted circuit is tested to verify both its functional

correctness and timing.

• Programming and Configuration: Finally the designed circuit is

implemented in a physical FPGA chip by programming the configuration

switches that configure the LEs and establish the required wiring

connections.

4.4 Device Selection

The DE2 development board which comes with Cyclone II EP2C35F672C6

FPGA is used in the development of the prototype. Yerilog HDL was used for all

synthesis using supplied Altera Quartus@ II software. The Cyclone II chip

contains:

• 33,216 LEs

• 105 M4K RAM blocks

• 483,840 total RAM bits

• 70s embedded multipliers

29

• 4 PLLs

• 475 user I/O pins

• FineLine BGA 672-pin package

The meter implementation required:

• 8,317 Logic Elements (LEs);

• 3,493 Dedicated logic registers

• 32 Embedded multiplier

• 365 1/0 Pins;

• 4 Digital PLLs.

• 388,224 Memory Bits

• I-MB SDRAM Memory

Figure 4.6 shows the Cyclone II FPGA chip located in the DE2 board used to

implement this meter.

Figure 4.6 Cyclone II FPGA chip in DE2 board

30

The block diagram of the DE2 board is shown in Figure 4.7.

150 Mhzl 27 Mhzl Elt1n I
+

I USB 2.0 Host/Device I 16.bilAudloCODEC I
110/100 Ethernet PhY1MAClllll ~ VGA lO.bit Video OAe

SO Card TV Decoder

IrDATranseelv,r
Cyclone II

UserGreen lEOsla)FPGAI Flash (1 Mbylel I~ ~ 2C35 User Red l EDs (18)

SDRAM (8 Mbylts) 11612 lCD Module I
SRAM (512 Kbytul I PS2 & RS.232 Ports I
7.Segmenl Display (81 Toggle Switches (181

Elpanslon Headers 1'21 Pushbullon Swllchu[4)

Figure 4.7 Block diagram of the DE2 board used in the proposed meter

implementation

4.5 Design Architecture

The hardware architecture of the proposed meter is shown in Figure 4.8.
Modular based design approach has been chosen to reduce complexity of the
system. The main components are the ADC, the interfacing block (or FSM), the
processor and the acceleration block consisting of RAM, hardware multiplier and
the processor.

ADC
10 ports

Interfacing
and
Data

collection
Block

10 ports

RAM

Nios
Processor

Hardware
Multiplier

Figure 4.8 Hardware architecture of the proposed meter consisting of

modular components

31

4.5./ AIIII/Og III Digillli CO/H'erler

A fast and efficient analog to digital converter (ADC) is required for a

system like this. Choosing an ADC that operates with simultaneous sampling

rather than sequential makes sure that there is no phase difference between each

channel which is absolutely necessary for proper power calculation. The ADC is

operated at sampling frequency of IkHz which is twenty times the frequency of the

input signal (50Hz). Such high sampling rate reduces aliasing errors. Figure 4.9

shows how aliased signal can be created with lower sampling rate than the required

Nyquist rate. In Figure 4.9-A, the reconstructed waveform appears as an alias of

DC, in Figure B, the sampled signal appears as a triangle waveform even though it

is not. In Figure C, sampling rate is at 41'/3 which creates alias waveform of

incorrect frequency and shape. Our implementation avoids this situation by

sampling ten times the minimum required rate.

1\/
• • •

A
~

Sampled alf

f\ \!\) B /\~
Sampled at2f

M • •
•

/ !
• ./../(c "'..,....

~ "

J • ../r~'.Sampled at 4ft 3
~~',""r

• •
Figurc 4.9 Generation of aliasing signal at lower sampling frequency

Considering these factors the ADC chosen is Analog Devices ADC73360

which has six 16-bit AID conversion channels each of which provide 77 dB signal-

to noise ratio over a dc to 4 kHz signal bandwidth. Each channel also features a

32

programmable input gain amplifier (PGA) with gam settings in eight stages

between 0 dB to 38 dB. The AD73360 is particularly suitable for industrial power

metering as each channel samples synchronously, ensuring that there is no (phase)

delay between the conversions. The AD73360 also features low group delay

conversions on all channels. In the prototype constructed the AD73360 was placed

on a breadboard and connected to the DE2 FPGA board through I/O pins and wires

as in Figure 4.10.

Figure 4.10 AD73360 in the proposed implementation

The sampling rate of the device is programmable with four separate settings

offering 32 kHz, 16 kHz, 8 kHz and 4 kHz sampling rates (from a master clock of

16.384 MHz). A serial port (SPORT) allows easy interfacing of single or cascaded

devices to industry standard DSP engines or in our case an FPGA. The functional

pin description of the AD73360 is mentioned in a table in the appendix A.

33

4.6 Data Acquisition FSM Block

This is one of the primary blocks of the entire design and is necessary for

interfacing the ADC to our soft processor and collecting data. This block is

implemented through a finite state machine (FSM) which ensures definite state and

synchronization with the ADC. Implementing this block through FSM also ensures

that this block is practically implemented with the least number of logic elements.

The function of this block is two folds; one is to interface with the ADC and

provide synchronization mechanism and the second is reduce overhead of the

processor by storing all digitized data in the RAM.

4.6.1 Inter/acing block

The core of this block is a finite state machine that goes through several

definite states each pertaining to a certain function. Three state machines work

together to perform the complete operation. The main FSM is "fsm-'ogic'" and

there are two sub FSMs "readfsm'" and "writefsm'". State I is for FSM

initialization. State 2-6 is for ADC initialization and programming. State 7 is the

read state in which the FSM loops for ever unless reset externally using the FSM

reset pin. State 8 and 9 are used for transferring control to sub read and write

FSMs. State lOis for writing control words to the ADC and state 11 is the actual

read FSM state that reads serial data values from the ADC line and transfers the

data to state 7. The exact state functions are described below and shown in Figure

4.11.

State 0: This state initializes the FSM for operation. This state initializes the

internal 1 bit register "reading'" and "writing'" and sets their value to zero. The SE

and RESET output pin of the FSM is brought to low which disables the serial port

of the ADC and also resets the ADC respectively. This state also sets the value of

the wait register "waitreg'" to the value "4'" which means that the FSM will be in

this state for 4 more clock pulse. This gives a little time for the ADC reset

operation to complete.

State 7
Read data

Read from
Register

34

Figure 4.11 State Diagram of the Finite State Machine (FSM) interfacing

module

35

State I: This is the first state where the FSM starts communicating with the ADC.

This operation starts by setting both the SE and RESET output pins of the FSM to

high. This ensures that the ADC is in normal state and that its serial port is enabled

for communication with the FSM. This state also sets the value of the "writing"

register to I which disables the main FSM and transfers control to the minor FSM

"writefsm". This state sets the value of the "datatosend" register to binary

"1000001110001000" which is written by the writefsm state machine. The write

process is described in detail in the write state section below. The structure of the

16 bit value is shown in Figure 4.12.

Figure 4.12 16 Bit structure of ADC control word

So the value "100000 111000 I000" means:

Bit IS: I - Specifies control word

Bit 14: 0 - Specifies write opcration

Bit 13-11: 000 - Specifies device zero. In our case we have a single ADC, so this

value is always 000.

Bit 10-8: 0 II - Specifies the register to write to. Binary 011= decimal 3. This

means register D needs to be written with the values in the next 8 bits

Bit 7-0: 1000 I000 - This 8 bit value is written to the register specified in the

earlier 3 bits. In this case the first I stands for "power up channel 2 of the ADC".

the next 3 bits (000) specified 0 input gain (no additional fain). The next 4 bits

instructs to power up channel I the same way.

State 2: This state is very similar to state I. The only difference is that in this state

the value "100001001000 I000" is written to the register which instructs the ADC

to power up channel 3 and 4 with zero input gain.

36

State 3: This state also performs the same operation as state 3. The only difference

is that in this state the value "1000010110001000" is written to the register which

instructs the ADC to power up channel 5 and 6 with zero input gain.

State 4: This state sets the sampling rate of the ADC. The ADC sampling rate is

set by the register B. Bit 0 and bit 1 of the 8 bit registers sets the sampling rate

based on table 4.1.

DRO Sample Rate

o 1kHz

2kHz

4kHz

8kHz

DRI

o

_0 I~
II

Table 4.1 Decimation rate control of the ADC

By writing the value "1000011000111111" we choose the lowest sampling rate

based on MCLK used. So if a 2.048MHz clock single is applied to the ADC

MCLK pin then the under default condition the sampling rate would be

2.048Mh7J2048=lkHz which is the sampling rate in our case.

State 5: This state instructs the ADC to set non inverted mode for all operation of

the ADC. The value written is "1000011100111111".

State 6: State 6 write the value "1000000000000001" to the ADC which sets the

ADC to data mode. In data mode all control data passed to the ADC are ignored

and the ADC starts sampling data and providing it in its data channels.

State 7: The value of the register "reading" is set to 1 in this state enabling the

minor FSM "readfsm" which reads from the ADC. The minor FSM (state 11) is

described below. After the read operation is complete the system again comes back

to this state. The system loops in this state until the FSM is reset.

37

State 8 (statewait): The system enters this state whenever the system must wait

for a certain time. The system enters this state automatically irrespcctive of the

present or next state whenever the register waitrcg is greater than zero. At each

clock pulse the system dccreases the value of the waitreg register. When the

waitreg register is down to zero, the system goes back to normal state and resumes

operation exactly from where it got transferred to wait state. This state basically

works as a delay and is used whenever the ADC requires a certain amount of time

to complete its operation.

State 9 (donothing): This is the state of the FSM when the main FSM is in

disabled state (reading or writing). The FSM does not perform any operation at all

in this state.

writefsm: This is the minor FSM responsible for writing the 16 bit word to the

ADC serially. This FSM takes the value in the 16 bit "datatosend" register and

sends it serially through the SOl pin to the ADC. Each bit is send at the negative

edge of the SDOFS input pin of the FSM. The ADC generates a pulse on its

SDOFS pin every time it is ready to send or receivc data. The system detects this

pulse and after that two of these pulses have occurred, it waits for the serial

communication clock SCLK positive egde to occur. When it detects the positive

edge of the SCLK it puts each bit from the datatosend register serially through the

SDI pin. This is repeated and clocked 16 times for each SCLK. After all 16 bits

have been sent this minor FSM sets the writecomplete register to I signaling the

major FSM that write operation has been complete and the main FSM can take

control again and can resume normal operation.

readfsm: This FSM works similar to the writefsm and is responsible for reading

from thc ADC. It differs in one major way from the writefsm in that, it read six 16

bit values, one for each of the sampled channcls rather than a single 16 bit word.

The FSM does this by keeping track of which dataset it is currently reading in the

"reading_ 6" register. Likc the operation in writefsm, the readfsm disables the main

38

FSM and transfers control back to the main FSM when all 6 sets of data has been

read. It signals the main FSM by setting the "readcomplete" register to I when read

operation is complete.

A simple signaling mechanism consisting of single gate (Figure 4. I3) is used to

signal the main FSM whenever read or write operation is complete and the main

FSM can resume its operation:

readcomplele _aUTO).

reading-Q

wntecomplele_ OUTO)

writlng_OUTO>

writlng-O

Figure 4.13 Signaling gates for write complete and read eomplete opemtion

After all the data for one second is acquired, the system interrupts the Nios

processor making it read the data for processing. It was found that the system was

sometimes unable to detect the edge of SOOFS pulse at higher frequencies

resulting in loss of synchronization with the AOC.

The AOC is directly connected to the FSM block through the GPIO pins

and controls all its operations. Figure 4.14 shows the partial interface of the FSM

as it is connected to the GPIOs of the OE2 board. As can be seen from the figure,

SOO, SCLK, SOOFS and other pins are directly connected to the FSM through the

GPIO pins. Some ofthc RAM interface pins are also visible in the figure.

