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Abstract 
A steady two-dimensional laminar magnetohydrodynamic (MHD) natural convection 

flow of viscous incompressible fluid with temperature dependent viscosity and 

thermal conductivity along a uniformly heated vertical wavy surface has been 

investigated. The governing boundary layer equations with associated boundary 

conditions are converted to non-dimensional form using a suitable transformation. 

The resulting nonlinear system of partial differential equations are mapped into the 

domain of a vertical flat plate and then solved numerically employing the implicit 

finite difference method, known as the Keller-box scheme. Depending on different 

flow conditions the abstract of the work are as follows: 

Firstly, the effect of magnetohydrodynamic natural convection boundary layer flow 

along a vertical wavy surface with a temperature dependent viscosity (linear function 

and inversely proportional to linear function of temperature) has been analyzed. The 

results of the numerical solution are shown graphically in the form of skin friction 

coefficient, the rate of heat transfer, the velocity and temperature profiles, the 

streamlines and the isotherms over the whole boundary layer for different values of 

temperature dependent viscosity, magnetic parameter, the amplitude-to-length ratio 

of the wavy surface and Prandtl number. The skin friction coefficient and the rate of 

heat transfer are also displayed in tables showing the effects of viscosity, Prandtl 

number and the intensity of magnetic field.  

Secondly, the effect of temperature dependent thermal conductivity on 

magnetohydrodynamic natural convection flow of viscous incompressible fluid along 

a uniformly heated vertical wavy surface has been studied numerically. The effects 

of temperature dependent thermal conductivity, magnetic field, Prandtl number and 

the amplitude-to-length ratio of the wavy surface on the surface shear stress in terms 

of the skin friction coefficient Cfx, the rate of heat transfer in terms of Nusselt number 

Nux, the velocity and temperature profiles, the streamlines and the isotherms over the 

whole boundary layer are displayed graphically. Numerical results of the local skin 

friction coefficient and the rate of heat transfer for different values of thermal 

conductivity, Prandtl number and magnetic parameter have also been presented in 

tabular forms. 
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Thirdly, steady two-dimensional viscous incompressible fluid on 

magnetohydrodynamic free convection laminar flow with combined effects of 

temperature dependent viscosity and thermal conductivity of the fluid are taken to be 

proportional to a linear function of temperature along a uniformly heated vertical 

wavy surface have been considered. The numerical results of the surface shear stress 

in terms of skin friction coefficient Cfx and the rate of heat transfer in terms of local 

Nusselt number Nux, the stream lines and the isotherms have been presented 

graphically for a selection of parameters set consisting of temperature dependent 

viscosity, temperature dependent thermal conductivity, magnetic field, the 

amplitude-to-length ratio of the wavy surface and Prandtl number.  

Finally, the effect of Joule heating on MHD natural convection flow with viscosity 

and thermal conductivity variation owing to temperature along a uniformly heated 

vertical wavy surface has been studied. Here, the attention are focused on the surface 

shear stress in terms of the skin friction coefficient, the rate of heat transfer in terms 

of Nusselt number, the velocity, the temperature profiles, the streamlines and the 

isotherms for the effects of Joule heating, temperature dependent viscosity, 

temperature dependent thermal conductivity, the intensity of magnetic field, the 

amplitude-to-length ratio of the wavy surface and Prandtl number. In tabular form 

the numerical results of the local skin friction coefficient Cfx and the rate of heat 

transfer in terms of local Nusselt number Nux for different values of Joule heating 

parameter are also represented.  

Comparisons with previously reported investigations are performed and the results 

show excellent agreement. 
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2
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k Thermal conductivity of the fluid [Wm-1K-1] 

k∞ Thermal conductivity of the ambient fluid [Wm-1K-1] 

L Wavelength associated with the wavy surface [m] 

M Magnetic parameter [σ0
2
0β L2 / μ Gr 1/2] 
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n  Unit vector normal to the wavy surface [
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yx

ff

fjfi

+

+
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Nux  Local Nusselt number [- (∂ θ /∂ y)y = 0]  [-] 

P     Dimensional pressure of the fluid [Nm-2] 

P∞ Pressure of the ambient fluid [Nm-2] 

p     Dimensionless pressure of the fluid [-] 

Pr Prandtl number [μ CP / k]  

q  Velocity vector field [ms-1] 

qw Heat flux at the surface [ 0).( =∇− yTnk ] [Wm-2] 

T Temperature of the fluid in the boundary layer [0K or 0C] 
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Tw Temperature at the surface [0K or 0C] 

T∞ Temperature of the ambient fluid [0K or 0C] 

U, V Velocity component in X, Y direction [ms-1] 

u , v Dimensionless velocity components in x, y direction [-] 
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ff T
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∇ Vector differential operator [-] 

ε Viscosity variation parameter [ε =ε (T*
w - T∞)] 

/ε  Electric permeability of the medium [-] 

*ε  Viscosity gradient due to film temperature [
ff T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂μ

μ
1 ] 

η Dimensionless similarity variable [y x - 1/ 4] 

θ Dimensionless temperature function [θ(x, η)] [-] 

μ Dynamic coefficient of viscosity [kgm-1s-1] 

μ∞ Dynamic viscosity of the ambient fluid [kgm-1s-1] 

μe Magnetic permeability of the medium [-] 

ν Kinematic coefficient of viscosity [m2 s-1] 

ρ Density of the fluid [kgm-3] 

ρe  Charge density [kgm-3] 

σ0 Electrical conductivity of the fluid 

τw Shearing stress [ 0).( =∇ yUnμ ] 
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ψ Stream function [x3/ 4f(x, η)] [m2s-1] 

σx  Non dimensional surface profile function  

σ  Surface profile function 

 

Subscripts 
 

w  Wall conditions 

∞ Ambient conditions 

x Differentiation with respect to x 

 

Superscripts 
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CHAPTER 1 
Introduction 
The characteristics of natural convection flow of electrically conducting fluid in the 

presence of magnetic field along a wavy surface is important from the technical point 

of view and such type of problems have received much attention of many 

researchers. Natural convection occurs due to the variations in density, which is 

caused by the non-uniform distribution of temperature or/and concentration of a 

dissolved substance. The natural convection procedures are governed essentially by 

three features namely the body force, the temperature difference in the flow field and 

the fluid density variations with temperature. The manipulation of natural convection 

heat transfer can be deserted in the case of large Reynolds number and very small 

Grashof number. Alternately, the natural convection should be the governing aspect 

for large Grashof number and small Reynolds number. The analysis of natural 

convection has been considerable interest to engineers and scientists since it is 

important in many industrial and natural problems. There are many physical 

processes in which buoyancy forces resulting from thermal diffusion play an 

important role in the convective transfer of heat. Few examples of the heat transfer 

by natural convection can be found in geophysics and energy related engineering 

problems such as natural circulation in geothermal reservoirs, refrigerator coils, hot 

radiator used for heating a room, transmission lines, porous insulations, solar power 

collectors, spreading of pollutants etc. A very common industrial application of 

natural convection is free air cooling without the aid of fans, this can happen on 

small scales (computer chips) to large scale process equipment.  

It is necessary to study the heat transfer from an irregular surface. If the surface is 

roughened the flow is disturbed by the surface and this alters the rate of heat transfer. 

Irregular surfaces are often present in many applications. It is often encountered in 

heat transfer devices to enhance heat transfer. Laminar natural convection flow from 

irregular surfaces can be used for transferring heat in several heat transfer devices, 

for examples, flat-plate solar collectors, flat-plate condensers in refrigerators, heat 

exchanger, functional clothing design, geothermal reservoirs and other industrial 

applications. They are widely used in space heating, refrigeration, air conditioning, 
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power plants, chemical plants, petrochemical plants, petroleum refineries and natural 

gas processing. One common example of a heat exchanger is the radiator used in 

car/vehicles, in which the heat generated from engine transferred to air flowing 

through the radiator. Heat exchanger also widely used in industry both for cooling 

and heating large scale industrial processes. Another industrial application of wavy 

surface is injection molding system. Injection molding is used to create many things 

such as wire spools, packaging, bottle caps, automotive dashboards, pocket combs 

and plastic products available now a days. 

In heat transfer sinusoidal wavy surface can be shown approximately in practical 

geometries. A good example is a cooling fin. Since cooling fins have a larger area 

than a flat surface, they are better heat transfer devices. Another example is a 

machine-roughened surface for heat transfer enhancement. The interface between 

concurrent or countercurrent two-phase flow is another example remotely related to 

this problem. Such an interface is always wavy and momentum transfer across is by 

no means similar to that across a smooth, flat surface, and neither is the heat transfer. 

Also a wavy interface can have an important effect on the condensation process. 

The word magnetohydrodynamics (MHD) is derived from magneto- meaning 

magnetic field, hydro-meaning liquid and dynamics meaning–movement. 

Magnetohydrodynamics (MHD) is the branch of continuum mechanics, which deals 

with the flow of electrically conducting fluids in electric and magnetic fields. 

Probably the advance towards an understanding of such phenomena comes from the 

field of astrophysics and geophysics. It has long been assumed that most of the 

matter in the universe is in the plasma or highly ionized state and much of the basic 

knowledge in the area of electromagnetic fluid dynamics evolved from these studies. 

It has long been suspected that most of the matter in the universe is in the plasma or 

highly ionized gaseous state.  

The motion of the conducting fluid across the magnetic field induced electric 

currents which change the magnetic field and the action of the magnetic field on 

these currents give rise to mechanical forces, which modify the fluid. The interaction 

of the magnetic field and the moving electric charge carried by the flowing fluid 

induces a force, which tends to oppose the fluid motion and near the leading edge. 
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The velocity is very small, so that the magnetic force that is proportional to the 

magnitude of the longitudinal velocity and acts in the opposite direction is also very 

small. Consequently, the influence of the magnetic field on the boundary layer is 

exerted only through induced forces within the boundary layer itself without 

additional effects arising from the free stream pressure gradient. Thus there is a two-

way interaction between the flow field and the magnetic field, the magnetic field 

exerts force on the fluid by producing induced currents and induced currents change 

the original magnetic field.   

Many natural phenomena and engineering problems are susceptible to MHD 

analysis. It is useful in astrophysics. Geophysical encounter MHD phenomena in the 

interactions of conducting fluids and magnetic fields those are present in and around 

heavenly bodies. Engineers employ MHD principles in the design of heat exchanger, 

pumps and flow meters, in space vehicle propulsion, control and re-entry, in creating 

novel power generating systems and developing confinement schemes for controlled 

fusion. The most important application of MHD are in the generation of electrical 

power with the flow of an electrically conducting fluid through a transverse magnetic 

field, electromagnetic pump, the MHD generator using ionized gas as an armature, 

electromagnetic pumping of liquid metal coolants in nuclear reactors. Other potential 

applications for MHD include electromagnets with fluid conductors, various energy 

conversion or storage devices and magnetically controlled lubrication by conducting 

fluids etc. 

As a branch of plasma physics, the field of magnetohydrodynamics consists of the 

study of a continuous electrically conducting under the influence of electromagnetic 

fields. A related application is the use of MHD acceleration to shoot plasma into 

fusion devices or to produce high-energy wind tunnels for simulating hypersonic 

flight. Originally, MHD included only the study of strictly incompressible fluid, but 

today the terminology is applied to studies of partially ionized gases as well. 

Most of the liquids and gases are poor conductors of electricity. In the case when the 

conductor is either a liquid or gas, electromagnetic forces will be generated which 

may be of the same order of magnitude as the hydrodynamical and inertial forces. 
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Thus the equation of motion as well as the other forces will have to take these 

electromagnetic forces into account. 

Joule heating is the heating effect of conductors carrying currents. Joule heating 

occurs when an electrical current is passed through a material and material’s 

resistivity to the current cause’s heat generation. When current flows in an electrical 

conductor such as wire, electrical energy is lost due to the resistance of the electrical 

conductor. This lost electrical energy is converted into thermal energy called Joule 

heating. One common example of Joule heating is light which electrical energy 

converts to thermal energy. 

Joule heating is caused by interactions between the moving particles that form the 

current (usually, but not always, electrons) and the atomic ions that make up the 

body of the conductor. Joule heating is also referred to as Ohmic heating or Resistive 

heating because of its relationship to Ohm’s law. 

It was first studied by James Prescott Joule in 1841. It is the process by which the 

passage of an electric current through a conductor releases heat. Joule’s first law is 

also known as Joule effect. It states that heat generated by a constant current through 

a resistive conductor for a time whose unit is joule. It is also related to Ohm’s first 

law. The SI unit of energy was subsequently named the Joule and given the symbol 

J. The commonly known unit of power, the watt, is equivalent to one joule per 

second. 

Physical properties like viscosity and thermal conductivity may be changed 

significantly with temperature. The viscosity of liquids decreases and the viscosity of 

gases increases with temperature. The viscosity of air is 1.3289 kg m-1s-1, 2.671 kg 

m-1s-1 and 3.625 kg m-1s-1 at 1000C, 500 0C and 8000C temperature respectively. The 

viscosity of water is 1006.523 kg m-1s-1, 471.049 kg m-1s-1, 282.425 kg m-1s-1 and 

138.681 kg m-1s-1 at 200C, 600C, 1000C and 2000C temperature respectively (see 

Cebeci and Bradshow (1984)). For a liquid, it has been found that the thermal 

conductivity k varies with temperature in an approximately linear manner in the 

range from 0 to 4000F (see Kays (1966)). To predict accurately the flow behavior, it 

is necessary to take into account viscosity and thermal conductivity.  
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A scalar function whose contour lines define the streamlines is known as the stream 

function. The stream function ψ is constant along a streamline. 

Fluids, which obey Newton’s law of viscosity, are called as Newtonian fluids. 

Common fluids like water, air, and mercury are all Newtonian fluids. Fluids, which 

do not obey Newton’s law of viscosity, are called as non-Newtonian fluids. For such 

fluids the shear stress is not proportional to the velocity gradient. Fluids like blood, 

Paints, coal tar, liquid plastics and polymer solution are all non-Newtonian fluids.  

Taking the x-axis to be horizontal and the y-axis to be vertically upwards, a motion in 

which the equation of the vertical section of the free surface is of the form y = 

αsinnx. When α = 0, the profile is y = 0 which is the mean level. The maximum 

value of y, namely α, is known as the amplitude-to-length ratio of the wave. The 

elevation is known as crest. The distance between two consecutive crests is known as 

the wavelength and is denoted by L = 2π/n, where n is the wave number.  

1.1 Literature review  
Natural convection heat transfer has gained considerable attention because of its 

numerous applications in the areas of energy conservations, cooling of electrical and 

electronic components, design of solar collectors, heat exchangers and many others. 

The most important application of MHD is in the generation of electrical power with 

the flow of an electrically conducting fluid through a transverse magnetic field. In 

case of natural convection flows, now a days, MHD analysis is playing a vital role. 

Sparrow and Cess (1961) investigated the effect of magnetic field on free convection 

heat transfer. Kuiken (1970) investigated MHD free convection in a strong cross 

field. Gebhart and Pera (1971) investigated the nature of vertical natural convection 

flows resulting from the combined buoyancy effects of thermal and mass diffusion. 

They indicated that buoyancy effects from concentration gradients could be as 

important as those from temperature gradients. There are applications of interest in 

which combined heat and mass transfer by natural convection, such as design of 

chemical processing equipment, design of heat exchangers, formation and dispersion 

of fog, distributions of temperature and moisture over agricultural fields, pollution of 

the environments and thermoprotection systems. Wilks (1976) presented MHD free 

convection about a semi-infinite vertical plate in a strong cross field. Ingham (1978) 
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investigated free convection boundary layer on an isothermal horizontal cylinder. 

Raptis and Kafoussius (1982) analyzed MHD free convection flow and mass transfer 

through a porous medium bounded by an infinite vertical porous plate with constant 

heat flux. Pozzi and Lupo (1988) explored the coupling of conduction with laminar 

convection along a flat plate. By means of two expansions, the entire thermo-fluid 

dynamic field was studied. The first one, describing the field in the lower part of the 

plate, was a regular series. The radius of convergence of which was determined by 

means of approximant techniques. The second expansion, an asymptotic one required 

a different analysis because of the presence of eigensolutions. Hossain and Ahmed 

(1990) considered MHD forced and free convection boundary layer flow near the 

leading edge. Hossain (1992) analyzed the viscous and Joule heating effects on MHD 

free convection flow with variable plate temperature and found that temperature 

varied linearly with the distance from the leading edge in presence of uniformly 

transverse magnetic field. The equations governing the flow were solved and the 

numerical solutions were obtained for small Prandtl numbers, appropriate for coolant 

liquid metal, in the presence of a large magnetic field. Hossain et al. (1997) 

considered MHD forced and free convection boundary layer flow along a vertical 

porous plate. Hossain et al. (1998) studied heat transfer response of MHD free 

convection flow along a vertical plate to surface temperature oscillation. Al-Nimr 

and Hader (1999) studied MHD free convection flow in open-ended vertical porous 

channels. Chowdhury and Islam (2000) presented MHD free convection flow of 

visco-elastic fluid past an infinite porous plate. The conjugate conduction-natural 

convection heat transfer along a thin vertical plate with non-uniform internal heat 

generation presented by Mendez and Trevino (2000). El-Amin (2003) analyzed 

combined effect of viscous dissipation and Joule heating on MHD forced convection 

over a non isothermal horizontal cylinder embedded in a fluid saturated porous 

medium. Ahmed and Zaidi (2004) presented magnetic effect on overback convection 

through vertical stratum. Molla et al. (2006) also investigated MHD natural 

convection flow on a sphere with uniform heat flux in presence of heat generation. 

Viscous dissipation effects on MHD natural convection flow over a sphere in the 

presence of heat generation have been investigated by Alam et al. (2007). Alim et al. 

(2007) investigated Joule heating effect on the coupling of conduction with MHD 

 6



Chapter 1: Introduction  

free convection flow from a vertical flat plate. Combined effects of viscous 

dissipation and Joule heating on the coupling of conduction and free convection 

along a vertical flat plate have also studied by Alim et al. (2008). Entropy generation 

during fluid flow in a channel under the effect of transverse magnetic field presented 

by Damseh et al. (2008). Mamun et al. (2007) studied combined effect of conduction 

and viscous dissipation on MHD free convection flow along a vertical flat plate. 

Parveen and Chowdhury (2009) considered stability analysis of the laminar boundary 

layer flow. 

1.1.1 Temperature dependent physical properties  
The viscosity and thermal conductivity of the fluid to be proportional to a linear 

function of temperature two semi-empirical formulae were proposed by Charraudeau 

(1975). Arunachalam and Rajappa (1978) studied thermal boundary layer in liquid 

metals with variable thermal conductivity. Gray et al. (1982) studied the effect of 

significant viscosity variation on convective heat transfer in water–saturated porous 

media. Transient free convection flow with temperature dependent viscosity in a 

fluid saturated porous media has shown by Mehta and Sood (1992). As per their 

investigation the flow characteristics substantially change when the effect of 

temperature dependent viscosity considered. Mehta and Sood (1993) extended their 

works by considering effect of temperature dependent viscosity on the free 

convective flow across an impermeable partition. The effect of temperature 

dependent viscosity on the free convective laminar boundary layer flow past a 

vertical isothermal flat plate in the region near the leading edge have been studied by 

Kafoussius and Williams (1995). Kafoussius and Rees (1995) also studied numerical 

study of the combined free and forced convective laminar boundary layer flow past a 

vertical isothermal flat plate with temperature dependent viscosity. Hady, Bakier and 

Gorla (1996) studied mixed convection boundary layer flow on a continuous flat 

plate with variable viscosity. Chaim (1998) investigated heat transfer in a fluid with 

variable thermal conductivity over a linearly stretching sheet. Elbashbeshy (2000) 

analyzed the free convection flow along a vertical plate, taking into account the 

variation of the viscosity and thermal diffusivity with temperature in the presence of 

the magnetic field. Hossain et al. (2000) investigated the natural convection flow past 

a permeable wedge with uniform surface heat flux for the fluid having temperature 
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dependent viscosity and thermal conductivity. They considered the various 

configurations of wedge from Blasius flow to Hiemenz flow. They obtained three 

distinct methodologies; namely, the perturbation method for small values of the 

transpiration parameter ξ, the asymptotic solutions for large values ξ and an implicit 

finite difference method for all values of ξ for solved the equations. They concluded 

that the dimensionless dynamic viscosity as well as the thermal conductivity of the 

fluid approach unity at the outer edge of the boundary layer for values of all the 

pertinent parameters, which was trivial. Hossain and Munir (2000) presented mixed 

convection flow from a vertical flat plate with temperature dependent viscosity. 

Unsteady flow of viscous incompressible fluid with temperature dependent viscosity 

due to a rotating disc in presence of transverse magnetic field and heat transfer 

studied by Hossain and Wilson (2001). Hossain and Munir (2001) have studied 

numerically natural convection flow of a viscous fluid about a truncated cone with 

temperature dependent viscosity and thermal conductivity. They used the 

perturbation method to obtain the solution in the regimes near and far away from the 

point of truncation. They also used the implicit finite difference method for solving 

the governing equations numerically. They compared the perturbation solutions with 

the finite difference solutions and found to be in excellent agreement. Hossain et al. 

(2001) investigated the effect of radiation on the free convection flow of fluid with 

variable viscosity from a porous vertical plate. Munir et al. (2001) studied natural 

convection of a viscous fluid with viscosity inversely proportional to linear function 

of temperature from a vertical wavy cone. They considered the boundary-layer 

regime when the Grashof number was very large and assumed that the wavy surfaces 

have O(1) amplitude and wavelength. They also considered the buoyancy forces 

assist the flow for various values of the viscosity variation parameter ε, with the 

Prandtl number Pr = 0.7 and 7.0 which are appropriate for air and water respectively. 

They found the difference between the flow and heat transfer characteristics over a 

flat cone and a wavy one, respectively. For a wavy cone the isotherms showed a 

sinusoidal behavior, while for a flat cone these are parallel lines. Considering natural 

convection with variable viscosity and thermal conductivity from a vertical wavy 

cone Munir et al. (2001) extended their works using the Kellar box method. The 

problem of natural convection of fluid with temperature dependent viscosity from a 
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heated vertical wavy surface have been studied by Hossain et al. (2002).  Mamun et 

al. (2005) investigated natural convection flow from an isothermal sphere with 

temperature dependent thermal conductivity. Molla et al. (2005) considered natural 

convection flow from an isothermal horizontal circular cylinder with temperature 

dependent viscosity. They considered the effects of viscosity variation parameter ε 

and Prandtl number Pr on the velocity and viscosity distribution of the fluid as well 

as on the local rate of heat transfer in terms of the local Nusselt number Nu and the 

local skin-friction for fluids having Prandtl number, Pr ranging from 1.0 to 30.0. 

They concluded that the assumption of the constant fluid properties might introduce 

severe errors in the prediction of surface friction factor and heat transfer rate. 

Rahman et al. (2008) investigated the effects of temperature dependent thermal 

conductivity on MHD free convection flow along a vertical flat plate with heat 

conduction. The numerical calculation was proceeding in finite-difference method 

and the velocity, temperature, local skin friction co-efficient and surface temperature 

profiles were shown by the effect of various parameters. Rahman and Alim (2009) 

considered numerical study of magnetohydrodynamic free convective heat transfer 

flow along a vertical plate with temperature dependent thermal conductivity. Nasrin 

and Alim (2009) investigated MHD free convection flow along a vertical flat plate 

with thermal conductivity and viscosity depending on temperature. Numerical study 

on a vertical plate with variable viscosity and thermal conductivity has been 

investigated by Palani and Kim (2009). They assumed that the viscosity of the fluid 

is an exponential function and the thermal conductivity is a linear function of the 

temperature. They considered the unsteady boundary layer equations. They observed 

that neglecting the viscosity and thermal conductivity variation found substantial 

errors and concluded that considered the effects of the variation viscosity and 

thermal conductivity to predict more accurate results. 

