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ABSTRACT 

Scheduling in production systems concludes the proper coordination of activities in 

order to increase productivity and reduce operational costs. In dynamic manufacturing 

environments, scheduling solutions based on the classical objectives such as 

makespan will not be sufficient. In fact, because of random disruptions that may occur 

in the system, additional criteria that have capability to counter such disruptions 

should be considered. To maintain system performance effective, rescheduling is 

often used to counteract the effects of random disruptions.  

In practical production environments, the scheduling process starts with determining 

an initial schedule. Then, when a disruption arises, the initial schedule should be 

revised in order to keep its feasibility and performance quality. The type of scheduling 

that is actually carried out in shops is known as real schedule. As it is clear, real 

schedule can be different from the initial schedule. This difference depends on the 

level of failure and disruption and also the changes of the setting. There are two 

policies to achieve a high level of system performance for the real schedule after 

occurring of any disruption. These strategies are entitled reactive scheduling and 

proactive scheduling. 

The “reactive approach” does not consider the uncertainty when an initial schedule is 

determined. However, when a random event occurs, it modifies the initial schedule 

and performs the necessary reaction to obtain better result. This reaction can be in the 

form of modification and improvement of the initial schedule or the formulation of a 

totally-new schedule. On the other hand, the “proactive approach” considers the 

stochastic and unexpected events to create the initial schedule. In this approach, in 

addition to classical criteria such as makespan and tardiness, performance measures 

such as robustness and stability is also considered to establish a schedule. 

Optimization of stability is concerned with the deviation of the modified schedule 

relative to the initial schedule. Optimization of robustness is concerned with the 

different in terms of objective function (performance criteria) between initial and 

modified schedules. An integrated proactive–reactive approach can also be considered 

to generate better and practical results. 

In this thesis, a two-step proactive–reactive method is presented for flexible job shop 

scheduling to achieve a more stable and robust solution. In the first step, it is 

attempted to generate an initially robust schedule by using robust optimization 

approach. The initial robust schedule handles the uncertain processing times. In the 

second step, when a random disruption occurs (which is the arrival of an unpredicted 

new job), an appropriate reaction is adopted to determine the best modified schedule 
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CHAPTER I 

INTRODUCTION 

Scheduling is a decision-making process that is used on a regular basis in many 

manufacturing and service industries. It deals with the allocation of resources to tasks 

over a given time periods and its goal is to optimize one or more objectives. 

The resources and tasks in an organization can take many different forms. The 

resources may be machines in a workshop, runways at an airport, crews at a 

construction site, processing units in a computing environment, and so on. The tasks 

maybe operations in a production process, take-offs and landings at an airport, stages 

in a construction project, executions of computer programs, and so on.  Each task may 

have a certain priority level, an earliest possible starting time and a due date. The 

objectives can also take different forms. One objective may be minimization of 

completion time of the last task and another may be minimization of the number of 

tasks completed after their respective due dates. 

Scheduling as a decision-making process plays an important role in most 

manufacturing and production systems as well as in most information processing 

environments. It is also important in transportation and distribution settings and in 

other types of service industries. Therefore scheduling problems have always drawn 

the attention of the researchers due to its complexity to solve and applicability in 

numerous areas. 

1.1 Rationale of the study: 

Thirst for increased productivity in the modern business world has spurred 

manufacturing  practitioners  to  seek  every  single  opportunity  for  cost  reduction  

and  profit  generation [1].  Over  the  last  six  decades,  effective  production  

scheduling  mechanisms  have  been  recognized  to  be  increasing  productivity  and  

machine  utilization. Algorithmic and scientific production scheduling came into 

existence once the first production scheduling heuristic technique was proposed by 

[2]. After that, a great deal of efforts has been spent on developing optimal production 

schedule, and countless papers have already published in the scholarly journals. 
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Amongst all scheduling problems, Job Shop Scheduling is considered as one of the 

hardest problem because of its nature which even becomes much harder to solve with 

the introduction of unexpected events like machine failure, urgent job arrival, job 

cancellation, due date change etc. In the real manufacturing environment, scheduling 

is an ongoing reactive process where the presences of these unexpected events are 

inevitable. The recent comprehensive survey on dynamic job shop scheduling 

problems [3] summarizes the principles of several dynamic scheduling techniques. In 

the stochastic and dynamic manufacturing environments, scheduling solutions based 

on the classical objectives such as makespan is not sufficient. In fact, because of 

random disruptions that may occur in the system, additional criteria that have the 

capability to counter stochastic disruptions should be considered. To maintain system 

performance effectively, rescheduling is often used to counteract the effects of 

random disruptions. However, to minimize the effect of rescheduling proactive 

approach is adopted to make a robust schedule which is insensitive to such 

disruptions. 

Most scheduling problems including FJSP have been considered as NP-hard. Hence, 

heuristic and meta-heuristic approaches have received much attention in the literature 

in addition to optimizing several performance measures [4-6]. In the recent literature, 

two new criteria have drawn the attention of researchers for their consideration: 

robustness and stability. Daniels and Kouvelis generate a robust job sequence for a 

single machine under processing time variability such that the degradation of the 

performance measure under the worst possible scenario is minimized [7]. In [8, 9]  

stability was enhanced by inserting additional idle times while generating schedules. 

The work at [10] is also on generating stable schedules considering the total tardiness 

as the performance measure. Jensen tried to improve the robustness and flexibility of 

the job shop schedules when minimizing maximum tardiness, summed tardiness, total 

flow time, and makespan measures [11]. Some robustness and stability measures were 

discussed at [12]. These measures were further used at [13] for optimizing the 

schedule robustness and stability. A robust and stable scheduling of a single machine 

with random machine breakdowns was presented on [14] which is further extended in 

the study at [15] in the FJSP using a two-stage hybrid genetic algorithm. 
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Though some research works have already been done on these two criterions, there is 

still a lot of scopes to improve the scheduling methodology coupled with introducing 

new factors to make the schedule more adaptive in the real manufacturing 

environment. Therefore, a new multi-objective robust and flexible job shop schedule 

in addition to considering unexpected arrival of jobs and processing time variability at 

different scenarios is developed. 

1.2 Objectives with Specific Aims and Possible Outcomes: 

The specific objectives of this research are 

i. To develop a multi-objective reactive flexible job shop scheduling model to 

minimize the makespan and maximize the robustness and stability. 

ii. To integrate scenario based processing time variation. 

iii. To incorporate a newly arrived unpredicted job into the system by generating a 

new schedule after the arrival. 

iv. To solve the proposed optimization model with the help of a suitable 

algorithm and programming software. 

The possible outcome of this research are, 

i. Validated mathematical model of Flexible Job Shop. 

ii. Gantt chart of scheduled job 

iii. Rescheduled jobs after the arrival of new one. 

 

1.3 Outline of Methodology: 

This research work is theoretical in nature. A mathematical FJSP model is developed 

considering some factors significantly affecting the scheduling decisions such as 

sequence of operation, makespan, robustness and stability of the overall system. The 

model is composed of some mathematical equations used to determine the numerical 

values of some decision variables (sequence of operations at different machines, 

completion time of each operation and job). The research methodology is outlined as 

follows: 
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i. The three objective functions are developed for minimizing the makespan and 

maximizing the robustness and stability. 

ii. The probability of occurring a certain scenario to incorporate the processing 

time variability is assumed and the processing time at different scenarios are 

considered available from the historical data. 

iii. The different necessary constraints are developed to ensure that the proposed 

model is a bounded one. 

iv. Branch and Cut and Genetic algorithm are selected to solve the proposed 

multi-objective optimization model. 

v. Finally, the model will be illustrated and validated with several numerical 

examples. 
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CHAPTER II 

LITERATURE REVIEW 

The job-shop scheduling problem (JSP) has been well studied in the manufacturing 

systems field during the past few decades. The classic JSP, which is a combinatorial 

optimization problem, is strongly NP-hard. An extension of the JSP, the flexible job-

shop scheduling problem (FJSP) has received considerable attention in the field. The 

FJSP consists of two sub-problems, including machine assignment and operation 

sequence. The FJSP is concerned with finding the most efficient assignment and 

operation sequence of n jobs in m machines. The output of a FJSP is a Gantt Chart 

which specifies the sequence of operations at different machines. The mathematical 

modeling of FJSP is complex, because there exist several criteria that must be taken 

into consideration when formulating and solving the model. In case of multi-objective 

FJSP model, there may be some criteria which are conflicting, perhaps non-

commensurate. This imposes pressure upon the researchers to implement an 

appropriate and realistic mathematical modeling of a FJSP. 

Some research papers have been studied to understand the background of the 

study. Many factors have been considered to develop the previous FJSP 

models. Different methodologies have been followed to develop and solve the 

models. In this section, some research papers have been studied to understand the 

factors and methodologies considered by researchers. 

The FJSP is a more complex version of the JSP and is also strongly NP-hard [16]. 

Bruker and Schlie [17] were among the first to address the FJSP and proposed a 

polynomial algorithm to the problems with two jobs. Most existing research addressed 

this problem with the assumption that the parameters are known and deterministic. 

However, in most real-world environments, scheduling is an ongoing reactive process 

where the presence of a variety of unexpected disruptions is usually inevitable, and 

continually forces reconsideration and revision of pre-established schedules. Many of 

the approaches developed to solve the problem of static scheduling are often 

impractical in real-world environments, and the near-optimal schedules with respect 

to the estimated data may become obsolete when they are released to the shop floor. 

Examples of such real-time events include machine failures, arrival of urgent jobs, 
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due date changes, etc. Mac Carthy and Liu [18] addressed the nature of the gap 

between the scheduling theory and scheduling practice, the failure of classical 

scheduling theory to respond to the needs of practical environments, and recent trends 

in scheduling research which attempt to make it more relevant and applicable. Shukla 

and Chen [19], in their comprehensive survey on intelligent real-time control in 

flexible manufacturing systems, stated that comparison of theory and scheduling 

practice showed very little correspondence between the two. Cowling and Johansson 

[20] addressed an important gap between scheduling theory and practice, and stated 

that scheduling models and algorithms are unable to make use of real-time 

information. 

As mentioned previously, most scheduling problems including FJSP have been 

considered as NP-hard [16]. Hence, heuristic and meta-heuristic approaches have 

received much attention in literature. Numerous papers addressed stochastic single 

machine with uncertain jobs processing times. Such as the work of Daniels and 

Kouvelis in [7] where they formalized the robust scheduling concept for scheduling 

situations with uncertain or variable processing times. They illustrated the 

development of solution approaches for a robust scheduling problem by considering a 

single-machine environment where the performance criterion of interest is the total 

flow time over all jobs. They defined two measures of schedule robustness, 

formulated the robust scheduling problem, established its complexity, described 

properties of the optimal schedule, and finally presented exact and heuristic solution 

procedures. They also reported extensive computational results to demonstrate the 

efficiency and effectiveness of the proposed solution procedures. 

Kouvelis and Daniels extended their work for two-machine flow shop environment in 

which the processing times of jobs were uncertain and the performance measure of 

interest was system makespan. They presented a measure of schedule robustness that 

explicitly considers the risk of poor system performance over all potential realizations 

of job processing times. Two alternative frameworks for structuring processing time 

uncertainty were discussed by them. For each case, they defined the robust scheduling 

problem, established problem complexity, discussed properties of robust schedules, 

and developed exact and heuristic solution approaches. Computational results 
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indicated that robust, schedules provide effective hedges against processing time 

uncertainty while maintaining excellent expected makespan performance. 

Michel L. Pinedo, who is a very familiar researcher in the field of studying scheduling 

problems have conducted numerous researches on various scheduling problems. One 

of his most famous book, “Scheduling Theory, Algorithms and Systems” [21] he has 

included almost all types of scheduling problems, discussed about their complexities 

and some solution methodologies. In a work previously done by him [22], a stochastic 

scheduling model was considered where all parameters like processing time, release 

dates, due dates etc. were independent random variables. They were studied the 

computational complexities of determining optimal job shop policies for the 

stochastic scheduling model and illustrated it by some examples. The most important 

outcome of this research was researchers showed that some optimal policies can be 

determined by polynomial time algorithms.  

Möhring, Radermacher, and Weiss [23] introduced the finite class of set strategies for 

stochastic scheduling problems. They showed that the set strategies provide 

satisfactory stability behavior compared to stable classes of strategies such as 

Evolution Strategies (ES) and Modular Evolution Strategies (MES) strategies and list-

scheduling strategies such as Longest Expected Processing Time (LEPT), Shortest 

Expected Processing Time  (SEPT) and other more complicated priority-type 

strategies. 

Montemanni and Roberto[24] considered a version of the total flow time single 

machine scheduling problem where uncertainty about processing times is taken into 

account. They adopted the interval data model, where finite intervals of (equally 

possible) values for the completion time of each job are given.. Namely an interval of 

equally possible processing times is considered for each job, and optimization is 

carried out according to a robustness criterion. This model was originally proposed by 

Daniels and Kouvelis[25]. They proposed the first mixed integer linear programming 

formulation for the resulting optimization problem and explained how some known 

preprocessing rules can be translated into valid inequalities for this formulation. 

A robust scheduling method was proposed to solve uncertain scheduling problems by 

Wu [26] where an uncertain scheduling problem is modeled by a set of workflow 
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models, and then a scheduling scheme (solution) of the problem was evaluated by 

workflow simulations executed with the workflow models in the set. They also 

presented a multi-objective immune algorithm to find Pareto optimal robust 

scheduling schemes that have good performance for each model in the set. The two 

optimization objectives for scheduling schemes were the indices of the optimality and 

robustness of the scheduling results. An antibody represented the resource allocation 

scheme, and the methods of antibody coding and decoding was designed to deal with 

resource conflicts during workflow simulations. Experimental tests show that the 

proposed method can generate a robust scheduling scheme that is insensitive to 

uncertain scheduling environments.  

Xia [27] considered due date assignment and sequencing for multiple jobs in a single 

machine shop where the processing time of each job was assumed to be uncertain and 

was characterized by a mean and a variance with no knowledge of the entire 

distribution. To minimize a linear combination of three penalties: penalty on job 

earliness, penalty on job tardiness, and penalty associated with long due date 

assignment a heuristic procedure was developed to find job sequence and due date 

assignment. Numerical experiments indicated that the performance of the procedure is 

stable and robust to job processing time distributions. In addition, the performance 

improved when the means and variances of job processing times are uncorrelated or 

negatively correlated or when the penalty of a long due date assignment is significant. 