39

SRA'A:DO[14i,-=_~~----------------------
SRAM_DQ[15J=-----------------------

SO_C'AD=~----------------------
SORAMPLLPLLl

EJ.,:.~
CLOCK50
KEY[3..0;

GPlo.c [30J-'

GPlo.c [26)-. i

GPIQ.. [28)- l :

Reset Delav.dela~;1

1= ."2.1
ADCSCLK-O

ADCSDO-O

ADCSOOFS-O

•• t' :E.8_

Figure 4.14 Partial RTL of tile interfacing block connected to GPIOs

4.6.2 Storage Block

The storage block of the interfacing module stores the values captured from

the ADC to the RAM. Instead of supplying the soft processor a constant flow of

new data. this module stores the digitized and sampled value of the input AC signal

in the random access memory (RAM). This module consists of twelve RAM

modules each capable of storing one thousand 16 bit values. For a sampling

frequency of IkHz, there will be one thousand samples of each of the three

voltages and three currents in one second. There are three sets of RAM for the

three currents and three sets of RAM for the three voltage values. The storage

block sequentially stores the voltage/current values received from the ADC to

these RAMs until they are tilled with one thousand set or one second of data. It

does the same thing for the three voltage samples. When all six data set is complete

and saved in RAM, this module interrupts the soft processor and starts saving the

40

new values in the other six sets of RAM. This method insures that no data is lost as

the processor performs calculations over the previous 1000 values.

IntenllP{

Figure 4.15 Storage bloek of the interfacing module

The complete flow diagram of the process is shown In Figure 4.16 on the next

page.

41

c;J
S~,j.lline

ollall~

Del~dsignal

'"''
m~mory
block?

Curr~nl

O~l~dsignal

","

Memory Block 1

Block 0 fIJI?

..

,..
Block 1 full?

Figure 4.16 Flow diagram of storage block of the interfacing module

The I/O configuration and Verilog code of the complete block is mentioned in

appendix Band C respectively.

4.7 Soft Processor

A 32 bit processor has been implemented over the FPGA to perform all the

necessary calculations. The soft processor is the core of all the calculation. This

processor is a 32 bit Nios 11/f processor implemented over the FPGA. The

42

instruction set is RISC. This portion requires the most logic elements of the FPGA,

as all the calculation instructions as well as data memory is implemented within

this block. The soft processor does all the voltage, current and power calculation of

the meter. The data from the ADC which is now stored in the RAM buffer are

multiplied by a predetermined calibration factor for proper calculation before the

data is fed to the summation circuit and also to the FFT unit. When all calculation

has been performed, the data is sent to the LCD and shown in predetermined

format. The processor starts performing its function when the phase buffers are

ILIII.There are six phase buffers and they contain voltage and current values of all

three phases. Each data is squared and then added to the previous values, this

repeats until all the buffers has been squared and added. The square root of the

summations gives the rms value of the current and voltage. After all the rms values

have been attained, the soft processor calculates the power. Another similar

summation operation is used to calculate energy from instantaneous power.

The processor has been synthesized with the following additional component:

• 7 Segment display control

• VGA output module

• Three 32 bit parallel inputs (PIO) for reading voltage data from the FSM to

the Nios processor.

• Three 32 bit parallel inputs (PIO) for reading current data from the FSM to

the Nios processor.

• One I bit parallel input for interrupting the Nios processor whenever 6 sets

of voltage and current data are ready from the FSM for the Nios processor.

4.8 Calculation Block:

We know that for rms and power claculation:

N I
V - "-xV'
r/ll,~ - L...J tI

II",]N
(4.f)

Irm.l' = f ~XI2
L... N "
Il=J

43

(4.2)

Avg Active Power =L v,,f,,Cose,,
11=1

Reactive Power =LV"I"Sine"
1/=]

(4.3)

(4.4)

Where V" and I" are the voltage and current at nih instant of a particular phase and

en is the phase angle between them. This block uses equations (4.1) and (4.2) for

rms calculations. But since we are calculating instantaneous power, we don't need

to calculate the phase difference between the voltage and current value. Rather we

use equation (4.5) to calculate instantaneous power at instant n directly.

Instantaneous Power = V,.1"

Equation (4.6) denotes equation used for power calculation.
~

Power:::;: L 17,/"
/1=1

(4.5)

(4.6)

The summation of the instantaneous power gives the entire power consumcd at that

time which when multiplied by the sampling interval gives energy.

Instantaneous energy = v,I,!!.' (4.7)

Where !!.t is the sampling interval. Total energy over a period is equal to

summation of instantaneous energy over that period.

N

Energy = LV,I,!!.'
lFI

(4.8)

The calculation block uses the hardware adders to accelerate the addition process.

The software part of this block is ANSI C code which is compiled by GNU C

Compiler (GCC) and run on the 32 bit Nios processor.

44

pIli • INSTANTANEOUS POWER SIGNAL
/'

Figure 4.17 AC Signal (Voltage and Current)

Figure 4.18 Sampled Voltage and Current Signal

The multiplication of instantaneous voltage and current gives instantaneous power.

Accumulation of instantaneous power over time give the power consumed during

that time. A typical AC signal is shown in Figure 4.17. This signal is continuously

sampled. Figure 4.18 shows the original signal and the sampled discrete voltage

and current signals. Since the sampled signals are exactly at the same instant, the

direct multiplicand of those two gives the accurate instantaneous power.

45

The pseudo code that calculates the RMS values of voltage and current channels is

listed in appcndix D.

4.9 DFT/FFT Block

4.9.1 Fourier Tram/arm

The Fourier transform maps a signal from the time domain into the

frequency domain. The resulting frequency spectrum shows the frequency content

of the original signal. Thc Fouricr transform is based on decomposing a signal into

an infinitc set of orthogonal basis functions formed from the Fourier series.

4.9.2 Discrete Fourier Trallsform

The Fast Fourier Transform makes use of a discrete-time, finite-domain

Fourier transform known as the Discrete Fourier Transform (DFT). The Discrete

Fourier Transform is used for input signals that are both discrete in time and have a

finite duration (finite domain) which the voltage and currcnt signal in our case. The

sampled data that we get from our ADC is both discrete and has a finite duration.

The DFT transforms an input scquence ofN complex numbers (xo, Xl, ... , xo.Jl into

an output sequence ofN complex numbcrs (Xo, Xl, ... , Xo.Jl. The DFT is given by

equation (4.9).

k = 0, , N - I (4.9)

The exponential factor is often referred to as a twiddlc factor and expressed with

the notation in equation (4.10).

(4.10)

The DFT can be thought of as match filter that is convolving the input

signal Xowith an orthogonal set of sinusoidal basis functions given by the twiddle

factors W(nk, N). Since the input sequence is real valued, the complex componcnt

46

of the input is always zero. As a result, the complex output frequencies of the DFT

are symmetric about the Nyquist frequency (half the sampling frequency). In our

case, the input sequence can be thought of as the set of real valued samples from

the voltage or current channel. More concretely, let N be 32 and the sampling

frequency be 1.024 kHz. This means that the input is 32 samples of the current

waveform, and the output is 32 equally spaced frequency bins of 32 Hz from 0 to

1.024 kHz.

We may decompose a periodic waveform f(t) into the summation of a

number of sinusoidal waveforms easily using DFT as in equation (4.11).
00

t(t) = Ao +L (Bysint'lwt + Cycost'lwt)
y=l

(4.11)

Where Ao is the amplitude of the DC components and By and Cy are

coefficients of each harmonic. For AC signals as in our case, Ao is zero. The

amplitude of each harmonic can be computed from equation (4.12).

Ay=JB~+q (4.12)

The coefficients By and Cy for each harmonic are calculated multiplying the

corresponding sine and cosine wave to the input signal respectively as in equations

(4.13) and (4.14).

n

2M'\'
By '"TL Vy sint'lwt

y=l

n
2M'\'

Cy '"TLV y cost'lwt
y=l

(4.13)

(4.14)

where Llt is the timc between samples, T is the period and Vy is the input

signal.

47

4.9.3 Fast Fourier Trallsform

The OFT is very computational intensive and cannot be calculated easily

with limited processing power at real-time. As seen from equation (4.10), each

frequency component X(k) requires N complex multiplications and N complex

additions. There are N frequency components, so an N-point OFT requires 2N2

complex operations (N2 multiplies, N2 sums). In big 0 notation, the OFT has a

computational complexity of O(N2
). The Fast Fourier Transform uses several

optimizations to reduce the number of operations to O(NlogN). The fast fourier

transform (FFT) is a highly efficient method for calculating the discrete Fourier

transform (OFT). The OFT is used in signal processing applications for a range of

purposes, such as analyzing the frequency components of signals and data

compression. In our case the signal is the harmonics in the voltage and current

signals. The OFT is a computationally intensive function. A native (non-FFT)

implementation of an n-point OFT requires N2 complex multiplications. The FFT

algorithm achieves its efficiency gains by decomposing the OFT into a number of

smaller OFTs and exploiting the symmetry and periodicity of the sub stages to

reduce the number of calculations. An N-point FFT only requires Nxlog2N

complex multiplications. Cutting down the number of complex multiplications

improves the FFT performance, often by several orders of magnitude, depending

on the order of the transform. We have optimized speed by by pre-calculating sine

and cosine terms used in the butterfly calculations and moving all values to RAM

and directly feeding values from RAM to the adders bypassing the processor.

These sine and cosine terms are called twiddle factors. A sample soft core

implementation of the system is shown in appendix E and the hardware accelerated

implementation in appendix F.

The block diagram of hardware accelerated FFT calculations is shown in

Figure 4.19 and the actual synthesis shows in figure 4.20. As can be evident from

the figure, buffers and RAMs are used to accelerate the calculations. Rather than

serially moving each data value from RAM to the Nios processor and performing

addition and multiplication, data is moved directly to the multipliers and adders

48

from the RAM in parallel. This reduces the time by removing the time required to

move data from RAM to the Nios registers and also by performing the calculations

of all three phases in parallel rather than serially.

FFT Acceleratorl
Double Buffering

RAM Buffer 1

RAM Buffer 2

Read Buffer
Calculation

Wrfte Buffer
Calculation

RAM

Figure 4.19 Block diagram of hardware accelerated FFT calculation

"'.•v...•.- .••."""""!
"' -.•..-'""A._".-_" __ '~
"'_Il\.._ ••••••• _•• __ T~

••••Il\.._ •••_-_ •• _••.""'~

"'•..--_ ..._-,~
"' .•..•....,--.•.•.-,~
."l. •••.•• - ••.•."''''I'I
••••••••• - •••••• 0Il:I

._1IIt._ •• __ ••• _•• ~

•• ~ ••_•••• - •••• ""Ml'l
• _"'-._O'<_ •••• _••. ~••..••.•.•.•._-"-1••.."'-..,..,.-..•_~
••••Il\.•••••• - ••••-...'I
•• Il\.•••••• - •••• _

......•.•.••.-..•.-
•••••••••••• _ ••••••II.l"l-.._ ..•.•.....

,..".-.- .•.•.
00••• -.,-,,,, ••••

••.."" .•.-.••.
•• <>t._.N."

"'.".'.-."."•..•..'.-.••.""
"' ..•.....••.•....-.'....-.•.....•.:.....-....-.•.•........•..-.

'l_Itl_Wram{O OJ
I; ID sOam njO 01

-=,t.1$JoI0 .0)
_'kef°,.OJ
_C5_nlO ,0]

~ ras~o 0)
=we~r(O0]

"JOi_a(12.01
da))3C1 01
tlr_ttT(1 OJ

Figure 4.20 FFT block synthesized using Verilog

The overall design and interconnect of the HDL implementation in shown

In Figure 4.29. Figure 4.30 shows the actual photo of the implementation in the

DE2 FPGA board.

