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Abstract

An efficient vector finite element method with the hybrid edge/nodal triangular element is

described in this thesis for the analysis of dielectric optical waveguides with an emphasis

to the analysis of loss. The hybrid type element (a combination of linear edge elements

and quadratic nodal elements) are used in' the work. The edge element models the

transverse fields and nodal element model axial component of field variable. Thus, in the

approach a true hybrid mode analysis is ensured. The undesired spurious (non-physical)

solutions do not appear anywhere and the approach provides a direct solution for the

propagation constant. Since the eigenvalue corresponds to propagation constant rather

than frequency, the method can be easily applied to the analysis of lossy waveguides.

However in this work, an indirect approach based on perturbation technique is employed

for the calculation of loss in optical waveguides. Here, lossless field solutions obtained

from the finite element method are used in the perturbation equation to calculate loss in

optical rib waveguides and rectangular dielectric waveguides. Furthermore, the method is.
very flexible and can handle a wide variety of problems having sharp metal and/or

dielectric edges. The most important is that the sparsity and the bandedness of the

matrices are maintained, so high speed computation with large sparse generalized

complex eigenvalue problem is possible. But in the work, the need for solving complex

eigenvalue problem is eliminated by using the perturbation formula. Finally, the accuracy

of this approach is checked by comparing the propagation characteristics of step index

dielectric optical waveguides with and without loss.
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Chapter 1

INTRODUCTION

1
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Computer modeling techniques that allow an accurate simulation of the behavior of real

devices have become common and popular with the availability of cheaper and powerful

computer resources. These simulation techniques, however, help and guide experimental

researchers to conduct research on imaginary devices perfectly and conveniently.

The increasing complexity of modern devices in optics and microwaves rules out accurate

analytical treatment and so it has maintained a critical demand for accurate and efficient

computer modeling. This work is concerned with the 2-D analysis of longitudinally

uniform waveguides which are the fundamental components of these devices. The

method described in this thesis and its computer implementation are capable of

calculating guided modes of various waveguides, however, a special attention has been

given to the analysis of lo~s in dielectric optical waveguides. The analysis is restricted to

two dimensions since the fields in these structures have the formF(x,y)exp(-)Z). Even

though, one can think that a proper modeling of waveguide based devices require 3-D

analysis, it is possible to predict the performance characteristics almost accurately by 2-D

analysis also.

Material sCIence and fabrication technology have advanced in recent years at an

explosive rate, creating a strong interest in the possibility of extending and replacing with

optical devices several functions traditionally performed by electronics. Day by day, new

optical devices are being designed, investigated and demonstrated in rcsearch laboratories

throughout the world. This development, combined with the rapidly increasing demand

for more sophisticated and widespread telccommunication services, has put a very strong

pressure on the continuous development of accurate and efficient methods for the analysis

of the devices and systems involved.
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1.1 OPTICAL WAVEGUIDES AND ANALYSIS TECHNIQUES

It is known that a waveguide is a physical medium or path which traps electromagnetic

wave or light and guide it in a specific direction. Due to the physical phenomenon of total

internal reflection electromagnetic wave or light can propagate through a physical medium

with a little loss. Waveguide containing dielectric materials widely used from microwave

to optical wavelength regions. No magnetic material is used to be present. Dielectric

waveguides are fundamental components of devices and systems both in microwaves and

optics, and as such, a full understanding of how electromagnetic waves propagate in

complicated waveguide structures is essential. While in microwaves dielectric waveguides

constitute only one of the types of waveguide in use, in optics they are practically the only

form of the waveguiding structure. They play an essential role in optoelectronics, being in

the form of optical fibres, fibre lasers and amplifiers or in integrated optics where most

devices are made from optical waveguides of different configurations and properties [1]-

[8].

A knowledge onthe materials and fabrication technologies used to make integrated optical

waveguides may give a better understanding of the practical demands for dielectric

waveguide analysis. Materials such as gallium arsenide (GaAs), Indium phosphide (InP),

lithium niobate (LiNb03), .lithium tantalate (LiTa03), silica (Si02), polymers, organic

materials, and varieties of compounds are widely used in integrated optics. Many of these

materials are anisotropic, graded, lossless/lossy, sometimes nonlinear also. Fabrication

techniques recently have become so flexible that materials with complex index profile can

be developed and devices with complicated geometry can also be developed. Diffusion and

implantation techniques can be used to alter the refractive index profile of a substrate

material. Furthermore, deposition, growth, and etching techniques can be used to control

the thickncss and shape of material layers. Thus it is possible to produce waveguides and

devices with a wide variety of complicated shapes and refractive index profiles [1], [5]-[6]'

