
ROBUST AND REACTIVE SCHEDULING FOR
MULTI-OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

BIJOY DRIPTA BARUA CHOWDHURY

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING &

ROBUST AND REACTIVE SCHEDULING FOR
OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

BIJOY DRIPTA BARUA CHOWDHURY

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

DHAKA-1000, BANGLADESH

June, 2015

ROBUST AND REACTIVE SCHEDULING FOR
OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
TECHNOLOGY

ROBUST AND REACTIVE SCHEDULING FOR
MULTI-OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

BIJOY DRIPTA BARUA CHOWDHURY

A thesis submitted to the Department of Industrial &
Bangladesh University of Engineering & technology, in partial fulfillment of the

requirements for the degree of Master of Science in Industrial & Production

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

ii

ROBUST AND REACTIVE SCHEDULING FOR
OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

BY

BIJOY DRIPTA BARUA CHOWDHURY

A thesis submitted to the Department of Industrial & Production Engineering,
Bangladesh University of Engineering & technology, in partial fulfillment of the

requirements for the degree of Master of Science in Industrial & Production
Engineering

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

DHAKA-1000, BANGLADESH

June, 2015

ROBUST AND REACTIVE SCHEDULING FOR
OBJECTIVE FLEXIBLE JOB SHOP PROBLEMS WITH

UNPREDICTED ARRIVAL OF NEW JOBS

Production Engineering,
Bangladesh University of Engineering & technology, in partial fulfillment of the

requirements for the degree of Master of Science in Industrial & Production

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

iii

CERTIFICATE OF APPROVAL

The thesis titled “Robust and Reactive Scheduling for Multi-Objective Flexible
Job Shop Problems with Unpredicted Arrival of New Jobs” submitted by Bijoy
Dripta Barua Chowdhury, Student no: 0413082017 P has been accepted as
satisfactory in partial fulfillment of the requirements for the degree of Master of
Science in Industrial & Production Engineering on June 21, 2015.

BOARD OF EXAMINERS

Dr. Ferdous Sarwar
Assistant Professor
Department of IPE, BUET

Chairman
Supervisor

Head
Department of IPE, BUET

Member
(Ex-Officio)

Dr. M. Ahsan Akhtar Hasin
Professor
Department of IPE, BUET

Member

Dr. Shuva Ghose
Assistant Professor
Department of IPE, BUET

Member

Dr. Mohammad Iqbal
Professor
Department of IPE, SUST

Member (External)

iv

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

 Bijoy Dripta Barua Chowdhury

v

To my family

vi

ACKNOWLEDGEMENT

At the very beginning the author expresses his sincere gratitude and profound

indebtness to his thesis supervisor Dr. Ferdous Sarwar, Assistant Professor,

Department of Industrial & Production Engineering, BUET, Dhaka-1000, under

whose continuous supervision this thesis was carried out. His affectionate guidance,

valuable suggestions and inspirations throughout this work made this study possible.

The author also expresses his gratitude to Mr. Kayser Abdullah, Lecturer, Department

of Computer Science and Engineering for his assistance in coding the constraint

equation of the mathematical model proposed in this thesis.

Finally, the author would like to thank all of his colleagues and friends for their co-

operation and motivation to complete the thesis timely. And the author would also

like to extend his thanks to his parents whose continuous inspiration, sacrifice and

support encouraged him to complete the thesis successfully.

vii

ABSTRACT

Scheduling in production systems concludes the proper coordination of activities in

order to increase productivity and reduce operational costs. In dynamic manufacturing

environments, scheduling solutions based on the classical objectives such as

makespan will not be sufficient. In fact, because of random disruptions that may occur

in the system, additional criteria that have capability to counter such disruptions

should be considered. To maintain system performance effective, rescheduling is

often used to counteract the effects of random disruptions.

In practical production environments, the scheduling process starts with determining

an initial schedule. Then, when a disruption arises, the initial schedule should be

revised in order to keep its feasibility and performance quality. The type of scheduling

that is actually carried out in shops is known as real schedule. As it is clear, real

schedule can be different from the initial schedule. This difference depends on the

level of failure and disruption and also the changes of the setting. There are two

policies to achieve a high level of system performance for the real schedule after

occurring of any disruption. These strategies are entitled reactive scheduling and

proactive scheduling.

The “reactive approach” does not consider the uncertainty when an initial schedule is

determined. However, when a random event occurs, it modifies the initial schedule

and performs the necessary reaction to obtain better result. This reaction can be in the

form of modification and improvement of the initial schedule or the formulation of a

totally-new schedule. On the other hand, the “proactive approach” considers the

stochastic and unexpected events to create the initial schedule. In this approach, in

addition to classical criteria such as makespan and tardiness, performance measures

such as robustness and stability is also considered to establish a schedule.

Optimization of stability is concerned with the deviation of the modified schedule

relative to the initial schedule. Optimization of robustness is concerned with the

different in terms of objective function (performance criteria) between initial and

modified schedules. An integrated proactive–reactive approach can also be considered

to generate better and practical results.

In this thesis, a two-step proactive–reactive method is presented for flexible job shop

scheduling to achieve a more stable and robust solution. In the first step, it is

attempted to generate an initially robust schedule by using robust optimization

approach. The initial robust schedule handles the uncertain processing times. In the

second step, when a random disruption occurs (which is the arrival of an unpredicted

new job), an appropriate reaction is adopted to determine the best modified schedule

viii

TABLE OF CONTENT

 Page no.

CERTIFICATE OF APPROVAL iii

CANDIDATE’S DECLARATION iv

ACKNOWLEDGEMENT vi

ABSTRACT vii

TABLE OF CONTENT viii-x

LIST OF FIGURES xi-xii

LIST OF TABLES xiii

NOMENCLATURE xiv

ABBREVIATIONS xv

Chapter I : Introduction 1-4

 1.1 Rationale of the Study 1

 1.2 Objectives with Specific Aims and Possible Outcomes 3

 1.3 Outline of the Methodology 3

Chapter II: Literature Review 5-17

Chapter III: Model Formulation 18-29

 3.1 Problem Identification 18

 3.2 Problem Definition 19

 3.2.1 Proactive Scheduling step 19

 3.2.1.1 Assumptions of the study 19

 3.2.1.2 Mathematical Modeling 20

 3.2.1.2.1 Objective function for robust scheduling 22

 3.2.1.2.2 Constraints for assigning and sequencing of
operations to available processing positions

22

 3.2.1.2.3 Machine eligibility constraints 23

 3.2.1.2.4 Technical/ logical precedence constraints among
operations of a part

23

 3.2.1.2.5 Machine availability constraints 24

 3.2.1.2.6 Machine non-interference constraints 24

ix

 3.2.1.2.7 Constraints for capturing the value of objective
function

26

 3.2.1.2.8 Non-negativity constraints 26

 3.2.1.2.9 Constraints for demonstrating the nature of the
decision variables

26

 3.2.1.3 Reactive scheduling step 27

Chapter IV : Flexible Job Shop Scheduling using Branch and Cut

Method

30-44

4.1 Branch and Bound Algorithm 30

 4.1.1 Search Strategies 31

 4.1.2 Node Selection 32

 4.1.3 Branch Selection 34

 4.1.4 A General Branch and Bound Procedure 34

4.2 Branch and Cut 36

 4.2.1 Dantzig's Cutting Plane Method 40

 4.2.2 Gomory's Cutting Plane Methods 41

 4.2.3 Chvátal-Gomory’s cutting plane method 42

 4.2.4 Model Optimization Using Branch and cut Algorithm 42

Chapter V: Flexible Job Shop Scheduling using Genetic Algorithm 45-60

5.1 Genetic Algorithm 46

 5.1.1 Pseudo-code and Flow Chart for Genetic GA 47

 5.1.2 Basic Components of GA 49

 5.1.2.1 Chromosome Encoding 49

 5.1.2.2 Fitness Function 50

 5.1.2.3 Choosing an Initial Population 51

 5.1.2.4 Reproduction Operators 51

 5.1.2.5 Genetic Algorithm Control Parameters 53

 5.1.3 Constraints Handling in GA 54

 5.1.3.1 Direct Constraint Handling 54

 5.1.3.2 Indirect Constraint Handling 55

 5.1.4 Reasons to Choose GA 55

5.2 Model optimization using GA 56

 5.2.1 Population Options 57

x

 5.2.3 Selection Options 58

 5.2.4 Reproduction Options 58

 5.2.5 Mutation Options 59

 5.2.6 Stopping Criteria Options 59

 5.2.7 Fitness function 60

Chapter VI: Results and Discussions 61-93

 6.1 Numerical Example 61

 6.1.1Optimization using Branch-and-Cut Algorithm 62

 6.1.1.1 First stage optimization-Developing a Robust Schedule 62

 6.1.1.1.1 Output of stage 1 66

 6.1.1.2 Second stage optimization-Reactive Scheduling 73

 6.1.1.2.1 Output of stage 2 74

 6.1.2 Optimization using Genetic Algorithm 80

 6.1.2.1 First stage optimization-Developing a Robust Schedule(GA) 80

 6.1.2.1.1 Output of stage 1(GA) 81

 6.1.1.2 Second stage optimization-Reactive Scheduling(GA) 87

 6.1.1.2.1 Output of stage 2(GA) 87

Chapter VII: Conclusions and Future Research 94-95

 7.1 Conclusions 94

 7.2 Recommendations 95

References 96-104

Appendices 105-125

xi

LIST OF FIGURES

Figure no. Title Page no.

Figure 4.1 Depth-first search vs. Breadth-first search
strategy

31

Figure 4.2 Branch and Bound algorithm 35

Figure 4.3 Branch and Cut Algorithm 39

Figure 5.1 Flow chart of genetic algorithm 48

Figure 5.2 Tree encoding for equation: (+ x (/ 5 y))

50

Figure 6.1 Flow chart of optimization steps 64

Figure 6.2 Objective versus Number of nodes at scenario
1of stage 1

68

Figure 6.3 Objective versus Number of nodes at scenario 2
of stage 1

68

Figure 6.4 Gantt chart at scenario 1 of stage 1-Machine vs.
Time

69

Figure 6.5 Gantt chart at scenario 1 of stage 1-Job vs. Time 70

Figure 6.6 Gantt chart at scenario 2 of stage 1-Machine vs.
Time

71

Figure 6.7 Gantt chart at scenario 2 of stage 1-Job vs. Time 72

Figure 6.8 Objective versus Number of nodes at scenario
1of stage 2

75

Figure 6.9 Objective versus Number of nodes at scenario
2of stage 2

75

Figure 6.10 Gantt chart at scenario 1 of stage 2-Machine vs.
Time

76

Figure 6.11 Gantt chart at scenario 1 of stage 2-Job vs. Time

77

Figure 6.12 Gantt chart at scenario 2 of stage 2-Machine vs.
Time

78

Figure 6.13 Gantt chart at scenario 2 of stage 2-Job vs. Time 79

Figure 6.14 Objective versus Number of nodes at scenario
1of stage 1(GA)

82

Figure 6.15 Objective versus Number of nodes at scenario 2
of stage 1(GA)

82

Figure 6.16 Gantt chart at scenario 1 of stage 1-Machine vs.
Time(GA)

83

xii

Figure 6.17 Gantt chart at scenario 1 of stage 1-Job vs.
Time(GA)

84

Figure 6.18 Gantt chart at scenario 2 of stage 1-Machine vs.
Time(GA)

85

Figure 6.19 Gantt chart at scenario 2 of stage 1-Job vs.
Time(GA)

86

Figure 6.20 Objective versus Number of nodes at scenario
1of stage 2

88

Figure 6.21 Objective versus Number of nodes at scenario
2of stage 2(GA)

88

Figure 6.22 Gantt chart at scenario 1 of stage 2-Machine vs.
Time(GA)

89

Figure 6.23 Gantt chart at scenario 1 of stage 2-Job vs.
Time(GA)

90

Figure 6.24 Gantt chart at scenario 2 of stage 2-Machine vs.
Time(GA)

91

Figure 6.25 Gantt chart at scenario 2 of stage 2-Job vs.
Time(GA)

92

xiii

LIST OF TABLES

Table no. Title Page no.

Table 5.1 Input Arguments of GA 56

Table 6.1
Processing time of different operations at

scenario 1
62

Table 6.2
Processing time of different operations at

scenario 2
63

Table 6.3 Results of scenario 1 at stage 1 66

Table 6.4 Results of scenario 2 at stage 1 67

Table 6.5
Processing time of different operations at

scenario 1 in stage 2
73

Table 6.6 Machine availability time 73

Table 6.7 Results of scenario 1 at stage 2 74

Table 6.8 Results of scenario 2 at stage 2 74

Table 6.9 Objective function values 75

Table 6.10 Results of scenario 1 at stage 1(GA) 81

Table 6.11 Results of scenario 1 at stage 1(GA) 81

Table 6.12 Results of scenario 1 at stage 1(GA) 87

Table 6.13 Results of scenario 1 at stage 1(GA) 87

Table 6.14 Objective function values (GA) 88

xiv

NOMENCLATURE

�� ��� �� ��� ���������� �� ��� �, � � ��

��� ��� �� ���������� ���������� �� ��� � �� ���� �

� ��� �� ��� ����, � � �

�� ��� �� ���������� ���� �� ���� �, � � ���� ������ �� �

� ��� �� ��� ���ℎ���� � � �

��,� , (��,�) ��� �� ���ℎ���� ������� �� ������� ��������� � (ℎ) �� ��� � (�)

� ��� �� ��� ���������

� , ℎ ������� ��� ��������� �� ���

�, � ������� ��� ���

� ������� ��� ���ℎ���

� , �΄ ������� ��� ���������

� ���� �� �ℎ� ������� �� �ℎ� ����������� ���

�� ����� ������ �� ���������� �� ��� �

� ����� ������ �� ����

� ����� �� �� ���ℎ����

��,�,�
� ���������� ���� �� ��������� � �� ��� � �� ���ℎ��� � �� �������� �

�� ����������� �� ��������� �������� �

� � ������������ ����� ������

�� ���� �� �ℎ��ℎ �������� � �� ��������� ��� �������� �ℎ� ���� ���������

�, (�), {�}� ��������� ����ℎ� �� ��������, (���������), {����������}

��,�
� ���������� ���� �� ��������� � �� ��� � �� �������� �

� ��� �������� �� ��� ���� �� ������� ���������� ����

��,�,� �
1, �� ��������� � �� ��� � �� ��������� �� �������� �

0, ��ℎ������
�

��,�,�,� �
1, �� ��������� � �� ��� � �� ��������� ����� ��������� ℎ �� ��� �

0, ��ℎ������
�

��,�,� �
1, �� ��������� � �� ��� � �� ������� �� �� ��������� �� ���ℎ��� �

0, ��ℎ������
�

xv

ABBREVIATIONS

FJSP Flexible Job Shop Problem
MIP Mixed-Integer programming
MINLP Mixed-Integer nonlinear programming
VLSI Very large scale integration
MOGA Multi-objective genetic algorithm

Page | 1

CHAPTER I

INTRODUCTION

Scheduling is a decision-making process that is used on a regular basis in many

manufacturing and service industries. It deals with the allocation of resources to tasks

over a given time periods and its goal is to optimize one or more objectives.

The resources and tasks in an organization can take many different forms. The

resources may be machines in a workshop, runways at an airport, crews at a

construction site, processing units in a computing environment, and so on. The tasks

maybe operations in a production process, take-offs and landings at an airport, stages

in a construction project, executions of computer programs, and so on. Each task may

have a certain priority level, an earliest possible starting time and a due date. The

objectives can also take different forms. One objective may be minimization of

completion time of the last task and another may be minimization of the number of

tasks completed after their respective due dates.

Scheduling as a decision-making process plays an important role in most

manufacturing and production systems as well as in most information processing

environments. It is also important in transportation and distribution settings and in

other types of service industries. Therefore scheduling problems have always drawn

the attention of the researchers due to its complexity to solve and applicability in

numerous areas.

1.1 Rationale of the study:

Thirst for increased productivity in the modern business world has spurred

manufacturing practitioners to seek every single opportunity for cost reduction

and profit generation [1]. Over the last six decades, effective production

scheduling mechanisms have been recognized to be increasing productivity and

machine utilization. Algorithmic and scientific production scheduling came into

existence once the first production scheduling heuristic technique was proposed by

[2]. After that, a great deal of efforts has been spent on developing optimal production

schedule, and countless papers have already published in the scholarly journals.

Page | 2

Amongst all scheduling problems, Job Shop Scheduling is considered as one of the

hardest problem because of its nature which even becomes much harder to solve with

the introduction of unexpected events like machine failure, urgent job arrival, job

cancellation, due date change etc. In the real manufacturing environment, scheduling

is an ongoing reactive process where the presences of these unexpected events are

inevitable. The recent comprehensive survey on dynamic job shop scheduling

problems [3] summarizes the principles of several dynamic scheduling techniques. In

the stochastic and dynamic manufacturing environments, scheduling solutions based

on the classical objectives such as makespan is not sufficient. In fact, because of

random disruptions that may occur in the system, additional criteria that have the

capability to counter stochastic disruptions should be considered. To maintain system

performance effectively, rescheduling is often used to counteract the effects of

random disruptions. However, to minimize the effect of rescheduling proactive

approach is adopted to make a robust schedule which is insensitive to such

disruptions.

Most scheduling problems including FJSP have been considered as NP-hard. Hence,

heuristic and meta-heuristic approaches have received much attention in the literature

in addition to optimizing several performance measures [4-6]. In the recent literature,

two new criteria have drawn the attention of researchers for their consideration:

robustness and stability. Daniels and Kouvelis generate a robust job sequence for a

single machine under processing time variability such that the degradation of the

performance measure under the worst possible scenario is minimized [7]. In [8, 9]

stability was enhanced by inserting additional idle times while generating schedules.

The work at [10] is also on generating stable schedules considering the total tardiness

as the performance measure. Jensen tried to improve the robustness and flexibility of

the job shop schedules when minimizing maximum tardiness, summed tardiness, total

flow time, and makespan measures [11]. Some robustness and stability measures were

discussed at [12]. These measures were further used at [13] for optimizing the

schedule robustness and stability. A robust and stable scheduling of a single machine

with random machine breakdowns was presented on [14] which is further extended in

the study at [15] in the FJSP using a two-stage hybrid genetic algorithm.

Page | 3

Though some research works have already been done on these two criterions, there is

still a lot of scopes to improve the scheduling methodology coupled with introducing

new factors to make the schedule more adaptive in the real manufacturing

environment. Therefore, a new multi-objective robust and flexible job shop schedule

in addition to considering unexpected arrival of jobs and processing time variability at

different scenarios is developed.

