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Abstract 
 
The problem of steady, laminar, two-dimensional conjugate heat transfer through 

an incompressible and electrically-conducting fluid from an isothermal horizontal 

circular cylinder in the presence of a uniform magnetic field acting normal to the 

cylinder has been studied. An extensive literature review is introduced with the 

endeavor of the present study at the very beginning of the thesis. The detailed 

derivation of the governing equations for the flow field and heat transfer from 

standard vector form to the case by case is presented. The developed governing 

equations and the associated boundary conditions for this analysis are transferred 

to dimensionless forms using a suitable transformation. Implicit finite difference 

method with Keller-box scheme has been applied to solve the problem and the 

method of numerical solution is also discussed completely. 

 

Firstly, Magnetohydrodynamic (MHD) conjugate free convection flow from an 

isothermal horizontal circular cylinder is investigated. Numerical outcomes are 

found for different values of the Magnetic parameter, conjugate conduction 

parameter and Prandtl number for the velocity profiles and the temperature 

distributions within the boundary layer as well as the skin friction coefficients and 

the rate of heat transfer along the surface. Results are presented graphically and 

discussed. 

 

Secondly, the numerical solutions are obtained for the problem of MHD- 

conjugate natural convection flow from a horizontal cylinder taking into account 

Joule heating and internal heat generation. The effects of the Magnetic parameter, 

conjugate conduction parameter, Prandtl number, Joule heating parameter and 

heat generation parameter are analysed for the skin friction coefficients and the 

rate of heat transfer along the surface and the velocity and the temperature within 

the boundary-layer. It is found that the skin friction increases, and heat transfer 

rate decreases for escalating value of Joule heating parameter and heat generation 

parameter. 

viii 
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Thirdly, the effects of the stress work and viscous dissipation on MHD-conjugate 

free convection flow from an isothermal horizontal circular cylinder is studied. 

Numerical results for the Prandtl number, magnetic parameter, conjugate 

conduction parameter, stress work parameter, temperature ratio parameter and 

viscous dissipation parameter are found for the velocity profiles, temperature 

distributions, coefficient of skin friction and heat transfer rate. Like other 

literature, it is found that the effects of the viscous dissipation are smaller than 

stress work on the flow field and heat transfer. 

 

Finally, MHD-conjugate free convective heat transfer analysis from isothermal 

horizontal circular cylinder with temperature dependent viscosity is considered. 

The velocity profiles, temperature distributions, the skin friction coefficient and 

the rate of heat transfer are computed and discussed in detail for various values of 

viscosity variation parameter, magnetic parameter, conjugate conduction 

parameter and Prandtl number. It is observed that the velocity increases and the 

temperature decreases within the boundary layer for increasing values of the 

viscosity variation parameter. Comparisons are performed with available results 

reported by previous investigations in all cases and the results show excellent 

agreement. 
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NOMENCLATURE 

 

Symbol    Entities Dimension 

a : Outer radius of the cylinder [L] 

b : Thickness of the cylinder [L] 

0B  : Applied magnetic field [ML2T-1Q-1] 

Cfx : Skin friction coefficient [---] 

cp : Specific heat [L2θ-1T-2] 

f  : Dimensionless stream function [---] 

g  : Acceleration due to gravity [LT-2] 

M : Magnetic parameter [---] 

N : Viscous dissipation parameter [---] 

Nux : Local Nusselt number [---] 

Pr : Prandtl number    [---] 

Q : Heat generation parameter [---] 

Tf : Temperature at the boundary layer region [θ] 

Ts : Temperature of the solid of the cylinder [θ] 

Tb : Temperature of the inner cylinder [θ] 

T∞ : Temperature of the ambient fluid [θ] 

vu,  : Velocity components  [LT-1] 

vu ,  : Dimensionless velocity components [---] 

yx ,  : Cartesian coordinates  [L] 

yx ,  : Dimensionless cartesian coordinates [---] 
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Greek Symbols      

 : Co-efficient of thermal expansion [θ-1] 

  : Conjugate conduction resistant parameter [---] 

  : Stress work parameter [---] 

 : Dimensionless stream function  [---] 

  : Viscosity variation parameter  

 : Density of the fluid inside the  boundary layer    [ML-3] 

  : Density of the ambient fluid [ML-3] 

 : Kinematic viscosity of the fluid inside the  boundary layer    [L2T-1] 

  : Kinematic viscosity of the ambient fluid [L2T-1] 

 : Viscosity of the fluid inside the  boundary layer    [ML-1T-1] 

  : Viscosity of the ambient fluid [ML-1T-1] 

 : Dimensionless temperature  [---] 

 : Electrical conductivity [MLT-3 θ-1] 

Kf : Thermal conductivity of the ambient fluid       [MLT-3 θ-1] 

Ks : Thermal conductivity of the cylinder solid         [MLT-3 θ-1] 
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Chapter I 
General Introduction 

 

1.1 Overview 

Fluid dynamics is one of the most important parts of the recent interdisciplinary 

activities concerning engineering and technological developments. It is that 

branch of science which is concerned with the study of the motion of fluids or that 

of bodies in contact with fluids. Some of the most significant advances have been 

made in this branch during the last century. These advances have been motivated 

by exciting development in science and technology and have been facilitated by 

growth of computer capabilities and developments of sophisticated mathematical 

techniques. 

 

A fluid element is acted upon by two types of forces, namely body forces and 

surfaces forces. The surface force may be resolved in two components, one 

normal and another tangential to the area of the fluid element. The normal force 

per unit area is known as normal stress while the tangential force per unit area is 

known as shearing stress. A fluid is said to be viscous (real) when normal as well 

as shearing stresses exist. On the other hand, a fluid is said to be non-viscous 

(ideal) when it does not exert any shearing stress.  

 

Theoretical investigations into fluid mechanics in the eighteenth century were 

mainly based on the ideal fluid. The theory of flows of ideal fluids is 

mathematically very developed and indeed in many cases gives a satisfactory 

description of real flows but it is useless when faced with a problem of calculating 

the drag of a body. For this reason, engineers, on the other side, confronted by the 

practical problems of fluid mechanics, developed their own strongly empirical 

science, hydraulics. This relied upon a large amount of experimental data and 

differed greatly from theoretical hydrodynamics in both methods and goals. 
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An important contribution to the fluid dynamics is the concept of boundary-layer 

introduced by Ludwig Prandtl in 1904 (Schlichting and Gersten, 2000). He 

achieved a high degree of correlation between theory and experiment, which, in 

the first half of the nineteenth century, has led to unimagined successes in modern 

fluid mechanics. The concept of boundary layer is the consequence of the fact that 

flows at high Reynolds numbers can be divided into two unequally spaced 

regions: A very thin layer close to the body (boundary-layer) where the viscosity 

is important, and the remaining region outside this layer where the viscosity can 

be neglected.  

 

Although the boundary layer is very thin, it plays a very important role in the fluid 

dynamics. One of the most important applications of boundary-layer theory is the 

calculation of the friction drag of bodies in a flow, e.g. the drag of a flat plate at 

zero incidence, the friction drag of a ship, an airfoil, the body of an airplane, or a 

turbine blade. One particular property of the boundary layer is that, under certain 

conditions, a reverse flow can occur directly at the wall. A separation of the 

boundary layer from the body and the formation of large or small eddy at the back 

of the body can then occur. This results in a great change in the pressure 

distribution at the back of the body, leading to the form or pressure drag of the 

body. This can also be calculated using boundary layer theory.  

 

Heat has always been perceived to be something that produces in us a sensation of 

warmth and one would think that the nature of heat is one of the first things 

understood by the mankind. Heat is that which transfers from one system to 

another system at lower temperature, by virtue of the temperature difference. It is 

a transitory quantity which is never contained in a body. Heat transfer to a body 

increases its thermal energy, just as doing work on a body increases its 

momentum and kinetic energy. The basic requirement for heat transfer is the 

presence of temperature difference. There can be no net heat transfer between two 

bodies that are at the same temperature. The temperature difference is the driving 

force for heat transfer, just as the voltage difference is the driving force for 
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electric current flow and pressure difference is the driving force for fluid flow. 

The rate of heat transfer in a certain direction depends on the magnitude of the 

temperature gradient in that direction. The larger the temperature gradient, the 

higher the rate of heat transfer.  

 

Heat transfer is commonly encountered in engineering systems and other aspects 

of life. The human body is constantly rejecting heat to its surroundings, and 

human comfort is closely tied to the rate of heat rejection. Many ordinary 

household appliances are designed by using the principles of heat transfer. Some 

examples include the electric or gas range, the heating and air-conditioning 

system, the refrigerator and freezer, the water heater, the iron, and even the 

computer, the television etc. Heat transfer plays a major role in the design of 

many other devices, such as car radiators, solar collectors, various components of 

power plants, and even spacecraft.  In the design of nuclear-reactor cores, a 

thorough heat transfer analysis of fuel elements is important for proper sizing of 

fuel element to prevent burnout. In aerospace technology, heat transfer problems 

are crucial because of weight limitations and safely considerations. The optimal 

insulation thickness in the walls and roofs of the houses, on hot water or steam 

pipes, or on water heaters is again determined on the basis of a heat transfer 

analysis with economic consideration. 

 

There are three distinct modes of heat transfer, namely conduction, convection 

and radiation. All mode of heat transfer require the existence of temperature 

difference, and all modes are from the high temperature medium to a lower- 

temperature one. In reality, the combined effects of these three modes of heat 

transfer control temperature distribution in a medium. 

 

Conduction occurs if energy exchange takes place from the region of high 

temperature to that of low temperature by the kinetic motion or direct impact of 

molecules, as in the case of fluid at rest, and by the drift of electrons, as in the 

case of metals. The radiation energy emitted by a body is transmitted in the space 
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in the form of electromagnetic waves. Energy is emitted from a material due to its 

temperature level, being larger for a larger temperature, and is then transmitted to 

another surface, which may be vacuum or a medium, which may absorb, reflect or 

transmit the radiation depending on the nature and extent of the medium.  

 

Convection is the mode of energy transfer between a solid surface and the 

adjacent liquid or gas that is in motion, and it involves the combined effects of 

conduction and fluid motion. Considerable effort has been directed at the 

convective mode of heat transfer. In this mode, relative motion of the fluid 

provides an additional mechanism for energy transfer. A study of convective heat 

transfer involves the mechanism of conduction and, sometimes, those of radiation 

processes as well. Experience shows that convection heat transfer strongly 

depends on the fluid properties dynamic viscosity μ, thermal conductivity κ, 

density ρ, and specific heat Cp, as well as the fluid velocity. It also depends on the 

geometry and the roughness of the solid surface, in addition to the type of the 

fluid flow (such as being steady or turbulent). Thus, we expect the convection 

heat transfer relations to be rather complex because of the dependence of 

convection on so many variables. This makes the study of convective mode a very 

complicated one. 

 

The convective mode of heat transfer is divided into two basic processes. If the 

motion of the fluid arises due to an external agent such as the externally imposed 

flow of a fluid over a heated object, the process is termed as forced convection. 

The fluid flow may be the result of a fan, a blower, the wind or the motion of the 

heated object itself. If the heat transfer to or from a body occurs due to an 

imposed flow of a fluid at a temperature different from that of the body, problems 

of forced convection encounters in technology. 

 

On the other hand, if the externally induced flow is provided and flows arising 

naturally solely due to the effect of the differences in density, caused by 

temperature or concentration differences in the body force field (such as 
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gravitational field), then these types of flow are called „free convection‟ or 

„natural convection‟ flows. The density difference causes buoyancy effects and 

these effects act as „driving forces‟ due to which the flow is generated. Hence free 

convection is the process of heat transfer, which occurs due to movement of the 

fluid particles by density differences associated with temperature difference in a 

fluid. Natural convection represents a limit on the heat transfer rates and this 

becomes a very important consideration for problems in which other modes are 

not practical. It is also relevant for safety consideration under conditions when the 

usual mode fails and the system has to depend on natural convection to get rid of 

the generated heat.  

 

Two developed branches of physics, namely electromagnetic theory and fluid 

dynamics interact to produce hydromagnetics and therefore the field of 

hydromagnetics is much richer than both the parent branches. The study of 

hydromagnetic flows is known as magnetohydrodynamics (MHD). Hannes 

Alfven (1942) was the first to introduce the term 

“MAGNETOHYDRODYNAMICS” and received the Nobel Prize for his work on 

MHD.  

 

The motion of an electrically conducting fluid, like mercury, under a magnetic 

field, in general gives rise to induced electric currents on which mechanical forces 

are exerted by the magnetic field. On the other hand, the induced electric currents 

also produce induced magnetic field. Thus there is a two-way interaction between 

the flow field and the magnetic field: the magnetic field exerts force on the fluid 

by producing induced currents, and the induced currents change the original 

magnetic field. Therefore, the hydromagnetic flows (the flows of electrically 

conducting fluids in the presence of a magnetic field) are more complex than the 

ordinary hydrodynamic flows. MHD covers phenomena in electrically conducting 

fluids, where velocity field and magnetic field are coupled.  
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Many natural phenomena and engineering problems are susceptible to MHD 

analysis. It is useful in astrophysics. Geophysicists encounter MHD phenomena in 

the interactions of conducting fluids magnetic fields that are presented in and 

around heavenly bodies. Engineers employ MHD principles in the design of heat 

exchangers, pumps and flowmeters, in space vehicle propulsion, control and re-

entry, in creating novel power generating systems, and in developing confinement 

schemes for controlled fusion. 

 

Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat 

transfer, mass transfer, chemical reactions, and related phenomena by solving the 

mathematical equations which govern these processes using a numerical process. 

The evaluation of numerical methods, especially finite difference method (FDM) 

for solving ordinary and partial differential equation, started approximately with 

the beginning of the twentieth century. Traditionally, both experimental and 

theoretical methods have been used to develop designs for equipment and 

vehicles involving fluid flow and heat transfer.  

 

A third method, the numerical approach has become available with the advent of 

digital computer. Over the years, computer speed has increased much more 

rapidly than computer costs. The net effect has been a phenomenal decrease in the 

cost of performing a given calculation. This is illustrated in Figure 1.1, where it is 

seen that the cost of performing a given calculation has been reduced by 

approximately a factor of 10 every 8 years.  

 

It is now possible to assign a home work problem in CFD, the solution of which 

would have represented a major breakthrough. On the other hand, the costs of 

performing experiments have been steadily increasing over the same period of 

time. Thus, the importance and progress of CFD is increasing enormously day by 

day. 
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1.2 Literature Review 

Natural convective flow around heated, horizontal cylinders for various fluids is 

of great importance due to its extensive industrial applications. These applications 

have motivated extensive research on the heat transfer and flow characteristics 

related to natural convection from horizontal cylinders. For example, Saville and 

Churchill (1967) examined the laminar natural convection boundary-layer flow 

near horizontal cylinders and vertical axisymmetric bodies. It appears that Merkin 

(1976, 1977) was the first to apply the finite difference method as proposed by 

Terrill (1960) to study the steady free convection boundary layers on horizontal 

circular and elliptical cylinders which are maintained at either a uniform wall 

temperature or a uniform heat flux. He showed that on starting at the lowest point 

of the cylinder that the fluid flow reaches the top point without separating and at 

this point the boundary layer has a finite thickness. The boundary layer 

approximation usually leads to the neglect of the curvature effects and the 

pressure difference across the boundary layer and, on using this approximation, 

Kuehn and Goldstein (1980) solved simplified Navier-Stokes equations and 

energy equation for laminar natural convection about an isothermal horizontal 

cylinder using similarity technique and series methods. Natural convection from 

horizontal circular cylinder-laminar regime was investigated by Farouk and 
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Guceri (1981). Laminar free convection around horizontal circular cylinders was 

also analysed by Luciano (1983). 
 

 

 

 

 

 

 

 

 

 

 

In these above studies conduction resistance of the solid of the cylinder for the 

convective heat transfer between cylinder surface and fluid flow was neglected 

considering the thickness of the cylinder is infinitesimally small.  However, in 

practical systems conduction resistance may affect natural convection flow in 

many practical fields especially those concern with thermal insulation.  

 

Perelman (1961) was the first to study the boundary layer equations for the fluid 

flow over a flat plate of finite thickness considering two-dimensional thermal 

conduction in the plate. The investigation was then extended by Luikov et al. 

(1971) and since then various types of conjugate heat transfer (CHT) problems 

have been studied. The early theoretical and experimental works of the CHT for a 

viscous fluid have been reviewed by Gdalevich and Fertman (1977) and 

Miyamoto et al. (1980). They observed that a mixed-problem study of the natural 

convection has to be performed for an accurate analysis of the thermo-fluid-

dynamic (TFD) field if the convective heat transfer depends strongly on the 

thermal boundary conditions. Pozzi and Lupo (1988) investigated the entire TFD 

field resulting from the coupling of natural convection along and conduction 

inside a heated flat plate by means of two expansions, regular series and 

asymptotic expansions. Moreover, Kimura and Pop (1994) was the first to 

 
 

Figure 1.2: Natural convection flow from a horizontal circular cylinder. 
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investigate conjugate natural convection from a horizontal circular cylinder. 

Natural convection flow along a vertical flat plate in presence of conduction was 

also studied by Azim et al. (2008). 

 

On the other hand, a considerable amount of research has been accomplished on 

the effects of electrically conducting fluids such as liquid metals water mixed with 

a little acid and others in the presence of transverse magnetic field on the flow and 

heat transfer characteristics over various geometries. As for example, a natural 

convection heat transfer from a horizontal cylinder to mercury under a magnetic 

field was studied by Michiyoshi et al. (1976). Wilks (1976) studied MHD free 

convection about a semi-infinite vertical plate in a strong cross field. Azim et al. 

(2007a) investigated MHD laminar free convective flow across a horizontal 

circular cylinder.  

 

A lot of physical phenomena involve natural convection driven by heat 

generation, it is necessary to take into account the effect of heat generation to 

obtain a better estimation of the flow and heat transfer behavior. Possible heat 

generation effects may alter the temperature distribution. This may occur in such 

applications related to nuclear reactor cores, fire and combustion modelling, 

electronic chips and semiconductor wafers. Vajravelu and Hadjinicolaou (1993) 

studied the heat transfer characteristics in a laminar boundary layer flow of a 

viscous fluid over a linearly stretching continuous surface with viscous 

dissipation/frictional heating and internal heat generation. Chamkha and Camille 

(2000) studied the effect of the heat generation or absorption and thermophoresis 

on a hydromagnetic flow with heat and mass transfer over a flat plate. Mendez 

and Trevino (2000) studied the effects of the conjugate conduction natural 

convection heat transfer along a thin vertical plate with nonuniform heat 

generation. Molla et al. (2006) studied the natural convection flow from an 

isothermal horizontal circular cylinder in presence of heat generation. Mamun et 

al. (2008) studied the MHD conjugate heat transfer for a vertical flat plate in the 

presence of viscous dissipation and heat generation.  
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Sparrow and Cess (1961) showed that viscous dissipation and Joule heating are of 

the same order and as well as negligibly small. But Gebhart (1962) has shown that 

the viscous dissipation effect plays an important role in natural convection in 

various devices which are subjected to large deceleration or which operate at high 

rotative speeds and also in strong gravitational field processes on large scales and 

in geological processes.  With this understanding dissipation effects on MHD free 

convection flow past a semi-infinite vertical plate was investigated by Takhar and 

Soundalgekar (1980). Hossain (1992) studied the effects of viscous dissipation 

and Joule heating on magnetohydrodynamic (MHD) natural convection flow. 