49

4.10 Acceleration Unit

A three phase metering system requires a lot of calculation and hence it is a

processing intensive operation. Normal processors are not capable of performing

these calculations in real-time or within an acceptable time interval. So, the main

challenge is to either reduce the number of calculations necessary to calculate all

the required parameters or somehow accelerate the calculations. Our design

achieves its speed by accelerating all calculations. The acceleration methods are:

I. Enhancing design for parallel operation

2. Performing calculations in parallel

3. Using double buffering to increase memory speed

4. Accelerate calculation with pre-calculated values

To achieve these, it was necessary to introduce several key components and make

modification to system design. Some of the components added are:

I. SDRAM

2. Dual Port on-chip RAM

3. Hardware Multiplier

4. RAM Arbitrator

4.J(}.1 SDRAM

The SDRAM is used to store all sampled current and voltage values from

the ADC. Since the sampling frequency is 1kHz and there are three current

channels and three voltage channels, so there are 6,000 samples per second which

are stored in the SDRAM. The RAM has capacity to store another 6,000 sample

sets each of which are 16bit values. The SDRAM is composed of input output (10)

cells capable of storing bits (Figure 4.21). Ilowever the SDRAM cannot be driven

directly as the system bus speed of 100MHz is different than the SDRAM bus

speed of 25Mflz. A PLL is introduced in the system as shown in Figure 4.22

which interfaces the 25Mhz SDRAM to the 100MHz Avalon bus. The PLL block

is comprised of 16bit read and write register and counters.

50

.>.ldIoItl 0)

".,_ f

".,...~ -.•.."
("~ptlI ",. I [II-,<1,,,., .() (J

lJ;iI.~l",f

Figure 4.21 SDRAM 10 Cell

_ .
•.•••~""''I(I!o "

,,.,..'t::::>

"
'<"$0"4_"

1- J
'I..,•.••'.'

Figure 4.22 I'LL required for SDRAM

4. /0.2 Dutil Port oil-chip RAM

The dual port on chip RAMs are required for the ping pong buffers and for

storing the pre-calculated twiddle values for the FFT. Since these on-chip

memories are dual port it is possible to read and write from the simultaneously

using different ports. This has the advantage of accelerating the calculation by

using these blocks as ping pong buffers. The block is shown in Figure 4.23. The

block comprises on numerous RAM blocks all connected together to form a RAM

51

chain. The detail of the RAM chip block is available in the Veri log code in

Appendix C. The block memory was assigned using sore builder and memory

address assigned.

altsvnc.ramthe a~svnefam

eaddata(15.01

""Wfen-O - """"I I "!".I ~-:'S
I

r-- ~_('l~
-.(y,:]

I ~-".I('lll

I,

elk

t:hrpselec
WI'"

w' 'edatat 15 0
byteenable[I ..0

address[7 0
C!kef

Figure 4.23 Synthesized RAM Block

'••..1'?fl ;:;
(Iock(]

CIoc"i:'fl(l
dc1'a_a(I~ O'

by1fffi<1 a(I r,
drldless=~7 0:

ram tolockt iJl-4----_.------
-,~..~

~ •••..•••.."'«"
r,.", M-'...r.~uI1~--,.~

liOO'",,","'._ ..•'--..
lanl tlO:klal1--

Figure 4.24 Partial section of the on-ehipmemory

4.10.3 Hardware Multiplier

It is evident from equations (4.8) and (4.13) that both energy and FFT

calculation requires multiplication and addition operation. We accelerate this

calculation by performing all these multiplications in parallel as well as using

hardware multipliers. Since each sampled phase data are saved in a different RAM

52

block, it is possible to access those blocks simultaneously. Hence it is possiblc to

not only calculate all six channel data simultaneously but also perform the FFT

parallel to this operation. Figure 4.25 shows the hardware multiplier in our design.

a[Jl 01
elk

enable

b(31..01

4.10.4 RAM Arbitrtltor

a.reqf31 01
"'"o ,

MultO

Figure 4.25 Hardware Multiplier

rOOuc1163.0J

Since the memory is being accessed by both the data acquiring FSM, the

accelerator unit and also the processor, it is necessary to introduce an arbitrator to