1.1.2 Flow on wavy surfaces 
Natural convection from wavy surfaces can be used for transferring heat in several 

heat transfer devices, such as flat-plate solar collectors and flat-plate condensers in 

refrigerators. Surfaces are sometimes intentionally roughened to enhance heat 

transfer. Yao (1983) first investigated the natural convection heat transfer from an 

isothermal vertical wavy surface and used an extended Prantdl’s transposition 
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theorem and a finite-difference scheme. He proposed a simple transformation to 

study the natural convection heat transfer for an isothermal vertical sinusoidal 

surface. These simple coordinate transformations method to change the wavy surface 

into a flat plate. The advantage of this transformation is that the form of the boundary 

layer equations remains invariant and the surface conditions can therefore, be applied 

on a transformed flat surface. Although the transformation itself is quite simple, it 

can handle very complex geometries. Yao (1988) also considered Prantdl’s 

transposition theorem. Saidi et al. (1987) presented numerical and experimental 

results of flow over and heat transfer from a sinusoidal cavity. They reported that the 

total heat exchange between the wavy wall of the cavity and flowing fluid was 

reduced by the presence of vortex. Vortex plays the role of a thermal screen, which 

creates a large region of uniform temperature in the bottom of the cavity. Moulic and 

Yao (1989) investigated mixed convection along wavy surface and they showed that 

the force convection component of the heat transfer contains two harmonics. The 

amplitude of the first harmonic is proportional to the amplitude of the wavy surface 

and the natural convection component is a second harmonic, with a frequency twice 

that of the wavy surface. Moulic and Yao (1989) also investigated natural convection 

along a wavy surface with uniform heat flux. Bhavnani and Bergles (1991) 

investigated natural convection heat transfer from sinusoidal wavy surfaces. Chiu 

and Chou (1993) considered free convection in the boundary layer flow of a 

micropolar fluid along a vertical wavy surface. Chiu and Chou (1994) extended their 

works by considering transient analysis of natural convection along a vertical wavy 

surface in micropolar fluids. They found that the frequency of the local heat transfer 

rate and the skin friction on the wall are twice that of the wavy surface irrespective of 

whether the fluid is a Newtonian fluid or micropolar fluid. A note on free convection 

along a vertical wavy surface in a porous medium has investigated by Rees and Pop 

(1994). Rees and Pop (1994) also investigated free convection induced by a 

horizontal wavy surface in a porous medium. Rees and Pop (1995) considered the 

natural convection boundary layer induced by vertical wavy surface in a porous 

medium. They found that wavy surface exhibiting small amplitude waves embedded 

in a porous medium. In this research, they assumed that when the Rayleigh number is 

high, the amplitude of a wave has a close order with a wavelength. Hossain and Pop 
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(1996) investigated MHD boundary layer flow and heat transfer on a continuous 

moving wavy surface. Pop et al. (1996) studied laminar boundary layer flow of 

power-law fluids over wavy surfaces. They found that the skin-friction coefficient 

decreases with the power-law index increased. Furthermore, the rise and fall of the 

skin-friction coefficient was shown to follow the change of the surface contour. Yang 

et al. (1996) presented natural convection of non-Newtonian fluids along a wavy 

vertical plate including the magnetic field effect. Alam et al. (1997) have also studied 

the problem of free convection from a wavy vertical surface in presence of a 

transverse magnetic field using Keller box method. They used a sinusoidal surface to 

elucidate the effects of magnetic field and the amplitude of the wavy surface on the 

velocity and temperature fields as well as on the local rate of heat transfer. They 

found that the effect of the magnetic parameter was to decrease the velocity profiles 

and to increase the temperature profiles and the amplitude of the sinusoidal surface 

results in decreasing the heat transfer rate. Kim (1997) studied natural convection 

along a wavy vertical plate to non-Newtonian fluids. Kumari et al. (1997) analyzed 

free-convection boundary-layer flow of a non-Newtonian fluid along a vertical wavy 

surface. Murthy et al. (1997) studied natural convection heat transfer from a 

horizontal wavy surface in a porous enclosure. Kumar et al. (1998) investigated free 

convection heat transfer from an isothermal wavy surface in a porous enclosure. 

They performed a series of studies about the natural convection heat transfer in 

porous enclosures. They found that the effects of the phase of the wavy surface on 

the flow and temperature fields are important. Hadjadj and Kyal (1999) numerically 

investigated the effect of sinusoidal protuberances on heat transfer and fluid flow 

inside an annular space using a non-orthogonal coordinate transformation. They 

reported that both local and average heat transfer increase with the increase of 

protuberances amplitude and Grashof number and decreasing Prandtl number. The 

combined effects of thermal and mass diffusion on the natural convection flow of a 

viscous incompressible fluid along a vertical wavy surface has been investigated by 

Hossain and Rees (1999). The effects of waviness of the surface on the heat and 

mass flux distributions in combination with the species concentration for a fluid 

having Prandtl number equal to 0.7 have been studied in that paper. Kumar (2000) 

presented parametric results of flow and thermal field inside a vertical wavy 
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enclosure with porous media. He concluded that the surface temperature was very 

sensitive to the drifts in the surface undulations, phase of the wavy surface and 

number of the wave. Rahman (2000) analyzed natural convection along vertical 

wavy surfaces. Chen and Wang (2000) considered transient analysis of force 

convection along a wavy surface in micropolar fluids. Cheng (2000) investigated 

natural convection heat and mass transfer near a vertical wavy surface with constant 

wall temperature and concentration in a porous medium. He found the effects of the 

buoyancy ratio, the Lewis number and the dimensionless amplitude of wavy surface 

on the local Sherwood number and the local Nusselt number. He showed the 

amplitudes of the local Nusselt number and the local Sherwood number increases 

with the amplitude wavelength ratio of the wavy surface. Cheng (2000) also 

investigated natural convection heat and mass transfer near a wavy cone with 

constant wall temperature and concentration in a porous medium. Cheng (2006) 

extended his works by considering the effect of temperature dependent viscosity on 

natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross 

section. Mahmud et al. (2001) presented numerical prediction of fluid flow and heat 

transfer in a wavy pipe. Mahmud et al. (2002) presented the flow and heat transfer 

characteristics inside a vertical wavy walled enclosure. They also reported that the 

decrease of average heat transfer with the increase of surface waviness. Wang and 

Chen (2001) numerically studied transient force and free convection along a vertical 

wavy surface in micropolar fluid. Wang and Chen (2002) extended their works by 

considering forced convection in a wavy wall channel. Jang et al. (2003) has studied 

numerically on natural convection heat and mass transfer along a vertical wavy 

surface with Newtonian fluids. However, this study only pertains to steady flow. 

They showed the effects of amplitude–wavelength ratio, buoyancy ratio and Schmidt 

number on momentum and heat and mass transfer. Jang and Yan (2004a) presented 

mixed convection heat and mass transfer along a vertical wavy surface. They 

examined numerically the mixed convection heat and mass transfer along a vertical 

wavy surface by using Prandtl’s transposition theorem and investigated the effect of 

irregular surfaces on the characteristics of mixed convection heat and mass transfer. 

They have shown that the influence of Richardson number, the buoyancy ratio and 

the wavy amplitude–wavelength ratio on the local Nusselt number and Sherwood 
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number including local skin-friction coefficient. They concluded that the properties 

of the flow field for the wavy surface show a periodical variation and the amplitude 

of variation decrease gradually downstream. Jang and Yan (2004b) also analyzed the 

transient natural convection heat and mass transfer in Newtonian fluid flow along a 

vertical wavy surface numerically by using Prandtl’s transposition theorem. They 

found that the flow field takes more time to reach steady condition for a higher 

amplitude-wavelength ratio a, small buoyancy ratio and large Schmidt number. 

Kumar and Shalini (2004) considered Non-Darcy free convection induced by a 

vertical wavy surface in a thermally stratified porous medium. In this study they 

found that natural convection heat transfer in a thermally stratified fluid saturated 

porous medium with the effects of wave phase. Molla et al. (2004) investigated 

natural convection flow along a vertical wavy surface with uniform surface 

temperature in presence of heat generation/absorption. They found the effect of 

varying the heat generation/absorption on the heat transfer rate in terms of local 

Nusselt number as well as on the streamlines and isotherm patterns for very small 

Prandtl number Pr ranging from 0.001 to 1.0. They concluded that the velocity and 

temperature distributions for the case of heat generation higher than that of the heat 

absorption case. Tashtoush and Al-Odat (2004) presented magnetic field effect on 

heat and fluid flow over a wavy surface with a variable heat flux. Yao (2006) also 

studied numerically natural convection flow along a vertical complex wavy surface. 

He showed that the enhanced total heat transfer rate seems to depend on the ratio of 

amplitude and wavelength of a surface. Ahmed (2008) investigated MHD free 

convection flow along a heated vertical wavy surface with heat generation. Parveen 

and Alim (2010a) investigated natural convection of fluid with variable thermal 

conductivity along a uniformly heated vertical wavy surface. Parveen and Alim 

(2010b) considered effect of temperature dependent viscosity inversely proportional 

to linear function of temperature on magnetohydrodynamic natural convection flow 

along a vertical wavy surface. Very recently, Parveen and Alim (2011a) analyzed 

Joule heating effect on Magnetohydrodynamic natural convection flow of fluid with 

temperature dependent viscosity inversely proportional to linear function of 

temperature along a vertical wavy surface. Parveen and Alim (2011b) studied effect 

of temperature dependent thermal conductivity on magnetohydrodynamic natural 
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convection flow along a vertical wavy surface. Parveen and Alim (2011c) also 

studied effect of temperature dependent variable viscosity on magnetohydrodynamic 

natural convection flow along a vertical wavy surface. At the same time Parveen and 

Alim (2011d) considered Joule heating effect on MHD natural convection flow along 

a vertical wavy surface with viscosity dependent on temperature.  

From the above investigations it is found that variation of viscosity and thermal 

conductivity with temperature of magnetic field is an interesting macroscopic 

physical phenomenon in fluid dynamics. Main objective of the present study is 

detailed investigation of the effect of temperature dependent physical properties like 

viscosity and thermal conductivity on magnetohydrodynamic natural convection 

flow along a vertical wavy surface. 

1.2 Importance of the present study 
Laminar natural convection boundary layer flow and heat transfer problem from a 

vertical wavy surface get a great deal of attention in various branches of engineering. 

Free convection boundary layer flow of an electrically conducting fluid in the 

presence of magnetic field and Joule heating are very important because of their 

applications in nuclear engineering in connection with the cooling of reactors. The 

heat transfer rate can be controlled using a magnetic field. One of the ways of 

studying magnetohydrodynamic heat transfer field is the electromagnetic field, 

which is used to control the heat transfer as in the convection flows and aerodynamic 

heating. The prediction of heat transfer from irregular surfaces is a topic of 

fundamental importance for some heat transfer devices, such as, flat plate solar 

collectors, flat plate condensers in refrigerators, double-wall thermal insulation, 

underground cable systems, electric machinery, cooling system of micro-electronic 

devices, natural circulation in the atmosphere, geophysical applications e.g. flows in 

the earth’s crust etc. In case of wavy surface, more heat transfer area is available 

compared to plane surface. That is why heat transfer increases in case of wavy 

surface.  However, it is necessary to take into account the variation of viscosity and 

thermal conductivity to obtain a better estimation of the flow and heat transfer 

behavior, because these properties must have a significant change with temperature. 
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1.3 Objectives of the present study 
The objective of this study is to numerically investigate the effects of temperature 

dependent physical properties like viscosity and thermal conductivity on 

magnetohydrodynamic natural convection flow of viscous incompressible fluid along 

a uniformly heated vertical wavy surface. The stream is assumed to flow in the 

upward vertical direction. Here the surface temperature Tw is higher than the ambient 

temperature T∞. Using the appropriate transformations, the basic boundary layer 

equations are reduced to non-linear partial differential forms. The transformed 

boundary layer equations are solved numerically using the implicit finite difference 

method known as the Keller box scheme. Solutions are obtained and analyzed for the 

surface shear stress in terms of the local skin friction coefficient, the rate of heat 

transfer in terms of local Nusselt number, the velocity and temperature profiles, the 

streamlines and isotherms patterns over the whole boundary layer for a set of 

parameters namely viscosity parameter, thermal conductivity parameter, magnetic 

parameter, the amplitude-to-length ratio of the wavy surface, Prandtl number and 

Joule heating parameter. Numerical results of the local skin friction coefficient and 

the rate of heat transfer for different values are presented in tabular form. 

The major objectives of this study are: 

 To develop a suitable mathematical model and the corresponding numerical 

scheme for the solution of magnetohydrodynamic natural convection flow 

heat transfer problem. 

 To assess the effect of heat transfer from a heated vertical wavy surface to the 

surrounding fluid. 

 To investigate the local skin friction and the local rate of heat transfer from 

the wavy surface in presence of a magnetic field and temperature dependent 

physical properties like, viscosity and thermal conductivity.  

 To study the effects of the strength of magnetic field, Joule heating, the 

amplitude-to-length ratio of the wavy surface, viscosity, thermal conductivity 

and Prandtl number on the velocity and temperature. 
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 To investigate the effects of the viscosity, thermal conductivity, the magnetic 

field, the amplitude-to-length ratio of the wavy surface, Joule heating and 

Prandtl number on the streamlines and isotherms. 

 To compare the results of the present investigation with similar available 

works in the literature.  

1.4 Outline of the thesis  
In chapter 1, a brief introduction is presented with aim and objective. This chapter 

also consists a literature review of the past studies regarding free convection, MHD 

and Joule heating on fluid flow, temperature dependent physical properties like 

viscosity and thermal conductivity and heat transfer in various irregular surfaces. 

The basic governing equations for MHD heat transfer flow are shown in standard 

vector form and mathematical modeling of the problem for various cases are 

discussed in chapter 2. The numerical procedures for solving nonlinear 

dimensionless governing equations are also presented in this chapter. 

In chapter 3, MHD natural convection boundary layer flow of viscous 

incompressible fluid along a vertical wavy surface maintained at a uniform surface 

temperature immersed in a fluid with a temperature dependent viscosity (linear 

function and inversely proportional to linear function of temperature) has been 

considered. The skin friction coefficient Cfx, the rate of heat transfer in terms of 

Nusselt number Nux, the velocity and temperature profiles as well as the streamlines 

and the isotherms have been exhibited graphically for temperature dependent 

viscosity, the intensity of magnetic field, the amplitude-to-length ratio of the wavy 

surface and for fluids having large Prandtl number Pr ranging from 0.73 to 100. Also 

in tabular form numerical results of the local skin friction coefficient and the rate of 

heat transfer for different values of viscosity parameter ε, magnetic parameter M and 

Prandtl number Pr have been represented whose are depicted in Appendix.  The 

effect of viscosity is vary small when it is inversely proportional to linear function of 

temperature that has been shown in this chapter. 

In chapter 4, the effect of temperature dependent thermal conductivity on MHD 

natural convection flow of viscous incompressible fluid along a uniformly heated 

vertical wavy surface has been described. The numerical results of the surface shear 
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stress in terms of skin friction coefficient Cfx and the rate of heat transfer in terms of 

local Nusselt number Nux, the velocity and temperature profiles, the stream lines and 

the isotherms have been presented graphically for a selection of parameters set 

consisting of temperature dependent thermal conductivity, magnetic field, Prandtl 

number Pr ranging from 0.73 to 13.5 and the amplitude-to-length ratio of the wavy 

surface. Some numerical results of the local skin friction coefficient and the rate of 

heat transfer for different values of thermal conductivity parameter, Prandtl number 

Pr and the intensity of magnetic field have also been presented in tabular form as 

well. 

In chapter 5, we studied a steady two-dimensional viscous incompressible fluid on 

MHD free convection laminar flow with combined effects of temperature dependent 

viscosity and thermal conductivity of the fluid are taken to be proportional to a linear 

function of temperature along a uniformly heated vertical wavy surface. The effects 

of the temperature dependent viscosity, temperature dependent thermal conductivity, 

the intensity of magnetic field, the amplitude-to-length ratio of the wavy surface and 

Prandtl number Pr on the surface shear stress in terms of the skin friction coefficient 

Cfx, the rate of heat transfer in terms of Nusselt number Nux, the streamlines and the 

isotherms over the whole boundary layer are shown graphically.  

In chapter 6, the effect of magnetic field and Joule heating natural convection flow 

with viscosity and thermal conductivity variation owing to temperature along a 

uniformly heated vertical wavy surface has been analyzed. Numerical results of the 

surface shear stress in terms of the skin friction coefficient Cfx, the rate of heat 

transfer in terms of Nusselt number Nux, the velocity and temperature profiles as well 

as the streamlines and the isotherms for Joule heating, temperature dependent 

viscosity, temperature dependent thermal conductivity, the intensity of magnetic 

field, the amplitude-to-length ratio of the wavy surface α and Prandtl number Pr 

ranging from 0.73 to 9.45 have been presented graphically. Numerical results of the 

local skin friction coefficient Cfx and the rate of heat transfer Nux for different values 

of Joule heating parameter are also presented in tabular form.  

In chapter 7, the comparisons of the numerical results of the skin friction coefficient, 

the rate of heat transfer, the velocity and temperature as well as the streamlines and 
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the isotherms for the effects of temperature dependent viscosity, temperature 

dependent thermal conductivity, the intensity of magnetic field, Prandtl number and 

Joule heating are presented graphically and also in tabular form. The comparisons of 

the present numerical results of the skin friction coefficient, the rate of heat transfer, 

the velocity and temperature in tabular form and graphically with those obtaintd by 

Hossain et al. (2002) and Alam et al. (1997) are also presented.  

The above problems have been solved numerically by employing the implicit finite 

difference method, known as the Keller-box scheme Keller (1978).  

A summary of major outcome and some ideas of further work are expressed in 

chapter 8. Tables related to chapters 3, 4 and 6 are displayed in Appendix. 
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CHAPTER 2 
Mathematical modeling of the problem 
2.1 Governing equations  
Magnetohydrodynamic equations are the ordinary electromagnetic and 

hydrodynamic equations modified to take account of the interaction between the 

motion of the fluid and electromagnetic field. Formulation of electromagnetic theory 

in mathematical form is known as Maxwell’s equations. Maxwell’s basic equations 

show the relation of basic field quantities and their production. But it is assumed that 

all velocities are small in comparison with the speed of light. Before writing down 

the MHD equations it is essential to know about the ordinary electromagnetic 

equations and hydromagnetic equations, which are as follows (see Cramer and Pai 

(1974)). 

Charge Continuity:  eD ρ=∇.  (2.1) 

Current Continuity:  
t

J e

∂
∂

−=∇
ρ

.  (2.2) 

Magnetic field continuity: 0. =∇ B   (2.3) 

Ampere’s Law:  ∇∧ β0 = 
t
DJ
∂
∂

+  (2.4) 

Faraday’s Law:  ∇ ∧ E  = -
t
B
∂
∂  (2.5) 

Constitutive equations for D and B: ED /ε=  and B  = 0βμe  (2.6) 

Total current density flow: ( ) qBqEJ eρσ +∧+= 0  (2.7) 

The above equations (2.1) to (2.7) are Maxwell’s equations where  is the electron 

displacement, ρ

D

e is the charge density, E  is the electric field, B  is the magnetic 

field, β0 is the magnetic field strength, J  is the current density, tD ∂∂  is the 

displacement current density,  is the electric permeability of the medium, μ/ε e is the 
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magnetic permeability of the medium, q  is the vector field and σ0 is the electric 

conductivity. 

The electromagnetic equations as shown above are not usually applied in their 

present form and require interpretation and several assumptions to provide the set to 

be used in MHD. In MHD a fluid is considered that is grossly neutral. The charge 

density ρe in Maxwell’s equations must then be interpreted, as an excess charge 

density, which is generally not large. If it is disregard the excess charge density then 

it must disregard the displacement current. In most problems the displacement 

current, the excess charge density and the current due to convection of the excess 

charge are small. Taking into this effect the electromagnetic equations can be 

reduced to the following form: 

0. =∇ D  (2.8) 

=∇ J. 0 (2.9) 

0. =∇ B  (2.10) 

∇∧ β0 = J  (2.11) 

∇ ∧ E  = -
t
B
∂
∂  (2.12) 

ED /ε=  and  B  = 0βμe   (2.13) 

( )BqEJ ∧+= 0σ  (2.14) 

Below we shall now suitably represent the equations of fluid dynamics to take 

account of the electromagnetic phenomena.  

The continuity equation  
The MHD continuity equation for viscous incompressible electrically conducting 

fluid remains same as that of usual continuity equation 

0=⋅∇ q   (2.15) 
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The Navier-Stokes equation 
The motion of the conducting fluid across the magnetic field generates electric 

currents, which change the magnetic field and the action of the magnetic field on 

these current give rises to mechanical forces, which modify the flow of the fluid. 

Thus, the fundamental equation of the magneto-fluid combines the equations of the 

motion from fluid mechanics with Maxwell’s equations from electrodynamics. 

Then the Navier-stokes equation for a viscous incompressible fluid may be written in 

the following form: 

( ) BJFqPqq ×++∇+−∇=∇⋅ 2μρ   (2.16) 

Where ρ is the fluid density, μ is the viscosity and P is the pressure. The first term on 

the right hand side of equation (2.16) is the pressure gradient, second term is the 

viscosity, third term is the body force per unit volume and last term is the 

electromagnetic force due to motion of the fluid. 

The energy equation 
The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This 

equation can be written as  

( ) ( ) ( )UqJTkTqCP ×+∇⋅∇=∇⋅ρ   (2.17) 

Where, k is the thermal conductivity, CP is the specific heat with constant pressure. 

The left side of equation (2.17) represents the net energy transfer due to mass 

transfer, the first term on the right hand side represents conductive heat transfer and 

second term is Joule heating term due to the resistance of the fluid to the flow of 

current.  

Where ( VUq ,= ) , U and V are the velocity components along the X and Y axes 

respectively, F  is the body force per unit volume which is defined as -ρg, the terms 

J  and B  are respectively the current density and magnetic induction vector and the 

term  is the force on the fluid per unit volume produced by the interaction of the 

current and magnetic field in the absence of excess charges, T is the temperature of 

the fluid in the boundary layer , g is the acceleration due to gravity, k is the thermal 

BJ×
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conductivity and CP is the specific heat at constant pressure and μ is the viscosity of 

the fluid.  

Here 0βμeB= , μe being the magnetic permeability of the fluid, β0 is the uniformly 

distributed transverse magnetic field of strength and ∇  is the vector differential 

operator and is defined for two dimensional case as  

 
y

l
x

l yx ∂
∂

+
∂
∂

=∇ ˆˆ    

Where  and  are the unit vector along x and y axes respectively. When the 

external electric field is zero and the induced electric field is negligible, the current 

density is related to the velocity by Ohm’s law as follows 

xl̂ yl̂

( )BqJ ×= 0σ  (2.18) 

Where ( )Bq×  is electrical fluid vector and σ0 denotes the electric conductivity of the 

fluid. Under the conduction that the magnetic Reynolds number is small, the induced 

magnetic field is negligible compared with applied field. This condition is well 

satisfied in terrestrial applications, especially so in (low velocity) free convection 

flows. So it can be written as 

0
ˆ βylB =  (2.19) 

Bringing together equations (2.18) and (2.19) the force per unit volume BJ×  acting 

along the x-axis takes the following form 

UBJ 2
00 βσ−=×  (2.20) 

2.2 Physical model of the problem  
Steady two dimensional laminar free convection boundary layer flow of a viscous 

incompressible and electrically conducting fluid along a vertical wavy surface in 

presence of uniform transverse magnetic field of strength β0 with temperature 

dependent physical properties like viscosity and thermal conductivity is considered. 

It is assumed that the wavy surface is electrically insulated and is maintained at a 

uniform temperature Tw. Far above the wavy plate, the fluid is stationary and is kept 
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at a temperature T∞.  The surface temperature Tw is greater than the ambient 

temperature T∞ that is Tw > T∞. A uniform magnetic field of strength β0 is imposed 

along the Y-axis i.e. normal direction to the surface and X -axis is taken along the 

surface. 

The flow configuration of the wavy surface and the two-dimensional cartesian 

coordinate system are shown in figure 2.1. 
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Figure 2.1: Physical model and coordinate system 

 

The boundary layer analysis outlined below allows )(Xσ  being arbitrary, but our 

detailed numerical work assumed that the surface exhibits sinusoidal deformations. 

The wavy surface may be described by 

⎟
⎠
⎞

⎜
⎝
⎛==

L
XnXYw
πασ sin)(   (2.21) 

where α is the amplitude and L is the wave length associated with the wavy surface. 

2.3 Formulation of the problem  

Case I Viscosity is a linear function of temperature 
Consider a steady two-dimensional incompressible magnetohydrodynamic laminar 

free convection boundary layer flow along a vertical wavy surface. Using the 
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equations (2.18) to (2.20) into the basic equations (2.15) to (2.17), the steady two-

dimensional, laminar free convection boundary layer flow of viscous incompressible, 

temperature dependent viscosity and conducting fluid through a uniformly 

distributed transverse magnetic field of strength β0   take the following form: 

Continuity Equation 

0=
∂
∂

+
∂
∂

Y
V

X
U  (2.22) 

X-Momentum Equation  

( ) UTTgU
X
P

Y
UV

X
UU

ρ
βσ

βμ
ρρ

2
00)(.11

−−+∇∇+
∂
∂

−=
∂
∂

+
∂
∂

∞  (2.23) 

Y-Momentum Equation 

( V
Y
P

Y
VV

X
VU ∇∇+

∂
∂

−=
∂
∂

+
∂
∂ μ

ρρ
.11 ) (2.24) 

Energy Equation 

T
C
k

Y
TV

X
TU

p

2∇=
∂
∂

+
∂
∂

ρ
 (2.25) 

where (X, Y) are the dimensional coordinates along and normal to the tangent of the 

surface and (U, V) are the velocity components parallel to (X, Y), 

 is the Laplacian operator, T is the temperature of the fluid 

in the boundary layer, g is the acceleration due to earth gravity , P is the dimensional 

pressure of the fluid, ρ is the density, C

)//( 22222 yx ∂∂+∂∂=∇

P is the specific heat at constant pressure and 

)/( ρμν = is the kinematic viscosity and μ(T) is the dynamic viscosity of the fluid in 

the boundary layer region depending on the fluid temperature, k is the thermal 

conductivity of the fluid, 0σ  is the electrical conductivity of the fluid, β0 is the 

strength of magnetic field and β is the volumetric coefficient of thermal expansion. 

The boundary conditions for the present problem are 

)(,0,0 XYYatTTVU ww σ=====  (2.26a) 

∞→=== ∞∞ YaspPTTU ,,0  (2.26b) 
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where Tw is the surface temperature, T∞  is the ambient temperature of the fluid and 

P∞  is the pressure of fluid outside the boundary layer.  