1.2 Objectives with Specific Aims and Possible Outcomes:

The specific objectives of this research are

i. To develop a multi-objective reactive flexible job shop scheduling model to

minimize the makespan and maximize the robustness and stability.

ii. To integrate scenario based processing time variation.

iii. To incorporate a newly arrived unpredicted job into the system by generating a

new schedule after the arrival.

iv. To solve the proposed optimization model with the help of a suitable

algorithm and programming software.

The possible outcome of this research are,

i. Validated mathematical model of Flexible Job Shop.

ii. Gantt chart of scheduled job

iii. Rescheduled jobs after the arrival of new one.

1.3 Outline of Methodology:

This research work is theoretical in nature. A mathematical FJSP model is developed

considering some factors significantly affecting the scheduling decisions such as

sequence of operation, makespan, robustness and stability of the overall system. The

model is composed of some mathematical equations used to determine the numerical

values of some decision variables (sequence of operations at different machines,

completion time of each operation and job). The research methodology is outlined as

follows:

Page | 4

i. The three objective functions are developed for minimizing the makespan and

maximizing the robustness and stability.

ii. The probability of occurring a certain scenario to incorporate the processing

time variability is assumed and the processing time at different scenarios are

considered available from the historical data.

iii. The different necessary constraints are developed to ensure that the proposed

model is a bounded one.

iv. Branch and Cut and Genetic algorithm are selected to solve the proposed

multi-objective optimization model.

v. Finally, the model will be illustrated and validated with several numerical

examples.

Page | 5

CHAPTER II

LITERATURE REVIEW

The job-shop scheduling problem (JSP) has been well studied in the manufacturing

systems field during the past few decades. The classic JSP, which is a combinatorial

optimization problem, is strongly NP-hard. An extension of the JSP, the flexible job-

shop scheduling problem (FJSP) has received considerable attention in the field. The

FJSP consists of two sub-problems, including machine assignment and operation

sequence. The FJSP is concerned with finding the most efficient assignment and

operation sequence of n jobs in m machines. The output of a FJSP is a Gantt Chart

which specifies the sequence of operations at different machines. The mathematical

modeling of FJSP is complex, because there exist several criteria that must be taken

into consideration when formulating and solving the model. In case of multi-objective

FJSP model, there may be some criteria which are conflicting, perhaps non-

commensurate. This imposes pressure upon the researchers to implement an

appropriate and realistic mathematical modeling of a FJSP.

Some research papers have been studied to understand the background of the

study. Many factors have been considered to develop the previous FJSP

models. Different methodologies have been followed to develop and solve the

models. In this section, some research papers have been studied to understand the

factors and methodologies considered by researchers.

The FJSP is a more complex version of the JSP and is also strongly NP-hard [16].

Bruker and Schlie [17] were among the first to address the FJSP and proposed a

polynomial algorithm to the problems with two jobs. Most existing research addressed

this problem with the assumption that the parameters are known and deterministic.

However, in most real-world environments, scheduling is an ongoing reactive process

where the presence of a variety of unexpected disruptions is usually inevitable, and

continually forces reconsideration and revision of pre-established schedules. Many of

the approaches developed to solve the problem of static scheduling are often

impractical in real-world environments, and the near-optimal schedules with respect

to the estimated data may become obsolete when they are released to the shop floor.

Examples of such real-time events include machine failures, arrival of urgent jobs,

Page | 6

due date changes, etc. Mac Carthy and Liu [18] addressed the nature of the gap

between the scheduling theory and scheduling practice, the failure of classical

scheduling theory to respond to the needs of practical environments, and recent trends

in scheduling research which attempt to make it more relevant and applicable. Shukla

and Chen [19], in their comprehensive survey on intelligent real-time control in

flexible manufacturing systems, stated that comparison of theory and scheduling

practice showed very little correspondence between the two. Cowling and Johansson

[20] addressed an important gap between scheduling theory and practice, and stated

that scheduling models and algorithms are unable to make use of real-time

information.

As mentioned previously, most scheduling problems including FJSP have been

considered as NP-hard [16]. Hence, heuristic and meta-heuristic approaches have

received much attention in literature. Numerous papers addressed stochastic single

machine with uncertain jobs processing times. Such as the work of Daniels and

Kouvelis in [7] where they formalized the robust scheduling concept for scheduling

situations with uncertain or variable processing times. They illustrated the

development of solution approaches for a robust scheduling problem by considering a

single-machine environment where the performance criterion of interest is the total

flow time over all jobs. They defined two measures of schedule robustness,

formulated the robust scheduling problem, established its complexity, described

properties of the optimal schedule, and finally presented exact and heuristic solution

procedures. They also reported extensive computational results to demonstrate the

efficiency and effectiveness of the proposed solution procedures.

Kouvelis and Daniels extended their work for two-machine flow shop environment in

which the processing times of jobs were uncertain and the performance measure of

interest was system makespan. They presented a measure of schedule robustness that

explicitly considers the risk of poor system performance over all potential realizations

of job processing times. Two alternative frameworks for structuring processing time

uncertainty were discussed by them. For each case, they defined the robust scheduling

problem, established problem complexity, discussed properties of robust schedules,

and developed exact and heuristic solution approaches. Computational results

Page | 7

indicated that robust, schedules provide effective hedges against processing time

uncertainty while maintaining excellent expected makespan performance.

Michel L. Pinedo, who is a very familiar researcher in the field of studying scheduling

problems have conducted numerous researches on various scheduling problems. One

of his most famous book, “Scheduling Theory, Algorithms and Systems” [21] he has

included almost all types of scheduling problems, discussed about their complexities

and some solution methodologies. In a work previously done by him [22], a stochastic

scheduling model was considered where all parameters like processing time, release

dates, due dates etc. were independent random variables. They were studied the

computational complexities of determining optimal job shop policies for the

stochastic scheduling model and illustrated it by some examples. The most important

outcome of this research was researchers showed that some optimal policies can be

determined by polynomial time algorithms.

Möhring, Radermacher, and Weiss [23] introduced the finite class of set strategies for

stochastic scheduling problems. They showed that the set strategies provide

satisfactory stability behavior compared to stable classes of strategies such as

Evolution Strategies (ES) and Modular Evolution Strategies (MES) strategies and list-

scheduling strategies such as Longest Expected Processing Time (LEPT), Shortest

Expected Processing Time (SEPT) and other more complicated priority-type

strategies.

Montemanni and Roberto[24] considered a version of the total flow time single

machine scheduling problem where uncertainty about processing times is taken into

account. They adopted the interval data model, where finite intervals of (equally

possible) values for the completion time of each job are given.. Namely an interval of

equally possible processing times is considered for each job, and optimization is

carried out according to a robustness criterion. This model was originally proposed by

Daniels and Kouvelis[25]. They proposed the first mixed integer linear programming

formulation for the resulting optimization problem and explained how some known

preprocessing rules can be translated into valid inequalities for this formulation.

A robust scheduling method was proposed to solve uncertain scheduling problems by

Wu [26] where an uncertain scheduling problem is modeled by a set of workflow

Page | 8

models, and then a scheduling scheme (solution) of the problem was evaluated by

workflow simulations executed with the workflow models in the set. They also

presented a multi-objective immune algorithm to find Pareto optimal robust

scheduling schemes that have good performance for each model in the set. The two

optimization objectives for scheduling schemes were the indices of the optimality and

robustness of the scheduling results. An antibody represented the resource allocation

scheme, and the methods of antibody coding and decoding was designed to deal with

resource conflicts during workflow simulations. Experimental tests show that the

proposed method can generate a robust scheduling scheme that is insensitive to

uncertain scheduling environments.

Xia [27] considered due date assignment and sequencing for multiple jobs in a single

machine shop where the processing time of each job was assumed to be uncertain and

was characterized by a mean and a variance with no knowledge of the entire

distribution. To minimize a linear combination of three penalties: penalty on job

earliness, penalty on job tardiness, and penalty associated with long due date

assignment a heuristic procedure was developed to find job sequence and due date

assignment. Numerical experiments indicated that the performance of the procedure is

stable and robust to job processing time distributions. In addition, the performance

improved when the means and variances of job processing times are uncorrelated or

negatively correlated or when the penalty of a long due date assignment is significant.

Both Al-Turki [28] and Cai and Tu[29] considered sequencing n jobs on a single

machine. The objective in [14] was to minimize an expected weighted combination of

due dates, completion times, earliness, and tardiness penalties. The determination of

optimal distinct due dates or optimal common due dates for a given schedule was

investigated. The scheduling problem for a fixed common due date was considered

when random completion times arise from machine breakdowns. The optimality of a

v-shaped about (a point) T sequence was established in the work when the number of

machine breakdowns follows either a Poisson or a geometric distribution and the

duration of a breakdown has an exponential distribution. On the other hand in [15],

the processing time of each job was considered as a random variable which follows an

arbitrary distribution with a known mean and a known variance. The machine is

subject to stochastic breakdowns and the objective was to minimize the expected sum

Page | 9

of squared deviations of job completion times from the due date. Two versions of the

problem were addressed. In the first one the due date was a given constant, whereas in

the second one the due date was a decision variable. In each case, a general form of

the deterministic equivalent of the stochastic scheduling problem is obtained when the

counting process related to the machine uptime distribution was a generalized Poisson

process. A sufficient condition was derived under which optimal sequences were V-

shaped with respect to mean processing times which were same as in [14]. Other

characterizations of optimal solutions were also established. Based on the optimality

properties, algorithms with pseudo polynomial time complexity were proposed to

solve both versions of the problem. Liu [30] also considered a single machine shops

subjected to machine breakdowns. Furthermore, Sevaux and Sorensen [31] used a

modified GA to find robust solution in single machine environment subjected to

stochastic release dates of jobs.

Byeon [32], Kutanoglu and Wu [33, 34], and Wu [35] used decomposition heuristic

to divide the classical job shop scheduling problem with uncertain processing times

into a series of sub problems and iteratively update the problem parameters to analyze

the effect of the processing time variation using a priori stochastic information.

In [32] a weighted tardiness job-shop scheduling problems (JSP) was decomposed

into a series of sub-problems by solving a variant of the generalized assignment

problem using a graph decomposition technique which termed as "VAP." Given a

specified assignment cost, VAP assigned operations to mutually exclusive and

exhaustive subsets, identifying a partially specified schedule. Compared to a

conventional, completely specified schedule, this partial schedule was more robust to

shop disturbances, and therefore more useful for planning and control. Indeed it was

showed that the proposed approach provides a means for extending traditional

scheduling capabilities to a much wider spectrum of shop conditions and production

scenarios. Like [32], to improve scheduling robustness under processing time

variation, a two-stage scheme was proposed in [19] that preprocesses the scheduling

data to create a skeleton of a schedule and then completes it over time through

dynamic adaptation. Preprocessing starts at the beginning of the planning period (at

the time of scheduling) when a priori information becomes available on processing

time uncertainty. The job shop scheduling problem was decomposed problem into

Page | 10

network-structured sub-problems using Lagrangian relaxation. For each sub-problem,

stochastic constraint was introduced in the model that captures the processing time

uncertainty. The stochastic information was incorporated in such a way that it retains

their efficient network structure. A sub-gradient search algorithm was used to improve

the lower and upper bounds iteratively obtained from the Lagrangian relaxed problem,

which produce a partial sequence of critical operations. This so-called Lagrangian

ranking defined a preprocessed schedule where the complete scheduling was

determined dynamically over time, adapting to changing shop conditions. A similar

category problem was solved in [35] by using decomposition technique where it

identifies and resolves a "crucial subset" of scheduling decisions through the use of a

branch-and-bound algorithm.

Shafaei and Brunn [36, 37] used the rolling time approach to investigate the

robustness of schedules in dynamic and stochastic environment. In [22] a cost-based

performance measure was used to evaluate the scheduling rules. The simulation

results, under various conditions in a balanced and unbalanced shop were presented

and the effects of the rescheduling interval and operational factors including shop load

conditions and a bottleneck on the robustness of the schedule were studied. From the

results the key factors that influence the robustness of a scheduling system were

identified and, consequently, general guidelines for creating robust schedules were

proposed. In [23] a comprehensive simulation study was conducted to investigate the

effects of the planning-i.e. job releasing and routing-and the scheduling functions in

creating a robust schedule. A mathematical model using the integer programming

technique in addition with a heuristic algorithm were used to demonstrate the solution

It was shown that, in terms of shop load balance level and job delivery time, the

proposed system performs better than a benchmark loading strategy on the basis of

minimum processing cost.

Cowling [38] used a previously proposed multiagent architecture with two measures

of stability and utility to produce a robust predictive/reactive schedule. In contrast to

earlier approaches, the multi-agent architecture proposed consists of a set of

heterogeneous agents which integrate and optimize a range of scheduling objectives

related to different processes, and can adapt to changes in the environment while still

achieving overall system goals. Each agent embodied its own scheduling model and

Page | 11

realized its local predictive-reactive schedule taking into account local objectives,

real-time information and information received from other agents. In order to find a

globally good schedule, the cooperation of the agent was done which was able to

effectively react to real-time disruptions, and to optimize the original production goals

whilst minimizing disruption carried by unexpected events occurring in real-time.

Policella [39, 40] studied two-stage approach to generate a robust flexible partial

order schedule for the Resource-Constrained Project Scheduling problem with

minimum and maximum time lags. The problem of transforming a resource feasible,

fixed-times schedule into a partial order schedule (POS) to enhance its robustness and

stability properties was considered. A POS retains temporal flexibility whenever

problem constraints allow it and can often absorb unexpected deviation from

predictive assumptions. The work specifically focused on procedures for generating

Chaining Form POSs, wherein activities competing for the same resources are linked

into precedence chains. The interesting property of the Chaining Form POS

implemented was that "makespan preserving" with respect to its originating fixed-

times schedule. Therefore, issues of maximizing schedule quality and maximizing

schedule robustness can be addressed sequentially in a two-step scheduling procedure.

Moreover, two heuristics were defined to make the use of a structural property of

chaining form POSs to bias chaining decisions and experimental results on a resource-

constrained project scheduling benchmark were presented to confirm the effectiveness

this approach.

Leon [41] proposed a slack-time based robustness measures to analyze the effects of

machine breakdowns and processing-time variability on the quality of the classical

job shop schedules. The most promising robustness measure is found to be

���� = ����� − ��3(�)

where, MSmin is the makespan of schedule s, and RD3(s) is the average operation slack

in schedule s.

Lawrence and Sewell [42] studied the performance of simple dispatching heuristics

versus algorithmic solution techniques in job shops subjected to uncertain processing

times. A similar study was done by Sabuncuoglu and Karabuk [43], which showed

that dispatching rules are more robust to interruptions than the optimum seeking

Page | 12

offline scheduling algorithms. Mehta and Uzsoy [44] presented an algorithm based on

disjunctive graph representation to integrate random breakdowns of machines and

minimizing their effect by inserting idle time into the predictive schedule of a job

shop to absorb the impact of breakdowns. Jensen [11, 45] tried to improve the

robustness and flexibility of the job shop schedules while minimizing maximum

tardiness, summed tardiness, total flow-time, and makespan measures. Both studies

used GA (developed in Mattfeld [46]) and considered two robustness measures, the

neighborhood-based robustness measure and the lateness-based robustness measure.

He defined schedule neighborhood N1(s) robustness measure, where N1(s) contains s

and all feasible schedules that can be created from s by interchanging two consecutive

operations on the same machine, as a weighted average of makespans of schedules in

N1(s) and is given as follows

��� ���
(�)=

1

|��(�)|
�� ��� (�′)

where �� ��� (�′) is the makespan of schedule �′. Laslo [47] considered the case of

determining the machine booking schedule for a virtual job shop problem to

maximize the economic gain from outsourced rented machines. Authors assumed that

operations processing times are normally distributed, and hence proposed a heuristic

based method.

Anglani[48] proposed a fuzzy mathematical model of scheduling parallel machines

with sequence-dependent cost while considering uncertainties in processing times.

The proposed approach requires the solution of a non-linear mixed integer

programming (NLMIP), that can be formulated as an equivalent mixed integer linear

programming (MILP) model. Due to its NP-hardness, the resulting MILP model in

real applications could be intractable. Therefore, they proposed a solution method

technique, based on the solution of an approximated model, whose dimension is

remarkably reduced with respect to the original counterpart. Numerical experiments

were conducted on the basis of data taken from a real application show that the

average deviation of the reduced model solution over the optimum is less than 1.5%.

Recently, Bouyahia [49] presented a probabilistic generalization to design robust a

priori scheduling that assumes the number of jobs to be processed on parallel

machines as a random variable with respect to the total weighted flow time.

Page | 13

Guo and Nonaka [50] studied how to reduce the effect of machine failure on a three-

machine flow shop by proposing a method to evaluate initial schedules (preschedules)

and a rescheduling method that is applied after machine failure.

Matsveichuk [51] proposed a two-stage scheduling decision framework to execute

schedules of a two-machine flow shop in which each uncertain processing time of a

job on a machine may take any value between a lower and upper bound. With an

objective to minimize the makespan there were two phases in the scheduling process:

offline (the schedule planning phase) and online (the schedule execution phase). The

information of the lower and upper bound for each uncertain processing time was

available at the beginning of the off-line phase while the local information on the

realization (the actual value) of each uncertain processing time was available once the

corresponding operation (of a job on a machine) was completed. In the off-line phase,

a minimal set of dominant schedules were prepared by a scheduler, which was derived

based on a set of sufficient conditions for schedule domination. This set of dominant

schedules enabled a scheduler not only to quickly make an on-line scheduling

decision but also to optimally cover all feasible realizations of the uncertain

processing times. The approach proposed in the research enabled the scheduler to best

execute a schedule and may end up with executing the schedule optimally in many

instances according to our extensive computational experiments which are based on

randomly generated data up to 1000 jobs.

Qi [52] introduced a rescheduling approach for single and parallel two-machine

environment subjected to random machine unavailability and processing time

variations. The approach considered in this work is different from most of the

rescheduling analysis in that the cost associated with the deviation between the

original and the new schedule was included in the model. The research focused on

cases in which the shortest processing time (SPT) rule is optimal for the original

problem considering both single and parallel two-machine environments.

Most of the research work discussed above only deals with scheduling in different

type of shop environments. But the extent of its application is not only bound in only

such kind of problems. The quest of finding an optimal schedule inspires the

researcher to deal with problem in other areas also. Artigues [53] proposed insertion

techniques for static and dynamic resource-constrained project scheduling.Surico [54]

Page | 14

suggested a hybrid meta-heuristic that integrates a mathematical programming, multi-

objective evolutionary computation (genetic algorithm), and a problem-specific

constructive heuristic that returns a number of solutions or the pareto sets (schedules),

each with a cost and risk trade-offs, for the problem of Supply Network (SN) for

ready-mixed concrete (RMC). Chtourou and Haouari [55] presented a two-stage

algorithm to produce robust resource-constrained project scheduling subjected to

unpredictable increase in processing times. Lambrechts [56] proposed a tabu search

algorithm that uses a free slack-based objective function to produce robust predictive-

reactive project schedules in the presence of uncertain renewable resource

availabilities.