the RAM to avoid any kind of conflict in RAM access. Figure 4.26 shows the

arbitrator which connects different modules to the RAM bus.

~~~".'.•i :- =.-

II
I

" ..._-~.-_."

~--- ...•..•.

Figure 4.26 RAM Arbitrator

II,

, -..:::-.:.:. ..._---
"-.I~~-.._._-.
-~.-::::-.=...-:



53

4.10.5 Olher blocks

Although the blocks mentioned above comprises the bulk of the accelerator

unit, there are also several other blocks and logics present within the system. One

such system is the accelerator state machine which runs the accelerator as it goes

through different stages. Figure 4.27 shows part of the accelerator subroutine state

machine. Input to this block is the accelerator begin, read and select and depending

on the various input, the accelerator block advances to various states and performs

its operation.

••..«'k,!lfr)f • fif,f.,.,~,,..j)t1J~;
",.':M..I"'r .••. '1()""'''lf'f1 tI. rfl"N:ffi

",q;~~r,r _""l"'l1It"<:l~IIl.v\flt.f{)

m';M<, 'lI'JI_tophrr •••. rl '11""" r1[~ /JJ-.r!:VO
~',.Yl(, "- -n, , )1":"1- I ttl !'II '\1..•••0 .• 1

;l(.V~'lffl'_'~1~.r.l~_rfl_"I"''I'OIl01
<Kt""I'.!:_I.o_8Ct~""bf_WKr.Z(!G)II_>l<lf~~7oJ

Figure 4.27 Accelerator Subroutine State Machine

Figure 4.28 shows the interface between the accelerator unit and the Nios II

processor. It comprised of readdata from the processor, waitrequest to request the

processor to wait while it takes over execution from the processor and performs its

operation, data out, processoraddress and other required inputs .

• "''''''<1('

". ..•.'•.....

., .
"" ..::;;;-;0

• _.'.~" M"'" m 1:::: .••• _"'" .

Figure 4.28 CPU Accelerator Interface Instance



54

4.11 Storage Block

This block is responsible for storing the energy consumption calculated by

the meter. There are two separate registers for storing the energy consumption, one

stores the watt-hour value and the other kWh value. These are unsigned 32bit

registers so they are capable of storing values up to 42,949,67,296 units. After each

second of calculation of the consumed energy by the processor this is added to the

watt-hour register. If the register value exceeds 1000, then I is added to the kWh

register and 1000 subtracted from the watt-hour register.

For a typical energy consumption of 1,440 kWh/day (60kW) the meter is

capable of storing energy consumption for

4294967296
kWh d = 8171 years

1440 day x 365 yeaa~

Even with a hypothetical maximum energy consumption of 1,00,000

kWh/day the meter is capable of storing energy consumption for

4294967296
= 117 years

100000 kWh x 365 day
day year

So the meter can operate and store energy calculation for approximately

8171 years before requiring any kind of reset under typical load. These two register

valued are also saved to the Flash memory every second. If the meter is rcset or

looses power at any occasion, these two values are read from the Flash memory

during meter power up and the meter continues from the last calculated value

without any kind of problem.

4.12 Meter Specification

The proposed meter specification is furnished below.

Power Supply:



• Power supply: Input: 100 to 250VAC. Internal 3.3VDC.

• Supply Current: 300mA (typical)

Accuracy:

• Class 0.2

• ,,0.1 % at unity power factor.

• ,,0.2% at 0.5 power factor.

Input Signal Range:

• Max Voltage Input per phase: 250 rms AC (Phase to neutral)

• AC Voltage (VA, VB, VC): ° to 270 (rms)5

• AC Current (lA, lB, IC): ° to 60A.

Frequency:

• 50 Hz.

Energy Measurement:

• 3 Element, 4 Wire, Three Phase Wye.

Interface Connectors:

• Voltage Inputs

• Current Inputs

• Neutral

Programmable Features:

• Programmable unit charge

• Holiday/Weekend variable billing option

• Set Load Control Thresholds.

• CT / PT Ratios.

• Meter ID / Serial Number

• Calibration factors

LCD Display

• Load Profile Data - kWh

• Instantaneous Voltage, Current, Power Factor by Phase.

• Watt Hours, VA

• V Phase A: Phase A voltage.

55



• V Phase B: Phase B voltage.

• V Phase C: Phase C voltage.

• I Phase A: Phase A current.

• I Phase B: Phase B current.

• I Phase C: Phase C current.

• Energy Consumption and Demand with Time Stamp.

• Harmonic Distortion

Operating Temperature

• 10C to 70 deg C.

Humidity

• 5% to 100%

Standards

• IEC62053-22

56



:"TT
HTll~' .
1'.~hL'

T ";"".,",m",,,_,,,,<~~,,-'''''~,k•.
~;.•: ,I

'-"''''''''''''N'=M~
fiii'J





59

Chapter 5

Simulation and Results

5.1 Necessary Files and Tools

The proposed SoC is a single chip solution for a 3 phase energy meter. It

operates at 3.3V and draws its power from the power line. The following tools were

used for the simulation of the meter:

• Quartus II: Used for schematic drawing, nellist generation and simulation

• SignalTap II: Used for probing

The simulation process is performed on the hardware synthesized from the

Veri log code. To simulate the energy meter implementation, first the Verilog code is

compiled. The compilation process includes analysis and synthesis, 110 assignment

analysis, assembler, fitter placement and finally classics timing analyzer. After

successful synthesis, a functional simulation netlist gencration is required to actually

test and simulate the logic. Finally the logic is simulated with the input waveforms

from the vector waveform files and the output matched with the desired waveform

outputs for that logic.

Since the simulation of an AOC is beyond the scope of this work, this

simulation starts after the digitization process of the AOC. This process starts with

simulating the inputs to the FSM from the AOC and inspecting the output. The main

signals involved are RESET, SE, SCLK, SOO and SOl. RESET is the reset pin of the

AOC, SE is the serial port (SPORT) enable pin and SCLK is the serial clock output of

the AOC. The input and output lines of the AOC are SOl (serial data in) and SOO

(serial data out) respectively. All of these are single bin lines. As mentioned before

the input FSM consists of II distinct states. Figure 5.1 illustrates the first state. It can

be seen that the RESET and SE pin are low during the first few cycles and then they

are brought up to high so that the AOC can perform its operation. Figure 5.2 shows

the simulation of state I. In state I binary 10000011 10001000 is transmitted by the

serial port to the AOC. The "data to send" register contains this 16 bit value. This

value is transmitted correct through the SOl output pin to the AOC. This cycle starts



60

after the SOO pulse has occurred. The bottom of Figure 5.2 shows the output of the

internal SCLK positive edge detection circuit. It is evident from the simulation that

the correct values are indeed put into the SOl line from FSM at the end of each

positive edge ofSCLK .

, ••• e ~u,..., ""<u2 fiSH, .,,' $£:1

",. "".•., soors
,". "v] 8',':>1

v" 13"m"'~
-i./lir [3 1I"~••

"'~ "T
V3S 8 ~, •••.td

O'AI 13 ..,!odrIg_£
v.s 13wte<I
"S> ~_r.:lIis
vS2 IDll'llll,," 8 dM:!I<>UII"Io:;l

vn 8 .•••.•t'\iilIb'o"!IlIe

v"" 8,",~a,~
ulOJ _..
,"~-_.
-ui!'l:l ''''~oQ

II.
I

. ~

Figure 5.1 State O. ADC reset.

1VD I.£lll.

~I ~ll(

.v~ f<ESET
u) 5[.01

.," SOO
IPS soors
.u£ SE

yJ l3 \':!II

.v2" 13 W!>'<1IlUJI~

-u~ 13 _ •• en<
lJI.:lA EST
v 3S 13 bf~.-N

U"l Gj~.loX"U
VAS EI t.I~
..v 51 r~_w~
V~ 8r ••UI
V~ EI~:t~.:l
v7! G••II~!I •.~

v:tO 8 ~.!I':Wil!l"~

.v ,e7 O<fb"~

-011& _.~t>

.01[8 "'~'Il
u110 ~.u:~('

Vll1 13!.$:f~
-o-lH ~_~ •.

"

Figure 5.2 State I. Turn on channel I and 2.

In state 2, channel 3 and 4 are turned on by sending "1000010010001000" serially

through the SOl line. Figure 5.3 shows the simulation of this state. The register nxt_st

which contains the next state value, correctly shows 3 as the next state. Also the SOl

line shows the correct output.



,-
.•., loIClK..., 'Cl<
U' RESET

.a' 'DO...' """" SOOfS
ue "u' [3 ~..••
.vl' 13 CUl'!."fUl.!ll~

u" o illller •••

u;.~ 'ST
.....•. ~ G~~
v" [3 ~»l".g_£
V4~ E1w~
uS[ ~r.~_14d,v" G rN it

v" G ~!IIM",od

v72 EI OdIbW~i!&Je

vlO EI ~~~.1lIt.It

--0107 ..",
..v 100 ••ft~~e

.udt& •••••

....,Wi '''~'lJle'l~
V 111 E1~""",,~
.un_ ~ICI<

61

,4~US :HIT'" Hi...• 27] •.•• 28,'''' 217.- 297 •• Hlf'ut 31;:,- U}U11 "I~ 337'"

~L.n~~~

J -, L

Ii
.

, ,

~
~ "' ., • ~

, ,

:
I I I I I I I I I I I I I I I I I I I I I I I

Figure 5.3 State 2. Turn on channel 3 and 4.

The next simulation is for state 3 where channel 5 and 6 are turned on (Figure 5.4).

The SOl output is "1000010110001000" as correctly simulated. The next state is also

4 as correctly shown. The data can be seen to be correctly corresponding with the

bitsent register which counts how many bits have been sent. The SOl pin is brought to

low after all 16 bits have been sent.

,

•..., ~r.:1J(..., ''''<i' flEH
ul 50',,' '00.•., SOOFS
<it "v' Gw
-L/~' ill ,,,,,,,,-'>l!te
.u~ [3 Ill •••••.••.•." FIST

",::t- G tJm..:eM!dv" 8 re .•••••. ,g_£
V.~ EI W~N1

o!.l ",,~_!loi:fl
V~ G "••HI

V~ EI o3/If;¥"".....a

.(,r'n G .••.•~.3~U.~v" E1"'~!r.~
vlQi ....•..~
vlOS _e.:.:.ool"k'\t'
,..,liJi '"~'''vll() 1t-~",,~lo4t
4,,/111 G~~•••••.•~
.••• 11.1 .."""' ...•..•.

•••• Jt;./ ••

r I I I I I I I I , I I , I I I

Figure 5.4 State 3. ChannelS and 6 turned on.



62

The next state simulation (Figure 5.5) also shows the correct data

., I000011000 II III I" written to the serial output.

r"~; 1ut ,~~~~~'" ~!1;4'" 'Il/~ '1~ ,,~"" "'~':l;'''* 69l,1li 'j~
•••••

"'. Iot.:lK.,, SCllI

u~ RESH
•• l SCoI~, ::UCl." ~OC0f5u. :of

vl G~
~l' I!l ~~"IS~
'V27 GlIIIen..•.~ RST
vl~ G~...."
V~l G ,..1>3r'll .•J
u~~ Gbtiffll

••I' r~~ld<J.

v" Grill.
v::.t Gi1!f!l,,",",'" '"UI: m ••••MlIU.!IU': " " ~ J:" " • ;; J n" .- . .vSO GI'!~!lh_

I

lillPl
vlO7 .•..•
v'" ••'lI~~e

•• Ith .-vllO .•.~ ..
vllJ 8 odci""'epojs"", I 111 l 1.1 M
<OJ 1)'" f»t •. """_,, ••. I , [ , I
.~n'. r.l ~•••.•..~ , liJ

Figure 5.5 Statc 4. Settiug samilling ratc 1kHz.

In state 5 as shown in Figure 5.6, regular non inverted mode is set. The simulation

shows correct state transition as well as correct data output (" I0000111 00 III III") to

SDI pin.

",'.•.'
ol
.~~
u'
L#:
<>.
<;,
uJ.
u~
~~
v~t.
v'l
.v",s.
vI>
v"v"v"v"'
-ullj)

vH~
.•.••lM
.•..•.llil

Vlll
<.111'"
vllS

MOl'
SCW<
RE!.£T
so,

""SOC,fS
SE

Elw
8 •••••..•.•"'••••.
Glitl..~

fiH
GNJf>: •.,...,,:l

G1t'~'il.J
0w-.
",.",.,~.w.

Stolt!

G l1;l.lll",<'4
El ••fI•.~l>,'3Le

El :::""1'-"''''"'~
::~"•..

G=:~;=,,\~;ol=["X==============",P"I===============, "q==".=
13 ••1oI,~ .3:

Figure 5.6 State 5. Sctting non iuvcrtcd modc of ADC.



63

The ADC starts operating correctly and sampling data only when the ADC is set at

data mode. This is done by setting the data bit to I. SDI input of

"1000000000000001" can set this bit. Figure 5.7 shows the correct operation as

simulated.

aoO J..t:lK
1#1 f,CLK
.u~. RESET

u~ SDI
1Jlo4 SCOO

~~ SOOFS
.us SE
t,,7 8 ¥~

I
Jl.J~ r-, n n n r-,

"...,

.v~l
v~2
vtoiiv"
v!oJ
.ul(l)

..., lCS
<)ole:!

uno
t/lll
oll~

v1l5

EJ c~nlsl.:Jl:e
EI ."' ••.•.•

RST
13 l;«J,",,~~d
13 ~~.&
13bfS<'>'1
roe~_~.

800111

8.:ut!l~od

EI f<'II...uhllu!!

13 ~~~.~-.
••.• t<00l'Iffi'.-.
~slo.:~~

8aod.'lf1'_~

p»~-"" •.
EI ",M~

, .. .,
;-
r

Figure 5.7 State 6. Start data mode.

After data mode is set, the FSM enters state 7. During state 7, the FSM reads data

serially through the SDO pin and saves it readdatavalue register after which it is

ultimately moved to the RAM block to be processed later by the processor. Figure 5.8

shows the simulation of state 7 and also the readdata state.

r

!'i
111

""I----~
~~(JFS I !l
13\obi .--------------,-:.!t!!-,-----------------lll-,p-.-.-
l3 C•••MllIlllle [!]) 111]
[3 <l~""" IJD III

AST I
131.,~~ ---1'11---.