Aldoss et al. (1996) analysed MHD mixed convection from a horizontal circular 

cylinder. Hydromagnetic natural convection from an isothermal inclined surface 

adjacent to a thermally stratified porous medium was analyzed by Chamkha 

(1997). MHD forced convection flow in the presence of viscous and magnetic 

dissipations and stress works along a non isothermal wedge was investigated by 

Yih (1999). Mansour et al. (2000) studied the coupled heat and mass transfer in 

magnetohydrodynamic flow of micropolar fluid on circular cylinders with 

uniform heat and mass flux. Combined effect of viscous dissipation and Joule 

heating on MHD forced convection over a non-isothermal horizontal cylinder 

embedded in a fluid saturated porous medium was studied by El-Amin (2003). 

Effect of Joule heating on MHD-Conjugate free convection flow along a vertical 

flat plate was investigated by Azim et al. (2007b). Alim et al. (2008) presented 

combined effect of viscous dissipation and joule heating on the coupling of 

conduction and free convection along a vertical flat plate. Azim et al. (2010c) 

studied the MHD–conjugate heat transfer for a vertical flat plate in the presence of 

heat generation with viscous dissipation and Joule heating.  

 
In almost all natural convection studies, pressure stress term is neglected in the 

energy equation. This is a valid approximation at an ambient temperature of 300 

K at 1 atm pressure and at terrestrial gravity, for most gases and low and moderate 

Prandtl number liquids. However for high gravity, such as in gas turbine blade 

cooling applications, where the intensity of the body force may be as large as 
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410 g, pressure stress may affect transport even at small downstream distances 

from the leading edge. Also, the effects on transport may be quite significant at 

low temperatures for gases and for high Prandtl number liquids. Joshi and 

Gebhart (1981) studied the effect of pressure stress work and viscous dissipation 

in some natural convection flows. Pantokratoras (2003) carried out new results of 

the effect of viscous dissipation and pressure stress work in natural convection 

along a vertical isothermal plate without any approximation. Alam et al. (2007) 

investigated free convection from a vertical permeable circular cone with pressure 

work and non-uniform surface temperature. Barletta and Nield (2009) studied 

mixed convection with viscous dissipation and pressure work in a lid-driven 

square enclosure. Very recently, Azim and Chowdhury (2013a) analysed 

hydromagnetic conjugate free convection flow from an isothermal horizontal 

circular cylinder with stress work and heat generation. 

 

All the above studies were confined to a fluid with constant viscosity. However, it 

is known that this physical property may change significantly with temperature. 

Gray et al. (1982) and Mehta and Sood (1992) showed that when the effect of 

variation of viscosity considered, the flow characteristics may change 

substantially. Hossain et al. (2000) studied the flow of viscous incompressible 

fluid with temperature dependent viscosity and thermal conductivity (Proposed by 

Charraudeau (1975)) past a permeable wedge with variable heat flux. Molla et al. 

(2001, 2006) investigated effect of temperature dependent viscosity on natural 

convection flow from an isothermal horizontal circular cylinder and from a 

sphere. Ching-Yang Cheng (2006) studied the effect of temperature-dependent 

viscosity on the natural convection heat transfer from a horizontal isothermal 

cylinder of elliptic cross section. Recently, Ahmad et al. (2009) studied mixed 

convection boundary layer flow past an isothermal horizontal circular cylinder 

with temperature-dependent viscosity.  

 

From the above literature review, it is observed that free convection boundary 

layer from an isothermal horizontal cylinder was studied by several researchers 
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[Merkin (1976, 1988), Kuehn and Goldstein (1980), Wang et al. (1990) etc.]. 

Where as Wilks (1976), Takhar and Soundalgekar(1980), Hossain et al. (1992), 

studied on MHD free convection flow from vertical plate. Aldoss et al.(1996), 

studied MHD mixed convection from horizontal cylinder and El-Amin(2003) 

studied MHD forced convection from horizontal circular cylinder. On the other 

hand, Kimura and Pop (1994) considered conduction of the cylinder on free 

convection from horizontal cylinder. 

 
Figure 1.3: Variation of dynamic viscosity of several fluids with temperature 

(Cebeci and Bradshaw, 1984) 
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Alim et al. (2008) studied combined effect of viscous dissipation and joule 

heating on the coupling of conduction and free convection along a vertical flat 

plate. None of the above researchers considered magnetohydrodynamic (MHD) 

conjugate free convection flow from an isothermal horizontal circular cylinder.  

Present study demonstrates this issue. 

 

Heat transfer analysis of MHD conjugate free convection flow from an isothermal 

horizontal circular cylinder is investigated in this current study. In addition, the 

problem has been extended considering the presence (i) Joule heating and heat 

generation (ii) Pressure stress work and viscous dissipation and (iii) Temperature 

dependent viscosity. To the best of my knowledge, these problems have not been 

considered before.  
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1.3 Objectives 

The proposed research is to investigate the result of MHD-conjugate free 

convection flow from an isothermal horizontal circular cylinder. Then it is 

extended considering Joule heating, heat generation, stress work, viscous 

dissipation and temperature dependent viscosity on the flow field. The basic 

equations  will  be  transformed to non-dimensional  boundary  layer  equations 

using  the suitable  transformations,  which will be solved numerically and  

analyzed in terms of velocity profiles,  temperature distributions, skin friction and 

heat  transfer over  the whole  boundary  layer for a variety of  parameters such as 

Prandtl  number Pr, magnetic parameter M, conjugate conduction parameter χ, 

heat generation parameter Q, Joule heating parameter J, viscous dissipation 

parameter N, stress work parameter ε, temperature ratio parameter Tr and 

temperature dependent viscosity variation parameter λ. 
      

The major objectives of this study are: 

(i) To solve the equations governing MHD conjugate free convection flow 

from an isothermal horizontal circular cylinder using implicit finite difference 

method with Keller box scheme.  

(ii)    To analyse heat and mass transfer characteristics of the MHD conjugate 

flow from an isothermal horizontal circular cylinder from the obtained solution.  

(iii)   To compare the present results with some previously published results.  

(iv) To study the effects of magnetic parameter M, conjugate conduction 

parameter χ, heat generation parameter Q, Joule heating parameter J, viscous 

dissipation parameter N,  stress work parameter ε, temperature ratio parameter Tr 

and temperature dependent viscosity variation parameter λ on the velocity 

profiles, temperature distributions, skin friction coefficient and heat transfer. 
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1.4 Applications 

The study of heat transfer is of great interest in many branches of science and 

engineering. In designing heat exchangers such as boilers, condensers and 

radiators etc. heat transfer analysis is essential for sizing such equipment. For 

example in the design of nuclear-reactor cores a thorough heat transfer analysis is 

important for proper sizing of fuel element to prevent burnout. In aerospace 

technology, heat transfer problems are crucial because of weight limitations and 

safety considerations. In heating and air conditioning applications for buildings a 

proper heat transfer analysis is necessary to estimate the amount of insulation 

needed to prevent excessive heat loses or gains. 

 

The most important application of MHD is in the generation of electrical power 

with the flow of an electrical conducting fluid through a transverse magnetic field. 

Beside this MHD is widely applied in astrophysics (planetary magnetic field), 

MHD pumps, MHD generators, MHD flow meters, Metallurgy (induction furnace 

and casting of Al and Fe), Ship propulsion, Crystal growth, MHD flow control 

(reduction of turbulent drag), Magnetic filtration and separation, Jet printers and 

Fusion reactors etc. Recently, experiments with ionized gases have been 

performed with the hope of producing power on a large scale in stationary plants 

with large magnetic fields.  

 

Presently, the concept of heat and mass transfer is applied for security purpose. 

Security related to transport phenomena include biological and chemical threat 

detection, aerosol generation and dispersion, distributed power generation, 

portable power infrastructure and fire protection etc. For example, the World 

Trade Center (WTC) towers could have sustained the impact of the planes during 

the attack in September 11, 2001, but the resulting fires caused structure failure 

and a total collapse. Fire is not considered as a design load in the prediction and 

evaluation of structural performance in the current design practices. In order to 

consider fire as a design load, it is imperative to develop science-based set of 
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verified tools to evaluate the performance of the entire structure under realistic 

fire conditions. 

 

The study of the thermal sciences contributes significantly to improve health and 

environment. For example, lasers have been widely used in medical applications 

for more than three decades. The majority of those applications involve thermal 

effects. Thus, in the area biomedical engineering, understanding of heat mass 

transfer plays an important role on design of replacement tissues, and delivery of 

drugs.  

 

The recent information technology revolution has led to increase generation rates 

of heat fluxes and volumetric energy.  The operating temperatures of devices must 

be held to reasonably low values to ensure their reliability. Transport phenomena 

must be used to develop new, more efficient cooling systems. Limitations on 

maximum chip temperature and constraints on the level of temperature uniformity 

in electronic components can be resolved with heat pipes, Micro heat pipes, 

miniature heat pipes, heat sinks and heat spreaders etc. 

 

Human body has had to devise a „second skin‟ called clothing, a product made 

from a material called fabric. Properly engineered (designed) fabrics and clothing 

permit people to live in most of the locations on planet earth from Sahara Desert 

to Polar region environmental conditions explore lake and ocean depths as well as 

travel in interplanetary space. For thermal equilibrium of man in his environment, 

it is convenient for the parameters related to the ambiance and for those 

concerning man to compensate their effects. It should be noted that, the total heat 

loss from skin is made up of two parts, the heat loss by evaporation and the heat 

loss by conduction, convection and radiation. Now, new technologies are 

permitting the production of „intelligent‟ textiles; textiles capable of sensing 

changes in environmental conditions or body functioning and responding to those 

changes. In this century, textile fabrics have been improved to assist in thermal 

and moisture regulation to and from human body through engineering of fibers, 
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yarns and fabric construction, and developing fabric finishes. Accordingly, the 

knowledge of heat transfer is a crucial area under discussion in textile 

engineering. 

 

1.5 Motivation  

The study of convective heat and mass transfer has gained serious momentum 

during recent years due to increased demands by industry for heat exchange 

equipment that is less expensive to build and operate. Savings in energy use also 

provide strong motivation for the development of improved methods of 

convective heat transfer. Constant efforts have been made to produce more 

efficient heat exchangers by employing various methods of heat transfer 

augmentation. When designing heat exchangers for air conditioning and 

refrigeration applications, it is imperative that they are made as compact and 

lightweight as possible. This is also true for cooling system in automobiles and 

spacecrafts, where volume and weight constraints are particularly important. 

  

 
Figure 1.4: Heat exchanger 

 

Numerous methods have been developed to increase the rates of heat transfer in 

compact heat exchange devices operated in laminar regime. The objective behind 

these methods is to efficiently interrupt the boundary layer that forms on the 
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exchanger surface and replace it with fluid from the core, thereby creating a fresh 

boundary layer that has increased near wall temperature gradients. This leads not 

only the higher rate of heat transfer but also to greater frictional losses. 

 

Horizontal circular cylinder is a very simple and useful structure which is 

frequently used to design a heat exchanger or a heat pipe. In a heat exchanger 

thermal energy moves from hot fluid to a surface by convection, through the wall 

by conduction. On the other hand, there are many industrial and engineering 

applications concern with magnetohydrodynamics (MHD). Magnetic field is also 

used to control heat transfer rate. Therefore MHD conjugate free convection from 

an isothermal horizontal circular cylinder is considered in the present study. 

 

1.6 Outline of the thesis 

The chapter I is an introductory chapter which includes physical phenomena of 

natural convection, magnetohydrodynamics, conduction, Joule heating, 

volumetric rate of heat generation, viscous dissipation, stress work and 

temperature dependent viscosity with applications. An extensive literature review 

of the past studies on the above physical facts is included with the aim of the 

present studies. The author also gives an explanation why and how did he 

motivated to do this research with a list of objectives.  

 

Chapter II is a presentation of detailed derivation of the governing equations for 

the flow field and heat transfer from standard vector form to the case by case 

form. The dimensionless form of the governing equations is presented with 

careful discussion. At the end of this chapter a comprehensive discussion 

regarding the method of solution of the non-linear dimensionless governing 

equations is introduced. 

 

MHD-conjugate free convection flow from an isothermal horizontal circular 

cylinder is investigated in chapter III. Three parameters are found from the 

governing equations and boundary conditions, namely magnetic parameter, 

18 



 

40 

Prandtl number and conjugate conduction parameter. The heat transfer 

characteristics are analysed with a rigorous discussion. The results obtained in this 

chapter have been published in the Journal of energy, heat and mass transfer [see 

Azim and Chowdhury (2012a)]. 

 

The effects of the Joule heating and heat generation on MHD-conjugate free 

convection from an isothermal horizontal circular cylinder has been considered in 

chapter IV. Numerical solutions have been obtained for Joule heating parameter, 

heat generation parameter, magnetic parameter, Prandtl number and conjugate 

conduction parameter. The results obtained in chapter IV has been presented 

partially in different conferences such as 16th Mathematic conference 2009 [see 

Azim et al. (2009a)], ICME 2009 [Azim et al. (2009b)], ACFM 2010 [Azim and 

Chowdhury (2010b)] and published in the Journal of Computational Methods in 

Physics [Azim and Chowdhury (2013b)]. 

 

In Chapter V, stress work and viscous dissipation is introduced with the problem 

discussed in chapter III. Three new parameters are present in chapter V, namely 

stress work parameter, viscous dissipation parameter and temperature ratio 

parameters. The characteristics of these new parameters are presented graphically 

and discussed elaborately. The results are presented partially in conference 

MERTEC 2010 [see Azim et al. (2010a)] and published in the Journal of Dhaka 

International University [see Azim (2012b)].  

 

Temperature dependent viscosity is taken into account in chapter VI as a result a 

new parameter is added with the parameters introduced in chapter III, namely 

viscosity variation parameter. The properties of this parameter on the fluid flow 

and heat transfer are widely explained in chapter VI. 

 

Finally, a general conclusion and possible future work on this thesis has been 

discussed in chapter VII. 
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Chapter II 
Mathematical Modeling of the problem 

 
2.1 Magnetohydrodynamic equations 
Magnetohydrodynamic equations are the ordinary electromagnetic and 

hydrodynamic equations modified to take account of the interaction between the 

motion of the fluid and electromagnetic field. Formulation of the electromagnetic 

theory in mathematical form is known as Maxwell‟s equations. Maxwell‟s basic 

equations show the relation of basic field quantities and their production. The 

basic laws of electromagnetic theory are all contained in special theory of 

relativity. In this study it is assumed that all velocities are small in comparison 

with the speed of light. Before writing down the MHD equations it is essential to 

know the ordinary electromagnetic and hydro-magnetic equations (Cramer and 

Pai(1974)). 

The electromagnetic equations are: 

Charge continuity:    eD 


.    (2.1) 

Current continuity:    
t

J e







.    (2.2) 

Magnetic field continuity:   0.  B


   (2.3) 

Ampere‟s  Law:    
t
DJB








0   (2.4) 

Faraday‟s Law:    
t
BE








   (2.5) 

Constitutive (transport) equations for BD


and :  
ED


   and 0BB e


 (2.6) 

Total current density flow:      qBqEJ e


   (2.7) 
The above equations (2.1) to (2.7) are Maxwell‟s equations where D


is the 

electron displacement, e  is the charge density, E


 is the electric field, B


 is the 

magnetic field, 0B  is the magnetic field strength, J


 is the current density, 
t
D





 is 

the displacement current density,    is the electric permeability of the medium, 

e  is the magnetic permeability of the medium, q  is the vector field,   is the 
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electric conductivity and qe


  is the convection current due to charge moving 

with the field. 

 

The electromagnetic equations shown above are not usually applied in their 

present form and require interpretation and several assumptions to provide the set 

to be used in MHD. In MHD a fluid is considered as grossly neutral. The charge 

density e  in Maxwell‟s equations must then be interpreted, as an excess charge 

density, which is generally not large. If it is disregard the excess charge density 

then it must disregard the displacement current. In most problems the 

displacement current, the excess charge density and the current due to convection 

of the excess charge are small. Taking into this effect the electromagnetic 

equations can be reduced to the following form: 

 

Charge continuity:    0. D


   (2.8) 

Current continuity:    0.  J


   (2.9) 

Ampere‟s  Law:    JB


 0    (2.10) 

Total current density flow:     BqEJ


   (2.11) 

 

Following are the presentation of the fluid dynamics equations considering 

electromagnetic phenomena. 

 

2.1.1 The continuity Equation 
The MHD continuity equation for viscous incompressible electrically conduction 

fluid remains as that of usual continuity equation: 

0.  q          (2.12) 

2.1.2 The Navier-Stokes equation 
The motion of conducting fluid across the magnetic field generates electric 

currents, which change the magnetic field and the action of the magnetic field on 

these current give rises to mechanical forces, which modify the flow of the fluid. 
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Thus, the fundamental equation of the magneto-fluid combines the equations of 

the motion from the fluid mechanics with Maxwell‟s equations from 

electrodynamics.  

Then the Navier-Stokes equation for a steady laminar viscous incompressible 

fluid with constant viscosity may be written in the following form:  

  BJgqPqq


  2.      (2.13) 

Where  is the density,   is the viscosity of the fluid and P is the pressure. The 

Navier-Stokes equation for a steady laminar viscous incompressible fluid with 

variable viscosity may be written in the following form:  

  BJgPqq


  ..       (2.14) 

 2   
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The left side of the equation (2.13) is the mass time acceleration; the first term on 

the right hand side is the pressure gradient, second term is the viscous force, third 

term is the body force per unit volume and the last term is the electromagnetic 

force due to motion of the fluid. 

 

2.1.3 The energy equation 
The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This 

equation can be written as:  
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      PqTTTQuqJTTqC p ).()(.. 0  


   (2.15) 

Where  is the thermal conductivity of the fluid, pC is the specific heat at 

constant pressure,   is the coefficient of thermal expansion, 0Q  is the heat 

generation/absorption coefficient and  is the viscous dissipation function. 

The left side of the equation (2.15) represents the net energy transfer due to mass 

transfer; the first term of the right hand side represents conductive heat transfer, 

the second term is the Joule heating term due to resistance of the electric current 

flowing through the fluid, the third term is the volumetric rate of heat generation, 

the fourth term is the viscous dissipation term and the last term is the rate of work 

done by the share stress force. 

 

In the above equations   is the vector differential operator and for two 

dimensional case it is defined as: 

y
j

x
i









 ˆˆ  

Where ji ˆandˆ  are the unit vectors along x  and y  axes respectively. If it is 

considered that the external electric field is zero and induced magnetic field is 

negligible, then the current density is related to the velocity by Ohm‟s law as 

follows:  

 BqJ


          (2.16) 

Where Bq


  is the electrical fluid vector and  denotes the electric conductivity 

of the fluid. This condition is usually well satisfied in terrestrial applications, 

especially so in (low- velocity) free convection flows. So, we can write 

0
ˆBjB 


           (2.17) 

Using equations (2.16) and (2.17) the force per unit volume BJ


  acting along 

the x axis takes the following form: 

uBBJ 2
0


        (2.18) 

 

 

23 



 

45 

2.2 Physical Model 
Let us consider an isothermal horizontal circular cylinder of radius a placed in a 

fluid of uniform temperature T . The cylinder has a heated core region of 

temperature bT  and the normal distance from inner surface to the outer surface is 

b with  TTb . A uniform magnetic field having strength 0B  is acting normal to 

the cylinder surface. The physical model is shown in Figure 2.1, where the x -axis 

is taken along the circumference of the cylinder measured from the lower 

stagnation point to the upper stagnation point and the y -axis is taken normal to 

the surface. The gravitational force g is acting in downward direction.  