The index profile can be arbitrarily inhomogeneous, anisotropic and/or gradcd, and it leads

most frequently to structures which cannot be studied analytically [1], [7]. Requirements

for the analysis are also varied. First of all, it is often necessary to establish how many

modes a waveguiding structure will support. Most applications will require the propagation
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of one or two modes, and small changes in dimensions or refractive indices can frequently

result in the structure being either cutoff or supporting more than the desired propagation

modes. Secondly, it is often desirable to know the precise field distribution of the modes

for the practical purpose. Thirdly, it is usually necessary to know the propagation constant

of a mode in a waveguide and in some cases, quite accurately. For example, for many

optical (and microwave) switching functions the operating principle is interference

between two modes, and a precise knowledge of the difference between the propagation

constants of two modes is necessary. This difference is usually a very small percentage of

the value of the propagation constant, and so an accurate calculation is very important.

There arc vanous types of waveguides used in optical integrated circuits [7]-[8].

Waveguides that trap the light only in the direction of its thickness (y direction) are called

2-D optical waveguides or slab optical waveguides. It allows light to spread in the

horizontal direction (x direction). 2-D Optical waveguides could be of stepped index

profile 0\' graded index profile. On the other hand, a 3-D waveguide traps the light in both x

and y direction. 3-D Optical waveguides could also be of stepped index or graded index

profile. Waveguides in which refractive index changes in steps are called the step-index

(SI) optical waveguides. On the other hand, waveguides in which the refractive index

changes gradually are called graded-index (GI) optical waveguides. Here it may be

mentioned that thc effect of inter modal dispersion may be reduced through the usc of

graded-index (GI) waveguides. These are well discussed in [6]-[8].

There is groWlI1g emphasis on numerical methods for engll1eenng analysis because

frequently it is not possible to obtain analytical solutions for many practical problems. An

analytical solution is a mathematical expression that gives the values of the desired

unknown quantity at any point in the problem domain and for any value of the parameters

of the problem, such as geometrical dimensions and material properties. In contrast,

numerical methods usually provide an approximate solution only at a discrete number of

points in the domain and for a pre-selected choice of parameter values. Each new choice

will usually require a new calculation (a new 'numerical experiment'). However, analytical

solutions can be obtained only for certain situations. For problems involving complex

boundary conditions and material properties, one has to resort to numerical methods that
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provide approximate, but satisfactory solutions. Although the finite element method is

usually formulated by means of the classical Galerkin or the variational/Rayleigh-Ritz

methods, its present success is fundamentally tied to the widespread use of computers. Its

development has paralleled the advances in computer power and their widespread use and

possesses celiain characteristics that take the advantage of the special facilities offered by

high-speed computers. With increasing computer power available in relatively small

machines, reasonably large finite element solutions can now be achieved on widely used

workstations and even PCs. For example, one can solve eigenvalue problems with matrix

orders of more than ten thousand on a PC. In fact, many current workstations are much

more powerful (in speed and memory size) than many mainframes of only a few years ago.

1.2 REVIEW OF LITERATURE FOR LOSSY WAVEGUIDES

In this section, wc review a number of commonly used finite element formulations for the

modal' analysis of dielectric optical waveguides, particularly focussing on the recent

development of methods to reduce or eliminate spurious solutions encountered in the

vector finite element analysis of lossless and lossy optical waveguide problems [9]-[35].

Finite element formulations may be obtained in a number of ways: either directly from the

differential or integral equ1ltions which define the problem or by using weighted residual

methods or variational methods. However, it is advantageous to take a variational

approach whenever possible, especially when one global parameter (e.g., a capacitance, a

resonant frequency or propagation constant) is needed. Weighted residual methods are

specially useful in problems for which a variational expression is not readily available or

easy to derive. They can indeed be applied to any boundary value problem with established

differential equation.