There are very few forms of viscosity variation available in the literature. Among 

them here we consider one which is appropriate for liquid introduced by Hossain et 

al. (2000) as follows: 

*[1 ( )]T Tμ μ ε∞= + − ∞  (2.27) 

where μ∞ is the viscosity of the ambient fluid and 
ff T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
μ

μ
ε 1* is a constant 

evaluated at the film temperature of the flow )(21 ∞+= TTT wf .  

Using Prandtl’s transposition theorem to transform the irregular wavy surface into a 

flat surface as extended by Yao (1983) and boundary layer approximation, the 

following dimensionless variables are introduced for non-dimensionalizing the 

governing equations 4
1

, Gr
L

Yy
L
Xx σ−

== , PGrLp 1
2

2
−=

ρν
 

( )UVGrLvUGrLu xσ
μ
ρ

μ
ρ

−==
−

∞

−

∞

4
1

2
1

, ,  
∞

∞

−
−

=
TT
TT

w

θ  (2.28) 

3
2

)(
, L

TTg
Gr

dx
d

dX
d w

x ν
βσσσ ∞−

===  

where θ is the dimensionless temperature function and (u, v) are the dimensionless 

velocity components parallel to (x, y). Here (x, y) are not orthogonal, but a regular 

rectangular computational grid can be easily fitted in the transformed coordinates. It 

is also worthwhile to point out that (u, v) are the velocity components parallel to (x, 

y) which are not parallel to the wavy surface, p is the dimensionless pressure of the 

fluid, L is the wave length associated with the wavy surface and Gr is the Grashof 

number. 

Introducing the above dimensionless dependent and independent variables into 

equations (2.22)–(2.25), the following dimensionless form of the governing 

equations are obtained after ignoring terms of smaller orders of magnitude in Gr, the 

Grashof number defined in (2.28). 
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( ) 2
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yy
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∂
+=

∂
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+
∂
∂ θσθθ  (2.32) 

It is worth noting that the σx and σxx indicate the first and second differentiations of σ 

with respect to x, therefore, σx = dxddXd // σσ =  and σxx = dσx / dx. 

In the above equations Pr, ε and M are respectively known as the Prandtl number, the 

viscosity variation parameter and magnetic parameter, which are defined as  

k
C p ∞=

μ
Pr ,   ,     )(*

∞−= TTwεε
2

1

22
00

Gr

L
M

μ

βσ
=  (2.33) 

It can easily be seen that the convection induced by the wavy surface is described by 

equations (2.29)–(2.32). We further notice that, equation (2.31) indicates that the 

pressure gradient along the y-direction is )( 4
1−GrO , which implies that lowest order 

pressure gradient along x-direction can be determined from the inviscid flow 

solution. For the present problem this pressure gradient ( 0=∂∂ xp ) is zero. Because 

the pressure along x-direction turns into convective motion of fluid. Equation (2.31) 

further shows that ypGr ∂∂ /4
1

 is  and is determined by the left-hand side of this 

equation. Thus, the elimination of 

)1(O

yp ∂∂ /  from equations (2.30) and (2.31) leads to 
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The corresponding boundary conditions for the present problem then turn into  

⎭
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θ
θ

 (2.35) 

Now we introduce the following transformations to reduce the governing equations 

to a convenient form: 

),(,),,( 4
1

4
3

ηθθηηψ xyxxfx ===
−  (2.36) 

where f(η) is the dimensionless stream function, η is the dimensionless similarity 

variable and ψ is the stream function that satisfies the continuity equation (2.29) and 

is related to the velocity components in the usual way as  

x
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y
u

∂
∂

−=
∂
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=
ψψ ,  (2.37) 

Introducing the transformations given in equation (2.36) and using (2.37) into 

equations (2.34) and (2.32) are transformed into the new co-ordinate system. Thus 

the resulting equations are  
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The boundary conditions (2.35) now take the following form: 

⎭
⎬
⎫

=∞=∞′
==′=

0),(,0),(
1),(,0),(),(

xxf
oxoxfoxf

θ
θ

 (2.40) 

In the above equations prime denote the differentiation with respect to η. 

However, once we know the values of the functions f and θ and their derivatives, it is 

important to calculate the values of the rate of heat transfer in terms of local Nusselt 

number Nux and the shearing stress τw in terms of the local skin friction coefficient 

Cfx from the following relations: 
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where  and )( ∞−=Δ TTT w )(),( XYYXf σ−=  

and 0).( =∇= yw Unμτ  
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Also LGrU ρμ /2
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Here 
22

yx

yx

ff

fjfi
n

+

+
=  is the unit normal to the surface. Using the transformation 

(2.36) and (2.42) into equation (2.41) the rate of heat transfer in terms of the local 

Nusselt number Nux and the local skin friction coefficient Cfx take the following 

forms: 

),(1)/( 24
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Finally it should be mentioned that for the computational purpose the period of 

oscillations in the waviness of this surface has been considered to be π and the 

typical values of n have been taken to be 2. 

Case II Viscosity is inversely proportional to linear function of 
temperature 

Temperature dependent viscosity inversely proportional to linear function of 

temperature chosen is this case, which is introduced by Hossain and Munir (2000) as 

follows: 

*1 (T T )
μμ

ε
∞

∞

=
+ −

 (2.45) 

Introducing the transformation given in equation (2.28) and using (2.45) into 

equations (2.23) and (2.24) the following dimensionless form of the momentum 

equations are obtained  
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The elimination of variation of pressure in the direction along and normal to the 

surface from equations (2.46) and (2.47) leads to new momentum equation 
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 (2.48) 

The boundary conditions are same i.e. (2.40).   

Substituting the transformations given in equation (2.36) into equation (2.48) the 

momentum equation takes the following new co-ordinate form 
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12 2
2

2 2

2

2

(1 ) 3 1 1
(1 ) 4 2 1 1 1

(1 )                          
(1 )

x x xx

x x

x

x M
2
x

xf ff f f

f ff x f f
x x

σ σ σ θ
εθ σ σ σ

ε σ θ
εθ

⎛ ⎞+ ′′′ ′′ ′ ′+ − + + −⎜ ⎟+ + +⎝ ⎠
′+ ∂ ∂⎛ ⎞′ ′′ ′ ′′− = −⎜ ⎟+ ∂ ∂⎝ ⎠

+  (2.49) 

Using the transformation (2.36) and equation (2.42) into equation (2.41) the local 

skin friction coefficient Cfx take the following form: 
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Case III Temperature dependent thermal conductivity 
The mathematical statement of the basic conservation lows of momentum equation 

(2.16) and energy equation (2.17) for the steady, two dimensional natural convection 

flow of an electrically conducting, viscous and incompressible fluid with variable 

thermal conductivity along a vertical wavy surface after simplifying can be written 

as: 
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where k(T) is the thermal conductivity of the fluid in the boundary layer region 

depending on the fluid temperature and ν ( = μ/ρ) is the kinematics viscosity.  

The variable thermal conductivity chosen in this case which was proposed by 

Charraudeau (1975) and used by Hossain et al. (2000) as follows: 

( )[ ]∞∞ −+= TTkk *1 γ  (2.54) 

where  is the thermal conductivity of the ambient fluid and ∞k
ff T

k
k

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
1*γ is a 

constant evaluated at the film temperature of the flow )(21 ∞+= TTT wf .     
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Following Yao (1983), we now introduce the following non-dimensional variables 
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Introducing the above dimensionless dependent and independent variables into 

equations (2.51)–(2.53), the following dimensionless form of the governing 

equations are obtained after ignoring terms of smaller orders of magnitude in Gr, the 

Grashof number defined in (2.55). 
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In the above equations Pr, γ and M are respectively known as the Prandtl number, the 

thermal conductivity variation parameter and magnetic parameter, which are defined 

as  
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The elimination of variation of pressure in the direction along and normal to the 

surface from equations (2.56) and (2.57) leads to new momentum equation 
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Substituting the transformations given in equation (2.36) into equations (2.60) and 

(2.58) the momentum and energy equations transformed into the new co-ordinate 

system. Thus the resulting equations are obtained  
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In the above equations prime denote the differentiation with respect to η.  

The boundary conditions are same i.e. (2.40).   

In practical applications, the physical quantities of principle interest are the shearing 

stress τw and the rate of heat transfer in terms of the skin friction coefficient Cfx and 

Nusselt number Nux respectively, which can be written as 
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Using the transformation (2.36) and equation (2.42) into equation (2.63), the rate of 

heat transfer in terms of the local Nusselt number Nux and the local skin friction 

coefficient Cfx takes the following form: 
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oxxGrNu xx θσγ ′++−=−  (2.64) 
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oxfxGrC xfx ′′+= σ  (2.65) 

Finally, it should be mentioned that for the computational purpose the period of 

oscillations in the waviness of this surface has been considered to be π and the 

typical values of n have been taken to be 2. 

Case IV Temperature dependent viscosity and thermal conductivity 
The mathematical statement of the basic conservation lows of momentum equation 

(2.16) and energy equation (2.17) for the steady, two dimensional natural convection 

flow of an electrically conducting, viscous and incompressible fluid with combined 
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effects of temperature dependent physical properties like viscosity and thermal 

conductivity along a vertical wavy surface after simplifying and using the 

transformation given in equation (2.28) into equations (2.23), (2.24) and (2.53) the 

following dimensionless form of the governing equations are obtained 
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In the above equation 
∞

∞=
k

C pμPr is the Prandtl number, ε, M and γ are defined 

earlier in equations (2.33) and (2.59) respectively.  

The variable viscosity and thermal conductivity chosen in this case which are given 

in equations  (2.27) and (2.54). 

The elimination of variation of pressure in the direction along and normal to the 

surface from equations (2.66) and (2.67) leads to new momentum equation which is 

same as the equation (2.34). 

The boundary conditions are same i.e. (2.40).   

Substituting the transformations given in equation (2.36) into equations (2.34) and 

(2.68) the momentum and energy equations are transformed into the new co-ordinate 

system which are same as the equations (2.38) and (2.62).  

The rate of heat transfer in terms of the local Nusselt number Nux and the local skin 

friction coefficient Cfx are same as the above equations (2.64) and (2.44) 

respectively. 

 33



Chapter 2: Mathematical modeling of the problem 

Case V The effect of Joule heating  
The continuity and momentum equations are same which was mentioned in case-I 

and the energy equation (2.17) with Joule heating for the steady, two dimensional 

natural convection flow of an electrically conducting, viscous and incompressible 

fluid with variable viscosity and thermal conductivity along a vertical wavy surface 

after simplifying can be written as: 
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where (X, Y) are the dimensional coordinates along and normal to the tangent of the 

surface and (U, V) are the velocity components parallel to (X, Y), ρ is the density, β0 

is the strength of magnetic field, σ0 is the electrical conduction, Cp is the specific 

heat due to constant pressure and k(T) is the thermal conductivity of the fluid in the 

boundary layer region depending on temperature T.  

The variable viscosity and thermal conductivity chosen in this case which are given 

in equations  (2.27) and (2.54). 

Introducing the transformation given in equation (2.28) into equation (2.69) the 

following dimensionless form of the energy equation is obtained 
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In the above equation 
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00  is the Joule heating parameter, 
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C pμPr  

is the Prandtl number and γ is defined earlier in equation (2.59).  

Introducing the transformations given in equation (2.36) into equation (2.70) the 

following system of non linear equation governing the flow is obtained: 
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The boundary conditions are same i.e. (2.40).   
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In the above equations prime denote the differentiation with respect to η. 

2.4 Numerical approach  
The transformed boundary layer equations solved numerically with the help of 

implicit finite difference method together with the Keller-Box scheme (1978) and 

used by Hossain et al. (1996, 1997, 1999, 2000, 2001). To begin with, the partial 

differential equations are first converted into a system of first order differential 

equations. Then these equations are expressed in finite difference forms by 

approximating the functions and their derivatives in terms of the center differences. 

Denoting the mesh points in the x and η-plane by xi andηj where i = 1, 2 ,.……, M 

and j = 1, 2,……,N, central difference approximations are made, such that those 

equations involving x explicitly are centered at (xi-1/2 ,ηj-1/2) and the remainder at 

(xi,ηj-1/2), where ηj-1/2 = 1/2(ηj +ηj-1) etc. The above central difference approximations 

reduce the system of first order differential equations to a set of non-linear difference 

equations for the unknown at xi in terms of their values at xi-1. The resulting set of 

non-linear difference equations are solved by using the Newton’s quasi-linearization 

method. The Jacobian matrix has a block-tridiagonal structure and the difference 

equations are efficiently solved using a block-matrix version of the Thomas 

algorithm. In the program test, a finer axial step size is tried and find to give 

acceptable accuracy. A uniform grid of 201 points is used in x- direction with Δ x = 

0.05, while a non-uniform grid of 76 points lying between η = 0.0 and 10.017 is 

chosen. Grid points are concentrated towards the heated surface in order to improve 

resolution and the accuracy of the computed values of the surface shear stress and 

rate of heat transfer. During the program test, the convergent criteria for the relative 

errors between two iterations are less 10-5. It means that iterative procedure is 

stopped when the maximum change between successive iterates is less then 10-5.  

2.5 Implicit Finite Difference Method (IFDM) 
To apply the aforementioned method, equations (2.38) and (2.39) their boundary 

condition (2.40) are first converted into the following system of first order equations. 

For this purpose we introduce new dependent variables ,),(),,( ηξηξ vu ),( ηξp  

and ),( ηξg  so that the transformed momentum and energy equations can be written 

as: 
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Figure 2.2: Net rectangle of difference approximations for the Box scheme. 

Now consider the net rectangle on the (ξ,η) plane shown in the figure 2.2 and denote 

the net points by 
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Here n and j are just sequence of numbers on the (ξ,η) plane, kn and hj are the 

variable mesh widths. Approximate the quantities f, u, v and p at the points (ξn,ηj) of 

the net by  which call net function. It is also employed that the 

notation  for the quantities midway between net points shown in figure 2.2 and for 

any net function as 
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The finite difference approximations according to box method to the three first order 

ordinary differential equations (2.72) – (2.74) are written for the mid point (ξn,ηj-1/2 ) 

of the segment P1P2 shown in the figure 2.2 and the finite difference approximations 

to the two first order differential equations (2.75) and (2.76) are written for the mid 

point (ξn-1/2,ηj-1/2 ) of the rectangle P1P2P3P4. This procedure yields 
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Now the equation (2.86) can be written as  
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Again from the equation (2.87) then 
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CHAPTER 3 
Effect of temperature dependent viscosity 
on MHD natural convection flow 
3.1 Introduction 
It is worth pointing out that the MHD flow and heat transfer over a wavy surface is 

of importance in several heat transfer collectors where the presence of roughness 

elements disturbs the flow past surfaces and alters the heat transfer rate. The study of 

the flow of electrically conducting fluid in the presence of magnetic field is also 

important from the technical point of view so more attention given by many 

researchers. The specific problem selected for study is the flow and heat transfer in 

an electrically conducting fluid adjacent to the surface. The surface is maintained at a 

uniform temperature Tw, which may either exceed the ambient temperature T∞ or may 

be less then β0. When , an upward flow is established along the surface due 

to free convection, where as for 

∞≥ TTw

∞≤ TTw , there is a down flow. The interaction of the 

magnetic field and the moving electric charge carried by the flowing fluid induces a 

force, which is proportional to the magnitude of the longitudinal velocity and acts in 

the opposite direction is also very small. Additionally, a magnetic field of strength β0 

acts normal to the surface. Consequently, the influence of the magnetic field on the 

boundary layer is exerted only through induced forces within the boundary layer 

itself, with no additional effects arising from the free stream pressure gradient. The 

action of a magnetic field on the fluid has many practical applications, e.g. metals 

processing industry, including the control of liquid metals in continuous casting 

processes, plasma welding, nuclear industry and many others. Mathematical 

modeling of the magnetohydrodynamic problems is particularly desirable. However, 

because the property (viscosity) must have a significant change with temperature, it 

is necessary to take into account the variation of viscosity to obtain a better 

estimation of the flow and heat transfer behavior. 

The present work describes the effect of magnetohydrodynamic natural convection 

flow of viscous incompressible fluid with temperature dependent viscosity along a 

uniformly heated vertical wavy surface. The viscosity of the fluid are taken to be 
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linear function and inversely proportional to linear function of temperature. Using 

the appropriate transformations the governing equations with associated boundary 

conditions are converted to non-dimensional boundary layer equations, which are 

solved numerically by employing the implicit finite difference method, known as the 

Keller-box scheme.  

The effects of the pertinent parameters, such as the viscosity parameter (ε), the 

magnetic parameter (M), the amplitude-to-length ratio of the wavy surface (α) and 

Prandtl number (Pr) on the surface shear stress in terms of the skin friction 

coefficient Cfx, the rate of heat transfer in terms of Nusselt number Nux, the velocity 

and temperature profiles, the streamlines and the isotherms over the whole boundary 

layer are shown graphically. Numerical results of the local skin friction coefficient 

and the rate of heat transfer for different values are presented in tabular form. From 

these results it can be observed that the different flow and heat transfer 

characteristics by varying the relevant parameters. Two different cases have been 

considered in relation to temperature dependent viscosity, which are, 

3.2 Results and discussions 

(a) Viscosity is a linear function of temperature 
The problem of MHD natural convection flow of a viscous incompressible fluid with 

variable viscosity along a vertical wavy surface with uniform surface temperature has 

been investigated. The numerical results obtained from the governing equations 

(2.38) and (2.39) with the boundary conditions in equation (2.40) are discussed and 

some of the numerical results are tabulated in Tables A1- A2. Numerical values of 

the skin friction coefficient Cfx, the rate of heat transfer in terms of the Nusselt 

number Nux, velocity, temperature, the streamlines and the isotherms are obtained for 

different values of the viscosity parameter ε = 0.0 (constant viscosity) to 60.0, the 

magnetic parameter M = 0.0 (non magnetic field) to 2.0, Prandtl number Pr = 0.73, 

3.0, 7.0, 15.5, 100 and the amplitude-to-length ratio of the wavy surface ranging 

from α = 0.0 (flat plate) to 0.4 and depicted in figures 3.1- 3.16. When Pr = 0.73 

which correspond to the air at 21000K, Pr = 3.0 and 7.0 which correspond to water at 

600C and 200C respectively and Pr = 15.5, 100 which correspond to calcium chloride 
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solution. The value of viscosity (ε = 0.0, 5.0, 20.0, 40.0, 60) is used to solve the 

problem numerically. But practically no fluid is avalible which satisfies these values. 

The effect of temperature dependent viscosity (ε = 0.0, 5.0, 20.0, 40.0, 60) on the 

surface shear stress in terms of the local skin friction coefficient Cfx and the rate of 

heat transfer in terms of the local Nusselt number Nux are depicted graphically in 

figures 3.1(a) and 3.1(b) respectively against the axial distance of x keeping all other 

parameters amplitude-to-length ratio of wavy surface α = 0.3, magnetic parameter M 

= 0.5 and Prandtl number Pr = 0.73. Figure 3.1(a) indicates that increasing values of 

the viscosity, the surface shear stress in terms of the frictional force increases 

monotonically along the upstream direction of the surface and a decrease in the 

values of the rate of heat transfer along the wavy surface is observed from figure 

3.1(b). Moreover, the maximum values of local skin friction coefficient Cfx are 

0.86640, 1.54688, 2.20782, 2.60723 and 2.85371 for ε = 0.0, 5.0, 20.0, 40.0 and 60.0 

respectively which occurs at x = 0.50 and it is seen that the local skin friction 

coefficient Cfx increases by approximately 70% as the value of viscosity parameter 

grows up from 0.0 to 60.0. Increasing values of viscosity lead to increase the 

amplitude of the skin friction coefficient along the upward direction of the surface. 

Furthermore, maximum values of local the rate of heat transfer are 0.31824 for ε = 

0.0 and 0.17258 for ε = 60 respectively. Each of which occurs at different position of 

x and the rate of heat transfer decreases by approximately 46% as the value of 

viscosity parameter enhances from 0.0 to 60.0. Here it is concluded that for high 

viscous fluid the skin friction coefficient is higher and the corresponding rate of heat 

transfer is slow. When viscosity increases then the skin friction coefficient increases 

because the skin friction coefficient is directly dependent on temperature dependent 

viscosity.  

The influence of magnetic field, on the reduced local skin friction coefficient and 

local rate of heat transfer are illustrated in figures 3.2(a) and 3.2 (b) respectively for 

different values of controlling parameters Pr = 0.73, α = 0.3 and ε = 5.0. As 

electrically conducting fluid in presence of magnetic field generates electrical 

current, the magnetic field is changed and the fluid motion is moderated. As a result, 

the velocity gradient f"(x, 0) decreases with the effect of magnetic field. The same 
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result is observed on the local rate of heat transfer due to increase value of the 

intensity of magnetic field at different position of x. The maximum values of local 

skin friction coefficient Cfx and the rate of heat transfer in terms of the local Nusselt 

number Nux are 1.68211, 1.27924 for M = 0.0 and 0.26789, 0.23573 for M = 2.0 

respectively. It is shown that the skin friction coefficient decreases by approximately 

24% when intensity of magnetic field increases from 0.0 to 2.0. Furthermore, the 

heat transfer rate decreases by approximately 12% as intensity of magnetic field 

increases from 0.0 to 2.0. The magnetic field acts against the direction of fluid flow 

and reduce the skin friction and the rate of heat transfer.  

In figures 3.3(a) and 3.3(b), the surface shear stress in terms of the local skin friction 

coefficient Cfx and the rate of heat transfer in terms of Nusselt number Nux are 

depicted graphically for different values of Prandtl number (Pr = 0.73, 3.0, 7.0, 15.5, 

100) when the values of amplitude-to-length ratio of wavy surface α = 0.3, magnetic 

parameter M = 0.5, and viscosity parameter ε = 5.0. From figure 3.3(a), it is observed 

that the skin friction coefficient decreases monotonically for increasing values of 

Prandtl number Pr and from figure 3.3(b), the opposite result is observed on the rate 

of heat transfer due to increase of Prandtl number Pr. Increasing values of Prandtl 

number Pr, speed up the decay of the temperature field away from the heated surface 

with a consequent increase in the rate of heat transfer. The maximum values of local 

skin friction coefficient are 1.54688, 0.53835 and the rate of heat transfer in terms of 

the local Nusselt number are 0.25070 and 0.99839 for Pr = 0.73 and 100 respectively 

which occurs at the axial position of x = 0.50. It is seen that the local skin friction 

coefficient decreases by approximately 65% and the rate of heat transfer increases by 

approximately 75% as Pr increases from 0.73 to 100.   

Figures 3.4(a) and 3.4(b) show that increase in the value of the amplitude-to-length 

ratio of wavy surface (α = 0.0, 0.1, 0.2, 0.3, 0.4) leads to decrease the value of the 

skin friction coefficient and the rate of heat transfer in terms of the local Nusselt 

number while Prandtl number Pr = 0.73, magnetic parameter M = 0.5 and viscosity 

parameter ε = 5.0. Frictional force depends on the smoothness of the surface, 

temperature and nature of fluid. Surface becomes more roughened for increasing 

values of amplitude-to-length ratio of wavy surface. Velocity force decreases at the 
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local points. However, the maximum values of the skin friction coefficient and the 

heat transfer rate are 1.65971 and 0.27478 for α = 0.0 which occurs at the surface 

and 1.53714, 0.25186 for α = 0.4 which occurs at the axial position of x = 0.50. It is 

seen that the skin friction coefficient and the heat transfer rate decrease by 7.39% and 

8.34% respectively as α increases from 0.0 to 0.4. 

Numerical values of the velocity ),( ηxf ′  and the temperature θ(x,η) are depicted 

graphically in figure 3.5(a) and figure 3.5(b) respectively against the axial distance of 

η for different values of temperature dependent viscosity (ε = 0.0, 5.0, 20.0, 40.0, 

60.0) for the fluid having α = 0.3, magnetic parameter M = 0.5 and Prandtl number 

Pr = 0.73. Viscosity is a physical property of the fluid, which controls its rate of 

flow. When viscosity increases then velocity gradient normal to the wall decreases. 

For this reason figure 3.5(a), shows that the velocity of the fluid against η decreases 

quickly for increasing values of temperature dependent viscosity. But for natural 

convection near the surface of the plate velocity increases and become maximum and 

then decreases and finally approaches to zero asymptotically. The maximum values 

of the velocity are found to be 0.49107, 0.31965, 0.20781, 0.15546 and 0.12783 for ε 

= 0.0, ε = 5.0, ε = 20.0, ε = 40.0 and ε = 60.0 respectively. It is noted that the velocity 

decreases by approximately 74% as ε increases from 0.0 to 60.0. On the other hand 

figure 3.5(b), shows that the temperature increases within the boundary layer with 

the increase value of viscosity parameter. As . So the increasing 

values of viscosity increase the temperature difference between the surface and 

ambient temperature of the fluid. Then heat is transferred rapidly from surface to 

fluid within the boundary layer. That is why temperature increases with the 

increasing values of viscosity.  