Rangsaritratsamee [57] proposed a rescheduling method based on local search genetic

algorithm for a job shop with dynamically arriving jobs. Their proposed algorithm

simultaneously considers the efficiency by preserving the makespan, tardiness and

stability by minimizing the jobs starting time deviations. In their work, the

rescheduling takes place at specific time intervals using all available jobs at the

rescheduling moment. Fattahi and Fallahi [58] combined the work of

Rangsaritratsamee [57] and Fattahi [59] and developed a multi-objective genetic

algorithm based method to scheduling a flexible job shop with dynamically arriving

jobs. A multi-objective mathematical model was developed to make a balance

between efficiency and stability of the schedules.

Mahdavi [60] presented a real-time simulation-based decision support system to

control the production of a stochastic flexible job shop subjected to stochastic

processing times. Based on the theory of supervisory control, a controller was

developed which constitutes the framework of an adaptive controller supporting the

co-ordination and co-operation relations by integrating a real-time simulator and a

rule-based DSS. A bilateral method for multi-performance criteria optimization was

implemented to combine the gradient based method and the DSS to control dynamic

state variables of SFJS concurrently.

Vinod and Sridharan [61] experimentally studied different scheduling decision rules

for scheduling dynamic flexible job shop (jobs arrive intermittently) using a discrete

simulation based model. They considered a partial flexible job shop system. The

system consists of eight machines wherein an operation can be executed on three

Page | 15

different ones at different rates. Three scheduling rules were used for machine

selection decision and a total of 15 scheduling rules were incorporated in the

simulation model for job scheduling decisions. Moreover, six new scheduling rules

for job scheduling were also developed and investigated. The performance measures

evaluated in this research work are the mean flow time, standard deviation of flow

time, mean tardiness, standard deviation of tardiness and percentage of tardy jobs. It

was showed from the experimental simulation that, the proposed scheduling rules

provide better overall performance for the various measures when compared with the

existing scheduling rules. Vinod and Sridharan [62] continued the previous study by

studying the interaction between due-date assignment methods and scheduling rules in

a dynamic job shop system using a discrete-event simulation model. Their simulation

analysis showed that due-date assignment methods and the used scheduling rules are

significantly affecting the performance measures of the shop.

For a recent overview discussing aspects of scheduling with uncertainties readers are

referred to Davenport and Beck [63], Aytug [64], Herroelen and Leus [65], and Mula

[66], who gave detailed review of literature related to scheduling under uncertainty.

In light of the above literature, approaches used to achieve schedule robustness are

classified into two categories, preservation of solution quality approach and

execution-oriented quality approach. In the first, robustness is considered as the

ability to preserve some level of solution quality, such as preservation of makespan in

Leon [41] and Jensen [45], or preservation of tardiness and total flow-time as in

Jensen [11], etc. In the later, also known as rolling time approach, robustness is

achieved by producing partial schedules and the final decisions are delayed until the

execution time is reached or nearly reached as in Kutanoglu and Wu [33, 34], and

Policella [39]. Hence, two definitions for a robust schedule can be distinguished:

1. A schedule is considered to be robust if it has low cost relative to other schedule

when facing disruption and when rightshifting is used as a rescheduling algorithm

(Jensen, [45])

2. A schedule is considered to be robust if it can absorb the external events

(disruptions) without loss of consistency while keeping the pace of execution

Page | 16

(Policella, [39]), i.e. without amplifying the effects of a change over all schedule

components.

Despite of the apparent similarity between the two definitions, it can be concluded

that the first definition is more suitable for offline scheduling such as predictive

scheduling, whereas the second definition is falling in some category belonging to

dynamic scheduling and more precisely to proactive/reactive (or predictive/reactive)

scheduling and knowledge-based scheduling. Furthermore, the second definition has

some resemblance with the definitions of stable and/or flexible schedule found in

literature. In Cavalieri and Terzi [67] and Policella [39, 40] flexibility was defined as

‘‘the ability to respond effectively to changing circumstances’’. A more thorough

definition of flexibility was given by Jensen [68] as “a schedule expected to perform

well relative to other schedules, when facing disruption and when some rescheduling

method using search (other than right-shift) is used”. Similarly, Goren [69] , Liu [30],

and Wu [70] defined stable schedule as a schedule that has a very small deviation

either in time or sequence between the predicted schedule and the realized schedule.

At this point one may conclude that the two types of schedules named stable schedule

and flexible schedule used in literature are actually describing the same schedule. This

schedule (stable or flexible) can be related to the system (or schedule) nervousness

measure, i.e. if the performance measure of the schedule nervousness is high then the

stability of the schedule is low (representing an unstable manufacturing system) and

vice versa. Furthermore, a schedule is called robust or stable depending on how it was

designed to adapt to changes and unforeseen future events.

Furthermore, it can be observed that unlike single machine environment, two

machines environment, and job shop environment, vast majority of the literature

published in the area of stochastic scheduling gives less attention to the FJSP. The

literature focuses either on deterministic FJSP, stochastic classical job shop

scheduling problem (JSP) or dynamic FJSP. The literature on robust and stable

scheduling for the FJSP under unpredicted arrival of new jobs is almost void.

Therefore, the goal of this work is to improve robustness and stability of predictive

schedule for the FJSP subjected to unpredicted arrival of new jobs. This research

work introduces a new methodology that measures the variability of two schedules.

The proposed methodology is based on a genetic algorithm and branch and bound

Page | 17

algorithm. Moreover, the current work relates the robustness of a schedule to its

degree of makespan degradation under disruptions and considers it to be stable when

its sum of the absolute deviations of operation completion times from the realized

schedule is small.

Page | 18

CHAPTER III

MODEL FORMULATION

3.1 Problem Identification:

A basic assumption during the Job Shop Scheduling is that the processing times are

deterministic and the situations during processing are stable. But in most of the cases

processing time is not deterministic rather it is stochastic. Moreover, situations at the

job shop are not stable which are significantly affected by different factors and more

prone to disruption. So in real scenario, a job shop schedule will be more adaptive to

the real scenario if it can anticipate such disruption. In the literature review it has been

observed that most of the authors addressed machine breakdown as a major source of

disruption. This is true that machine breakdown occurs frequently during operation.

However, it can be minimized by properly scheduling the maintenance activities.

Some works have already been discussed in the previous chapters where the authors

considered the maintenance activities. Very few papers addressed unpredicted arrival

of new job as a source of disruption. But it has a significant effect on job shop

scheduling. It is not like one can schedule a set of jobs, start processing and after

completion start another set of jobs. Rather jobs continuously arrive in the job shop

and need to be scheduled in the real time. On the other hand, it must be done in such a

way that after the insertion of new job the existing schedule will not be affected

significantly by this disruption. Therefore, generating a job shop schedule which is

robust, stable and reactive to the disruption plays a significant role in flexible job shop

scheduling.

3.2 Problem Definition:

The purpose of this thesis work is to extend the previous research in developing the

flexible job shop scheduling model by incorporating the unexpected arrival of new

jobs. This study introduces a two stage scheduling method. In the first stage an initial

sequence should be determined. In fact, it is initially assumed that there is no random

disruption in the system and an initial solution for scheduling considering the problem

with uncertain processing times will be generated. The robust optimization approach

is used to generate a robust initial schedule. Actually to reduce the effect of

Page | 19

uncertainty on the processing times which is a random disruption in the future, first a

job shop model is formulated using the robust optimization approach as an attempt to

produce robust initial solutions. This is the proactive first stage. After that the initially

robust schedule is determined, it is assumed that a new job arrives during the

execution of the initial schedule. No predictive information exists for this job. In the

dynamic environment of this system, this unpredicted arrival is an issue related to real

time scheduling. In fact, the unpredicted arrival of a new job is considered as an

unexpected disruption. Considering the new job, the proposed method adopts an

appropriate reactive action in order to determine its operations position at different

machines in the initial sequence. If all operations of this job are processed at the end,

the arrangement of schedule does not change. However, if the operations processed at

a position other than the last, the arrangement of previous operations at different

machines will change. In fact, finding a proper position for the processing of the new

operations plays an important role in the optimization of the job shop scheduling

problem. Although changing the system’s previous sequence may produce a better

solution, it may also reduce the stability and cause disturbance in the system. To adopt

a reactive response, a new objective function as a measure based on a classical

objective and performance measures is defined. This measure helps planners to

choose the most appropriate reaction to counter the effect of arrival of new jobs.

3.2.1 Proactive Scheduling step:

In the proactive scheduling step the problem with uncertain processing times that are

estimated with scenarios is just considered. A robust optimization approach is used to

formulate the flexible shop problem to reduce the effects of fluctuations of the

processing times in the future. In the first steps proactively a more robust solution as

an initial schedule is generated. After that the model is solved by using

metaheuristics.

3.2.1.1 Assumptions of the study:

I. Job j has nj operations that must be processed according to the predefined

sequence.

II. The operations i ϵ Nj = [71…, nj] of job j ϵ J are non preemptive, once started

the operation must be completed

Page | 20

III. The execution of operation i of job j requires a machine selected from a subset

Mij subset of K of available machines

IV. The transportation time between the machines are neglected

V. Processing time at different scenarios are deterministic and include setup,

operations, transportation and inspection

VI. Any kind of disruptions accept arrival of unexpected new jobs are not

considered such as machine breakdown, order cancellation etc.

VII. All machines are always available in the entire time horizon

VIII. Jobs are independent and no priorities are assigned

IX. Each machine can only process one operation at a time

X. Each operation can be processed by one machine at a time

XI. All jobs are inspected priori i.e., no defective part is considered

XII. Probability of occurring a scenario is known priori

3.2.1.2 Mathematical Modeling:

In this research, a new mathematical model for robust flexible job shop scheduling is

proposed. The model is developed to determine the optimal sequence of operations at

different machines. For robust optimization, a model is formulated to minimize the

makespan of the total schedule along with the variability of makespan at different

scenarios. Necessary constraints are developed to ensure the model is bounded one.

Before proceeding to the mathematical model, some sets, parameters and variables of

the model are introduced in the following:

Sets:

�� = ��� �� ��� ���������� �� ��� �, � � ��

��� = ��� �� ���������� ���������� �� ��� � �� ���� �

� = ��� �� ��� ����,� � �

�� = ��� �� ���������� ���� �� ���� �,� � ���� ������ �� �

� = ��� �� ��� ���ℎ���� � � �

Page | 21

��,� ,(��,�) = ��� �� ���ℎ���� ������� �� ������� ��������� � (ℎ) �� ��� � (�)

� = ��� �� ��� ���������

Indices:

� , ℎ = ������� ��� ��������� �� ���

�, � = ������� ��� ���

� = ������� ��� ���ℎ���

� , �΄= ������� ��� ���������

Parameters

� = ���� �� �ℎ� ������� �� �ℎ� ����������� ���

�� = ����� ������ �� ���������� �� ��� �

� = ����� ������ �� ����

� = ����� �� �� ���ℎ����

��,�,�
� = ���������� ���� �� ��������� � �� ��� � �� ���ℎ��� � �� �������� �

�� = ����������� �� ��������� �������� �

� = � ������������ ����� ������

�� = ���� �� �ℎ��ℎ �������� � �� ��������� ��� �������� �ℎ� ���� ���������

�,(�),{�}� = ��������� ���� ℎ� �� ��������,(���������),{����������}

Variables:

��,�
� = ���������� ���� �� ��������� � �� ��� � �� �������� �

� �� � = �������� �� ��� ���� �� ������� ���������� ����

Page | 22

��,�,� = �
1, �� ��������� � �� ��� � �� ��������� �� �������� �

0,��ℎ������
�

��,�,�,� = �
1, �� ��������� � �� ��� � �� ��������� ����� ��������� ℎ �� ��� �

0, ��ℎ������
�

��,�,� = �
1, �� ��������� � �� ��� � �� ������� �� �� ��������� �� ���ℎ��� �

0,��ℎ������
�

Now using this parameters and variables the developed flexible job shop scheduling

model is presented as follows

3.2.1.2.1 Objective function for robust scheduling:

A robust optimization approach is adopted to minimize the makespan of the total

system as an objective function. The goal of the robust optimization approach is to get

a set of solutions for the problem so that they remain robust despite changes that may

occur in the real values of data and input parameters. In robust optimization, the

uncertain parameters are described by the discrete scenarios or a continuous range.

Therefore, variability of makespan between different scenarios is minimized. So that,

the model can anticipates the changes in future with a very little effect on the existing

schedule. The goal of this optimization method is obtaining an optimal solution,

which is insensitive to almost all the samples of the uncertain parameters. The

objective function described above can be written as follows where the first part is

considered to minimize the makespan and the second part is considered to minimize

the variability of makespan in different situations.

���, � ����� �
� + � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

 (3.1)

 3.2.1.2.2 Constraints for assigning and sequencing of operations to available

processing positions:

In the assumption it has already been stated that the execution of operation i of job j

requires a machine selected from a subset Mji subset of K of available machines. If the

job shop is full flexible then Mji includes all available machines. To ensure that all

operations are investigated for processing on all available machines and eventually

Page | 23

are imperatively assigned to one of them it is inevitable to develop a set of constraints.

These set of constraints can be written as follows.

� ��,�,� = 1 ∀ �, �

�

���

 (3.2)

For all i and j combinations all machines will be checked first. As Xj,i,k is a binary

decision variable and for a given i and j combination summation for all k is 1, only

one variable can have the value 1. So these set of constraints satisfy the assumption

made earlier that, each operation can be processed by one machine at a time. In the

flexible job shop scheduling these constraints provides the routing flexibility

3.2.1.2.3 Machine eligibility constraints:

In flexible job shop scheduling there are two kinds of machine flexibility. One is total

flexible and the other one is partial flexible. In the first case all machines are allowed

to do all the operation. On the other hand, in partial flexible system only a set of

machines are allowed to do an operation. So it is necessary to check in both cases

whether the machine is eligible to process an operation or not and subsequently assign

and operation to the eligible one. This gives the rise of machine eligibility constraints.

The constraint set can be written as follows,

��,�,� ≤ ��,�,� ∀ �, �,� (3.3)

Where ej,i,k is a binary decision variable which takes value 1 if machine k is allowed

to process operation i of job j otherwise zero. As only one Xj,i,k can have value 1, it is

ensured that it will allowed to be processed in an eligible machine. Therefore, this

constraint set ensures the feasibility of the machine assignments which are

investigated for any of the operations in previous constraint set.

3.2.1.2.4 Technical/ logical precedence constraints among operations of a part:

In a job shop all jobs must be processed in a predefined sequence of operation. So it is

necessary to develop some constraints to avoid simultaneous assignment of multiple

operations of a job. The following set of constraint represents the logical/natural

precedence constraint among the operations of a job. It simply means that so long as

Page | 24

the previous operation of a job has not been completed on any of the machines in the

shop floor the succeeding operation is not processed.

��,�
� ≥ ��,���

� + � ��,�,�.��,�,�
� ∀ �, �

�

���

, � (3.4)

��,�
� ≥ � ��,�,�.��,�,�

� ∀ �

�

���

, � (3.5)

Here, ��,�
� is the completion time of operation i of job j in scenario λ and ��,���

� is the

completion time of the previous operation as well. So the difference between the

completion times of the two consecutive operations should be at least equal to the

processing time of the first operation between them. The difference may be greater

depending on the position of the operation in the schedule. This rule is established by

the set of constraints (3.4). The first operation has no precedence constraints. So the

completion time must be at least greater than or equal to the processing time of the

first operation at the machine in which it will be assigned.

3.2.1.2.5 Machine availability constraints:

It is assumed that all machines at available at time zero which is the case in the first

stage of optimization. But after time t while an unpredicted job will come at shop

floor machines may not be available at that time. There may be some operation still

carried on by few machines. As preemption is not allowed, an operation must be

completed once it’s started which give the rise of machine availability constraints. It

can be written as follows.

��,�
� − ��,�,�.��,�,�

� ≥ �� ∀ �, �,�,� (3.6)

Here �� = 0 for the first stage of optimization but it will not be the case in the second

stage of operation. In the second stage �� ≥ �

3.2.1.2.6 Machine non-interference constraints:

Though constraint set has already been developed to avoid simultaneous assignment

of operation of the same job, it may possible that operations of multiple jobs are

Page | 25

allocated to the same machine at the same time. So constraint set must be established

to avoid simultaneous assignment of operations of different jobs concurrently at the

same machine. The constraint set can be written as follows.

��,�
� ≥ ��,�

� + ��,�,�
� − � �3 − ��,�,�,�− ��,�,�− � �,�,�� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (3.7)

��,�
� ≥ ��,�

� + ��,�,�
� − ���,�,�,�+ 2 − ��,�,�− � �,�,�� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�, � (3.8)

Here Constraint sets (3.7) and (3.8) referred to as Either-Or constraints

simultaneously ensure the following: 1) an operation cannot be at the same time both

the predecessor and the successor of another operation, and 2) satisfaction of non-

interference constraints (precedence constraint among operations of different jobs);

i.e., for operations of different jobs that are eligible to be processed on the same

machine. In other words, if two operations of two different jobs do not share the same

subset of machines, consideration of the operational precedence between them is not

done and both constraints become redundant. Hence, two operations ��,� and ��,� can

only be sequenced when both their binary integer variables assignment ��,�,� and ��,�,�

take value of 1; otherwise, they bear no relationship with one another on machine k.

Once machine k was established as eligible machine to process ��,� and ��,� (��,�,�= 1

and ��,�,�= 1) the precedence relationship between these two operations should be

decided by the sequencing binary decision variable which is ��,�,�,�. In any

circumstance other than stated above, both constraint sets (3.7) and (3.8) become

redundant constraints. If ��,� is processed after ��,� on machine k, the sequencing

binary decision variable takes value 1 and therefore constraint set (3.8) become active.

Otherwise, this constraint show that ��,� is just greater than a large negative number,

which is naturally true. The sequencing binary variable (��,�,�,�) takes value 0 if ��,� is

not processed after ��,�. Since two operations in sequencing decision have no more

than two states with respect to each other (predecessor or successor), if ��,� does not

succeed ��,�, it has to precede it, in which case constraint set (3.7) become active and

constraint set (3.8) become evident inequality equations.

Page | 26

3.2.1.2.7 Constraints for capturing the value of objective function:

��� �
� ≥ ��,��

� ∀ �,� (3.9)

Constraint set (3.9) keeps track of make-span and compute it.