In different finite element formulations the eigenvalue may correspond to OJ' or y'. We

can call the first type fi'equency formulation (or simply OJ -formulation), where the

eigenvalue is an explicit known function of OJ ; the second one is the propagation constant

formulation (or simply r -formulation), where the eigenvalue is an explicit known

function y . Usually the y -formulation is desired for the analysis of lossy waveguides. One

important drawback of using an OJ - formulation in waveguide analysis is that it gives as a
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result the frequency of each waveguide mode corresponding to a selected value of the

propagation constant while in practice the problem is usually the reverse, that is, one is

normally interested in finding the propagation constant (possibly complex) at a specified

frequency. Consequently, when using this type of formulation, iterations are needed to

solve a practical problem. In contrast, a r -formulation solves directly for the propagation

constant at a given frequency, avoiding unnecessary iterations.

Additionally, the presence of loss in the waveguide brings another, more important

disadvantage of OJ -formulations. In this type of formulation we need to specify numerical

value of the propagation constant but in the general case of waveguides including materials

with loss the propagation constant is complex (as it is too in the case of complex waves in

lossless waveguides). This choice cannot be arbitrary, the real and imaginary parts of the

chosen value for the propagation constant should be consistent with a real situation in order

to find real solutions for the frequency. Then, due to the impracticality of finding a proper,

consistent guess for complex propagation constant, only r -formulations are applicable to

waveguide problems with loss (or for the same reason, to the study of complex modes in

lossless waveguides).

In the scalar FEM, a functional in terms of either Ez or Hz depending on the mode is used.

Although a formulation based on single scalar quantity is inadequate for the inherently

hybrid-mode spectrum of isotropic/anisotropic or genuinely two-dimensional,

inhomogeneous waveguide problems, useful approximation can be found in the form of

quasi-TEM, quasi-TE modes, depending on the type of waveguide structure or the

propagating modes of interest. These approximations can be sufficiently accurate in many

practical cases. However, this method can not be used directly for a lossy waveguide as in

most cases they are based on frequency formulation.

To evaluate rigorously the propagation characteristics of an inhomogeneous and/or

.anisotropic waveguide, a vectorial wave analysis [11HIS] is necessary, with at least two

field components. These formulations are fundamentally more accurate than scalar forms

since they can represent true hybrid modes in a general dielectric waveguide. Vector FEM
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in terms of both the longitudinal electric and magnetic field components (E"H,) have

been used for analyzing various microwave and optical waveguides, including lossy

waveguides [11H16]. But, this type of formulation is affected with the appearance of

spurious solutions. In the full vector formulations, the method is based on the full vector H

or E. The full vector H formulation has become the most common choice and has been

used extensively in the solution of microwave and optical waveguides. The full vector

magnetic field formulation leads to an eigenvalue equation with real symmetric matrices.

The eigenvector corresponds to the unknown values of all three components of the

magnetic field in all nodal points. The most serious difficulty in using some node-based

vector FEM formulations is the appearance of spurious, non-physical solutions interspersed

with the real solutions. To remove the spurious solutions, the penalty function method

[II ]-[12] was developed, where a penalty parameter is introduced in the formulation to

give the variational expression a new shape, where the divergence-free condition is forced

in the least square sense and the spurious solutions may be eliminated from the guided

mode spectrum. However, this method cannot be used directly for the calculation of loss.

Using the Ga1erkin method, Hayata et al. [17] derived an approach in terms of the

transverse magnetic field components only, which can eliminate spurious solutions in the

analysis of anisotropic loss less waveguides but at the considerable expense of losing the.
sparsity of the matrices. The same method was later extended to diagonal anisotropic and

lossy waveguide problems [17]-[20], where a complex quadratic eigenvalue equation is

solved. This problem then suffers from two major drawbacks: doubling the order of the

matrices and, more importantly, the loss of sparsity of matrices which makes the method

impractical. Most of the approaches have found some special applications and suffer from

some unavoidable problems [21]-[23].

A revolutionary approach is that with edge elements [24]-[29]. A completely different way

of alleviating the problem of spurious solutions is the application of edge elements [24]-

[29]. In these cases, starting from the full vector n formulation, edge clements arc used to

represent the vector fields. The use of first order tangential elements to analyze lossless

dielectric waveguides results in a much complicated calculation of the element matrices

and from this, a complicated matrix eigenvalue problem emerges needing special treatment

due to the singularity of the matrices. However, a combination of edge and nodal elements
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as used by Koshiba and Inoue [26] have found great attention for the analysis of.true

hybrid modes in inhomogeneous waveguides. Here the edge elements are used to describe

transverse fields and nodal elements for the longitudinal fields, thus true hybrid mode

analysis is ensured. This approach can be used to calculate loss directly. However, they are

computationally expensive as complex eigenvalue equations are solved to calculate loss

directly.