)(*
∞−= TTwεε

The interaction of the magnetic field and moving electric charge carried by the 

flowing fluid induces a force, which tends to oppose the fluid motion. In figure 

3.6(a), it is observed that the magnetic field acting along the horizontal direction 

retards the fluid velocity with Prandtl number Pr = 0.73, α = 0.3 and viscosity 

parameter ε = 5.0. Here position of peak velocity moves toward the interface with the 

increasing M. From figure 3.6(b), it is evident that when M increases in the region η 
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∈  [0, 10] the temperature increases significantly. At the surface the temperature is 

maximum and it is decreases away from the surface and finally takes asymptotic 

values against η. Magnetic field decreases the temperature gradient at the wall and 

increases the temperature in the flow region due to the interaction. 

Figure 3.7(a) and figure 3.7(b) deal with the effect of Prandtl number (Pr = 0.73, 3.0, 

7.0, 15.5, 100) with other fixed controlling parameters amplitude-to-length ratio of 

the wavy surface α = 0.3, magnetic parameter M = 0.5 and viscosity parameter ε = 

5.0 on the velocity ),( ηxf ′  and the temperature θ(x,η) against the axial distance of 

η. Prandtl number is the ratio of viscous force and thermal force. Increasing values of 

Pr increases viscosity and decreases thermal action of the fluid. If viscosity increases, 

then fluid does not move freely. Because of this fact, it is observed from figure 3.7(a) 

that the velocity of the fluid decreases quickly along the downward direction of the 

plate against η for increasing values of Prandtl number. It is seen that the velocity 

decreases by approximately 85% when Pr increases from 0.73 to 100.0. This is 

because the highest value of velocity are 0.31965 for Pr = 0.73 and 0.04703 for Pr = 

100. From figure 3.7(b), it is noted that the temperature shift downward with the 

increasing Prandtl number Pr. 

Figure 3.8(a) demonstrates the velocity for variation of the amplitude-to-length ratio 

of the wavy surface (α = 0.0, 0.1, 0.2, 0.3) with Prandtl number Pr = 0.73, magnetic 

parameter M = 0.5 and viscosity parameter ε = 5.0 and the corresponding 

temperature θ(x,η) is shown in figure 3.8(b). From figure 3.8(a), it is revealed that the 

velocity ),( ηxf ′ increases slowly against the axial distance of η along the upstream 

direction of the plate. Figure 3.8(b) shows the small increment on the temperature 

θ(x,η) for increasing values of the amplitude-to-length ratio of the wavy surface. 

Figures 3.9 and 3.10 illustrate the effect of the temperature dependent viscosity on 

the development of streamlines and isotherms respectively which are plotted for 

Prandtl number Pr = 0.73, α = 0.3 and M = 0.5. It is noted that for ε = 0.0 the value 

of ψmax is 6.20, for ε = 5.0 ψmax is 5.23, for ε = 20.0 ψmax is 3.98 and ψmax is 3.09 

where ε = 40.0. From figure 3.9, it is seen that the effect of viscosity, the flow rate in 

the boundary layer decreases. From figure 3.10, it is observed that owing to the effect 

 46



Chapter 3: Effect of temperature dependent viscosity on MHD natural convection  

of temperature dependent viscosity, the thermal state of the fluid increases, causing 

the thermal boundary layer becomes thicker. 

The effect of variation of the surface roughness on the streamlines and isotherms for 

the values of intensity of magnetic field equal to 0.0, 0.2, 1.0 and 2.0 are depicted in 

the figure 3.11 and figure 3.12 respectively while Prandtl number Pr = 0.73, α = 0.3 

and ε = 5.0. It is observed from figure 3.12 that as the values of M increases the 

thermal boundary layer becomes higher gradually. Figure 3.11 depicts that the 

maximum values of ψ decreases steadily while the values of intensity of magnetic 

field increases. The maximum values of ψ, that is, ψmax are 8.08, 6.67, 3.87 and 2.58 

for M = 0.0, 0.2, 1.0 and 2.0 respectively. Finally it is concluded that for much 

roughness of the surface with the effect of magnetic field the velocity of the fluid 

flow decreases in the boundary layer.  

Figures 3.13and 3.14 show the effect of Prandtl number (Pr = 0.73, 3.0, 7.0 and 15.5) 

on the formation of streamlines and isotherms respectively for α = 0.3, magnetic 

parameter M = 0.5 and viscosity parameter ε = 5.0. It can be seen that for Pr equal to 

0.73, 3.0, 7.0, and 15.5 the maximum values of ψ, that is, ψmax are 5.23, 2.85, 1.83 

and 1.19 respectively. So it is concluded that for small value of Prandtl number with 

the effect of magnetic field and temperature dependent viscosity both the momentum 

and the thermal boundary layer become thicker. 

The effect of variation of the surface roughness on the streamlines and isotherms for 

the values of the amplitude-to-length ratio of the wavy surface equal to 0.0, 0.1, 0.2 

and 0.3 are displayed by the figure 3.15 and figure 3.16 respectively with other fixed 

parameters, Prandtl number Pr = 0.73, M = 0.5 and ε = 5.0. It is observed from figure 

3.15 that as the values of the amplitude-to-length ratio of the wavy surface increases, 

the maximum values of ψ increases slightly. The maximum values ofψ, that is, ψmax 

are 5.25, 5.29, 5.32 and 5.51 for α = 0.0, 0.1, 0.2 and 0.3 respectively. Figure 3.16 

indicates that the increases of the amplitude-to-length ratio of the wavy surface affect 

the isotherms and leads to thicker thermal boundary layer. Here it is concluded that 

for much roughness of the surface with the effect of temperature dependent viscosity 

and magnetic field, the velocity and the temperature of the fluid flow increase in the 

boundary layer. 
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Figure 3.1: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of viscosity parameter ε while α = 0.3, M = 0.5 and Pr = 
0.73. 
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Figure 3.2: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of magnetic parameter M with Pr = 0.73, α = 0.3 and ε = 
5.0. 
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Figure 3.3: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of Prandtl number Pr while α = 0.3, M = 0.5 and ε = 5.0. 

 50



Chapter 3: Effect of temperature dependent viscosity on MHD natural convection  

0 2 4 6 8
x

0

1

2
α = 0.00
α = 0.10
α = 0.20
α = 0.30
α = 0.40

(a)

C f
x

Pr = 0.73 , M = 0.5ε = 5.0 ,

 
 

0 2 4 6 8
x

0

0.1

0.2

0.3

0.4
α = 0.00
α = 0.10
α = 0.20
α = 0.30
α = 0.40

(b)

Pr = 0.73 , M = 0.5 ,ε = 5.0

N
u x

 
 
Figure 3.4: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of the amplitude-to-length ratio of the wavy surface α when 
Pr = 0.73, M = 0.5 and ε = 5.0. 
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Figure 3.5: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of viscosity parameter ε while α = 0.3, M = 0.5 and Pr = 0.73. 
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Figure 3.6: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of magnetic parameter M with Pr = 0.73, α = 0.3 and ε = 5.0. 
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Figure 3.7: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of Prandtl number Pr while α = 0.3, M = 0.5 and ε = 5.0. 
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Figure 3.8: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of α while Pr = 0.73, M = 0.5 and ε = 5.0.  

 55



Chapter 3: Effect of temperature dependent viscosity on MHD natural convection  

0 2 4 6 8 10x
0

5

10

15

20

y
6.20

5.785.37

4.96

4.55

4.133.72

3.312.89

2.482.071.651.240.83
0.41

(a)

 

0 2 4 6 8 10x
0

5

10

15

20

y
5.234.88

4.53

4.18

3.833.49

3.142.792.44

2.091.741.391.05
0.70

0.35
0.10

(b)

 

0 2 4 6 8 10x
0

5

10

15

20

y

3.98

3.713.45

3.18

2.922.65

2.121.59

1.3
31.060.80

0.53

0.27

1.
86

0.08

(c)

 

0 2 4 6 8 10x
0

5

10

15

20

y

3.09

2.882.68

2.47

2.262.06
1.65

1.441.241.
030.820.

62
0.4

1

0.21

0.05

(d)

 
 

 
Figure 3.9: Streamlines for (a) ε = 0.0 (b) ε = 5.0 (c) ε = 20.0 (d) ε 
= 40.0 while Pr = 0.73, α = 0.3 and M = 0.5.  
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Figure 3.10: Isotherms for (a) ε = 0.0 (b) ε = 5.0 (c) ε = 20.0 (d) ε 
= 40.0 while Pr = 0.73, α = 0.3 and M = 0.5.  
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Figure 3.11: Streamlines for (a) M = 0.0 (b) M = 0.2 (c) M = 1.0 
(d) M = 2.0 while ε = 5.0, α = 0.3 and Pr = 0.73. 
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Figure 3.12: Isotherms for (a) M = 0.0 (b) M = 0.2 (c) M = 1.0 (d) 
M = 2.0 while ε = 5.0, α = 0.3 and Pr = 0.73. 
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Figure 3.13: Streamlines for (a) Pr = 0.73 (b) Pr = 3.0 (c) Pr = 7.0 
(d) Pr = 15.5 while ε = 5.0, α = 0.3 and M = 0.5. 
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Figure 3.14: Isotherms for (a) Pr = 0.73 (b) Pr = 3.0 (c) Pr = 7.0 
(d) Pr = 15.5 while ε = 5.0, α = 0.3 and M = 0.5. 

 61



Chapter 3: Effect of temperature dependent viscosity on MHD natural convection  

0 2 4 6 8 10x
0

5

10

15

20

y
5.254.904.554.20

3.853.503.152.802.452.10

1.751.401.05

0.70
0.35

(a)

0 2 4 6 8 10x
0

5

10

15

20

y

5.29

4.944.584.23

3.883.533.172.822.47

2.12

1.761.411.06

0.71
0.35

0.15

(b)

0 2 4 6 8 10x
0

5

10

15

20

y
5.32

4.97

4.61

4.26

3.903.553.19

2.842.48

2.131.77

1.421.06
0.71

0.35
0.10

(c)

0 2 4 6 8 10x
0

5

10

15

20

y
5.515.23

4.88

4.53

4.183.83

3.49

3.142.792.441.74

1.391.05

0.700.35

0.12

2.09

(d)

 
 

 
Figure 3.15: Streamlines for (a) α = 0.0 (b) α = 0.1 (c) α = 0.2 (d) 
α = 0.3 while ε = 5.0, M = 0.5 and Pr = 0.73. 
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Figure 3.16: Isotherms for (a) α = 0.0 (b) α = 0.1 (c) α = 0.2 (d) α 
= 0.3 while ε = 5.0, M = 0.5 and Pr = 0.73. 
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The values of skin friction coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux have been presented in Table A1 for different values of Prandtl 

number (Pr = 0.73, 7.0, 100) while α = 0.3, magnetic parameter M = 0.5 and 

viscosity parameter ε = 5.0 which shown in appendix A. Here it is noted that the 

complete cycle of the wavy surface is from x = 0.0 to 2.0. The skin friction 

coefficient Cfx and the heat transfer rate increase for the first quarter of the cycle (x ≅ 

0 to x ≅ 0.50) and decrease in the second quarter (x ≅ 0.50 to x ≅1.0). From x ≅ 1.0 to 

x ≅1.5 (i.e., third quarter) the skin friction coefficient Cfx again increases, whereas the 

last quarter (x ≅ 1.5 to x ≅ 2.0) it decreases. The skin friction coefficient Cfx and the 

rate of heat transfer Nux show similar characteristics throughout the domain. From 

this Table it can be found that the maximum values of local skin friction coefficient 

Cfx are 1.54688, 0.99193 and 0.53835 and the rate of heat transfer in terms of the 

local Nusselt number Nux are 0.25070, 0.48832 and 0.99839 for Pr = 0.73, 7.0 and 

100.0 respectively which occur at x = 0.50. It is observed that the local skin friction 

coefficient Cfx decreases by approximately 65% and the rate of heat transfer in terms 

of the local Nusselt number Nux increases by approximately 75% as Pr increases 

from 0.73 to 100.0. It is also concluded that for air (Pr = 0.73) the rate of heat 

transfer is slow and the surface shear stress in terms of the skin friction coefficient is 

higher than that of water (Pr = 7.0). It is established that when Pr is small (Pr≤1) 

then heat diffuses very quickly compared to the velocity (momentum). It means that 

the thickness of the thermal boundary layer is greater than that of the velocity 

boundary layer. In this case the temperature gradient as well as the heat transfer rate 

is slow.  

Comparison of the skin friction coefficient Cfx and the local rate of heat transfer in 

terms of Nusselt number Nux against x for the variation of Prandtl number Pr with 

and without effects of magnetic field and temperature dependent viscosity with α = 

0.3 are entered in Table A2 which shown in appendix A. Here it can be concluded 

that if the value of Pr increases the values of the skin friction coefficient Cfx 

decreases and the heat transfer rate increases for any values of viscosity parameter 

and magnetic parameter. It is also shown that if the effect of magnetic field increases, 

the values of the shear stress in terms of the skin friction coefficient decreases while 

it increases for the effect of temperature depedent viscosity and the rate of heat 
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transfer in terms of Nusselt number decreases for any values of viscosity and 

magnetic parameter. 

(b) Viscosity is inversely proportional to linear function of 
temperature 

Here the problem of variable viscosity inversely proportional to linear function of 

temperature on MHD natural convection flow of a viscous incompressible fluid 

along a vertical wavy surface with uniform surface temperature has been 

investigated. The governing equations (2.39) and (2.49) with the boundary condition 

given in equation (2.40) are solved numerically employing a very efficient implicit 

finite difference method together with the Keller-box scheme. Numerical values of 

the shear stress in terms of the skin friction coefficient and the rate of heat transfer in 

terms of the Nusselt number, the velocity, the temperature, the streamlines and the 

isotherms are presented graphically for different values of the viscosity parameter ε = 

0.0 (constant viscosity) to 2.0, magnetic parameter ranging from M = 0.0 (non 

magnetic field) to 2.0, Prandtl number Pr = 0.73, 1.73, 3.0, 7.0, 15.5 which 

correspond to the air at 21000K, water at 1000C, 600C, 200C and calcium chloride 

solution respectively and the amplitude-to-length ratio of the wavy surface ranging 

from α = 0.0 (flat plate) to 0.3. The effect of temperature depedent viscosity is very 

small which are depicted graphically in figures 3.17 - 3.24.  

The influence of the temperature depedent viscosity (ε = 0.0, 0.5 and 1.0) on the 

surface shear stress in terms of the local skin friction Cfx and the rate of heat transfer 

in terms of the local Nusselt number Nux are illustrated graphically in figures 3.17(a) 

and 3.17(b) respectively when the values of α = 0.3, magnetic parameter M = 0.5 and 

Prandtl number Pr = 0.73. For increasing values of viscosity, the skin friction 

coefficient decreases slowly along the downstream direction of the surface against 

the axial distance of x. On the other hand, from figure 3.17(b) it is observed that the 

temperature gradient in terms of the rate of heat transfer increases along the wavy 

surface for increasing values of temperature depedent viscosity. Here it is concluded 

that for high viscous fluid with viscosity inversely proportional to linear function of 

temperature, the skin friction coefficient is slow and the corresponding rate of heat 

transfer is large. In figure 3.17(a), the maximum values of local skin friction 
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coefficient Cfx are 0.86640, 0.78213 and 0.77294 for ε = 0.0, 0.5 and 1.0 respectively 

which occurs at different values of x. It is seen that the local skin friction coefficient 

decreases by approximately 11% as the values of temperature depedent viscosity 

parameter increases from 0.0 to 1.0. Again figure 3.17(b) shows that the rate of heat 

transfer increases by approximately 8% due to the increased value of viscosity. 

Increasing values of viscosity lead to increase the amplitude of the heat transfer rate. 

The effect of magnetic field (M = 0.0, 0.5, 1.0, 1.5, 2.0) on the surface shear stress in 

terms of the local skin friction Cfx and the rate of heat transfer in terms of the local 

Nusselt number Nux are depicted graphically in figures 3.18(a) and 3.18(b) 

respectively while the values of amplitude-to-length ratio of the wavy surface α = 

0.3, viscosity parameter ε = 0.5 and Prandtl number Pr = 0.73. From figure 3.18(a), it 

is seen that an increase in the value of magnetic parameter leads to decrease the local 

skin friction coefficient. A similar situation is also observed from figure 3.18(b) in 

the case of local rate of heat transfer Nux at different position of x. The skin friction 

coefficient and the rate of heat transfer coefficient decrease by approximately 34% 

and 12% respectively as intensity of magnetic field increases from 0.0 to 2.0. 

The surface shear stress in terms of the local skin friction coefficient Cfx and the rate 

of heat transfer in terms of the local Nusselt number Nux are displayed graphically in 

figures 3.19(a) and 3.19(b) respectively for the different values of Prandtl number (Pr 

= 0.73, 1.73, 3.0, 7.0 and 15.5) with other fixed controlling parameters amplitude-to-

length ratio of the wavy surface α = 0.3, magnetic parameter M = 0.5 and viscosity 

parameter ε = 0.01. From figure 3.19(a), it is observed that the skin friction 

coefficient decreases significantly within the boundary layer due to increase values 

of Prandtl number Pr. The opposite result holds from figure 3.19(b) for the rate of 

heat transfer while Prandtl number Pr increases. The maximum values of local skin 

friction coefficient Cfx are 0.86331 and 0.51309 for Pr = 0.73 and 15.5 respectively 

which occurs at x = 0.50.  The highest values of the rate of heat transfer in terms of 

the local Nusselt number Nux are 0.31856 and 0.85478 for Pr = 0.7 and 15.5 

respectively which also occurs at x = 0.50. It is noted that the local skin friction 

coefficient Cfx decreases by approximately 41% and the rate of heat transfer in terms 

 66



Chapter 3: Effect of temperature dependent viscosity on MHD natural convection  

of the local Nusselt number Nux increases by approximately 63% as Pr changes from 

0.73 to 15.5. 

Figures 3.20(a) and 3.20(b) demonstrate the effect of the variation of the amplitude-

to-length ratio of the wavy surface (α = 0.0, 0.1, 0.2, 0.3) for Prandtl number Pr = 

0.73, magnetic parameter M = 0.5 and viscosity parameter ε = 0.005. From both the 

figures it is clear that increase in the values of the amplitude-to-length ratio of the 

wavy surface leads to decrease the frictional force in terms of the skin friction 

coefficient and the heat transfer rate. The maximum values of the rate of heat transfer 

in terms of the local Nusselt number Nux are 0.35861 for α = 0.0 which occurs at the 

surface and 0.31840 for α = 0.3 which occurs at the axial position of x = 0.50. It is 

noted that the rate of heat transfer in terms of the local Nusselt number Nux decreases 

by approximately 12% as α increases from 0.0 to 0.3. As the surface waviness 

reduces the velocity force in each local point, the skin friction is also reduced. 

The effects of temperature dependent viscosity (ε = 0.0, 0.5, 1.0, 1.5 and 2.0) on the 

velocity and the temperature within the boundary layer for the fluid having 

amplitude-to-length ratio of the wavy surface α = 0.3, magnetic parameter M = 0.5 

and Prandtl number Pr = 0.73 are revealed in figure 3.21(a) and figure 3.21(b) 

respectively. From figure 3.21(a), it is seen that an increase in the viscosity is 

associated with a considerable increase in velocity. But for natural convection flow 

near the surface of the plate velocity increases and become maximum and then 

decreases and finally approaches to zero asymptotically. The highest values of 

velocity are 0.49107, 0.53378, 0.56908, 0.59709 and 0. 0.61730 for ε = 0.0, ε = 0.5, 

ε = 1.0, ε = 1.5 and ε = 2.0 respectively. The velocity of the fluid increases along η 

direction and reaches at utmost values which occurs between η = 0.73 to 1.43, then 

all the profiles steadily decrease, cross each other near the point η = 1.58 to 2.0 and 

finally approach to zero, the asymptotic value. It is observed that the velocity 

increases by approximately 21% when ε enhances from 0.0 to 2.0 near to the surface. 

On the other hand, an opposite situation is observed from figure 3.21(b) in the case 

of temperature field within the boundary layer with the increase values of 

temperature dependent viscosity parameter.  
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The effect of different values of intensity of magnetic field (M = 0.0, 0.5, 1.0, 1.5, 

2.0) with Prandtl number Pr = 0.73, α = 0.3 and ε = 0.5 are depicted in figures 

3.22(a) and 3.22(b) repectively. It is observed from figure 3.22(a) that the increase 

value of magnetic parameter leads to decrease the velocity up to the position of η = 

4.4 after that position the velocity increase with the increase of intensity of magnetic 

field. It is also observed that the changes of velocity in the η direction reveals the 

typical velocity for natural convection boundary layer flow, i.e., the velocity is zero 

at the boundary wall then the velocity increases to the peak value as η increases and 

finally the velocity approaches to zero (the asymptotic value) but we see from this 

figure that all the velocity meet together at the position of η = 4.4 and cross the side. 

This is because of the velocity having lower peak values for higher values of 

magnetic parameter tend to decrease comparatively slower along η direction than 

velocity with higher peak values for lower values of magnetic parameter. Further 

from figure 3.22(b), it is seen that if intensity of magnetic field increases in the 

region η ∈  [0, 10], the temperature near the surface is maximum and decreases away 

from the surface and finally approaches to zero. 

The effect of variation of the temperature dependent viscosity on the development of 

streamlines and isotherms for Prandtl number Pr = 0.73, amplitude-to-length ratio of 

the wavy surface α = 0.3 and magnetic parameter M = 0.5 are presented in figures 

3.23 and 3.24 respectively. The maximum values of ψ, that is, ψmax are 6.46, 6.68, 

6.78 and 6.81 for viscosity variation parameter ε = 0.0, 0.5, 1.0 and 2.0 respectively. 

From figure 3.23, it is seen that for the increased value of viscosity the flow rate in 

the boundary layer increase. From figure 3.24, it is observed that owing to the effect 

of temperature dependent viscosity the thermal boundary layer becomes thinner. 
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Figure 3.17: Variation of (a) skin friction coefficient Cfx and (b) 
rate of heat transfer Nux against dimensionless distance x for 
different values of viscosity parameter ε while α = 0.3, M = 0.5 
and Pr = 0.73.  
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Figure 3.18: Variation of (a) skin friction coefficient Cfx and (b) 
rate of heat transfer Nux against dimensionless distance x for 
different values of magnetic parameter M with Pr = 0.73, α = 0.3 
and ε = 0.5. 
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Figure 3.19: Variation of (a) skin friction coefficient Cfx and (b) 
rate of heat transfer Nux against dimensionless distance x for 
different values of Prandtl number Pr while α = 0.3, M = 0.5 and ε 
= 0.01. 
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Figure 3.20: Variation of (a) skin friction coefficient Cfx and (b) 
rate of heat transfer Nux against dimensionless distance x for 
different values of α when Pr = 0.73, M = 0.5 and ε = 0.005. 
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Figure 3.21: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of viscosity parameter ε while α = 0.3, M = 0.5 and Pr = 0.73. 
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Figure 3.22: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of magnetic parameter M with Pr = 0.73, α = 0.3 and ε = 0.5. 
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Figure 3.23: Streamlines for (a) ε = 0.0, (b) ε = 0.5 (c) ε = 1.0 and 
(d) ε = 2.0 while M = 0.5, α = 0.3 and Pr = 0.73. 
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Figure 3.24: Isotherms for (a) ε = 0.0, (b) ε = 0.5 (c) ε = 1.0 and 
(d) ε = 2.0 while M = 0.5, α = 0.3 and Pr = 0.73. 
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3.3 Conclusions  
The effects of the temperature dependent viscosity, the amplitude-to-length ratio of 

the wavy surface, the magnetic field and Prandtl number Pr on MHD natural 

convection flow of viscous incompressible fluid along a uniformly heated vertical 

wavy surface have been studied. From the present investigations the following 

conclusions may be drawn:  

• When viscosity is linear function of temperature then the rate of heat transfer 

and the fluid velocity significantly reduce while the skin friction coefficient and 

the temperature increase for increasing values of viscosity parameter. 

• The effect of increasing viscosity results in decreasing the local skin friction 

coefficient, the temperature and increasing the velocity, the local rate of heat 

transfer, over the whole boundary layer when viscosity considered inversely 

proportional to linear function of temperature. 

• The skin friction coefficient, the velocity and the temperature decrease for 

increase of Prandtl number, over the whole boundary layer but the significant 

increase in the rate of heat transfer is observed. 

• For higher values of Prandtl number, the velocity and thermal boundary layer 

strongly affected and become very thinner. 

• Increased values of the intensity of magnetic field leads to decrease the skin 

friction coefficient, the rate of heat transfer and the velocity while the reverse 

phenomena occurs for the temperature. 

• The flow rate decreases and the thermal boundary layer becomes thicker when 

the effect of magnetic field is considered. 

• The rate of heat transfer and the skin friction coefficient decrease with the 

increase of amplitude-to-length ratio of the wavy surface, while the velocity and 

the temperature increase in the case of increasing the amplitude-to-length ratio 

of the wavy surface. 

• The velocity and the thermal boundary layer become thicker slowly for the 

increasing value of the amplitude-to-length ratio of the wavy surface. 
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• The velocity of the fluid flow decreases quickly and the thermal boundary layer 

becomes thicker for increasing values of viscosity when it is considered as 

linear function of temperature and reverse phenomena occurs when viscosity is 

considered as inversely proportional to linear function of temperature. 