3.2.1.2.8 Non-negativity constraints:

��,�
� ≥ 0 (3.10)

Constraint set (3.10) shows the non-negativity nature of the MILP’S continuous

variables.

3.2.1.2.9 Constraints for demonstrating the nature of the decision variables:

��,�,� , ��,�,�,� ,��,�,� ∈{0,1} ∀ �, �,ℎ, �, � (3.11)

Constraint set (3.10) demonstrates the binary nature of decision variables.

So taking objective function and all the constraints in consideration, the mathematical

model for the first stage is as follows:

Objective function:

���, � ����� �
� + � � �� ���� �

� − � ������
�

� ∈ �

�

� ∈ �� ∈ �

 (3.1)

Subject to,

� ��,�,� = 1 ∀ �, �

�

���

 (3.2)

��,�,� ≤ ��,�,� ∀ �, �,� (3.3)

��,�
� ≥ ��,���

� + � ��,�,�.��,�,�
� ∀ �, �

�

���

, � (3.4)

��,�
� ≥ � ��,�,�.��,�,�

� ∀ �

�

���

, � (3.5)

Page | 27

��,�
� − ��,�,�.��,�,�

� ≥ �� ∀ �, �,�, � (3.6)

��,�
� ≥ ��,�

� + ��,�,�
� − � �3 − ��,�,�,�− ��,�,�− � �,�,�� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (3.7)

��,�
� ≥ ��,�

� + ��,�,�
� − � ���,�,�,�+ 2 − ��,�,�− � �,�,�� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (3.8)

��� �
� ≥ ��,��

� ∀ �,� (3.9)

��,�
� ≥ 0 (3.10)

��,�,� , ��,�,�,� ,��,�,� ∈{0,1} ∀ �, �, ℎ, �, � (3.11)

3.2.1.3 Reactive scheduling step

In the first stage which is called the proactive stage an initial schedule will be

generated. After the execution of this schedule, if any unpredicted job will arrive at

the shop the initial schedule may be infeasible. So that a second stage of optimization

is necessary. This stage is called the reactive stage as it will be executed after the

arrival of new job. The objective of this stage is to generate a new schedule with

minimal change in the initial one. The mathematical model is almost similar to the

first stage accept the objective function and some changes in the sets that will be

considered for the development of the constraints. The mathematical model of the

reactive stage is as follows:

Objective function:

���, � ��� �
�΄ + � � � ���,�

� − ��,�
�΄�

� ∈ ��� ∈ ���

+ � ���� �
� − ��� �

�΄ � (3.12)

Subject to,

� ��,�,� = 1

�

���

 � ∈ ��� ,� ∈ �� (3.2�)

��,�,� ≤ ��,�,� � ∈ ��� ,� ∈ �� (3.3�)

Page | 28

��,�
�΄≥ ��,���

�΄ + � ��,�,�.��,�,�
�΄

�

���

 � ∈ ��� ,� ∈ �� ,� ∈ � (3.4�)

��,�
�΄ ≥ � ��,�,�.��,�,�

�΄

�

���

 � ∈ ��� ,� ∈ �� ,� ∈ �,� ∈ � (3.5�)

��,�
�΄− ��,�,�.��,�,�

�΄ ≥ �� � ∈ ��� ,� ∈ �� , � ∈ � (3.6�)

��,�
�΄≥ ��,�

�΄ + ��,�,�
�΄ − ��3 − � �,�,�,�− ��,�,�− ��,�,�� (3.7�)

�, ℎ ∈ ��� ,� ∈ �� ,(�, �)≠ (�, ℎ) � ∈ �

��,�
�΄ ≥ ��,�

�΄+ ��,�,�
�΄ − �� ��,�,�,�+ 2 − ��,�,�− ��,�,�� (3.8�)

�, ℎ ∈ ��� ,� ∈ �� ,(�, �)≠ (�, ℎ) � ∈ �

��� �
�΄ ≥ ��,��

�΄ ∀ � (3.9�)

��,�
�΄≥ 0 (3.10�)

��,�,� , ��,�,�,� ,��,�,� ∈{0,1} �, ℎ ∈ ��� ; �, � ∈ �� ; � ∈ � (3.11�)

Here the objective function consists of three parts. The first part contains the main

objective which is minimization of makespan of all jobs. The second part is for

stability where the absolute deviation of the completion time of all operation between

initial schedule and the new schedule is minimized. The third part is for robustness

where the absolute deviation of the makespan between two stages is minimized.

Though the third portion of the objective function make the model robust but it may

not be stable without the second one. Minimizing the deviation of the completion time

restrict the generation of new schedule in such way so that the change of position of

operation will be minimal. Thus makes the model reactive, robust and stable.

In the constraints there are few changes made in this stage. First, the set of jobs; only

remaining jobs are considered for schedule in the next stage (i.e.� ∈ ���). Second, the

Page | 29

set of operations; though only remaining jobs are considered, all operations may not

need to be scheduled again because some operations may be already completed or

may be in processing while the new job arrives (i.e. � ∈ ��).

Page | 30

CHAPTER IV

FLEXIBLE JOB SHOP SCHEDULING USING BRANCH AND

CUT METHOD

Branch and Bound is the most popular and successful computational approach to

integer programming problems today. Rather than being a specific algorithm, branch

and bound is a general principle that allows the user to fine tune the procedure and

adjust it to the problem under consideration. The branch and bound principle was first

suggested by Land and Doig [72], followed by Dakin [73] and Balas's [74] additive

algorithm for zero-one problems. Some more recent and comprehensive books are

those by Lee [75], Mitchell [76], Rafael and Gerhard [77] and Androulakis [78]. In

the next section a detail description of Branch and Bound and Branch and Cut

algorithm is given

4.1 Branch and Bound Algorithm:

Branch and bound is a global optimization technique which is an exhaustive search

process. To reduce the search space for achieving the result within reasonable

timeframe some techniques are applied which improve the process of finding the

optimal solution. One of these techniques is to relax a mathematical optimization

problem by dropping some of its constraints, so that the resulting problem has a larger

feasible region and a solution that cannot be worse than that of the original problem.

Another technique is to add constraints to a problem, a process that reduces the size of

the feasible region, so that the optimal objective value deteriorates. Branch and bound

methods can also be viewed as cutting plane methods with an added feature that

divides the feasible region into smaller parts which are then dealt with separately.

Each successive cut results in a linear programming problem that is represented by a

node in a graph, where the arcs correspond to the cuts. The graph is developed and

explored as the cuts are successively applied, with the initial node �� corresponding to

the relaxation of the problem without any additional constraints. By construction, the

graph will be a tree, and if we regard its arcs as directed corresponding to the order in

which the cuts are applied, we have arborescence with the initial node �� as its root.

As the process is directed from ��, to nodes representing problems with additional

Page | 31

cuts, the proper term would be "branch and bound arborescence." However, the

common practice and use is the term "branch and bound tree." In a branch and bound

tree, the initial node ��, is usually referred to as the top node.

4.1.1 Search Strategies:

Since each node of the solution tree represents a linear programming problem that

must be solved in the process, it is obviously important to keep the size of the tree as

small as possible. This is accomplished by stopping at a node whose associated

problem has an integral solution, is infeasible, or is fathomed (value dominated). A

good branch and bound method will bring about such favorable situations as early as

possible in the search. If each path is pursued until integrality or infeasibility was

reached, the strategy is called a depth-first search strategy. The depth (or level) of a

node is the length of the path leading to it from the top node. In general, a depth first

strategy will pursue each node, using some branching strategy, until integrality,

infeasibility, or fathoming has occurred, and then backtrack until the first node is

encountered, which can be further pursued. This strategy will bring a high level (deep

in the tree) early in the search. By contrast, a breadth-first search strategy explores all

nodes at one level before proceeding to the next. The breadth-first search strategy was

much better than the depth-first search strategy in the sense that the tree is much

smaller. Figure 4.1 illustrates these two strategies.

Figure 4.1: Depth-first search vs. Breadth-first search strategy

Page | 32

In practice, however, it appears that depth-first strategies are more advantageous than

breadth-first. One reason for this is that the number of nodes grows exponentially as

the level increases, and since feasible (integer) solutions are typically found deeper

into the tree, depth-first search tends to find integer solutions sooner than breadth-first

search. Another appealing feature of depth-first search is related to the way in which

the linear programming problems at each node are solved. Assuming that the simplex

method is used for solving the problems, an immediate successor of a node has the

same set of constraints as its predecessor, plus the one additional constraint generated

in the branching. The construction of a branch and bound tree is guided by two

decisions during each time a branching is done,

 which node to pursue next (node selection strategy) , and

 which variable to branch on (branch selection strategy).

These two types of strategies are discussed below.

4.1.2 Node Selection:

A number of strategies exist for selecting the next node to branch from. For simplicity

of the exposition, it is assumed that the original problem has a maximization

objective. If so far in the search one or more nodes have been encountered for which

the solution is integer, the one with the highest objective function value (ties are

broken arbitrarily) is chosen which is called the incumbent node or solution. The

collection of nodes that have no branches leading out of them forms the set S.

Initially, only the top node is in S.

The nodes in the set S fall into four categories.

1. The solution at a node �� ∈ �is integer, in which case we will not branch

further from this node. If the solution is better than that of the existing

incumbent(s) ��then ��, replaces ��; if it is as good as �� it becomes another

incumbent.

2. The node �� ∈ � represents a problem that has no feasible solution, making

branching on it pointless, since any successor problem will also lack feasible

solutions.

Page | 33

3. The node �� is fathomed, i.e., its non-integer solution is no better than the

incumbent solution. Again, its potential successors have poorer solutions than

the incumbent and are therefore not of interest.

4. The node ��has a non-integer solution with an objective function value that is

better than that of the incumbent, so that branching from this node might lead

to an integer optimal solution. Such a node is called live or active.

In summary, out of the four possible node types--integer, infeasible, fathomed, and

live, only branch from live nodes will be done. Defining � ⊂ � as the set of live

nodes, the node selection problem addresses the choice of a node �� ∈ �.

The two node selection strategies have already described previously: the breadth-first

strategy where all live nodes at a given level are considered before nodes on lower

levels are examined, and the depth-first strategy where the next node to be considered

is a live successor of the latest node that was explored. Since backtracking is needed if

the node that was explored last is not live, the strategy is better described as "depth-

first with backtracking"; or last in, first out (LIFO), borrowing a concept from

inventory management. Although a depth-first strategy can be expected to perform

better than a breadth-first strategy on average, both of these strategies

would be outperformed, again on average, by strategies that make better use of the

information gathered during the construction of the tree. One such strategy is the best-

bound-first strategy that selects the live node with the largest �-value. Formally, the

best-bound-first strategy selects the node �� such that �� = �� = max {��: �� ∈ �}

 Another node selection strategy involves the estimate ��� of the integer optimal

solution corresponding to node ��. Such an estimate can be computed based on the

expected degradation expressing the deterioration of �� by requiring the solution point

at node �� to be integral. More specifically, let the solution at node �� include��� =

 �����+ �� with �� ≠ 0Using some user selected coefficients ��
� and ��

� we estimate

the decrease in the objective function of ��
��� for branching left at node �� and of

��
�(1 − ��) if branching right. The coefficients ��

� and ��
� can either be user-specified

or estimated, e.g., by using dual information at node �� or

information from previous branchings on ��. A best-estimate search strategy selects

the node �� such that�̂� = max {�̂�: �� ∈ �}. Denoting by ��� the objective function

Page | 34

value of the incumbent solution, the quick-improvement strategy attempts to quickly

improve on the incumbent solution by selecting the node �� such that � =

arg�������− ���� (��− �̂�)⁄ � . Detail discussion and further details on node

selection are available in Nemhauser and Wolsey [79].

4.1.3 Branch Selection:

Once a node �� ∈ � has been selected for further exploration, the next decision

concerns the choice of variable to be branched on. Clearly, this variable, while

required to be integer, must currently have a non-integer value. One simple strategy is

branching the non-integer variable with lowest index, an obviously arbitrary rule.

Another strategy is to branch on the non-integer variable ��with the "most fractional"

value. Formally, let �� = [���,���,���,…,���] be the solution at the chosen live node,

and let ��� = �����+ �� , so that �� denotes the fractional part of �� . The most

fractional strategy would branch on the variable whose present value is farthest from

the nearest integer or, equivalently, has the value closest to 1 2� , i.e., a variable ��

with � = argmin ���,…,����� −
1
2� ��. Unfortunately, experience has failed to identify

robust methods for branch selection, and in practice user-specified priorities are

employed. More involved methods that employ penalties and use more elaborate

computations regarding the penalty coefficients��
� and��

� ; have not turned out to

improve the overall efficiency of the search if the additional computational effort it

takes to apply them is taken into account.

4.1.4 A General Branch and Bound Procedure:

To formulate a general branch and bound algorithm an all-integer or mixed-integer

programming problem ��� with a maximization objective is considered; its linear

programming relaxation is called ��� . It is assumed that specific node and branch

selection strategies have been chosen. The algorithm is initialized with node ��that

includes the optimal linear programming relaxation ��� with objective value ��� .

Given that ��� does not satisfy all of the integrality conditions (otherwise ��� = � ��=

i IP is optimal for the (mixed) integer programming problem as well), set � ∶= � ∶=

 {��}, � ∶= 1, and �≔ −∞

Figure 4.2: Branch and Bound algorithm

The key to the algorithm is the updating procedure of

when the procedure branches from some node

of end nodes S is updated to include the new nodes

From the set of live nodes

in Step 3, and node ��

feasible (Step 4) but not yet integer (Step 5).

There is an interesting analogy between cutting plane algorithms

bound methods. One

cutting planes designed to cut off

integer points. It is also possible to mix in

the nodes of a branch and bound tree. This approach is called

Figure 4.2: Branch and Bound algorithm, (Eiselt [80])

The key to the algorithm is the updating procedure of the sets S and

when the procedure branches from some node �� to two nodes ��

of end nodes S is updated to include the new nodes ���� and ����

From the set of live nodes L, the node from which the branching takes place is

���(�� ����)is added to the set in Step 5 only if its

feasible (Step 4) but not yet integer (Step 5).

There is an interesting analogy between cutting plane algorithms

 may view the branching constraints as vertical or horizontal

planes designed to cut off areas of the feasible region that do not contain

integer points. It is also possible to mix in regular cutting planes with the

a branch and bound tree. This approach is called branch

Page | 35

and L. In each step

��� and ���� the set

 and to exclude ��.

the node from which the branching takes place is deleted

he set in Step 5 only if its solution is

There is an interesting analogy between cutting plane algorithms and branch and

aints as vertical or horizontal

ible region that do not contain any

regular cutting planes with the branching at

branch and cut, and is

Page | 36

typically used for zero-one problems as well as problems with special structures. The

idea is to find valid inequalities for the original problem, which are violated at some

nodes in a branch and bound tree. These valid inequalities are then added at these

nodes in a cutting plane fashion, thus generating new nodes from which branching can

be done as usual. This could be accomplished by introducing an additional step

between the existing Steps 2 and 3 in the general branch and bound algorithm above.

In the next section branch and cut algorithm is discussed in detail.

4.2 Branch and Cut:

Branch- and- cut methods are very successful techniques f or solving a wide variety of

integer programming problems, and they can provide a guarantee of optimality. Many

combinatorial optimization problems can be formulated as mixed integer linear

programming problems. They can then be solved by branch- and- cut methods, which

are exact algorithm s consisting of a combination of a cutting plane method with a

branch-and-bound algorithm. These methods work by solving a sequence of linear

programming relaxations of the integer programming problem. Cutting plane methods

improve the relaxation of the problem to more closely approximate the integer

programming problem, and branch-and-bound algorithms proceed by a sophisticated

divide and conquer approach to solve problems.

Cutting plane algorithms for general integer programming problems were first

proposed by Gomory [81]. Unfortunately, the cutting planes proposed by Gomory did

not appear to be very strong, leading to slow convergence of these algorithms, so the

algorithms were neglected for many years. The development of polyhedral theory and

the consequent introduction of strong, problem specific cutting planes led to a

resurgence of cutting plane methods in the 1980’s, and cutting plane methods are now

the method of choice for a wide variety of problems. Perhaps the best known branch-

and-cut algorithms are those that have been used to solve the traveling salesman

problem (TSP). This approach is able to solve and prove optimality of far larger

instances than other methods. Two papers that describe some of this research and also

serve as good introductions to the area of branch-and-cut algorithms are Grotschel and

Holland [82]; Padberg and Rinaldi [83]. Branch-and-cut methods have also been used

to solve other combinatorial optimization problems, again through the exploitation of

strong cutting planes arising from polyhedral theory. Problems attacked recently with

Page | 37

cutting plane or branch-and-cut methods include the linear ordering problem,

maximum cut problems, scheduling problems, network design problems, packing

problems, the maximum satisfiability problem, biological and medical applications,

and finding maximum planar sub-graphs.

Though it is difficult to solve the flexible job shop problem using exact algorithm,

some research work has already been done in this field also. Branch and cut method

was used by several researcher to solve the FJSP because the computational effort is

less than the actual branch and bound method. For instance, Stecco [84] was showed a

comparison between three different formulations of a production scheduling problem

with sequence-dependent and time-dependent setup times on a single machine by

using branch and cut algorithm. Gupta [85] was minimized the total elapsed time for

nx3 flow shop by considering the effect of breakdown interval and the transportation

time using Branch and Bound technique

It is usually not possible to efficiently solve a general integer programming problem

using just a cutting plane approach, and it is therefore necessary to also branch,

resulting in a branch-and-cut approach. A pure branch-and bound approach can be

sped up considerably by the employment of a cutting plane scheme, either just at the

top of the tree, or at every node of the tree, because the cutting planes lead to a

considerable reduction in the size of the tree. For general problems, the specialized

facets used when solving a specific combinatorial optimization problem are not

available. Useful families of general inequalities include cuts based on knapsack

problems (Crowder [86]), Gomory cutting planes (Gomory [81] ; Balas [87]), and lift

and project cutting planes (Balas [88]). Cutting planes and polyhedral theory are

discussed in more detail later.

Nemhauser and Wolsey [79] and Wolsey [89] provide excellent and detailed

descriptions of cutting plane algorithms and the other material in this entry, as well as

other aspects of integer programming. Schrijver [90] is an excellent source of

additional material. One aspect of a branch-and-cut approach that should not be

overlooked is that it can be used to provide bounds. In particular, if the problem is

minimization, one can’t be able to prove optimality; a lower bound on the optimal

value can be deduced from the algorithm, which can be used to provide a guarantee

on the distance from optimality. Therefore, for large and/ or hard problem s, branch

Page | 38

and-cut can be used in conjunction with heuristics or meta-heuristics to obtain

a good (possibly optimal) solution and also to indicate how far from optimality

this solution may be.