8 """"..•.,.13 ~ fl.. x
131"".... ~. _ ji4
r,"..•",;t••'u~_ _ _

131)1ol_41 ---------------~I,~j---------------
8""'''-'-01
8 .••.•~1._
El ~!4~:'.!I/ut

~~:'.!lI

~~!Iv~

~",,1.1or""'"
oelo1.Dl~•••

1••~!rII:>I

oelld<i:rl,,"'"

~~...•
••.~~.S

oell<l.1!l •• '01

,eIo:ld!l""'"

•• _" •.!II

",>oJ4>I,..1Ii
,.,.!oo1o:1!IIJo .•.••

~.~.
ui
.i:.;o7
_uiJ.
,u~
~"v"v"
IV.j,

.v~l
v!.,;,v"v"v",>"
Q~:-

"'''"'''~"
"'''"'''.v~2

v"~".
vl&l

v,"
~,r,)

Figure 5.8 State 7. Readdata state



64

At the end of each data cycle, data is moved to the RAM block where it is later

processed by the Nios processor. Instead of serially processing the data as done

normally by the processor, a smart block is implemented that processes the data in

parallel and reduces the computational time. A simulation of linear non optimized

cycle shows:

Data from RAM block to processor register : I cycle *
Addition performed on the data

Data moved back to RAM

Total time required

x Total data

Total cycles required for I phase

x Total number of phases

Total cycles for all 6 phases

: 2 cycle

: I cycle

: 4 cycle (addition)

: 1000

: 4000 cycle (multiplication)

:6

: 24000 cycle (multiplication)

We then simulated our smart implementation which performs all additions directly
using the hardware adders bypassing the Nios processor registers:

RAM->adders : 0 cycle RAM->adders : 0 cycle RAM->adders : 0 cycle

Addition : 2 cycle Addition : 2 cycle Addition : 2 cycle

Adder->RAM : I cycle Adder->RAM : I cycle Adder->RAM : I cycle

Total time : 3 cycle Total time : 3 cycle Total time : 3 cycle

Total time required for all 6 phase
x Total number of data

Total cycles for all 6 phases

: 3 cycle **
: 1000

: 3000 cycle (multiplication)

As can be seen from the above simulation, the time required is reduced 8 times.

* cycle means Nios processor cycle, not clock cycle.
** Only 3 parallel paths shown here. Actual operation is on 6 paths for 6 phases.



65

Chapter 6

Measured Data
6.1 Calibration

Calibration of a device is necessary before it can be used for any measurement

purpose. Our implemented meter calibration was done using phantom loading with a

reference calibration meter. In phantom loading, no external load is connected in

actual sense and the current and voltage coils arc connected separately so that it will

consume only less power. In this connection the voltage across device will be supply

voltage even if the variac is in minimum position. The meter test results conducted arc

at 20 points, from 100 mA to 50A, at power factors of I and 0.5L as rated in Table

6.1.

A class 0.2 meter, as required by the IEC specification, must not be more than

0.3% error at rF=0.5, and no more than 0.2% error at PF=1. The results from our

implementation marginally pass these requirements and can be called class 0.2

compliant. However, in volume production using this same design might yield results

outside the limit of those mentioned here due to variance in components and current

transformer phase response from meter to meter. For reference, this table shows Class

0.2 limits as stated in the IEC62053-22 document [37].

Table 6.1 Class 0.2 limits as stated in IEC62053-22 document

IEC ACCURACY LIMITS FOR Variation Testing 0.2S ENERGY METERS
Current Power Factor Class 0.2
0.01 IN< 1< 0.05 IN I IOA
O.IIN < I < IMAX I IO.2
0.021N < 1< 0.1 IN O.5L IO.5

0.8C IO.5
0.1 IN< I < IMAX 0.5L IOA

0.8C IOA



66

6.2 Measured Forms

Figure 6.1 shows the sampled waveform of the input voltage. The same signal

is also shown in Figure 6.2 as seen in an oscilloscope.

400

300

200

100

o

-100

-200

-300

-400

Figure 6.1 Input Voltage Data

Figure 6.2 Signal at Channel I (voltage channel) of the ADC

Figure 6.3 in the next page shows the sampled data received from the ADC by

the meter for processing. Figure 6.4 shows only the positive half cycle of the discrete

data received.



67

40000

30000

20000

10000

a

-10000

-20000

-30000

-40000
Figure 6.3 Sampled voltage data received from ADC

35000

30000

25000

20000

15000

10000

5000

o
~m~~~~mM~~~mM~~~mM~rl~mM~rl~mm~~~rlrlNNNmm~~q~~~~~~~oooooommOOO~~NN

-5000 ~ri-

Figure 6.4 Half cycle discrete voltage data as received from ADC

6.3 Measured Data

The meter was connected to phantom load and its response tested against a

0.01 class meter. Voltage variation and power factor tests were performed at the

response tested against the lEe specification.



68

6.3. J Voltage Variatioll

Figure 6.5 shows the meter accuracy across the voltage variation tests. Current

was varied from O.IA to 50A while keeping the voltage constant. Data was gathered

and graph plotted for both 2JOV and 230V. At 210V, for very low current the error

hovers around the -0.15% mark and gradually reduces as current is increased until

finally settling at 0.04% for normal load current. At 230V, the error variation is less

and error settles at 0.05% for typical current load.

0.2

0.15

0.1

0.05

~ 0

~ -0.05~
w

-0.1

-0.15

-0.2

I
T

1-/ ,I
T

",// I
7

I

--line=210V

--line=230V

0.1 1

Input Current (A)

10 100

Figure 6.5 Meter Accuracy, voltage variation testing

The graph shows that the error percentage is well within the 0.2% limit set by the IEC

standard.

6.3.2 Power Factor respollse

Figure 6.6 shows the meter accuracy across at PF=0.5. The graph also includes

a PF= I data series for comparison. Again current was varied from 0.1A to 50A and

graph plotted. The maximum error percentile at 0.1A was 0.3% and varied from -

0.2% to +0.2% for normal operating current. At unity power factor, the error was

minimum and almost never crossed 0.1%. Error was around 0% for normal operating

current.



69

I
II ./ .-

IT
II i.J..

II
I I I

0.5

0.4

0.3

0.2

0.1

<f- 0
~

-0.1e~
"' -0.2

-0.3

-0.4

-0.5

0.1 1

Input Current (A)

10 100

-PF=l

-PF=0.5

Figure 6.6 Meter Accuracy, power factor testing

Tabulating the above result and comparing with the IEC standard in table 6.2
we can clearly see that the proposed implementation is well within the 0.2 class range
specified in the IEC standard.

IEC ACCURACY LIMITS FOR Variation TestiUl.!O.2S ENERGY METERS
Current Power Factor Class 0.2 Proposed Meter
0.01 IN< 1< 0.05 IN I 0100.4 0
O.IIN < I < IMAX I 0100.2 0.12
0.02IN < I < 0.1 IN 0.5L 0100.5 0.33

0.8C 0100.5 0.27
O.IIN < I < IMAX 0.5L 0100.4 0.22

0.8C 0100.4 0.21
Table 6.2 0.2 class compliance of the meter implementation

6.3.3 Harmollic Dis/or/ioll

Harmonic distortion of the input current was measured. Third harmonic was

assumed to be the dominant harmonic and HD calculated against that harmonic

component. The amplitude of harmonic component of first and third harmonic was

measured as 184.8 and 9.6 respectively. Using eqn. 6.1

HD=/3X100 6.1
11

We get,

HD=~XIOO=5.1948
184.8



70

So THO for third harmonic was calculated and found to be 5.2.

Figure 6.7 THD output from the meter

6.4 Comparison

Only class I induction meters were available in the lab for comparison. Figure

6.5 and 6.6 already shows the accuracy of the meter and so those tests were not

repeated. The accuracy comparison was performed using harmonic load. Graph 6.8

shows that the accuracy of the proposed implementation is well over a traditional

induction meter.

1.5

1

0.5

~ 0
~
l'!~ -0.5w

-1

-1.5

-2

I
, ,I I II I I I IT Iii II I III

o 11 ~2 ~.3
I I I~!JIb!J bl8 I bl90.4 0.5

I I

I I II

IT!

-- Proposed Meter

-Class 1 Induction Meter
1

Input Current (A)

Figure 6.8 Performance comparison of proposed meter and an induction meter



71

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have designed and demonstratcd single chip implementation of a three

phasc digital cnergy mctcr that is also able to measure thc quality of the power. The

proposed energy meter measurcs all the harmonic contents of the power including the

fundamcntal component. As a result the accuracy of thc meter is very high even in the

presence of harmonics in the power grid. Single chip FPGA implemcntation makes it

cost effective and at thc same timc achieves additional advantages like less power

consumption, less space and components requirements and makcs the entire system

programmable, reconfigurable and upgradeablc based on changing requirements at

any point in future. The energy meter is further optimizcd with fast on-chip memory

and parallel path processing so that it is able to pcrform all calculations including

voltage measuremcnt, current measuremcnt, powcr measurement, phasc differcnce

measurement in real-timc. An on-chip Fast Fourier Transform (rFT) processor is also

implemented to calculate and display the third harmonic distortion. A 16 bit 6 channel

simultaneous sampling AID converter AD73360 is used as the only external

component in the metcr. The energy meter operates at 3.3 V and draws its power from

the power linc. Despite the constraint of the availability of high precision extcrnal

componcnts like resistors and CTs, the meter was able to achieve 0.2 class.

7.2 Future Work

Higher accuracy can be achieved by using high precision component as well

as incrcasing the sampling rate to 64KHz. Howcver, increasing the sampling rate will

also increase the numbcr of calculations rcquircd scvcral fold but sincc the whole

implementation uses only 25% logic element of the Cyclonc chip, multiple NIOS

processor can be implementcd in the single FPGA chip and they can be dedicated to

handle the rFT exclusively or handlc each voltage and current channel separately.

This will make the implementation more complex but will greatly increase accuracy.



72

To further add to the flexibility of the meter and case of use, a VGA interface

can be added to the meter. Adding the interface and with some custom programming

for graphics, it should be possible to add Fourier analysis functionality output to the

NIOS processor. The frequency spectrum of the input AC signals then can be directly

seen on any VGA monitor if connected. This will further add the power quality

features of the meter.

A PLC chip or RF can be implemented within the meter block. Adding a PLC

chip will enable the meter to send data on voltage, current, power factor, load,

consumption, power quality and even kWh consumed information to utility provider.

This can work as a very important power analysis tool for utility provider as they will

not only get consumption usage across his entire distribution network but can also

monitor power quality and trace any disruption.



73

References

[I] Schwendtner, M.F., "Technological developmcnts in electricity metering and
associated fields", Eighth Infernational Conftrence on Metering and Tariff' for
Energy Supply, (Conf. Publ. No. 426), pp:240-242, 3-5 Jul. 1996

[2] Caiceres, R.; Correa, R.; Ferreyra, P.; Cordero, E., "Study of Active Electric
Encrgy Mctcrs Bchavior of Induction and Electronic Types", Transmission &
Distribution Conference and Exposition: Latin America, TDC '06. IEEE/PES pp: 1-6,
Aug. 2006

[3] Cataliotti, A.; Cosentino, V.; Nuccio, S., "The Measurement of Reactive Energy in
Pollutcd Distribution Power Systems: An Analysis of the Performance of Commercial
Static Meters", IEEE Transactions on Power Delivery, Volume 23, Issuc 3, pp: 1296-
1301, Jul. 2008

[4] P. V. Barbaro, A. Cataliotti , V. Cosentino and S. Nuccio "Behavior of reactive
energy meters in polluted power systems," XVllI Imeko World Congress, Metrology
for a Sustainable Developmenf Rio de Janeiro, Brazil, 17-22 Sep. 2006.

[5] Alexander H.etc. "Harmonics: Cause, Problem, Solution"-Part Electrical
Construction & Maintenance. Vol.92 NO.5. May 1993.