Both Al-Turki [28] and Cai and Tu[29] considered sequencing n jobs on a single 

machine. The objective in [14] was to minimize an expected weighted combination of 

due dates, completion times, earliness, and tardiness penalties. The determination of 

optimal distinct due dates or optimal common due dates for a given schedule was 

investigated. The scheduling problem for a fixed common due date was considered 

when random completion times arise from machine breakdowns. The optimality of a 

v-shaped about (a point) T sequence was established in the work when the number of 

machine breakdowns follows either a Poisson or a geometric distribution and the 

duration of a breakdown has an exponential distribution. On the other hand in [15], 

the processing time of each job was considered as a random variable which follows an 

arbitrary distribution with a known mean and a known variance. The machine is 

subject to stochastic breakdowns and the objective was to minimize the expected sum 
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of squared deviations of job completion times from the due date. Two versions of the 

problem were addressed. In the first one the due date was a given constant, whereas in 

the second one the due date was a decision variable. In each case, a general form of 

the deterministic equivalent of the stochastic scheduling problem is obtained when the 

counting process related to the machine uptime distribution was a generalized Poisson 

process. A sufficient condition was derived under which optimal sequences were V-

shaped with respect to mean processing times which were same as in [14]. Other 

characterizations of optimal solutions were also established. Based on the optimality 

properties, algorithms with pseudo polynomial time complexity were proposed to 

solve both versions of the problem. Liu [30] also considered a single machine shops 

subjected to machine breakdowns. Furthermore, Sevaux and Sorensen [31] used a 

modified GA to find robust solution in single machine environment subjected to 

stochastic release dates of jobs. 

Byeon [32], Kutanoglu  and Wu [33, 34], and Wu [35] used decomposition heuristic 

to divide the classical job shop scheduling problem with uncertain processing times 

into a series of sub problems and iteratively update the problem parameters to analyze 

the effect of the processing time variation using a priori stochastic information. 

In [32] a weighted tardiness job-shop scheduling problems (JSP) was decomposed  

into a series of sub-problems by solving a variant of the generalized assignment 

problem using a graph decomposition technique  which termed as "VAP." Given a 

specified assignment cost, VAP assigned operations to mutually exclusive and 

exhaustive subsets, identifying a partially specified schedule. Compared to a 

conventional, completely specified schedule, this partial schedule was more robust to 

shop disturbances, and therefore more useful for planning and control. Indeed it was 

showed that the proposed approach provides a means for extending traditional 

scheduling capabilities to a much wider spectrum of shop conditions and production 

scenarios. Like [32], to improve scheduling robustness under processing time 

variation, a two-stage scheme was proposed in [19]  that preprocesses the scheduling 

data to create a skeleton of a schedule and then completes it over time through 

dynamic adaptation. Preprocessing starts at the beginning of the planning period (at 

the time of scheduling) when a priori information becomes available on processing 

time uncertainty. The job shop scheduling problem was decomposed problem into 
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network-structured sub-problems using Lagrangian relaxation. For each sub-problem, 

stochastic constraint was introduced in the model that captures the processing time 

uncertainty. The stochastic information was incorporated in such a way that it retains 

their efficient network structure. A sub-gradient search algorithm was used to improve 

the lower and upper bounds iteratively obtained from the Lagrangian relaxed problem, 

which produce a partial sequence of critical operations. This so-called Lagrangian 

ranking defined a preprocessed schedule where the complete scheduling was 

determined dynamically over time, adapting to changing shop conditions. A similar 

category problem was solved in [35] by using decomposition technique where it 

identifies and resolves a "crucial subset" of scheduling decisions through the use of a 

branch-and-bound algorithm. 

Shafaei and Brunn [36, 37] used the rolling time approach to investigate the 

robustness of schedules in dynamic and stochastic environment. In [22] a cost-based 

performance measure was used to evaluate the scheduling rules. The simulation 

results, under various conditions in a balanced and unbalanced shop were presented 

and the effects of the rescheduling interval and operational factors including shop load 

conditions and a bottleneck on the robustness of the schedule were studied. From the 

results the key factors that influence the robustness of a scheduling system were 

identified and, consequently, general guidelines for creating robust schedules were 

proposed. In [23] a comprehensive simulation study was conducted to investigate the 

effects of the planning-i.e. job releasing and routing-and the scheduling functions in 

creating a robust schedule. A mathematical model using the integer programming 

technique in addition with a heuristic algorithm were used to demonstrate the solution 

It was shown that, in terms of shop load balance level and job delivery time, the 

proposed system performs better than a benchmark loading strategy on the basis of 

minimum processing cost. 

Cowling [38] used a previously proposed multiagent architecture with two measures 

of stability and utility to produce a robust predictive/reactive schedule. In contrast to 

earlier approaches, the multi-agent architecture proposed consists of a set of 

heterogeneous agents which integrate and optimize a range of scheduling objectives 

related to different processes, and can adapt to changes in the environment while still 

achieving overall system goals. Each agent embodied its own scheduling model and 
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realized its local predictive-reactive schedule taking into account local objectives, 

real-time information and information received from other agents. In order to find a 

globally good schedule, the cooperation of the agent was done which was able to 

effectively react to real-time disruptions, and to optimize the original production goals 

whilst minimizing disruption carried by unexpected events occurring in real-time. 

Policella [39, 40] studied two-stage approach to generate a robust flexible partial 

order schedule for the Resource-Constrained Project Scheduling problem with 

minimum and maximum time lags. The problem of transforming a resource feasible, 

fixed-times schedule into a partial order schedule (POS) to enhance its robustness and 

stability properties was considered. A POS retains temporal flexibility whenever 

problem constraints allow it and can often absorb unexpected deviation from 

predictive assumptions. The work specifically focused on procedures for generating 

Chaining Form POSs, wherein activities competing for the same resources are linked 

into precedence chains. The interesting property of the Chaining Form POS 

implemented was that "makespan preserving" with respect to its originating fixed-

times schedule. Therefore, issues of maximizing schedule quality and maximizing 

schedule robustness can be addressed sequentially in a two-step scheduling procedure. 

Moreover, two heuristics were defined to make the use of a structural property of 

chaining form POSs to bias chaining decisions and experimental results on a resource-

constrained project scheduling benchmark were presented to confirm the effectiveness 

this approach. 

Leon [41] proposed a slack-time based robustness measures to analyze the effects of 

machine breakdowns and processing-time variability on the quality of the classical 

job shop schedules. The most promising robustness measure is found to be 

���� = ����� −  ��3(�) 

where, MSmin is the makespan of schedule s, and RD3(s) is the average operation slack 

in schedule s. 

Lawrence and Sewell [42] studied the performance of simple dispatching heuristics 

versus algorithmic solution techniques in job shops subjected to uncertain processing 

times. A similar study was done by Sabuncuoglu and Karabuk [43], which showed 

that dispatching rules are more robust to interruptions than the optimum seeking 
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offline scheduling algorithms. Mehta and Uzsoy [44] presented an algorithm based on 

disjunctive graph representation to integrate random breakdowns of machines and 

minimizing their effect by inserting idle time into the predictive schedule of a job 

shop to absorb the impact of breakdowns. Jensen [11, 45] tried to improve the 

robustness and flexibility of the job shop schedules while minimizing maximum 

tardiness, summed tardiness, total flow-time, and makespan measures. Both studies 

used GA (developed in Mattfeld [46]) and considered two robustness measures, the 

neighborhood-based robustness measure and the lateness-based robustness measure. 

He defined schedule neighborhood N1(s) robustness measure, where N1(s) contains s 

and all feasible schedules that can be created from s by interchanging two consecutive 

operations on the same machine, as a weighted average of makespans of schedules in 

N1(s) and is given as follows 

��� ���
(�)= 

1

|��(�)|
�� ��� (�′) 

where �� ��� (�′) is the makespan of schedule �′. Laslo [47] considered the case of 

determining the machine booking schedule for a virtual job shop problem to 

maximize the economic gain from outsourced rented machines. Authors assumed that 

operations processing times are normally distributed, and hence proposed a heuristic 

based method. 

Anglani[48] proposed a fuzzy mathematical model of scheduling parallel machines 

with sequence-dependent cost while considering uncertainties in processing times. 

The proposed approach requires the solution of a non-linear mixed integer 

programming (NLMIP), that can be formulated as an equivalent mixed integer linear 

programming (MILP) model. Due to its NP-hardness, the resulting MILP model in 

real applications could be intractable. Therefore, they proposed a solution method 

technique, based on the solution of an approximated model, whose dimension is 

remarkably reduced with respect to the original counterpart. Numerical experiments 

were conducted on the basis of data taken from a real application show that the 

average deviation of the reduced model solution over the optimum is less than 1.5%. 

Recently, Bouyahia [49] presented a probabilistic generalization to design robust a 

priori scheduling that assumes the number of jobs to be processed on parallel 

machines as a random variable with respect to the total weighted flow time. 
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Guo and Nonaka [50] studied how to reduce the effect of machine failure on a three-

machine flow shop by proposing a method to evaluate initial schedules (preschedules) 

and a rescheduling method that is applied after machine failure. 

Matsveichuk [51] proposed a two-stage scheduling decision framework to execute 

schedules of a two-machine flow shop in which each uncertain processing time of a 

job on a machine may take any value between a lower and upper bound. With an 

objective to minimize the makespan there were two phases in the scheduling process: 

offline (the schedule planning phase) and online (the schedule execution phase). The 

information of the lower and upper bound for each uncertain processing time was 

available at the beginning of the off-line phase while the local information on the 

realization (the actual value) of each uncertain processing time was available once the 

corresponding operation (of a job on a machine) was completed. In the off-line phase, 

a minimal set of dominant schedules were prepared by a scheduler, which was derived 

based on a set of sufficient conditions for schedule domination. This set of dominant 

schedules enabled a scheduler not only to quickly make an on-line scheduling 

decision but also to optimally cover all feasible realizations of the uncertain 

processing times. The approach proposed in the research enabled the scheduler to best 

execute a schedule and may end up with executing the schedule optimally in many 

instances according to our extensive computational experiments which are based on 

randomly generated data up to 1000 jobs.  

Qi [52] introduced a rescheduling approach for single and parallel two-machine 

environment subjected to random machine unavailability and processing time 

variations. The approach considered in this work is different from most of the 

rescheduling analysis in that the cost associated with the deviation between the 

original and the new schedule was included in the model. The research focused on 

cases in which the shortest processing time (SPT) rule is optimal for the original 

problem considering both single and parallel two-machine environments. 

Most of the research work discussed above only deals with scheduling in different 

type of shop environments. But the extent of its application is not only bound in only 

such kind of problems. The quest of finding an optimal schedule inspires the 

researcher to deal with problem in other areas also. Artigues [53] proposed insertion 

techniques for static and dynamic resource-constrained project scheduling.Surico [54] 
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suggested a hybrid meta-heuristic that integrates a mathematical programming, multi-

objective evolutionary computation (genetic algorithm), and a problem-specific 

constructive heuristic that returns a number of solutions or the pareto sets (schedules), 

each with a cost and risk trade-offs, for the problem of Supply Network (SN) for 

ready-mixed concrete (RMC). Chtourou and Haouari [55] presented a two-stage 

algorithm to produce robust resource-constrained project scheduling subjected to 

unpredictable increase in processing times. Lambrechts [56] proposed a tabu search 

algorithm that uses a free slack-based objective function to produce robust predictive-

reactive project schedules in the presence of uncertain renewable resource 

availabilities. 

Rangsaritratsamee [57] proposed a rescheduling method based on local search genetic 

algorithm for a job shop with dynamically arriving jobs. Their proposed algorithm 

simultaneously considers the efficiency by preserving the makespan, tardiness and 

stability by minimizing the jobs starting time deviations. In their work, the 

rescheduling takes place at specific time intervals using all available jobs at the 

rescheduling moment. Fattahi and Fallahi [58] combined the work of 

Rangsaritratsamee [57]  and Fattahi [59] and developed a multi-objective genetic 

algorithm based method to scheduling a flexible job shop with dynamically arriving 

jobs. A multi-objective mathematical model was developed to make a balance 

between efficiency and stability of the schedules. 

Mahdavi [60] presented a real-time simulation-based decision support system to 

control the production of a stochastic flexible job shop subjected to stochastic 

processing times. Based on the theory of supervisory control, a controller was 

developed which constitutes the framework of an adaptive controller supporting the 

co-ordination and co-operation relations by integrating a real-time simulator and a 

rule-based DSS. A bilateral method for multi-performance criteria optimization was 

implemented to combine the gradient based method and the DSS to control dynamic 

state variables of SFJS concurrently. 

Vinod and Sridharan [61] experimentally studied different scheduling decision rules 

for scheduling dynamic flexible job shop (jobs arrive intermittently) using a discrete 

simulation based model. They considered a partial flexible job shop system. The 

system consists of eight machines wherein an operation can be executed on three 
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different ones at different rates. Three scheduling rules were used for machine 

selection decision and a total of 15 scheduling rules were incorporated in the 

simulation model for job scheduling decisions. Moreover, six new scheduling rules 

for job scheduling were also developed and investigated. The performance measures 

evaluated in this research work are the mean flow time, standard deviation of flow 

time, mean tardiness, standard deviation of tardiness and percentage of tardy jobs. It 

was showed from the experimental simulation that, the proposed scheduling rules 

provide better overall performance for the various measures when compared with the 

existing scheduling rules. Vinod and Sridharan [62] continued the previous study by 

studying the interaction between due-date assignment methods and scheduling rules in 

a dynamic job shop system using a discrete-event simulation model. Their simulation 

analysis showed that due-date assignment methods and the used scheduling rules are 

significantly affecting the performance measures of the shop. 

For a recent overview discussing aspects of scheduling with uncertainties readers are 

referred to Davenport and Beck [63], Aytug [64], Herroelen and Leus [65], and Mula 

[66], who gave detailed review of literature related to scheduling under uncertainty. 

In light of the above literature, approaches used to achieve schedule robustness are 

classified into two categories, preservation of solution quality approach and 

execution-oriented quality approach. In the first, robustness is considered as the 

ability to preserve some level of solution quality, such as preservation of makespan in 

Leon [41] and Jensen [45], or preservation of tardiness and total flow-time as in 

Jensen [11], etc. In the later, also known as rolling time approach, robustness is 

achieved by producing partial schedules and the final decisions are delayed until the 

execution time is reached or nearly reached as in Kutanoglu and Wu [33, 34], and 

Policella [39]. Hence, two definitions for a robust schedule can be distinguished: 

1. A schedule is considered to be robust if it has low cost relative to other schedule 

when facing disruption and when rightshifting is used as a rescheduling algorithm 

(Jensen, [45]) 

2. A schedule is considered to be robust if it can absorb the external events 

(disruptions) without loss of consistency while keeping the pace of execution 
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(Policella, [39]), i.e. without amplifying the effects of a change over all schedule 

components. 