• For temperature dependent viscosity, the viscosity variation parameter ε depend 

on the difference between the surface temperature and ambient temperature of 

the fluid. If the value of viscosity variation parameter ε is higher then this 

difference increases, this indicates that there will be more heat transfer from 

surface to the fluid within the boundary layer. In that why, temperature 

increases with the increasing value of viscosity. Temperature of the ambient 

fluid increases and temperature gradient at the surface decreases. So the rates of 

heat transfer decreases. Increasing viscosity decreases the velocity gradient 

normal to the wall. So the velocity of the fluid decreases quickly and fluid does 

not move freely. Fluid motion becomes slower. But when viscosity increased 

then the skin friction coefficient also increased because the skin friction 

coefficient is directly dependent on temperature dependent viscosity. 

• The presence of the magnetic field acting along the horizontal direction retards 

the fluid velocity. For this a Lorentz force has been created within the flow 

region by the interaction between the applied magnetic field and flow field. 

This force acts against the direction of fluid flow and reduce the velocity and 

the skin friction coefficient. Due to interaction the temperature in the flow 

region increases and the temperature gradient at the wall as well as the heat 

transfer rate decreases. As a result the temperature profile gradually increases 

and thermal boundary layer grows thick. 

• If the viscosity of the fluid is taken to be inversely proportional to linear 

function of temperature then velocity gradient normal to the wall increases. 

Velocity and the flow rate in the boundary layer increase. The skin friction 

coefficient directly depends on viscosity. When it is inversely proportional to 

linear function of temperature then the skin friction coefficient decreases for 

increasing value of viscosity. Viscosity also depends on the difference between 

the surface temperature and ambient temperature of the fluid. If this difference 
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increases then viscosity reduces the fluid temperature that causes thinner 

thermal boundary layer. Surface temperature as well as temperature gradient at 

the surface increases. Then the rates of heat transfer increase when viscosity is 

considered inversely proportional to linear function of temperature. 

• The effect of viscosity is vary small when it is considered inversely 

proportional to linear function of temperature with other parameters. The values 

of viscosity considered in this case are all critical values.  
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CHAPTER 4 
Effect of temperature dependent thermal 
conductivity on MHD natural convection 
flow  
4.1 Introduction 
The property of thermal conductivity changes significantly with temperature. It is 

essential to take into account the variation of thermal conductivity along a vertical 

wavy surface to obtain a better estimation of the flow and heat transfer behavior. 

Convective heat transfer has attracted the attention of engineers and scientists from 

many varying disciplines such as, chemical, civil, environmental, mechanical, 

aerospace, nuclear engineering, applied mathematics, geothermal physics, food 

science, etc. Flow and heat transfer from a wavy surface is often encountered in 

many engineering applications to enhance heat transfer such as micro-electronic 

devices, flat-plate solar collectors and flat-plate condensers in refrigerators, the 

molten core of the earth etc, electric machinery, cooling system of micro-electronic 

devices etc. In addition, roughened surfaces can be used in the cooling of electrical 

and nuclear components where the wall heat flux is known.  

The present investigation is concerned with the effect of temperature dependent 

thermal conductivity on magnetohydrodynamic natural convection flow of viscous 

incompressible fluid along a uniformly heated vertical wavy surface. In formulating 

the equations governing the flow thermal conductivity of the fluid is considered to be 

linear function of temperature. The governing boundary layer equations (2.51) to 

(2.53) are first transformed into a non-dimensional form (2.56) to (2.58) using 

suitable set of dimensionless variables (2.55). The resulting nonlinear system of 

partial differential equations are mapped into the domain of a vertical flat plate and 

then solved numerically employing the implicit finite difference method, known as 

the Keller-box scheme. The numerical results of the surface shear stress in terms of 

skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, 

the velocity and temperature profiles as well as the stream lines and the isotherms are 

shown graphically for a selection of parameters set consisting of thermal 
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conductivity parameter γ, magnetic parameter M, Prandtl number Pr and the 

amplitude-to-length ratio of the wavy surface α. Numerical results of the local skin 

friction coefficient and the rate of heat transfer for different values are presented in 

tabular form. 

4.2 Results and discussion  

There are four parameters of interest in the present problem, the effects of varying γ 

the temperature dependent thermal conductivity, the intensity of magnetic field, 

Prandtl number Pr and the amplitude-to-length ratio of the wavy surface on the 

surface shear stress in terms of local skin friction coefficient, the rate of heat transfer 

in terms of the local Nusselt number, the velocity profiles, the temperature profiles, 

the streamlines and the isotherms. Numerical values of local rate of heat transfer and 

shearing stress are calculated from equations (2.64) and (2.65) in terms of the Nusselt 

number Nux and skin friction coefficient Cfx respectively for a wide range of the axial 

distance x starting from the leading edge for different values of the aforementioned 

parameters γ, M, Pr and α. Numerical values of the skin friction coefficient Cfx, the 

rate of heat transfer in terms of the Nusselt number Nux, velocity profiles, 

temperature profiles, the streamlines and the isotherms are obtained for different 

values of thermal conductivity parameter γ = 0.0 (constant thermal conductivity) to 

12.0, magnetic parameter ranging from M = 0.0 (non magnetic field) to 3.5, Prandtl 

number Pr = 0.73, 1.73, 4.24, 7.0, 9.45 and 13.5 which correspond to the air at 

21000K, water at 1000C, 400C, 200C, 100C and 0.010C respectively and the 

amplitude-to-length ratio of the wavy surface ranging from α = 0.0 (flat plate) to 0.4 

and these are shown graphically in figures 4.1- 4.15.  

The effect for different values of temperature dependent thermal conductivity (γ = 

0.0, 1.0, 4.0, 7.0, 12.0) on the skin friction coefficient and the heat transfer 

coefficient while Prandtl number Pr = 1.0, α = 0.3 and M = 0.8 are shown in figures 

4.1(a)-4.1(b) respectively. If the value of thermal conductivity parameter increases, 

the skin friction coefficient increases slowly and heat transfer coefficient increases 

monotonically along the upstream direction of the surface against x. The maximum 

values of the skin friction coefficient are recorded to be 0.78350, 0.84982, 0.93324, 

0.96996 and 1.00 for γ  = 0.0, 1.0, 4.0, 7.0, 12.0 and each of which occurs at same 

 81



Chapter 4: Effect of temperature dependent thermal conductivity on MHD natural   
 
 

point x = 0.50. However, the highest values of the rate of heat transfer are found to 

be 0.34186, 0.47389, 0.77061, 1.00287 and 1.34865 respectively. It occurs at the 

surface because thermal conductivity of solid is greater than that of fluid. Here it is 

observed that the skin friction coefficient and the rate of heat transfer coefficient 

increase by approximately 22% and 75% respectively when the value of thermal 

conductivity parameter changes from 0.0 to 12.0. The higher value of the thermal 

conductivity accelerates the fluid flow, increases the skin friction coefficient and also 

the heat transfer coefficient. 

The variation of the local skin friction coefficient Cfx and local rate of heat transfer 

Nux for different values of Prandtl number (Pr = 0.73, 1.73, 4.24, 7.0, 9.45, 13.5) for 

γ  = 5.0 and M = 0.8 are shown in figures 4.2(a)-4.2(b) respectively while α = 0.2. 

The influence of Prandtl number Pr, the surface shear stress in terms of local skin 

friction coefficient becomes slower in the downstream region. On the other hand, for 

increased values of Prandtl number the rate of heat transfer increases significantly 

against the axial distance of x. In this case the maximum values of local skin friction 

coefficient are 0.97199 and 0.67547 for Pr = 0.73 and 13.5 respectively which occurs 

at same point x = 0.45. Here it is observed that at x = 0.45 the skin friction coefficient 

decreases by approximately 31% due to the increased value of Pr. Again figure 

4.2(b) shows that the maximum values of rate of heat transfer are 0.80666 and 

2.28076 for Pr = 0.73 and 13.5 respectively and the heat transfer rate increases by 

approximately 65% as Pr changes from Pr = 0.73 to 13.5. Each of this occurs at the 

surface. 

Figures 4.3(a)-4.3(b) show that the skin friction coefficient Cfx and the rate of heat 

transfer coefficient Nux decrease gradually from zero value at lower stagnation point 

along the x direction for the effect of magnetic field while Pr = 1.0, γ  = 5.0 and α  = 

0.2. The maximum values of skin friction coefficient and the rate of heat transfer are 

recorded to be 1.14600, 0.88607 and 0.97925, 0.91644 for M = 0.0 and 3.5 

respectively which occurs at the different position of x. It is noted that, the skin 

friction coefficient and the local Nusselt number decrease by approximately 23% and 

6% respectively as the magnetic parameter M changes from 0.0 to 3.5.  
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The influence of the amplitude-to-length ratio of the wavy surface (α = 0.0, 0.2, 0.3, 

0.4) leads to decrease the frictional force and the temperature gradient in terms of the 

heat transfer rate while Pr = 0.73, M = 0.8 and γ  = 2.0 which are depicted in figures 

4.4(a) and 4.4(b) respectively. The maximum values of the skin friction coefficient 

and the rate of heat transfer in terms of the local Nusselt number Nux are 1.12831 and 

0.70567 respectively for α = 0.0 which occurs at the surface and 0.93936, 0.59409 

respectively for α = 0.4 which occurs at the different position of x. It is seen that the 

skin friction coefficient and the rate of heat transfer decrease by approximately 17% 

and 16% respectively when the amplitude-to-length ratio of the wavy surface 

increases from 0.0 to 0.4.  

The variation of temperature dependent thermal conductivity (γ = 0.0, 1.0, 4.0, 

7.0,12.0) on the velocity ),( ηxf ′  and the temperature θ(x,η) within the boundary 

layer with other fixed parameters, α = 0.3, M = 0.8 and Pr = 1.0 are displayed in 

figure 4.5(a) and figure 4.5(b) respectively. As , so the increasing 

value of thermal conductivity parameter increases the temperature difference 

between the surface and ambient temperature of the fluid. Then heat is transferred 

quickly from surface to fluid within the boundary layer. For this reason both the 

velocity and temperature increase with the increasing value of thermal conductivity 

parameter. Moreover, the maximum values of velocity are found to be 0.41757, 

0.48675, 0.59503, 0.65093 and 0.69985 for γ  = 0.0, 1.0, 4.0, 7.0 and 12.0 

respectively and each of which occurs at different position of η. It is observed that 

the velocity increases by approximately 40% as γ changes from 0 to 12.0.  

)(*
∞−= TTwγγ

Figure 4.6(a) and figure 4.6(b) deal with the effect of Prandtl number (Pr = 0.73, 

1.73, 4.24, 7.0, 9.45, 13.5) when the values of amplitude-to-length ratio of the wavy 

surface α = 0.2, γ = 5.0 and M = 0.8 on the velocity ),( ηxf ′  and the temperature 

θ(x,η). When Prandtl number Pr increases then both the velocity and temperature 

decrease along the downstream direction against x, this is shown in figure 4.6. It is 

seen that the velocity decreases by approximately 55% when Pr increases from 0.73 

to 13.5. Increasing values of Pr increases viscosity and decreases thermal action of 

the fluid. When viscosity increases then fluid does not move freely and finally 

velocity and temperature decrease. 
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The magnetic field acting along the horizontal direction retards the fluid velocity. 

The values of α = 0.2, γ = 5.0 and Pr = 1.0 are shown in figure 4.7(a). A Lorentz 

force is created by the interaction between the applied magnetic field and flow field. 

This force acts against the fluid flow and reduces the velocity. From figure 4.7(b), it 

is observed that the temperature within the boundary layer increases monotonically 

for increasing values of intensity of magnetic field from 0 to 3.5.  

The effect of the temperature dependent thermal conductivity on the development of 

streamlines and isotherms are plotted in figures 4.8 and 4.9 respectively while Pr = 

1.0, α = 0.3 and M = 0.8. It is found that for γ = 0.0 the value of ψmax is 4.56, for γ = 

4.0 ψmax is 7.51, for γ = 7.0 ψmax is 8.52 and ψmax is 9.09 where γ = 10.0. So from 

figure 4.8, it is seen that the effect of temperature dependent thermal conductivity, 

the flow rate in the boundary layer strongly affected and leads to thicker velocity 

boundary layer. From figure 4.9, it is also observed that for the effect of thermal 

conductivity, the thermal boundary layer becomes thicker. 

Figures 4.10 and 4.11 show the effect of Prandtl number on the formation of 

streamlines and isotherms respectively for the amplitude-to-length ratio of the wavy 

surface α = 0.2, M = 0.8 and γ = 5.0. It can be seen that for Pr equal to 0.73, 4.24, 

9.45 and 13.5 the maximum values of ψ, that is, ψmax are 8.71, 4.18, 2.71 and 2.19 

respectively. So it is concluded that for higher values of Pr both the momentum and 

the thermal boundary layer become thinner. 

The variation of the surface roughness on the streamlines and isotherms for the 

values of intensity of magnetic field equal to 0.0, 1.5, 2.5 and 3.5 are depicted in the 

figure 4.12 and figure 4.13 respectively while Pr = 1.0, α = 0.2 and γ = 5.0. From 

figure 4.13, it is observed that when the effect of magnetic field considered, the 

temperature of the fluid flow within the boundary layer becomes higher. On the other 

hand, the maximum values of ψ decreases monotonically while the values of 

intensity of magnetic field increases that depicts in figure 4.12. The maximum values 

of ψ, that is, ψmax are 12.88, 5.41, 3.57 and 2.63 for M = 0.0, 1.5, 2.5 and 3.5 

respectively.  

The effect of variation of the surface roughness on the streamlines and isotherms for 

the values of the amplitude-to-length ratio of the wavy surface equal to 0.0, 0.2 and 
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0.3 are shown in the figure 4.14 and figure 4.15 respectively while Pr = 0.73, M = 0.8 

and γ = 2.0. Figure 4.14 depicts that the maximum values of ψ increases slowly as 

the values of α increases. The maximum values of ψ, that is, ψmax are 7.61, 7.72 and 

8.02 for α = 0.0, 0.2 and 0.3 respectively. Figure 4.15 shows that for increasing 

values of the amplitude-to-length ratio of the wavy surface, the temperature of the 

fluid flow within the boundary layer becomes higher.  
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Figure 4.1: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of thermal conductivity variation parameter γ while α = 0.3, 
M = 0.8 and Pr = 1.0.   
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Figure 4.2: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of Prandtl number Pr while α = 0.2, M = 0.8 and γ = 5.0. 
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Figure 4.3: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of magnetic parameter M with Pr = 1.0, α = 0.2 and γ = 5.0. 
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Figure 4.4: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of amplitude-to-length ratio of the wavy surface α when Pr 
= 0.73, M = 0.8 and γ = 2.0. 
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Figure 4.5: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of γ while α = 0.3, M = 0.8 and Pr = 1.0. 

 90



Chapter 4: Effect of temperature dependent thermal conductivity on MHD natural   
 
 

0 2 4 6 8 10
η

0

0.2

0.4

0.6

0.8

Ve
lo

ci
ty

,

Pr = 0.73
Pr = 1.73
Pr = 4.24
Pr = 7.00
Pr = 9.45
Pr = 13.5

(a)

M = 0.8
γ = 5.0 , α = 0.2

f'

 
 

0 2 4 6 8 10
η

0

0.2

0.4

0.6

0.8

1

Te
m

pe
ra

tu
re

,

Pr = 0.73
Pr = 1.73
Pr = 4.24
Pr = 7.00
Pr = 9.45
Pr = 13.5

(b)

M = 0.8
γ = 5.0 , α = 0.2

θ

 
 

 
Figure 4.6: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of Prandtl number Pr with M = 0.8, α = 0.2 and γ = 5.0. 
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Figure 4.7: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of magnetic parameter M with Pr = 1.0, α = 0.2 and γ = 5. 
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Figure 4.8: Streamlines for (a) γ = 0.0 (b) γ = 4.0 (c) γ = 7.0 (d) γ 
= 10.0 while Pr = 1.0, α = 0.3 and M = 0.8. 
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Figure 4.9: Isotherms for (a) γ = 0.0 (b) γ = 4.0 (c) γ = 7.0 (d) γ = 
10.0 while Pr = 1.0, α = 0.3 and M = 0.8. 
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Figure 4.10: Streamlines for (a) Pr = 0.73 (b) Pr = 4.24 (c) Pr = 
9.45 (d) Pr = 13.5 while M = 0.8, α = 0.2 and γ = 5.0.  
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Figure 4.11: Isotherms for (a) Pr = 0.73 (b) Pr = 4.24 (c) Pr = 9.45 
(d) Pr = 13.5 while M = 0.8, α = 0.2 and γ = 5.0. 
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Figure 4.12: Streamlines for (a) M = 0.0 (b) M = 1.5 (c) M = 2.5 
(d) M = 3.5 while Pr = 1.0, α = 0.2 and γ = 5.0. 
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Figure 4.13: Isotherms for (a) M = 0.0 (b) M = 1.5 (c) M = 2.5 (d) 
M = 3.5 while Pr = 1.0, α = 0.2 and γ = 5.0. 
 

 98



Chapter 4: Effect of temperature dependent thermal conductivity on MHD natural   
 
 

 
 

0 2 4 6 8 10x
0

5

10

15

20
y

7.106.596.095.585.074.56

4.063.55

3.042.54

2.031.521.010.51

0.20

7.61

(a)

 
 
 

0 2 4 6 8 10x
0

5

10

15

20

y
7.727.20

6.69

6.17

5.665.144.634.123.603.092.57

2.061.54

1.03

0.51

(b)

 
 
 

0 2 4 6 8 10x
0

5

10

15

20

y
7.65

7.14

6.636.12

5.61

5.10

4.594.083.573.062.552.041.531.020.51

0.13

8.02(c)

 
 
 

Figure 4.14: Streamlines for (a) α = 0.0 (b) α = 0.2 (c) α = 0.3 
while γ = 2.0, Pr = 0.73 and M = 0.8. 
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Figure 4.15: Isotherms for (a) α = 0.0 (b) α = 0.2 (c) α = 0.3 while 
γ = 2.0, Pr = 0.73 and M = 0.8. 
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The values of skin friction coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux have been represented in Table A3 for the computational 

domain for variation of thermal conductivity parameter (γ  = 0.0, 4.0, 10.0) while 

amplitude-to-length ratio of the wavy surface α = 0.3, M = 0.8 and Pr = 1.0 which 

shown in Appendix A. Here it is noted that the complete cycle of the wavy surface is 

from x = 0.0 to 2.0. The skin friction coefficient Cfx increases for the first quarter of 

the cycle (x ≅ 0 to x ≅ 0.50) and decreases in the second quarter (x ≅ 0.50 to x ≅1.0). 

From x ≅ 1.0 to ≅1.5 (i.e., third quarter) the skin friction coefficient again increases, 

whereas the fourth quarter (x ≅ 1.5 to x ≅ 2.0) it decreases. The skin friction 

coefficient and the rate of heat transfer show similar characteristics throughout the 

domain. However, the maximum values of local skin friction coefficient Cfx are 

recorded to be 0.78350, 0.93324 and 0.99073 for γ  = 0.0, 4.0 and 10.0 respectively 

which occurs at x = 0.50. Moreover, the maximum values of the rate of heat transfer 

are recorded to be 0.34186, 0.77061 and 1.21257 for γ  = 0.0, 4.0 and 10.0 

respectively which occurs at the surface. The local skin friction coefficient Cfx and 

the rate of heat transfer in terms of Nusselt number Nux increase by approximately 

21% and 72% respectively as γ increases from 0.0 to 10.0. 

Skin friction coefficient Cfx and the local rate of heat transfer in terms of Nusselt 

number Nux against x for the variation of Prandtl number Pr, magnetic parameter M 

and thermal conductivity parameter γ with α = 0.2 are presented in Table A4 which 

shown in Appendix A. From this table it is concluded that if the value of Pr increases 

then the values of the skin-friction coefficient Cfx decreases and the rate of heat 

transfer in terms of Nusselt number Nux increases for any values of γ and M. 

However it is also seen that if the value of intensity of magnetic field increases the 

values of Cfx and Nux decreases while it increases of γ. 

4.3 Conclusions 
The problem of natural convection heat transfer of viscous incompressible fluid with 

temperature dependent thermal conductivity with magnetic field along a vertical 

wavy surface has been analyzed. Brief summaries of the major results are listed in 

the following:  
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• The effect of increasing temperature dependent thermal conductivity results in 

increasing the local skin friction coefficient, the local rate of heat transfer, the 

velocity and temperature as well as the streamlines and isotherms. When thermal 

conductivity is dependent on temperature then both the temperature and heat 

transfer rate increase.  

• An increase in the values of Prandtl number Pr leads to decrease the velocity, 

temperature, the local skin friction coefficient and increases the local rate of heat 

transfer significantly. The velocity and thermal boundary layer also become 

thinner for large value of Prandtl number Pr. 

• The effect of magnetic field is to decrease the skin friction coefficient and rate of 

heat transfer in terms of Nusselt number and the velocity over the whole 

boundary layer, but reverse case happens for the temperature. Increased values 

of intensity of magnetic field cause the velocity boundary layer thinner and 

thicker the thermal boundary layer. 

• The skin friction coefficient and rate of heat transfer decrease for increased 

values of the amplitude-to-length ratio of the wavy surface over the whole 

boundary layer. The velocity, temperature increase and the momentum, the 

thermal boundary layer become thicker for the effect of amplitude-to-length 

ratio of the wavy surface. 

• When thermal conductivity is dependent on temperature then thermal 

conductivity variation parameter γ depend on the difference between the surface 

temperature and ambient temperature of the fluid. This temperature difference 

increases with the increase of thermal conductivity. So increasing values of 

thermal conductivity variation parameter indicates that heat is transferred rapidly 

from surface to the fluid within the boundary layer. Then velocity and 

temperature increase for increasing values of temperature dependent thermal 

conductivity and also fluid mass is transferred. Thermal conductivity is a 

measure of ability of the fluid to conduct heat. Increasing velocity increases skin 

friction coefficient and flow rate in the boundary layer. The heat transfer rate 

also increases.  
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CHAPTER 5 
Combined effect of temperature dependent 
viscosity and thermal conductivity on MHD 
natural convection flow  
5.1 Introduction 
Natural convection flow is often encountered in the study of the structure of stars and 

planets or in cooling of nuclear reactors. A considerable amount of research has been 

accomplished on the effects of electrically conducting fluids such as liquid metals, 

water mixed with a little acid and others in the presence of transverse magnetic field 

on the flow and heat transfer characteristics over various geometries. For the fluids, 

which are important in the theory of lubrication, the heat generated by the internal 

friction and the corresponding rise in temperature do affect the viscosity and thermal 

conductivity of the fluid and they can no longer be regarded as constant. Flow of 

electrically conducting fluid in the presence of magnetic field with combined effect 

of temperature dependent viscosity and thermal conductivity on MHD natural 

convection flow along a wavy surface problems are significant from the technical 

point of view. 

In the present chapter, a steady two dimensional laminar flow of viscous 

incompressible fluid on MHD free convection flow with combined effect of 

temperature dependent viscosity and thermal conductivity along a uniformly heated 

vertical wavy surface has been investigated. Governing equations of the flow for 

both the viscosity and thermal conductivity of the fluid are considered to be linear 

function of temperature. Using the appropriate transformations given in equation 

(2.28) the governing equations (2.23), (2.24) and (2.53) with associated boundary 

conditions (2.26) are converted to non-dimensional boundary layer equations (2.66) 

to (2.68). These equations are solved numerically by employing the implicit finite 

difference method, known as the Keller-box scheme. The numerical results of the 

surface shear stress in terms of the skin friction coefficient Cfx, the rate of heat 

transfer in terms of Nusselt number Nux, the streamlines and the isotherms for 

viscosity parameter ε, thermal conductivity variation parameter γ, magnetic 
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parameter M are presented graphically while the amplitude-to-length ratio of the 

wavy surface α = 0.3 and Prandtl number Pr = 7.0 (water).  

5.2 Results and discussion  

Numerical values of the skin friction coefficient Cfx, the rate of heat transfer in terms 

of the Nusselt number Nux, the streamlines and the isotherms are obtained for 

different values of the viscosity parameter ε = 0.0 (constant viscosity) to 30.0, the 

magnetic parameter M = 0.0 (non magnetic field) to 5.0 and thermal conductivity 

variation parameter γ ranging from 0.0 (constant thermal conductivity) to 15.0 and 

depicted in figures 5.1- 5.9.  

Numerical values of the skin friction coefficient and the rate of heat transfer in terms 

of the local Nusselt number are depicted graphically in figures 5.1(a) and 5.1(b) 

respectively against the axial distance of x in the interval [0, 8] for the effect of 

temperature dependent viscosity (ε = 0.0, 5.0, 10.0, 20.0, 30.0) keeping all other 

controlling parameters amplitude-to-length ratio of the wavy surface α = 0.3, M = 

1.0, γ = 4.0 and Pr = 7.0. Figure 5.1(a) indicates that increasing values of the 

viscosity parameter the skin friction coefficient increases monotonically along the 

upward direction of the surface and it is seen that the local skin friction coefficient 

increases by approximately 66% as ε changes from 0.0 to 30.0. The rate of heat 

transfer decreases by approximately 46% due to the increased value of viscosity 

parameter which is evident from figure 5.1(b).  