[6] Feng Guihong; Zhang Jing; Zhang Bingyi; Zhao Yisong; Ying Yong, "Harmonic
Power Detection and Measurement Device Based on Harmonic Power Flow
Analysis", Proceedings of the Eighth Infernational Conftrence on Electrical
Machines and Systems, 2005. ICEMS 2005. Volume 3, pp: 2262 - 2265, 27-29 Sept.
2005

[7] Ferrero, A.; Faifer, M.; Salicone, S., "A testing procedure for the new, electronic
revenue energy meters", Instrumentation and Measurement Technology Conference
Proceedings. 2008. IMTC 2008. IEEE, pp:83 - 88, 12-15 May 2008

[8] R. Arseneau and M. B. Hughes "Selecting revenue meters for harmonic producing
loads," 11th Int. Con! Harmonics and Quality of Power Lake Placid, NY, 12-15 Scpo
2004.

[9] A. Din and D. Raisz "What do and what should digital revenue meters measure on
distortcd networks?," 11th Int. Con! Harmonics and Quality of Power Lake Placid,
NY, 12-15 Scpo 2004.

[10] P. S. Filipski and P. W. Labaj "Evaluation of reactive power meters in thc
presence of high harmonic distortion," IEEE Trans. Power Del., vol. 7, pp. 1793, Oct.
1992.

[II] M. D. Cox and T. B. Williams "Induction varhour and solid-state varhour meters
performanccs on nonlinear loads," IEEE Trans. Power Del., vol. 5, pp. 1678, Nov.
1990.



74

[12] Electricity Metering Equipment (a. e.)-Partieular Requirements-Part 23: Static
Meters for Reactive Energy (Class 2 and 3), Dec. 2003.

[13] Electricity Metering Equipment (a.c.)-General Requirements, Tests and Test
Conditions-Part II: Metering Equipment, Nov. 2003.

[14] Electricity Metering Equipment (a.e.)-Particular Requirements-Part 21: Static
Meters for Active Energy (Class I and 2), Mar. 2003.

[15] Electricity Metering Equipment (a.c.)-Particular Rcquirements-Part 21: Static
Mcters for Active Energy (Class 0,2S and 0,5S), Mar. 2003.

[16] Electricity Metering Equipment (AC)-Particular Requirements-Part 24: Static
Meters for Reactive Energy (Classes 0,5 and I), Nov. 2003.

[17] Boehe, H.; Protzmann, M., "Oversampling and boundation of signals", IEEE
7hmsactions on Circuits and Systems I: Fundamental Theory and Applications,
Volume 48, Issue 3, pp:364 - 365, Mar. 2001

[18] Milosavljevic, D.M.; Milenkovie, V.V.; Radenkovie, V.D., "Precise power and
energy measurement", 4th International Conference on Telecommunications in
Modern Satellite, Cable and Broadcasting Services, 1999. Volume 2, pp:637 - 640
vol.2, 13-15 Oct. 1999

[19] AI-Qatari, S.A.; AI-Ali, A.R., "Microcontroller-based automated billing system",
International IEEE/IAS Conference on Industrial Automation and Control: Emerging
Technologies, 1995, pp:517 - 523, 22-27 May 1995

[20] Loss, P.A.V.; Lamego, M.M.; Sousa, G.C.D.; Vieira, J.L.F., "A single phase
microcontroller based energy meter", Instrumentation and MeaSlirement Technology
Conference, 1998. IMTC/98. Conference Proceedings. IEEE, Volume 2, pp:797-800,
18-21, May 1998

[21] Calegari, F., "Electric power/energy measurements for residential single-phase
networks", Industrial International Symposium on Electronics, 2005. ISlE 2005.
Proceedings of the IEEE, Volume 3, Issue, pp: 1087 - 1092,20-23 Jun. 2005

[22] Paranhos, I.; Libano, F.; Melchiors, J.; Mano, 0.; Roenick, A., "Power energy
meter in a low cost hardware/software", 2007 European Conference on Power
Electronics and Applications, pp: 1-9,2-5 Sept. 2007

[23] Driesen, J.; Van Craenenbroeek, T.; Van Dommelen, D , "The registration of
harmonic power by analog and digital power meters'" IEEE Transactions on
Instrumentation and Measurement, Volume 47, Issue I, pp: 195-198, Feb. 1998

[24] Cataliotti, A.; Cosentino, V.; Nuccio, S., "The metrological characterization of
the static meters for reactive energy in the presence of harmonic distortion", 2007
IEEE Instrumentation and Measurement Technology Conference Proceedings, pp: I -
6, 1-3 May 2007



75

[25] Gallo, D.; Landi, C.; Langella, R.; Testa, A., "On the Accuracy of Electric
Energy Revenue Meter Chain Under Non-Sinusoidal Conditions: A Modeling Based
Approach", 2007 IEEE Instrumentation and Measurement Technology Conference
Proceedings, pp: 1-6, 1-3 May 2007

[26] Luo zhikun; Xu zhijian; Zheng yucheng; Lu xinjie, "DFT and DSP-based electric
energy measurement algorithm of harmonic source load", International Conference
on Power System Technology, 2002. Proceedings. PowerCon 2002, Volume 4,
pp:2487 - 2490 volA, 13-17 Oct. 2002

[27] Ovidiu, P.; Gabriel, c., "DSP's based energy meter", 26th International Spring
Seminar on Electronics Technology: Integrated Management of Electronic Materials
Production, 2003. pp:235 - 238,8-11 May 2003

[28] Toral, S.; Quero, J.M.; Franquelo, "Power energy metering based on random
signal processing", Proceedings of the 1998 IEEE International Symposium on
Circuits and Systems, 1998. ISCAS '98. Volume 3, pp: 435 - 438 vo!.3, 31 May-3 Jun.
1998

[29] Luo zhikun; Xu zhijian; Zheng yucheng; Lu xinjie, "DFT and DSP-based electric
energy measurement algorithm of harmonic source load". Proceedings. PowerCon
2002. International Conference on Power System Technology, 2002
Volume 4, Issue, pp: 2487 - 2490 volA, 2002

[30] Dulta, P.; Feldmeier, M.; Paradiso, J.; Culler, D., "Energy Metering for Free:
Augmenting Switching Regulators for Real-Time Monitoring", International
Conference on Information Processing in Sensor Networks, 2008. IPSN '08, pp:283-
294, 22-24 Apr. 2008

[31] Chang Guo-xiang; Wang Cheng-yuan; Guo Dian-ling; Xia Jia-kuan; Liu Xiu-
ling, "Design of an FPGA-Based 3-Phase Sinusoidal PWM Controller"' Control
Conference, 2006. CCC 2006. Chinese Volume, Issue, pp:l886 - 1889, 7-11 Aug.
2006

[32] Zhaoyong Zhou; Guijie Yang; Tiecai Li, "Design and implementation of an
FPGA-based 3-phase sinusoidal PWM VVVF controller", Nineteenth Annual IEEE
Applied Power Electronics Conference and Exposition, 2004. APEC '04. Volume 3,
pp: 1703 - 1708 Vol.3, 2004

[33] Seonil Choi; Govindu, G.; Ju-Wook Jang; Prasanna, V.K., "Energy-efficient and
parameterized designs for fast Fourier transform on FPGAs", IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(lCASSP apos;03). 2003 Volume 2, Issue, pp: 11- 521-4 vo!.2, 6-10 Apr. 2003

[34] Basic Block Diagram of an Electronic Energy
http://en.wikipedia.org/wiki/lmage:Block_Diagram. JPG, Dec. 2005

Meter.

-4

[35] Analog Devices AD73360 Six channel sigma-delta analog to digital converter.
www.analog.com. Apr. 2000

http://en.wikipedia.org/wiki/lmage:Block_Diagram.
http://www.analog.com.


76

[36] hltp://en.wikipedia.org/wiki/Field-programmable-llate_array, 19 Oct. 2008

[37] Electricity metering equipment (a.c.) - Particular Requirements - Part 22: Static
meters for active energy (classes 0,2 Sand 0,5 S), International Electrotechnical
Commission, Jan. 2003



77

Appendix A

PIN configuration of the six channel Analog to Digital Converter AD73360

PIN Use
VINI'I Analog Input to the Positive Terminal of Input

Channel I.
VINNI Analog Input to the Negative Terminal of Input

Channel I.
VINI'2 Analog Input to the Positive Terminal of Input

Channel 2.

VINN2 Analog Input to the Negative Terminal of Input
Channel 2.

VINP3 Analog Input to the Positive Terminal of Input
Channel 3.

VINN3 Analog Input to the Negative Terminal of Input
Channel 3.

VINP4 Analog Input to the Positive Terminal of Input
Channel 4.

VINN4 Analog Input to the Negative Terminal of Input
Channel 4.

VINPS Analog Input to the Positive Terminal of Input
ChannelS.

VINNS Analog Input to the Negative Terminal of Input
ChannelS.

VINP6 Analog Input to the Positive Terminal of Input
Channel 6

VINN6 Analog Input to the Negative Terminal of Input
Channel 6.

REFOUT Buffered Reference Output, which has a nominal
value of 1.25 V or 2.5 V, the value being dependent
on the status of Bit 5VEN (CRC:7).

REFCAP A Bypass Capacitor to AGND2 of 0.1 j.tF is rcquired
for the on-chip reference. The capacitor should be
fixed to this pin. This pin can be overdriven by an
external reference if reouired.

AVDD2 Analog Power SUDDlvConnection.
AGND2 Analog Ground/Substrate Conncction.
DGND Digital Ground/Substrate Connection.
DVDD Digital Power SUDDlvConnection.
RESET Active Low Reset Signal. This input resets the entire

chip, rcsetting the control registers and clearing the
digital
circuitrv.

SCLK Output Serial Clock whose rate determines the serial
transfer rate to/from the AD73360. It is used to clock
data or control information to and from the serial

Continued on next page



78

PIN Usc
port (SPORT). The frequency of SCLK is equal to
the frequency of the
master clock (MCLK) dividcd by an integer
number-this integer number being the product of
the external master
clock rate divider and thc serial clock rate divider.

MCLK Master Clock Input. MCLK IS driven from an
external clock signal. SOO Serial Data Output of the
A073360. Both data and control information may be
output on this pin and are clocked on the positive
edge of SCLK. SOO IS in three-state when no
information is being transmitted and when SE is low.

SDOFS framing Signal Output for SOO Serial Transfers.
The frame sync is one bit wide and it is active one
SCLK period before the first bit (MSB) of each
output word. SOOFS is referenced to the positive
edge of SCLK. SOOFS is in three-state when SE is
low.

SDIFS Framing Signal Input for SOl Serial Transfers. The
frame sync is one bit wide and it is valid one SCLK
period before the first bit (MSB) of each input word.
SOIl'S is sampled on the negative edge of SCLK and
is ignored when SE is low.

SOl Serial Data Input of the A073360. Both data and
control information may be input on this pin and are
clocked on the negative edge of SCLK. SOl IS

ignored when SE is low.
SE SPORT Enable. Asynchronous input enable pin for

the SPORT. When SE is set low by the OSP, the
output pins of the SPORT are three-stated and the
input pins are ignored. SCLK is also disabled
internally in order to decrease power dissipation.
When SE is brought high, the control and data
registers of the SPORT are at their original values
(before SE was brought low); however, the timing
counters and other internal registers are at their reset
values.

AGNDI Analog Ground Connection.
AVDDI Analog Power Supply Connection.



Appendix B

PIN configuration and use of the FSM Block

79

PIN Tvne Width Use
MCLK Output I bit This is the master clock that drives

the ADC. It is usually driven at
around 2Ml-lz

RST Output I bit This is a active low pin that resets
the ADC

SCLK Input I bit I bit input from the ADC to the
FSM. All operations and
communications between the ADC
and FSM are clocked at the
different edges of the SCLK.
Usually SCLK is set at a value of
MCLKlI024 which is changeable
by writing to the registers of the
ADC.

SDOFS Input I bit The SDOFS and SDIFS pin of the
ADC are tied together and
connected to this pin. Whenever a
new data IS available the ADC
produces a pulse in the SDOFS pin.
The FSM detect this pulse and reads
the data through the SDO pm
serially.

SilO Input 1 bit SDO is the serial output from the
ADC and input the FSM. Data from
the ADC to the FSM are transferred
serially through this pin. Whenever
a new pulse is detected by the FSM
in the SDOFS pin, the FSM starts
reading values from the SDO pin at
every negative edge of SCLK.

From _Nios _da ta _address Input 16 bit This is a 16 bit input to the FSM
from the Nios soft processor. This
input is only used when the FSM is
used in memory mode and store
values from the ADC to memory.
This is not used in normal mode
when the FSM transfers each set of
acquired data immediately to the
Nios processor and does not save
them to memory.

RESET Input I bit Reset input for the FSM. Resetting
the FSM, resets all counters and