Despite of the apparent similarity between the two definitions, it can be concluded 

that the first definition is more suitable for offline scheduling such as predictive 

scheduling, whereas the second definition is falling in some category belonging to 

dynamic scheduling and more precisely to proactive/reactive (or predictive/reactive) 

scheduling and knowledge-based scheduling. Furthermore, the second definition has 

some resemblance with the definitions of stable and/or flexible schedule found in 

literature. In Cavalieri and Terzi [67] and Policella [39, 40] flexibility was defined as 

‘‘the ability to respond effectively to changing circumstances’’. A more thorough 

definition of flexibility was given by Jensen [68] as “a schedule expected to perform 

well relative to other schedules, when facing disruption and when some rescheduling 

method using search (other than right-shift) is used”. Similarly, Goren [69] , Liu [30], 

and Wu [70] defined stable schedule as a schedule that has a very small deviation 

either in time or sequence between the predicted schedule and the realized schedule. 

At this point one may conclude that the two types of schedules named stable schedule 

and flexible schedule used in literature are actually describing the same schedule. This 

schedule (stable or flexible) can be related to the system (or schedule) nervousness 

measure, i.e. if the performance measure of the schedule nervousness is high then the 

stability of the schedule is low (representing an unstable manufacturing system) and 

vice versa. Furthermore, a schedule is called robust or stable depending on how it was 

designed to adapt to changes and unforeseen future events. 

Furthermore, it can be observed that unlike single machine environment, two 

machines environment, and job shop environment, vast majority of the literature 

published in the area of stochastic scheduling gives less attention to the FJSP. The 

literature focuses either on deterministic FJSP, stochastic classical job shop 

scheduling problem (JSP) or dynamic FJSP. The literature on robust and stable 

scheduling for the FJSP under unpredicted arrival of new jobs is almost void. 

Therefore, the goal of this work is to improve robustness and stability of predictive 

schedule for the FJSP subjected to unpredicted arrival of new jobs. This research 

work introduces a new methodology that measures the variability of two schedules. 

The proposed methodology is based on a genetic algorithm and branch and bound 
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algorithm. Moreover, the current work relates the robustness of a schedule to its 

degree of makespan degradation under disruptions and considers it to be stable when 

its sum of the absolute deviations of operation completion times from the realized 

schedule is small.  
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CHAPTER III 

MODEL FORMULATION 

3.1 Problem Identification: 

A basic assumption during the Job Shop Scheduling is that the processing times are 

deterministic and the situations during processing are stable. But in most of the cases 

processing time is not deterministic rather it is stochastic. Moreover, situations at the 

job shop are not stable which are significantly affected by different factors and more 

prone to disruption. So in real scenario, a job shop schedule will be more adaptive to 

the real scenario if it can anticipate such disruption. In the literature review it has been 

observed that most of the authors addressed machine breakdown as a major source of 

disruption. This is true that machine breakdown occurs frequently during operation. 

However, it can be minimized by properly scheduling the maintenance activities. 

Some works have already been discussed in the previous chapters where the authors 

considered the maintenance activities. Very few papers addressed unpredicted arrival 

of new job as a source of disruption. But it has a significant effect on job shop 

scheduling. It is not like one can schedule a set of jobs, start processing and after 

completion start another set of jobs. Rather jobs continuously arrive in the job shop 

and need to be scheduled in the real time. On the other hand, it must be done in such a 

way that after the insertion of new job the existing schedule will not be affected 

significantly by this disruption. Therefore, generating a job shop schedule which is 

robust, stable and reactive to the disruption plays a significant role in flexible job shop 

scheduling. 

3.2 Problem Definition: 

The purpose of this thesis work is to extend the previous research in developing the 

flexible job shop scheduling model by incorporating the unexpected arrival of new 

jobs. This study introduces a two stage scheduling method. In the first stage an initial 

sequence should be determined. In fact, it is initially assumed that there is no random 

disruption in the system and an initial solution for scheduling considering the problem 

with uncertain processing times will be generated. The robust optimization approach 

is used to generate a robust initial schedule. Actually to reduce the effect of 
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uncertainty on the processing times which is a random disruption in the future, first a 

job shop model is formulated using the robust optimization approach as an attempt to 

produce robust initial solutions. This is the proactive first stage. After that the initially 

robust schedule is determined, it is assumed that a new job arrives during the 

execution of the initial schedule. No predictive information exists for this job. In the 

dynamic environment of this system, this unpredicted arrival is an issue related to real 

time scheduling. In fact, the unpredicted arrival of a new job is considered as an 

unexpected disruption. Considering the new job, the proposed method adopts an 

appropriate reactive action in order to determine its operations position at different 

machines in the initial sequence. If all operations of this job are processed at the end, 

the arrangement of schedule does not change. However, if the operations processed at 

a position other than the last, the arrangement of previous operations at different 

machines will change. In fact, finding a proper position for the processing of the new 

operations plays an important role in the optimization of the job shop scheduling 

problem. Although changing the system’s previous sequence may produce a better 

solution, it may also reduce the stability and cause disturbance in the system. To adopt 

a reactive response, a new objective function as a measure based on a classical 

objective and performance measures is defined. This measure helps planners to 

choose the most appropriate reaction to counter the effect of arrival of new jobs. 

3.2.1 Proactive Scheduling step: 

In the proactive scheduling step the problem with uncertain processing times that are 

estimated with scenarios is just considered. A robust optimization approach is used to 

formulate the flexible shop problem to reduce the effects of fluctuations of the 

processing times in the future. In the first steps proactively a more robust solution as 

an initial schedule is generated. After that the model is solved by using 

metaheuristics. 

3.2.1.1 Assumptions of the study: 

I. Job j has nj operations that must be processed according to the predefined 

sequence. 

II. The operations i ϵ Nj = [71…, nj] of job j ϵ J are non preemptive, once started 

the operation must be completed 
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III. The execution of operation i of job j requires a machine selected from a subset 

Mij subset of K of available machines 

IV. The transportation time between the machines are neglected 

V. Processing time at different scenarios are deterministic and include setup, 

operations, transportation and inspection 

VI. Any kind of disruptions accept arrival of unexpected new jobs are not 

considered such as machine breakdown, order cancellation etc. 

VII. All machines are always available in the entire time horizon 

VIII. Jobs are independent and no priorities are assigned 

IX. Each machine can only process one operation at a time 

X. Each operation can be processed by one machine at a time 

XI. All jobs are inspected priori i.e., no defective part is considered 

XII. Probability of occurring a scenario is known priori 

3.2.1.2 Mathematical Modeling: 

In this research, a new mathematical model for robust flexible job shop scheduling is 

proposed. The model is developed to determine the optimal sequence of operations at 

different machines. For robust optimization, a model is formulated to minimize the 

makespan of the total schedule along with the variability of makespan at different 

scenarios. Necessary constraints are developed to ensure the model is bounded one.  

Before proceeding to the mathematical model, some sets, parameters and variables of 

the model are introduced in the following: 

Sets: 

�� =  ��� �� ��� ���������� �� ��� �, � � �� 

��� =  ��� �� ���������� ���������� �� ��� � �� ���� � 

� =  ��� �� ��� ����,� � � 

�� =  ��� �� ���������� ���� �� ���� �,� � ���� ������ �� � 

� =  ��� �� ��� ���ℎ���� � � �  
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� =  ��� �� ��� ��������� 

Indices: 
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�, � =  ������� ��� ��� 

� =  ������� ��� ���ℎ��� 
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Variables:  
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Now using this parameters and variables the developed flexible job shop scheduling 

model is presented as follows 

3.2.1.2.1 Objective function for robust scheduling: 

A robust optimization approach is adopted to minimize the makespan of the total 

system as an objective function. The goal of the robust optimization approach is to get 

a set of solutions for the problem so that they remain robust despite changes that may 

occur in the real values of data and input parameters. In robust optimization, the 

uncertain parameters are described by the discrete scenarios or a continuous range. 

Therefore, variability of makespan between different scenarios is minimized. So that, 

the model can anticipates the changes in future with a very little effect on the existing 

schedule. The goal of this optimization method is obtaining an optimal solution, 

which is insensitive to almost all the samples of the uncertain parameters. The 

objective function described above can be written as follows where the first part is 

considered to minimize the makespan and the second part is considered to minimize 

the variability of makespan in different situations. 

���,      � ����� �
� +  � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

                                         (3.1) 

 3.2.1.2.2 Constraints for assigning and sequencing of operations to available 

processing positions: 

In the assumption it has already been stated that the execution of operation i of job j 

requires a machine selected from a subset Mji subset of K of available machines. If the 

job shop is full flexible then Mji includes all available machines. To ensure that all 

operations are investigated for processing on all available machines and eventually 
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are imperatively assigned to one of them it is inevitable to develop a set of constraints. 

These set of constraints can be written as follows. 

� ��,�,� = 1                ∀ �, �

�

���

                                                                                                (3.2) 

For all i and j combinations all machines will be checked first. As Xj,i,k is a binary 

decision variable and for a given i and j combination summation for all k is 1, only 

one variable can have the value 1. So these set of constraints satisfy the assumption 

made earlier that, each operation can be processed by one machine at a time. In the 

flexible job shop scheduling these constraints provides the routing flexibility 

3.2.1.2.3 Machine eligibility constraints: 

In flexible job shop scheduling there are two kinds of machine flexibility. One is total 

flexible and the other one is partial flexible. In the first case all machines are allowed 

to do all the operation. On the other hand, in partial flexible system only a set of 

machines are allowed to do an operation. So it is necessary to check in both cases 

whether the machine is eligible to process an operation or not and subsequently assign 

and operation to the eligible one. This gives the rise of machine eligibility constraints. 

The constraint set can be written as follows, 

��,�,� ≤  ��,�,�               ∀ �, �,�                                                                                             (3.3) 

Where ej,i,k is a binary decision variable which takes value 1 if machine k is allowed 

to process operation i of job j otherwise zero. As only one Xj,i,k can have value 1, it is 

ensured that it will allowed to be processed in an eligible machine. Therefore, this 

constraint set ensures the feasibility of the machine assignments which are 

investigated for any of the operations in previous constraint set.  

3.2.1.2.4 Technical/ logical precedence constraints among operations of a part: 

In a job shop all jobs must be processed in a predefined sequence of operation. So it is 

necessary to develop some constraints to avoid simultaneous assignment of multiple 

operations of a job. The following set of constraint represents the logical/natural 

precedence constraint among the operations of a job. It simply means that so long as 
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the previous operation of a job has not been completed on any of the machines in the 

shop floor the succeeding operation is not processed. 

��,�
� ≥  ��,���

� +  � ��,�,�.��,�,�
�                    ∀ �, �

�

���

, �                                                          (3.4) 

��,�
� ≥  � ��,�,�.��,�,�

�                    ∀ �

�

���

, �                                                                            (3.5) 

Here, ��,�
�  is the completion time of operation i of job j in scenario λ and ��,���

�  is the 

completion time of the previous operation as well. So the difference between the 

completion times of the two consecutive operations should be at least equal to the 

processing time of the first operation between them. The difference may be greater 

depending on the position of the operation in the schedule. This rule is established by 

the set of constraints (3.4). The first operation has no precedence constraints. So the 

completion time must be at least greater than or equal to the processing time of the 

first operation at the machine in which it will be assigned. 

3.2.1.2.5 Machine availability constraints: 

It is assumed that all machines at available at time zero which is the case in the first 

stage of optimization. But after time t while an unpredicted job will come at shop 

floor machines may not be available at that time. There may be some operation still 

carried on by few machines. As preemption is not allowed, an operation must be 

completed once it’s started which give the rise of machine availability constraints. It 

can be written as follows. 

��,�
� −  ��,�,�.��,�,�

�  ≥  ��                ∀ �, �,�,�                                                                     (3.6)  

Here �� = 0  for the first stage of optimization but it will not be the case in the second 

stage of operation. In the second stage �� ≥ �  

3.2.1.2.6 Machine non-interference constraints: 

Though constraint set has already been developed to avoid simultaneous assignment 

of operation of the same job, it may possible that operations of multiple jobs are 
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allocated to the same machine at the same time. So constraint set must be established 

to avoid simultaneous assignment of operations of different jobs concurrently at the 

same machine. The constraint set can be written as follows. 

��,�
� ≥ ��,�

� +  ��,�,�
� − � �3 − ��,�,�,�− ��,�,�− � �,�,��  ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�   (3.7) 

��,�
� ≥ ��,�

� +  ��,�,�
� − ���,�,�,�+ 2 − ��,�,�− � �,�,��     ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�, �   (3.8) 

Here Constraint sets (3.7) and (3.8) referred to as Either-Or constraints 

simultaneously ensure the following: 1) an operation cannot be at the same time both 

the predecessor and the successor of another operation, and 2) satisfaction of non-

interference constraints (precedence constraint among operations of different jobs); 

i.e., for operations of different jobs that are eligible to be processed on the same 

machine. In other words, if two operations of two different jobs do not share the same 

subset of machines, consideration of the operational precedence between them is not 

done and both constraints become redundant. Hence, two operations ��,� and ��,� can 

only be sequenced when both their binary integer variables assignment ��,�,� and ��,�,� 

take value of 1; otherwise, they bear no relationship with one another on machine k. 

Once machine k was established as eligible machine to process ��,� and ��,� (��,�,�= 1   

and  ��,�,�= 1  ) the precedence relationship between these two operations should be 

decided by the sequencing binary decision variable which is ��,�,�,�. In any 

circumstance other than stated above, both constraint sets (3.7) and (3.8) become 

redundant constraints. If ��,�  is processed after ��,� on machine k, the sequencing 

binary decision variable takes value 1 and therefore constraint set (3.8) become active. 

Otherwise, this constraint show that ��,� is just greater than a large negative number, 

which is naturally true. The sequencing binary variable (��,�,�,�) takes value 0 if ��,� is 

not processed after ��,�. Since two operations in sequencing decision have no more 

than two states with respect to each other (predecessor or successor), if ��,� does not 

succeed ��,�, it has to precede it, in which case constraint set (3.7) become active and 

constraint set (3.8) become evident inequality equations. 
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3.2.1.2.7 Constraints for capturing the value of objective function: 

��� �
� ≥ ��,��

�                        ∀ �,�                                                                                          (3.9) 

Constraint set (3.9) keeps track of make-span and compute it. 

3.2.1.2.8 Non-negativity constraints: 

��,�
� ≥ 0                                                                                                                                 (3.10) 

Constraint set (3.10) shows the non-negativity nature of the MILP’S continuous 

variables. 

3.2.1.2.9 Constraints for demonstrating the nature of the decision variables: 

��,�,� , ��,�,�,� ,��,�,� ∈{0,1}                        ∀ �, �,ℎ, �, �                                                 (3.11) 

Constraint set (3.10) demonstrates the binary nature of decision variables. 