 

 

Figure 2.1: Physical Model and coordinate system 
 

2.3 Assumptions 

The present research is based on the following assumptions. 

1. The flow is steady, laminar, two-dimensional, incompressible, and 

electrically conducting. 

2. The fluid may be treated as continuous and is describable in terms of 

local properties. 
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3. The cylinder surface is impermeable, with no injection or withdrawal 

at the wall. 

4. The induced magnetic field is small enough to be negligible.  

5. The Boussinesq approximation is applicable, which treats density as a 

constant in all terms in the governing equations except for the 

buoyancy term in the momentum equation. The density variation is 

mainly caused by the thermal expansion of the fluid and can be 

expressed as:  

    TTT  1)(        

where 
pT



















1 denotes the coefficient of thermal expansion. 

6. The boundary layer thickness is very small compared with the external 

radius „a‟ of the cylinder (Boundary layer approximation). 

 

2.4 Mathematical analysis 
The mathematical formulation of the present problem has been discussed in this 

section. As there are four cases considered in the current study for the same 

physical model shown in Figure 2.1, therefore the case by case mathematical 

formulation of the analysis are presented in the following sub-sections. 
 

2.4.1 Case I: MHD conjugate free convection flow 

Under the assumptions in section 2.3 and with the help of equation (2.18) reduced 

form of the governing boundary-layer equations (2.12) and (2.13) are: 

Continuity equation: 

    0









y
v

x
u 

  

This implies:   0









y
v

x
u

      (2.19) 
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x -momentum equation 

uBg
y
u

x
P

y
uv

x
uu 2

02

2

sin  


























   (2.20) 

Where 
a
x

 . The x -momentum equation in the quiescent fluid out side the 

boundary layer can be obtained from equation (2.20) as a special case by setting 

0u . It gives 


















a
xgg

x
P sinsin        (2.21) 

It is noted that uv   in the boundary layer and thus 0









y
v

x
v

 and that there 

are no body forces in the y  direction, the force balance in that direction gives 

0




y
P

. That is the variation of pressure in that direction normal to the surface is 

negligible and for a given x  the pressure in the boundary layer is equal to the 

pressure in the inactive fluid. Therefore    xPxPP   and 























a
xg

x
P

x
P sin        (2.22) 

Now adding the first term (pressure gradient) and the third term (body force) of 

the right of the equation (2.20) we have: 

 sing
x
P





   








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
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
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


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a
xg sinsin 

  termforcebody  for the re temperatuoffunction  a is  

 sing
x
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




   




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


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


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xg sinsin   
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


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
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xgT sin      (2.23) 
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The density function  T  is expanded at the position TT in a Taylor series as 

    ...







 



 TT
dT
dT 

       (2.24) 

If we break off this series after the linear term, using (2.24) in equation (2.23) 

yields: 
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Using above results and symbolized fT and ,  instead of T and,   , the 

modified form of the momentum equation (2.20) can be written as:      
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Where 



   is the kinematic viscosity of the surrounding fluid.  

Joule heating term, heat generation term, viscous dissipation term and stress work 

term in the energy equation (2.15) should be neglected for case I. The reduced 

energy equation is 
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The energy equation in the solid of the cylinder is given by 

0yb-,x0for02
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









y
T

x
T ss      (2.27) 

The equation (2.27) is coupled to the energy equation in the fluid region by the 

condition that the temperature and heat flux are continuous at the solid –fluid 

interface, namely  

 x0   0,yon                             fs TT     (2.28a) 
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s     (2.28b) 

In general axial, the axial conduction of heat along the wall is negligible when 

compared with the normal conduction across the wall and this assumption is 

consistent with the boundary-layer theory (Luikov (1974)). In this case equation 

(2.27) reduces to 

0yb-,x0for02

2





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y
Ts       (2.29) 

The assumption of the neglecting the axial heat conduction is only valid for 

1
a
b . Thus on applying the condition that bs TT   on by  , Equation (2.29) 

gives 
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Applying equation (2.30) in (2.28b) we have  
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Thus the problem is governed by the boundary-layer equations (2.19), (2.25) and 

(2.26) and the physical situation of the system suggests the following boundary 

conditions [Kimura and Pop (1994), Pop and Ingham (2001)] 
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Dimensionless governing equations 

The governing equations (2.19), (2.25) and (2.26) and the boundary conditions 

(2.31) can be made non-dimensional, using the Grashof number 
23 /)]([   TTagGr b  which is assumed large and the following non-

dimensional variables: 
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Where   is the dimensionless temperature.  

From equation (2.32) we have:  
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This implies 
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Left Side of the momentum equation: 
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Right Side of the momentum equation  
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Left side of the energy equation 
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Right side of the energy equation 
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Using equations (2.32) to (2.49) following are the dimensionless form of the 

governing equations (2.19), (2.25) and (2.26) respectively 
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Where 2/1

2
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2
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
 is the magnetic parameter and  
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Pr   is the Prandtl 

number and the boundary conditions in (2.31) can be written as:  
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Where 4/1Gr
a
b

s

f


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

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
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


  is the conjugate conduction parameter. The present 

problem is governed by the magnitude of magnetic parameter M, Prandtl number 

Pr  and conjugate conduction parameter  . The values of  depends on the ratios 

of 
a
b and 

s

f




and Grashof number Gr. The ratios 

a
b and 

s

f




are less than unity 

where as Gr is large for free convection. Therefore the value of   is greater than 

zero. Present analysis will refer to free convection problem without conduction 

for   = 0. 

To solve equation (2.50)-(2.52), subject to the boundary condition (2.53), we 

assume following transformations: 
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where   is the dimensionless temperature and   is the stream function usually 

defined as: 
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The equations (2.54) and (2.55) implies that 
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From equation (2.58) and equation (2.60) it is observed that the stream function 

defined at equation (2.54) satisfies the continuity equation. i.e. 
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Substituting equations (2.56) to (2.65) into the equations (2.50)-(2.52), new forms 

of the dimensionless governing equations (2.51) and (2.52) are: 
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The corresponding boundary conditions as mentioned in equation (2.53) take the 

following form: 
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In the above equations primes denote differentiation with respect to y only.  
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Most important physical quantities, the shearing stress and the rate of heat transfer 

in terms of skin friction coefficient and Nusselt number respectively can be 

written as: 
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Where U is the characteristic velocity and for natural convection flows defined 

as    TTgaU b2 . 
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Using the variables in equation (2.32) with the equations (2.54) and (2.55) and the 

boundary conditions into (2.68), we have 

)0,(4/1 xfxGrC f  , )0,(4/1 xGrNu       (2.70) 

The results of the velocity profiles and temperature distributions can be calculated 

by the following relations: 

),( yxfu  , ),( yx         (2.71) 

 

2.4.2 Case II: The effect of Joule heating and heat generation 

In this case, the effects of Joule heating and volumetric rate of heat generation in 

the energy equation (2.15) are taking into account. The energy equation for this 

case is 
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Applying non-dimensional variables, which are described in equation (2.32) last 

two terms, can be written as:  
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Using above relations and equations (2.42) to (2.45), the dimensionless form of 
the energy equation can be written as:  
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Where  
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0 is the Joule heating parameter, 2/1

2
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Q
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   is the 

heat generation parameter and  


 pc
Pr   is the Prandtl number.  

The continuity equation, momentum equation and the boundary conditions remain 

same as equations (2.50), (2.51) and (2.53) as case I. This problem is governed by 

the magnitude of magnetic parameter M, Prandtl number Pr, Joule heating 

parameter J, heat generation parameter Q and conjugate conduction parameter  . 

 

The energy equation (2.75) has the following form by means of stream function 

and dimensionless temperature as defined in equation (2.54) and (2.55). 




















x
f

x
fxQfJxf 


 22

Pr
1     (2.76) 

The shearing stress and the rate of heat transfer in terms of skin friction 

coefficient and Nusselt number respectively and the velocity and temperature 

distributions within the boundary-layer can be calculated by the relations (2.70) 

and (2.71) respectively. 
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2.4.3 Case III: The study on viscous dissipation and stress work 

The effects of viscous dissipation and pressure stress work are neglected in the 

above cases and therefore viscous dissipation and stress work terms also 

disappear in the energy equations of the above cases. If viscous dissipation and 

stress work terms are considered and Joule heating and heat generation terms are 

neglected in the energy equation (2.15) then the energy equation for this 

circumstance is 
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According to equation (2.32) last two terms, can be written as:  
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Using above relations (2.78) and (2.79) and equations (2.42) to (2.45), the 
dimensionless form of the energy equation can be written as:  
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Where 


 pc
Pr  is the Prandtl number, 
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dissipation parameter, 
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the temperature ratio parameter.  
 
The continuity equation, momentum equation and the boundary conditions remain 

same as equations (2.50), (2.51) and (2.53). This problem is governed by the 

magnitude of magnetic parameter M, Prandtl number Pr, conjugate conduction 

parameter  , viscous dissipation parameter N, stress work parameter   and 

temperature ratio parameter rT . By means of stream function and dimensionless 

temperature as defined in equation (2.54) and (2.55) the energy equation (2.80) 

has the following form: 
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From equation (2.70) one can calculate the shearing stress and the rate of heat 

transfer in terms of skin friction coefficient and Nusselt number respectively and 

the equation (2.71) is responsible for the velocity and temperature distributions 

within the boundary-layer. 

 

2.4.4 Case IV: Temperature dependent viscosity 

In the above cases the studies are confined with constant viscosity but it is 

observed from Figure 1.3 that viscosity is function of temperature. For some 

liquids like engine oil, mercury and water it is inversely proportional with 

temperature and for air and hydrogen it is directly proportional with temperature. 

Gray et al. (1982) and Mehta and Sood (1992) showed that when the effect of 

variation of viscosity considered, the flow characteristics may change 

substantially. The momentum equation (2.14) can be written as: 
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Where   is the density of the ambient fluid. There are a very few forms of 

viscosity variation available in the literature, among them the following form of 

viscosity variation is considered in this case which is proposed by Lings and 

Dybbs (1987): 
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Where  is the viscosity of the ambient fluid and  is a constant. The equation 

(2.83) can be written as 
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Where   TTb  is the viscosity variation parameter. 

Using dimensionless variables describe in equation (2.32) and equation (2.84) the 

first term of the right side of the equation (2.82) is 

  







































































 


 1

2

2

1
1

1
1










yy
u

x
u

y
u

yy
u

y
 

                 






































 y

aGr
y
u

Gra

Gr
y
u

a
Gr 







2

4
1

4
1

2

2
1

2

2

3 11
1

1  























y
u

y


  





























 

 yy
u

y
u

a
Gr 








 22

2

3 11
1    (2.85) 

Applying equations (2.23) and (2.85) in (2.82), new form of the momentum 

equation is:  
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where    2/12
0

2 / GrBaM   is the magnetic parameter and   TTb   

is the temperature dependent viscosity variation parameter. 
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The continuity equation, energy equation and the boundary conditions are same as 

equations (2.50), (2.52) and (2.53). This problem is governed by the magnitude of 

magnetic parameter M, Prandtl number Pr, conjugate conduction parameter  and 

viscosity variation parameter  . 

Considering stream function and dimensionless temperature as defined in 

equation (2.54) and (2.55) the momentum equation (2.86) has the following form: 
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The shearing stress in terms of skin friction coefficient is 
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Where U is the characteristic velocity and for free convection flows defined as  

   TTgaU b2         (2.89) 

Where, the skin friction 
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Above relations in equations (2.88), (2.89) and (2.90) gives 
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From equation (2.91) we can calculate the shearing stress in terms of skin friction 

coefficient. The rate of heat transfer in terms of Nusselt number can be 

determined by equation (2.70) and the equation (2.71) is responsible for the 

velocity and temperature distributions within the boundary-layer. 
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2.5 Method of Solutions 

In all cases of this thesis the author has applied implicit finite difference method 

to get the numerical solution for the velocity and temperature distributions within 

boundary-layer and the skin friction and heat transfer rate along the surface of the 

cylinder, which was first, introduced by Keller (1978) and elaborately describe by 

Cebeci and Bradshaw (1984). A complete discussion on the development of 

algorithm of implicit finite difference method together with Keller-box 

elimination scheme for case I of this thesis is given below.  

 

2.5.1 Numerical approach 

The Equations (2.66) and (2.67) based on the boundary conditions described in 

equation (2.68) are written in terms of first order equations in y, which are then 

expressed in finite difference form by approximating the functions and their 

derivatives in terms of the central differences in both coordinate directions. 

Denoting the mesh points in the (x, y) plane by ix  and jy , where i = 1,2,3, . . . ,M 

and j = 1,2,3, . . . ,N, central difference approximations are made such that the 

equations involving x explicitly are centred at  2/12/1 ,  ji yx and the remainder at 

 2/1, ji yx , where   2/12/1   jjj yyy , etc. This results in a set of nonlinear 

difference equations for the unknowns at ix  in terms of their values at 1ix . These 

equations are then linearised by the Newton‟s method and are solved using a 

block-tridiagonal algorithm, taking as the initial iteration of the converged 

solution at 1 ixx . Now to initiate the process at x = 0, we first provide guess 

profiles for all five variables (arising the reduction to the first order form) and use 

the Keller box method to solve the governing ordinary differential equations. 

Having obtained the lower stagnation point solution it is possible to march step by 

step along the boundary layer. For a given value of x, the iterative procedure is 

stopped when the difference in computing the velocity and the temperature in the 

next iteration is less than 610 , i.e. when 610if , where the superscript denotes 

the iteration number. The computations were not performed using a uniform grid 
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in the y direction, but a non-uniform grid was used and defined 

by   pjy j /1sinh  , with j = 1,2,. . . ,301 and p = 100. 

 

2.5.2 Implicit Finite Difference Method (IFDM) 

To describe the numerical solution for case-I, we start with the transformed 

boundary-layer equations and boundary conditions given by equations (2.66), 

(2.67) and (2.68) respectfully. 
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First we write equations (2.66) and (2.67) and their boundary conditions (2.68) in 

terms of first order system. For this purpose, new dependent variables ),( yxu , 

),( yxv  and ),( yxp has been introduced so that the transformed momentum and 

energy equations can be written as:  
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Where,  
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(2.97) 
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And the boundary condition in terms of new dependent variables: 

)0,(.1-)0,( ,0)0,()0,( xpxxuxf     

(2.98) 0),(,0),(  xxf   

 

The flow calculation program utilizes a finite difference scheme in solving the 

governing equations at specified boundary conditions. The computation employs 

181 nodal points in the x direction and 301 nodal points and y direction. Since the 

boundary layer thickness changes more rapidly near the leading edge, more 

attention was given to this area of the domain. The computations are performed 

using a uniform grid in the x direction and a non uniform grid in the y direction. 

The non-uniform grid is defined by   pjy j /1sinh  , with j = 1,2,. . . ,301 and 

p = 100. For a given value of x, the iterative procedure is stopped when the 

difference in computing the velocity in the next iteration is less than 610 , i.e. 

when 610if , where the superscript denotes the iteration number. In Figure 2.2 

a portion of the computational grid consisting 31 nodal points in x direction and 

50 nodal points in y direction is shown.  

 

 

 

Figure 2.2: Computational grid structure 
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Now we consider the net rectangle in the xy plane shown in the Figure 2.3 and the 

net points defined in the xy plane as:  
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(2.99) 

 
Figure 2.3: Net rectangle of the difference approximation for the Box scheme. 

 

The quantities ( f , u , v ,  , p )  at the points ),( j
n yx  of the net are approximated 

by ( n
jf , n

ju  n
jv , n

j ,
n
jp ) which we call net function . We also employ the 

following notation for the quantities midway between net points shown in Figure 

2.3 and for any net function as  
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Now we write the difference equations that are to approximate the three first order 

ordinary differential equations (2.92)-(2.94) according to Box method by 

considering one mesh rectangle. We start by writing the finite difference 

approximation of the above three equations using central difference quotients and 

average about the mid-point ( 21, j
n yx ) of the segment Q1Q2 shown in the Figure 

2.3 and the finite difference approximations to the two first order differential 

equations (2.95)-(2.96) are written for the mid point ( 21
21 , 



j
n yx ) of the rectangle 

Q1Q2Q3Q4. This procedure yields.  
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Now from the equation (2.104) yields 
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The boundary conditions become 
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If we assume 11111 ,,,,  n
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n
j pvuf   to be known for Jj0 , equations 

(2.101) to (2.103) and (2.107)–(2.109) form a system of 5J + 5 non linear 

equations for the solutions of the  5J + 5 unknowns ( n
j

n
j

n
j

n
j

n
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J. This non linear system of algebraic equations is to be linearized by Newton‟s 
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i=0,1,2 N with initial values equal those at the previous x -station, which are 

usually the best initial guess available. For the higher iterates we set: 
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Now we substitute the right hand sides of the above equations in place of n
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Now using the equations (2.110) in the equation (2.107) we get the following 

form:  
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Here the coefficients js )( 9  and js )( 10 , which are zero in this case, are included 

here for the generality. 
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The boundary conditions (2.109) become  
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which just express the requirement for the boundary conditions to remain during 

the iteration process.  

 

Now the system of linear equations (2.111) together with the boundary conditions 

(2.115) can be written in a block matrix from as: 

 

A.δ = r                            (2.116) 
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We now define jδ , jr , jA , jB  and jC  as follows: 
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The solution of the equation (2.116) by block-elimination method consists of two 

sweeps. In forward sweep we compute jjj w and, from the recursion formulas 

given by: 

00 A         (2.117a) 

Jjforjjj   1B1      (2.117b) 

Jjforjjjj   1CA 1      (2.117c) 

00 rw         (2.117d) 

Jjforww jjjj   1r 1      (2.117e) 

Here j  has the same structure as jB . 

In the backward sweep, jδ  is computed from the recursion formulas:  

JJJ w δ         (2.118a) 

0....,,2,1for δCδ 1   JJjw jjjjj    (2.118b) 

This numerical method of solution has been applied with the required 

modification for the other three cases, which are discussed in subsections 2.4.2, 

2.4.3 and 2.4.4. 
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Chapter III 
MHD Conjugate Free Convection Flow from an 

Isothermal Horizontal Circular Cylinder 
 
 
3.1 Introduction 

The specific problem selected for study is the flow and heat transfer in an 

electrically conducting fluid around an isothermal horizontal circular cylinder. In 

this study, the steady laminar MHD conjugate free convection flow of a viscous 

and incompressible fluid due to an isothermal horizontal circular cylinder with an 

axial uniform magnetic field is considered. Mathematical analysis of this problem 

is discussed in section 2.4.1 as case I of chapter II. The equations (2.50), (2.51) 

and (2.52) are the dimensionless form of the continuity equation, momentum 

equation and energy equation. Further we have the equations (2.66) and (2.67) as 

the momentum equation and energy equation using stream function defined in 

equation (2.54) and (2.55) which satisfies dimensionless continuity equation 

(2.50). The final form of the momentum and energy equations (2.66) and (2.67) 

are solved using implicit finite difference method based on the boundary 

condition defined in equation (2.68). 
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If we consider M=0.0 in equation (2.66) and χ= 0 in equation (2.68) then the 

present analysis will refer to free convection problem with no conduction and the 

momentum equation (2.66) the boundary conditions in (2.68) becomes: 
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The reduced form of the momentum equation (3.1), the energy equation (2.67) 

and the boundary conditions in equation (3.2) are considered by Merkin in 1976 

(Pop and Ingham, 2001) and Nazar et al. (2002). Later on we compare the present 

numerical results with the results obtained by Merkin and Nazar et al.. 