states of the FSM. The FSM started

Continued on next page



80

PIN Tvne Width Use
again from state zero and
reprograms the ADC again

SE Output I bit I bit output from the FSM that
enables the serial output pin of the
ADC. This is always high expect
when the FSM is in state zero and
rcsets the ADC.

sm Input I bit Single bit input to the ADC. This
line is used to scrially transfer data
from the FSM to the ADC. All
inputs are clocked at the negative
pulse of SCLK and is always 16 bit
long.

To_Nios_drRdy Output I bit This pin is generally low. A pulse is
created by the FSM on this line
whenever all 6 channels data have
been read. This signals the Nios
process that data is rcady to be read
from the 6 data channel connected
to Nios from the FSM

GLEDS Output 2 bit Connected to Green LEDs on the
board, used for debugging purposed

Val Output 16 bit 16 bit output used internally for
debugging purpose

Currents tat Output 4 bit 4 bit registcr that saves and controls
the current state in which the
current state machine is in

Statew Output 4bit 4 bit registcr that shows the internal
state of the state machine. This
register signals whether the FSM is
in rcad state, write state or normal
state

To_Nios_VI Output 32 bit 32 bit register directly connected to
the Nios processor from the FSM.
This register outputs value of the
voltage in channel I after each set
of data are read from the ADC. The
NISO processor reads this pm
directlv as a narallel rel'ister.

To_NillS_ V2 Output 32 bit 32 bit register directly connected to
the Nios processor from the FSM.
This register outputs value of the
voltage in channel 2 after each set
of data are read from the ADC. The
NISO processor reads this pin
directly as a parallel register.

To_Nios_V3 Output 32 bit 32 bit register directly connected to
the Nios processor from the FSM.

Continued on next page



81

PIN Type Width Use
This register outputs value of the
voltage in channel 3 after each set
of data are read from the AOC. The
NISO processor reads this pm
directlv as a narallel register.

To Nios II Output 32 bit 32 bit register directly connected to
- -

the Nios processor from the rSM.
This register outputs value of the
current in channel I after each set
of data are read from the AOC. The
NISO processor reads this pm
directly as a parallel register.

To Nios 12 Output 32 bit 32 bit registcr directly connected to- -
the Nios processor from the FSM.
This register outputs value of the
current in channel 2 after each set
of data are read from the AOC. The
NISO processor reads this pin
directlv as a oarallel reeister.

To_Nios_I3 Output 32 bit 32 bit register directly connected to
the Nios processor from the FSM.
This register outputs value of the
current in channel 3 after each set
of data are read from the AOC. The
NISO processor reads this pm
directlv as a parallel register.

To Nios VI Output 32 bit 32 bit register used only when the- -
FSM is responsible for calculating
VI instead of the Nios processor.
This 32 bit register calculates
instantaneous energy of all these
phases (V Ixl I+ V2x12+ V3xl3)

To_Nios_SampleNo Input 16 bit



82

Appendix C

FSM Veri log Code
71lis is the verilog code that is used to synthesisize the FSM block using Quartus II
sojiware and then implemented on the DE2 board. First the inputs and outputs are
defined and then the state codes are implemented at each positive edge of the master
clock. The read and write operations are performed by the readJsm and write.-fi'1ll
state machines which are also synthesized in this module.

module adcfsm(MCLK, RST, RESET, SE, SOl, SCLK, SDOFS, SDO, GLEDS, Val,
currentstate, staterw, to_Nios_VI, to_Nios_V2, to_Nios_V3, to_Nios_ll, to_Nios_12,
to_Nios_13, to_Nios_ VI, to_Nios_SampleNo, from_Nios_data_address,
to_Nios_DtRdy);

//Define Inputs and Outputs
input MCLK, RST;
output reg RESET;
output reg SE;
output reg SOl;
input SCLK;
input SDOFS;
input SDO;
output [I :0] GLEDS;
output reg [15:0] Val;
output [3 :0] currentstate;
output [3:0] staterw;
output reg [31:0] to_Nios_VI, to_Nios_V2, to_Nios_V3, to_Nios_ll, to_Nios_12,
to_Nios_13, to_Nios_ VI;
output reg [15:0] to_Nios_SampleNo;
input [15:0] from_Nios_data_address;
output reg to_N ios_DtRdy;
reg old_sclk;
wire posedge_sclk= -old_sclk & SCLK;
wire negedge_sclk= old_sclk & -SCLK;
assign currentstate[3:0 ]=state[3 :0];

reg old_sdofs;
wire posedge_sdofs= -old_sdofs & SDOFS;
wire negedge _sdofs= old_sdofs & -SDOFS;

reg SDOline;

assign GLEDS[ I: I]=SCLK;
assign GLEDS[O:O]=SDOFS;

//Defines states and variables for the main state machine
parameter stateO=O, state 1= I, state2=2, state3=3, state4=4, state5=5, state6=6,
state7=7, writereg=8, readdata=9, statewait=1 0, donothing= I I;



reg[3:0] state, nxt_st, opcomplete;
reg[3:0] waitreg;
reg[4:0] bitsent;
reg[ 4:0] bitreceived;
reg[15:0] datatosend /* synthesis keep */;
reg[15:0] datachannell;
reg[ I :0] sdofswritepulseoccured;
reg sdofsreadpulseoccured;
reg readcomplete;
reg writecomplete;
reg reading;
reg writing;
assign staterw[3:0]={2'bO, writing,reading};
always @ (posedge MCLK)

begin: fsmJogic

case (state)
stateO: begin

SE <=0;
RESET <= 0;
reading<=O;
writing<=O;
waitreg <= 4'd4;
nxt_ st <= state! ;

end
state!: begin

SE<= I;
RESET<= I;
waitreg <= 4'dO;
nxt st <= state2'- ,
writing<= I;
datatosend <= 16'b I00000 111000 1000;

end
state2: begin

SE<= I;
RESET <= I;
waitreg <= 4'dO;
nxt_st <= state3;
writing<= I;
datatosend <= 16'b I0000 100 1000 I000;

end
state3: begin

SE <= I;
RESET<= I;
waitreg <= 4'dO;
nxt_st <= state4;
writing<=I;
datatosend <= 16'b I0000 I0 II 000 I000;

end
state4: begin

83

•



RESET<= I;
waitreg <= 4'dO;
nxt_st <= stateS;
writing<=I;
datatosend <= 16'b I0000 110001 I I I I I;

end
stateS: begin

RESET<= I;
waitreg <= 4'dO;
nxt_st <= state6;
writing<= I;
datatosend <= 16'bI000011100111111;

end
state6: begin

RESET <= I;
waitreg <= 4'dO;
nxt_st <= state?;
writing<= I;
datatosend <= 16'b 100000000000000 I;

end
state?: begin

RESET<= I;
waitreg <= 4'dO;
nxt_st <= state?;
reading<=I;
datachannell <= 16'bOOOOOOOOOOOOOOOO;

end
statewait: begin

if(waitreg> 0) waitreg <= waitreg- I;
nxt_st <= nxt_st;

end
donothing: begin

waitreg <= 4'dO;
nxt_st <= nxt_st;
if(writecomplete)

writing<=O;
if(readcomplete)

reading<=O;
end
defau It:nxt_ st<=stateO;

end case
end

//state machine state change control
always @ (posedge MCLK)
begin: state_generation
if(-RST) state=stateO;
else if (reading I writing) state = donothing;
else if (waitreg > 0) state = statewait;
else state = nxt_st;

84



85

end

IISCLK edge detection code
always @ (po sedge MCLK)
begin: main_adcfsm

old_sclk <= SCLK;
old_sdofs <= SDOFS;
SDOline <= SDO;

end

IIMinor FSM writefsm code
reg [15 :0] writedatavalue;
always @ (posedge MCLK)
begin: writefsm

if(writing)
begin
if(sdofswritepulseoccured=2'd2 & posedge_sclk)

begin
SDI <=writedatavalue[ 15];
writedatavalue<=(writedatavalue« I);
bitsent<=(bitsent+] 'd I);
if(bitsent>=5'd 16)

begin
writecomplete<=] ;
end

else
writecomplete<=O;

end
else

begin

if(negedge_sdofs)
begin
sdofswritepuiseoccured<=(sdofswriteplliseoccured+ I);
if(sdofswritepulseoccllred=2'd I)

begin
SDI<=datatosend[ 15];
writedatavalue<=(datatosend«1 );
end

end
end

end
else

begin
writecomplete<=O;
SDI <= 0;
bitsent <=0;
sdofswritepulseoccured <=0;
end

end



//Minor FSM readfsll1 code
reg [15:0] readdatavalue;
reg [15 :0] readdatavalue I;
reg [15:0] readdatavalue2;
reg [15:0] readdatavalue3;
reg [15 :0] readdatavalue4;
reg [15:0] readdatavalue5;
reg [15:0] readdatavalue6;
reg [2:0] readinL6;
always @ (posedge MCLK)

begin: readfsll1
if(reading)

begin
if(sdofsreadpulseoeeured & posedge_selk)

begin
readdatavalue<:{ readdatavalue[ 14:0],SOO};
bitreeeived<:(bitreeeived+ 1'd I);
if(bitreeeived>:5'd 15)

begin
readinL 6<:reading_6+ I;
bitreeeived <:0;
readdatavalue<: 16'bO;
sdofsreadpulseoeeured <:0;
if(reading_ 6=3'dO)

begin
readdatavalue I<:{ readdatavalue[ 14:0],SOO};
end

else if(reading_6=3'd 1)
begin
readdatavalue2<:{ readdatavalue[ 14:0],SOO};
end

else if(reading_6=3'd2)
begin
readdatavalue3<:{ readdatavalue[ 14:0],SOO};
end

else if(reading_6=3'd3)
begin
readdatavalue4<: {readdatavalue[ 14:0],SOO};
end

else if(readinL6=3'd4)
begin
readdatavalue5<: {readdatavalue[ 14:0],SOO};
end

else if(readinL6=3'd5)
begin
readdatavalue6<:{ readdatavalue[ 14:0],SOO};
to_Nios_ VI <:readdatavalue 1;
to_Nios_ V2<:readdatavalue2;

86



else

to_Nios_ V3<=readdatavalue3;
to_Nios_1 I<=readdatavalue4;
to_Nios _12<=readdataval ue5;
to_Nios_J3<={readdatavalue[ 14:0],SDO};
end

else
begin
read data value I<=readdatavalue I;
read data va Iue2 <=readdata val ue2;
readdatavalue3<=readdatavalue3 ;
read data va Iue4<=readdata va Iue4;
read data val ue5 <=readdata va Iue5;
readdata val ue6<=readdata va Iue6;
to_Nios_ VI<=to_Nios_ VI;
to_Nios_ V2<=to_Nios_ V2;
to_Nios_ V3<=to_Nios_ V3;
to_Nios_I I<=to_Nios_I I;
to_Nios _12<=to _Nios _12;
to_Nios_J3<=to _Nios_J3;
end

end
else

begin
readcomplete<=O;
Val<=Val;
reading_6<=reading_ 6;
sdofsreadpu Iseoccured <=sdo fsread pulseoccured;
end

end
else

begin
Val<=Val;
reading_6<=readinL6;
read data val ue<=readdataval ue;

if(negedge_sdofs)
begin
sdofsreadpulseoccured<= I;
end

else
begin
sdo fsreadpu Iseoccured <=sdo fsrcadpu Iseoccured;
end

end
end

begin
readcomplete<=O;

bitreceived <=0;

87



end
endmodllie

readdalavallle<= 16'bO;

sdofsreadplIlseocclIred <=0;
Yal<=Yal;
reading_6<=0;
end

88



89

Appendix D

Pseudo code for energy calculation
This is the pseudo ANSI C code that is usedfor calculating energy fi'om the sampled
data in RAM memory. Six RAM array pointers are passed to the fllnction containing
the discrete sampled signal. The function calcillates RMS vailles from the sampled
data.

void calc rms(short' V I, short' V2, short' V3, short' II, short' 12, short' 13,
double' rmsdata, double' powerData)

{
unsigned long VIt:O, V2t:O, V3[:0, IJt:O, 12[:0, 13t:O; Iitotal summation
unsigned short Vlzc:O, V2zc:O, V3zc:O, Ilzc:O, 12zc:O, 13zc:O; Ilzero crossing
unsigned short VI Ic:O, V2Ic:O, V3Ic:O, IIIc:O, 121c:O,13Ic:O; Illoop count
double VI rms:O, V2rms:O, V3rms:O, II rms:O, 12rms:O, 13rms:O; Ilrms value
unsigned short i:O;
for(i:O; i<:IOOO; itt)

{
IIYI
if(VI [i]>:O && VI [i-I]<O) Ilpositive zero crossing

{
Vlzc++;
}

if(Vlzc=1 && VI[i-l]>O && VI[i]<:O) Iinegative zero crossing
{
Vlzc++;
}

if(Vlzc=l)
{
VIt+:V Itil 'V 1[i]; Iladd voltage until negative crossing arrives
VIIc++; Ilcount how many samples
}

IIY2
if(V2[i]>:O && V2[i-1]<0) Ilpositive zero crossing

{
V2zc++;
}

if(V2zc=1 && V2[i-I]>O && V2[i]<:0) Iinegative zero crossing
{
V2zc++;
}

if(V2zc=l)
{
V2t+:V2[i]'V2[i]; Iladd voltage until negative crossing arrives
V21c++;Ilcount how many samples
}

IIY3
if(V3[i]>:O && V3[i-I]<0) Ilpositive zero crossing



{
V3zc++;
}

if(V3zc=1 && V3[i-I]>0 && V3[i]<=0) Iinegative zero crossing
{
V3zc++;
}

if(V3zc=l)
{
V3t+=V3[i]*V3[i]; Iladd voltage until negative crossing arrives
V31c++; Ilcount how many samples
}

11II
if(I I [i]>=O && II [i-l ]<0) Ilpositivc zero crossing

{
Ilzc++;
}

if(llzc=l && II[i-I]>O && Il[i]<=O) Iinegative zero crossing
{
Ilzc++;
}

if(llzc=l)
{
II t+=ll [i]*II [i]; Iladd voltage until negative crossing arrives
IIlc++; Ilcount how many samples
}

1112
if(l2[i]>=0 && 12[i-I]<0) Ilpositive zero crossing

{
12zc++;
}

if(12zc=1 && 12[i-I ]>0 && 12[i]<=0) Iinegative zero crossing
{
12zc++;
}

if(l2zc=l)
{
12t+=I2[i]*12[i]; Iladd voltage until negative crossing arrives
121c++; Ilcount how many samples
}

1113
if(l3[i]>=0 && 13[i-I]<O) Ilpositive zero crossing

{
13zc++;
}

if(l3zc==1 && 13[i-I]>0 && I3[i]<=0) Iinegative zero crossing
{
13zc++;
}

if(13zc=l)