So taking objective function and all the constraints in consideration, the mathematical 

model for the first stage is as follows: 

Objective function: 

���,      � ����� �
� +  � � �� ���� �

� − � ������
�

� ∈ �

�

� ∈ �� ∈ �

                                         (3.1) 

Subject to, 

� ��,�,� = 1                ∀ �, �

�

���

                                                                                                (3.2) 

��,�,� ≤  ��,�,�               ∀ �, �,�                                                                                             (3.3) 

��,�
� ≥  ��,���

� +  � ��,�,�.��,�,�
�                    ∀ �, �

�

���

, �                                                           (3.4) 

��,�
� ≥  � ��,�,�.��,�,�

�                    ∀ �

�

���

, �                                                                            (3.5) 
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��,�
� −  ��,�,�.��,�,�

�  ≥  ��                ∀ �, �,�, �                                                                     (3.6) 

��,�
� ≥ ��,�

� +  ��,�,�
� − � �3 − ��,�,�,�− ��,�,�− � �,�,��  ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�   (3.7) 

��,�
� ≥ ��,�

� +  ��,�,�
� − � ���,�,�,�+ 2 − ��,�,�− � �,�,��   ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�  (3.8) 

��� �
� ≥ ��,��

�                        ∀ �,�                                                                                          (3.9) 

��,�
� ≥ 0                                                                                                                                 (3.10) 

��,�,� , ��,�,�,� ,��,�,� ∈{0,1}                        ∀ �, �, ℎ, �, �                                                 (3.11) 

3.2.1.3 Reactive scheduling step 

In the first stage which is called the proactive stage an initial schedule will be 

generated. After the execution of this schedule, if any unpredicted job will arrive at 

the shop the initial schedule may be infeasible. So that a second stage of optimization 

is necessary. This stage is called the reactive stage as it will be executed after the 

arrival of new job. The objective of this stage is to generate a new schedule with 

minimal change in the initial one. The mathematical model is almost similar to the 

first stage accept the objective function and some changes in the sets that will be 

considered for the development of the constraints. The mathematical model of the 

reactive stage is as follows: 

Objective function: 

���,    � ��� �
�΄ + � � � ���,�

� − ��,�
�΄�

� ∈ ��� ∈ ���

+  � ���� �
� − ��� �

�΄ �                              (3.12)  

Subject to, 

� ��,�,� = 1

�

���

           � ∈ ��� ,� ∈ ��                                                                                  (3.2�) 

��,�,� ≤  ��,�,�            � ∈ ��� ,� ∈ ��                                                                                  (3.3�) 
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��,�
�΄≥  ��,���

�΄ +  � ��,�,�.��,�,�
�΄  

�

���

          � ∈ ��� ,� ∈ �� ,� ∈ �                                     (3.4�) 

��,�
�΄ ≥  � ��,�,�.��,�,�

�΄   

�

���

                       � ∈ ��� ,� ∈ �� ,� ∈ �,� ∈ �                         (3.5�) 

��,�
�΄−  ��,�,�.��,�,�

�΄  ≥  ��                      � ∈ ��� ,� ∈ �� , � ∈ �                                      (3.6�) 

 

��,�
�΄≥  ��,�

�΄ +  ��,�,�
�΄ − ��3 − � �,�,�,�− ��,�,�− ��,�,��                                             (3.7�)  

�, ℎ ∈ ��� ,� ∈ �� ,(�, �)≠ (�, ℎ) � ∈ � 

��,�
�΄ ≥  ��,�

�΄+  ��,�,�
�΄ − �� ��,�,�,�+ 2 − ��,�,�− ��,�,��                                            (3.8�)           

�, ℎ ∈ ��� ,� ∈ �� ,(�, �)≠ (�, ℎ) � ∈ � 

��� �
�΄ ≥ ��,��

�΄                        ∀ �                                                                                           (3.9�) 

��,�
�΄≥ 0                                                                                                                               (3.10�) 

��,�,� , ��,�,�,� ,��,�,� ∈{0,1}                    �, ℎ ∈ ��� ; �, � ∈ �� ; � ∈ �                     (3.11�)  

Here the objective function consists of three parts. The first part contains the main 

objective which is minimization of makespan of all jobs. The second part is for 

stability where the absolute deviation of the completion time of all operation between 

initial schedule and the new schedule is minimized. The third part is for robustness 

where the absolute deviation of the makespan between two stages is minimized. 

Though the third portion of the objective function make the model robust but it may 

not be stable without the second one. Minimizing the deviation of the completion time 

restrict the generation of new schedule in such way so that the change of position of 

operation will be minimal. Thus makes the model reactive, robust and stable. 

In the constraints there are few changes made in this stage. First, the set of jobs; only 

remaining jobs are considered for schedule in the next stage (i.e.� ∈ ���). Second, the 
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set of operations; though only remaining jobs are considered, all operations may not 

need to be scheduled again because some operations may be already completed or 

may be in processing while the new job arrives (i.e. � ∈ ��). 
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CHAPTER IV 

FLEXIBLE JOB SHOP SCHEDULING USING BRANCH AND 

CUT METHOD 

Branch and Bound is the most popular and successful computational approach to 

integer programming problems today. Rather than being a specific algorithm, branch 

and bound is a general principle that allows the user to fine tune the procedure and 

adjust it to the problem under consideration. The branch and bound principle was first 

suggested by Land and Doig [72], followed by Dakin [73] and Balas's [74] additive 

algorithm for zero-one problems. Some more recent and comprehensive books are 

those by Lee [75], Mitchell [76], Rafael and Gerhard [77] and Androulakis [78]. In 

the next section a detail description of Branch and Bound and Branch and Cut 

algorithm is given 

4.1 Branch and Bound Algorithm: 

Branch and bound is a global optimization technique which is an exhaustive search 

process. To reduce the search space for achieving the result within reasonable 

timeframe some techniques are applied which improve the process of finding the 

optimal solution. One of these techniques is to relax a mathematical optimization 

problem by dropping some of its constraints, so that the resulting problem has a larger 

feasible region and a solution that cannot be worse than that of the original problem. 

Another technique is to add constraints to a problem, a process that reduces the size of 

the feasible region, so that the optimal objective value deteriorates. Branch and bound 

methods can also be viewed as cutting plane methods with an added feature that 

divides the feasible region into smaller parts which are then dealt with separately. 

Each successive cut results in a linear programming problem that is represented by a 

node in a graph, where the arcs correspond to the cuts. The graph is developed and 

explored as the cuts are successively applied, with the initial node �� corresponding to 

the relaxation of the problem without any additional constraints. By construction, the 

graph will be a tree, and if we regard its arcs as directed corresponding to the order in 

which the cuts are applied, we have arborescence with the initial node �� as its root. 

As the process is directed from ��, to nodes representing problems with additional 
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cuts, the proper term would be "branch and bound arborescence." However, the 

common practice and use is the term "branch and bound tree." In a branch and bound 

tree, the initial node  ��, is usually referred to as the top node. 

4.1.1 Search Strategies: 

Since each node of the solution tree represents a linear programming problem that 

must be solved in the process, it is obviously important to keep the size of the tree as 

small as possible. This is accomplished by stopping at a node whose associated 

problem has an integral solution, is infeasible, or is fathomed (value dominated). A 

good branch and bound method will bring about such favorable situations as early as 

possible in the search. If each path is pursued until integrality or infeasibility was 

reached, the strategy is called a depth-first search strategy. The depth (or level) of a 

node is the length of the path leading to it from the top node. In general, a depth first 

strategy will pursue each node, using some branching strategy, until integrality, 

infeasibility, or fathoming has occurred, and then backtrack until the first node is 

encountered, which can be further pursued. This strategy will bring a high level (deep 

in the tree) early in the search. By contrast, a breadth-first search strategy explores all 

nodes at one level before proceeding to the next. The breadth-first search strategy was 

much better than the depth-first search strategy in the sense that the tree is much 

smaller. Figure 4.1 illustrates these two strategies. 

 

Figure 4.1: Depth-first search vs. Breadth-first search strategy 
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In practice, however, it appears that depth-first strategies are more advantageous than 

breadth-first. One reason for this is that the number of nodes grows exponentially as 

the level increases, and since feasible (integer) solutions are typically found deeper 

into the tree, depth-first search tends to find integer solutions sooner than breadth-first 

search. Another appealing feature of depth-first search is related to the way in which 

the linear programming problems at each node are solved. Assuming that the simplex 

method is used for solving the problems, an immediate successor of a node has the 

same set of constraints as its predecessor, plus the one additional constraint generated 

in the branching. The construction of a branch and bound tree is guided by two 

decisions during each time a branching is done, 

 which node to pursue next (node selection strategy) , and 

 which variable to branch on (branch selection strategy). 

These two types of strategies are discussed below. 

4.1.2 Node Selection: 

A number of strategies exist for selecting the next node to branch from. For simplicity 

of the exposition, it is assumed that the original problem has a maximization 

objective. If so far in the search one or more nodes have been encountered for which 

the solution is integer, the one with the highest objective function value (ties are 

broken arbitrarily) is chosen which is called the incumbent node or solution. The 

collection of nodes that have no branches leading out of them forms the set S. 

Initially, only the top node is in S. 

The nodes in the set S fall into four categories. 

1. The solution at a node �� ∈ �is integer, in which case we will not branch 

further from this node. If the solution is better than that of the existing 

incumbent(s) ��then ��, replaces ��; if it is as good as �� it becomes another 

incumbent. 

2. The node �� ∈ � represents a problem that has no feasible solution, making 

branching on it pointless, since any successor problem will also lack feasible 

solutions. 
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3. The node �� is fathomed, i.e., its non-integer solution is no better than the 

incumbent solution. Again, its potential successors have poorer solutions than 

the incumbent and are therefore not of interest. 

4. The node ��has a non-integer solution with an objective function value that is 

better than that of the incumbent, so that branching from this node might lead 

to an integer optimal solution. Such a node is called live or active.  

In summary, out of the four possible node types--integer, infeasible, fathomed, and 

live, only branch from live nodes will be done. Defining � ⊂  � as the set of live 

nodes, the node selection problem addresses the choice of a node  �� ∈  �. 

The two node selection strategies have already described previously: the breadth-first 

strategy where all live nodes at a given level are considered before nodes on lower 

levels are examined, and the depth-first strategy where the next node to be considered 

is a live successor of the latest node that was explored. Since backtracking is needed if 

the node that was explored last is not live, the strategy is better described as "depth-

first with backtracking"; or last in, first out (LIFO), borrowing a concept from 

inventory management. Although a depth-first strategy can be expected to perform 

better than a breadth-first strategy on average, both of these strategies 

would be outperformed, again on average, by strategies that make better use of the 

information gathered during the construction of the tree. One such strategy is the best-

bound-first strategy that selects the live node with the largest �-value. Formally, the 

best-bound-first strategy selects the node �� such that �� = �� = max {��: �� ∈ �} 

 Another node selection strategy involves the estimate ���  of the integer optimal 

solution corresponding to node ��. Such an estimate can be computed based on the 

expected degradation expressing the deterioration of �� by requiring the solution point 

at node �� to be integral. More specifically, let the solution at node �� include��� =

 �����+  �� with �� ≠ 0Using some user selected coefficients ��
� and ��

�  we estimate 

the decrease in the objective function of ��
��� for branching left at node �� and of 

��
�(1 − �� ) if branching right. The coefficients ��

�  and ��
�  can either be user-specified 

or estimated, e.g., by using dual information at node ��  or 

information from previous branchings on  ��. A best-estimate search strategy selects 

the node ��  such that�̂� = max {�̂�: �� ∈ �}. Denoting by ��� the objective function 
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value of the incumbent solution, the quick-improvement strategy attempts to quickly 

improve on the incumbent solution by selecting the node ��  such that    � =

arg�������− ���� (��− �̂�)⁄ � . Detail discussion and further details on node 

selection are available in Nemhauser and Wolsey [79]. 

4.1.3 Branch Selection: 

Once a node ��  ∈ � has been selected for further exploration, the next decision 

concerns the choice of variable to be branched on. Clearly, this variable, while 

required to be integer, must currently have a non-integer value. One simple strategy is 

branching the non-integer variable with lowest index, an obviously arbitrary rule. 

Another strategy is to branch on the non-integer variable ��with the "most fractional" 

value. Formally, let �� = [���,���,���,…,���] be the solution at the chosen live node, 

and let ��� = �����+  �� , so that ��  denotes the fractional part of   ��  . The most 

fractional strategy would branch on the variable whose present value is farthest from 

the nearest integer or, equivalently, has the value closest to 1 2� , i.e., a variable �� 

with � = argmin ���,…,����� −
1
2� ��. Unfortunately, experience has failed to identify 

robust methods for branch selection, and in practice user-specified priorities are 

employed. More involved methods that employ penalties and use more elaborate 

computations regarding the penalty coefficients��
� and��

� ; have not turned out to 

improve the overall efficiency of the search if the additional computational effort it 

takes to apply them is taken into account. 

4.1.4 A General Branch and Bound Procedure:  

To formulate a general branch and bound algorithm an all-integer or mixed-integer 

programming problem ��� with a maximization objective is considered; its linear 

programming relaxation is called  ���  . It is assumed that specific node and branch 

selection strategies have been chosen. The algorithm is initialized with node ��that 

includes the optimal linear programming relaxation ���  with objective value   ��� . 

Given that ��� does not satisfy all of the integrality conditions (otherwise ��� = � ��= 

i IP is optimal for the (mixed) integer programming problem as well), set  � ∶=  � ∶=

 {��}, � ∶=  1, and  �≔ −∞ 



 

Figure 4.2: Branch and Bound algorithm

The key to the algorithm is the updating procedure of

when the procedure branches from some node 

of end nodes S is updated to include the new nodes 

From the set of live nodes 

in Step 3, and node ��

feasible (Step 4) but not yet integer (Step 5).

There is an interesting analogy between cutting plane algorithms 

bound methods. One 

cutting planes designed to cut off

integer points. It is also possible to mix in 

the nodes of a branch and bound tree. This approach is called 

Figure 4.2: Branch and Bound algorithm, (Eiselt [80])  

The key to the algorithm is the updating procedure of the sets S and 

when the procedure branches from some node �� to two nodes ��

of end nodes S is updated to include the new nodes ���� and ����

From the set of live nodes L, the node from which the branching takes place is

���(�� ����)is added to the set in Step 5 only if its 

feasible (Step 4) but not yet integer (Step 5). 