Let’s consider the following mixed integer linear programming problem

min ���

subject to �� ≤ � (���) (4.1)

� ≥ 0

�� integer, � = 1,...,�.

as standard form, where x and c are n-vectors, b is an m-vector, and A is an m × n

matrix. The first p variables are restricted to be integer, and the remainder may be

fractional. If � = � then this is an integer programming problem. If a variable is

restricted to take the values 0 or 1 then it is a binary variable. If all variables are

binary then the problem is a binary program. There is no loss of generality with

restricting attention to such a format. A branch-and-cut algorithm is outlined in Figure

4.3.

Figure 4.3: Branch and Cut Algorithm, (Mitchell

Notice that L is the set of active nodes in the branch

best known feasible point for (ILP) is

optimal value of (ILP). Further,

current sub-problem unde

problem can be used to update

violated cutting planes are found in Step 5, in which case it is common to sort

cutting planes somehow (perhaps

problems formed in Step 7 are called child sub

ILPl being the parent sub

variable disjunction: �

as in the example. Other choices are possible, and they are discussed

branch-and-bound section

Figure 4.3: Branch and Cut Algorithm, (Mitchell [91])

set of active nodes in the branch-and-cut tree. The value of the

best known feasible point for (ILP) is �̅, which provides an upper bound on the

value of (ILP). Further, �� is a lower bound on the optimal value of the

problem under consideration. The value of the LP relaxation of the sub

problem can be used to update ��. In some situations, a very large number of

violated cutting planes are found in Step 5, in which case it is common to sort

cutting planes somehow (perhaps by violation), and add just a subset. The

problems formed in Step 7 are called child sub-problems, with the previous

being the parent sub-problem. Usually, the partitioning takes the

� � ≤ � versus � � ≥ � + 1 for some variable

as in the example. Other choices are possible, and they are discussed

section. The relaxations can be solved using any method for linear

Page | 39

ee. The value of the

, which provides an upper bound on the

und on the optimal value of the

r consideration. The value of the LP relaxation of the sub-

. In some situations, a very large number of

violated cutting planes are found in Step 5, in which case it is common to sort the

by violation), and add just a subset. The sub-

problems, with the previous problem

problem. Usually, the partitioning takes the form of a

for some variable � � and integer a,

as in the example. Other choices are possible, and they are discussed more in the

The relaxations can be solved using any method for linear

Page | 40

programming problems. Typically, the initial relaxation is solved using the simplex

method. Subsequent relaxations are solved using the dual simplex method, since the

dual solution for the relaxation of the parent sub-problem is still feasible in the

relaxation of the child sub-problem. Further, when cutting planes are added in Step 5,

the current is still dual feasible, so again the modified relaxation can be solved using

the dual simplex method. It also possible to use an interior point method and this can

be a good choice if the linear programming relaxations are large.

We say that any inequality π�x ≤ π� that is satisfied by all the feasible points of

(ILP) is a valid inequality. The convex hull of the set of feasible solutions to (ILP) is a

polyhedron. Every valid inequality defines a face of this polyhedron, namely the set

of all the points in the polyhedron that satisfy π�x = π� . A facet is a face of a

polyhedron that has dimension one less than the dimension of the polyhedron, and it

is necessary to have an inequality that represents each facet in order to have a

complete linear inequality description of the polyhedron. If all the facets of the

convex hull of the set of integer feasible points are known, then the integer problem

can be solved as a linear programming problem by minimizing the objective function

over this convex hull. Unfortunately, it is not easy to obtain such a description. In

fact, for an NP-Complete problem, such a description must contain an exponential

number of facets, unless P=NP.

Dantzig’s, Gomory, Chvatal-Gomory, strong, and general cutting planes are described

below.

4.2.1 Dantzig's Cutting Plane Method:

Gomory [92] and [93] were among the earliest proponents of cutting plane methods,

and the first method presented here is generally known as a Dantzig cut. Suppose that

the linear programming relaxation of an all-integer programming problem was solved

and in the optimal solution of the relaxed problem, there exists at least one variable

x�with a noninteger value b�. As x� ∈ ℕ� ∀ j is required, at least one variable that is

currently nonbasic must have a positive value, and since its value must be integer, at

least one of the current nonbasic variables must equal a value of one or larger. This

implies that the sum of variables that are currently nonbasic, must equal at least one.

Page | 41

Defining nbv as the set of variables that are presently nonbasic, this constraint is

called a Dantzig cut and can be written as

� �� ≥ 1

�∈���

 (4.2)

Note that relation (4.2) does indeed satisfy the conditions of a cut: in the current

solution all nonbasic variables equal zero, so at present the left-hand side of the

relation equals zero, clearly violating the constraint, so that (1) cuts offthe current

solution. On the other hand, the derivation of the relation has ensured that none of the

integer feasible points were made infeasible.

A minor modification of Dantzig's cuts is credited by Taha [94] to Bowman and

Nemhauser [95]. The authors observe that the sum of nonbasic variables on the left-

hand side of a Dantzig cut can be replaced by the sum of nonbasic variables with

noninteger coefficients in the current tableau. Apparently, such a cut is stronger than

Dantzig's original cut, but there is not much difference in practical terms as normally

only a few of the coefficients in the tableau are integer anyway.

4.2.2 Gomory's Cutting Plane Methods:

Another type of cut was introduced by Gomory [92]. To facilitate the discussion, let

a�� and b� denothe the left hand and right hand side of the current tabulae. By

assumption, there exists at least one variable x� = b � ∉ ℤ and we say that the i − th

row is a source row. Define then fractional parameters f�� = a�� − �a��� and f� = b � −

⌊b�⌋ with f�� ∈ [0;1[and f� ∈]0;1[, so that

x� + � �a���

�∈���

x� + � f��x�
�∈���

= ⌊b�⌋ + f� (4.3)

As x� ∈ ℤ ∀ j is required as well as ∑ �a����∈��� x� and ⌊b�⌋ ∈ ℤ , we obtain

f� − � f ��x�
�∈���

∈ ℤ (4.4)

With f� < 1 and the sum in (3) nonnegative, the expression in relation (3) must be less

than or wqual to zero, so that

Page | 42

− � f ��x�
�∈���

≤ −f � (4.5)

Relation (4.5) is the fractional Gomory cut. As in the case of the Dantzig cut, the

current solution violates this new relation (as at present, the left-hand side equals zero

and the right-hand side is strictly negative) and the derivation assures that no integer

solutions were cut off. At least one dual simplex iteration is needed to find a primal

feasible solution again. A very different approach was taken by Gomory [81] in

designing all-integer cuts. The basic idea is to start with a tableau in which all

parameters are integers, and retain that property while optimizing.

4.2.3 Chvátal-Gomory’s cutting plane method:

Cutting planes can be obtained by first combining together inequalities from the

current linear programming relaxation and then exploiting the fact that the variables

must be integral. This process is known as integer rounding, and the cutting planes

generated are known as Chvátal-Gomory cutting planes. Integer rounding was

described implicitly by Gomory [81], and described explicitly by Chvátal [96].

4.2.4 Model Optimization Using Branch and cut Algorithm:

The branch and cut algorithm is an efficient method for solving optimization problem

to find the global optima. To solve the mathematical model developed in this thesis

C++ at Code Blocks and Mixed Integer Linear Programming(MILP) solver

((intlinprog) at MATLAB are used.

Solving the mathematical model using the Integer Linear Programming requires some

modification. The basic structure of the MATLAB MILP solver is like below

min
�

�� �

 ������� �� �

� (������)��� ��������
�.� ≤ �

���.� = ���

�� ≤ � ≤ ��

�
 (4.6)

Page | 43

Where, x is the decision variables, �� is a vector of the coefficients of the decision

variable in the objective function. A is a coefficient matrix of the decision variable in

the inequality constraints and b is a vector which is the right side of all inequality

constraints. Similarly ��� is a coefficient matrix of the decision variable in the

equality constraints and ��� is a vector which is the right side of all equality

constraints. lb and ub are lowar bounds and upper bounds of the decision variable

respectively.

To solve the model by this solver first the model is modified as follows to develop the

necessary constraint equations.

Objective function:

���, � ����� �
� + � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

 (4.7)

Subject to,

� ��,�,� = 1 ∀ �, �

�

���

 (4.8)

��,�,� ≤ ��,�,� ∀ �, �,� (4.9)

 −��,�
� + ��,���

� + � ��,�,�.��,�,�
�

�

���

≤ 0 ∀ �, �, � (4.10)

−��,�
� + � ��,�,�.��,�,�

�

�

���

≤ 0 ∀ �, � (4.11)

−��,�
� + ��,�,�.��,�,�

� ≤ �� ∀ �, �,�,� (4.12)

−��,�
� + ��,�

� + ��� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 3� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (4.13)

−��,�
� + ��,�

� + ��−� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 2� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�(4.14)

−��� �
� + ��,��

� ≤ 0 ∀ �,� (4.15)

Page | 44

��,�
� ≥ 0 (4.16)

��,�,� , ��,�,�,� ,��,�,� ∈{0,1} ∀ �, �,ℎ, �, � (4.17)

This is for the first stage of optimization. The constraint equations of the second stage

are modified in the similar way. After the generation of equation f, A, b, Aeq, beq, lb

and ub matrices are developed and optimization is done by using the above mentioned

programming software. The results of several numerical examples are shown in

chapter 6.

Page | 45

CHAPTER V

FLEXIBLE JOB SHOP SCHEDULING USING GENETIC

ALGORITHM

Different computational methodologies and procedures have been proposed to

solve flexible job shop scheduling problems, which could be classified into three

catagories; (1) exact procedures, (2) heuristics and improvement procedures and

(3) meta-heuristic. FJSPs are computationally difficult, in an n jobs m machine

problem mn combinations need to be checked. Due to the combinatorial nature of

the problem, exact (optimal) algorithms have been successfully applied only to

small problems (i.e. 10 jobs 10 machines), but they require high computational

efforts and extensive memory capabilities. Again, despite the guarantee of global

optimality by the exact algorithm, their efficiency as well as accuracy decreases as

the number of jobs and machines increases. As a result, metaheuristic algorithms

have got the attention in recent years to solve FJSP. This is due to their ability to

generate feasible solutions in the least possible computational time.

The developed flexible job shop scheduling model is a multi-objective constrained

ILP problem which falls on the class of the most difficult optimization problem. In

the previous chapter, this model is optimized using a branch and cut algorithm.

But, it has been observed that, it requires more computational time in reaching

optimality. Therefore, in this chapter, genetic algorithm is used to solve the

developed model.

GA is a well known search algorithm and has been widely used in different field

of study. In job shop scheduling problems it was extensively used by the

researcher. Some researchers also proposed some modification to improve the

local search method. Hybridization with other algorithms are also done by some

researcher. Neubauer [97] discussed about several approaches to different

production scheduling using genetic algorithm. A genetic algorithm was proposed

by Jawahar and Aravindan [98] to derive an optimal combination of priority

dispatching rules “pdrs” (independent pdrs one each for one Work Cell “WC”), to

resolve the conflict among the contending jobs.

Page | 46

An effective hybrid genetic algorithm with three novel features, full active

schedule (FAS), a new crossover operator called the precedence operation

crossover (POX) and improved generation alteration model are introduced to

solve the job shop problem by Zhang and Rao in [99]. For solving large size job

shop problem Wang, Xiao and Yin [100] proposed a two-stage GA which

attempts to firstly find the fittest control parameters, namely, number of

population, probability of crossover, and probability of mutation, for a given job

shop problem with a fraction of time using the optimal computing budget

allocation method, and then the fittest parameters are used in the GA for a further

searching operation to find the optimal solution. A hybrid genetic algorithm was

proposed by Jie and Mitsuo [101] to solve the job shop problem subject to

availability constraints. Countless papers are available on the application of

genetic algorithm in solving job shop problem [102-104] of different types. In the

following section definition, basic idea, components of GA and a brief discussion

on STS will be provided.

5.1 Genetic Algorithm:

GA is an iterative procedure maintaining a population of structures that are

candidate solutions to specific domain challenges. During each temporal

increment (called a generation), the structure in the current population are rated

for their effectiveness as domain solutions, and on the basis of these evaluations, a

new population of candidate solution is formed using specific genetic operators

such as reproduction, crossover and mutation.

The genetic algorithm technique was first invented by Holland [105] and has been

successfully applied to numerous large search space problems by Davis [106];

Forrest [107]; Goldberg [108]. It is a search algorithm based on the mechanics of

the natural selection process (biological evolution). The most basic concept is that

the strong tend to adapt and survive while the weak tend to die out. That is,

optimization is based on evolution and the “Survival of the fittest” concept. GA

has the ability to create an initial population of feasible solutions, and then

recombine them in a way to guide their search to only the most promising areas of

the state space. Each feasible solution is encoded as a chromosome (string) also

called genotype and each chromosome is given a measure of fitness via a fitness

Page | 47

(evaluation or objective) function. The fitness of a chromosome determines its

ability to survive and produce offspring. A finite population of chromosome is

maintained. GA uses probabilistic rules to evolve a population from one

generation to the next. They have a high built in degree of randomness to escape

from local optima and inferior regions of the solution space. Through parallel

processing on a population of randomly generated chromosomes, it speeds up the

whole search procedure. There is an abundance of applications of GAs in almost

any field, including an extensive use in solving the FLP. In short it is a robust

search technique and produce “close” to optimal results in a “reasonable” amount

of time.

5.1.1 Pseudo-code and Flow Chart for Generic GA:

The procedure of a generic GA is shown as follows:

The procedure of generic GA can be represented by the following Figure 5.1

Begin

 INITIALIZE population with random candidate solutions;

 EVALUATE each candidate;

 Repeat until TERMINATION-CONDITION is satisfied

1. SELECT parents;

2. CROSSOVER between parents

3. MUTATE the resulting children

4. EVALUATE children;

5. SELECT individuals for next generation

Page | 48

Figure 5.1: Flowchart of Genetic Algorithm

Generate Initial Population

Select Population

Assess Initial Population

Recombine New Population

Mutate New Population

Assess New Population

Terminate

Search?

Stop?

Yes

No

Page | 49

5.1.2 Basic Components of GA:

As described in Davis [106], a genetic algorithm has five components:

1. A means of encoding solutions to the problem as a chromosome.

2. A function that evaluates the “fitness” of a solution.

3. A means of obtaining an initial population of solutions.

4. Reproduction operators for the encoded solutions.

5. Appropriate settings for the genetic algorithm control parameters.

5.1.2.1 Chromosome Encoding:

The first, and perhaps the most important, step in applying a genetic algorithm to a

problem is to choose a way to represent a solution to the problem as a finite-length

string over a finite alphabet. These strings are referred to as chromosomes. The values

on the chromosome may be arranged and interpreted as needed. They may represent

Boolean values, integers, or even discretized real numbers. Complex chromosome can

have combination of two or more type. Some encodings, which have been already

used successfully, have been introduced here.

Binary - Binary encoding is the most common, mainly because first works about GA

used this type of encoding. In binary encoding every chromosome is a string of bits, 0

or 1.

Example: Chromosome A: 101100101100

Permutation - Permutation encoding can be used in ordering problems, such as

travelling salesman problem or task ordering problem. In permutation encoding, every

chromosome is a string of numbers, which represents number in a sequence.

Example: Chromosome A: 1 5 3 2 6 4 7 9 8

Value - Direct value encoding can be used in problems, where some complicated

values are used. In value encoding, every chromosome is a string of some values.

Values can be anything connected to problem e.g. real numbers or chars to some

complicated objects.

Example: Chromosome A: 1.2324 5.3243 0.4556 2.3293 2.4545

Page | 50

Chromosome B: (back), (back), (right), (forward), (left)

Tree - Tree encoding is used mainly for evolving programs or expressions, for genetic

programming. In tree encoding every chromosome is a tree of some objects, such as

functions or commands in programming language.

 Example:

Figure 5.2: Tree encoding for equation: (+ x (/ 5 y))

The choice of how to encode solutions on a chromosome is of primary importance to

the success of the genetic algorithm approach to a problem. The encoding of

information on the chromosome should be right for the problem rather than specific to

the problem. The encoding should be able to represent all the relevant parameters of

the problem and should avoid other parameters. Using parameters that are not directly

relevant will cause the genetic algorithm to be subject to changes in the problem that

would not otherwise affect it, thereby making it no more useful than a specialized

heuristic. Some knowledge of the search space is, of course, unavoidable according to

Rawlins, [109].

5.1.2.2 Fitness Function:

A function is needed that will interpret the chromosome and produce an evaluation of

the chromosome’s fitness. This function must be defined over the set of possible

chromosomes and is assumed to return some positive value representing the fitness.

The definition of this function is crucial because it must accurately measure the

desirability of the features described by the chromosome. In addition, the function

must make this evaluation in a very efficient manner because of the large number of

times the function will be called during the execution of the genetic algorithm. For

Page | 51

example, with a population of 100 chromosomes that runs for 1000 generations, there

could be as many as 100,000 calls to this evaluation function during execution.

5.1.2.3 Choosing an Initial Population:

In a “pure” genetic algorithm, the initial population is chosen randomly, with the goal

of selecting chromosomes from all over the search space. Whatever genetic material

is in the initial population will be the only material, except for the rare changes due to

mutation, available to the genetic algorithm during its search. One might employ a

heuristic to choose the initial population in an attempt to introduce the “right” genetic

building blocks into the population. However, this can lead to problems of premature

convergence to a local optimum since genetic algorithms are “notoriously

opportunistic” Grefenstette [110].

5.1.2.4 Reproduction Operators:

According to GA outline, Parent Selection Mechanism is a prerequisite for

reproduction operations: Crossover and Mutation.

Parent Selection Mechanism: The role of parent selection is to distinguish among

individuals based on their quality to allow the better individuals to become parents of

the next generation. Parent selection is probabilistic. Thus high quality individuals get

a higher chance to become parents than those with low quality. Nevertheless, low

quality individuals are often given a small but positive chance; otherwise the whole

search could become too greedy and get stuck in a local optimum. Some of the

selection methods are described below:

I. Roulette Wheel Selection - Parents are selected according to their fitness. The

better the chromosomes, the more chances to be selected. Imagine a roulette

wheel where every chromosome in a population has its place big accordingly to

its fitness function. This can be simulated by following algorithm.

Page | 52

II. Rank Selection - Rank selection first ranks the population and then every

chromosome receives fitness from this ranking. The worst will have fitness 1,

second worst 2 etc. and the best will have fitness N (number of chromosomes in

population).

III. Steady-State Selection - Main idea of this selection is that big part of

chromosomes should survive to next generation. In every generation a few

(good - with high fitness) chromosomes are selected for creating a new

offspring. Then some (bad – having low fitness) chromosomes are removed and

the new offspring is placed in their place. The rest of population survives to new

generation.