The variation of temperature dependent thermal conductivity (γ = 0.0, 2.0, 6.0, 10.0, 

15.0) on the skin friction coefficient and the heat transfer coefficient while Prandtl 

number Pr = 7.0, α = 0.3, ε = 5.0 and M = 0.8 are shown in figures 5.2(a)-5.2(b) 

respectively. For increasing value of γ the skin friction coefficient and heat transfer 

coefficient increase significantly along the upstream direction of the surface against 

the axial direction of x. It is observed that the skin friction coefficient and heat 

transfer rate increase by approximately 40% and 81% respectively when γ changes 

from 0.0 to 15.0. 

The effect of magnetic field on the local skin friction coefficient Cfx and local rate of 

heat transfer Nux are illustrated in figures 5.3(a) and 5.3(b) respectively for Prandtl 
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number Pr = 7.0, α = 0.3, γ = 5.0 and viscosity parameter ε = 5.0. The skin friction 

coefficient and the rate of heat transfer coefficient decrease by approximately 34% 

and 12% respectively when the value of intensity of magnetic field increases from 

0.0 to 5.0.  

The effect of the temperature dependent viscosity on the development of streamlines 

and isotherms are plotted in figures 5.4 and 5.5 respectively for Pr = 7.0, α = 0.3, γ = 

4.0 and M = 1.0. It is found that for ε = 0.0 the value of ψmax is 2.86, for ε = 10.0 ψmax 

is 2.49, for ε = 20.0 ψmax is 2.29 and for ε = 30.0 ψmax is 2.10. Hence from these 

figures it is seen that for the effect of viscosity, the flow rate in the boundary layer 

decreases and the thermal boundary layer becomes thicker monotonically.  

Figures 5.6 and 5.7 show the effect of temperature dependent thermal conductivity 

on the formation of streamlines and isotherms respectively with other controlling 

parameters α = 0.3, M = 0.8, ε = 5.0 and Pr = 7.0. It can be noted that for γ equal to 

0.0, 6.0, 10.0, and 15.0 the maximum values of ψ, that is, ψmax are 1.62, 3.26, 4.06 

and 4.58 respectively. So it can be concluded that for large value of thermal 

conductivity parameter both the momentum and the thermal boundary layer grow 

thicker. 

The effect of different values of intensity of magnetic field equal to 0.0, 0.5, 3.0 and 

5.0 on the streamlines and isotherms are illustrated in figures 5.8 and 5.9 respectively 

with other controlling parameters Prandtl number Pr = 7.0, α = 0.3, γ = 5.0 and ε = 

5.0. Figure 5.8 depicts that the maximum values of ψ decreases quickly while the 

values of intensity of magnetic field increases. When M = 0.0 the value of ψmax is 

5.09, for M = 0.5 the value of ψmax is 3.35, for M = 3.0 the value of ψmax is 1.83 and 

for M = 5.0 the value of ψmax is 1.35. On the other hand, temperature of the fluid flow 

increases significantly as the values of the intensity of magnetic field increase which 

is presented in figure 5.9. 
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Figure 5.1: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of viscosity parameter ε while Pr = 7.0, M = 1.0, γ = 4.0 and 
α = 0.3. 
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Figure 5.2: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of γ while Pr = 7.0, M = 0.8, α = 0.3 and ε = 5.0.   
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Figure 5.3: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of magnetic parameter M with Prandtl number Pr = 7.0, γ = 
5.0, ε = 5.0 and α = 0.3. 
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Figure 5.4: Streamlines for (a) ε = 0.0 (b) ε = 10.0 (c) ε = 20.0 (d) 
ε = 30.0 while Pr = 7.0, M = 1.0, γ = 4.0 and α = 0.3. 
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Figure 5.5: Isotherms for (a) ε = 0.0 (b) ε = 10.0 (c) ε = 20.0 (d) ε 
= 30.0 while Pr = 7.0, M = 1.0, γ = 4.0 and α = 0.3.   
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Figure 5.6: Streamlines for (a) γ = 0.0 (b) γ  = 6.0 (c) γ  = 10.0 (d) 
γ = 15.0 while Pr = 7.0, M = 0.8, α = 0.3 and ε = 5.0.   
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Figure 5.7: Isotherms for (a) γ = 0.0 (b) γ = 6.0 (c) γ = 10.0 (d) γ = 
15.0 while Pr = 7.0, M = 0.8, α = 0.3 and ε = 5.0. 
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Figure 5.8: Streamlines for (a) M = 0.0 (b) M = 0.5 (c) M = 3.0 (d) 
M = 5.0 while Pr = 7.0, γ = 5.0, ε = 5.0 and α = 0.3. 
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Figure 5.9: Isotherms for (a) M = 0.0 (b) M = 0.5 (c) M = 3.0 (d) 
M = 5.0 while Pr = 7.0, γ = 5.0, ε = 5.0 and α = 0.3. 
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5.3 Conclusions  
The combined effect of temperature dependent viscosity and thermal conductivity on 

MHD natural convection flow of viscous incompressible fluid along a uniformly 

heated vertical wavy surface has been investigated. The conclusions are as follows:  

• The effect of increasing temperature dependent viscosity results in increasing 

the local skin friction coefficient, the temperature and decreasing the velocity, 

the local rate of heat transfer over the whole boundary layer. 

• An increase in the values of the intensity of magnetic field leads to decrease the 

skin friction coefficient, the local rate of heat transfer and the velocity of the 

fluid flow while the reverse phenomena occur for the temperature. 

• It is found that the skin friction coefficient and heat transfer rate increase 

significantly for increasing values of temperature dependent thermal 

conductivity parameter. 

• The velocity boundary layer becomes thinner and thicker the thermal boundary 

layer when the effect of temperature dependent viscosity is considered. 

• For the effect of temperature dependent thermal conductivity both the velocity 

and thermal boundary layer grow thick. 

• For higher value of the intensity of magnetic field the thermal boundary layer 

becomes thicker and thinner the velocity boundary layer.  
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CHAPTER 6 
Effect of Joule heating on MHD natural 
convection flow  
6.1 Introduction 
When current flows in an electrical conductor such as wire, electrical energy is lost 

due to the resistance of the electrical conductor. This lost electrical energy is 

converted to thermal energy called Joule heating. This is because the electrical power 

loss equals the heat transfer. Joule heating or Ohmic heating in electronics and in 

physics refers to the increase in temperature of a conductor as a result of resistance to 

an electrical current flowing through it. But at an atomic level, Joule heating is the 

result of moving electrons colliding with atoms in a conductor, whereupon 

momentum is transferred to the atom, increasing its kinetic energy. When similar 

collisions cause a permanent structural change, rather than an elastic response, the 

result is known as electro migration. The increase in the kinetic energy of the ions 

manifests itself as heat and a rise in the temperature of the conductor. Hence energy 

is transferred from electrical power supply to the conductor and any materials with 

which it is in thermal contact. 

The effects of Joule heating on MHD natural convection flow of viscous 

incompressible fluid with temperature dependent variable viscosity and thermal 

conductivity along a uniformly heated vertical wavy surface have been described in 

this chapter. The governing boundary layer equations are first transformed into a 

non-dimensional form using the appropriate transformations. The resulting nonlinear 

system of partial differential equations are mapped into the domain of a vertical flat 

plate and then solved numerically employing the implicit finite difference method, 

known as the Keller-box scheme. Numerical results are presented graphically by skin 

friction coefficient, the rate of heat transfer in terms of Nusselt number, the velocity 

and temperature profiles as well as the streamlines and the isotherms for a selection 

of parameters set consisting of Joule heating parameter J, viscosity parameter ε, 

thermal conductivity variation parameter γ, magnetic parameter M, the amplitude-to-

length ratio of the wavy surface α and Prandtl number Pr. Numerical results of the 
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local skin friction coefficient Cfx and the rate of heat transfer Nux  for Joule heating 

parameter J are also presented in tabular form. 

This is the most general case among the cases considered in chapters 3 to 6. When 

the effect of temperature dependent thermal conductivity and Joule heating are 

ignored and the strength of magnetic field and temperature dependent viscosity are 

considered then the resulting cases are case-I and case-II. When the effect of 

magnetic field and temperature dependent thermal conductivity are considered and 

the effect of temperature dependent viscosity and Joule heating are ignored then it 

gives the case-III. When the effect of magnetic field and temperature dependent 

thermal conductivity, temperature dependent viscosity are considered and the effect 

of Joule heating is ignored case-IV is obtained.     

6.2 Results and discussion 
Numerical values of the shear stress in terms of the skin friction coefficients Cfx and 

the rate of heat transfer in terms of the Nusselt number Nux calculated from equations 

(2.44) and (2.64) for a wide range of the axial distance x starting from the leading 

edge. The velocity, the temperature profile, the streamlines and the isotherms are also 

obtained. These are shown graphically in figures 6.1-6.19 for different values of the 

aforementioned parameters of viscosity parameter ε = 0.0 (constant viscosity) to 20.0 

and Joule heating parameter J = 0.0 (without Joule heating) to 2.0, thermal 

conductivity parameter γ = 0.0 (constant thermal conductivity) to 10.0, magnetic 

parameter M = 0.0 (non magnetic field) to 1.5, Prandtl number Pr = 0.73, 1.73, 3.0, 

7.0 and 9.45 which correspond to the air at 21000K, water at 1000C, 600C, 200C and 

100C respectively and the amplitude-to-length ratio of the wavy surface α = 0.0 (flat 

plate) to 0.4. The skin friction coefficient Cfx and local rate of heat transfer Nux varies 

according to the slope of the wavy surface. This is due to the alignment of the 

buoyancy force 1/(1+σx
2), as shown in equation (2.38), which drives the flow 

tangentially to the wavy surface. 

The effect of Joule heating on the local skin friction coefficient and the rate of heat 

transfer in terms of the local Nusselt number against x from the wavy surface while α 

= 0.3, M = 0.02, γ = 4.0, ε = 5.0 and Pr = 0.5 are illustrated in figures 6.1(a) and 

6.1(b) respectively. Figure 6.1(a) shows that, the skin friction coefficient increases 
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slightly along the upstream direction of the surface. On the other hand, the heat 

transfer rate gradually decreases along the downstream direction of the surface. It can 

be shown from figure 6.1(b). The highest values of local skin friction coefficient are 

recorded to be 2.27275, 2.27366, 2.27550, 2.27733 and 2.27963 for J = 0.0, 0.02, 

0.06, 0.10 and 0.15 respectively which occurs at same point of x = 0.5 shown in 

figure 6.1(a). The effect of Joule heating in fluid is very small. Thus the skin friction 

coefficient increases by only 0.30% when J changes from 0.0 to 0.15. The highest 

values of local 

T

rate of heat transfer are 0.56347, 0.56218, 0.55958, 0.55698 and 

0.55372 for J = 0.0, 0.02, 0.06, 0.10 and 0.15 respectively which occur also at the 

same point of x = 0.5. Finally, it is seen that the rate of heat transfer decreases by 

1.73% as the value of Joule heating parameter increases from 0.0 to 0.15.  

The analysis of the effect of temperature dependent viscosity (ε = 0.0, 5.0, 10.0, 15.0 

and 20.0) on the surface shear stress in terms of the local skin friction coefficient and 

the rate of heat transfer in terms of the local Nusselt number against x are exposed 

within the boundary layer with α = 0.3, M = 0.8, J = 0.02, γ = 5.0 and Pr = 1.0 in 

figure 6.2.  This figure shows that an increase in the variable viscosity, the skin 

friction coefficient increases monotonically along the upstream direction of the 

surface and reduces the heat transfer rate. The decreasing heat transfer rate becomes 

slower in the downstream region against x. The maximum values of local skin 

friction coefficient are recorded to be 0.94844, 1.85317, 2.26859, 2.54961 and 

2.76364 for ε = 0.0, 5.0, 10.0, 15.0 and 20.0 respectively which occurs at x = 0.50. 

Again the peak values of the rate of heat transfer are 0.85232 for ε = 0.0 which 

occurs at the surface and 0.70348, 0.65376, 0.62430 and 0.60373 for ε = 5.0, 10.0, 

15.0 and 20.0 respectively which occurs at the same axial point of x = 0.45. It is 

observed that the local skin friction coefficient increases by approximately 65% and 

the rate of heat transfer devalues by approximately 29% as ε increases from 0.0 to 

20.0.  

The effect of variation of temperature dependent thermal conductivity (γ = 0.0, 2.0, 

6.0, 10.0) on the skin friction coefficient and the heat transfer coefficient while 

Prandtl number Pr = 0.73, ε = 5.0, J = 0.02, α = 0.3 and M = 0.5 are displayed in 

figures 6.3(a) and 6.3(b) respectively. As the value of thermal conductivity increases, 
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the skin friction coefficient and heat transfer coefficient increase significantly along 

the upstream direction of the surface. The maximum values of the skin friction 

coefficient are recorded to be 1.54766, 1.84651, 2.06230 and 2.15417 for γ  = 0.0, 

2.0, 6.0 and 10.0 which occurs at x = 0.50. The skin friction coefficient increases by 

approximately 28% as the value of temperature dependent thermal conductivity 

parameter changes from 0 to 10.0 at x = 0.50. Again the highest values of heat 

transfer rate are recorded to be 0.25035, 0.43889, 0.72943 and 0.97869 respectively. 

That occurs at the different positions of x. The rate of heat transfer coefficient 

increases by approximately 74% when γ changes from 0 to 10.0.  

The variation of the local skin friction coefficient Cfx and local rate of heat transfer 

Nux for different values of the intensity of magnetic field at different positions of x 

are illustrated in figure 6.4 for Pr = 0.7, α = 0.3, J = 0.02, γ  = 5.0 and ε = 5.0. From 

figure 6.4 it is observed that an increase in the intensity of magnetic field (M = 0.0, 

0.2, 0.6, 1.0, 1.5) leads to decrease the local skin friction coefficient Cfx and local rate 

of heat transfer Nux at different position of x. The maximum values of skin friction 

coefficient and the rate of heat transfer in terms of the local Nusselt number Nux are 

2.25346 and 0.69817 for M = 0.0 which occurs at x = 0.50 and 1.70749 which occurs 

at x = 0.45 and 0.63160 which occurs at surface for M = 1.5 respectively. The skin 

friction coefficient and the rate of heat transfer coefficient decrease by approximately 

24% and 10% respectively as intensity of magnetic field increases from 0.0 to 1.5.  

The surface shear stress in terms of skin friction coefficient and local rate of heat 

transfer for influence of Prandtl number Pr while M = 0.2, γ  = 4.0, ε = 5.0, α = 0.3 

and J = 0.02 are displayed in figures 6.5(a) and 6.5(b) respectively. From figure 

6.5(a), it is noted that the decreasing skin friction coefficient monotonically changes 

in the downstream region. On the other hand, increased values of Prandtl number Pr 

increase the rate of heat transfer in the upstream direction of the surface. Moreover, 

the maximum values of the skin friction coefficient are recorded to be 2.10123, 

1.85016, 1.67411, 1.41363 and 1.32685 for Pr = 0.73, 1.73, 3.0, 7.0 and 9.45 

respectively. Furthermore, maximum values of the rate of heat transfer Nux are 

0.61615, 0.81031, 0.96284, 1.23774 and 1.34802 for Pr = 0.73, 1.73, 3.0, 7.0 and 

9.45 respectively. In this case the local skin friction coefficient decreases by 
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approximately 37% and the rate of heat transfer increases by approximately 54% 

which occurs at the point x = 0.50 while Prandtl number Pr changes from 0.73 to 

9.45.  

The effect of amplitude-to-length ratio of the wavy surface (α = 0.0, 0.1, 0.2, 0.3, 

0.4) leads to decrease the skin friction coefficient and the rate of heat transfer in 

terms of the local Nusselt number while Prandtl number Pr = 0.73, M = 0.2, J = 0.01, 

γ = 4.0 and ε = 5.0 are shown in figures 6.6(a) and 6.6(b) respectively. The pick 

values of skin friction coefficient and the rate of heat transfer in terms of the local 

Nusselt number Nux are 2.17998 and 0.64624 respectively for α = 0.0 which attains 

at the surface and 2.09955, 2.10851, 2.10078, 2.06092 and 0.63134, 0.61835, 

0.61681, 0.62702 for α = 0.1, 0.2, 0.3 and 0.4 respectively which occurs at different 

position of x. It is shown that surface shear stress in terms of the frictional force and 

temperature gradient in terms of heat transfer rate decrease by 5.46% and 2.97% 

respectively when amplitude-to-length ratio of the wavy surface increases from 0.0 

to 0.4. Because of increasing the surface waviness the velocity force as well as skin 

friction coefficient and the heat transfer rate decrease at the local points.  

Figure 6.7(a) and figure 6.7(b) deal with the effect of Joule heating on the velocity 

),( ηxf ′  and the temperature θ(x,η) within the boundary layer for different values of 

the controlling parameters thermal conductivity variation parameter γ = 4.0,  

viscosity parameter ε = 5.0, α = 0.3, magnetic parameter M = 0.02 and Prandtl 

number Pr = 0.5. From figure 6.7(a), it is revealed that the velocity ),( ηxf ′  

increases very slowly with the increase of Joule heating parameter which indicates 

that Joule heating accelerates the fluid motion. Small increment is shown from figure 

6.7(b) on the temperature θ(x,η) for increasing value of J. Moreover, the highest 

values of the velocity are 0.55037, 0.55053, 0.55425, 0.55813 and 0.56589 for J = 

0.0, 0.02, 0.50, 1.0 and 2.0 respectively and each of which occurs at the same value 

of η = 3.06886. It is seen that the velocity increases by only 2.74% when the value of 

Joule heating parameter changes from 0.0 to 2.0. 

Figure 6.8(a) demonstrates the velocity ),( ηxf ′ for variation of viscosity (ε = 0.0, 

5.0, 10.0, 15.0, 20.0) with other fixed parameters Prandtl number Pr = 1.0, M = 0.8, J 

= 0.02, α = 0.3 and thermal conductivity variation parameter γ = 5.0 and the 
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corresponding temperature θ(x,η) is shown in figure 6.8(b). Increasing viscosity 

decreases the velocity gradient normal to the wall. That is why the velocity of the 

fluid reduces quickly with the increase of the temperature dependent viscosity, which 

is shown in figure 6.8(a). The maximum values of the velocity are 0.61747, 0.41457, 

0.34402, 0.30133 and 0.27130 for ε = 0.0, 5.0, 10.0, 15.0 and 20.0 respectively. It is 

observed that the velocity decreases by approximately 56% as ε increases from 0.0 to 

20.0 that occurs at the different position of η. On the other hand the temperature 

increases within the boundary layer with the increasing values of viscosity 

parameter. Viscosity is proportional to linear function of temperature. So the 

increasing value of viscoty parameter increases the temperature difference between 

the surface and ambient temperature of the fluid. Then heat is transferred rapidely 

from surface to fluid within the boundary layer.  

The variation of the velocity ),( ηxf ′  and the temperature θ(x,η) for the effect of 

magnetic field (M = 0.0, 0.2, 0.6, 1.0, 1.5) while Pr = 0.7, J = 0.02, γ = 5.0, ε = 5.0 

and α = 0.3 are shown in figure 6.9(a) and figure 6.9(b) respectively. It is observed 

from figure 6.9(a) that the increase of the intensity of magnetic field leads to 

decrease the velocity up to a position of η and finally increases with the increase of 

magnetic parameter M. This is because of the velocity having lower peak values for 

higher values of magnetic parameter along η direction. Further, from figure 6.9(b), 

the opposite result is seen for the temperature if intensity of magnetic field increases. 

Figures 6.10 and 6.11 illustrate the effect of Joule heating on the development of 

streamlines and isotherms profile which are plotted for α = 0.3, Pr = 0.5, ε = 5.0, γ = 

4.0 and M = 0.02. Joule heating is the heating effect of conductors carrying currents. 

So the velocity and thermal bundary layer become thicker with the increasing values 

of J. This happens, because the buoyancy force increases, including the flow rate 

increase within the boundary layer. The maximum values of ψ, that is, ψmax are 

13.22, 14.45, 15.28 and 16.31 for Joule heating parameter J = 0.0, 0.06, 0.10 and 

0.15 respectively.  

The effect for different values of temperature dependent viscosity parameter equal to 

0.0, 5.0, 10.0 and 15.0 the streamlines and isotherms profile are shown in figures 

6.12 and 6.13 respectively while Pr = 1.0, α = 0.3, J = 0.02, γ = 5.0 and M = 0.8. 
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From figure 6.12, it is noted that the maximum values of ψ decreases steadily while 

the values of viscosity parameter increases. The maximum values of ψ, that is, ψmax 

are 8.14, 6.69, 5.88 and 5.29 for viscosity parameter ε = 0.0, 5.0, 10.0 and 15.0 

respectively. It is observed from figure 6.13 that as the values of viscosity parameter 

increase the thermal boundary layer becomes thicker gradually. Finally, it is 

concluded that for the effect of temperature dependent viscosity the velocity of the 

fluid flow decreases and temperature of the fluid flow within the boundary layer 

increases. 

The influence of temperature dependent thermal conductivity on the development of 

streamlines and isotherms are plotted in figures 6.14 and 6.15 respectively for Pr = 

0.73, α = 0.3, J = 0.02, ε = 5.0 and M = 0.5. It can be seen that for γ equal to 0.0, 2.0, 

6.0 and 10.0 the maximum values of ψ, that is, ψmax are 5.41, 7.37, 9.05 and 9.68 

respectively. So from figure 6.14, it is seen that for the effect of thermal 

conductivity, the flow rate in the boundary layer increases. From figure 6.15 the 

same result is also observed for the thermal boundary layer. 

Figures 6.16 and 6.17 depict the variation on the streamlines and isotherms for the 

values of Prandtl number Pr equal to 0.73, 3.0, 7.0 and 9.45 while the amplitude-to-

length ratio of the wavy surface α = 0.3, M = 0.2, J = 0.02, ε = 5.0 and γ = 4.0. It is 

found that for Pr = 0.73 the value of ψmax is 10.76, for Pr = 3.0 ψmax is 6.11, for Pr = 

7.0 ψmax is 3.99 and ψmax is 3.42 where Pr = 9.45. So it can be concluded that for 

higher values of Pr lead to thinner both the velocity and thermal boundary layer. 

Figure 6.18 and figure 6.19 display results for the effect of variation of the surface 

roughness on the formation of streamlines and isotherms respectively for the values 

of the amplitude-to-length ratio of the wavy surface equal to 0.0, 0.1 and 0.2 while Pr 

= 0.73, M = 0.2, J = 0.01, γ = 4.0 and ε = 5.0. It is observed from figure 6.18 that as 

the values of α increases the maximum values of ψ increases slightly. The maximum 

values ofψ, that is, ψmax are 11.20, 11.28 and 11.69 for α = 0.0, 0.1 and 0.2 

respectively. The velocity of the fluid flow increases slowly within the boundary 

layer. Figure 6.19 also shows the same results for increasing values of the amplitude-

to-length ratio of the wavy surface. It means that thermal boundary layer becomes 

thicker slowly.  
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Figure 6.1: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of J while Pr = 0.5, M = 0.02, γ = 4.0, ε = 5.0 and α = 0.3. 
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Figure 6.2: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of viscosity parameter ε while α = 0.3, M = 0.8, J = 0.02, γ 
= 5.0 and Pr = 1.0. 
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Figure 6.3: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of thermal conductivity variation parameter γ while Pr = 
0.73, M = 0.5, J = 0.02, α = 0.3 and ε = 5.0.   
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Figure 6.4: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of M with Pr = 0.7, J = 0.02, γ = 5.0, ε = 5.0 and α = 0.3. 
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Figure 6.5: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of Pr while M = 0.2, J = 0.02, γ = 4.0, ε = 5.0 and α = 0.3. 
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Figure 6.6: Variation of (a) skin friction coefficient Cfx and (b) rate 
of heat transfer Nux against dimensionless distance x for different 
values of α when γ = 4.0, ε = 5.0, Pr = 0.73, M = 0.2 and J = 0.01. 
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Figure 6.7: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of J while Pr = 0.5, M = 0.02, γ = 4.0, ε = 5.0 and α = 0.3. 
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Figure 6.8: (a) Velocity profiles f ′  and (b) temperature 
distribution θ against dimensionless distance η for different values 
of ε while α = 0.3, M = 0.8, J = 0.02, γ = 5.0 and Pr = 1.0. 
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Figure 6.9: (a) Velocity profiles f ′  and (b) temperature 

distribution θ against dimensionless distance η for different values 
of M with Pr = 0.7, α = 0.3 and γ = 5.0, J = 0.02 and ε = 5.0. 
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Figure 6.10: Streamlines for (a) J = 0.0 (b) J = 0.06 (c) J = 0.10 
(d) J = 0.15 while α = 0.3, Pr = 0.5, ε = 5.0, γ = 4.0 and M = 0.02. 
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Figure 6.11: Isotherms for (a) J = 0.0 (b) J = 0.06 (c) J = 0.10 (d) 
J = 0.15 while α = 0.3, Pr = 0.5, ε = 5.0, γ = 4.0 and M = 0.02. 
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Figure 6.12: Streamlines for (a) ε = 0.0 (b) ε = 5.0 (c) ε = 10.0 (d) ε 
= 15.0 while Pr = 1.0, α = 0.3, J = 0.02, γ = 5.0 and M = 0.8. 
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Figure 6.13: Isotherms for (a) ε = 0.0 (b) ε = 5.0 (c) ε = 10.0 (d) ε 
= 15.0 while Pr = 1.0, α = 0.3, J = 0.02, γ = 5.0 and M = 0.8. 
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Figure 6.14: Streamlines for (a) γ = 0.0 (b) γ = 2.0 (c) γ = 6.0 (d) γ 
= 10.0 while Pr = 0.73, α = 0.3, J = 0.02, ε = 5.0 and M = 0.5. 
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Figure 6.15: Isotherms for (a) γ = 0.0 (b) γ = 2.0 (c) γ = 6.0 (d) γ = 
10.0 while Pr = 0.73, α = 0.3, J = 0.02, ε = 5.0 and M = 0.5. 
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Figure 6.16: Streamlines for (a) Pr = 0.73 (b) Pr = 3.0 (c) Pr = 7.0 
(d) Pr = 9.45 while ε = 5.0, M = 0.2, J = 0.02, γ = 4.0 and α = 0.3. 
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Figure 6.17: Isotherms for (a) Pr = 0.73 (b) Pr = 3.0 (c) Pr = 7.0 
(d) Pr = 9.45 while ε = 5.0, M = 0.2, J = 0.02, γ = 4.0 and α = 0.3. 
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Figure 6.18: Streamlines for (a) α = 0.0 (b) α = 0.1 (c) α = 0.2 
while Pr = 0.73, J = 0.01, ε = 5.0, M = 0.2 and γ = 4.0. 
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Figure 6.19: Isotherms for (a) α = 0.0 (b) α = 0.1 (c) α = 0.2 while 
Pr = 0.73, J = 0.01, ε = 5.0, M = 0.2 and γ = 4.0. 
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The values of skin friction coefficient Cfx and the rate of heat transfer in terms of the 

local Nusselt number Nux for variation of Joule heating (J = 0.0, 0.06, 0.15) while the 

amplitude-to-length ratio of the wavy surface α = 0.3, magnetic parameter M = 0.02, 

thermal conductivity variation parameter γ = 4.0, viscosity variation parameter ε = 

5.0 and Prandtl number Pr = 0.5 are entered in Table A5 which shown in appendix 

A. It is noted that the complete cycle of the wavy surface is from x = 0.0 to 2.0. The 

skin friction coefficient Cfx and the rate of heat transfer increase for the first quarter 

of the cycle (x ≅ 0 to x ≅ 0.50) and decrease in the second quarter (x ≅ 0.50 to x 

≅1.0). From x ≅ 1.0 to ≅1.5 (i.e., third quarter) the skin friction coefficient Cfx again 

increases, where as the fourth quarter (x ≅ 1.5 to x ≅ 2.0) it decreases. The skin 

friction coefficient Cfx and the rate of heat transfer in terms of the local Nusselt 

number Nux show similar characteristics throughout the domain. The maximum 

values of local skin friction coefficient Cfx are recorded to be 2.27275, 2.27550 and 

2.27963 for J = 0.0, 0.06 and 0.15 respectively and it is seen that the local skin 

friction coefficient Cfx increases by only 0.30%. The maximum values of the rate of 

heat transfer in terms of the local Nusselt number Nux are recorded to be 0.56347, 

0.55958 and 0.55372 for J = 0.0, 0.06 and 0.15 respectively and the rate of heat 

transfer Nux decreases by 1.73% as J increases from 0.0 to 0.15. Both are occurs at 

the same value of x = 0.50. 