There is an interesting analogy between cutting plane algorithms 

 may view the branching constraints as vertical or horizontal 

planes designed to cut off areas of the feasible region that do not contain 

integer points. It is also possible to mix in regular cutting planes with the 

a branch and bound tree. This approach is called branch
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and L. In each step 

��� and ���� the set 

 and to exclude  ��. 

the node from which the branching takes place is deleted 

he set in Step 5 only if its solution is 

There is an interesting analogy between cutting plane algorithms and branch and 

aints as vertical or horizontal 

ible region that do not contain any 

regular cutting planes with the branching at 

branch and cut, and is 
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typically used for zero-one problems as well as problems with special structures. The 

idea is to find valid inequalities for the original problem, which are violated at some 

nodes in a branch and bound tree. These valid inequalities are then added at these 

nodes in a cutting plane fashion, thus generating new nodes from which branching can 

be done as usual. This could be accomplished by introducing an additional step 

between the existing Steps 2 and 3 in the general branch and bound algorithm above. 

In the next section branch and cut algorithm is discussed in detail. 

4.2 Branch and Cut: 

Branch- and- cut methods are very successful techniques f or solving a wide variety of 

integer programming problems, and they can provide a guarantee of optimality. Many 

combinatorial optimization problems can be formulated as mixed integer linear 

programming problems. They can then be solved by branch- and- cut methods, which 

are exact algorithm s consisting of a combination of a cutting plane method with a 

branch-and-bound algorithm. These methods work by solving a sequence of linear 

programming relaxations of the integer programming problem. Cutting plane methods 

improve the relaxation of the problem to more closely approximate the integer 

programming problem, and branch-and-bound algorithms proceed by a sophisticated 

divide and conquer approach to solve problems. 

Cutting plane algorithms for general integer programming problems were first 

proposed by Gomory [81]. Unfortunately, the cutting planes proposed by Gomory did 

not appear to be very strong, leading to slow convergence of these algorithms, so the 

algorithms were neglected for many years. The development of polyhedral theory and 

the consequent introduction of strong, problem specific cutting planes led to a 

resurgence of cutting plane methods in the 1980’s, and cutting plane methods are now 

the method of choice for a wide variety of problems. Perhaps the best known branch-

and-cut algorithms are those that have been used to solve the traveling salesman 

problem (TSP). This approach is able to solve and prove optimality of far larger 

instances than other methods. Two papers that describe some of this research and also 

serve as good introductions to the area of branch-and-cut algorithms are Grotschel and 

Holland [82]; Padberg and Rinaldi [83]. Branch-and-cut methods have also been used 

to solve other combinatorial optimization problems, again through the exploitation of 

strong cutting planes arising from polyhedral theory. Problems attacked recently with 
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cutting plane or branch-and-cut methods include the linear ordering problem, 

maximum cut problems, scheduling problems, network design problems, packing 

problems, the maximum satisfiability problem, biological and medical applications, 

and finding maximum planar sub-graphs.  

Though it is difficult to solve the flexible job shop problem using exact algorithm, 

some research work has already been done in this field also. Branch and cut method 

was used by several researcher to solve the FJSP because the computational effort is 

less than the actual branch and bound method. For instance, Stecco [84] was showed a 

comparison between three different formulations of a production scheduling problem 

with sequence-dependent and time-dependent setup times on a single machine by 

using branch and cut algorithm. Gupta [85] was minimized the total elapsed time for 

nx3 flow shop by considering the effect of breakdown interval and the transportation 

time using Branch and Bound technique 

It is usually not possible to efficiently solve a general integer programming problem 

using just a cutting plane approach, and it is therefore necessary to also branch, 

resulting in a branch-and-cut approach. A pure branch-and bound approach can be 

sped up considerably by the employment of a cutting plane scheme, either just at the 

top of the tree, or at every node of the tree, because the cutting planes lead to a 

considerable reduction in the size of the tree. For general problems, the specialized 

facets used when solving a specific combinatorial optimization problem are not 

available. Useful families of general inequalities include cuts based on knapsack 

problems (Crowder [86]), Gomory cutting planes (Gomory [81] ; Balas [87]), and lift 

and project cutting planes (Balas [88]). Cutting planes and polyhedral theory are 

discussed in more detail later. 

Nemhauser and Wolsey [79] and Wolsey [89] provide excellent and detailed 

descriptions of cutting plane algorithms and the other material in this entry, as well as 

other aspects of integer programming. Schrijver [90] is an excellent source of 

additional material. One aspect of a branch-and-cut approach that should not be 

overlooked is that it can be used to provide bounds. In particular, if the problem is 

minimization, one can’t be able to prove optimality; a lower bound on the optimal 

value can be deduced from the algorithm, which can be used to provide a guarantee 

on the distance from optimality. Therefore, for large and/ or hard problem s, branch 
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and-cut can be used in conjunction with heuristics or meta-heuristics to obtain 

a good (possibly optimal) solution and also to indicate how far from optimality 

this solution may be. 

Let’s consider the following mixed integer linear programming problem 

min ��� 

subject to �� ≤  �                               (���)                                       (4.1) 

� ≥  0 

��               integer, � =  1,...,�. 

as standard form, where x and c are n-vectors, b is an m-vector, and A is an m × n 

matrix. The first p variables are restricted to be integer, and the remainder may be 

fractional. If � =  � then this is an integer programming problem. If a variable is 

restricted to take the values 0 or 1 then it is a binary variable. If all variables are 

binary then the problem is a binary program. There is no loss of generality with 

restricting attention to such a format. A branch-and-cut algorithm is outlined in Figure 

4.3.  



 

Figure 4.3: Branch and Cut Algorithm, (Mitchell 
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Figure 4.3: Branch and Cut Algorithm, (Mitchell [91]) 
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programming problems. Typically, the initial relaxation is solved using the simplex 

method. Subsequent relaxations are solved using the dual simplex method, since the 

dual solution for the relaxation of the parent sub-problem is still feasible in the 

relaxation of the child sub-problem. Further, when cutting planes are added in Step 5, 

the current is still dual feasible, so again the modified relaxation can be solved using 

the dual simplex method. It also possible to use an interior point method and this can 

be a good choice if the linear programming relaxations are large. 

We say that any inequality π�x ≤  π� that is satisfied by all the feasible points of 

(ILP) is a valid inequality. The convex hull of the set of feasible solutions to (ILP) is a 

polyhedron. Every valid inequality defines a face of this polyhedron, namely the set 

of all the points in the polyhedron that satisfy π�x = π� . A facet is a face of a 

polyhedron that has dimension one less than the dimension of the polyhedron, and it 

is necessary to have an inequality that represents each facet in order to have a 

complete linear inequality description of the polyhedron. If all the facets of the 

convex hull of the set of integer feasible points are known, then the integer problem 

can be solved as a linear programming problem by minimizing the objective function 

over this convex hull. Unfortunately, it is not easy to obtain such a description. In 

fact, for an NP-Complete problem, such a description must contain an exponential 

number of facets, unless P=NP. 

Dantzig’s, Gomory, Chvatal-Gomory, strong, and general cutting planes are described 

below. 

4.2.1 Dantzig's Cutting Plane Method: 

Gomory [92] and [93] were among the earliest proponents of cutting plane methods, 

and the first method presented here is generally known as a Dantzig cut. Suppose that 

the linear programming relaxation of an all-integer programming problem was solved 

and in the optimal solution of the relaxed problem, there exists at least one variable 

x�with a noninteger value b�. As x� ∈ ℕ� ∀ j is required, at least one variable that is 

currently nonbasic must have a positive value, and since its value must be integer, at 

least one of the current nonbasic variables must equal a value of one or larger. This 

implies that the sum of variables that are currently nonbasic, must equal at least one. 
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Defining nbv as the set of variables that are presently nonbasic, this constraint is 

called a Dantzig cut and can be written as 

� �� ≥ 1

�∈���

                                                                                                                            (4.2) 

Note that relation (4.2) does indeed satisfy the conditions of a cut: in the current 

solution all nonbasic variables equal zero, so at present the left-hand side of the 

relation equals zero, clearly violating the constraint, so that (1) cuts offthe current 

solution. On the other hand, the derivation of the relation has ensured that none of the 

integer feasible points were made infeasible. 

A minor modification of Dantzig's cuts is credited by Taha [94] to Bowman and 

Nemhauser [95]. The authors observe that the sum of nonbasic variables on the left-

hand side of a Dantzig cut can be replaced by the sum of nonbasic variables with 

noninteger coefficients in the current tableau. Apparently, such a cut is stronger than 

Dantzig's original cut, but there is not much difference in practical terms as normally 

only a few of the coefficients in the tableau are integer anyway. 

4.2.2 Gomory's Cutting Plane Methods: 

Another type of cut was introduced by Gomory [92]. To facilitate the discussion, let 

a��  and b�  denothe the left hand and right hand side of the current tabulae. By 

assumption, there exists at least one variable x� = b �  ∉ ℤ and we say that the i − th 

row is a source row. Define then fractional parameters f�� = a�� − �a��� and f� = b � −

⌊b�⌋ with f��  ∈ [0;1[and f�  ∈]0;1[, so that  

x� + � �a���

�∈���

x� +  � f��x�
�∈���

= ⌊b�⌋ + f�                                                                       (4.3) 

As x� ∈ ℤ   ∀ j is required as well as ∑ �a����∈��� x� and ⌊b�⌋ ∈  ℤ , we obtain  

f� − � f ��x�
�∈���

∈ ℤ                                                                                                                (4.4) 

With f� < 1 and the sum in (3) nonnegative, the expression in relation (3) must be less 

than or wqual to zero, so that 
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− � f ��x�
�∈���

≤ −f �                                                                                                                  (4.5) 

Relation (4.5) is the fractional Gomory cut. As in the case of the Dantzig cut, the 

current solution violates this new relation (as at present, the left-hand side equals zero 

and the right-hand side is strictly negative) and the derivation assures that no integer 

solutions were cut off. At least one dual simplex iteration is needed to find a primal 

feasible solution again. A very different approach was taken by Gomory [81] in 

designing all-integer cuts. The basic idea is to start with a tableau in which all 

parameters are integers, and retain that property while optimizing. 

4.2.3 Chvátal-Gomory’s cutting plane method: 

Cutting planes can be obtained by first combining together inequalities from the 

current linear programming relaxation and then exploiting the fact that the variables 

must be integral. This process is known as integer rounding, and the cutting planes 

generated are known as Chvátal-Gomory cutting planes. Integer rounding was 

described implicitly by Gomory [81], and described explicitly by Chvátal [96]. 

4.2.4 Model Optimization Using Branch and cut Algorithm: 

The branch and cut algorithm is an efficient method for solving optimization problem 

to find the global optima. To solve the mathematical model developed in this thesis 

C++ at Code Blocks and Mixed Integer Linear Programming(MILP) solver 

((intlinprog)  at MATLAB are used. 

Solving the mathematical model using the Integer Linear Programming requires some 

modification. The basic structure of the MATLAB MILP solver is like below 

min
�

�� � 

                                   ������� �� �

� (������)��� ��������
�.� ≤ �

���.� = ���

�� ≤ � ≤ ��

�
                                                     (4.6) 
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Where, x is the decision variables, �� is a vector of the coefficients of the decision 

variable in the objective function. A is a coefficient matrix of the decision variable in 

the inequality constraints and b is a vector which is the right side of all inequality 

constraints. Similarly ���  is a coefficient matrix of the decision variable in the 

equality constraints and ���  is a vector which is the right side of all equality 

constraints. lb and ub are lowar bounds and upper bounds of the decision variable 

respectively. 

To solve the model by this solver first the model is modified as follows to develop the 

necessary constraint equations. 

Objective function: 

���,      � ����� �
� +  � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

                                         (4.7) 

Subject to, 

� ��,�,� = 1                ∀ �, �

�

���

                                                                                                (4.8) 

��,�,� ≤  ��,�,�               ∀ �, �,�                                                                                              (4.9) 

 −��,�
� + ��,���

� +  � ��,�,�.��,�,�
�  

�

���

≤ 0                     ∀ �, �, �                                           (4.10) 

−��,�
� + � ��,�,�.��,�,�

�

�

���

≤ 0                                       ∀ �, �                                             (4.11) 

−��,�
� +  ��,�,�.��,�,�

�  ≤  ��                                          ∀ �, �,�,�                                      (4.12) 

−��,�
� + ��,�

� + ��� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 3�          ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,� (4.13) 

−��,�
� + ��,�

� + ��−� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 2�         ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�(4.14) 

−��� �
� + ��,��

� ≤ 0                       ∀ �,�                                                                             (4.15) 
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��,�
� ≥ 0                                                                                                                                  (4.16) 

��,�,� , ��,�,�,� ,��,�,� ∈{0,1}                        ∀ �, �,ℎ, �, �                                                  (4.17) 

This is for the first stage of optimization. The constraint equations of the second stage 

are modified in the similar way. After the generation of equation f, A, b, Aeq, beq, lb 

and ub matrices are developed and optimization is done by using the above mentioned 

programming software. The results of several numerical examples are shown in 

chapter 6. 
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CHAPTER V 

FLEXIBLE JOB SHOP SCHEDULING USING GENETIC 

ALGORITHM 

Different computational methodologies and procedures have been proposed to 

solve flexible job shop scheduling problems, which could be classified into three 

catagories; (1) exact procedures, (2) heuristics and improvement procedures and 

(3) meta-heuristic. FJSPs are computationally difficult, in an n jobs m machine 

problem mn combinations need to be checked. Due to the combinatorial nature of 

the problem, exact (optimal) algorithms have been successfully applied only to 

small problems (i.e. 10 jobs 10 machines), but they require high computational 

efforts and extensive memory capabilities. Again, despite the guarantee of global 

optimality by the exact algorithm, their efficiency as well as accuracy decreases as 

the number of jobs and machines increases. As a result, metaheuristic algorithms 

have got the attention in recent years to solve FJSP. This is due to their ability to 

generate feasible solutions in the least possible computational time.  

The developed flexible job shop scheduling model is a multi-objective constrained 

ILP problem which falls on the class of the most difficult optimization problem. In 

the previous chapter, this model is optimized using a branch and cut algorithm. 

But, it has been observed that, it requires more computational time in reaching 

optimality. Therefore, in this chapter, genetic algorithm is used to solve the 

developed model. 