1.3 OBJECTIVE OF THE WORK

The objective of this work is to develop an efficient system based on finite element

method for the analysis of lossy dielectric optical waveguides. Modal loss in dielectric

optical waveguides will be calculated in this work by using a vector finite element method

(VFEM) with the incorporation of the perturbation formula [43], [46]-[47]. The VFEM

with the magnetic field intensity vector as the working variable with the hybrid type

triangul~r elements [43] will be used to find the modal solutions of lossless waveguides.

With the hybrid elements, the edges model the transverse fields ensuring tangential

continuity along the element interfaces and nodes model the axial fields and thus the

approach ensure true hybrid mode analysis. As the edges assign the degrees of freedom to

the edges, they allow th" field to change its direction abruptly and thus are capable of

modeling the field properly at sharp dielectric edges at which ficld changcs abruptly. The

lossless field solutions will be employed in the perturbation formula [46]-[47] to calculate

loss. The final global real eigenvalue equation of the VFEM approach will be solved using

sparse eigenvalue solver. The approach thus eliminates the need for solving complex

eigenvalue equation when a complex solver is unavailable and is capable of providing

high-speed calculation of modal losses of dielectric optical waveguides. As examples, loss

in rib waveguide and embedded channel waveguide will be investigated.

1.4 LAYOUT OF THE THESIS

This first chapter has included an overview to the background of currently used dielectric

waveguides and a brief introduction to the fundamental features of the finite element

method leading to justification of the need to develop a better finite element method for
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lossless as well as lossy dielectric optical waveguide problem. This chapter contains a

discussion on numerical methods and different finite element approaches for this purpose.

A review of published finite element formulations for electromagnetic waveguide

problems, particularly focussing on the recent development of methods to suppress or

eliminate spurious solutions encountered in vector finite element analysis of waveguide

problems are also discussed in this chapter. The difficulties of finite element method and

the use of hybrid approach is also discussed in this chapter.

In chapter 2, basic theory related to the optical waveguide is discussed. Formation of

modes and their modal designations are also given for better understanding of optical

waveguides. In chapter 3, the basic idea of the finite element method is given. The

historical background, the range of applications, basic steps of finite element formulations,

and the solution procedures of the final system of equations are discussed in this chapter.

In chapter 4, the mathematical formulation with the hybrid edge/nodal element for the

waveguide problem is discussed in details. The use of hybrid edge/nodal element to

suppress the problems of spurious solutions and finite element discretization procedure is

discussed in this chapter. The details of the shape function vector, elemental equations, the

final equations for final. matrix construction are also shown here in this chapter. This

chapter also shows the perturbation procedure to calculate loss of optical waveguides.

Chapter 5 discusses on numerical results. The results are given here for optical rib and

rectangular type waveguides. Both the lossless propagation characteristics and loss or gain

characteristics are shown. A comparison between the existing results and the present

results is also shown there. A brief description of the program is also given in this chapter.

Finally, chapter 6 gives the conclusion of this work, where the findings are described

briefly and future scopes related to this work are described. At the end, references related

to this work and an appendix is given also.
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Chapter 2

THEORY OF OPTICAL WAVEGUIDE

The basic concepts and equation of electromagnetic wave theory required of the

comprehension of light wave propagation in optical waveguides are qualitatively

explained, taking the case of a slab waveguide [I], [6]. Maxwell's equations, boundary

conditions, and complex Poynting vectors are described as they form the basis for the

waveguiding mechanism in the dielectric optical waveguides.

2.1 WAVEGUIDE STRUCTURE

Optical fibers and optical waveguides consist of a core, in which light is confined, and a

cladding, or substrate surrounding the core, as shown in Fig. 2.1. The refractive index of

the core n, is higher than that of the cladding no Therefore the light beam that is coupled

to the end face of the waveguide is confined in the core by total internal reflection. The

condition for the total internal reflection at the core-cladding interface is given by

sin(Tr12 - rjJ)? no' Since the angle rjJ is related with the incident angle e by

sine =sin rjJ5, -J nJ - no . We obtain the critical condition for the total internal reflection as

e < . -I ~ 2 _ 2 = e- SIn n) no - II1<1X (2.1 )

Thc refractive index difference between core and cladding is.of the order of n, - no = 0.01

Then e in equation (2.1) can be approximated by
I11<1X

(2.2)

e denotes the maximum high acceptance angle of the waveguide and is known as the
max

numerical apeliure (NA) The relative refractive index difference between n, and no is

defined as
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(2.3)

L'l is commonly expressed as a percentage. The numerical aperture NA is related to the

relative refractive index difference L'l by

(2.4)

The maximum angle for the propagating light within the core is given by

For typical optical waveguides, NA=O.21 and

b-
x

no
xL~

>;,:e,a ~
g Core fit °1xcO •..

y z f z n
;/ Cladding no xc-a ~ .no

Fig. 2.1: Basic structure and refractive index profile of the optical waveguide.