Crossover Operator: This operator merges information from two parents’ genotype

into one or two offspring genotypes. Crossover is a stochastic operator: the choice of

what parts of each parent are combined and the way these parts are combined depend

on random drawings. The principle behind crossover is simple: by mating two

individuals with different but desirable features, an offspring can be produced which

combines both of these features. These are different kinds of crossover:

I. One-point crossover - One crossover point is selected. String from beginning

of chromosome to the crossover point is copied from one parent; the rest is

copied from the second parent.

Example: 11001011+11011111 = 11001111 & 11011011

 Parent1 + Parent 2 = Child1 & Child 2

II. Two point crossover - Two crossover points are selected. String from

beginning of chromosome to the first crossover point is copied from one

Roulette Wheel Selection procedure:

1. [Sum] Calculate sum of all chromosome’s fitness in population - sum S.

2. [Select] Generate random number from interval (0,S) - r.

3. [Loop] Go through the population and sum fitness from 0 - sum S. When

the sum S is greater than r, stop and return the chromosome where you

are.

Step 1 is performed only once for each population.

Page | 53

parent, the part from the first to the second crossover point is copied from the

second parent and the rest is copied from the first parent.

 Example: 11001011 + 11011111 = 11011111 & 11001011

 Parent1 + Parent 2 = Child1 & Child 2

III. Uniform crossover – Genes are randomly copied from the first or from the

second parent.

 Example: 11001011 + 11011101 = 11011111 & 11011111 (random)

 Parent1 + Parent 2 = Child1 & Child 2

Mutation Operator: A unary variation operator is called mutation. It is applied to

one genotype and delivers a modified mutant. In general, mutation is supposed to

cause a random unbiased change. Mutation has a theoretical role; it can guarantee that

the space is connected.

Example: 11001001 = 10001001 (2nd bit is inverted).

5.1.2.5 Genetic Algorithm Control Parameters:

There are other parameters that govern the genetic algorithm search process. Some of

these are:

I. Population size - Determines how many chromosomes, and therefore how

much genetic material, are available for use during the search. If there is too

little, the search has no chance to adequately cover the space. If there is too

much, the genetic algorithm wastes time evaluating chromosomes.

II. Generations - Specifies how many times the population will be replaced

through reproduction.

III. Crossover Rate - Specifies the probability of crossover (mating) occurring

between two chromosomes.

IV. Mutation Rate - Specifies the probability that a value in the chromosome of a

newly created offspring will be randomly changed.

Page | 54

V. Termination Condition - GA is stochastic process and mostly there are no

guarantees to reach a global optimum. Commonly used conditions for

terminations are the following:

 A solution is found that satisfies minimum criteria.

 Fixed number of generations reached.

 For a given number of generations, there is no improvement in fitness.

5.1.3 Constraints Handling in GA:

There are many ways to handle constraint in a GA. At the high conceptual level it can

be distinguished in two cases: Indirect constraint handling and direct constraint

handling. Indirect constraint handling means to incorporate them in the fitness

function f(x) such that f(x) optimal implies that the constraints are satisfied. Direct

constraint handling means that the constraint stays as they are and the GA is ‘adapted’

to enforce them. Direct and Indirect both can be used together in a single application.

5.1.3.1 Direct Constraint Handling:

Treating constraint directly implies that violating them is not reflected in the fitness

function, thus there is no bias towards chromosome satisfying them. Therefore the

population will become less and less feasible with respect to these constraints. This

means feasibility of the chromosomes have to be monitored and maintained. The

basic problem in this case is that the regular operators are blind to constraints,

mutating one or crossing over two feasible chromosomes can result in infeasible

offspring. Typical approaches to handle constraints directly are the following:

I. Eliminating infeasible solution

II. Repairing infeasible solution

III. Preserving feasibility by special operators

IV. Decoding, i.e., the search space.

Eliminating infeasible solution is very inefficient, and therefore hardly applicable.

Repairing infeasible candidates requires a repair procedure for the chromosome.

Preserving feasibility can be NP-Complete. Finally decoding can be seen as shifting

to a search space that is different than the original problem formulation.

Page | 55

5.1.3.2 Indirect Constraint Handling:

In the case of indirect constraint handling, the optimization objectives replacing the

constraints are viewed as penalties for constraint violation hence to be minimized. In

general penalties are given for violated constraints. Advantages of indirect constraint

handling are:

 Reproduction of the problem to simple optimization.

 Possibility of embedding user preferences by means of weights.

Disadvantages of indirect constraint handling are:

 Loss of information packing everything in a single number.

 Does not work well with sparse problem.

5.1.4 Reasons to choose GA:

Genetic algorithm is a parallel, stochastic search process. It is widely used in many

applications due to the following reasons:

1. The search is highly parallel, with each population member defining many

different possible search directions. Potentially, GA search could be

implemented extremely efficiently on massively parallel hardware.

2. No special information about the solution surface such as gradient or local

curvature need to be identified. The objective function need not to be smooth,

continuous or unimodal.

3. Genetic algorithms have proved to be fairly robust under varying parameter

settings and problem particulars. As long as solutions with similar encodings

do not have highly variant objective function values, genetic algorithms

usually find near optimal solutions.

4. Being a population-based approach, GAs are well suited to solve multi-

objective optimization problems. A generic single-objective GA can be

modified to find a set of multiple non-dominated solutions in a single run.

Since the optimization of multi-objective unequal-area FLPs have to do with the

vast number of possible physical layouts, and with the existence of many locally

optimal layouts as well as should capture the pareto front, therefore GA is used in

this thesis work.

Page | 56

5.2 Model optimization using GA:

The MATLAB Integer GA solver is used for solving the FJSP. The basic structure of
the GA solver is as follows.

min
�

�� �

 ������� �� �

� (������)��� ��������
�.� ≤ �

���.� = ���

�� ≤ � ≤ ��

 � (5.1)

Here the input arguments are

Table 5.1: Input Arguments of GA

Fitness

function

(fitnessfcn)

To handle the fitness function(Objective function). The fitness

function accept a row vector of length of number of variables and

return a scalar value.

Number of

Variable

(nvars)

Positive integer representing the number of variables in the problem.

A Matrix for linear inequality constraints showed in equation set 5.1. If

the problem has m linear inequality constraints and nvars variables,

then A is a matrix of size m-by-nvars.

B Vector for linear inequality constraints showed in equation set 5.1. If

the problem has m linear inequality constraints and nvars variables,

then b is a vector of length m.

Aeq Matrix for linear equality constraints of the form showed in equation

5.1. If the problem has m linear equality constraints

and nvars variables, then Aeq is a matrix of size m-by-nvars.

Beq Vector for linear equality constraints of the form showed in equation

set 5.1. If the problem has m linear equality constraints

and nvars variables, then beq is a vector of length m.

Lb Vector of lower bounds.

Page | 57

Ub Vector of upper bounds.

Integer

Variables

(IntCon)

Vector of positive integers taking values from 1 to nvars. Each value

in IntCon represents an x component that is integer-valued.

Though GA solver can handle both linear equality and inequality constraints at the

same time for continuous variables, it can’t handle the equality constraints and integer

variables at the same time. It is a limitation of using GA solver. However, linear

inequalities can be modified as follows to solve the problem if relaxing the integer

variables is not possible.

 �
���.� ≥ ���
���.� ≤ ���

� (5.2)

GA solver also provides numerous options to modify the algorithm. Some options are

discussed below

5.2.1 Population Options:

This option let the user to specify the population parameters like, population type,

population size, initial population, initial scores, initial range etc. For solving the FJSP

model, the population size is set to the number of variables and the initial range is

kept limited between upper bound and lower bound.

5.2.2 Fitness Scaling Options:

Fitness scaling converts the raw fitness scores that are returned by the fitness function

to values in a range that is suitable for the selection function. Though several scaling

functions are provided by the solver like rank, proportional, top, in this research work

proportional scaling function is used. Proportional scaling makes the scaled value of

an individual proportional to its raw fitness score.

Page | 58

5.2.3 Selection Options:

Selection options specify how the genetic algorithm chooses parents for the next

generation. The options provided by the selection options of the GA solver of

MATLAB are

Stochastic uniform: The default selection function, Stochastic uniform, lays out a line

in which each parent corresponds to a section of the line of length proportional to its

scaled value. The algorithm moves along the line in steps of equal size. At each step,

the algorithm allocates a parent from the section it lands on. The first step is a uniform

random number less than the step size.

Remainder: Remainder selection assigns parents deterministically from the integer

part of each individual's scaled value and then uses roulette selection on the remaining

fractional part. For example, if the scaled value of an individual is 2.3, that individual

is listed twice as a parent because the integer part is 2. After parents have been

assigned according to the integer parts of the scaled values, the rest of the parents are

chosen stochastically. The probability that a parent is chosen in this step is

proportional to the fractional part of its scaled value.

Uniform: Uniform selection chooses parents using the expectations and number of

parents. Uniform selection is useful for debugging and testing, but is not a very

effective search strategy.

Roulette: Roulette selection chooses parents by simulating a roulette wheel, in which

the area of the section of the wheel corresponding to an individual is proportional to

the individual's expectation. The algorithm uses a random number to select one of the

sections with a probability equal to its area.

Tournament: Tournament selection chooses each parent by choosing Tournament

size players at random and then choosing the best individual out of that set to be a

parent. Tournament size must be at least 2.

5.2.4 Reproduction Options:

Reproduction options let the user to specify how the genetic algorithm creates

children for the next generation.

Page | 59

Elite count: specifies the number of individuals that are guaranteed to survive to the

next generation.

Crossover fraction: specifies the fraction of the next generation, other than elite

children, that are produced by crossover.

In this work the reproduction options kept to default crossover function

5.2.5 Mutation Options:

Mutation options let the user to specify how the genetic algorithm makes small

random changes in the individuals in the population to create mutation children.

Mutation provides genetic diversity and enables the genetic algorithm to search a

broader space. The default mutation function for unconstrained problems, Gaussian,

adds a random number taken from a Gaussian distribution with mean 0 to each entry

of the parent vector. Unfortunately this option can’t be used for integer programming.

5.2.6 Stopping Criteria Options:

Stopping criteria determine what causes the algorithm to terminate. It can be specified

by the following options:

Generations: Specifies the maximum number of iterations for the genetic algorithm

to perform. The default is 100*nvar

Time limit: Specifies the maximum time in seconds the genetic algorithm runs before

stopping, as measured by cputime.

Fitness limit: The algorithm stops if the best fitness value is less than or equal to the

value of Fitness limit.

Stall generations: The algorithm stops if the average relative change in the best

fitness function value over Stall generations is less than or equal to Function

tolerance.

Stall time limit: The algorithm stops if there is no improvement in the best fitness

value for an interval of time in seconds specified by Stall time limit, as measured by

cputime.

Page | 60

Function tolerance: The algorithm stops if the average relative change in the best

fitness function value over Stall generations is less than or equal to Function tolerance

The modified model for solving with the GA solver is as follows

5.2.7 Fitness function:

���, � ����� �
� + � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

 (5.3)

Subject to,

� ��,�,� ≤ 1 ∀ �, �

�

���

 (5.4)

− � ��,�,� ≤ −1 ∀ �, �

�

���

 (5.5)

��,�,� ≤ ��,�,� ∀ �, �,� (5.5)

 −��,�
� + ��,���

� + � ��,�,�.��,�,�
�

�

���

≤ 0 ∀ �, �, � (5.6)

−��,�
� + � ��,�,�.��,�,�

�

�

���

≤ 0 ∀ �, � (5.7)

−��,�
� + ��,�,�.��,�,�

� ≤ �� ∀ �, �,�,� (5.8)

−��,�
� + ��,�

� + ��� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 3� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (5.9)

−��,�
� + ��,�

� + ��−� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 2� ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�(5.10)

−��� �
� + ��,��

� ≤ 0 ∀ �,� (5.11)

��,�
� ≥ 0 (5.12)

��,�,� , ��,�,�,� ,��,�,� ∈{0,1} ∀ �, �, ℎ, �, � (5.13)

Page | 61

CHAPTER VI

RESULTS AND DISCUSSIONS

In this thesis work a two stage multi-objective flexible job shop scheduling model has

been developed considering the prime objective to minimize the makespan of the

overall system. The developed constrained multi-objective integer linear model has

been optimized to determine the optimal arrangement of the operation of different

jobs at different machines so that maximum completion time, variability of

completion time of each operation and variability of makespan at different stages will

be minimized. This model is illustrated with two numerical examples and then

optimized using a branch and cut algorithm and a genetic algorithm.

6.1 Numerical Example:

In this case a four job five machine (4 x 5) problem is considered. The input data for

the model are collected from Zhang [111]. The model requires the following input

parameters for the first stage of optimization.

I. Number of jobs

II. Number of machines

III. Number of operation of each job

IV. Sequence of operation of each job

V. Processing time of each operation at different machines

In the second stage some other inputs will be needed. These are

I. Arrival time of the unpredicted job

II. Processing time of unpredicted job at different machines

III. Operations already completed or in process

IV. Time when each machine will be available for second stage operations

Page | 62

6.1.1 Optimization using Branch and Cut Algorithm:

To apply the integer linear programming the model is modified as described in

chapter IV. The optimization using Branch and Cut Algorithm involve the following

sequential steps

I. Reading the input data

II. Variable generation according to the model in terms of x

III. Developing the coefficient matrices for all equations

IV. Developing separate matrices for �,�,���, ���, ��,��, ������,�

V. Defining the objective function

VI. Running optimization

VII. Reading output result

VIII. Decoding the result to generate separate Gantt chart at different scenarios both

for job and machine vs. the time to make it easily readable to the user.

6.1.1.1 First stage optimization-Developing a Robust Schedule:

The input data for 4 x 5 job shop is as follows,

Number of jobs = 4

Number of machines = 5

Processing time of each operation at different machine are shown below,

Table 6.1: Processing time of different operations at scenario 1

Operation (Oji)
Machine

M-1 M-2 M-3 M-4 M-5

11 2 5 4 1 2

12 5 4 5 7 5

13 4 5 5 4 5

21 2 5 4 7 8

22 5 6 9 8 5

23 4 5 4 54 5

31 9 8 6 7 9

32 6 1 2 5 4

33 2 5 4 2 4

34 4 5 2 1 5

41 1 5 2 4 12

42 5 1 2 1 2

51 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

Page | 63

Here the processing time can be in hours or in days. The fifth job is a dummy job

which is considered in the first stage to reduce the computational complexity at the

second stage. For this example it is assumed that one unpredicted job may arrive after

the initialization of the operation. One may consider two jobs. In that case two

dummy jobs can be created. This job has no effect on the initial schedule as

processing time of all operations at different machines are zero. These are the input

data for the first scenario. In this thesis there are two scenarios are considered. The

input data for second scenario are shown below.

Table 6.2: Processing time of different operations at scenario 2

Operation (Oji)
Machine

M-1 M-2 M-3 M-4 M-5

11 1 4 6 9 3

12 4 1 1 3 4

13 3 2 5 1 5

21 2 10 4 5 9

22 4 8 7 1 9

23 6 11 2 7 5

31 8 5 8 9 4

32 9 3 6 1 2

33 7 1 8 5 4

34 7 3 12 1 6

41 5 10 6 4 9

42 4 2 3 8 7

51 0 0 0 0 0

52 0 0 0 0 0

53 0 0 0 0 0

In the first stage two schedules will be generated. The decision regarding which

schedule to execute depends on the scenario occurs at the real time. So the job shop

has the flexibility to operate in different scenarios.

The forms of input and output of an optimization is important to make it usable by

others for real application as one of the objective of this thesis work is to make the

schedule adaptable to the real manufacturing or application. In this work, emphasis is

given on generating output and taking inputs.

Page | 64

The flow chart of the optimization using the programming software is shown below

Figure 6.1: Flow chart of optimization steps

Here the input text consist the number of jobs, number of machines, number of

operation of each job, processing time matrix at different machines and the big M

Value.

One of the input text file is as follows.

5 <Number of machines>

5 <Number of Jobs>

3 <Number of operations for the first job>
2 5 4 1 2 <Processing time of Operation 1 of job 1 at 5 machines>
5 4 5 7 5
4 5 5 4 5

3
2 5 4 7 8
5 6 9 8 5
4 5 4 54 5

4
9 8 6 7 9
6 1 2 5 4
2 5 4 2 4
4 5 2 1 5

2
1 5 2 4 12
5 1 2 1 2

3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

100

Creating
input text

file

Running
the code

blocks
code

Running
MATLAB

code

Saving the
Gantt
Chart

generated

Page | 65

This is for variable and equation generation. After running C++ code the output log

file is as follows

total number of machine 5
total number of job 5
1th job has 3 operations
2 5 4 1 2
5 4 5 7 5
4 5 5 4 5

2th job has 3 operations
2 5 4 7 8
5 6 9 8 5
4 5 4 54 5

3th job has 4 operations
9 8 6 7 9
6 1 2 5 4
2 5 4 2 4
4 5 2 1 5

4th job has 2 operations
1 5 2 4 12
5 1 2 1 2

5th job has 3 operations
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

value of Big M 100
assignment variables start x1
assignment variables end at x75

sequencing variables start x76
sequencing variables end at x269

completion variables start at x270
completion variables end at x284

max completion time variable is x285

Page | 66

Another input text file is required for developing Gantt Chart which contains the

operation ID and processing time of the corresponding operations

1 1 2 5 4 1 2
1 2 5 4 5 7 5
1 3 4 5 5 4 5
2 1 2 5 4 7 8
2 2 5 6 9 8 5
2 3 4 5 4 54 5
3 1 9 8 6 7 9
3 2 6 1 2 5 4
3 3 2 5 4 2 4
3 4 4 5 2 1 5
4 1 1 5 2 4 12
4 2 5 1 2 1 2
5 1 0 0 0 0 0
5 2 0 0 0 0 0
5 3 0 0 0 0 0

where the first two numbers of each row denote the job number and operation number

respectively.