GA is a well known search algorithm and has been widely used in different field 

of study. In job shop scheduling problems it was extensively used by the 

researcher. Some researchers also proposed some modification to improve the 

local search method. Hybridization with other algorithms are also done by some 

researcher. Neubauer [97] discussed about several approaches to different 

production scheduling using genetic algorithm. A genetic algorithm was proposed 

by Jawahar and Aravindan [98] to derive an optimal combination of priority 

dispatching rules “pdrs” (independent pdrs one each for one Work Cell “WC”), to 

resolve the conflict among the contending jobs. 
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An effective hybrid genetic algorithm with three novel features, full active 

schedule (FAS), a new crossover operator called the precedence operation 

crossover (POX) and improved generation alteration model are introduced to 

solve the job shop problem by Zhang and Rao in [99]. For solving large size job 

shop problem Wang, Xiao and Yin [100] proposed a two-stage GA which 

attempts to firstly find the fittest control parameters, namely, number of 

population, probability of crossover, and probability of mutation, for a given job 

shop problem with a fraction of time using the optimal computing budget 

allocation method, and then the fittest parameters are used in the GA for a further 

searching operation to find the optimal solution. A hybrid genetic algorithm was 

proposed by Jie and Mitsuo [101] to solve the job shop problem subject to 

availability constraints. Countless papers are available on the application of 

genetic algorithm in solving job shop problem [102-104] of different types. In the 

following section definition, basic idea, components of GA and a brief discussion 

on STS will be provided. 

5.1 Genetic Algorithm: 

GA is an iterative procedure maintaining a population of structures that are 

candidate solutions to specific domain challenges. During each temporal 

increment (called a generation), the structure in the current population are rated 

for their effectiveness as domain solutions, and on the basis of these evaluations, a 

new population of candidate solution is formed using specific genetic operators 

such as reproduction, crossover and mutation. 

The genetic algorithm technique was first invented by Holland [105] and has been 

successfully applied to numerous large search space problems by Davis [106]; 

Forrest [107]; Goldberg [108]. It is a search algorithm based on the mechanics of 

the natural selection process (biological evolution). The most basic concept is that 

the strong tend to adapt and survive while the weak tend to die out. That is, 

optimization is based on evolution and the “Survival of the fittest” concept. GA 

has the ability to create an initial population of feasible solutions, and then 

recombine them in a way to guide their search to only the most promising areas of 

the state space. Each feasible solution is encoded as a chromosome (string) also 

called genotype and each chromosome is given a measure of fitness via a fitness 
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(evaluation or objective) function. The fitness of a chromosome determines its 

ability to survive and produce offspring. A finite population of chromosome is 

maintained. GA uses probabilistic rules to evolve a population from one 

generation to the next. They have a high built in degree of randomness to escape 

from local optima and inferior regions of the solution space. Through parallel 

processing on a population of randomly generated chromosomes, it speeds up the 

whole search procedure. There is an abundance of applications of GAs in almost 

any field, including an extensive use in solving the FLP. In short it is a robust 

search technique and produce “close” to optimal results in a “reasonable” amount 

of time.    

5.1.1 Pseudo-code and Flow Chart for Generic GA: 

The procedure of a generic GA is shown as follows: 

 

 

 

 

 

 

 

The procedure of generic GA can be represented by the following Figure 5.1 

 

 

 

 

 

Begin 

     INITIALIZE population with random candidate solutions; 

     EVALUATE each candidate; 

     Repeat until TERMINATION-CONDITION is satisfied 

1. SELECT parents; 

2. CROSSOVER between parents 

3. MUTATE the resulting children 

4. EVALUATE children; 

5. SELECT individuals for next generation 



Page | 48  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Flowchart of Genetic Algorithm 
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5.1.2 Basic Components of GA: 

As described in Davis [106], a genetic algorithm has five components:  

1. A means of encoding solutions to the problem as a chromosome.  

2. A function that evaluates the “fitness” of a solution.  

3. A means of obtaining an initial population of solutions.  

4. Reproduction operators for the encoded solutions.  

5. Appropriate settings for the genetic algorithm control parameters.  

5.1.2.1 Chromosome Encoding: 

The first, and perhaps the most important, step in applying a genetic algorithm to a 

problem is to choose a way to represent a solution to the problem as a finite-length 

string over a finite alphabet. These strings are referred to as chromosomes. The values 

on the chromosome may be arranged and interpreted as needed. They may represent 

Boolean values, integers, or even discretized real numbers. Complex chromosome can 

have combination of two or more type. Some encodings, which have been already 

used successfully, have been introduced here.  

Binary - Binary encoding is the most common, mainly because first works about GA 

used this type of encoding. In binary encoding every chromosome is a string of bits, 0 

or 1.  

Example:  Chromosome A:  101100101100 

Permutation - Permutation encoding can be used in ordering problems, such as 

travelling salesman problem or task ordering problem. In permutation encoding, every 

chromosome is a string of numbers, which represents number in a sequence.  

Example:  Chromosome A:  1  5  3  2  6  4  7  9  8 

Value - Direct value encoding can be used in problems, where some complicated 

values are used. In value encoding, every chromosome is a string of some values. 

Values can be anything connected to problem e.g. real numbers or chars to some 

complicated objects.  

Example:  Chromosome A:  1.2324  5.3243  0.4556  2.3293  2.4545 
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Chromosome B:  (back), (back), (right), (forward), (left) 

Tree - Tree encoding is used mainly for evolving programs or expressions, for genetic 

programming. In tree encoding every chromosome is a tree of some objects, such as 

functions or commands in programming language.  

     Example:    

   

 

            

 

Figure 5.2: Tree encoding for equation: (+ x (/ 5 y)) 

The choice of how to encode solutions on a chromosome is of primary importance to 

the success of the genetic algorithm approach to a problem. The encoding of 

information on the chromosome should be right for the problem rather than specific to 

the problem. The encoding should be able to represent all the relevant parameters of 

the problem and should avoid other parameters. Using parameters that are not directly 

relevant will cause the genetic algorithm to be subject to changes in the problem that 

would not otherwise affect it, thereby making it no more useful than a specialized 

heuristic. Some knowledge of the search space is, of course, unavoidable according to 

Rawlins, [109]. 

5.1.2.2 Fitness Function: 

A function is needed that will interpret the chromosome and produce an evaluation of 

the chromosome’s fitness. This function must be defined over the set of possible 

chromosomes and is assumed to return some positive value representing the fitness. 

The definition of this function is crucial because it must accurately measure the 

desirability of the features described by the chromosome. In addition, the function 

must make this evaluation in a very efficient manner because of the large number of 

times the function will be called during the execution of the genetic algorithm. For 
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example, with a population of 100 chromosomes that runs for 1000 generations, there 

could be as many as 100,000 calls to this evaluation function during execution. 

5.1.2.3 Choosing an Initial Population: 

In a “pure” genetic algorithm, the initial population is chosen randomly, with the goal 

of selecting chromosomes from all over the search space. Whatever genetic material 

is in the initial population will be the only material, except for the rare changes due to 

mutation, available to the genetic algorithm during its search. One might employ a 

heuristic to choose the initial population in an attempt to introduce the “right” genetic 

building blocks into the population. However, this can lead to problems of premature 

convergence to a local optimum since genetic algorithms are “notoriously 

opportunistic” Grefenstette [110]. 

5.1.2.4 Reproduction Operators: 

According to GA outline, Parent Selection Mechanism is a prerequisite for 

reproduction operations: Crossover and Mutation.  

Parent Selection Mechanism: The role of parent selection is to distinguish among 

individuals based on their quality to allow the better individuals to become parents of 

the next generation. Parent selection is probabilistic. Thus high quality individuals get 

a higher chance to become parents than those with low quality. Nevertheless, low 

quality individuals are often given a small but positive chance; otherwise the whole 

search could become too greedy and get stuck in a local optimum. Some of the 

selection methods are described below: 

I. Roulette Wheel Selection - Parents are selected according to their fitness. The 

better the chromosomes, the more chances to be selected. Imagine a roulette 

wheel where every chromosome in a population has its place big accordingly to 

its fitness function. This can be simulated by following algorithm.  
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II. Rank Selection - Rank selection first ranks the population and then every 

chromosome receives fitness from this ranking. The worst will have fitness 1, 

second worst 2 etc. and the best will have fitness N (number of chromosomes in 

population).  

III. Steady-State Selection - Main idea of this selection is that big part of 

chromosomes should survive to next generation. In every generation a few 

(good - with high fitness) chromosomes are selected for creating a new 

offspring. Then some (bad – having low fitness) chromosomes are removed and 

the new offspring is placed in their place. The rest of population survives to new 

generation.  

Crossover Operator: This operator merges information from two parents’ genotype 

into one or two offspring genotypes. Crossover is a stochastic operator: the choice of 

what parts of each parent are combined and the way these parts are combined depend 

on random drawings. The principle behind crossover is simple: by mating two 

individuals with different but desirable features, an offspring can be produced which 

combines both of these features. These are different kinds of crossover: 

I. One-point crossover - One crossover point is selected. String from beginning 

of chromosome to the crossover point is copied from one parent; the rest is 

copied from the second parent. 

Example:   11001011+11011111   =   11001111 & 11011011 

                   Parent1   +   Parent 2    =     Child1    &   Child 2  

II. Two point crossover - Two crossover points are selected. String from 

beginning of chromosome to the first crossover point is copied from one 

Roulette Wheel Selection procedure: 

1. [Sum] Calculate sum of all chromosome’s fitness in population - sum S.  

2. [Select] Generate random number from interval (0,S) - r.  

3. [Loop] Go through the population and sum fitness from 0 - sum S. When 

the sum S is greater than r, stop and return the chromosome where you 

are.  

Step 1 is performed only once for each population.  
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parent, the part from the first to the second crossover point is copied from the 

second parent and the rest is copied from the first parent. 

 

 Example:  11001011 + 11011111  =   11011111 & 11001011 

                  Parent1   +   Parent 2    =     Child1    &   Child 2  

 

III. Uniform crossover – Genes are randomly copied from the first or from the 

second parent. 

 

        Example:  11001011 + 11011101  =     11011111 & 11011111 (random) 

  

                            Parent1   +   Parent 2    =        Child1   &    Child 2 

Mutation Operator: A unary variation operator is called mutation. It is applied to 

one genotype and delivers a modified mutant. In general, mutation is supposed to 

cause a random unbiased change. Mutation has a theoretical role; it can guarantee that 

the space is connected. 

Example:     11001001   =  10001001    (2nd bit is inverted). 

5.1.2.5 Genetic Algorithm Control Parameters: 

There are other parameters that govern the genetic algorithm search process. Some of 

these are:  

I. Population size - Determines how many chromosomes, and therefore how 

much genetic material, are available for use during the search. If there is too 

little, the search has no chance to adequately cover the space. If there is too 

much, the genetic algorithm wastes time evaluating chromosomes. 

II. Generations - Specifies how many times the population will be replaced 

through reproduction.  

III. Crossover Rate - Specifies the probability of crossover (mating) occurring 

between two chromosomes.  

IV. Mutation Rate - Specifies the probability that a value in the chromosome of a 

newly created offspring will be randomly changed. 
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V. Termination Condition - GA is stochastic process and mostly there are no 

guarantees to reach a global optimum. Commonly used conditions for 

terminations are the following: 

 A solution is found that satisfies minimum criteria. 

 Fixed number of generations reached. 

 For a given number of generations, there is no improvement in fitness. 

5.1.3 Constraints Handling in GA: 

There are many ways to handle constraint in a GA. At the high conceptual level it can 

be distinguished in two cases: Indirect constraint handling and direct constraint 

handling. Indirect constraint handling means to incorporate them in the fitness 

function f(x) such that f(x) optimal implies that the constraints are satisfied. Direct 

constraint handling means that the constraint stays as they are and the GA is ‘adapted’ 

to enforce them. Direct and Indirect both can be used together in a single application. 

5.1.3.1 Direct Constraint Handling: 

Treating constraint directly implies that violating them is not reflected in the fitness 

function, thus there is no bias towards chromosome satisfying them. Therefore the 

population will become less and less feasible with respect to these constraints. This 

means feasibility of the chromosomes have to be monitored and maintained. The 

basic problem in this case is that the regular operators are blind to constraints, 

mutating one or crossing over two feasible chromosomes can result in infeasible 

offspring. Typical approaches to handle constraints directly are the following: 

I. Eliminating infeasible solution 

II. Repairing infeasible solution 

III. Preserving feasibility by special operators 

IV. Decoding, i.e., the search space.  

Eliminating infeasible solution is very inefficient, and therefore hardly applicable. 

Repairing infeasible candidates requires a repair procedure for the chromosome. 

Preserving feasibility can be NP-Complete. Finally decoding can be seen as shifting 

to a search space that is different than the original problem formulation. 
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5.1.3.2 Indirect Constraint Handling: 

In the case of indirect constraint handling, the optimization objectives replacing the 

constraints are viewed as penalties for constraint violation hence to be minimized. In 

general penalties are given for violated constraints. Advantages of indirect constraint 

handling are: 

 Reproduction of the problem to simple optimization. 

 Possibility of embedding user preferences by means of weights. 

Disadvantages of indirect constraint handling are: 

 Loss of information packing everything in a single number. 

 Does not work well with sparse problem. 

5.1.4 Reasons to choose GA: 

Genetic algorithm is a parallel, stochastic search process. It is widely used in many 

applications due to the following reasons: 

1. The search is highly parallel, with each population member defining many 

different possible search directions. Potentially, GA search could be 

implemented extremely efficiently on massively parallel hardware. 

2. No special information about the solution surface such as gradient or local 

curvature need to be identified. The objective function need not to be smooth, 

continuous or unimodal. 

3. Genetic algorithms have proved to be fairly robust under varying parameter 

settings and problem particulars. As long as solutions with similar encodings 

do not have highly variant objective function values, genetic algorithms 

usually find near optimal solutions. 

4. Being a population-based approach, GAs are well suited to solve multi-

objective optimization problems. A generic single-objective GA can be 

modified to find a set of multiple non-dominated solutions in a single run. 

Since the optimization of multi-objective unequal-area FLPs have to do with the 

vast number of possible physical layouts, and with the existence of many locally 

optimal layouts as well as should capture the pareto front, therefore GA is used in 

this thesis work. 
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5.2 Model optimization using GA: 

The MATLAB Integer GA solver is used for solving the FJSP. The basic structure of 
the GA solver is as follows. 

min
�

�� � 

                                  ������� �� �

� (������)��� ��������
�.� ≤ �

���.� = ���

�� ≤ � ≤ ��

  �                                             (5.1) 

Here the input arguments are 

Table 5.1: Input Arguments of GA 

Fitness 

function 

(fitnessfcn) 

To handle the fitness function(Objective function). The fitness 

function accept a row vector of length of number of variables and 

return a scalar value. 

Number of 

Variable 

(nvars) 

Positive integer representing the number of variables in the problem. 

A Matrix for linear inequality constraints showed in equation set 5.1. If 

the problem has m linear inequality constraints and nvars variables, 

then A is a matrix of size m-by-nvars. 