2.2 FORMATION OF GUIDED MODES

We have accounted for the. mechanism of mode confinement and have indicated that the

angle rf; must not exceed the critical angle. Even though the angle rf; is the smaller than

the critical angle, light rays with arbitrary angles are not able to propagate in the

waveguide. Each mode is associated with light rays at a discrete angle of propagation, as

given by electromagnetic wave analysis. Here we describe the formation of modes with

the ray picture in the slab waveguide [6], as shown in Fig. 2.2. Let us consider a plane

waves propagating along the z-direction with inclination angle rf;. The phase fronts of the
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plane waves are perpendicular to the light rays. The wavelength and the wavenumber of

light in the core are A / n, and kn, (k = 2n / A) respectively, where A is the wavelength of

light in vacuum. The propagation constants along z and x (lateral direction) are expressed

by

fJ = kn, cos r/J

/( = kn, sinr/J

(2.5)

(2.6)

Before describing the formation of modes in detail, we must explain the phase shift of

light ray that suffers total reflection. The reflection coefficient of the totally reflected

light, which is polarized perpendicular to the incident plane (plane formed by the incident

and reflected rays) as shown in Fig. 2.3, is given by [6]

ray

no

n, 2(]_.~
Fig. 2.2: Light rays and their phase fronts in the waveguide.

'" '/' '" 'A, n, S111 Y' + J" n, cos Y' - no
r = - = -----;=====~

A '" '/' ',,'I nj SIn'r - } \/ n[ cos If' - no
(2.7)

when we expressed the complex reflection coefficient r as r = exp(- jr/J), the amount of

the phase shift r/J is obtained as

_, In; cos' r/J-n;, ,
r/J=2tan --2tan-

n, sinr/J
~-l
sin' r/J

(2.8) o
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where (2.3) has been used. The forgoing phase shift for the totally reflected light is called

the Goos-Hanchen shift [I], [6].

Let us consider the phase difference between the two light rays belonging to the same

plane wave in Fig. 2.2. Light ray PQ, which propagates from point P to Q, does not suffer

the influence of reflection. On the other hand, light ray RS, propagating from point R to

S, is reflected two times (at the upper and lower core cladding interfaces). Since points P

and R or points Q and S are on the same phase front, optical paths PQ and RS (including

the Goos-Hanchen shifts caused by the two total reflections) should be equal, or their

difference should be an integral multiple of 2 n . Since the distance between points Q and

R is 2a/ tan r/J - 2a tan r/J , the distance between points P and Q is expressed by

no

x

-. /'" .,..... 'E/):\/ .. 1)~,
// "" •...
/ Hi H

Incident light Ai fieflected light A r

Fig 2.3: Total reflection of a plane wave at a dielectric interface.

1', = (~-2atanr/J)cosr/J= 2a(-.-I- - 2sinr/J) (2.9)
tan r/J sm r/J

Also, the distance betwccn points R and S is givcn by

l' =~
2 • A,

Sill'/'

The phase matching condition for the optical paths PQ and RS then becomes

(2.10)



13

(2.11 )

where m is an integer, Substituting (2.8)-(2.10) into (2.11) we obtain the condition for the

propagation angle rjJ as

~-I
sin 2 rjJ

(2.12)

Equation (2.12) shows that the propagation angle of a light ray is discrete and is

determined by the waveguide structure (core radius G, refractive index nj, refractive index

deference b.) and the wavelength /l of the light source (wavenumber is k = 27r ) [7]. The
/l

optical field distribution that satisfies the phase matching condition of (2.12) is called

mode. The allowed value of propagation constant f3 of (2.5) is also discrete and is

denoted as an eigenvalue. The mode that has the minimum angle rjJ in Eq. (2.12) (m=O) is

the fundamental mode; the other modes, having larger angles, are higher order modes

(m 21).