3.2 Numerical Results 

The numerical results of the equations (2.66) and (2.67) based on the boundary 

condition (2.68) are presented in the following sub-sections. In section 3.2.1, a 

grid refinement test is given. A comparison of the local Nusselt number and the 

local skin friction factor obtained in the present work and obtained by Merkin 

(1976) and Nazar et al. (2002) is shown in section 3.2.2 and the graphical 

presentation of the numerical results for the velocity and temperature distribution 

within the boundary layer and the skin friction coefficient and local heat transfer 

along the surface with an elaborate discussion are presented in section 3.2.3. 

3.2.1 Grid independent test 

The grid independent test has been shown by taking three different grid 

configurations, 181305, 361405 and 451505 in Figures 3.1(a) and 3.1(b) as 

the skin-friction coefficient and the rate of heat transfer while Pr=1.0, M=0.1 and 

 =1.0. From these Figures, it can be concluded that the numerical solutions are 

completely independent of the grid orientations. In the present investigation 181  

305 grid configuration has been chosen for the numerical computation. 

3.2.2 Comparison 

The present results have been compared with the previous studies in the literature, 

which are shown in Table 3.1 and Table 3.2 respectively. The comparison of the 

local Nusselt number and the comparison of the local skin friction factor obtained 

55 



 

77 

in the present work with M=0.0, J=0.0 and Pr=1.0 and obtained by Merkin (1976) 

and Nazar et al. (2002) are made available in Table 3.1 and Table 3.2 

respectively. It is clear from these two tables that there is an excellent agreement 

among these three results. 

 

3.2.3 Discussion 

The main objective of the present work is to analyze the flow of the fluid and the 

conjugate heat transfer processes due to the conduction inside the solid of the 

cylinder and natural convection from the isothermal horizontal circular cylinder in 

presence of magnetic field. The effects of the relevant parameters, such as 

magnetic parameter, conjugate conduction parameter and Prandtl number on the 

surface share stress in terms of the skin friction coefficient, the rate of heat 

transfer in terms of Nusselt number, the velocity due to natural convection and the 

temperature distribution over the whole boundary layer are shown graphically.  

 

The Prandtl numbers are considered to be 1.63, 1.44, 1.0 and 0.733 for the 

simulation that correspond to glycerin at 500C, water at 1200C, steam at 7000K 

and hydrogen at 13000K, respectively. The magnetic parameter is the ratio of the 

magnetic force to the inertia force. Hence the magnetic force is important when it 

is the order of one and the flow is considered as hydromagnetic flow. The flow is 

hydrodynamic for the value of the magnetic parameter 1M  . For small value of 

the magnetic parameter M, the motion is hardly affected by the magnetic field and 

for large value of the magnetic parameter M, the motion is largely controlled by 

the magnetic field. The values of the magnetic parameter are chosen as (M=0.0, 

0.1, 0.3, 0.5, 0.7) throughout the thesis. From the equation (2.68) it has been 

observed that the conjugate conduction parameter  is derived 

as     4/1./ Grab sf   . According to the definition of the conjugate conduction 

parameter χ, it can be easily understood that the values of the conjugate 

conduction parameter χ depend upon the ratios of ab / and sf  / and Grashof 

number Gr. The ratios  ab /  and sf  /  are less than one where as, the Grashof 
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number Gr is large for free convection. Therefore, the value of χ is greater than 

zero. Present analysis will refer to the free convection problem without 

conduction for χ = 0. In this study, the values of the conjugate conduction 

parameter taken as (χ = 0.0, 0.75, 1.0, 1.5, 2.0, 2.5).  

 

The skin friction coefficients and the rate of heat transfer obtained from the 

relation (2.70) are illustrated in Figures 3.5-3.7 and the velocity profiles and 

temperature distributions obtained from the relations (2.71) are presented in 

Figures 3.2-3.4. Since the velocity and the temperature are the function of x and y, 

thus, Figures 3.2-3.4 illustrate the velocity and temperature distributions at x=π/2 

against y, the direction along the normal to the surface of the cylinder. 

 

From all figures of velocity profiles it is observed that the fluid velocity is zero at 

the surface of the cylinder i.e. at y=0 as well as at the outer edge of the velocity 

boundary layer. This is expected since the fluid beyond the boundary layer is 

motionless. Thus, the fluid velocity increases with the distance from the surfaces, 

reaches a maximum, and gradually decreases to zero at a distance sufficiently far 

from the surface. Again, it is found from figures of the temperature profiles that 

the temperature is maximum at the surface i.e. y=0 and gradually decreases to the 

temperature of the surrounding fluid at distance sufficiently far from the surface. 

 

The boundary layer around the horizontal circular cylinder starts to develop at the 

bottom of the cylinder, increasing the thickness along the circumference, 

therefore, the velocity gradient is zero at the lower stagnation point, thus it 

increases with the increasing value of x, reaches a maximum, due to the curvature 

effect it started to decrease gradually just after a critical value of x. As the heated 

fluid surrounding the cylinder is rising up within the boundary layer, the 

temperature of the upper region also increases gradually with the increased value 

of x. Thus the temperature difference between the surface and the fluid within the 

boundary layer is lower in the upper region than that of in the lower region. 

Therefore the rate of heat transfer is the highest at the bottom, and lowest at the 
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top of the cylinder. These common phenomenon for the skin friction coefficient 

and the rate of heat transfer are observed in all Figures 3.5-3.7. 

 

Numerical values of the velocity ),( yxf  and the temperature ),( yx are 

illustrated in Figure 3.2(a) and Figure 3.2(b) respectively against the axial 

distance y for different values of magnetic parameter (M=0.1, 0.3, 0.5, 0.7) for the 

fluid having Prandtl number Pr=1.0 with conjugate conduction parameter χ =1.0. 

From Figure 3.2 it is seen that, as the magnetic parameter M increases, the 

velocity profile decreases and the temperature profile increases. The reason of this 

practical scenario is that the interaction of the magnetic field and the moving 

electric charge carried by the fluid induces a force which tends to oppose the fluid 

motion. But near the surface of the cylinder, velocity increases and after a 

distance from the surfaces it decreases slowly and finally approaches to zero. This 

implies that there exists a local maximum of the velocity within the boundary-

layer. The local maximums for different values of magnetic parameter M while 

Pr=1.0 and χ =1.0 are shown in the Table 3.3 and it has been observed that the 

maximum velocity come closer to the surface for increasing value of the magnetic 

parameter. The maximum values of the velocities are found as 0.284157, 

0.254927, 0.230954 and 0.211052 for M=0.1, M=0.3, M=0.5 and M=0.7 

respectively. It is noted that the velocity decreases by approximately 25.73% as 

magnetic parameter increases from 0.1 to 0.7. 

 

Figures 3.3(a) and 3.3(b) are the graphical representation of the velocity 

),( yxf  and the temperature ),( yx  respectively against y  axis for different 

values of conjugate conduction parameter (χ =0.75, 1.0, 1.5, 2.0) for the fluid 

having Prandtl number Pr=1.0 with magnetic parameter M=0.1. It can be 

concluded, From Figure 3.3 that as the value of the conjugate conduction 

parameter χ increases, the velocity profile and the temperature profile both 

decrease. The physical fact behind it is that the increasing value of the conjugate 

conduction parameter χ resists thermal energy transfer by conductive mode from 

core region of the cylinder to the boundary layer in the vicinity of the cylinder, so 

58 



 

80 

that the temperature distribution within the boundary layer decreases for the 

increasing values of the conjugate conduction parameter χ as observed in Figure 

3.3(b). Since the temperature within the boundary layer decreases for increasing 

values of the conjugate conduction parameter χ,  it must decelerates convection at 

the surface of the cylinder and finally the flow of the surrounding fluid is reduced 

which are illustrated in Figure 3.3(a).  The local maximums for different values of 

values of the conjugate conduction parameter χ while Pr=1.0 and M=0.1 are 

shown in the Table 3.4. It is clear from Table 3.4 that the local maximums for the 

velocity profiles go away from the surface for increasing value of the magnetic 

parameter. The maximum values of the velocities are found as 0.294869, 

0.284157, 0.266868 and 0.252827 for χ = 0.75, χ = 1.0, χ = 1.5 and χ=2.0 

respectively. The velocity decreases by approximately 14.26% as conjugate 

conduction parameter χ increases from 0.75 to 2.0. 

 

The velocity profiles and temperature distributions against y for different values 

of Prandtl number (Pr=0.733, 1.0, 1.440, 1.630) with magnetic parameter M=0.1 

and conjugate conduction parameter χ =1.0 are presented graphically in Figure 

3.4(a) and Figure 3.4(b) respectively. The maximum velocities for different 

values of Prandtl number Pr while magnetic parameter M=0.1 and conjugate 

conduction parameter χ =1.0 are provided in Table 3.5. It is noted that the 

maximum velocities are closer to the surface for increasing value of the Prandtl 

number. The maximum values of the velocities are found as 0.314559, 0.284157, 

0.250420 and 0.239484 at y=1.564468, y=1.509461, y=1.438224and y=1.420778 

for Pr=0.733, Pr=1.0, Pr=1.44 and Pr=1.63 respectively. It is seen that the 

velocity decreases by approximately 23.87% as Prandtl number increases from 

0.733 to 1.630. Besides that the velocity decreases for the increasing values of the 

Prandtl number Pr and the temperature also decreases for the increasing values of 

the Prandtl number which are observed from Figure 3.4(a) and Figure 3.4(b) 

respectively. Moreover, it is observed that the thickness of the velocity boundary 

layer and thermal boundary layer become thinner for increasing values of the 

Prandtl number. The above are the predictable physical significance of the Prandtl 
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number as it is known that the Prandtl number Pr is the ratio of viscous force and 

thermal action. Thus the increasing value of the Prandtl number Pr represents a 

fluid with increasing viscosity or decreasing thermal conductivity. Therefore the 

increasing viscosity decreases the flow of the fluid and lower thermal 

conductivity decreases temperature within the boundary layer. 

 

The effect of magnetic parameter (M=0.1, 0.3, 0.5, 0.7) for the fluid having 

Prandtl number Pr=1.0 with conjugate conduction parameter χ =1.0 on the surface 

shear stress in terms of the local skin friction coefficient and the rate of heat 

transfer in terms of local Nusselt number are depicted in Figures 3.5(a) and 3.5(b) 

respectively against x. The increasing values of magnetic parameter increase 

magnetic field strength which is acting normal to the surface of the cylinder and 

reduces fluid motion, as discussed earlier as a result the skin friction at the surface 

of the cylinder is decreased for increasing values of magnetic parameter which is 

illustrated in Figure 3.5 (a). Heat produces due to the interaction between 

magnetic field and fluid motion, consequently, temperature within the thermal 

boundary layer increases for increasing value of magnetic parameter 

consequently, it reduces temperature difference between core region and 

boundary layer region which ultimately decreases heat transfer rate as illustrated 

in Figure 3.5(b). Moreover, it has been observed from Table 3.6 that the 

maximum values of the skin friction coefficient are 0.738048, 0.681999, 

0.637196 and 0.600514 for M=0.1, M=0.3, M=0.5 and M=0.7 and which are 

occurred at x=1.850049, x=1.797689, x=1.762783 and x=1.727876 that is 

maximum values of skin friction are shifted closer to the lower stagnation point 

for the increasing values of magnetic parameter. Furthermore it has been 

calculated that the maximum value of the skin friction coefficient decreases by 

18.63% as magnetic parameter M increases from 0.1 to 0.7. 

 

The values of the skin friction coefficient and the rate of heat transfer have been 

presented in Figure 3.6(a) and Figure 3.6(b) respectively for different values of 

conjugate conduction parameter (χ=0.75, 1.0, 1.5, 2.0) while the other controlling 
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parameters are: Prandtl number Pr=1.0 and magnetic parameter M=0.1. 

Increasing value of conjugate conduction parameter χ resists heat transfer by 

conduction from the inner region to the boundary layer region of the cylinder as 

observed in Figure 3.6(b). Consequently, decelerates convection within the 

boundary layer. As a result velocity decreases for increasing values of conjugate 

conduction parameter at a particular value of y,  as the velocity decreases, the skin 

friction at the surface decreases for increasing value of conjugate conduction 

parameter χ, as observed in Fig 3.6(a). It can be noted from Table 3.7 that the 

maximum values of the skin friction coefficient are 0.778009 for χ=0.75, 

0.738048 for χ =1.0, 0.673587 for χ =1.5 and 0.622761 for χ =2.0 at x=1.850049. 

Finally it is observed that the maximum value of the skin friction coefficient 

decreases by 19.95% as conjugate conduction parameter χ increases from 0.75 to 

2.0. 

 

The variation of the skin friction coefficients and the variation of rate of heat 

transfer against x for different values of the Prandtl number (Pr=0.733, Pr=1.0, 

Pr=1.44, Pr=1.63) with magnetic parameter M=0.1 and conjugate conduction 

parameter  = 1.0 are shown in Figures 3.7(a) and 3.7(b) respectively. It is 

discussed earlier that the increasing values of Prandtl number decreases velocity, 

which leads to decrease skin friction coefficient as illustrated in Figure 3.7(a). 

From Figure 3.7(b) it is observed that the rate of heat transfer increases for 

increasing values of Prandtl number. Beside this, one can reveal that the rates of 

heat transfer are almost same for all the values of the Prandtl numbers at x=π. 

 

The Table 3.8 shows the maximum values of the skin friction coefficient 

)0,(xfx   against x for different values of Prandtl number Pr while M=0.1 and 

χ=1.0. It is observed that the maximum values of the skin friction coefficient are 

0.790054, 0.738048, 0.678296 and 0.658416 which are obtained for Pr=0.733, 

Pr=1.0, Pr =1.44 and Pr=1.63 at x=1.850049, x=1.850049, x=1.832596 and 

x=1.832596 respectively. Moreover it is calculated that the maximum value of the 
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skin friction coefficient decreases by 16.66% as Prandtl number Pr increases from 

0.733 to 1.630. 

 

TABLES 

Table 3.1: Comparisons of the present numerical values of )0,(x  with Merkin 

(1976) and Nazar et al. (2002) for different values of x while with Pr=1.0, M = 0.0 

and   = 0.0. 

 
4/1GrNu = )0,(x  

x Merkin (1976) Nazar et al. (2002) Present 
0.0 0.4214 0.4214 0.4216 
/6 0.4161 0.4161 0.4163 
/3 0.4007 0.4005 0.4006 
/2 0.3745 0.3741 0.3741 

2/3 0.3364 0.3355 0.3355 
5/6 0.2825 0.2811 0.2811 
 0.1945 0.1916 0.1912 

 
 

Table 3.2: Comparisons of the present numerical values of )0,(xfx   with 

Merkin (1976) and Nazar et al. (2002) for different values of x while Pr=1.0, M = 

0.0 and χ = 0.0. 

 

4/1GrC f )0,(xfx   

x Merkin (1976) Nazar et al. (2002) Present 
0.0 0.0000 0.0000 0.0000 
/6 0.4151 0.4148 0.4139 
/3 0.7558 0.7542 0.7528 
/2 0.9579 0.9545 0.9526 

2/3 0.9756 0.9698 0.9678 
5/6 0.7822 0.7740 0.7718 
 0.3391 0.3265 0.3239 
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Table 3.3: Maximum velocity ),( yxf   against y for different values of magnetic 

parameter M while with Pr=1.0 and   = 1.0. 

 

Magnetic  

parameter M 

 

y 

Maximum Velocity 

0.1 1.509461     0.284157 

0.3 1.491429     0.254927 

0.5 1.473548     0.230954 

0.7 1.455813     0.211052 

 

Table 3.4: Maximum velocity ),( yxf   against y for different values of conjugate 

conduction parameter   while Pr=1.0 and M = 0.1. 

 

Conjugate conduction 

parameter χ  

 

y 

Maximum Velocity 

0.75 1.473548     0.294869 

1.0 1.509461     0.284157 

1.5 1.545979     0.266868 

2.0 1.583115     0.252827 

 

Table 3.5: Maximum velocity ),( yxf   against y for different values of Prandtl 

number Pr while M=0.1 and   = 1.0. 

 

Prandtl number 

Pr 

 

y 

Maximum Velocity 

0.733 1.564468     0.314559 

1.000 1.509461     0.284157 

1.440 1.438224     0.250420 

1.630 1.420778     0.239484 
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Table 3.6: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of magnetic parameter M while Pr=1.0 and   = 1.0. 

 

Magnetic 
parameter M 

 
x 

Maximum  
4/1GrC f )0,(xfx   

0.1 1.850049 0.738048 

0.3 1.797689 0.681999 

0.5 1.762783 0.637196 

0.7 1.727876 0.600514 

 

Table 3.7: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of conjugate conduction parameter χ while Pr=1.0 and M=0.1. 

 

Conjugate conduction 

parameter χ 

 

x 

Maximum Skin friction 

coefficient 

0.75 1.850049     0.778009 

1.0 1.850049     0.738048 

1.5 1.850049     0.673587 

2.5 1.850049     0.622761 

 

 

Table 3.8: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of Prandtl number Pr while M=0.1 and  =1.0. 

 

Prandtl number 

Pr 

 

x 

Maximum Skin friction 

coefficient 

0.733 1.850049    0.790054 

1.000 1.850049    0.738048 

1.440 1.832596     0.678296 

1.630 1.832596  0.658416 
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Figure 3.1: (a) The skin friction coefficient and (b) the rate of heat transfer against x for 

different mesh configurations while Pr=1.0, M=0.1,  =1.0. 
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Figure 3.2: (a) Variation of velocity profiles and (b) variation of temperature 

distributions against y for varying of magnetic parameter M with Pr =1.0 and 

χ=1.0. 
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Figure 3.3: (a) Variation of velocity profiles and (b) variation of temperature 

distributions against y for varying of conjugate conduction parameter   with 

Pr=1.0 and M = 0.1. 
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Figure 3.4: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of Pr with M = 0.1 and   = 1.0. 
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Figure 3.5: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of M with Pr = 1.0 and   = 1.0. 
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Figure 3.6: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of conjugate conduction parameter   with Pr = 
1.0 and M = 0.1. 
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Figure 3.7: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of Pr with M = 0.1 and   = 1.0. 
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3.3 Conclusion 

A steady, two dimensional, MHD-conjugate free convection flow from an 

isothermal horizontal circular cylinder is studied. The effects of the magnetic 

parameter, conjugate conduction parameter and Prandtl number are analysed. 

From the present study following conclusion may be drawn:  

 

 The velocity of the fluid within the boundary layer decreases with 

increasing magnetic parameter, conjugate conduction parameter and 

Prandtl number.  

 

 The temperature of the fluid within the boundary layer increases for 

increasing magnetic parameter whereas it decreases for increasing 

conjugate conduction parameter and Prandtl number.  

 

 The skin friction along the surface of the cylinder decreases for increasing 

magnetic parameter, conjugate conduction parameter and Prandtl number.  