6.1.1.1.1 Output of stage 1:

After creating the following input the optimization using MATLAB is initialized. The
Gantt Charts and plot of the objective function are shown in the figures. The output
file attached in the appendix. Here the probability of the two scenarios is assumed 0.6
and 0.4 respectively. The output of the optimization is as follows,

Scenario-1:

Table 6.3: Results of scenario 1 at stage 1
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 4 4 1 1

1 2 7 2 4 6

1 3 13 3 5 11

2 1 16 1 2 2

2 2 25 5 5 7

2 3 26 1 4 11

3 1 33 3 6 6

3 2 37 2 1 7

3 3 44 4 2 9

3 4 49 4 1 11

4 1 51 1 1 3

4 2 57 2 1 8

5 1 65 5 0 0

5 2 68 3 0 0

5 3 75 5 0 0

Page | 67

Scenario-2:

Table 6.4: Results of scenario 2 at stage 1
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 1 1 1 1

1 2 8 3 1 2

1 3 14 4 1 7

2 1 16 1 2 3

2 2 24 4 1 6

2 3 28 3 2 8

3 1 35 5 4 4

3 2 39 4 1 5

3 3 42 2 1 6

3 4 49 4 1 8

4 1 54 4 4 4

4 2 56 1 4 8

5 1 65 5 0 0

5 2 68 3 0 2

5 3 72 2 0 7

So the makespan for scenario 1 and 2 are 11days and 8 days respectively and the

objective function for the first stage is 11.24 days. So it is evident from the output that

for completing all jobs at least 11.24 days will be required. The objective function

value at two different scenario are plotted against the number of nodes which are

shown in figure 6.2 and 6.3 respectively

From the Gantt chart output shown in figure 6.4-6.7, it is clear that a non-overlapping

schedule is generated for the execution. The significance of generating two Gantt

chart, one is job vs. time and other is machine vs. time is to identify the sequence of

operations at different machine and to keep track of machine sequence of operations

of each job. For instance let consider figure 6.4 and 6.5. In figure 6.4 the operation

sequence are shown at different machines. So from this operator one can visualize the

operation sequence at different machines easily. For example, in machine 2 operation

no 12, 32 and 42 will be done sequentially. But, if someone is interested to know the

machine sequence for a job it will be a hectic job to find the same color slots at

different machines to identify the machine sequence. That’s why the second type of

Gantt chart is needed which shows the machine sequence for different jobs.

Therefore, observing these two diagrams one can easily execute the schedule

generated.

For this optimization 5 Gomory Cuts and 1 Zero

scenario. For scenario 2, 1 Gomory cut, 3 strong CG cuts an

applied. Due to this cut generation the optimization time is significantly low. The

cputime for this optimization is 559.13 seconds.

Figure 6.2

Figure 6.3

Therefore, observing these two diagrams one can easily execute the schedule

For this optimization 5 Gomory Cuts and 1 Zero-half cut are applied for the first

scenario. For scenario 2, 1 Gomory cut, 3 strong CG cuts and 1 zero

applied. Due to this cut generation the optimization time is significantly low. The

cputime for this optimization is 559.13 seconds.

6.2: Objective versus Number of nodes at scenario 1of stage 1

6.3: Objective versus Number of nodes at scenario 2of stage 1

Page | 68

Therefore, observing these two diagrams one can easily execute the schedule

half cut are applied for the first

d 1 zero-half cut are

applied. Due to this cut generation the optimization time is significantly low. The

of stage 1

at scenario 2of stage 1

Page | 69

Figure 6.4: Gantt chart at scenario 1 of stage 1-Machine vs. Time

Page | 70

Figure 6.5: Gantt chart at scenario 1 of stage 1-Job vs. Time

Page | 71

Figure 6.6: Gantt chart at scenario 2 of stage 1-Machine vs. Time

Page | 72

Figure 6.7: Gantt chart at scenario 2 of stage 1-Job vs. Time

Page | 73

6.1.1.2 Second stage optimization-Reactive Scheduling:

In real manufacturing environment jobs continuously arrive at shop floor and need to

be scheduled at real time which give the rise of reactive scheduling. In this stage an

unpredicted job is assumed which arrive at shop floor at time t when already the

initial schedule is executed. Let’s assume a job arrives at shop floor at time t=3 which

consists of three operations. After 3 days some operations has already completed and

some operations are still in process in few machines. For rescheduling these

completed jobs and work in process jobs must be excluded from the list of operations

because preemption is not allowed. After 3 days at scenario 1, operations

���,���,��� are already completed and operations ���,���,��� are in process. It is

convenient to assign processing time zero for this operation. So that in optimization

equations variable ID will remain same. After doing so the new input data for

optimization is like below

Table 6.5: Processing time of different operations at scenario 1 in stage 2

Operation (Oji)
Machine

M-1 M-2 M-3 M-4 M-5
11 0 0 0 0 0
12 0 0 0 0 0
13 4 5 5 4 5
21 0 0 0 0 0
22 0 0 0 0 0
23 4 5 4 54 5
31 0 0 0 0 0
32 6 1 2 5 4
33 2 5 4 2 4
34 4 5 2 1 5
41 0 0 0 0 0
42 5 1 2 1 2
51 5 7 11 3 2
52 8 3 10 7 5
53 6 2 13 5 4

As some jobs are still in process it is evident that all machines are not available at t=3

which is also visible from the machine vs. time Gantt chart of scenario 1. Machine

availability time, �� for different machines obtained from the output of first stage are

Table 6.6: Machine availability time
M-1 M-2 M-3 M-4 M-5

3 6 6 3 7

These steps are called preprocessing. Similar preprocessing is done for scenario 2

Page | 74

6.1.1.2.1 Output of stage 2:

The output of stage 2 are given below

Scenario 1

Table 6.7: Results of scenario 1 at stage 2
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 3 3 0 7

1 2 6 1 0 7

1 3 15 5 5 12

2 1 16 1 0 7

2 2 24 4 0 7

2 3 26 1 4 12

3 1 33 3 0 7

3 2 38 3 2 9

3 3 44 4 2 11

3 4 49 4 1 12

4 1 53 3 0 7

4 2 59 4 1 8

5 1 64 4 3 7

5 2 67 2 3 10

5 3 72 2 2 12

Scenario 2

Table 6.8: Results of scenario 2 at stage 2
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 3 3 0 4

1 2 6 1 0 4

1 3 14 4 1 8

2 1 16 1 0 4

2 2 24 4 1 6

2 3 30 5 5 11

3 1 33 3 0 4

3 2 39 4 1 5

3 3 42 2 1 6

3 4 49 4 1 7

4 1 53 3 0 4

4 2 56 1 4 8

5 1 65 5 2 6

5 2 67 2 3 9

5 3 72 2 2 11

The objective function values are

Makespan
Variability of completions times of
the operations
Variability of the makespan

The objective function plot

Figure 6.8

Figure 6.9

The objective function values are

Table 6.9: Objective function values
Objective Scenario-1 Scnario

 12
Variability of completions times of
the operations

53

Variability of the makespan 1

The objective function plot and rescheduled Gantt charts are shown below

6.8: Objective versus Number of nodes at scenario 1of stage 2

6.9: Objective versus Number of nodes at scenario 2of stage 2

Page | 75

Scnario-2
11

28

3

and rescheduled Gantt charts are shown below

of stage 2

at scenario 2of stage 2

Page | 76

Figure 6.10: Gantt chart at scenario 1 of stage 2-Machine vs. Time

Page | 77

Figure 6.11: Gantt chart at scenario 1 of stage 2-Job vs. Time

Page | 78

Figure 6.12: Gantt chart at scenario 2 of stage 2-Machine vs. Time

Page | 79

Figure 6.13: Gantt chart at scenario 2 of stage 2-Job vs. Time

Page | 80

From the two stages of observation it can be concluded that the model is a validated

one. The objective functions plot shows the convergence to the minimum value. Close

observation of the output data and Gantt charts reveals that there are only few changes

occurred in the machine assignment and positioning the operations in stage 2. So the

proposed mathematical model is stable and robust as well.

6.1.2 Optimization using Genetic Algorithm:

The application of genetic algorithm involves similar steps as in Branch and Cut

algorithm accepts few changes. The steps of genetic algorithm was described in detail

in chapter V

I. Reading the input data

II. Variable generation according to the model in terms of x

III. Modification of equality constraints as described in chapter V

IV. Developing the coefficient matrices for all equations

V. Developing separate matrices for �,�, ��,��, ������

VI. Defining the fitness function

VII. Setting the genetic algorithm parameters like number of populations, number

of generation, stopping condition, crossover and mutation options etc.

VIII. Running optimization

IX. Reading output result

X. Decoding the result to generate separate Gantt chart at different scenarios both

for job and machine vs. the time to make it easily readable to the user.

The inputs are similar as in Branch and Cut algorithm. Here the outputs are shown

only.

6.1.2.1 First stage optimization-Developing a Robust Schedule (GA):

Population: 285

Generation: 300

Crossover probability: 0.8

Fitness Selection Function: Proportional

Page | 81

6.1.2.1.1 Output of stage 1(GA):

 Scenario-1:

Table 6.10: Results of scenario 1 at stage 1(GA)
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 1 1 2 4

1 2 7 2 4 8

1 3 11 1 4 14

2 1 16 1 2 5

2 2 25 5 5 10

2 3 26 1 4 11

3 1 33 3 6 6

3 2 37 2 1 8

3 3 44 4 2 11

3 4 49 4 1 14

4 1 53 3 2 7

4 2 60 5 2 12

5 1 64 4 0 6

5 2 70 5 0 10

5 3 74 4 0 13

Scenario-2:

Table 6.11: Results of scenario 1 at stage 1(GA)
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 1 1 1 1

1 2 8 3 1 3

1 3 14 4 1 11

2 1 16 1 2 3

2 2 24 4 1 10

2 3 28 3 2 12

3 1 35 5 4 9

3 2 39 4 1 11

3 3 42 2 1 12

3 4 47 2 3 15

4 1 51 1 5 6

4 2 57 2 2 10

5 1 65 5 0 0

5 2 68 3 0 11

5 3 74 4 0 11

Page | 82

The objective function plot and Gantt charts at different scenarios are shown below.

Figure 6.14: Objective versus Number of nodes at scenario 1of stage 1(GA)

Figure 6.15: Objective versus Number of nodes at scenario 2of stage 1(GA)

Page | 83

Figure 6.16: Gantt chart at scenario 1 of stage 1-Machine vs. Time (GA)

Page | 84

Figure 6.17: Gantt chart at scenario 1 of stage 1-Job vs. Time (GA)

Page | 85

Figure 6.18: Gantt chart at scenario 2 of stage 1-Machine vs. Time (GA)

Page | 86

Figure 6.19: Gantt chart at scenario 2 of stage 1-Job vs. Time (GA)

Page | 87

6.1.2.2 Second stage optimization-Reactive Scheduling(GA):

The preprocessing of data for second stage of optimization is similar as in section
6.1.1.2

6.1.2.2.1 Output of stage 2(GA):

 Scenario-1:

Table 6.12: Results of scenario 1 at stage 1(GA)
Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 1 1 0 6

1 2 6 1 5 14

1 3 15 5 5 27

2 1 17 2 5 8

2 2 21 1 5 21

2 3 28 3 4 28

3 1 34 4 0 7

3 2 37 2 1 11

3 3 41 1 2 17

3 4 49 4 1 30

4 1 53 3 2 9

4 2 59 4 1 29

5 1 65 5 2 5

5 2 67 2 3 11

5 3 72 2 2 16

Scenario-2:

Table 6.13: Results of scenario 1 at stage 1(GA)

Job
No.

Operation
No.

Decision
variable

no.

Machine
assigned

Processing
time

(days)

Completion
time

(days)
1 1 4 4 0 7

1 2 8 3 1 18

1 3 14 4 1 23

2 1 20 5 0 7

2 2 23 3 7 18

2 3 28 3 2 28

3 1 32 2 5 10

3 2 37 2 3 17

3 3 42 2 1 22

3 4 47 2 3 28

4 1 52 2 0 6

4 2 57 2 2 21

Page | 88

5 1 61 1 5 9

5 2 69 4 7 22

5 3 75 5 4 30

Table 6.14: Objective function values (GA)
Objective Scenario-1 Scnario-2

Makespan 30 30
Variability of completions times of
the operations

102 141

Variability of the makespan 16 15

The objective function plot and Gantt charts at different scenarios are shown below

Figure 6.20: Objective versus Number of nodes at scenario 1of stage 2(GA)

Figure 6.21: Objective versus Number of nodes at scenario 2of stage 2(GA)

Page | 89

Figure 6.22: Gantt chart at scenario 1 of stage 2-Machine vs. Time (GA)

Page | 90

Figure 6.23: Gantt chart at scenario 1 of stage 2-Job vs. Time (GA)

Page | 91

Figure 6.24: Gantt chart at scenario 2 of stage 2-Machine vs. Time (GA)

Page | 92

Figure 6.25: Gantt chart at scenario 2 of stage 2-Job vs. Time (GA)

Page | 93

Analyzing the two algorithm it can be concluded that Branch and Cut algorithm

performs better in optimizing the schedule in both stages compared to Genetic

Algorithm. One possible cause is the Branch and Cut algorithm search almost the

entire solution space whereas Genetic Algorithm stops after achieving local optimal.

But in case of problem with large number of instances Genetic Algorithm outperform

the Branch and Cut method with respect to computation time (see appendix5 and 7).

Page | 94

CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

This study addresses a two stage flexible Job Shop scheduling and rescheduling

problems encompassing multiple objectives and multiple machines with machine

eligibilities. The multiple objectives of the scheduling problem are makespan, stability

and Robustness. This problem belongs to the NP-hard problem class, which has a

very high complexity resulting in very high computation time as the problem sizes are

increased. The study implements the GA to determine a near optimal sequence from a

collection of n jobs scheduled on a bank of identical parallel machines with machine

eligibilities to minimize makespan and to maximize the schedule robustness and

stability simultaneously. The near optimal sequence generated by the GA is then used

as the initial schedule or input for the rescheduling problem. Moreover the problem is

also solved by using branch and cut algorithm. Due to the application of the cutting

plane the computational time is significantly improved. The incorporation of the

unpredicted arrival of new job and interactive interface for schedule generation makes

this work more adaptable to the real application. Upon the arrival of new job, the

schedule will be revised and a new schedule will be generated considering the

objective to minimize the variability of completion time of each job and variability of

makespan in two stages. Therefore the proposed model is robust, stable and effective

for the real life application.

7.2 Future Research

There are some possible directions to which this research can be extended. In this

thesis processing time data are deterministic under a scenario which reduces the

computational effort and kept the model linear. Implementation of stochastic

processing time can be done in future. Some objectives are not considered in this

work like tardiness, critical machine workload etc. The work can be extended for the

following objectives also. The problem is solved by MATLAB based solver which

provides a built in framework for solving the problem. Improvement of algorithm like

hybridization can be done to solve the in much less computational time then the

Page | 95

proposed methods. The machines in this problem are considered identical in terms of

operation and speed. But in real scenario it may not be the case. Therefore partial

flexible job shop problem can be developed. Moreover, no rescheduling penalty is

considered in the model. Rescheduling may involve rerouting of jobs and new setups

and fixtures. So the incorporation of rescheduling cost in the proposed model may be

a possible future research.

Page | 96

 References

[1] V. Roshanaei, M. S. Esfehani, and M. Zandieh, "Integrating non-preemptive
open shops scheduling with sequence-dependent setup times using advanced
metaheuristics," Expert systems with applications, vol. 37, pp. 259-266, 2010.

[2] S. M. Johnson, "Optimal two‐and three‐stage production schedules with setup
times included," Naval research logistics quarterly, vol. 1, pp. 61-68, 1954.

[3] D. Ouelhadj and S. Petrovic, "A survey of dynamic scheduling in
manufacturing systems," Journal of Scheduling, vol. 12, pp. 417-431, 2009.

[4] H. Davoudpour and N. Azad, "Solving Multi-Objective Flexible Job Shop
Scheduling Problems Using Immune Algorithm," International Journal of
Modern Science and Technology, pp. 2325-2332, 2012.

[5] L. De Giovanni and F. Pezzella, "An improved genetic algorithm for the
distributed and flexible job-shop scheduling problem," European journal of
operational research, vol. 200, pp. 395-408, 2010.

[6] G. Vilcot and J.-C. Billaut, "A tabu search and a genetic algorithm for solving
a bicriteria general job shop scheduling problem," European Journal of
Operational Research, vol. 190, pp. 398-411, 2008.

[7] R. L. Daniels and P. Kouvelis, "Robust scheduling to hedge against processing
time uncertainty in single-stage production," Management Science, vol. 41,
pp. 363-376, 1995.

[8] S. V. Mehta, "Predictable scheduling of a single machine subject to
breakdowns," International Journal of Computer Integrated Manufacturing,
vol. 12, pp. 15-38, 1999.

[9] S. V. Mehta and R. M. Uzsoy, "Predictable scheduling of a job shop subject to
breakdowns," Robotics and Automation, IEEE Transactions on, vol. 14, pp.
365-378, 1998.

[10] R. O'Donovan, R. Uzsoy, and K. N. McKay, "Predictable scheduling of a
single machine with breakdowns and sensitive jobs," International Journal of
Production Research, vol. 37, pp. 4217-4233, 1999.

[11] M. T. Jensen, "Improving robustness and flexibility of tardiness and total
flow-time job shops using robustness measures," Applied Soft Computing, vol.
1, pp. 35-52, 2001.

[12] S. Goren and I. Sabuncuoglu, "Robustness and stability measures for
scheduling: single-machine environment," IIE Transactions, vol. 40, pp. 66-
83, 2008.

[13] S. Goren and I. Sabuncuoglu, "Optimization of schedule robustness and
stability under random machine breakdowns and processing time variability,"
IIE Transactions, vol. 42, pp. 203-220, 2009.

Page | 97

[14] L. Liu, H.-y. Gu, and Y.-g. Xi, "Robust and stable scheduling of a single
machine with random machine breakdowns," The International Journal of
Advanced Manufacturing Technology, vol. 31, pp. 645-654, 2007.

[15] N. Al-Hinai and T. ElMekkawy, "Robust and stable flexible job shop
scheduling with random machine breakdowns using a hybrid genetic
algorithm," International Journal of Production Economics, vol. 132, pp. 279-
291, 2011.

[16] M. R. Garey, D. S. Johnson, and R. Sethi, "The complexity of flowshop and
jobshop scheduling," Mathematics of operations research, vol. 1, pp. 117-129,
1976.

[17] P. Brucker and R. Schlie, "Job-shop scheduling with multi-purpose machines,"
Computing, vol. 45, pp. 369-375, 1990.

[18] B. MacCarthy and J. Liu, "Addressing the gap in scheduling research: a
review of optimization and heuristic methods in production scheduling," The
International Journal of Production Research, vol. 31, pp. 59-79, 1993.

[19] C. S. Shukla and F. F. Chen, "The state of the art in intelligent real-time FMS
control: a comprehensive survey," Journal of intelligent Manufacturing, vol.
7, pp. 441-455, 1996.

[20] P. Cowling and M. Johansson, "Using real time information for effective
dynamic scheduling," European Journal of Operational Research, vol. 139,
pp. 230-244, 2002.

[21] M. L. Pinedo, Scheduling: theory, algorithms, and systems: Springer Science
& Business Media, 2012.