B Vector for linear inequality constraints showed in equation set 5.1. If 

the problem has m linear inequality constraints and nvars variables, 

then b is a vector of length m. 

Aeq Matrix for linear equality constraints of the form showed in equation 

5.1. If the problem has m linear equality constraints 

and nvars variables, then Aeq is a matrix of size m-by-nvars. 

Beq Vector for linear equality constraints of the form showed in equation 

set 5.1. If the problem has m linear equality constraints 

and nvars variables, then beq is a vector of length m. 

Lb Vector of lower bounds.  
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Ub Vector of upper bounds. 

Integer 

Variables 

(IntCon) 

Vector of positive integers taking values from 1 to nvars. Each value 

in IntCon represents an x component that is integer-valued. 

Though GA solver can handle both linear equality and inequality constraints at the 

same time for continuous variables, it can’t handle the equality constraints and integer 

variables at the same time. It is a limitation of using GA solver. However, linear 

inequalities can be modified as follows to solve the problem if relaxing the integer 

variables is not possible. 

                                                                 �
���.� ≥ ���
���.� ≤ ���

�                                                               (5.2)                                                           

GA solver also provides numerous options to modify the algorithm. Some options are 

discussed below 

5.2.1 Population Options: 

This option let the user to specify the population parameters like, population type, 

population size, initial population, initial scores, initial range etc. For solving the FJSP 

model, the population size is set to the number of variables and the initial range is 

kept limited between upper bound and lower bound. 

5.2.2 Fitness Scaling Options: 

Fitness scaling converts the raw fitness scores that are returned by the fitness function 

to values in a range that is suitable for the selection function. Though several scaling 

functions are provided by the solver like rank, proportional, top, in this research work 

proportional scaling function is used. Proportional scaling makes the scaled value of 

an individual proportional to its raw fitness score. 
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5.2.3 Selection Options: 

Selection options specify how the genetic algorithm chooses parents for the next 

generation. The options provided by the selection options of the GA solver of 

MATLAB are 

Stochastic uniform: The default selection function, Stochastic uniform, lays out a line 

in which each parent corresponds to a section of the line of length proportional to its 

scaled value. The algorithm moves along the line in steps of equal size. At each step, 

the algorithm allocates a parent from the section it lands on. The first step is a uniform 

random number less than the step size. 

Remainder: Remainder selection assigns parents deterministically from the integer 

part of each individual's scaled value and then uses roulette selection on the remaining 

fractional part. For example, if the scaled value of an individual is 2.3, that individual 

is listed twice as a parent because the integer part is 2. After parents have been 

assigned according to the integer parts of the scaled values, the rest of the parents are 

chosen stochastically. The probability that a parent is chosen in this step is 

proportional to the fractional part of its scaled value. 

Uniform: Uniform selection chooses parents using the expectations and number of 

parents. Uniform selection is useful for debugging and testing, but is not a very 

effective search strategy. 

Roulette: Roulette selection chooses parents by simulating a roulette wheel, in which 

the area of the section of the wheel corresponding to an individual is proportional to 

the individual's expectation. The algorithm uses a random number to select one of the 

sections with a probability equal to its area. 

Tournament: Tournament selection chooses each parent by choosing Tournament 

size players at random and then choosing the best individual out of that set to be a 

parent. Tournament size must be at least 2. 

5.2.4 Reproduction Options: 

Reproduction options let the user to specify how the genetic algorithm creates 

children for the next generation. 
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Elite count: specifies the number of individuals that are guaranteed to survive to the 

next generation.  

Crossover fraction: specifies the fraction of the next generation, other than elite 

children, that are produced by crossover. 

In this work the reproduction options kept to default crossover function 

5.2.5 Mutation Options: 

Mutation options let the user to  specify how the genetic algorithm makes small 

random changes in the individuals in the population to create mutation children. 

Mutation provides genetic diversity and enables the genetic algorithm to search a 

broader space. The default mutation function for unconstrained problems, Gaussian, 

adds a random number taken from a Gaussian distribution with mean 0 to each entry 

of the parent vector. Unfortunately this option can’t be used for integer programming. 

5.2.6 Stopping Criteria Options: 

Stopping criteria determine what causes the algorithm to terminate. It can be specified 

by the following options: 

Generations: Specifies the maximum number of iterations for the genetic algorithm 

to perform. The default is 100*nvar 

Time limit: Specifies the maximum time in seconds the genetic algorithm runs before 

stopping, as measured by cputime. 

Fitness limit: The algorithm stops if the best fitness value is less than or equal to the 

value of Fitness limit. 

Stall generations: The algorithm stops if the average relative change in the best 

fitness function value over Stall generations is less than or equal to Function 

tolerance. 

Stall time limit: The algorithm stops if there is no improvement in the best fitness 

value for an interval of time in seconds specified by Stall time limit, as measured by 

cputime. 
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Function tolerance: The algorithm stops if the average relative change in the best 

fitness function value over Stall generations is less than or equal to Function tolerance  

The modified model for solving with the GA solver is as follows 

5.2.7 Fitness function: 

���,      � ����� �
� +  � � �� ���� �

� − � ����� �
�

� ∈ �

�

� ∈ �� ∈ �

                                         (5.3) 

Subject to, 

� ��,�,� ≤ 1                ∀ �, �

�

���

                                                                                                (5.4) 

− � ��,�,� ≤ −1                ∀ �, �

�

���

                                                                                         (5.5) 

��,�,� ≤  ��,�,�               ∀ �, �,�                                                                                              (5.5) 

 −��,�
� + ��,���

� +  � ��,�,�.��,�,�
�  

�

���

≤ 0                     ∀ �, �, �                                              (5.6) 

−��,�
� + � ��,�,�.��,�,�

�

�

���

≤ 0                                       ∀ �, �                                                (5.7) 

−��,�
� +  ��,�,�.��,�,�

�  ≤  ��                                          ∀ �, �,�,�                                         (5.8) 

−��,�
� + ��,�

� + ��� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 3�          ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�   (5.9) 

−��,�
� + ��,�

� + ��−� �,�,�,�+ ��,�,�+ ��,�,��≤ − ��,�,�
� + 2�         ∀ � ≤ �, � ≤ �,(�, �)≠ (�, ℎ),�,�(5.10) 

−��� �
� + ��,��

� ≤ 0                       ∀ �,�                                                                             (5.11) 

��,�
� ≥ 0                                                                                                                                  (5.12) 

��,�,� , ��,�,�,� ,��,�,� ∈{0,1}                        ∀ �, �, ℎ, �, �                                                  (5.13) 
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CHAPTER VI 

RESULTS AND DISCUSSIONS 

In this thesis work a two stage multi-objective flexible job shop scheduling model has 

been developed considering the prime objective to minimize the makespan of the 

overall system. The developed constrained multi-objective integer linear model has 

been optimized to determine the optimal arrangement of the operation of different 

jobs at different machines so that maximum completion time, variability of 

completion time of each operation and variability of makespan at different stages will 

be minimized. This model is illustrated with two numerical examples and then 

optimized using a branch and cut algorithm and a genetic algorithm.  

6.1 Numerical Example: 

In this case a four job five machine (4 x 5) problem is considered. The input data for 

the model are collected from Zhang [111]. The model requires the following input 

parameters for the first stage of optimization. 

I. Number of jobs 

II. Number of machines 

III. Number of operation of each job 

IV. Sequence of operation of each job 

V. Processing time of each operation at different machines 

In the second stage some other inputs will be needed. These are 

I. Arrival time of the unpredicted job 

II. Processing time of unpredicted job at different machines 

III. Operations already completed or in process 

IV. Time when each machine will be available for second stage operations 
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6.1.1 Optimization using Branch and Cut Algorithm: 

To apply the integer linear programming the model is modified as described in 

chapter IV. The optimization using Branch and Cut Algorithm involve the following 

sequential steps 

I. Reading the input data 

II. Variable generation according to the model in terms of x 

III. Developing the coefficient matrices for all equations 

IV. Developing separate matrices for �,�,���, ���, ��,��, ������,� 

V. Defining the objective function 

VI. Running optimization 

VII. Reading output result 

VIII. Decoding the result to generate separate Gantt chart at different scenarios both 

for job and machine vs. the time to make it easily readable to the user. 

6.1.1.1 First stage optimization-Developing a Robust Schedule: 

The input data for 4 x 5 job shop is as follows, 

Number of jobs = 4 

Number of machines = 5 

Processing time of each operation at different machine are shown below, 
 

Table 6.1: Processing time of different operations at scenario 1 

Operation (Oji) 
Machine 

M-1 M-2 M-3 M-4 M-5 

11 2 5 4 1 2 

12 5 4 5 7 5 

13 4 5 5 4 5 

21 2 5 4 7 8 

22 5 6 9 8 5 

23 4 5 4 54 5 

31 9 8 6 7 9 

32 6 1 2 5 4 

33 2 5 4 2 4 

34 4 5 2 1 5 

41 1 5 2 4 12 

42 5 1 2 1 2 

51 0 0 0 0 0 

52 0 0 0 0 0 

53 0 0 0 0 0 
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Here the processing time can be in hours or in days. The fifth job is a dummy job 

which is considered in the first stage to reduce the computational complexity at the 

second stage. For this example it is assumed that one unpredicted job may arrive after 

the initialization of the operation. One may consider two jobs. In that case two 

dummy jobs can be created. This job has no effect on the initial schedule as 

processing time of all operations at different machines are zero. These are the input 

data for the first scenario. In this thesis there are two scenarios are considered. The 

input data for second scenario are shown below. 

 

Table 6.2: Processing time of different operations at scenario 2 

Operation (Oji) 
Machine 

M-1 M-2 M-3 M-4 M-5 

11 1 4 6 9 3 

12 4 1 1 3 4 

13 3 2 5 1 5 

21 2 10 4 5 9 

22 4 8 7 1 9 

23 6 11 2 7 5 

31 8 5 8 9 4 

32 9 3 6 1 2 

33 7 1 8 5 4 

34 7 3 12 1 6 

41 5 10 6 4 9 

42 4 2 3 8 7 

51 0 0 0 0 0 

52 0 0 0 0 0 

53 0 0 0 0 0 

In the first stage two schedules will be generated. The decision regarding which 

schedule to execute depends on the scenario occurs at the real time. So the job shop 

has the flexibility to operate in different scenarios.  

The forms of input and output of an optimization is important to make it usable by 

others for real application as one of the objective of this thesis work is to make the 

schedule adaptable to the real manufacturing or application. In this work, emphasis is 

given on generating output and taking inputs. 

 



Page | 64  
 

The flow chart of the optimization using the programming software is shown below 

 

Figure 6.1: Flow chart of optimization steps 

Here the input text consist the number of jobs, number of machines, number of 

operation of each job, processing time matrix at different machines and the big M 

Value. 

One of the input text file is as follows. 

5         <Number of machines> 
 
5         <Number of Jobs> 
 
3         <Number of operations for the first job> 
2 5 4 1 2 <Processing time of Operation 1 of job 1 at 5 machines> 
5 4 5 7 5 
4 5 5 4 5 
 
3 
2 5 4 7 8 
5 6 9 8 5 
4 5 4 54 5 
 
4 
9 8 6 7 9 
6 1 2 5 4 
2 5 4 2 4 
4 5 2 1 5 
 
2 
1 5 2 4 12 
5 1 2 1 2 
 
3 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
 
100 
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This is for variable and equation generation. After running C++ code the output log 

file is as follows 

 
total number of machine 5 
total number of job 5 
1th job has 3 operations 
2 5 4 1 2  
5 4 5 7 5  
4 5 5 4 5  
 
2th job has 3 operations 
2 5 4 7 8  
5 6 9 8 5  
4 5 4 54 5  
 
3th job has 4 operations 
9 8 6 7 9  
6 1 2 5 4  
2 5 4 2 4  
4 5 2 1 5  
 
4th job has 2 operations 
1 5 2 4 12  
5 1 2 1 2  
 
5th job has 3 operations 
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
 
value of Big M 100  
assignment variables start x1 
assignment variables end at x75 
 
sequencing variables start x76 
sequencing variables end at x269 
 
completion variables start at x270 
completion variables end at x284 
 
max completion time variable is x285 
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Another input text file is required for developing Gantt Chart which contains the 

operation ID and processing time of the corresponding operations 

1 1 2 5 4 1 2 
1 2 5 4 5 7 5 
1 3 4 5 5 4 5 
2 1 2 5 4 7 8 
2 2 5 6 9 8 5 
2 3 4 5 4 54 5 
3 1 9 8 6 7 9 
3 2 6 1 2 5 4 
3 3 2 5 4 2 4 
3 4 4 5 2 1 5 
4 1 1 5 2 4 12 
4 2 5 1 2 1 2 
5 1 0 0 0 0 0 
5 2 0 0 0 0 0 
5 3 0 0 0 0 0 

where the first two numbers of each row denote the job number and operation number 

respectively. 

6.1.1.1.1 Output of stage 1: 

After creating the following input the optimization using MATLAB is initialized. The 
Gantt Charts and plot of the objective function are shown in the figures. The output 
file attached in the appendix. Here the probability of the two scenarios is assumed 0.6 
and 0.4 respectively. The output of the optimization is as follows, 

Scenario-1: 

Table 6.3: Results of scenario 1 at stage 1 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 4 4 1 1 

1 2 7 2 4 6 

1 3 13 3 5 11 

2 1 16 1 2 2 

2 2 25 5 5 7 

2 3 26 1 4 11 

3 1 33 3 6 6 

3 2 37 2 1 7 

3 3 44 4 2 9 

3 4 49 4 1 11 

4 1 51 1 1 3 

4 2 57 2 1 8 

5 1 65 5 0 0 

5 2 68 3 0 0 

5 3 75 5 0 0 
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Scenario-2: 

Table 6.4: Results of scenario 2 at stage 1 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 1 1 1 1 

1 2 8 3 1 2 

1 3 14 4 1 7 

2 1 16 1 2 3 

2 2 24 4 1 6 

2 3 28 3 2 8 

3 1 35 5 4 4 

3 2 39 4 1 5 

3 3 42 2 1 6 

3 4 49 4 1 8 

4 1 54 4 4 4 

4 2 56 1 4 8 

5 1 65 5 0 0 

5 2 68 3 0 2 

5 3 72 2 0 7 

So the makespan for scenario 1 and 2 are 11days and 8 days respectively and the 

objective function for the first stage is 11.24 days. So it is evident from the output that 

for completing all jobs at least 11.24 days will be required. The objective function 

value at two different scenario are plotted against the number of nodes which are 

shown in figure 6.2 and 6.3 respectively 

From the Gantt chart output shown in figure 6.4-6.7, it is clear that a non-overlapping 

schedule is generated for the execution. The significance of generating two Gantt 

chart, one is job vs. time and other is machine vs. time is to identify the sequence of 

operations at different machine and to keep track of machine sequence of operations 

of each job. For instance let consider figure 6.4 and 6.5. In figure 6.4 the operation 

sequence are shown at different machines. So from this operator one can visualize the 

operation sequence at different machines easily. For example, in machine 2 operation 

no 12, 32 and 42 will be done sequentially. But, if someone is interested to know the 

machine sequence for a job it will be a hectic job to find the same color slots at 

different machines to identify the machine sequence. That’s why the second type of 

Gantt chart is needed which shows the machine sequence for different jobs. 