6.3 Conclusions 
A computational analysis of the effect of Joule heating on magnetic field natural 

convection flow with viscosity and thermal conductivity variation owing to 

temperature along a uniformly heated vertical wavy surface has been offered. The 

subsequent outcome may be drawn as: 

• The local skin friction coefficient increases noticeably for the growing values 

of Joule heating parameter, temperature dependent viscosity parameter and 

temperature dependent thermal conductivity parameter and decreasing values 

of effect of magnetic field, Prandtl number Pr and the amplitude-to-length 

ratio of the wavy surface. 

• An increase in the values of Joule heating parameter, temperature dependent 

viscosity parameter, amplitude-to-length ratio of the wavy surface and the 
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intensity of magnetic field lead to a significant decrease in the local rate of 

heat transfer. Moreover, the local rate of heat transfer increase due to increase 

of temperature dependent thermal conductivity and Prandtl number Pr. 

• The rate of fluid flow within the boundary layer radically increases for 

increasing values of temperature dependent thermal conductivity and 

decrease for increasing values of temperature dependent viscosity, the 

intensity of magnetic field and Prandtl number Pr. 

• The temperature of the fluid flow within the boundary layer rises 

considerably for the increasing values of temperature dependent viscosity, 

temperature dependent thermal conductivity, the effect of magnetic field and 

decreasing values of Prandtl number. 

• The velocity and temperature increase slightly for Joule heating and the 

amplitude-to-length ratio of the wavy surface. 

• The velocity and thermal boundary layer expand for increasing values of 

Joule heating parameter and the amplitude-to-length ratio of the wavy 

surface. 
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CHAPTER 7 
Comparison 
7.1 Introduction 
The comparisons of the numerical results of the skin friction coefficient, the rate of 

heat transfer, the velocity, the temperature as well as the streamlines and the 

isotherms for the effect of temperature dependent viscosity, thermal conductivity, 

magnetic field and Joule heating are presented graphically and also in tabular form. 

The comparisons of the present numerical results of the velocity, the temperature, the 

skin friction coefficient and the rate of heat transfer are also represented in tabular 

form and graphically with those obtaintd by Hossain et al. (2002) and Alam et al. 

(1997). The present results are excellent agreement with the solutions of Hossain et 

al. (2002) and Alam et al. (1997) which are shown in this chapter. 

7.2 Comparison of streamlines and isotherms for the effect 
of temperature dependent viscosity and magnetic field 

Figure 7.1 illustrates the effect of temperature dependent viscosity and magnetic 

field, on the development of streamlines which are plotted for the amplitude-to-

length ratio of the wavy surface α = 0.3 and Prandtl number Pr = 0.73. When ε = 0 

and M = 0, where the viscosity is independent of temperature and in absence of 

magnetic field as shown in figure 7.1(a). In this case ψmax is 9.25. In figure 7.1(b) it 

is seen that an increase in the value of M causes the effects of the wavy surface to be 

attenuated and the boundary layer becomes thinner where ψmax is 6.20. In this case 

viscosity of fluid is constant. The magnetic field acting along the horizontal direction 

retards the fluid velocity. For this there creates a Lorentz force by the interaction 

between the applied magnetic field and flow field. This force acts against the fluid 

flow and reduces the velocity. However when the value of viscosity increases similar 

thing happens and the maximum value of ψ, that is ψmax is 8.08 which is found in 

figure 7.1(c). The combined effects of viscosity and magnetic field are shown in 

figure 7.1(d). In this case the maximum value of ψ is 5.23 decreases comparatively 

in presence of magnetic field and temperature dependent viscosity. 
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Figure 7.1: Streamlines for (a) ε = 0.0, M = 0.0 (b) ε = 0.0, M = 
0.5 (c) ε = 5.0, M = 0.0 (d) ε = 5.0, M = 0.5 while Pr = 0.73 and α 
= 0.3.  
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Figure 7.2: Isotherms for (a) ε = 0.0, M = 0.0 (b) ε = 0.0, M = 0.5 
(c) ε = 5.0, M = 0.0 (d) ε = 5.0, M = 0.5 while Pr = 0.73 and α = 
0.3. 

 

The influence of the temperature dependent viscosity and magnetic field on the 

isotherms for α = 0.3 and Pr = 0.73 are displayed in figure 7.2. As mentioned before, 
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owing to the presence of temperature dependent viscosity and magnetic field (ε > 0 

and M > 0) the temperature of the fluid increases where the thermal boundary layer 

grows thick. In the downstream region the temperature of the fluid flow is negligible 

in this case. For constant viscosity and in absence of magnetic field, it is observed 

that the opposite phenomenon happens. 

7.3 Comparison of streamlines and isotherms for the effect 
of thermal conductivity and magnetic field 

The effect of temperature dependent thermal conductivity and magnetic field, on the 

development of streamlines which are displayed in figure 7.3 for the amplitude-to-

length ratio of the wavy surface α = 0.2 and Prandtl number Pr = 0.73. When γ  = 0 

and M = 0 where the thermal conductivity is independent of temperature and in 

absence of magnetic field is shown in figure 7.3(a). In this case the maximum value 

of ψ i.e. ψmax is 9.10. In figure 7.3(b) it is noted that an increase in the value of 

thermal conductivity, thicker the velocity boundary layer. In this case the maximum 

value of ψ is 11.53. Because the increasing value of γ increase the temperature 

difference between the surface and outside the boundary layer. Then heat is 

transferred rapidly from surface to fluid within the boundary layer. That is why both 

velocity and temperature of the fluid flow increase with the increasing value of γ. On 

the other hand, when the value of M increase the boundary layer becomes thinner and 

the value of ψmax is 5.05 which is observed in figure 7.3(c). The magnetic field acting 

along the horizontal direction retards the fluid velocity. Applied magnetic field 

creates a Lorentz force by the interaction between magnetic field and flow field, this 

force acts against the fluid flow and reduces the velocity. The combined effects of 

temperature dependent thermal conductivity and magnetic field are shown in figure 

7.3(d). In this case the maximum value of ψ i.e. ψmax is 7.03. Under any 

circumstances the value of ψ increases for the effect of temperature dependent 

thermal conductivity and the value of ψ decreases in presence of magnetic field. 

The variation of temperature dependent thermal conductivity and the intensity of 

magnetic field on the isotherms for α = 0.2 and Pr = 0.73 are depicted in figure 7.4. 

The effect of temperature dependent thermal conductivity and magnetic field (γ > 0 

and M > 0) the thermal state of the fluid increases, causing the thermal boundary 
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layer grows thick. On the other hand for constant thermal conductivity and in 

absence of magnetic field, it is noted that the opposite result obtained. 
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Figure 7.3: Streamlines for (a) γ  = 0.0, M = 0.0 (b) γ  = 2.0, M = 
0.0 (c) γ  = 0.0, M = 0.8 and (d) γ  = 2.0, M = 0.8 while Pr = 0.73 
and α = 0.2.  
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Figure 7.4: Isotherms for (a) γ  = 0.0, M = 0.0 (b) γ  = 2.0, M = 0.0 
(c) γ  = 0.0, M = 0.8 and (d) γ  = 2.0, M = 0.8 while Pr = 0.73 and α 
= 0.2. 
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7.4 Comparison of effect of Joule heating  
The comparison of the effect of viscosity when linear function of temperature on the 

velocity within the boundary layer with other controlling parameters Pr = 1.0, M = 

0.8, γ = 5.0 and α = 0.3 having the effect of Joule heating (J = 0.0 and J = 0.02) are 

shown in figure 7.5 and 7.6 respectively. In figure 7.5, the maximum values of 

velocity are 0.61724, 0.41442, 0.34390, 0.29913 and 0.27122 due to the values of ε = 

0.0, 5.0, 10.0, 15.0 and 20.0 respectively. Each of which occurs at different position 

of η. Velocity decreases by 56.05% when the value of viscosity changes from 0.0 to 

20.0. From figure 7.6 it is observed that the maximum values of velocity are 0.61747, 

0.41457, 0.34402, 0.30133 and 0.27130 for ε = 0.0, 5.0, 10.0, 15.0 and 20.0 

respectively in the presence of Joule heating (J = 0.02). In this case velocity 

decreases by 56.063%, which is greater than 56.05% in the absence of Joule heating 

(J = 0.0). 

Figures 7.7 and 7.8 illustrate the comparison of the effect of thermal conductivity 

against η on the velocity with other controlling parameters Pr = 0.73, M = 0.5, ε = 

5.0 and α = 0.3 with and without effect of Joule heating. The maximum values of 

velocity are obtained 0.31975, 0.40816, 0.48793 and 0.52353 from figure 7.7 due to 

the values of γ = 0.0, 2.0, 6.0 and 10.0 respectively. Velocity increases by 38.92% in 

the absence of Joule heating (J = 0.0). The maximum values of velocity are 0.31981, 

0.40832, 0.48808 and 0.52366 for γ = 0.0, 2.0, 6.0 and 10.0 respectively and each of 

which occurs at different position of η. Velocity increases by 38.93% in the case of 

using Joule heating (J = 0.02) when thermal conductivity parameter γ increases from 

0 to 10.0. 

From figures 7.5 to 7.8, it is also observed that when the effect of Joule heating (J = 

0.02) is considered then some variations are obtained significantly. This is because 

Joule heating is the heating effect of conductors carrying currents. So velocity of the 

fluid flow increases.  

 145



Chapter 7: Comparison 

0 2 4 6 8 10
η

0

0.2

0.4

0.6

Ve
lo

ci
ty

,

ε = 0.00
ε = 5.00
ε = 10.0
ε = 15.0
ε = 20.0

(a)

Pr = 1.0 , M = 0.8
γ = 5.0 , α = 0.3

f'

J = 0.0

 

Figure 7.5: Velocity profiles f ′  against dimensionless distance η 

for different values of ε while α = 0.3, M = 0.8, J = 0.0, γ = 5.0 and 
Pr = 1.0. 
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Figure 7.6: Velocity profiles f ′  against dimensionless distance η 

for different values of ε while α = 0.3, M = 0.8, J = 0.02, γ = 5.0 
and Pr = 1.0. 
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Figure 7.7: Velocity profiles f ′  against dimensionless distance η for 

different values of γ while α = 0.3, M = 0.5, J = 0.0, ε = 5.0 and Pr = 
0.73. 
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Figure 7.8: Velocity profiles f ′  against dimensionless distance η for 

different values of γ while α = 0.3, M = 0.5, J = 0.02, ε = 5.0 and Pr = 
0.73. 
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Table 7.1: Comparison of skin friction coefficient Cfx against x for the variation of 

viscosity parameter ε with other fixed controlling values M = 0.5, Pr = 0.73 and α = 

0.3. 

 

 Skin friction coefficient 
Cfx 

(Linear function of 
temperature) 

Skin friction coefficient 
Cfx 

(Inversely proportional 
to linear function of 

temperature) 

 
 
x 

ε = 0.0 ε = 5.0 ε = 60.0 ε = 0.5 ε = 1.0 
0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 
10.0 

0.58858 
0.86640 
0.51748 
0.80079 
0.49685 
0.76312 
0.48145 
0.73610 
0.46905 
0.71486 
0.45861 
0.69730 
0.44957 
0.68230 
0.44161 
0.66921 
0.43448 
0.65758 
0.42803 
0.64713 
0.42214 

1.00692 
1.54688 
0.91916 
1.46536 
0.89141 
1.41516 
0.87162 
1.37827 
0.85588 
1.34874 
0.84266 
1.32400 
0.83118 
1.30269 
0.82099 
1.28394 
0.81181 
1.26718 
0.80343 
1.25202 
0.79572 

1.56895 
2.85371 
1.61053 
2.67869 
1.56602 
2.62220 
1.53839 
2.58088 
1.52144 
2.54667 
1.50983 
2.51747 
1.50076 
2.49216 
1.49299 
2.46993 
1.48594 
2.45017 
1.47937 
2.43238 
1.47314 

0.49331 
0.77939 
0.46576 
0.71506 
0.44594 
0.67851 
0.43070 
0.65233 
0.41834 
0.63176 
0.40794 
0.61476 
0.39895 
0.60027 
0.39103 
0.58763 
0.38397 
0.57643 
0.37759 
0.56638 
0.37179 

0.48914 
0.76874 
0.46115 
0.69689 
0.43838 
0.65706 
0.42089 
0.62862 
0.40681 
0.60634 
0.39503 
0.58798 
0.38491 
0.57236 
0.37606 
0.55878 
0.36819 
0.54677 
0.36112 
0.53603 
0.35470 

 
 

Table 7.1 represents the values of skin friction coefficient Cfx for the computational 

domain for the variation of viscosity (ε = 5.0, 60.0) when linear function and (ε = 

0.5, 1.0) when inversely proportional to linear function of temperature with other 

fixed controlling values amplitude-to-length ratio of the wavy surface α = 0.3, 

magnetic parameter M = 0.5 and Prandtl number Pr = 0.73. Here it is found that the 
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complete cycle of the wavy surface from x = 0.0 to 10.0. Skin friction coefficient Cfx 

increases when viscosity linear function of temperature and reverse results found 

when viscosity inversely proportional to linear function of temperature. The 

maximum values of local skin friction coefficient Cfx are recorded to be 0.86640, 

1.54688 and 2.85371 for ε = 0.0, 5.0 and 60.0 respectively when viscosity is taken to 

be linear function of temperature which occurs at x = 0.50 and it is seen that the local 

skin friction coefficient Cfx increases by approximately 70% when ε changes from 

0.0 to 60.0. On the other hand the maximum values of local skin friction coefficient 

Cfx are recorded to be 0.86640, 0.77939 and 0.76874 for ε = 0.0, 0.5 and 1.0 

respectively which occurs also at the same point x = 0.50 when viscosity inversely 

proportional to linear function of temperature considered. It is observed that the local 

skin friction coefficient Cfx decreases by approximately 12% as ε increases from 0.0 

to 1.0.  

The values of the rate of heat transfer in terms of the local Nusselt number Nux for 

the variation of viscosity (ε = 5.0, 60.0) when linear function of temperature and (ε = 

0.5, 1.0) when inversely proportional to linear function of temperature with other 

fixed controlling values amplitude-to-length ratio of the wavy surface α = 0.3, 

magnetic parameter M = 0.5 and Prandtl number Pr = 0.73 are represented in Table 

7.2. Here it is observed that the rate of heat transfer in terms of the local Nusselt 

number Nux show the complete cycle of the wavy surface throughout the domain 

from x = 0.0 to 10.0. However the maximum values of local rate of heat transfer are 

recorded to be 0.31824, 0.25070 and 0.17193 for ε = 0.0, 5.0 and 60.0 respectively 

when viscosity is a linear function of temperature and the rate of heat transfer in 

terms of the local Nusselt number Nux decreases by approximately 46% as ε 

increases from 0.0 to 60.0. Moreover the maximum values of local rate of heat 

transfer are recorded to be 0.31824, 0.33285 and 0.34435 for ε = 0.0, 0.5 and 1.0 

respectively which occurs at x = 0.50 when viscosity inversely proportional to linear 

function of temperature. It is noted that the rate of heat transfer in terms of the local 

Nusselt number Nux increases by approximately 8% as ε increases from 0.0 to 1.0. 
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Table 7.2: Comparison of rate of heat transfer in terms of Nusselt number Nux 

against x for the viscosity parameter ε with other fixed controlling values M = 0.5, Pr 

= 0.73 and α = 0.3. 

 

 Rate of heat transfer Nux 
(Linear function of 

temperature) 

Rate of heat transfer Nux 
(Inversely proportional to 

linear function of 
temperature) 

 
 
x 

ε = 0.0 ε = 5.0 ε = 60.0 ε = 0.5 ε = 1.0 
0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 
10.0 

0.30648 
0.31824 
0.29051 
0.29874 
0.28028 
0.28803 
0.27275 
0.28001 
0.26662 
0.27357 
0.26141 
0.26814 
0.25687 
0.26342 
0.25285 
0.25925 
0.24924 
0.25551 
0.24597 
0.25212 
0.24297 

0.23573 
0.25070 
0.22614 
0.23824 
0.22026 
0.23206 
0.21597 
0.22742 
0.21259 
0.22366 
0.20978 
0.22048 
0.20736 
0.21774 
0.20523 
0.21533 
0.20332 
0.21317 
0.20158 
0.21123 
0.20000 

0.16031 
0.17193 
0.14091 
0.17258 
0.14807 
0.16838 
0.15088 
0.16620 
0.15165 
0.16528 
0.15173 
0.16489 
0.15159 
0.16465 
0.15139 
0.16441 
0.15119 
0.16413 
0.15099 
0.16382 
0.15081 

0.32074 
0.33285 
0.30458 
0.31133 
0.29343 
0.29965 
0.28504 
0.29088 
0.27820 
0.28382 
0.27238 
0.27785 
0.26731 
0.27267 
0.26282 
0.26808 
0.25878 
0.26396 
0.25512 
0.26022 
0.25177 

0.33388 
0.34435 
0.31590 
0.32076 
0.30383 
0.30827 
0.29461 
0.29888 
0.28712 
0.29130 
0.28074 
0.28489 
0.27520 
0.27932 
0.27030 
0.27439 
0.26590 
0.26996 
0.26191 
0.26594 
0.25825 

 
 

In table 7.3, the numerical values of skin friction coefficient Cfx against x for 

different values of viscosity (with and without effect of J) with other fixed 

controlling values M = 0.8, Pr = 1.0, γ = 5.0 and α = 0.3 are shown. It is observed 

from this table that the values of skin friction coefficient Cfx at different position of x 

for ε = 0.0, 5.0, 10.0 and 20.0 are smaller when Joule heating is not used (J = 0.0) 
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than that of using Joule heating (J = 0.02). The skin friction coefficient Cfx increases 

is around 65.68% as ε changes from 0.0 to 20.0 at the axial position of x = 0.50 when 

there is no effect of Joule heating. But applying the effect of Joule heating (J = 0.02) 

the skin friction coefficient Cfx increases is around 65.691% as ε changes from 0.0 to 

20.0 at the same axial position of x.   

 

Table 7.3: Comparison of skin friction coefficient Cfx against x for the variation of 

viscosity parameter (ε = 0.0, 5.0, 10.0, 20.0) with and without effect of Joule heating 

parameter J with other fixed parameters M = 0.8, Pr = 1.0, γ = 5.0 and α = 0.3. 

 

Skin friction coefficient Cfx

ε = 0.0 ε = 5.0 ε = 10.0 ε = 20.0 
x 

J = 0.0 J= 0.02 J = 0.0 J= 0.02 J = 0.0 J= 0.02 J = 0.0 J= 0.02 
0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 
10.0 

0.70328
0.94819
0.56820
0.83657
0.52608
0.77671
0.49705
0.73512
0.47498
0.70332
0.45725
0.67767
0.44251 
0.65627
0.42993
0.63797
0.41901
0.62204
0.40937
0.60797
0.40078

0.70328 
0.94844 
0.56856 
0.83743 
0.52695 
0.77821 
0.49841 
0.73725 
0.47680 
0.70604 
0.45951 
0.68094 
0.44516 
0.66005 
0.43296 
0.64222 
0.42238 
0.62673 
0.41306 
0.61306 
0.40476 

1.28671
1.85247
1.10422
1.68208
1.04200
1.58741
0.99865
1.52028
0.96512
1.46782
0.93772
1.42474
0.91452
1.38823
0.89439
1.35661
0.87662
1.32877
0.86073
1.30392
0.84636

1.28671
1.85317
1.10514
1.68443
1.04420
1.59154
1.00216
1.52616
0.96992
1.47539
0.94375
1.43391
0.92172
1.39893
0.90270
1.36876
0.88600
1.34229
0.87111
1.31876
0.85771

1.51106
2.26779
1.34618
2.07328
1.27656
1.96675
1.22849
1.89094
1.19115
1.83167
1.16053
1.78286
1.13455
1.74134
1.11198
1.70522
1.09204
1.67327
1.07417
1.64465
1.05799

1.51106 
2.26859 
1.34721 
2.07588 
1.27897 
1.97130 
1.23232 
1.89744 
1.19638 
1.84006 
1.16711 
1.79307 
1.14244 
1.75329 
1.12113 
1.71884 
1.10239 
1.68850 
1.08569 
1.66142 
1.07063 

1.70544 
2.76283 
1.59428 
2.51554 
1.52639 
2.40154 
1.48001 
2.32015 
1.44361 
2.25606 
1.41318 
2.20316 
1.38688 
2.15811 
1.36369 
2.11889 
1.34294 
2.08415 
1.32417 
2.05298 
1.30705 

1.70544
2.76364
1.59513
2.51783
1.52843
2.40556
1.48328
2.32594
1.44813
2.26359
1.41896
2.21239
1.39390
2.16901
1.37192
2.13141
1.35235
2.09826
1.33473
2.06863
1.31873
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Table 7.4: Comparison of rate of heat transfer Nux against x for the variation of 

thermal conductivity parameter (γ = 0.0, 2.0, 6.0, 10.0) with and without effect of 

Joule heating parameter J with other fixed controlling values M = 0.5, Pr = 0.73, ε = 

5.0 and α = 0.3. 