Fig. 2.4 schematically shows the formation of modes (standing waves) for (a) the

fundamental mode and (b) a higher order mode, respectively, through the interference of

light waves. In the figure, rt1e solid line represents a positive phase front and a dotted line

represents a negative phase front, respectively. The electric field amplitude becomes the

maximum (minimum) at the point where two positive (negative) phase fronts interfere. In

contrast, the electric filed amplitude becomes almost zero near the core-cladding

interface, since positive and negative phase front cancel out each other. Therefore, the

field distribution along the x-(transverse) direction becomes the standing wave and varies

periodically along the z-direction with the period

(2.13)

Since n, sinrjJ = sine:o; ~n,' -no' from Fig. 2.1, (2.1) and (2.3) give the propagation

angleas sin rjJ:0;~2b..When we introduce the parameter

S = sinrjJ
~2b.

,



which normalized to 1, the phase matching equation (2.12) can be rewritten as

kn,aEi, = cos-'.~ +ml[/2

~

14

(2.14)

The term on the left hand side of (2.14) is know as the normalized frequency, and it is

expressed by

(2.15)

When we used the normalized frequency v, the propagation characteristics of the

waveguides can be treated generally (independent of each waveguide structure). The

relationship between normalized frequency v and ~ (propagation constant f3), Equation

(2.14) is called the dispersion equation. Fig. 2.5 shows the dispersion curves of a slab

waveguide. The crossing point between 17 = (cos-' ~ + ml[ /2) / ~ and 17 = v gives ~m for

each mode number m, and the propagation constant f3", is obtained from (2.5) and (2.13).

It is known from Fig. 2.5 that only the fundamental mode with m=O can exist when

v < v, = l[ / 2, v, determines the single mode condition of the slab waveguide. In other

words, the condition in which higher order modes are cutoff. Therefore, it is called the

cutoff v - value. When we rewrite the cutoff condition in terms of the wavelength we.
obtain

(2.16)

A, is called the cutoff (free space) wavelength. The waveguide operates in a single mode

for wavelengths longer thanA,. For example,A, = 0.8j.1m when the core width 2a=3.54

J-l111 for the slab waveguide of nj = 1.46,6=0.3% (no =1.455).

'.
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2.3 MAXWELL'S EQUATIONS

Maxwell's equations in a homogeneous and lossless dielectric medium are written in

terms of the electric field e and magnetic field h as [1], [6]

oh
'I1xc=-f-l- ot

oe'I1xh=&- ot

(2.17)

(2.18)

where & and f-l denote the permittivity and permeability of the medium, respectively. &

and f-l are related to their respective values in a vacuum of&o = 8.854xIO-12 [F/m] and

f-lo = 4n x 10-7 [Him] by

& = & n'o (2.19a)

(2.19b)

where n is the refractive index. The wavenumber of light in the medium is then expressed

as [6]

(2.20)

In (2.20), w is an angular frequency of the sinusoidally varying electromagnetic fields

with respect to time; k is the wavenumber in a vacuum, which is related to the angular

frequency w by

k = W~&of-lo = W
C

In (2.21), c is the velocity of light in a vacuum, given by

I 8c---~-=2.998xIO [m/s]
'.j &0 110

(2.20)

(2.22)

The fact that the units for light velocity care mls is confirmed from the units of the

permittivity &0 [F/m] and permeability (.1.0[Him] as

1

~[F/m][H/m]

m m
=

-JF. H ~[A .slV)[V .s/A)
m

s
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When the fi.equency of the electromagnetic wave is f [Hz], it propagates elf [m] in one

period of sinusoidal variation. Then the wavelength of electromagnetic wave is obtained

by
1 _ e _ OJ / k _ 211:
/\,-------

f f k
(2.23)

where (J) = 2rrf. When the electromagnetic fields c and h are sinusoidal functions of

time. They are usually represented by complex amplitudes, i.e., the so-called phasors. As

an example consider the electric field vector

c(t) = IElcos(OJt+rjJ) (2.24)

where lEIis the amplitude and rjJ is the phase. Defining the complex amplitude of e(t) by

Eq. (2.24) can be written as

e(t) = Re (Eel'" )

We wi11often represent e(t) by

e(t) = Eel'"

(2.25)

(2.26)

(2.27)

instead of by (2.24) or (2.26). This expressed is not strictly correct, so when we use this

phasor expression we should keep in mind that what is meant by (2.27) is the real part of

Eel'" . In most mathematical manipulations, such as addition, subtraction, differentiation

and integration, the replacement of ((2.26) by the complex form (2.27) poses no

problems. However, we should be careful in the manipulations that involve the problems.