 

 The rate of heat transfer along the surface decreases for increasing value 

of the magnetic parameter and conjugate conduction parameter while it 

increases for increasing Prandtl number. 
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Chapter IV 
MHD-Conjugate Free Convection Flow from an 

Isothermal Horizontal Circular Cylinder with Joule 
heating and Heat Generation 

 
 

4.1 Introduction 

In the physical model of this thesis, it was considered that the cylinder is placed in 

a fluid which is electrically conducting. It is known that, some electric energy is 

transformed into thermal energy as an electric current flowing through a solid or 

liquid with finite conductivity, through resistive losses in the material. This 

phenomenon is known as Joule heating. At an atomic level, Joule heating is the 

result of moving electrons colliding with atoms in a conductor, whereupon 

momentum is transferred to the atom, increasing its kinetic energy. Joule heating 

is named for James Prescott Joule, the first to articulate what is now Joule's law, 

relating the amount of heat released from an electrical resistor to its resistance and 

the charge passed through it. Joule heating increases for increasing current. If the 

current is large enough, Joule heating can start a fire. When the conduction 

electrons transfer energy to the conductor‟s atoms through collisions the heat is 

generated in this process is on the micro scale. The Joule heating effect is in some 

cases unwanted, and efforts are made to reduce it. However, many applications 

rely on Joule heating; some of these use the effect directly, such as cooking plates, 

while other applications, such as micro valves for fluid control, use the effect 

indirectly through thermal expansion. Hossain (1992) studied viscous and Joule 

heating effects on MHD free convection flow with variable plate temperature. El-

Amin (2003) found out the combined effect of viscous dissipation and Joule 

heating on MHD forced convection over a non-isothermal horizontal circular 

cylinder embedded in a fluid saturated porous medium.  

Many practical heat transfer applications involve the conversion of some form of 

mechanical, electrical, nuclear or chemical energy to thermal energy in the 
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medium. Such mediums are said to involve internal heat generation. For example, 

a large amount of heat is generated in the fuel elements from atomic reactors as a 

result of atomic fission that serves as the heat source for the nuclear power plants. 

The heat generated in the sun as a result of fusion of hydrogen into helium makes 

the sun a large nuclear reactor that supplies heat to the earth. Possible heat 

generation effects may modify temperature distribution and, therefore, the particle 

deposition rate. The heat transfer in a laminar boundary layer flow of a viscous 

fluid over a linearly stretching continuous surface with viscous 

dissipation/frictional heating and internal heat generation was analyzed by 

Vajravelu and Hadjinicolaou (1993). They considered the volumetric rate of heat 

generation, q  [W/m3], as:  

 















TTfor
TTforTTQ

q
f

ff

0

,0       (4.1) 

where 0Q is the heat generation constant. The above relation is valid for the state 

of some exothermic processes having T  as onset temperature. Effects of heat 

generation/absorption and thermophorosis on hydromagnetic flow along a flat 

plate were studied by Chamkha and Camille (2000). Molla et al. (2006) studied 

natural convection flow from an isothermal horizontal circular cylinder in 

presence of heat generation considering above term as heat generation. Moreover, 

natural convection heat transfer from a horizontal isothermal elliptical cylinder 

with internal heat generation was studied by Ching-Yang cheng (2009). 

Two physical phenomena, one Joule heating and another volumetric rate of heat 

generation are taken into account in this chapter. 

4.2 Boundary layer equations 

Mathematical formulation of the present investigation has been discussed 

elaborately in section 2.4.2 as case II of chapter II. The equations (2.50), (2.51) 

and (2.75) are the dimensionless form of the continuity equation, momentum 

equation and energy equation. Further we have the equations (2.66) and (2.76) as 
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the momentum equation and energy equation using stream function defined in 

equation (2.54) and (2.55) which satisfies dimensionless continuity equation 

(2.50). The final form of the momentum and energy equations (2.66) and (2.76) 

are solved using implicit finite difference method based on the boundary 

condition defined in equation (2.68). 


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If we consider M =0.0 in equation (2.66); J=0.0 and Q=0.0 in equation (2.76) and 

 = 0 in equation (2.68) then the present study will refer to free convection 

problem which was considered by Merkin (1976) and Nazar et al. (2002). A 

comparison will be provided in section 4.3 with a complete discussion. 

The effects of Joule heating and volumetric rate of heat generation on MHD-

conjugate natural convection flow from a horizontal circular cylinder has been 

considered in this chapter. The governing momentum equation (2.66) and energy 

equation (2.76) are solved numerically using the implicit finite difference method 

together with the Keller box technique. The shearing stress and the rate of heat 

transfer in terms of skin friction coefficient and Nusselt number respectively and 

the velocity and temperature distributions within the boundary-layer can be 

calculated by the relations (2.70) and (2.71) respectively. 

4.2   Results and discussion 

The dimensionless governing equations (2.66) and (2.76) and the boundary 

conditions (2.68) contain a set of physical parameters: Prandtl number Pr, 
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magnetic parameter M, conjugate conduction parameter  , Joule heating 

parameter J and heat generation parameter Q. The Prandtl numbers are considered 

to be 1.63, 1.44, 1.0 and 0.733 that correspond to Glycerin, water, steam, and 

hydrogen, respectively. The remaining parameters are taken as follows: magnetic 

parameter M=0.10-0.70; conjugate conduction parameter  =1.0-2.5; Joule 

heating parameter J=0.01–1.0; and heat generation parameter Q=0.01–0.12.  

A comparison of the local Nusselt number and the local skin friction factor 

obtained in the present work with M = 0.0,   = 0.0, J=0.0, Q=0.0 and Pr = 1.0 

and obtained by Merkin (1976) and Molla et al. (2006) have been shown in Table 

4.1 and Table 4.2, respectively and it has been observed that there is an excellent 

agreement among these three results. 

In this stage, a grid independent test has been provided for three different grid 

configurations, 181305, 361405 and 451505 in Figures 4.1(a) and 4.1(b) as 

the skin friction coefficient and the rate of heat transfer respectively while Pr=1.0, 

M = 0.1,   = 1.0, J=0.01 and Q=0.01. From these Figures, it can be concluded 

that the numerical solutions are completely independent of these three grid 

orientations. In this chapter 181  305 grid configuration has been chosen for the 

numerical computation.  

Figures 4.2, 4.4, 4.6, 4.8 and 4.10 illustrate the velocity and temperature 

distributions at 2/x  against y, the direction along the normal to the surface of 

the cylinder, and Figures  4.3, 4.5, 4.7, 4.9 and 4.11 depict the skin friction 

coefficients and heat transfer rates against x at y=0 (along the surface of the 

cylinder) for different values of the magnetic parameter M, conjugate conduction 

parameter χ, Prandtl number Pr, Joule heating parameter J  and heat generation 

parameter Q, respectively. 

The magnetic parameter is the ratio of the magnetic force to the inertia force. 

Hence the magnetic force is important when it is of the order of one, and the flow 

is considered as hydromagnetic flow. The flow is hydrodynamic for 1M . For 
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small value of M, the motion is hardly affected by the magnetic field and for large 

value of M, the motion is largely controlled by the magnetic field. The increasing 

values of the magnetic parameters increase magnetic-field strength, which is 

acting normal to the cylinder surface that reduces fluid motion as observed in 

Figure 4.2(a). As a result the skin friction at the surface to the cylinder is 

decreased, which is shown from Figure 4.3(a). Heat is produced due to the 

interaction between magnetic field and fluid motion; consequently, temperature 

within the thermal boundary-layer increases for increasing value of the magnetic 

parameters as revealed from Figure 4.2(b). Increasing thermal energy within the 

boundary layer reduces the temperature difference between core region and 

boundary layer region, which ultimately decreases the heat transfer rate as 

illustrated in Figure 4.3(b). The maximum values of the velocity are recorded to 

be 0.289429, 0.260270, 0.236298 and 0.216355 for magnetic parameter M=0.1, 

0.3, 0.5 and 0.7 at y=1.509461, 1.491429, 1.473548 and 1.455813 respectively 

with Joule heating parameter J=0.01 and heat generation parameter Q=0.01, 

which are presented in Table 4.3. It is also observed from Table 4.8 that the 

maximum values of the skin friction coefficient are 0.749931, 0.693555, 

0.648461 and 0.611517 for magnetic parameter M=0.1, 0.3, 0.5 and 0.7 with 

Joule heating parameter J=0.01 and heat generation parameter Q=0.01 at 

x=1.850049, 1.797689, 1.762783 and 1.745329 respectively. Here it is observed 

that the velocity decreased by 25.25% and the skin friction coefficient decreased 

by 18.45% when the value of the magnetic parameter changes from 0.1 to 0.7 in 

presence of Joule heating and heat generation. 

The velocity and temperature are illustrated in Figure 4.4 and the variation of the 

local skin friction coefficient and local rate of heat transfer are depicted in Figure 

4.5 for different values of conjugate conduction parameter   with Pr=1.0, M=0.1, 

J=0.01 and Q=0.01. As discussed in earlier chapter, increasing value of conjugate 

conduction parameter   resists conduction from the core region to the boundary 

layer region and consequently, decelerates convection within the boundary layer, 

as a result both velocity and temperature decrease for increasing values of the 
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conjugate conduction parameters at a particular value of y. Similar situations are 

observed in presence of Joule heating and heat generation which are presented in 

Figure 4.4(a) and Figure 4.4(b), respectively. Beside this we can conclude that the 

maximum velocity increases in presence of Joule heating and heat generation. For 

example, without Joule heating (J=0.0) and heat generation (Q=0.0) the maximum 

velocity for conjugate conduction parameter χ=1.0 is 0.284157 where as the 

maximum velocity is 0.289429 for χ=1.0 with Joule heating (J=0.01) and heat 

generation (Q=0.01). As the velocity decreases, the skin friction at the surface 

decreases for increasing value of conjugate conduction parameter  , as observed 

in Figure 4.5(a). Since increasing value of the conjugate conduction parameters 

resists conduction from the core region to the boundary layer as mentioned 

earlier, it of course resists thermal energy transfer which is observed from Figure 

4.5 (b). The maximum values of the velocity and the maximum values of the skin 

friction coefficient are presented in Table 4.4 and Table 4.9. It can noted that the 

maximum values of the velocity are 0.289429, 0.272379, 0.258588 and 0.247029 

at y=1.509461, 1.545979, 1.583115 and 1.620884 and the maximum values of the 

skin friction coefficient are 0.749931, 0.686089, 0.635735 and 0.594597 for 

conjugate conduction parameter χ=1.0, 1.5, 2.0 and 2.5 respectively. Finally, it is 

observed that the velocity and the skin friction coefficient decreased by 14.65% 

and 20.71% respectively as the conjugate conduction parameter changes from 1.0 

to 2.5. 

The velocity profiles and temperature profiles are plotted against y-axis in Figure 

4.6 and the skin friction coefficient and heat transfer rate are plotted against x-axis 

in Figure 4.7 for different values of Prandtl number with M=0.1,  =1.0, J=0.01 

and Q=0.01. As it is known, increasing value of Prandtl number increases 

viscosity and decreases the thermal action of the fluid. Therefore, the velocity and 

temperature of fluid are expected to decrease with the increasing Prandtl number 

which are observed in Figure 4.6(a) and Figure 4.6(b) respectively. Decreasing 

velocity of the fluid leads to decrease skin friction and the decreasing temperature 

within in the boundary layer increases the temperature difference between core 

78 



 

100 

region to the boundary layer region, which eventually increases heat transfer rate 

from the core region to the boundary layer region as depicted in Figure 4.7(a) and 

Figure 4.7(b) respectively. The Tables 4.5 and 4.10 shows the maximum values of 

the velocities and the maximum values of the skin friction coefficients 

respectively for different values of Prandtl numbers. It has been observed that the 

maximum values of the velocities are 0.319714, 0.289429, 0.255821 and 

0.244926 at y=1.564468, 1.509461, 1.438224 and 1.420778 for Pr=0.733, 1.000, 

1.440 and 1.630 respectively. Again from Table 4.10 it is reported that the 

maximum values of the skin friction coefficient are 0.801152, 0.749931, 

0.691119, 0.671578 at x=1.850049, 1.850049, 1.832596 and 1.832596 for 

Pr=0.733, 1.000, 1.440 and 1.630 respectively. It is noted that the velocity and the 

skin friction coefficient decreased by 23.39% and 16.17% respectively as the 

Prandtl number changes from 0.733 to 1.630.  

The effects of the Joule heating parameters on the velocity and temperature are 

presented in Figure 4.8, and that of on the skin friction coefficient and rate of heat 

transfer are illustrated in Figure 4.9 respectively with Pr=1.0, M=0.1,  =1.0 and 

Q=0.01. The Joule heating parameter having the magnetic-field strength 

transform electrical energy to the thermal energy due to the electrical resistance of 

the surrounding fluid and eventually increases temperature within the boundary 

layer as plotted in Figure 4.8(b). Increasing thermal energy accelerates heat 

convection, which ultimately increases fluid motion as observed in Figure 4.8(a). 

Moreover, as the increased thermal energy for increasing Joule heating parameter 

increases the temperature within the boundary layer which results in the heat 

transfer rate decrease as illustrated in Figure 4.9(b). The variation of local skin 

friction coefficient increases for the increasing Joule heating parameter J as 

depicted in Figure 4.9(a). This is an expected behavior as fluid motion increases 

for increasing Joule heating parameter. Again it can be noted that the surface 

temperature is same for all values of Joule heating parameter as seen from Figure 

4.8(b). The maximum values of the velocities are obtained as 0.289429, 0.309183, 

0.324794 and 0.340690 at y=1.509461 for Joule heating parameters J=0.01, 0.40, 
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0.70 and 1.00 respectively which are shown in the Table 4.6 and the Table 4.11 

shows the maximum values of the skin friction coefficients are 0.749931, 

0.800514, 0.846375 and 0.899054 at x=1.850049, 1.937315, 2.007129 and 

2.076942 for Joule heating parameters J=0.01, 0.40, 0.70 and 1.00 respectively. 

That is the maximum value of the skin friction coefficients is shifted along the 

upper stagnation point for increasing values of the Joule heating parameter.  

Furthermore, it has been observed that the velocity and the skin friction 

coefficient increase by 17.71% and 19.88% respectively as the Joule heating 

parameter changes from 0.01 to 1.0. 

Figure 4.10 illustrates the effect of the heat generation parameters on the fluid 

velocity and temperature profiles, respectively. It is clear that as the heat 

generation parameter increases both the fluid velocity and temperature of the fluid 

increase. Figure 4.11 depicts the variation of the heat generation parameters on 

the skin friction coefficient and the heat transfer rate with Pr=1.0, M=0.1,  =1.0 

and J=0.01. It is observed the local Nusselt number decreases, but the skin friction 

coefficient increases with increasing heat generation parameter. Table 4.7 and 

Table 4.12 represent the maximum values of the velocities and the skin friction 

coefficients respectively for different values of the heat generation parameter with 

Pr=1.0, M=0.1,  =1.0 and J=0.01. It is recorded that 0.289429, 0.309677, 

0.326156 and 0.349804 are the maximum velocities at y=1.509461 for Heat 

generation parameter Q=0.01, 0.05, 0.08 and 0.12 respectively. The maximum 

values of the skin friction coefficient for different values of the heat generation 

parameter Q=0.01, 0.02, 0.03 and 0.04 are obtained as 0.749931, 0.760938, 

0.772185 and 0.783773 respectively. Finally, it is calculated that the velocity 

increases 20.85% as the heat generation parameter changes from 0.01 to 0.12 and 

the skin friction coefficient increased by 4.5% as the heat generation parameter 

changes from 0.01 to 0.04. 
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TABLES 
 
Table 4.1: Comparisons of the present numerical values of )0,(x  with Merkin 

(1976) and Molla et al. (2006) for different values of x while Pr=1.0, M =0.0,   

=0.0, J=0.0 and Q=0.0. 

 
4/1GrNu = )0,(x  

x Merkin (1976) Molla et al. (2006) Present 
0.0 0.4214 0.4214 0.4216 

/6 0.4161 0.4161 0.4163 

/3 0.4007 0.4005 0.4006 

/2 0.3745 0.3740 0.3742 

2/3 0.3364 0.3355 0.3356 

5/6 0.2825 0.2812 0.2811 

 0.1945 0.1917 0.1912 

 
 

 

Table 4.2: Comparisons of the present numerical values of )0,(xfx   with 

Merkin (1976) and Molla et al. (2006) for different values of x while Pr=1.0, M 

=0.0,   =0.0, J=0.0 and Q=0.0. 

 

4/1GrC f )0,(xfx   

x Merkin (1976) Molla et al. (2006) Present 
0.0 0.0000 0.0000 0.0000 

/6 0.4151 0.4145 0.4139 

/3 0.7558 0.7539 0.7528 

/2 0.9579 0.9541 0.9526 

2/3 0.9756 0.9696 0.9678 

5/6 0.7822 0.7739 0.7718 

 0.3391 0.3264 0.3239 
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Table 4.3: Maximum velocity ),( yxf   against y for different values of magnetic 

parameter M while Pr=1.0,  =1.0, J=0.01 and Q=0.01. 

 

Magnetic parameter  

M 

 

y 

Maximum Velocity 

0.1 1.509461     0.289429 

0.3 1.491429     0.260270 

0.5 1.473548     0.236298 

0.7 1.455813   0.216355 

 

Table 4.4: Maximum velocity ),( yxf   against y for different values of conjugate 

conduction parameter   while Pr=1.0, M=0.1, J=0.01 and Q=0.01. 

 

Conjugate conduction 

parameter χ 

 

y 

Maximum Velocity 

1.0 1.509461     0.289429 

1.5 1.545979     0.272379 

2.0 1.583115     0.258588 

2.5 1.620884   0.247029 

 

Table 4.5: Maximum velocity ),( yxf   against y for different values of Prandtl 

number Pr while M=0.1,  =1.0, J=0.01 and Q=0.01. 

 

Prandtl number 

Pr 

 

y 

Maximum Velocity 

0.733 1.564468     0.319714 

1.000 1.509461     0.289429 

1.440 1.438224     0.255821 

1.630 1.420778     0.244926 
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Table 4.6: Maximum velocity ),( yxf   against y for different values of Joule 

heating parameter J while Pr=1.0, M=0.1,  =1.0 and Q=0.01. 

Joule heating 

parameter J 

 

y 

Maximum Velocity 

0.01 1.509461   0.289429 

0.40 1.509461     0.309183 

0.70 1.509461     0.324794 

1.00 1.509461     0.340690 

 

 

Table 4.7: Maximum velocity ),( yxf   against y for different values of heat 

generation parameter Q while Pr=1.0, M=0.1,  =1.0 and J=0.01. 

Heat generation 

parameter Q  

 

y 

Maximum Velocity 

0.01 1.509461 0.289429 

0.05 1.509461 0.309677 

0.08 1.509461 0.326156 

0.12 1.509461 0.349804 

 

 

Table 4.8: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of magnetic parameter M with Pr=1.0,  =1.0, J=0.01 and 

Q=0.01. 

Magnetic 
parameter M 

 
x 

Maximum Skin friction 

coefficient 
0.1 1.850049 0.749931 

0.3 1.797689   0.693555 

0.5 1.762783    0.648461 

0.7 1.745329    0.611517 
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Table 4.9: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of conjugate conduction parameter  while Pr=1.0, M=0.1, 

J=0.01 and Q=0.01. 

Conjugate conduction 

parameter χ  

 

x 

Maximum Skin friction 

coefficient 

1.0 1.850049     0.749931 

1.5 1.850049     0.686089 

2.0 1.850049     0.635735 

2.5 1.850049 0.594597 

 

Table 4.10: Maximum value of the skin friction coefficient )0,(xfx   against x 

for different values of Prandtl number Pr while M=0.1,  =1.0, J=0.01 and 

Q=0.01. 