 Rate of heat transfer Nux

γ = 0.0 γ = 2.0 γ = 6.0 γ = 10.0 
x 

J = 0.0 J= 0.02 J = 0.0 J= 0.02 J = 0.0 J= 0.02 J = 0.0 J= 0.02 
0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 
10.0 

0.23573
0.25070
0.22614
0.23824
0.22026
0.23206
0.21597
0.22742
0.21259
0.22366
0.20978
0.22048
0.20736
0.21774
0.20523
0.21533
0.20332
0.21317
0.20158
0.21123
0.20000

0.23573 
0.25035 
0.22549 
0.23684 
0.21848 
0.22932 
0.21285 
0.22315 
0.20797 
0.21771 
0.20354 
0.21275 
0.19940 
0.20813 
0.19546 
0.20375 
0.19166 
0.19956 
0.18797 
0.19550 
0.18436 

0.41570
0.43968
0.39765
0.41571
0.38807
0.40423
0.38039
0.39581
0.37428
0.38903
0.36917
0.38337
0.36476
0.37850
0.36090
0.37424
0.35745
0.37046
0.35434
0.36706
0.35152

0.41570
0.43889
0.39625
0.41254
0.38423
0.39811
0.37361
0.38636
0.36423
0.37598
0.35559
0.36649
0.34747
0.35762
0.33972
0.34920
0.33223
0.34112
0.32496
0.33331
0.31786

0.70763
0.72996
0.66149
0.69442
0.65078
0.67679
0.64126
0.66405
0.63369
0.65418
0.62730
0.64633
0.62173
0.63992
0.61684
0.63455
0.61251
0.62994
0.60867
0.62591
0.60523

0.70763 
0.72840 
0.65879 
0.68831 
0.64358 
0.66519 
0.62875 
0.64644 
0.61539 
0.63022 
0.60287 
0.61580 
0.59095 
0.60264 
0.57953 
0.59039 
0.56854 
0.57880 
0.55793 
0.56770 
0.54765 

0.98251 
0.97633 
0.90160 
0.95044 
0.88605 
0.93390 
0.87776 
0.91993 
0.87290 
0.90827 
0.86898 
0.89891 
0.86531 
0.89147 
0.86177 
0.88550 
0.85841 
0.88063 
0.85525 
0.87657 
0.85232 

0.98251
0.97420
0.89805
0.94232
0.87668
0.91882
0.86169
0.89736
0.84969
0.87789
0.83838
0.86052
0.82712
0.84497
0.81589
0.83082
0.80474
0.81774
0.79374
0.80547
0.78293

 
 
The numerical values of rate of heat transfer Nux against x for the variation of thermal 

conductivity parameter (with and without effect of J) with other fixed parameters M 

= 0.5, Pr = 0.73, ε = 5.0 and α = 0.3 are shown in table 7.4. It is noted from this table 

that the values of rate of heat transfer Nux for γ = 0.0, 2.0, 6.0 and 10.0 are higher at 

different position of x when Joule heating is not considered (J = 0.0) than that of 

using Joule heating (J = 0.02). At the axial position of x = 0.50 the rate of heat 

transfer Nux increases is around 74.32% as γ changes from 0.0 to 10.0 when there is 
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no effect of Joule heating. But in presence of Joule heating (J = 0.02) the rate of heat 

transfer Nux increases is around 74.26% as γ changes from 0.0 to 10.0 at the same 

axial position x.   

 
Table 7.5: Comparison of velocity and temperature against η for the variation of 

magnetic parameter (M = 0.0, 1.5) with and without effect of Joule heating parameter 

J with other fixed controlling values γ = 5.0, Pr = 0.73, ε = 5.0 and α = 0.3. 

 

M = 0.0 M = 1.5 M = 0.0 M = 1.5 
Velocity  Temperature  

 

η 
J= 0.0 J= 0.02 J= 0.0 J= 0.02 J= 0.0 J= 0.02 J= 0.0 J= 0.02 

0.0400 
0.4543 
1.0553 
1.5094 
2.0826 
3.0688 
4.1055 
5.0387 
6.1740 
7.2582 
8.1919 
9.2436 

0.0144 
0.1521 
0.3131 
0.4050 
0.4858 
0.5379  
0.4878 
0.3737 
0.2001 
0.0729 
0.0217 
0.0034 

0.01454 
0.15289 
0.31476 
0.40732 
0.48881 
0.54198 
0.49317 
0.38021 
0.20704 
0.07738 
0.02339 
0.00372 

0.0111
0.1136  
0.2259
0.2864
0.3374
0.3711
0.3508
0.2987  
0.2114
0.1240  
0.0614
0.0163

0.01115
0.11404
0.22686
0.28765
0.33905
0.37353
0.35395
0.30254
0.21571
0.12796
0.06418
0.01721

0.9953
0.9460
0.8710
0.8113
0.7321
0.5868
0.4265
0.2853
0.1387
0.049 
0.0155
0.0028

0.99541 
0.94689 
0.87306 
0.81432 
0.73642 
0.59350 
0.43562 
0.29569 
0.14837 
0.05566 
0.01798 
0.00330 

0.9960 
0.9548 
0.8926 
0.8436 
0.7792 
0.6626 
0.5342 
0.4168 
0.2787 
0.1617 
0.0821 
0.0234 

0.99614
0.95547
0.89413
0.84582
0.78240
0.66748
0.54071
0.42460
0.28720
0.16943
0.08775
0.02572

 

The comparison of velocity and temperature against η for the variation of the 

strength of magnetic field (M = 0.0, 1.5) with and without effect of Joule heating 

with other fixed controlling values γ = 5.0, Pr = 0.73, ε = 5.0 and α = 0.3 is depicted 

in Table 7.5. When Joule heating (J = 0.0) is ignored with different values of 

magnetic parameter M (M = 0.0, 1.5) then the velocity and temperature are smaller 

than that of using Joule heating, J = 0.02.  From Table 7.5 it is clearly seen that Joule 

heating dominates the magnetic field. 
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Table 7.6: Comparison of the present numerical results of skin friction coefficient, 

f ″(x,0) and the heat transfer, -θ ′(x,0) with Hossain et al. (2002) for the variation of 

Prandtl number Pr while M = 0.0, γ = 0.0, J = 0.0 and ε = 0.0 with α = 0.1. 

 

f ″(x,0) -θ ′(x,0)  

Pr Hossain et al. 

(2002) 

Present work Hossain et al. 

(2002) 

Present work 

1.0 
10.0 
25.0 
50.0 
100.0 

0.908 
0.591 
0.485 
0.485 
0.352 

0.91084 
0.59482 
0.48910 
0.41880   
0.35690 

0.401 
0.825 
1.066 
1.066 
1.542 

0.39914 
0.82315 
1.06405 
1.28351 
1.54198 

 

A comparison of the present numerical results of the skin friction coefficient f ″(x,0) 

and the rate of heat transfer -θ ′(x,0) with the results obtained by Hossain et al. 

(2002) is depicted in Table 7.6. Here, the magnetic parameter M, viscosity variation 

parameter ε, thermal conductivity parameter γ and Joule heating parameter J are 

ignored while different values of Prandtl number Pr = (1.0, 10, 25.0, 50.0 and 100.0) 

are chosen. From Table 7.6, it is clearly seen that the present results are excellent 

agreement with the solution of Hossain et al. (2002). 

The influence of the magnetic parameter M, on velocity and the temperature are 

illustrated in figures 7.9 and 7.10 respectively with Pr = 1.0, α = 0.1, γ = 0.0, J = 0.0, 

ε = 0.0 and the local Nusselt number are illustrated in figures 7.11 and 7.12 

respectively with Pr = 1.0, α = 0.0, γ = 0.0, J = 0.0 and ε = 0.0. The results for 

constant viscosity (ε = 0.0), constant thermal conductivity (γ = 0.0), without Joule 

heating (J = 0.0) and a fluid having Pr = 1.0 are compared with those of Alam et al. 

(1997) and a very good agreement is found.  
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(a) (b) 
 
Figure 7.9: (a) Velocity profiles and (b) temperature profiles for 
different values of M with Pr = 1.0, α = 0.1, γ = 0.0, J = 0.0 and ε = 
0.0 (Alam et al. (1997)). 
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Figure 7.10: (a) Velocity profiles and (b) temperature distribution 
for different values of magnetic parameter M with Pr = 1.0, α = 
0.1, γ = 0.0, J = 0.0 and ε = 0.0 (present work). 
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Figure 7.11: Local Nusselt number for different values of 
magnetic parameter M with Pr = 1.0, α = 0.0, γ = 0.0, J = 0.0 and ε 
= 0.0 (Alam et al. (1997)). 
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Figure 7.12: Local Nusselt number for different values of 
magnetic parameter M with Pr = 1.0, α = 0.0, γ = 0.0, J = 0.0 and ε 
= 0.0 (present work). 
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CHAPTER 8 
Conclusions 
8.1 General  
The main objective of this work is to study the magnetohydrodynamic two-

dimensional incompressible laminar and natural convection flow with temperature 

dependent physical properties along a vertical wavy surface. The governing 

boundary layer equations are first transformed into a non-dimensional form using the 

appropriate transformations. The resulting nonlinear system of partial differential 

equations are mapped into the domain of a vertical flat plate and then solved 

numerically employing the implicit finite difference method, known as the Keller-

box scheme. The description so far may be summarized as follows. 

8.2 Summary of the major outcome  
In chapter 3, magnetohydrodynamic natural convection boundary layer flow of 

viscous incompressible fluid with temperature dependent viscosity (linear function 

and inversely proportional to linear function of temperature) along a vertical wavy 

surface has been considered. In this chapter the large value of viscosity variation 

parameter (ε = 60.0) is taken to be a linear function of temperature. Viscosity 

variation parameter ε is also considered greater than 200 and then the numerical 

results are also obtained but the maximum value of velocity not at the leading edge 

of x-axis. In this case the velocity becomes an irregular shape. Skin friction 

coefficient highly increases and surface becomes more roughness. It is well known 

that when viscosity is constant then both of the skin friction coefficient and velocity 

increase or decrease because there is a linear relationship between the surface shear 

stress in terms of the skin friction coefficient and the velocity gradient. But the 

present work indicates that when viscosity is dependent on temperature then opposite 

results are obtained. In the case of viscosity as a linear function of temperature then 

skin friction coefficient increases and velocity decreases. In this chapter, it is also 

noted that when skin friction coefficient decreases then velocity increases in the case 

of viscosity as an inversely proportional to linear function of temperature. Skin 

friction coefficient and velocity are directly dependent on temperature dependent 

viscosity. The effect of viscosity is vary small and it is also observed that for each 
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parameter, if the value of viscosity is greater than the value taken then it does not 

converge with other controlling parameters when it is considered inversely 

proportional to linear function of temperature. In that case figures of skin friction 

coefficient, the rate of heat transfer in terms of the Nusselt number Nux, the velocity, 

the temperature, the streamlines and the isotherms will not be better than that are 

shown in this chapter in case II. It is concluded that temperature dependent viscosity 

dominates the other parameters.  

In chapter 4, the effect of temperature dependent thermal conductivity on 

magnetohydrodynamic natural convection flow of viscous incompressible fluid along 

a uniformly heated vertical wavy surface has been considered. The results indicated 

that both the flow and heat transfer strongly depend on the temperature dependent 

thermal conductivity. The rate of heat transfer in terms of local Nusselt number Nux 

increases in this case. The velocity and temperature as well as the streamlines and the 

isotherms patterns are also increase. When temperature increases then the rate of heat 

transfer in terms of local Nusselt number Nux decreases or vice versa as thermal 

conductivity constant, which is shown in another chapters. When temperature 

dependent thermal conductivity considered then both the temperature and heat 

transfer rate increase. Temperature and the rate of heat transfer in terms of local 

Nusselt number are directly dependent on temperature dependent thermal 

conductivity.  

In chapter 5, a steady two-dimensional laminar flow of viscous incompressible fluid 

on MHD free convection flow with combined effects of temperature dependent 

viscosity and thermal conductivity along a uniformly heated vertical wavy surface 

have been studied. Here maximum value of intensity of magnetic field is 5.0, which 

is greater than any other values of intensity of magnetic field considered in any other 

chapter. It means that temperature dependent viscosity and thermal conductivity 

dominate the magnetic field. 

In chapter 6, Joule heating effect on MHD natural convection flow with viscosity and 

thermal conductivity variation owing to temperature along a uniformly heated 

vertical wavy surface has been analyzed. The results noted that both the flow and 

heat transfer strongly depend on the Joule heating. In this chapter results also show 
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that the effects of all other parameters are comparatively small when Joule heating is 

considered. It is also observed that if Joule heating parameter J is greater than 0.02 

then the numerical results do not exists for all parameters and do not converge with 

other controlling parameters. In this chapter, the highest value of magnetic parameter 

M = 1.5, Joule heating parameter J = 2.0, viscosity parameter ε = 20.0, thermal 

conductivity variation parameter γ  = 10.0 and Prandtl number Pr = 9.45 are all 

critical values. For the same value of viscosity parameter ε = 5.0, the skin friction 

coefficient in Table 7.4 against x = 0.5 are 1.85247 and 1.85317 respectively. The 

variation of skin friction coefficient at x = 0.5 in chapter 5 and chapter 6 occurred 

only for Joule heating. Therefore, it is clearly noted that Joule heating dominates the 

viscosity. Also, the other cases such as thermal conductivity, magnetic field and 

Prandtl number analysis can be shown in a similar way. Finally it is concluded that 

Joule heating dominates the magnetic field, viscosity, thermal conductivity and also 

Prandtl number. 

The comparisons of the numerical results for the skin friction coefficient and the rate 

of heat transfer for the two cases of viscosity (linear function and inversely 

proportional to linear function of temperature) are shown in tabular form in Table 7.1 

and Table 7.2. From these two tables it is noted that numerical results of the skin 

friction coefficient increases and the rate of heat transfer decreases for increasing 

values of ε when viscosity dependent on linear function of temperature and the 

reverse results are obtained when viscosity dependent on inversely proportional to 

linear function of temperature which shown in chapter 7. In this chapter tt is also 

concluded that when the effect of Joule heating is considered then some variations 

are obtained significantly. Comparisons with previously reported investigations are 

also performed and the results show excellent agreement. 

For the effect of magnetic field the skin friction coefficient, the rate of heat transfer, 

the velocity gradually decrease where the velocity boundary layer grows thin but the 

temperature increases and the thermal boundary layer becomes thicker which are 

displayed in chapter 3, chapter 4, chapter 5 and chapter 6.  

The skin friction coefficient, velocity and temperature as well as streamlines and 

isotherms are all decreasing and the rate of heat transfer in terms of local Nusselt 
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number Nux increasing for the increasing values of Prandtl number Pr described in 

chapters 3, 4 and 6. The results also indicate that when Prandtl number Pr is very 

large (Pr = 100) then the velocity and thermal boundary layer become very thinner 

and skin friction highly decreases and the heat transfer rate rapidely increases which 

are displayed in chapter 3. It is also observed from chapter 3, 4 and 6 that the 

maximum value of Pr is different. The maximum value of Pr is 100 when 

temperature dependent viscosity is considered which are shown in chapter 3. Chapter 

4 and 6, the maximum value of Pr 13.5 while α = 0.2, M = 0.8 and γ = 5.0 and 9.45 

while M = 0.2, J = 0.02, γ = 4.0, ε = 5.0 and α = 0.3 respectively. It is concluded that 

temperature dependent viscosity, thermal conductivity and Joule heating dominate 

the Prandtl number. 

It is depicted from chapter 3, chapter 4 and chapter 6 that for the effect of amplitude-

to-length ratio of the wavy surface, the skin friction coefficient and the rate of heat 

transfer decrease but the velocity and temperature increase. Increasing velocity 

increases skin friction coefficient. But the opposite result observed in this case. This 

is because the increasing values of the amplitude-to-length ratio of the wavy surface, 

surface becomes more roughened and velocity force decreases at the local points. 

8.3 Extension of this work 
The present work may be extended for consideration of following cases: 

• Temperature dependent physical properties like viscosity, thermal conductivity 
and Prandtl number with different physics like heat generation/absorption, 
viscous dissipation, radiation effect, stress work and pressure work may be 
considered. 

• Considering non-uniform surface temperature, porous medium and unsteady 
flow this work can be extended.  

• Mixed and forced convection can also be considered through including the 
governing equation of concentration conservation. 

• The study can be extended for turbulent flow using different fluids like, 
Newtonian or non-Newtonian fluid, micro polar fluid and different thermal 
boundary conditions such as heat flux or radiation.  

• Considering critical behavior of the flow may extend this problem. 
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Appendix 
Implicit Finite Difference Method (IFDM) 
It is assumed that  for ,,,,, 11111 −−−−− n

j
n
j

n
j

n
j

n
j pgvuf Jj ≤≤0  are known. Then 

equations (2.79) to (2.90) form a system of (5J+5) non linear equations for the 

solutions of the (5J+5) unknowns ( )n
j

n
j

n
j

n
j

n
j pgvuf ,,,, , j = 0, 1, 2, 3,……J. These 

non-linear systems of algebraic equations are to be linearized by Newton’s Quassy 

linearization method. The iterates ( )i
j

i
j

i
j

i
j

i
j pgvuf ,,,, , i = 0, 1, 2, 3……N are 

defined with initial values equal those at the previous x-station (which is usually the 

best initial available). For the higher iterates the following forms can be written 
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j ppp δ+=+1  (A5) 

Now by substituting the right hand sides of the above equations in place of 

 and  in equations (2.83)-(2.85) and in equations (2.90) and (2.92) 

dropping the terms that are quadratic in  and , then take the 

following linear system of algebraic form 
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Thus the coefficients of momentum equation are: 
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Similarly by using the equations (A1) to (A5), then the equation (2.95) can be written 

as 
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The coefficients of energy equation are: 
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The boundary conditions (2.96) becomes 
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which just express the requirement for the boundary conditions to remain during the 

iteration process. Now the system of linear equations (A6)-(A9) and (A21) together 

with the boundary conditions (A33) can be written in matrix or vector form, where 

the coefficient matrix has a block tri-diagonal structure. The whole procedure, 

namely reduction to first order followed by central difference approximations, 

Newton’s Quasi-linearization method and the block Thomas algorithm, is well 

known as the Keller-box method. 
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Table A1: Skin friction coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux for different values of Prandtl number (Pr = 0.73, 7.0, 100) 

while α = 0.3, M = 0.5 and ε = 5.0. 

Skin friction coefficient Cfx Rate of heat transfer Nuxx 
 Pr = 0.73 Pr = 7.0 Pr = 100 Pr = 0.73 Pr = 7.0 Pr = 100 

0.00 
0.50 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

1.00692 
1.54688 
0.91916 
1.46536 
0.89141 
1.41516 
0.87162 
1.37827 
0.85588 
1.34874 
0.84266 
1.32400 
0.83118 
1.30269 
0.82099 
1.28394 
0.81181 
1.26718 
0.80343 

0.62979 
0.99193 
0.58519 
0.96150 
0.57531 
0.94320 
0.56829 
0.92949 
0.56271 
0.91835 
0.55804 
0.90888 
0.55398 
0.90061 
0.55038 
0.89325 
0.54713 
0.88659 
0.54417 

0.33300 
0.53835 
0.31729 
0.53097 
0.31483 
0.52651 
0.31308 
0.52314   
0.31170 
0.52038 
0.31053 
0.51801 
0.30951 
0.51593 
0.30860 
0.51405 
0.30777 
0.51234 
0.30701 

0.23573 
0.25070 
0.22614 
0.23824 
0.22026 
0.23206 
0.21597 
0.22742 
0.21259 
0.22366 
0.20978 
0.22048 
  0.20736 
0.21774 
0.20523 
0.21533 
0.20332 
0.21317 
0.20158 

0.44871 
0.48832 
0.43981 
0.47574 
0.43248 
0.46783 
0.42731 
0.46194 
0.42319 
0.45712 
0.41974 
0.45302 
0.41674 
0.44942 
0.41405 
0.44620 
0.41163 
0.44327 
0.40941 

0.89761 
0.99839 
0.89799 
0.98663 
0.89106 
0.97934 
0.88625 
0.97390 
0.88244 
0.96945 
0.87924 
0.96564 
0.87646 
0.96228 
0.87398 
0.95927 
0.87174 
0.95652 
0.86968 

 

Table A2: Comparison of skin friction coefficient Cfx and the rate of heat transfer 
in terms of Nusselt number Nux against x for the variation of Prandtl number Pr with 
and without effects of magnetic parameter M and viscosity parameter ε while α = 
0.3. 

ε = 0.0, M = 0.0 ε = 0.0, M = 0.5 ε = 5.0, M = 0.0 ε = 5.0, M = 0.5 Pr 
Cfx Nux Cfx Nux Cfx Nux Cfx Nux

0.7 0.97482 0.34175 0.87097 0.31346 1.69448 0.26456 1.55731 0.24755
1.74 0.84656 0.46767 0.76566 0.43181 1.42192 0.34631 1.32449 0.32597
3.0 0.76895 0.55765 0.70032 0.51737 1.26523 0.40490 1.18768 0.38310
7.0 0.65372 0.72178 0.60129 0.67456 1.04514 0.51175 0.99193 0.48832
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Table A3: Skin friction coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux for variation of thermal conductivity parameter (γ  = 0.0, 4.0, 

10.0) while α = 0.3, M = 0.8 and Pr = 1.0. 

Skin friction coefficient Cfx Rate of heat transfer Nuxx 
 γ  = 0.0 γ  = 4.0 γ  = 10.0 γ  = 0.0 γ  = 4.0 γ  = 10.0 

0.00 
0.50  
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

0.56194 
0.78350 
0.46597 
0.70729 
0.43912 
0.66610 
0.42049 
0.63730 
0.40622 
0.61508 
0.39463 
0.59702 
0.38487 
0.58180 
0.37644 
0.56868 
0.36902 
0.55716 
0.36241 

0.68937 
0.93324 
0.55867 
0.82527 
0.51847 
0.76742 
0.49063 
0.72719 
0.46942 
0.69640 
0.45236 
0.67154 
0.43814 
0.65077 
0.42599 
0.63298 
0.41542 
0.61748 
0.40609 

0.74304 
0.99073 
0.59607 
0.86863 
0.54747 
0.80223 
0.51455 
0.75638 
0.48972 
0.72146 
0.46994 
0.69342 
0.45360 
0.67013 
0.43976 
0.65031 
0.42780   
0.63313 
0.41731 

0.34186 
0.33933 
0.30903 
0.31277 
0.29235 
0.29760 
0.28100 
0.28653 
0.27222 
0.27781 
0.26501 
0.27062 
0.25891 
0.26451 
0.25362 
0.25919 
0.24896 
0.25450 
0.24481 

0.77061 
0.75934 
0.69889 
0.69200 
0.65746 
0.65660 
0.62832 
0.62992 
0.60615 
0.60882 
0.58815 
0.59160 
0.57309 
0.57716 
0.56024 
0.56483 
0.54915 
0.55414 
0.53947 

1.21257 
1.17930 
1.09245 
1.08479 
1.03332 
1.03746 
0.99521 
1.00142 
0.96803 
0.97364 
0.94689 
0.95201 
0.92976 
0.93487 
0.91558 
0.92104 
0.90372 
0.90969 
0.89371 

 

Table A4: Skin friction coefficient Cfx and the rate of heat transfer in terms of 
Nusselt number Nux against x for the variation of Prandtl number Pr, magnetic 
parameter M and thermal conductivity parameter γ with α = 0.2. 
 

M = 0.0, γ = 0.0 M = 0.0, γ  = 2.0 M = 0.8, γ  = 0.0 M = 0.8, γ  = 2.0  
Pr Cfx Nux Cfx Nux Cfx Nux Cfx Nux

0.73 
1.73 
4.24 
7.00 

0.96181
0.83837
0.71227
0.64567

0.35267 
0.47511 
0.63141 
0.73367 

1.10027
0.97802
0.84609
0.77363

0.59707
0.82424
1.11656
1.30780

0.81128
0.72029
0.62331
0.57038

0.32999 
0.44434 
0.59015 
0.68546 

0.91383 
0.82894 
0.73142 
0.67555 

0.55883
0.77102
1.04404
1.22245
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Appendix 
 

Table A5: Skin friction coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux for variation of Joule heating parameter (J = 0.0, 0.06, 0.15) 

with other fixed controlling parameters α = 0.3, M = 0.02, γ = 4.0, ε = 5.0 and Pr = 

0.5.  

 
Skin friction coefficient Cfx Rate of heat transfer Nuxx 

 J = 0.0 J = 0.06 J = 0.15 J = 0.0 J = 0.06 J  = 0.15 
0.00 
0.50  
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
5.50 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 
9.50 
10.0 

1.33816 
2.27275 
1.38357 
2.23131 
1.38659 
2.20677 
1.39261 
2.18803 
1.39718 
2.17388 
1.40019 
2.16285 
1.40216 
2.15384 
1.40351 
2.14618 
1.40444 
2.13948 
1.40510 
2.13353 
1.40556 

1.33816 
2.27550 
1.38770 
2.24309 
1.39829 
2.23119 
1.41435 
2.22784 
1.43103 
2.23152 
1.44797 
2.24064 
1.46556 
2.25402 
1.48412 
2.27093 
1.50386 
2.29098 
1.52488 
2.31392 
1.54728 

1.33816 
2.27963 
1.39395 
2.26100 
1.41620 
2.26890 
1.44818 
2.29044 
1.48473 
2.32402 
1.52539 
2.36825 
1.57060 
2.42220 
1.62086 
2.48546 
1.67657 
2.55794 
1.73810 
2.63974 
1.80579 

0.52014 
0.56347 
0.51095 
0.55161 
0.51747 
0.54714 
0.52008 
0.54430 
0.52130 
0.54261 
0.52181 
0.54159 
0.52200 
0.54085 
0.52210 
0.54025 
0.52218 
0.53970 
0.52225 
0.53920 
0.52232 

0.52015 
0.55958 
0.50376 
0.53438 
0.49615 
0.51157 
0.47983 
0.48620 
0.45793 
0.45810 
0.43143 
0.42690 
0.40084 
0.39224 
0.36636 
0.35389 
0.32799 
0.31166 
0.28562 
0.26538 
0.23908 

0.52015 
0.55372 
0.49284 
0.50794 
0.46302 
0.45559 
0.41539 
0.39196 
0.35296 
0.31626 
0.27603 
0.22707 
0.18399 
0.12276 
0.07566 
0.00154 
-0.05059 
-0.13852 
-0.19670 
-0.29953 
-0.36483 
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