[22] M. Pinedo, "On the Computational Complexity of Stochastic Scheduling
Problems," in Deterministic and Stochastic Scheduling. vol. 84, M. A. H.
Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan, Eds., ed: Springer
Netherlands, 1982, pp. 355-365.

[23] R. H. Möhring, F. J. Radermacher, and G. Weiss, "Stochastic scheduling
problems II-set strategies," Zeitschrift für Operations Research, vol. 29, pp.
65-104, 1985.

[24] R. Montemanni, "A mixed integer programming formulation for the total flow
time single machine robust scheduling problem with interval data," Journal of
Mathematical Modelling and Algorithms, vol. 6, pp. 287-296, 2007.

[25] P. Kouvelis, R. L. Daniels, and G. Vairaktarakis, "Robust scheduling of a two-
machine flow shop with uncertain processing times," IIE Transactions
(Institute of Industrial Engineers), vol. 32, pp. 421-432, 2000.

[26] X. Zuo, H. Mo, and J. Wu, "A robust scheduling method based on a multi-
objective immune algorithm," Information Sciences, vol. 179, pp. 3359-3369,
2009.

Page | 98

[27] Y. Xia, B. Chen, and J. Yue, "Job sequencing and due date assignment in a
single machine shop with uncertain processing times," European Journal of
Operational Research, vol. 184, pp. 63-75, 2008.

[28] U. M. Al-Turki, J. Mittenthal, and M. Raghavachari, "The single-machine
absolute-deviation early-tardy problem with random completion times," Naval
Research Logistics, vol. 43, pp. 573-587, 1996.

[29] X. Cai and F. S. Tu, "Scheduling jobs with random processing times on a
single machine subject to stochastic breakdowns to minimize early-tardy
penalties," Naval Research Logistics, vol. 43, pp. 1127-1146, 1996.

[30] L. Liu, H. Y. Gu, and Y. G. Xi, "Robust and stable scheduling of a single
machine with random machine breakdowns," International Journal of
Advanced Manufacturing Technology, vol. 31, pp. 645-654, 2007.

[31] M. Sevaux and K. Sörensen, "A genetic algorithm for robust schedules in a
one-machine environment with ready times and due dates," 4OR, vol. 2, pp.
129-147, 2004.

[32] E. S. Byeon, S. D. Wu, and R. H. Storer, "Decomposition heuristics for robust
job-shop scheduling," IEEE Transactions on Robotics and Automation, vol.
14, pp. 303-313, 1998.

[33] E. Kutanoglu and S. D. Wu, "Improving scheduling robustness via
preprocessing and dynamic adaptation," IIE Transactions (Institute of
Industrial Engineers), vol. 36, pp. 1107-1124, 2004.

[34] E. Kutanoglu and S. D. Wu, "Improving Schedule Robustness Via Stochastic
Analysis and Dynamic Adaptation," IMSE Technical Report 98T-001, 1998.

[35] S. D. Wu, E. S. Byeon, and R. H. Storer, "A graph-theoretic decomposition of
the job shop scheduling problem to achieve scheduling robustness,"
Operations Research, vol. 47, pp. 113-124, 1999.

[36] R. Shafaei and P. Brunn, "Workshop scheduling using practical (inaccurate)
data - Part 3: A framework to integrate job releasing, routing and scheduling
functions to create a robust predictive schedule," International Journal of
Production Research, vol. 38, pp. 85-99, 2000.

[37] R. Shafaei and P. Brunn, "Workshop scheduling using practical (inaccurate)
data. Part 2: An investigation of the robustness of scheduling rules in a
dynamic and stochastic environment," International Journal of Production
Research, vol. 37, pp. 4105-4117, 1999.

[38] P. I. Cowling, D. Ouelhadj, and S. Petrovic, "Dynamic scheduling of steel
casting and milling using multi-agents," Production Planning and Control,
vol. 15, pp. 178-188, 2004.

[39] N. Policella, A. Oddi, S. F. Smith, and A. Cesta, "Generating robust partial
order schedules," in Lecture Notes in Computer Science (including subseries

Page | 99

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
vol. 3258, ed, 2004, pp. 496-511.

[40] N. Policella, A. Cesta, A. Oddi, and S. F. Smith, "Schedule robustness through
broader solve and robustify search for partial order schedules," Proceedings of
AI (*)IA 2005, Lecture Notes in Artificial Intelligence, vol. 3673, pp. 160-172,
2005.

[41] V. J. Leon, S. D. Wu, and R. H. Storer, "Robustness measures and robust
scheduling for job shops," IIE Transactions, vol. 26, pp. 32-43, 1994.

[42] S. R. Lawrence and E. C. Sewell, "Heuristic, optimal, static, and dynamic
schedules when processing times are uncertain," Journal of Operations
Management, vol. 15, pp. 71-82, 1997.

[43] I. Sabuncuoglu, "Rescheduling frequency in an FMS with uncertain
processing times and unreliable machines," Journal of Manufacturing
Systems, vol. 18, pp. 268-282, 1999.

[44] S. V. Mehta and R. M. Uzsoy, "Predictable scheduling of a job shop subject to
breakdowns," IEEE Transactions on Robotics and Automation, vol. 14, pp.
365-378, 1998.

[45] M. T. Jensen, "Generating robust and flexible job shop schedules using
genetic algorithms," IEEE Transactions on Evolutionary Computation, vol. 7,
pp. 275-288, 2003.

[46] D. C. Mattfeld, "Evolutionary search and the job shop," Production and
Logistics, 1996.

[47] Z. Laslo, D. Golenko-Ginzburg, and B. Keren, "Optimal booking of machines
in a virtual job-shop with stochastic processing times to minimize total
machine rental and job tardiness costs," International Journal of Production
Economics, vol. 111, pp. 812-821, 2008.

[48] A. Anglani, A. Grieco, E. Guerriero, and R. Musmanno, "Robust scheduling
of parallel machines with sequence-dependent set-up costs," European
Journal of Operational Research, vol. 161, pp. 704-720, 2005.

[49] Z. Bouyahia, M. Bellalouna, P. Jaillet, and K. Ghedira, "A priori parallel
machines scheduling," Computers & Industrial Engineering, 2009.

[50] B. Guo and Y. Nonaka, "Rescheduling and optimization of schedules
considering machine failures," International Journal of Production
Economics, vol. 60, pp. 503-513, 1999.

[51] N. M. Matsveichuk, Y. N. Sotskov, N. G. Egorova, and T. C. Lai, "Schedule
execution for two-machine flow-shop with interval processing times,"
Mathematical and Computer Modelling, vol. 49, pp. 991-1011, 2009.

Page | 100

[52] X. Qi, J. F. Bard, and G. Yu, "Disruption management for machine
scheduling: The case of SPT schedules," International Journal of Production
Economics, vol. 103, pp. 166-184, 2006.

[53] C. Artigues, P. Michelon, and S. Reusser, "Insertion techniques for static and
dynamic resource-constrained project scheduling," European Journal of
Operational Research, vol. 149, pp. 249-267, 2003.

[54] M. Surico, U. Kaymak, D. Naso, and R. Dekker, Hybrid Meta-Heuristic for
Robust Scheduling. ERIM Report Series Reference No. ERS-2006-018-LIS,
2006.

[55] H. Chtourou and M. Haouari, "A two-stage-priority-rule-based algorithm for
robust resource-constrained project scheduling," Computers and Industrial
Engineering, vol. 55, pp. 183-194, 2008.

[56] O. Lambrechts, E. Demeulemeester, and W. Herroelen, "A tabu search
procedure for developing robust predictive project schedules," International
Journal of Production Economics, vol. 111, pp. 493-508, 2008.

[57] R. Rangsaritratsamee, W. G. Ferrell Jr, and M. B. Kurz, "Dynamic
rescheduling that simultaneously considers efficiency and stability,"
Computers and Industrial Engineering, vol. 46, pp. 1-15, 2004.

[58] P. Fattahi and A. Fallahi, "Dynamic scheduling in flexible job shop systems by
considering simultaneously efficiency and stability," CIRP Journal of
Manufacturing Science and Technology, vol. 2, pp. 114-123, 2010.

[59] P. Fattahi, M. Saidi Mehrabad, and F. Jolai, "Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems," Journal of
Intelligent Manufacturing, vol. 18, pp. 331-342, 2007.

[60] I. Mahdavi, B. Shirazi, and M. Solimanpur, "Development of a simulation-
based decision support system for controlling stochastic flexible job shop
manufacturing systems," Simulation Modelling Practice and Theory, vol. 18,
pp. 768-786, 2010.

[61] V. Vinod and R. Sridharan, "Development and analysis of scheduling decision
rules for a dynamic flexible job shop production system: A simulation study,"
International Journal of Business Performance Management, vol. 11, pp. 43-
71, 2009.

[62] V. Vinod and R. Sridharan, "Simulation modeling and analysis of due-date
assignment methods and scheduling decision rules in a dynamic job shop
production system," International Journal of Production Economics, vol. 129,
pp. 127-146, 2011.

[63] A. J. Davenport and J. C. Beck, "A survey of techniques for scheduling with
uncertainty," A Survey of Techniques for Scheduling with Uncertainty, 2000.

[64] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy, "Executing
production schedules in the face of uncertainties: A review and some future

Page | 101

directions," European Journal of Operational Research, vol. 161, pp. 86-110,
2005.

[65] W. Herroelen and R. Leus, "Project scheduling under uncertainty: Survey and
research potentials," European Journal of Operational Research, vol. 165, pp.
289-306, 2005.

[66] J. Mula, R. Poler, J. Garcia-Sabater, and F. C. Lario, "Models for production
planning under uncertainty: A review," International journal of production
economics, vol. 103, pp. 271-285, 2006.

[67] S. Cavalieri and S. Terzi, "Proposal of a performance measurement system for
the evaluation of scheduling solutions," International Journal of
Manufacturing Technology and Management, vol. 8, pp. 248-263, 2006.

[68] M. T. Jensen, "Robust and flexible scheduling with evolutionary
computation," Robust and Flexible Scheduling with Evolutionary
Computation, 2001.

[69] S. Gören, Robustness and Stability for Scheduling Policies in A Single
Machine Environment, 2002.

[70] S. D. Wu, R. H. Storer, and P. C. Chang, "One-machine rescheduling
heuristics with efficiency and stability as criteria," Computers and Operations
Research, vol. 20, pp. 1-14, 1993.

[71] R. J. Abumaizar and J. A. Svestka, "Rescheduling job shops under random
disruptions," International Journal of Production Research, vol. 35, pp. 2065-
2082, 1997.

[72] A. H. Land and A. G. Doig, "An automatic method of solving discrete
programming problems," Econometrica: Journal of the Econometric Society,
pp. 497-520, 1960.

[73] R. J. Dakin, "A tree-search algorithm for mixed integer programming
problems," The Computer Journal, vol. 8, pp. 250-255, 1965.

[74] E. Balas, "An additive algorithm for solving linear programs with zero-one
variables," Operations Research, vol. 13, pp. 517-546, 1965.

[75] E. Lee and J. Mitchell, "Integer programming" in Encyclopedia of
Optimization, ed: Springer US, 2001, pp. 1049-1059.

[76] J. Mitchell, "Integer programming: branch and cut algorithms Integer
Programming: Branch and Cut Algorithms," in Encyclopedia of Optimization,
C. A. Floudas and P. M. Pardalos, Eds., ed: Springer US, 2009, pp. 1643-
1650.

[77] R. Martí and G. Reinelt, "Branch-and-Bound," in The Linear Ordering
Problem. vol. 175, ed: Springer Berlin Heidelberg, 2011, pp. 85-94.

Page | 102

[78] I. Androulakis, "MINLP: branch and bound global optimization algorithm
MINLP: Branch and Bound Global Optimization Algorithm," in Encyclopedia
of Optimization, C. A. Floudas and P. M. Pardalos, Eds., ed: Springer US,
2009, pp. 2132-2138.

[79] G. L. Nemhauser and L. A. Wolsey, "Integer and Combinatorial Optimization.
Interscience Series in Discrete Mathematics and Optimization," ed: John
Wiley & Sons, 1988.

[80] H. A. Eiselt and C. L. Sandblom, "Branch and Bound Methods," in Integer
Programming and Network Models, ed: Springer Berlin Heidelberg, 2000, pp.
205-228.

[81] R. E. Gomory, "An algorithm for integer solutions to linear programs," Recent
advances in mathematical programming, vol. 64, pp. 260-302, 1963.

[82] M. Grötschel and O. Holland, "Solution of large-scale symmetric travelling
salesman problems," Mathematical Programming, vol. 51, pp. 141-202, 1991.

[83] M. Padberg and G. Rinaldi, "A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems," SIAM review, vol. 33,
pp. 60-100, 1991.

[84] G. Stecco, Jean-Fran, O. Cordeau, and E. Moretti, "A branch-and-cut
algorithm for a production scheduling problem with sequence-dependent and
time-dependent setup times," Comput. Oper. Res., vol. 35, pp. 2635-2655,
2008.

[85] D. Gupta, "Branch and bound technique for three stage flow shop scheduling
problem including breakdown interval and transportation time," Journal of
Information Engineering and Applications, vol. 2, pp. 24-29, 2012.

[86] H. Crowder, E. L. Johnson, and M. Padberg, "Solving large-scale zero-one
linear programming problems," Operations Research, vol. 31, pp. 803-834,
1983.

[87] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, "Gomory cuts revisited,"
Operations Research Letters, vol. 19, pp. 1-9, 1996.

[88] E. Balas, S. Ceria, and G. Cornuéjols, "Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework," Management Science, vol. 42, pp.
1229-1246, 1996.

[89] L. A. Wolsey, Integer programming vol. 42: Wiley New York, 1998.

[90] A. Schrijver, "Theory of integer and linear programming," ed: Wiley,
Chichester, 1986.

[91] J. E. Mitchell, "Branch-and-cut algorithms for combinatorial optimization
problems," Handbook of applied optimization, pp. 65-77, 2002.

Page | 103

[92] R. Gomory, "An algorithm for integer solutions to linear programs, Princeton
IBM Math," Report (Nov. 1958), 1958.

[93] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson, "On a linear-
programming, combinatorial approach to the traveling-salesman problem,"
Operations Research, vol. 7, pp. 58-66, 1959.

[94] H. A. Taha, "Integer Programming-Theory," Applications and Computations"-
Academic Press-NY-1975, 1975.

[95] V. Bowman and G. Nemhauser, "A finiteness proof for modified Dantzig cuts
in integer programming," Naval Research Logistics Quarterly, vol. 17, pp.
309-313, 1970.

[96] V. Chvátal, "Edmonds polytopes and a hierarchy of combinatorial problems,"
Discrete mathematics, vol. 4, pp. 305-337, 1973.

[97] M. Neubauer, "Production scheduling and genetic algorithms," in Information
Management in Computer Integrated Manufacturing. vol. 973, H.
Adelsberger, J. Lažanský, and V. Mařík, Eds., ed: Springer Berlin Heidelberg,
1995, pp. 563-582.

[98] N. Jawahar, P. Aravindan, and S. G. Ponnambalam, "A genetic algorithm for
scheduling flexible manufacturing systems," The International Journal of
Advanced Manufacturing Technology, vol. 14, pp. 588-607, 1998/08/01 1998.

[99] C. Zhang, Y. Rao, and P. Li, "An effective hybrid genetic algorithm for the
job shop scheduling problem," The International Journal of Advanced
Manufacturing Technology, vol. 39, pp. 965-974, 2008/11/01 2008.

[100] Y. Wang, N. Xiao, H. Yin, E. Hu, C. Zhao, and Y. Jiang, "A two-stage genetic
algorithm for large size job shop scheduling problems," The International
Journal of Advanced Manufacturing Technology, vol. 39, pp. 813-820,
2008/11/01 2008.

[101] J. Gao, M. Gen, and L. Sun, "Scheduling jobs and maintenances in flexible job
shop with a hybrid genetic algorithm," Journal of Intelligent Manufacturing,
vol. 17, pp. 493-507, 2006/08/01 2006.

[102] I. Driss, K. Mouss, and A. Laggoun, "A new genetic algorithm for flexible
job-shop scheduling problems," Journal of Mechanical Science and
Technology, vol. 29, pp. 1273-1281, 2015/03/01 2015.

[103] A. Noorul Haq, K. Balasubramanian, B. Sashidharan, and R. B. Karthick,
"Parallel line job shop scheduling using genetic algorithm," The International
Journal of Advanced Manufacturing Technology, vol. 35, pp. 1047-1052,
2008/01/01 2008.

[104] Y. Wang, H. Yin, and J. Wang, "Genetic algorithm with new encoding scheme
for job shop scheduling," The International Journal of Advanced
Manufacturing Technology, vol. 44, pp. 977-984, 2009/10/01 2009.

Page | 104

[105] J. Holland, "Adaptation in natural and artificial systems, 1975," ed: Univ. of
Michigan Press. A. Kershenbaum, P. Kermani, GA Grover,“MENTOR: An
algorithm for mesh network topological optimization and routing”, IEEE
Trans. Communications, 1991.

[106] L. Davis, "Genetic algorithms and simulated annealing," 1987.

[107] S. Forrest, "Genetic algorithms: principles of natural selection applied to
computation," Science, vol. 261, pp. 872-878, 1993.

[108] L. B. Booker, D. E. Goldberg, and J. H. Holland, "Classifier systems and
genetic algorithms," Artificial intelligence, vol. 40, pp. 235-282, 1989.

[109] S. J. Louis and G. J. Rawlins, "Designer Genetic Algorithms: Genetic
Algorithms in Structure Design," in ICGA, 1991, pp. 53-60.

[110] J. J. Grefenstette, "Incorporating problem specific knowledge into genetic
algorithms," Genetic algorithms and simulated annealing, vol. 4, pp. 42-60,
1987.

[111] G. Zhang, X. Shao, P. Li, and L. Gao, "An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling
problem," Computers & Industrial Engineering, vol. 56, pp. 1309-1318, 2009.

Page | 105

Appendix

Appendix 1: C++ Code for generating constraint equations

Page | 106

Page | 107

Page | 108

Page | 109

Page | 110

Appendix 2: MATLAB Code for Branch and Cut Algorithm

Page | 111

Page | 112

Page | 113

Page | 114

Page | 115

Appendix 3: MATLAB Code for Genetic Algorithm

Page | 116

Page | 117

Page | 118

Page | 119

Page | 120

Appendix 4: Output of Branch and Cut Algorithm

Page | 121

Page | 122

Page | 123

Appendix 5: Computation time of Branch and Cut Algorithm

Page | 124

Appendix 6: Output of Genetic Algorithm

Page | 125

Appendix 7: Computation time of Genetic Algorithm

	01 Front Matter_0413082017
	02 Body_0413082017