Prandtl number 

Pr 

 

x 

Maximum Skin friction 

coefficient 

0.733 1.850049     0.801152 

1.000 1.850049     0.749931 

1.440 1.832596     0.691119 

1.630 1.832596     0.671578 

 
 

Table 4.11: Maximum value of the skin friction coefficient )0,(xfx   against x 

for different values of Joule heating parameter J with Pr=1.0, M=0.1,  =1.0 and 

Q=0.01. 

Joule heating 

parameter J 

 

x 

Maximum Skin friction 

coefficient 

0.01 1.850049    0.749931 

0.40 1.937315   0.800514 

0.70 2.007129    0.846375 

1.00 2.076942    0.899054 
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Table 4.12: Maximum value of the skin friction coefficient )0,(xfx   against x 

for different values of heat generation parameter Q while Pr=1.0, M=0.1,  =1.0 

and J=0.01. 

 

Heat generation 

parameter Q 

 

x 

Maximum Skin friction 

coefficient 

0.01 1.850049   0.749931 

0.02 1.850049 0.760938 

0.03 1.850049 0.772185 

0.04 1.850049 0.783773 
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FIGURES 
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Figure 4.1: (a) The skin friction coefficient and (b) the rate of heat transfer 

against x for different mesh configurations while Pr = 1.0, M = 0.1,   = 1.0, 

J=0.01 and Q=0.01. 
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Figure 4.2: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of magnetic parameter M with Pr=1.0, 
 =1.0, J=0.01 and Q=0.01. 
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Figure 4.3: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of magnetic parameter M with Pr=1.0, 
 =1.0, J=0.01 and Q=0.01. 
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Figure 4.4: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of conjugate conduction parameter χ with 
Pr=1.0, M=0.1, J=0.01 and Q=0.01. 
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Figure 4.5: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of conjugate conduction parameter   with 
Pr=1.0, M=0.1, J=0.01 and Q=0.01. 
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Figure 4.6: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of Pr with M=0.1,  =1.0, J=0.01 and 
Q=0.01. 
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Figure 4.7: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of Pr with M=0.1,  =1.0, J=0.01 and 
Q=0.01. 
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Figure 4.8: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of J with Pr=1.0, M=0.1,  =1.0 and Q=0.01. 
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Figure 4.9: (a) Variation of skin friction coefficients and (b) variation of rate of 
heat transfer against x for varying of J with Pr=1.0, M=0.1,  =1.0 and Q=0.01. 
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Figure 4.10: (a) Variation of velocity profiles and (b) variation of temperature 
distributions against y for varying of Q with Pr=1.0, M=0.1,  =1.0 and J=0.01. 
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Figure 4.11: (a) Variation of skin friction coefficients and (b) variation of rate 
of heat transfer against x for varying of Q with Pr=1.0, M=0.1,  =1.0 and 
J=0.01. 
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4.3    Conclusion 

MHD-conjugate natural convection flow from horizontal cylinder taking into 

account Joule heating in presence of heat generation is studied. Numerical results 

are obtained for the physical parameters and discussed. From the results, it is 

established that the velocity of the fluid within the boundary layer decreases with 

increasing magnetic parameter, conjugate conduction parameter and Prandtl 

number while it increases for increasing Joule heating parameter, and heat 

generation parameter. The temperature within the boundary-layer increases for 

increasing magnetic parameter, Joule heating parameter and heat generation 

parameter whereas it decreases for increasing conjugate conduction parameter and 

Prandtl number. Moreover, the skin friction along the surface of the cylinder 

decreases for increasing magnetic parameter, conjugate conduction parameter and 

Prandtl number, and it increases for increasing Joule heating parameter and heat 

generation parameter. Furthermore, the rate of heat transfer along the surface 

increases for increasing Prandtl number while it decreases for remaining 

parameters. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

97 



 

119 

Chapter V 
 
 
 

Stress Work and Viscous Dissipation on MHD-Conjugate Free 
Convection Flow from an Isothermal Horizontal Circular 

Cylinder 
 
 

5.1 Introduction 

Convective heat transfer involves flows with large temperature differences, and 

thus the equations are coupled through an equation of state. That is the 

momentum equation is dependent on the energy equation simultaneously the 

energy equation is dependent on the momentum equation.  The coupling arises 

because of kinetic heating in high speed flows or because of large temperature 

difference in flows. In the governing equations of these flows two extra coupling 

terms appear in the enthalpy equation, one being the enthalpy equivalent of the 

work done by the pressure gradients, which is known as pressure stress work and 

the other is the rate of dissipation of kinetic energy into thermal internal energy by 

viscous stresses which is well known as viscous dissipation. For two-dimensional 

boundary layer equation the terms 
2



















y
u

 and 
x
puT



  are included in the 

energy equation which are accounts for viscous dissipation and the stress work 

respectively. Where T,  are the temperature and volumetric of thermal expansion 

respectively. 

 

In the previous chapters effects of viscous dissipation and pressure stress work 

has been neglected in the energy equation. However, Ostrach (1952, 1958) 

showed that viscous dissipation plays an important role in natural convection in 

vertical channels. Gebhart (1962) was the first who studied the problem of 

laminar natural convection along a vertical heated plate taking into account the 

viscous dissipation.  Ackroyd (1974) treated the problem of natural convection 

along a heated vertical plate taking into account both the viscous dissipation and 

the pressure work in the energy equation. He proved that, for this problem, the 
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pressure work effect is more important than that of viscous dissipation. Joshi and 

Gebhart (1981) studied, with the perturbation method, the problem of natural 

convection over a vertical isothermal plate taking into account both the viscous 

dissipation and the pressure work in the energy equation using two non-

dimensional numbers. Mahajan and Gebhart (1989), after conducting an order of 

magnitude analysis, had shown that the viscous dissipation effect is smaller than 

the pressure effect for all values of Pr number. The numerical solution of the 

effect of viscous dissipation and pressure stress work in natural convection along 

a vertical isothermal plate is studied by Pantokratoras (2003) without any 

approximation. Barletta and Nield (2009) studied mixed convection with viscous 

dissipation and pressure work in a lid-driven square enclosure.  

 

In this chapter, the numerical results of stress work and viscous dissipation on 

MHD-conjugate free convection flow from an isothermal horizontal circular 

cylinder has been discussed. 

 

5.2 Governing equations 
Formulation of the governing equations has been discussed in section 2.4.3 as 

case III of chapter II. The equations (2.50), (2.51) and (2.80) are the 

dimensionless form of the continuity equation, momentum equation and energy 

equation. Further we have the equations (2.66) and (2.81) as the momentum 

equation and energy equation using stream function defined in equation (2.54) 

and (2.55) which satisfies dimensionless continuity equation (2.50). The final 

form of the momentum and energy equations (2.66) and (2.81) are solved using 

implicit finite difference method based on the boundary condition defined in 

equation (2.68). 




















x
ff

x
ffx

x
xfMffff sin2       

  


















x
f

x
fxfxfxTfNxf r 


 22

Pr
1

   

99 



 

121 

0,0,0

0,01,0









xyasf

xyat
y

ff






     

where 
 


TTca

GrN
bp

2

2  is the viscous dissipation parameter, 
pc
ag

   is the 

stress work parameter and 







TT
TT

b
r  is the temperature ratio parameter. 

Present governing equations and boundary conditions completely match with the 

problem of Merkin (1976) if the values of the parameters considered as: M=0.0 in 

equation (2.66); N=0.0 and ε=0.0 in equation (2.81) and χ= 0.0 in equation (2.68). 

Accordingly, a comparison has been given in section 5.3. 

The governing momentum equation (2.66) and energy equation (2.81) are solved 

numerically using the implicit finite difference method together with the Keller 

box technique. The shearing stress and the rate of heat transfer in terms of skin 

friction coefficient and Nusselt number respectively and the velocity and 

temperature distributions within the boundary-layer can be calculated by the 

relations (2.70) and (2.71) respectively. 

5.3   Findings and analysis 
The conjugate heat transfer analysis from an isothermal horizontal circular 

cylinder considering stress work and viscous dissipation effects is the main 

purpose of the present study.  The Prandtl numbers are considered to be 1.63, 

1.44, 1.0 and 0.733 for the simulation that correspond to glycerin, water, steam 

and hydrogen, respectively. The remaining parameters are taken as follows: 

magnetic parameter M=0.10-0.70 and the conjugate conduction parameter 

 =1.00-2.00, viscous dissipation parameter N=0.01-0.90, temperature ratio 

parameter Tr=0.1-1.5 and stress work parameter ε = 0.01-0.30. 

 

Table 5.1 and Table 5.2 show the comparisons of the present numerical values of 

heat transfer rate in terms of Nusselt number )0,(x  and the shear stress skin 
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friction coefficient )0,(xfx   respectively with Merkin (1976) and Nazar et al. 

(2002) for different values of x while Pr=1.0, M=0.0, χ=0.0, N=0.0, ε =0.0 and 

Tr=0.0. It can be concluded that the present result absolutely agree with the 

previous results. 

  

The velocity profiles and temperature distributions for different values of stress 

work parameter, viscous dissipation parameter, temperature ratio parameter, 

magnetic parameter, Prandtl number and conjugate conduction parameter are 

illustrated in Figures 5.1, 5.3, 5.5, 5.7, 5.9 and 5.11 respectively at x=π/2. The 

skin friction coefficient and the local rate of heat transfer in terms of Nusselt 

number for different values of stress work parameter, viscous dissipation 

parameter, temperature ratio parameter, magnetic parameter, Prandtl number and 

conjugate conduction parameter are depicted in Figures 5.2, 5.4, 5.6, 5.8, 5.10 and 

5.12 respectively.  

 

The velocity profiles, temperature distributions, local skin friction coefficients 

and the heat transfer rate for different values of stress work parameter ε are 

presented in Figures 5.1(a),  5.1(b), 5.2(a) and 5.2(b), respectively with Pr=1.0, 

M=0.1, χ=1.0, N=0.01 and Tr=1.0. Increasing value of the stress work parameter 

containing gravitational force g work against the buoyancy force as a result the 

motion of the fluid is decreased as plotted in Figure 5.1(a). The reduced velocity 

decelerates fluid flow which ultimately decreases the shear stress at the wall 

which is observed from Figure 5.2(a). On the other hand from Figure 5.1(b), it 

could be concluded that the temperature within the boundary layer decreases for 

increasing stress work parameter. The decreased temperature for increasing stress 

work parameter within the boundary layer reduces the temperature difference 

between the boundary layer region and the core region eventually increases heat 

transfer rate as illustrated in Figure 5.2(b). Besides this the maximum velocities 

occur as 0.281548, 0.270846, 0.257874 and 0.233610 at y=1.491429, 1.491429, 

1.473548 and 1.420778 for stress work parameter ε=0.01, 0.05, 0.1 and 0.20 

respectively. Further it is found from Table 5.4 that the maximum values of the 
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skin friction coefficient are 0.733141, 0.712763, 0.688879 and 0.646364 for stress 

work parameter ε=0.01, 0.05, 0.1 and 0.20 at x=1.832596, 1.815142, 1.780235837 

and 1.745329 respectively. Moreover it can be concluded that the maximum 

velocities is decreased by 17.03% and the maximum values of the skin friction 

coefficient is decreased by 11.84% as the stress work parameter changes from 

0.01 to 0.20. 

 

Figure 5.3(a) and 5.3(b) illustrate the variation of the velocity and temperature 

profiles against y for selected values of viscous dissipation parameter N while 

Pr=1.0, M=0.1, χ=1.0, ε =0.1 and Tr=1.0. It can be noted from Figure 5.3(a) that 

an increase in the viscous dissipation parameter N is associated with a slight 

increase in the velocity. This behavior is similar to that of temperature profile as 

shown in Figure 5.3(b). It implies that the viscous dissipation enhances the 

temperature and therefore increases the velocity. Figure 5.4(a) and Figure 5.4(b) 

illustrate the effect of viscous dissipation parameter on the local skin friction 

coefficient and the local heat transfer rate, respectively while Pr=1.0, M=0.1, 

χ=1.0, ε =0.1 and Tr=1.0. It can be seen that the skin friction factor increases with 

an increase in the viscous parameter. This is to be expected since the fluid motion 

within the boundary layer increases for increasing N (fig. 5.3(a)) and eventually 

increases the skin friction factor. Figure 5.4(b) shows that the effect of the viscous 

parameter leads to a decrease of the local heat transfer rate. The maximum values 

of the velocities are obtained as 0.257874, 0.261995, 0.265203 and 0.268444 at 

y=1.473548 for viscous dissipation parameter N=0.01, 0.40, 0.70 and 1.00 

respectively which are shown in the Table 5.11 and the Table 5.12 shows the 

maximum values of the skin friction coefficients are 0.688879, 0.701550, 

0.711799 and 0.722494 at x=1.780236, 1.797689, 1.815142 and 1.832596 for 

viscous dissipation parameter N=0.01, 0.40, 0.70 and 1.00 respectively. That is 

the maximum value of the skin friction coefficients is shifted along the upper 

stagnation point for increasing values of the viscous dissipation parameter. 

Furthermore, it has been observed that the velocity and the skin friction 

coefficient increased by 4.1% and 4.88% respectively as the viscous dissipation    
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parameter changes from 0.01 to 1.0. 

 

Figures 5.5(a) and 5.5(b) illustrate the velocity and temperature distribution 

against y for different values of the temperature ratio parameter Tr, where as the 

skin friction coefficient and the heat transfer rate against x for different values of 

the temperature ratio parameter Tr, with Pr=1.0, M=0.1, χ=1.0, ε =0.1 and N=0.01 

are depicted in Figures 5.6(a) and 5.6(b) respectively. Increasing value of the 

temperature ratio parameter Tr increases the effect of the stress work, which is 

observed in the fourth term of the energy equation (2.81). Therefore the velocity 

of the fluid decreases with increasing value of the temperature ratio parameter Tr 

as illustrated in Figure 5.5(a). The skin friction coefficient decreases with the 

increasing value of the temperature ratio parameter Tr which is observed from 

Figure 5.6(a). From Figure 5.5(b), it is found that the temperature within the 

boundary layer decreases for increasing value of the temperature ratio parameter 

Tr. The decreased temperature for increasing value of the temperature ratio 

parameter Tr within the boundary layer increases heat transfer rate as illustrated in 

Figure 5.6(b). Table 5.13 and Table 5.14 present the maximum values of the 

velocities and the skin friction coefficients respectively for different values of the 

temperature ratio parameter Tr with Pr=1.0, M=0.1, χ=1.0, ε =0.1 and N=0.01. It 

is recorded that 0.277047, 0.257874, 0.247555 and 0.237559 are the maximum 

velocities at y=1.509461, 1.473548, 1.438224 and 1.420778 for temperature ratio 

parameter Tr=0.1, 0.5, 1.0 and 1.5 respectively. The maximum values of the skin 

friction coefficient for different values of the temperature ratio parameter Tr=0.1, 

0.5, 1.0 and 1.5 are obtained as 0.723061, 0.688879, 0.671079 and 0.654174 at 

x=1.832596, 1.780236, 1.762783 and 1.745329 respectively. Finally, it is 

calculated that the velocity decreased by 14.25% and the skin friction coefficient 

decreased by 9.5% as the temperature ratio parameter changes from 0.1 to 1.5. 

 

Figures 5.7(a) and 5.7(b) illustrate the velocity and temperature distribution 

against y for different values of the magnetic parameter, and the skin friction 

coefficient and the heat transfer rate against x for varying magnetic parameter 
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with Pr=1.0, χ=1.0, ε =0.1, N=0.01 and Tr=1.0 are depicted in figures 5.8(a) and 

5.8(b) respectively. Peak velocities and skin friction coefficients are presented in 

Table 5.5 and Table 5.6 respectively while Pr=1.0, χ=1.0, ε =0.1, N=0.01 and 

Tr=1.0. It is observed that the maximum velocities are 0.257874, 0.231585, 

0.210228 and 0.192598 for magnetic parameter M=0.1, 0.3, 0.5 and 0.7 at 

y=1.473548, 1.438224, 1.420778 and 1.403475 respectively. That is maximum 

velocities decreases with the increasing M as shown in Figure 5.7(a). From Figure 

5.7(b) it can be observed that the increasing value magnetic parameter increases 

temperature within the boundary in presence of stress work and viscous 

dissipation. The maximum values of the skin friction coefficient are 0.688879, 

0.640579, 0.601799 and 0.569888 at x=1.780236, 1.745329, 1.727876 and 

1.692969 for magnetic parameter M=0.1, 0.3, 0.5 and 0.7 respectively. Therefore, 

it is clear that the shear stress at the wall decreases with increasing values of 

magnetic parameter M as illustrated in Figure 5.8(a). The heat transfer rate also 

decreases with increasing value of magnetic parameter in presence of pressure 

stress work and viscous dissipation as figured in Figure 5.8(b). Lastly, it is 

revealed that the maximum velocity decreased by 25.31% and the maximum 

value of the skin friction coefficient decreased by 17.27% as magnetic parameter 

changes from 0.1 to 0.7. 

 

The velocity and temperature are illustrated in Figure 5.9 and the variation of the 

local skin friction coefficient and local rate of heat transfer are depicted in Figure 

5.10 for different values of Prandtl number Pr with M=0.1, χ=1.0, ε =0.1, N=0.01 

and Tr=1.0. It is found that the velocity and temperature decreases with increasing 

values of Pr in presence of stress work and viscous dissipation. Although the skin 

friction at the surface decreases for increasing value of Prandtl number Pr as 

observed in Figure 5.10(a), however the heat transfer rate increases with 

increasing value of Prandtl number in presence of the pressure stress work and 

viscous dissipation as shown in Figure 5.10(b). It has been observed from Table 

5.9 that the maximum values of the velocities are 0.289226, 0.257874, 0.223029 

and 0.211734 at y=1.527644, 1.473548, 1.403475 and 1.369287 for Pr=0.733, 
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1.000, 1.440 and 1.630 respectively. Further Table 5.10 presents the maximum 

values of the skin friction coefficient for the Prandtl numbers 0.733, 1.000, 1.440 

and 1.630 at x=1.850049, 1.850049, 1.832596 and 1.832596 and the maximum 

values of the skin friction coefficients are 0.801152, 0.749931, 0.691119 and 

0.671578 respectively. It is noted that the velocity and the skin friction coefficient 

decreased by 26.79% and 18.51% respectively as the Prandtl number changes 

from 0.733 to 1.630. 

The maximum values of the velocity and the maximum values of the skin friction 

coefficient are presented in Table 5.7 and Table 5.8 respectively for different 

values of the conjugate conduction parameter χ while Pr=1.0, M=0.1, ε=0.1, 

N=0.01 and Tr=1.0. It is reported that the maximum values of the velocity are 

0.257874, 0.239762, 0.224979 and 0.212582 at y=1.473548, 1.509461, 1.527643 

and 1.564468 and the maximum values of the skin friction coefficient are 

0.688879, 0.624758, 0.574174 and 0.532949 for conjugate conduction parameter 

χ=1.0, 1.5, 2.0 and 2.5 respectively. It has been revealed that the velocity and the 

skin friction coefficient decreased by 17.56% and 22.64% respectively as the 

conjugate conduction parameter changes from 1.0 to 2.5. Moreover, the velocity 

profiles and temperature profiles are plotted against y-axis in Figure 5.11 and the 

skin friction coefficient and heat transfer rate are plotted against x-axis in Figure 

5.12 for different values of conjugate conduction parameter χ with Pr=1.0, M=0.1, 

ε =0.1, N=0.01 and Tr=1.0. From Figures 5.11(a) and 5.11(b) it is clear that both 

the velocity profiles and temperature distributions decrease for increasing 

conjugate conduction parameter  as we consider the presence of stress work and 

viscous dissipation. It can be noted from Figure 5.12(a) and Figure 5.12(b) that, 

both the skin friction coefficient and heat transfer rate decrease as the values of 

conduction parameter increase. 
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TABLES 

 

Table 5.1: Comparisons of the present numerical values of )0,(x   with Merkin 

(1976) and Nazar et al. (2002) for different values of x while Pr=1.0, M=0.0, 

χ=0.0, N=0.0, ε =0.0 and Tr =0.0. 