 

Therefore, observing these two diagrams one can easily execute the schedule 

generated.  

For this optimization 5 Gomory Cuts and 1 Zero

scenario. For scenario 2, 1 Gomory cut, 3 strong CG cuts an

applied. Due to this cut generation the optimization time is significantly low. The 

cputime for this optimization is 559.13 seconds.

Figure 6.2

Figure 6.3

Therefore, observing these two diagrams one can easily execute the schedule 

For this optimization 5 Gomory Cuts and 1 Zero-half cut are applied for the first 

scenario. For scenario 2, 1 Gomory cut, 3 strong CG cuts and 1 zero

applied. Due to this cut generation the optimization time is significantly low. The 

cputime for this optimization is 559.13 seconds. 

6.2: Objective versus Number of nodes at scenario 1of stage 1

6.3: Objective versus Number of nodes at scenario 2of stage 1
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Therefore, observing these two diagrams one can easily execute the schedule 

half cut are applied for the first 

d 1 zero-half cut are 

applied. Due to this cut generation the optimization time is significantly low. The 

 

of stage 1 

 

at scenario 2of stage 1 
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Figure 6.4: Gantt chart at scenario 1 of stage 1-Machine vs. Time 
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Figure 6.5: Gantt chart at scenario 1 of stage 1-Job vs. Time 
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Figure 6.6: Gantt chart at scenario 2 of stage 1-Machine vs. Time 
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Figure 6.7: Gantt chart at scenario 2 of stage 1-Job vs. Time 



Page | 73  
 

6.1.1.2 Second stage optimization-Reactive Scheduling: 

In real manufacturing environment jobs continuously arrive at shop floor and need to 

be scheduled at real time which give the rise of reactive scheduling. In this stage an 

unpredicted job is assumed which arrive at shop floor at time t when already the 

initial schedule is executed. Let’s assume a job arrives at shop floor at time t=3 which 

consists of three operations. After 3 days some operations has already completed and 

some operations are still in process in few machines. For rescheduling these 

completed jobs and work in process jobs must be excluded from the list of operations 

because preemption is not allowed. After 3 days at scenario 1, operations 

���,���,��� are already completed and operations  ���,���,��� are in process. It is 

convenient to assign processing time zero for this operation. So that in optimization 

equations variable ID will remain same. After doing so the new input data for 

optimization is like below 

Table 6.5: Processing time of different operations at scenario 1 in stage 2 

Operation (Oji) 
Machine 

M-1 M-2 M-3 M-4 M-5 
11 0 0 0 0 0 
12 0 0 0 0 0 
13 4 5 5 4 5 
21 0 0 0 0 0 
22 0 0 0 0 0 
23 4 5 4 54 5 
31 0 0 0 0 0 
32 6 1 2 5 4 
33 2 5 4 2 4 
34 4 5 2 1 5 
41 0 0 0 0 0 
42 5 1 2 1 2 
51 5 7 11 3 2 
52 8 3 10 7 5 
53 6 2 13 5 4 

As some jobs are still in process it is evident that all machines are not available at t=3 

which is also visible from the machine vs. time Gantt chart of scenario 1. Machine 

availability time, �� for different machines obtained from the output of first stage are  

Table 6.6: Machine availability time 
M-1 M-2 M-3 M-4 M-5 

3 6 6 3 7 

These steps are called preprocessing. Similar preprocessing is done for scenario 2 
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6.1.1.2.1 Output of stage 2: 

The output of stage 2 are given below 

Scenario 1 

Table 6.7: Results of scenario 1 at stage 2 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 3 3 0 7 

1 2 6 1 0 7 

1 3 15 5 5 12 

2 1 16 1 0 7 

2 2 24 4 0 7 

2 3 26 1 4 12 

3 1 33 3 0 7 

3 2 38 3 2 9 

3 3 44 4 2 11 

3 4 49 4 1 12 

4 1 53 3 0 7 

4 2 59 4 1 8 

5 1 64 4 3 7 

5 2 67 2 3 10 

5 3 72 2 2 12 

Scenario 2 

Table 6.8: Results of scenario 2 at stage 2 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 3 3 0 4 

1 2 6 1 0 4 

1 3 14 4 1 8 

2 1 16 1 0 4 

2 2 24 4 1 6 

2 3 30 5 5 11 

3 1 33 3 0 4 

3 2 39 4 1 5 

3 3 42 2 1 6 

3 4 49 4 1 7 

4 1 53 3 0 4 

4 2 56 1 4 8 

5 1 65 5 2 6 

5 2 67 2 3 9 

5 3 72 2 2 11 



 

The objective function values are

Makespan 
Variability of completions times of 
the operations
Variability of the makespan

The objective function plot

Figure 6.8

Figure 6.9

The objective function values are 

Table 6.9: Objective function values 
Objective Scenario-1 Scnario

 12 
Variability of completions times of 
the operations 

53 

Variability of the makespan 1 

The objective function plot and rescheduled Gantt charts are shown below

6.8: Objective versus Number of nodes at scenario 1of stage 2

6.9: Objective versus Number of nodes at scenario 2of stage 2
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Scnario-2 
11 

28 

3 

and rescheduled Gantt charts are shown below 

 

of stage 2 

 

at scenario 2of stage 2 
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Figure 6.10: Gantt chart at scenario 1 of stage 2-Machine vs. Time 
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Figure 6.11: Gantt chart at scenario 1 of stage 2-Job vs. Time 
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Figure 6.12: Gantt chart at scenario 2 of stage 2-Machine vs. Time 
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Figure 6.13: Gantt chart at scenario 2 of stage 2-Job vs. Time 
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From the two stages of observation it can be concluded that the model is a validated 

one. The objective functions plot shows the convergence to the minimum value. Close 

observation of the output data and Gantt charts reveals that there are only few changes 

occurred in the machine assignment and positioning the operations in stage 2. So the 

proposed mathematical model is stable and robust as well. 

6.1.2 Optimization using Genetic Algorithm: 

The application of genetic algorithm involves similar steps as in Branch and Cut 

algorithm accepts few changes. The steps of genetic algorithm was described in detail 

in chapter V 

I. Reading the input data 

II. Variable generation according to the model in terms of x 

III. Modification of equality constraints as described in chapter V 

IV. Developing the coefficient matrices for all equations 

V. Developing separate matrices for �,�, ��,��, ������ 

VI. Defining the fitness function 

VII. Setting the genetic algorithm parameters like number of populations, number 

of generation, stopping condition, crossover and mutation options etc. 

VIII. Running optimization 

IX. Reading output result 

X. Decoding the result to generate separate Gantt chart at different scenarios both 

for job and machine vs. the time to make it easily readable to the user. 

The inputs are similar as in Branch and Cut algorithm. Here the outputs are shown 

only. 

6.1.2.1 First stage optimization-Developing a Robust Schedule (GA): 

Population: 285 

Generation: 300 

Crossover probability: 0.8 

Fitness Selection Function: Proportional 
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6.1.2.1.1 Output of stage 1(GA): 

 Scenario-1: 

Table 6.10: Results of scenario 1 at stage 1(GA) 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 1 1 2 4 

1 2 7 2 4 8 

1 3 11 1 4 14 

2 1 16 1 2 5 

2 2 25 5 5 10 

2 3 26 1 4 11 

3 1 33 3 6 6 

3 2 37 2 1 8 

3 3 44 4 2 11 

3 4 49 4 1 14 

4 1 53 3 2 7 

4 2 60 5 2 12 

5 1 64 4 0 6 

5 2 70 5 0 10 

5 3 74 4 0 13 

Scenario-2: 

Table 6.11: Results of scenario 1 at stage 1(GA) 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 1 1 1 1 

1 2 8 3 1 3 

1 3 14 4 1 11 

2 1 16 1 2 3 

2 2 24 4 1 10 

2 3 28 3 2 12 

3 1 35 5 4 9 

3 2 39 4 1 11 

3 3 42 2 1 12 

3 4 47 2 3 15 

4 1 51 1 5 6 

4 2 57 2 2 10 

5 1 65 5 0 0 

5 2 68 3 0 11 

5 3 74 4 0 11 

 



Page | 82  
 

The objective function plot and Gantt charts at different scenarios are shown below. 

 

Figure 6.14: Objective versus Number of nodes at scenario 1of stage 1(GA) 

 

Figure 6.15: Objective versus Number of nodes at scenario 2of stage 1(GA) 
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Figure 6.16: Gantt chart at scenario 1 of stage 1-Machine vs. Time (GA) 
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Figure 6.17: Gantt chart at scenario 1 of stage 1-Job vs. Time (GA) 
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Figure 6.18: Gantt chart at scenario 2 of stage 1-Machine vs. Time (GA) 
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Figure 6.19: Gantt chart at scenario 2 of stage 1-Job vs. Time (GA) 
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6.1.2.2 Second stage optimization-Reactive Scheduling(GA): 

The preprocessing of data for second stage of optimization is similar as in section 
6.1.1.2 

6.1.2.2.1 Output of stage 2(GA): 

 Scenario-1: 

Table 6.12: Results of scenario 1 at stage 1(GA) 
Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 1 1 0 6 

1 2 6 1 5 14 

1 3 15 5 5 27 

2 1 17 2 5 8 

2 2 21 1 5 21 

2 3 28 3 4 28 

3 1 34 4 0 7 

3 2 37 2 1 11 

3 3 41 1 2 17 

3 4 49 4 1 30 

4 1 53 3 2 9 

4 2 59 4 1 29 

5 1 65 5 2 5 

5 2 67 2 3 11 

5 3 72 2 2 16 

Scenario-2: 

Table 6.13: Results of scenario 1 at stage 1(GA) 

Job 
No. 

Operation 
No. 

Decision 
variable 

no. 

Machine 
assigned 

Processing 
time 

(days) 

Completion 
time 

(days) 
1 1 4 4 0 7 

1 2 8 3 1 18 

1 3 14 4 1 23 

2 1 20 5 0 7 

2 2 23 3 7 18 

2 3 28 3 2 28 

3 1 32 2 5 10 

3 2 37 2 3 17 

3 3 42 2 1 22 

3 4 47 2 3 28 

4 1 52 2 0 6 

4 2 57 2 2 21 
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5 1 61 1 5 9 

5 2 69 4 7 22 

5 3 75 5 4 30 

 

Table 6.14: Objective function values (GA) 
Objective Scenario-1 Scnario-2 

Makespan 30 30 
Variability of completions times of 
the operations 

102 141 

Variability of the makespan 16 15 

The objective function plot and Gantt charts at different scenarios are shown below 

 

Figure 6.20: Objective versus Number of nodes at scenario 1of stage 2(GA) 

 

 

Figure 6.21: Objective versus Number of nodes at scenario 2of stage 2(GA) 
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Figure 6.22: Gantt chart at scenario 1 of stage 2-Machine vs. Time (GA) 
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Figure 6.23: Gantt chart at scenario 1 of stage 2-Job vs. Time (GA) 
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Figure 6.24: Gantt chart at scenario 2 of stage 2-Machine vs. Time (GA) 
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Figure 6.25: Gantt chart at scenario 2 of stage 2-Job vs. Time (GA) 
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Analyzing the two algorithm it can be concluded that Branch and Cut algorithm 

performs better in optimizing the schedule in both stages compared to Genetic 

Algorithm. One possible cause is the Branch and Cut algorithm search almost the 

entire solution space whereas Genetic Algorithm stops after achieving local optimal. 

But in case of problem with large number of instances Genetic Algorithm outperform 

the Branch and Cut method with respect to computation time (see appendix5 and 7). 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

This study addresses a two stage flexible Job Shop scheduling and rescheduling 

problems encompassing multiple objectives and multiple machines with machine 

eligibilities. The multiple objectives of the scheduling problem are makespan, stability 

and Robustness. This problem belongs to the NP-hard problem class, which has a 

very high complexity resulting in very high computation time as the problem sizes are 

increased. The study implements the GA to determine a near optimal sequence from a 

collection of n jobs scheduled on a bank of identical parallel machines with machine 

eligibilities to minimize makespan and to maximize the schedule robustness and 

stability simultaneously. The near optimal sequence generated by the GA is then used 

as the initial schedule or input for the rescheduling problem. Moreover the problem is 

also solved by using branch and cut algorithm. Due to the application of the cutting 

plane the computational time is significantly improved. The incorporation of the 

unpredicted arrival of new job and interactive interface for schedule generation makes 

this work more adaptable to the real application. Upon the arrival of new job, the 

schedule will be revised and a new schedule will be generated considering the 

objective to minimize the variability of completion time of each job and variability of 

makespan in two stages. Therefore the proposed model is robust, stable and effective 

for the real life application. 

7.2 Future Research 

There are some possible directions to which this research can be extended. In this 

thesis processing time data are deterministic under a scenario which reduces the 

computational effort and kept the model linear. Implementation of stochastic 

processing time can be done in future. Some objectives are not considered in this 

work like tardiness, critical machine workload etc. The work can be extended for the 

following objectives also. The problem is solved by MATLAB based solver which 

provides a built in framework for solving the problem. Improvement of algorithm like 

hybridization can be done to solve the in much less computational time then the 
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proposed methods. The machines in this problem are considered identical in terms of 

operation and speed. But in real scenario it may not be the case. Therefore partial 

flexible job shop problem can be developed. Moreover, no rescheduling penalty is 

considered in the model. Rescheduling may involve rerouting of jobs and new setups 

and fixtures. So the incorporation of rescheduling cost in the proposed model may be 

a possible future research. 
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Appendix 

Appendix 1: C++ Code for generating constraint equations 
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Appendix 2: MATLAB Code for Branch and Cut Algorithm 

 

 

 

 



Page | 111  
 

 

 

 

 

 



Page | 112  
 

 

 

 

 

 



Page | 113  
 

 

 

 

 

 



Page | 114  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 115  
 

Appendix 3: MATLAB Code for Genetic Algorithm 
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Appendix 4: Output of Branch and Cut Algorithm 
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Appendix 5: Computation time of Branch and Cut Algorithm 
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Appendix 6: Output of Genetic Algorithm 
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Appendix 7: Computation time of Genetic Algorithm 
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