90



{
13t+=13[i]*13[i]; Iladd voltage until negative crossing arrives
131e++; Ilcount how many samples
}

llinstantenious power calc
powerData[O]+=VI [i]*11[i];
powerData[ I]+=V2[i] *12[i];
powerData[2]+=V3 [i]*13[i];
}
Ilfor loop end

rmsdata[O]=VI rms=sqrt«double)V ItlVlle);
rmsdata[ I]=V2rms=sqrt« double )V2tN2Ic);
rmsdata[3]= V3rms=sqrt( (do uble)V3tlV3Ic);
rmsdata[4]=11 rms=sqrt«double)11 lillIe);
rmsdata[ 5]= 12rms=sqrt( (dou ble )12l1121e);
rmsdata[ 6]= 13rms=sqrt( (do uble)13 lIl3lc);
}

91



92

Appendix E

Code for soft rrT generation with predetermined twiddles
The is the ANSI C code for calculating FFT with predetermined twiddles.
Predetermined means that the sine and cosine factors are pre calculated and are
saved in a data table or array beforehand. This reduces the operational time required
for FFT operation

void software Jft (
alt_16 *lnData, II Input Data ButTer
alt_16 *OutData, II Output Data Buffer
aIt 16 *TwiddleTable II Interleaved Sine/Cosine Table

)
{
alt 16 I;
aIt 16 bit_rev _index;
aIt 16 stagejndex;
alt 16 sub_stage jndex;
alt 16 butterfly jndex;
alt 16 twiddIejndex;
alt 16 twiddle_incr;
alt 16 loop_ element, Ioop_ element_ div2;
alt_32 CosReal,SinReal;
alt 32 TempReal,Templmaginary;
alt 16 reversed_ReaIData[NUM_POINTS);
alt 16 reversed_ImaginaryData[NUM_POINTS);

II Re-order samples using bit reversal
for (i = 0; i < NUM]OINTS; itt) {
bit_rev jndex = bitrev(i);
reversed_RcaIData[bit_rev_index) = InData[2*i);
reversed_lmaginaryData[bit_revjndex) = InData[2*i+ I];

II Loop through the stages of the N Point FFT
for (stagejndex = I; stagejndex <= FFT_SIZE; stagejndex++) {
loop_clement = I«stagejndex;
loop_element_div2 = loop_element/2;

II Initialize twiddle factor lookup indicies
twiddlejndex = 0;
twiddlejncr = I «(FFT _SIZE-stagejndex+I);

II Loop through each sub stage
for(sub_stagc_index 0;

sub_stagejndex++) {
<

II Calculate sine and cosine values from interleaved twiddle table



93

CosReal = TwiddleTable[twiddlejndex];
SinReal = TwiddleTable[twiddle_index+ 1];

II Butterfly calculation
for(buttcrfly_index = sub_stagc_indcx; butterflyjndex < NUM_POINTS;

butterfly_index += loop_element) {
TempReal « Cos Real * revcrsed_RcaIData[butterfly_index +

100p_element_div2] ) +
( Sin Real * reversed_ImaginaryData[butterfly jndex +

100p_elemcnt_div2] )) » PRESCALE;
Templmaginary = « CosReal * rcvcrsed_ImaginaryData[butterfly jndex +

100p_element_div2] ) -
( SinReal * reversed_RealData[butterflyjndex + 100p_c1emcnt_div2] ))

» PRESCALE;

II Perform the butterfly calculation and scale result
for alt_16 type

reversed_ReaIData[butterfly jndex + loop_elemcnt_div2]
reversed_ReaIData[butterfly jndex] - TempReal;

reversed_ImaginaryData[butterfly jndex + loop_elemcnt_div2]
reversed _ImaginaryData[butterfly _index] - Templmaginary;

reversed_ReaIData[butterfly _index] += TempReal;
reverscd _lmaginaryData[butterfly jndex] += Templmaginary;

II Write first half of intcrleaved data to output buffer
if (stagejndex = FFT_SIZE) {
OutData[2*butterfly jndex] = reversed_ReaIData[butterfly jndex];
OutData[2*butterfly jndex+ I] = rcverscd_ImaginaryData[butterfly jndex];
}

}
twiddlejndex += twiddlejncr;
}

}
II Write second half of interleaved data to output buffer
for(i=NUM]OINTS/2;i<NUM]OINTS;i++) {
OutData[2 *i] = reversed_ReaIData[i];
OutData[2* i+ I] = reversed _lmaginaryData[i];

}
}



II Input Data Buffer
II Output Data Buffer
II Interleaved SinelCosine Table

94

Appendix F

Code for hardware based FFT generation with acceleration
IIMain function takes 3 inputs, pointer to input data set, pointer to output data set in
RAM and the pointer to pre calculated twiddle factors.
void software_1ft (

alt_16 *lnput_Data,
alt_16 *Output_Data,
all_16 *Pre_Calc_Table

)
{
all 16
alt 16
alt 16
all 16
all 16
alt 16
alt 16
alt 16
alt 32
all_32
all 16
alt 16

\',
bit_rev jndex;
stage_index;
sub_stagejndex;
butterfly_index;
twiddle_index;
twiddlejncr;
loop_element, loop_element_ div2;
CosReal,SinReal;
Tem pReal, Tem pImagi nary;
reversed _RealData[NUM _POINTS];
reversed _lmaginaryData[NUM ]OINTS];

II Re-order samples using bit reversal
for (i = 0; i < NUM POINTS; itt) {

bit rev index = bitrev(i);
reversed_RealData[bit_rev jndex 1 = Input_Data[2* i];
reversed_ImaginaryData[bit_rev _index] = Input_ Data[2*i+ I];

}

II Loop through the stages of the N Point FFT
for (stage_index = I; stagejndex <= FFT_SIZE; stagejndex++) {

loop_element = I «stage_index;
100p_element_div2 = 100p_element/2;

II Initialize twiddle factor lookup indicies
twiddle_index = 0;
twiddlejncr = I «(FFT _SIZE-stagejndex+ I);

II Loop through each sub stage
for(sub _stage jndex = 0; sub_stage_index < loop _element_div2;

sub_stage_index++) {

II Calculate sine and cosine values from interleaved twiddle table
CosReal = Pre_Calc _Table[twiddlejndex];
SinReal = Pre_Calc_ Table[twiddle_index+ I];



95

II Butterfly calculation
for(butterfly jndex = sub_stage_index; butterfly_index < NUM_POINTS;

butterfly-index += loop_element) {
TempReal (( CosReal ' reversed_RealData[butterflyjndex +

100p_element_div2]) +
( SinReal ' reversed_ImaginaryData[butterfly-index +

100p_element_div2]))» PRESCALE;
TempImaginary = (( Cos Real ' reversed_lmaginaryData[butterfly_index +

100p_element_div2]) -
( SinReal ' reversed_ReaIData[buttcrfly_index + 100p_clement_div2] ))

» PRESCALE;

II Perform the butterfly calculation and scale result

,

for alt_16 type
reversed_RealData[butterfly jndex + 100p_element_div2]

reversed _ReaIData[butterfly jndex] - TempReal;
reversed_ImaginaryData[butterfly jndex + loop_element_div2]

reversed_lmaginaryData[butterfly _index] - Templmaginary;
reversed_ReaIData[butterflyjndex] += TempReal;
reversed_ImaginaryData[butterfly_index] += Tcmplmaginary;

II Write first half of interlcaved data to output buffer
if (stagejndex = FFT_SIZE) {
Output_Data[2 'butterfly_index] = reversed _RealData[butterfly jndex];
Output_Data[2 'butterfly _index+ I]

reversed _lmaginaryData[butterfly jndex];
}

}
twiddle index += twiddle jncr;

}
}
II Write second half of interleaved data to output buffer
for(i=NUM]OINTS/2;i<NUM]OINTS;i++) (
Output_ Data[2 'i] = reversed_RealData[i);
Output_Data[2'i+I] = reversed_ImaginaryData[i];

}
}

=

=



96

Appendix G

Code for hardware based FFT generation with acceleration
IIMain function takes 2 inputs here (pre-calculated table is no longer needed), pointer
to input data set and pointer to output data set in RAM. Based on Altera hardware
acceleration code.

void hardware _optim ized_m(
alt_16 * _restrict_Input_Data, II real part of input data
alt_16 * _restrict_ Output_Data II real part of output data

)

{
IIDeciare all variables at unsigned 16 bit numbers
alt ul6
alt_ul6
alt ul6
alt ul6
alt ul6
alt ul6
alt ul6
alt ul6

twiddle_index;
twiddle_incr;
loop_clement;
loop_element_div2;
I.,
sub_stage_index;
stage_index;
butterfly_index;

IIAgain declared as 16 bit unsigned number but as restricted pointer
II Cosine and Sine Tables
alt_16 * restrict_ Cos_Table;
alt_16 * _restrict_ Sin_Table;
IIReal data buffers
alt 16 * restrict Real_ Data_Read;
alt 16 * _restrict_ Real_Data_Read_by_Port2; IIRAMs are declared as dual port
alt 16 * _restriet_ Real_Data_ Write;
alt_16 * _restrict_ Real_Data_ Write_by_Port2; IIRAMs are declared as dual port
/!Imaginary data buffers
alt_16 * _restrict_lmLData_Read;
alt_16 * _restrict_lmg_Data_Read_by_Port2; llRAMs are declared as dual port
alt_16 * _restrict_lmg_Data_ Write;
alt_16 * _restrict_lmg_Data_ Write_by]ort2; IIRAMs are declared as dual port
IIPointers to in and out buffers in main memory
alt_u32 * _restrict_lnput_Ptr_tmp = (alt_u32 *)lnput_Data;
alt_u32 * _restrict_ Output]tUmp = (alt_u32 *)Output_Data;

II Temporary registers for the input stage
alUI! 6 bit_rev jndex;
alU,32 Input_tmp;

II Registers for the calculation stage
alt_16 CosReal;
alU6 SinReal;



97

alt_16 tRealData;
alt_16 t1magData;
alt_16 temp I, temp2, temp3, temp4;

IICounters for the input and output stages
alt_u 16 Input_Counter, Output_Counter;

IIPoint the ping pong buffers to the appropriate buffer location as defined in sorc
Real_Data _Read = BufferRAM I;
Real_Data_Read_by]ort2 = BufferRAM I;
Real_Data_ Write = BufferRAM2;
Real_Data_ Write_by ]ort2 = BufferRAM2;

ImLData_Read = BufferRAM3;
Img_Data_Read_by]ort2 = BufferRAM3;
Img_Data_ Write = BufferRAM4;
ImLData_ Write_by ]ort2 = BufferRAM4;

II Point the Cosine and Sine Table registers to the appropriate on-chip memory
II as defined in the sorc builder.
Cos_Table = CosRAM;
SinJable = SinRAM;

II Stage I: Data buffering
II Read data from input buffer and split into read and imaginary part. Buffer write
II operation occurs simultaneously because of acceleration. NUM_rOINTS is the
Iitotal number of points as defined globally before.
for (Input_Counter = 0; Input_Counter < NUM_rOINTS; Input_Counter++)
{
bit_rev _index = bitrev(lnput_ Counter);
Input_tmp = Input]tr_tmp[lnput_Counter];
Real_Data_Read[bit_rev jndex] = (alt_16)(lnput_tmp & OxOOOOFFFF);
Img_Data_Read[bit_revjndex] = (alU 6)((Inpuump & OxFFFFOOOO»> 16);
}

II Stage 2: FFT Calculations. Go through the various butterfly stages
for (stagejndex = I; stagejndex <= FFT_SIZE; stagejndex++)
{
loop_element = I«stage jndex;
100p_element_div2 = 100p_element/2;
twiddle_index = 0;
twiddle_incr = 1 «(FFT _SIZE-stagejndex);
for(sub_stagejndex 0; sub_stage_index < 100p_element_div2;

sub_stage _index++)
{
CosReal = Cos_Table[twiddle_index];
SinReal = Sin_Table[twiddlejndex];

II Process butterflies with the same twiddle factors



98

for(butterflyjndex = sub_stagejndex; butterfly_index < NUM]OINTS;
butterfly_index += loop_element) {

1= butterflyjndex + 100p_element_div2;

IIAssignment registers are executed concurrently in accelerator
tempi = Real_Data_Read[I];
temp2 = Img_Data_Read[I];
temp3 = Real_Data_Read_by]ort2[bulterfly_index];
temp4 = ImL Data_Read _ by]ort2[butterfly jndex];

II Multiplication of 16 bits produce 32 bits so downscaling by bit shifting is
I I necessary
II All different registers, so all reads occur simultaneously.
tRealData = (( CosReal * temp I ) + ( SinReal * temp2 ))» PRESCALE;
t1magData = (( CosReal * temp2 ) - ( SinReal * temp I ))» PRESCALE;

II All different rcgisters, so all reads and write occur concurrcntly.
Real_Data_ Write[l] = temp3 - tRealData;
Img_Data_ Write[l] = temp4 - tlmagData;
Real_Data_ Write_by_Port2[butterfly_index] = temp3 + tRealData;
Img_ Data_Write _by _Port2[butterfly jndex] = tcmp4 + tlmagData;
}

twiddle_index += twiddlejncr;
}
II Main acceleration occurs by ping-pong buffering. At the end of eaeh iteration
II stage we swap the ping-pong buffers. We do this with a straight assignments.
II We need to have the Real_Data_ Write buffer point to the address in memory
II where BufTeredRealCalcRead was stored on the previous pass. Since the
II memory buffers are dual port we simply point BufferedRealCalcWrite to the
II location where Real_Data_Read_by_Port2 was pointing tol in the previous pass.
Real_Data_Read = Real_Data_ Write;
Real_Data_ Write = Real_Data_Read_by]ort2;
Real_Data_Read_by_Port2 = Real_Data_Read;
ReaLData_ Write_by _Port2 = Real_Data_ Write;
Img_Data_Read = Img_Data_ Write;
Img_Data_ Write = Img_Data_Read_by]ort2;
Img_Data_Read_by]ort2 = Img_Data_Read;
Img_Data_ Write_by_Port2 = ImLData_ Write;

II Stage 3: Write results baek to RAM. Read in 32bits and silit.
for(Output_ Counter = 0; Output_Counter < NUM]OINTS; Output_ Counter++)
{
Output-"tr _tmp[ Output_Counter] = (((alt_u32)(Img_ Data _ Read[Output_ Counter])

& OxOOOOFFFF)«16) I ((aIUI32)Real_Data]ead[Output_Counter] &
OxOOOOFFFF);
}

}


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111