 
4/1GrNu = )0,(x  

x Merkin (1976) Nazar et al. (2002) Present 

0.0 0.4214 0.4214 0.421446 

/6 0.4161 0.4161 0.416158 

/3 0.4007 0.4005 0.400519 

/2 0.3745 0.3741 0.374071 

2/3 0.3364 0.3355 0.335553 

5/6 0.2825 0.2811 0.281152 

 0.1945 0.1916 0.191565 

 

Table 5.2: Comparisons of the present numerical values of )0,(xfx   with 

Merkin (1976) and Nazar et al. (2002) for different values of x while Pr=1.0, 

M=0.0, χ=0.0, N=0.0, ε =0.0 and Tr =0.0. 

 

4/1GrC f )0,(xfx   

x Merkin (1976) Nazar et al. (2002) Present 

0.0 0.0000 0.0000 0.000000 

/6 0.4151 0.4148 0.414380 

/3 0.7558 0.7542 0.753549 

/2 0.9579 0.9545 0.953656 

2/3 0.9756 0.9698 0.969071 

5/6 0.7822 0.7740 0.773223 

 0.3391 0.3265 0.325651 
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Table 5.3: Maximum velocity ),( yxf   against y for different values of stress 

work parameter ε while Pr=1.0, M=0.1, χ=1.0, N=0.01 and Tr =1.0. 

 

Stress work   
parameter ε 

y Maximum Velocity 

0.01 1.491429    0.281548 

0.05 1.491429    0.270846 

0.10 1.473548    0.257874 

0.20 1.420778    0.233610 
 

Table 5.4: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of stress work parameter ε while Pr=1.0, M=0.1, χ=1.0, N=0.01 

and Tr =1.0. 

 

Stress work   
parameter ε 

x Maximum Skin friction 
coefficient 

0.01 1.832596    0.733141 

0.05 1.815142    0.712763 

0.10 1.780236    0.688879 

0.20 1.745329    0.646364 
 

Table 5.5: Maximum velocity ),( yxf   against y for different values of magnetic 

parameter M with Pr=1.0, χ=1.0, ε =0.1, N=0.01 and Tr =1.0. 

 

Magnetic  
Parameter  M 

y Maximum Velocity 

0.1 1.473548    0.257874 

0.3 1.438224    0.231585 

0.5 1.420778    0.210228 

0.7 1.403475    0.192598 
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Table 5.6: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of magnetic parameter M with Pr=1.0, χ=1.0, ε =0.1, N=0.01 and 

Tr =1.0. 

 

Magnetic  
parameter M 

x Maximum Skin friction 
coefficient 

0.1 1.780236    0.688879 

0.3 1.745329    0.640579 

0.5 1.727876    0.601799 

0.7 1.692969    0.569888 
 

 

Table 5.7: Maximum velocity ),( yxf   against y for different values of conjugate 

conduction parameter χ with Pr=1.0, M=0.1, ε =0.1, N=0.01 and Tr=1.0. 

Conjugate conduction 
parameter χ 

y Maximum Velocity 

1.0 1.473548    0.257874 

1.5 1.509461    0.239762 

2.0 1.527644    0.224979 

2.5 1.564468    0.212582 
 

 

Table 5.8: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of conjugate conduction parameter χ with Pr=1.0, M=0.1, ε =0.1, 

N=0.01 and Tr =1.0. 

 

Conjugate conduction 
parameter χ 

x Maximum Skin friction 
coefficient 

1.0 1.780236    0.688879 

1.5 1.780236    0.624758 

2.0 1.780236    0.574174 

2.5 1.762783    0.532949 
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Table 5.9: Maximum velocity ),( yxf   against y for different values of Prandtl 

number Pr while M=0.1, χ =1.0, ε =0.1, N=0.01 and Tr =1.0. 

 

Prandtl number  
Pr 

y Maximum Velocity 

0.733 1.527644    0.289226 

1.000 1.473548    0.257874 

1.440 1.403475    0.223029 

1.630 1.369287    0.211734     
 

Table 5.10: Maximum value of the skin friction coefficient )0,(xfx   against x 

for different values of Prandtl number Pr while M=0.1, χ =1.0, ε =0.1, N=0.01 and 

Tr =1.0. 

 

Prandtl number  
Pr 

x Maximum Skin friction 
coefficient 

0.733 1.797689    0.743259 

1.000 1.780236    0.688879 

1.440 1.780236    0.626429 

1.630 1.762783    0.605665 
 

 

Table 5.11: Maximum velocity ),( yxf   against y for different values of viscous 

dissipation parameter N while Pr=1.0, M=0.1, χ =1.0, ε =0.1 and Tr=1.0. 

 

Viscous dissipation 
parameter N  

y Maximum Velocity 

0.01 1.473548    0.257874 

0.40 1.455813    0.261995 

0.70 1.455813    0.265203 

1.00 1.455813    0.268444 
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Table 5.12: Maximum value of the skin friction coefficient )0,(xfx   against x 

for different values of viscous dissipation parameter N while Pr=1.0, M=0.1, 

χ=1.0, ε =0.1 and Tr =1.0. 

 

Viscous dissipation 
parameter N  

x Maximum Skin friction 
coefficient 

0.01 1.780236    0.688879 

0.40 1.797689    0.701550 

0.70 1.815142    0.711799 

1.00 1.832596    0.722494 
 

Table 5.13: Maximum velocity ),( yxf   against y for different values of 

temperature ratio parameter Tr while Pr=1.0, M=0.1, χ =1.0, ε =0.1 and N=0.01. 

 

Temperature ratio  
parameter Tr 

y Maximum Velocity 

0.1 1.509461   0.277047 

0.5 1.473548    0.257874 

1.0 1.438224    0.247555 

1.5 1.420778    0.237559 
 

Table 5.14: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of temperature ratio parameter Tr while Pr=1.0, M=0.1, χ =1.0, 

ε=0.1 and N=0.01. 

 

Temperature ratio  
parameter Tr  

x Maximum Skin friction 
coefficient 

0.1 1.832596 0.723061 

0.5 1.780236 0.688879 

1.0 1.762783 0.671079 

1.5 1.745329 0.654174 
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Figure 5.1:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of stress work parameter ε  with Pr=1.0, M=0.1, 
χ=1.0, N=0.01 and Tr=1.0. 
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Figure 5.2:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against  x for varying of stress work parameter ε with 
with Pr=1.0, M=0.1, χ =1.0,  N=0.01 and Tr=1.0. 
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Figure 5.3:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of viscous dissipation parameter N with Pr=1.0, 
M=0.1, χ =1.0, ε=0.1 and Tr=1.0. 
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Figure 5.4: (a) Variation of the local skin friction coefficients and (b) variation of 
local Nusselt number against x for varying of viscous dissipation parameter N 
with Pr=1.0, M=0.1, χ =1.0, ε =0.1 and Tr=1.0. 
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Figure 5.5:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of temperature ratio parameter Tr with Pr=1.0, 
M=0.1, χ =1.0, ε=0.1 and N=0.01. 
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Figure 5.6:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against  x for varying of temperature ratio parameter Tr 
with Pr=1.0, M=0.1, χ =1.0, ε =0.1 and  N=0.01. 
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Figure 5.7: (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of magnetic parameter M with Pr=1.0, χ =1.0, ε=0.1, 
N=0.01 and Tr=1.0. 
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Figure 5.8: (a) Variation of the local skin friction coefficients and (b) variation of 
local Nusselt number against x for varying of magnetic parameter M  with Pr=1.0,  
χ =1.0, ε=0.1, N=0.01 and Tr=1.0. 
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Figure 5.9:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of Prandtl number Pr with M=0.1, χ =1.0, ε=0.1, 
N=0.01 and Tr=1.0. 
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Figure 5.10:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against x varying of Prandtl number Pr with M=0.1, 
χ=1.0, ε=0.1, N=0.01 and Tr=1.0. 
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Figure 5.11:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of conjugate conduction parameter χ with Pr=1.0, 
M=0.1, ε =0.1, N=0.01 and Tr=1.0. 

121 



 

143 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.20

0.40

0.60

0.80
S
k
in
fr
ic
ti
o
n
,









C
fx

(a)

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.06

0.12

0.18

0.24

0.30

H
ea
t
tr
an
sf
er
,









N
u
x

(b)

 
Figure 5.12:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against x for varying of conjugate conduction parameter χ 
with Pr=1.0, M=0.1,  ε =0.1, N=0.01 and Tr=1.0. 
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5.4 Conclusion  
Stress work and viscous dissipation on MHD-conjugate free convection flow from 

a horizontal circular cylinder is studied. The effects of the Stress work parameter, 

viscous dissipation parameter, temperature ratio parameter, Magnetic parameter, 

Prandtl number and Conjugate conduction parameter are analysed on the fluid 

flow and heat transfer. The velocity of the fluid within the boundary layer 

decreases with increasing Prandtl number, magnetic parameter, stress work 

parameter, temperature ratio parameter and conjugate conduction parameter 

where as it increases slightly for increasing viscous dissipation parameter. The 

temperature in the boundary layer region increases for increasing magnetic 

parameter and viscous dissipation parameter while it decreases with increasing 

Prandtl number, stress work parameter, temperature ratio parameter and conjugate 

conduction parameter. The skin friction coefficient along the surface decreases for 

all parameters except viscous dissipation parameter. However the rate of heat 

transfer increases for increasing Prandtl number, stress work parameter and 

temperature ratio parameter while it decreases for increasing magnetic parameter, 

viscous dissipation parameter and conjugate conduction parameter. 
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Chapter VI 
 
 
 

MHD-Conjugate Free Convective Heat Transfer Analysis of an 
Isothermal Horizontal Circular Cylinder with Temperature 

Dependent Viscosity 

6.1 Introduction 

In some heat-transfer problems, temperature differences are small compared with 

the absolute temperature and pressure difference are small compared with 

absolute pressure. Therefore, the changes in density, viscosity, and conductivity 

produced by the temperature differences are small enough to be neglected in the 

momentum and energy equation. However, in heat transfer problems with large 

temperature differences, the temperature-field equations become nonlinear and 

are coupled to the velocity-field equations, as the viscosity depends on the 

temperature. Viscosity may change significantly with temperature, for instance, 

the viscosity of water decreases by about 240% when the temperature increases 

from 100C (μ= 0.00131 kg m-1s-1) to 500C (μ = 0.000548 kg m-1s-1). To predict the 

flow behavior accurately, temperature dependent variation of viscosity is 

necessary to take into account. Several authors studied flow and heat transfer 

analysis considering temperature dependent variation of viscosity which have 

been discussed in section 1.2 of chapter I. From Figure 1.3 one may realizes that 

the viscosity of some of the fluids like engine oil, mercury and water etc. are 

inversely proportional to linear function of temperature where as the viscosity of 

some of the fluids like hydrogen and air are directly proportional to linear 

function of temperature. Out of many forms of viscosity variation, which are 

available in the literature, we have considered the following form proposed by 

Lings and Dybbs (1987) and described in equation (2.83).  

 






TT f




1
        

The problem, MHD-conjugate free convective heat transfer analysis from an 

isothermal horizontal circular cylinder with temperature dependent viscosity has 

been considered in this chapter.  
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6.2 Governing Equations 

Mathematical formulation of the present problem has been discussed in section 

2.4.4 as case IV of chapter II. The dimensionless continuity equation, energy 

equation and the boundary conditions are same as equations (2.50), (2.52) and 

(2.53) however there are some modifications in the momentum equation due to 

variable viscosity. The modified dimensionless momentum equation is given in 

equation (2.86). Finally, we have the equations (2.87) and (2.67) as the 

momentum equation and energy equation using stream function defined in 

equation (2.54) and (2.55) which satisfies dimensionless continuity equation 

(2.50). The final form of the momentum equation, energy equation and respective 

boundary conditions are given in equations (2.87), (2.67) and (2.68). Thus the 

equations governing present problem and the boundary condition are: 

Momentum equation: 

 


























x
ff

x
ffx

x
x

fMfffff










sin
11

1
2

2

    

Energy equation: 




















x
f

x
fxf 




Pr
1

       

Boundary condition: 

0,0,0

0,01,0









xyasf

xyat
y

ff






     

where,    2/12
0

2 / GrBaM    is the magnetic parameter,   TTb   

is the temperature dependent viscosity variation parameter, 
f

pc
Pr



 


)(
 is the 
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Prandtl number and    sf aGrb  /4/1  is the conjugate conduction 

parameter. Certainly, the present problem is governed by the above parameters. 

The shearing stress in terms of skin friction coefficient fC  has been modified as 

equation (2.91) due to variable viscosity. 

)0,(
1

4
1

xfxGrC f 





        

Numerical results of the skin friction coefficient are determined from equation 

(2.91) where as the rate of heat transfer in terms of Nusselt number can be 

determined by equation (2.70) and the equation (2.71) is accountable for the 

velocity and temperature distributions. 

 

6.3 Numerical results and explanation 
 
There are four parameters in the governing equations which are very important to 

analyse the flow and heat transfer behaviour for the current problem. Two 

parameters in momentum equation and they are magnetic parameter M and 

temperature dependent viscosity variation parameter λ, one parameter in the 

energy equation namely Prandtl number Pr and one in the boundary condition 

which is conjugate conduction parameter χ. The governing momentum equation 

(2.87) and energy equation (2.67) has been solved numerically based on the 

boundary condition (2.68) for different values of the above parameters using the 

implicit finite difference method together with the Keller box technique which is 

elaborately discussed in chapter II. 

The Prandtl numbers are considered to be 3.50 2.97, 1.63 and 1.00 that 

correspond to Dichlorodifluoromethane (Freon) at 500C, Methyl chloride at 500C, 

Glycerin at 500C and Steam at 7000K respectively. The remaining parameters are 

taken as follows: magnetic parameter M=0.0-0.5; conjugate conduction parameter 

χ=0.0-2.0 and temperature dependent viscosity variation parameter λ=0.01–1.20.  
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Table 6.1 shows the comparison of the local Nusselt number obtained in the 

present work with M=0.0, χ= 0.0, λ=0.0 and Pr = 1.0 and the results obtained by 

Merkin (1976) and Nazar et al. (2002) where as a comparison of the local skin 

friction factor is presented in Table 6.2 with the present solution while M=0.0, 

χ=0.0, λ=0.0 and Pr=1.0 and the results obtained by Merkin (1976) and Nazar et 

al. (2002). It has been observed that there is an excellent agreement among these 

results.  

The maximum values of the velocities are shown in Tables 6.3, 6.5, 6.7 and 6.9 

for different values of viscosity variation parameter, magnetic parameter, Prandtl 

number and conjugate conduction parameter respectively. On the other hand the 

maximum values of the skin friction coefficients are presented in Tables 6.4, 6.6, 

6.8 and 6.10 for different values of viscosity variation parameter, magnetic 

parameter, Prandtl number and conjugate conduction parameter respectively. 

Figures 6.1, 6.3, 6.5 and 6.7 illustrate the velocity and temperature distributions at 

2/x  against y, the direction along the normal to the surface of the cylinder, 

and Figures 6.2, 6.4, 6.6 and 6.8 depict the skin friction coefficients and heat 

transfer rates against x at y=0 (along the surface of the cylinder) for different 

values of the viscosity variation parameter, magnetic parameter, Prandtl number 

and conjugate conduction parameter, respectively. 

The effects of the temperature dependent viscosity variation parameter λ on the 

velocity and temperature distribution are illustrated in Figures 6.1(a) and 6.1(b) 

respectively while Prandtl number Pr=1.0, magnetic parameter M=0.1 and 

conjugate conduction parameter χ=1.0. Then again, Figures 6.2(a) and 6.2(b) 

show the influence of the temperature dependent viscosity variation parameter λ 

on the skin friction coefficient and the rate of heat transfer respectively. It has 

been observed from equation (2.84) that the viscosity of the fluid within the 

boundary layer decreases with increasing value of viscosity variation parameter λ. 

As the viscosity of the fluid within the boundary layer decreases with increasing 

viscosity variation parameter accordingly the velocity increases and the skin 
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friction coefficient decreases with increasing viscosity variation parameter as 

observed in Figures 6.1(a) and 6.2(a) respectively. From Figure 6.1(b) it is seen 

that the temperature within the boundary layer slightly decreases with increasing 

value of the viscosity variation parameter λ which leads to an increase in heat 

transfer rate as found in Figure 6.2(b). Moreover it is found from Figure 6.1(a) 

and from Table 6.3 that the maximum velocity become closer to the surface as we 

consider higher value of viscosity variation parameter λ. The maximum values of 

the velocities are reported as 0.308463, 0.322075, 0.333891 and 0.344185 at 

y=1.438224, 1.302542, 1.237881 and 1.114402 for viscosity variation parameter 

λ=0.01, 0.40, 0.80 and 1.20 respectively. Alternatively, It is also reported that the 

maximum values of the skin friction coefficient are 0.821498, 0.744191, 

0.685632 and 0.640179 at x=1.884956 for viscosity variation parameter λ=0.01, 

0.40, 0.80 and 1.20 respectively. Therefore it is concluded that the maximum 

velocity increases by 11.58% and maximum value of the skin friction coefficient 

decreases by 22.07% as the viscosity variation parameter λ increased from 0.01 to 

1.20. 

It is observed from Figure 6.3(a) that the motion of the fluid decreases within the 

boundary layer for increasing value of the magnetic parameter M, if temperature 

dependent viscosity is taken into account. Therefore, the skin friction coefficient 

at the surface to the cylinder is decreased, which is shown from Figure 6.4(a).  

Temperature within the thermal boundary-layer increases for increasing value of 

the magnetic parameters as revealed from Figure 6.3(b) and the heat transfer rate 

decreases with increasing magnetic parameter as illustrated in Figure 6.4(b). The 

maximum values of the velocity are recorded to be 0.317195, 0.308463, 0.292272 

and 0.277603 for magnetic parameter M=0.0, 0.1, 0.3 and 0.5 respectively with 

viscosity variation parameter λ=0.01, which are presented in Table 6.5. It is also 

observed from Table 6.6 that the maximum values of the skin friction coefficient 

are 0.839187, 0.821498, 0.788942 and 0.759936 for magnetic parameter M=0.0, 

0.1, 0.3 and 0.5 with viscosity variation parameter λ=0.01 at x=1.919862, 

1.884956, 1.850049 and 1.850049 respectively. Here it is observed that the 

velocity decreases by 12.48% and the skin friction coefficient decreases by 9.44% 

128 



 

150 

when the value of the magnetic parameter changes from 0.0 to 0.5 in presence of 

viscosity variation parameter. 

The velocity profiles and temperature profiles are plotted against y-axis in Figure 

6.5 and the skin friction coefficient and heat transfer rate are plotted against x-axis 

in Figure 6.6 for different values of Prandtl number with M=0.1,  =1.0 and 

λ=0.01. The velocity and temperature of fluid are expected to decrease with the 

increasing Prandtl number which are observed in Figure 6.5(a) and Figure 6.5(b) 

respectively. Thus the skin friction decreases and the heat transfer rate from the 

core region to the boundary layer region increases for increasing value of Prandtl 

number as depicted in Figure 6.6(a) and Figure 6.6(b) respectively. The Tables 

6.7 and 6.8 show the maximum values of the velocities and the maximum values 

of the skin friction coefficients respectively for different values of Prandtl 

numbers. It has been observed that the maximum values of the velocities are 

0.308463, 0.260281, 0.207878 and 0.194862 for Prandtl number Pr=1.00, 1.63, 

2.97 and 3.50 respectively. It is also found that the maximum values of the skin 

friction coefficient are 0.821498, 0.733352, 0.631341and 0.604892 for Prandtl 

number Pr=1.00, 1.63, 2.97 and 3.50 respectively. It is noted that the velocity and 

the skin friction coefficient decrease by 36.83% and 26.37% respectively as the 

Prandtl number changes from 1.0 to 3.5. 

Figures 6.7(a) and 6.7(b) illustrate the effects of the conjugate conduction 

parameter χ on the fluid velocity and temperature distributions, respectively. It is 

clear from these Figures that the fluid velocity and temperature within the 

boundary layer decrease with the increasing value of the conjugate conduction 

parameter χ as temperature dependent viscosity is considered. Figures 6.8(a) and 

6.8(b) depict the variation of the conjugate conduction parameter χ on the skin 

friction coefficient and the heat transfer rate with Pr=1.0, M=0.1 and λ=0.01. It is 

observed the local Nusselt number and the skin friction coefficient both decreases 

with increasing value of the conjugate conduction parameter χ. The maximum 

values of the velocity and the maximum values of the skin friction coefficient are 

presented in Table 6.9 and Table 6.10 respectively. It can noted that the maximum 
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values of the velocity are 0.346776, 0.324516, 0.308463 and 0.286700 at 

y=1.369287, 1.438224, 1.438224 and 1.509461 and the maximum values of the 

skin friction coefficient are 0.963528, 0.880927, 0.821498 and 0.741197 for 

conjugate conduction parameter χ=0.0, 1.0, 1.5 and 2.0 respectively. At the end of 

this section, it is found that the velocity and the skin friction coefficient decreased 

by 17.32% and 23.07% respectively as the conjugate conduction parameter 

changes from 0.0 to 2.0. 
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TABLES 

Table 6.1: Comparisons of the present numerical values of )0,(x  with Merkin 

(1976) and Nazar et al. (2002) for different values of x while Prandtl number 

Pr=1.0, magnetic parameter M=0.0, conjugate conduction parameter χ=0.0 and 

temperature dependent viscosity variation parameter λ=0.0. 

 
4/1GrNu = )0,(x  

x Merkin (1976) Nazar et al. (2002) Present 

0.0 0.4214 0.4214 0.421414 

/6 0.4161 0.4161 0.416130 

/3 0.4007 0.4005 0.400500 

/2 0.3745 0.3741 0.374069 

2/3 0.3364 0.3355 0.335582 

5/6 0.2825 0.2811 0.281234 

 0.1945 0.1916 0.191783 
 
 
Table 6.2: Comparisons of the present numerical values of )0,(xfx   with 

Merkin (1976) and Nazar et al. (2002) for different values of x while Prandtl 

number Pr=1.0,magnetic parameter M=0.0, conjugate conduction parameter χ=0.0 

and temperature dependent viscosity variation parameter λ=0.0. 

 

4/1GrC f )0,(xfx   

x Merkin (1976) Nazar et al. (2002) Present 

0.0 0.0000 0.0000 0.000000 

/6 0.4151 0.4148 0.414564 

/3 0.7558 0.7542 0.753901 

/2 0.9579 0.9545 0.954147 

2/3 0.9756 0.9698 0.969669 

5/6 0.7822 0.7740 0.773898        

 0.3391 0.3265 0.326476        
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Table 6.3: The maximum value of the velocities ),( yxf   against y for different 
values of temperature dependent viscosity variation parameter λ while Pr=1.0, 
M=0.1 and χ=1.0. 
 
 

Viscosity variation 
parameter λ 

y Maximum Velocity 

0.01 1.438224        0.308463 

0.40 1.302542        0.322075 

0.80 1.237881        0.333891 

1.20 1.114402        0.344185 
 

 

Table 6.4: Maximum value of the skin friction coefficient )0,(xfx   against x for 
different values of temperature dependent viscosity variation parameter λ while 
Pr=1.0, M=0.1 and χ=1.0. 
 
 

Viscosity variation 
parameter λ 

x Maximum Skin friction 
coefficient 

0.01 1.884956        0.821498 

0.40 1.884956        0.744191 

0.80 1.884956        0.685632 

1.20 1.884956        0.640179 
 

 

Table 6.5: The maximum value of the velocities ),( yxf   against y for different 
values of magnetic parameter M with Pr=1.0, χ =1.0, and λ=0.01. 
 
 

Magnetic parameter M y Maximum Velocity 

0.0 1.438224        0.317195 

0.1 1.438224        0.308463 

0.3 1.438224        0.292272 

0.5 1.438224        0.277603 
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Table 6.6: Maximum value of the skin friction coefficient )0,(xfx   against x for 
different values of magnetic parameter M with Pr=1.0, χ =1.0, and λ=0.01. 
 
 

Magnetic parameter  
M 

x Maximum Skin friction 
coefficient 

0.0 1.919862        0.839187 

0.1 1.884956        0.821498 

0.3 1.850049        0.788942 

0.5 1.850049        0.759936 
 

 

Table 6.7: The maximum value of the velocities ),( yxf   against y for different 
values of Prandtl number Pr while M=0.1, χ =1.0, and λ=0.01. 
 
 

Prandtl number  
Pr 

y Maximum Velocity 

1.00 1.438224        0.308463 

1.63 1.369287        0.260281 

2.97 1.302542        0.207878 

3.50 1.302542        0.194862 
 

 

Table 6.8: Maximum value of the skin friction coefficient )0,(xfx   against x for 

different values of Prandtl number Pr while M=0.1, χ =1.0, and λ=0.01. 

 

Prandtl number  
Pr 

x Maximum Skin friction 
coefficient 

1.00 1.884956        0.821498 

1.63 1.884956        0.733352 

2.97 1.884956        0.631341 

3.50 1.884956        0.604892 
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Table 6.9: The maximum value of the velocities ),( yxf   against y for different 

values of conjugate conduction parameter χ with Pr=1.0, M=0.1 and λ=0.01. 

Conjugate conduction 
parameter χ 

y Maximum Velocity 

0.0 1.369287        0.346776 

1.0 1.438224        0.324516 

1.5 1.438224        0.308463 

2.0 1.509461        0.286700 
 

Table 6.10: Maximum value of the skin friction coefficient )0,(xfx   against x 
for different values of conjugate conduction parameter χ with Pr=1.0, M=0.1 and 
λ=0.01. 
 

Conjugate conduction 
parameter χ 

x Maximum Skin friction 
coefficient 

0.0 1.850049        0.963528 

1.0 1.884956        0.880927 

1.5 1.884956        0.821498 

2.0 1.884956        0.741197 
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FIGURES 
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Figure 6.1:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of viscosity variation parameter λ with Pr=1.0, 
M=0.1, χ=1.0 and λ=0.01. 
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Figure 6.2:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against  x for varying of viscosity variation parameter λ  
with Pr=1.0, M=0.1, χ=1.0 and λ=0.01. 
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Figure 6.3: (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of magnetic parameter M with Pr=1.0, χ=1.0 and 
λ=0.01. 
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Figure 6.4: (a) Variation of the local skin friction coefficients and (b) variation of 
local Nusselt number against x for varying of magnetic parameter M  with Pr=1.0,  
χ=1.0 and λ=0.01. 
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Figure 6.5:  (a) Variation of velocity profiles and (b) variation of temperature 
profiles against y for varying of Prandtl number Pr with M=0.1, χ=1.0 and λ=0.01. 
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Figure 6.6:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against x varying of Prandtl number Pr with M=0.1, 
χ=1.0 and λ=0.01. 
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Figure 6.7:  (a) Variation of  velocity profiles and (b) variation of temperature 
profiles against y for varying of conjugate conduction parameter χ with Pr=1.0, 
M=0.1 and λ=0.01. 
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Figure 6.8:  (a) Variation of the local skin friction coefficients and (b) variation 
of local Nusselt number against x for varying of conjugate conduction parameter χ 
with Pr=1.0, M=0.1 and λ=0.01. 
 
 

142 



 

164 

6.4 Conclusion  

The effect of temperature dependent viscosity on MHD-conjugate free convection 

flow from an isothermal horizontal circular cylinder is studied. The flow and heat 

transfer are governed by viscosity variation parameter, Magnetic parameter, 

Prandtl number and conjugate conduction parameter. It is found that the velocity 

increases and the temperature decreases within the boundary layer for increasing 

values of the viscosity variation parameter where as the skin friction decreases 

and heat transfer increases with increasing viscosity variation parameter.  The 

effect of the magnetic parameter, Prandtl number and conjugate conduction 

parameter on the velocity and temperature within the boundary layer region and 

on the skin friction coefficient and heat transfer rate along the surface are similar 

as found in chapter III, if we consider temperature dependent viscosity. 
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Chapter VII 
 
 
 

Concluding Remarks and Future Works 
 

 

7.1 General conclusion 

Regions of high heat transfer in a fluid flow are usually shear layers, associated 

with the regions of high momentum transfer. Undoubtedly the most common kind 

of shear layer in heat transfer problems is the boundary layer. In this thesis, the 

author has developed a physical model of magnetohydrodynamic conjugate free 

convection flow from an isothermal horizontal circular cylinder along with a 

coordinate system considering boundary layer approximation. The governing 

boundary layer equations are then derived according to the physical model and the 

boundary conditions are taken on the base of conjugate heat transfer process. The 

governing equations and boundary conditions are made dimensionless form using 

a set of non-dimensional variables. The ultimate resulting equations obtained by 

introducing the stream function have been solved numerically using the implicit 

finite difference method for the said boundary conditions. There are nine 

parameters obtained throughout the thesis, three parameters in chapter III and 

those are magnetic parameter, Prandtl number and conjugate conduction 

parameter; two new parameters in chapter IV and those are Joule heating 

parameter and heat generation parameter; three new parameters in chapter V and 

those are stress work parameter, viscous dissipation parameter and temperature 

ratio parameter and one new parameter in chapter VI and that is viscosity 

variation parameter. A representative set of numerical results for the velocity and 

temperature profiles, the skin friction coefficients as well as the rate of heat 

transfer are presented graphically and discussed in the respective chapters for the 

above parameters. However, a general conclusion on the works is presented 

below in brief: 

 

144 



 

166 

The velocity becomes thinner where as the thermal boundary layer becomes 

thicker with increasing values of the magnetic parameter. The skin friction 

coefficient decreases however the rate of heat transfer increases with increasing 

value of the magnetic parameter which are found in chapter III, chapter IV, 

chapter V and chapter VI. 

 

The skin friction coefficient decreases and the rate of heat transfer increases on 

the surface where as the velocity and temperature decreases in the boundary layer 

region with the increasing value of the Prandtl number. The effects of the Prandtl 

number on the velocity and temperature distribution and on the skin friction 

coefficient as well as heat transfer rate are similar in presence of the other 

parameters as discussed in chapter IV, chapter V and chapter VI. 

 

Increasing value of the conjugate conduction parameter (more accurately 

conjugate conduction resistance parameter) decreases temperature as well as 

velocity within boundary layer region and it also decreases the skin friction 

coefficient on the surface and the heat transfer rate from the surface. These effects 

are true in presence of the other parameters as found in chapter IV, chapter V and 

chapter VI. 

 

The effects of the Joule heating parameter, heat generation parameter and viscous 

dissipation parameter are similar that is the velocity and temperature increases in 

the boundary layer region, the skin friction increases on the surface and the heat 

transfer rate decreases from the surface with the increasing values of the 

parameters. However it is found that the temperature on the surface for a 

particular value of x and the heat transfer rate from the surface at the lower 

stagnation point are same for all values of the Joule heating parameter and viscous 

dissipation parameter, alternatively different values of the temperature and heat 

transfer rate has been occurred for different values of the heat generation 

parameters. These phenomenons are supported by the definition of these physical 

parameters and the outcome is received from the discussion of chapter IV. 
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From chapter V it is revealed that the velocity and temperature in the boundary 

layer region and the skin friction on the surface of the cylinder decreases however 

the rate of heat transfer increases with increasing value of the stress work 

parameter and temperature ratio parameter. 

 

Lastly, the effect of the temperature dependent variable viscosity has been 

discussed in chapter VI. It is found that the velocity within the boundary layer 

increases conversely the skin friction coefficient decreases with increasing value 

of the viscosity variation parameter although this phenomenon is completely 

supported. On the other hand, it is observed that there is a small decrease in the 

temperature within the boundary layer accordingly an increase in the heat transfer 

rate with increasing value of the viscosity variation parameter. 

 

7.2 Possible future works based on the thesis 
The study on this thesis may be extended considering following cases: 

 The effect of radiation has not been considered throughout the thesis; this 

mode of heat transfer may be considered with the present model. 

 The study can be extended considering porous medium. 

 The author has considered a steady two-dimensional laminar flow in this 

thesis. One can consider steady three dimensional flows, unsteady two-

dimensional flow and unsteady three-dimensional flow. 

 Natural convection is taken into account in this study. It can be extended 

by considering mixed convection and forced convection. 

 The effect of temperature dependent viscosity may be extended 

considering Joule heating, heat generation, stress work and viscous 

dissipation. 

 Temperature dependent thermal conductivity and Prandtl number has not 

been considered in the study. This study may be extended with 

considering these fluid properties with different physics. 
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Appendix 
 
Table A1: Percentage increase/decrease of the maximum values of the velocity with a 
referred increase of the Prandtl number Pr, magnetic parameter M and conjugate conduction 
parameter χ (chapter III). 
 

Parameters Maximum velocity Percentage 
Change Remarks 

Pr 
0.733 0.314559 

23.87 Decrease 
1.630 0.239484 

M 
0.1 0.284157 

25.73 Decrease 
0.7 0.211052 

χ 
0.75 0.294869 

14.26 Decrease 
2.00 0.252827 

 
 
 
 
 
 
Table A2: Percentage increase/decrease of the maximum values of the skin friction 
coefficient with a referred increase of the Prandtl number Pr, magnetic parameter M and 
conjugate conduction parameter χ (chapter III). 
 

Parameters Maximum value of the 
skin friction coefficient 

Percentage 
Change Remarks 

Pr 
0.733 0.790054 

16.66 Decrease 
1.630 0.658416 

M 
0.1 0.738048 

18.63 Decrease 
0.7 0.600514 

χ 
0.75 0.778009 

19.95 Decrease 
2.00 0.622761 
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Table A3: Percentage increase/decrease of the maximum values of the velocity for a referred 
increase of the Prandtl number Pr, magnetic parameter M conjugate conduction parameter χ, 
Joule heating parameter J and heat generation Q (chapter IV). 

Parameters Maximum velocity 
Percentage 

Change 
Remarks 

Pr 
0.733 0.319714 

23.39 Decrease 
1.63 0.244926 

M 
0.1 0.289429 

25.25 Decrease 
0.7 0.216355 

χ 
1.0 0.289429 

14.65 Decrease 
2.5 0.247029 

J 
0.01 0.289429 

17.71 Increase 
1.00 0.340690 

Q 
0.01 0.289429 

20.86 Increase 
0.12 0.349804 

 

Table A4: Percentage increase/decrease of the maximum values of the skin friction 
coefficient for a referred increase of the Prandtl number Pr, magnetic parameter M conjugate 
conduction parameter χ, Joule heating parameter J and heat generation Q (chapter IV). 

Parameters Maximum value of the 
skin friction coefficient 

Percentage 

Change 
Remarks 

Pr 
0.733 0.801152 

16.17 Decrease 
1.630 0.671578 

M 
0.1 0.749931 

18.46 Decrease 
0.7 0.611517 

χ 
1.0 0.749931 

20.71 Decrease 
2.5 0.594597 

J 
0.01 0.749931 

19.88 Increase 
1.00 0.899054 

Q 
0.01 0.749931 

4.51 Increase 
0.04 0.783773 
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Table A5: Percentage increase/decrease of the maximum values of the velocity for a referred 
increase of the Prandtl number Pr, magnetic parameter M, conjugate conduction parameter χ, 
stress work parameter ε, viscous dissipation parameter N and temperature ratio parameter Tr 
(chapter V). 

Parameters Maximum velocity Percentage 
Change Remarks 

Pr 
0.733 0.289226 

26.79 Decrease 
1.630 0.211734 

M 
0.1 0.257874 

25.31 Decrease 
0.7 0.192598 

χ 
1.0 0.257874 

17.56 Decrease 
2.5 0.212582 

ε 
0.01 0.281548 

17.03 Decrease 
0.20 0.233610 

N 
0.01 0.257874 

4.09 Increase 
1.0 0.268444 

Tr 
0.1 0.277047 

14.25 Decrease 
1.5 0.237559 

 
 
Table A6: Percentage increase/decrease of the maximum values of the skin friction 
coefficient with a referred increase of the Prandtl number Pr, magnetic parameter M, 
conjugate conduction parameter χ, stress work parameter ε, viscous dissipation parameter N 
and temperature ratio parameter Tr (chapter V). 
 

Parameters Maximum value of the 
skin friction coefficient 

Percentage 
Change 

Remarks 

Pr 
0.733 0.743259 

18.51 Decrease 
1.630 0.605665 

M 
0.1 0.688879 

17.27 Decrease 
0.7 0.569888 

χ 
1.0 0.688879 

22.64 Decrease 
2.5 0.532949 

ε 
0.01 0.733141 

11.84 Decrease 
0.20 0.646364 

N 
0.01 0.688879 

4.88 Increase 
1.0 0.722494 

Tr 
0.1 0.723061 9.53 Decrease 
1.5 0.654174 

 

156 



 

178 

Table A7: Percentage increase/decrease of the maximum values of the velocity with a 
referred increase of the Prandtl number Pr, magnetic parameter  M, conjugate conduction 
parameter χ and viscosity variation parameter λ (chapter VI). 
 

Parameters Maximum velocity Percentage 
Change Remarks 

Pr 
1.0 0.341307 

23.74 Decrease 
3.5 0.260281 

M 
0.0 0.317195 

12.48 Decrease 
0.5 0.277603 

χ 
0.0 0.346776 

17.32 Decrease 
2.0 0.2867 

λ 
0.01 0.308463 

11.58 Increase 
1.20 0.344185 

 
 
Table A8: Percentage increase/decrease of the maximum values of the skin friction 
coefficient with a referred increase of the Prandtl number Pr, magnetic parameter M, 
conjugate conduction parameter χ and viscosity variation parameter λ (chapter VI). 
 

Parameters Maximum velocity Percentage 
Change Remarks 

Pr 
1.0 0.878961 

16.57 Decrease 
3.5 0.733352 

M 
0.0 0.839187 

9.44 Decrease 
0.5 0.759936 

χ 
0.0 0.963528 

23.07 Decrease 
2.0 0.741197 

λ 
0.01 0.821498 

22.07 Decrease 
1.20 0.640179 
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