In these cases we must use the real form of the function (2.24).or complex conjugates.

When we consider an electromagnetic wave having angular frequency OJ and the .

propagating in the z direction with propagation constant P , the electric filed and magnetic

lield can be expressed as

e = E(r )eJ1M-M

h = H(r)eJ1M-M

(2.28)

(2.29)

where,. denote the position in the plane transverse to the z-axis, Substituting (2.28) and

(2.29) into (2.17) and (2.18), the following set of equations are obtained in Cartesian

coordinates.
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aK 'j3E . Ii--" +.1 ,=-.Jwflo xay .

aE
-1'j3E--' =-I'W'{ H. .\ ax .,... 0 y

aE," aE
-" __ x =-jw'j.1 H,ax ay " 0"

aH, 'j3li . 'E--~ + ) j} = jOJcon "xay "

"j3l! aH, . 'E-I ' ---" =.Jwc n <"
. x ax 0 J"

(2.30)

The foregoing equations are the bases for the analysis of slab and rectangular

waveguides. For the analysis of wave propagation in optical fibers, which are axially

symmetric, Maxwell's equations are written in terms of cylindrically coordinates:

1 aK 'j3E . H---' +.1 0 = - .Jwflo '"
I' ae

aE
- jj3E, --a' = - jWfloHo

• I'

.!.~(rEo)-.!. aE, =-jwfloH,
I' ar I' ae "

1 aH,. . 2---" + .Jj3Ho= .Jwcon E,"
I' ae

. aH,. ,
- .Jj3H,"--a" = .Jwc"n' Eo

I'

(2.31 )

I 0 ( ) I aH," . 2-- rHo ---- = .Jwcon E,
I' Or I' ae

Maxwell's equations (2.30) or (2.31) do not determine the electromagnetic field

completely out ai' the infinite possibilities of solutions of Maxwell's equations. We must

select those that also satisfy the boundary conditions of the respective problems. The

most common type of boundary condition occurs when there are discontinuities in the

dielectric constant (reii'active index), as shown in Fig. 2.1. At the boundary condition the

tangential components of the electric field and magnetic field should satisfy the

c..
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conditions

(2.32)

(2.33)

where the subscript t denotes the tangential components of the boundary and the

superscript (1) and (2) indicate the medium, respectively. Equations (2.32) and (2.33)

mean that the tangential components of the electromagnetic fields must be continuous at

the boundary. There are. also natural boundary conditions that require the electromagnetic

field to be zero at infinity.

2.4 PROPAGATING POWER

Consider Gauss's theorem for vector A in an arbitrmy volume V

fffV'Adv= ffA'nds
v cr.,'

(2.34)

where n is the outward directed unit vector normal to the surface S enclosing V and dv

and ds are the differential volume and surface elements, respectively. When we set

A = ex h in (2.23) and use the vector identity

V. (exh)= h. Vx e-e. Vxh

We obtain the following equation for electromagnetic fields:

fff(h.Vxe-e'Vxh)dv= ff(exh).nds
v s

Substituting (2.17) and (2.18) into (2.36) results in

ffn Be. ae +,uh. ah)=_ ff(exh).n dsvJl & & •
The first term in (2.37)

represents the rate of increase of the electric stored energy W,and the second term

,uh. ah =~(,u h'h)= aWh

at at 2 . at

(2.35)

(2.36)

(2.37)

(2.3 8)

(2.39)
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rcprcsents the rate of increase of the magnetic storcd cnergy W", respectivcly. Therefore,

the left hand side of (2.37) gives thc rate of increase of the electromagnetic stored energy

in the whole volume V; in other words, it represents the total power flow into the volume

bounded by S. When we replace the outward directed unit vector n by the inward

directed unit vectoru,(= -n), the total power flowing into the volume through surface S

is expressed by

p= H-(exh).nds= H(exh)'u,ds
s s

(2.40)

Equation (2.40) means that e x It is the vector representing the power flow, and its normal

component to the surface (ex h). u, gives the amount the power flowing through unit

surface area. Therefore, vector exit represents the power flow density, and

(2.41 )

(2.42a)

is called Poyinting vector. In the equation, e and It denote instantaneous fields as function

of time t. Let us obtain the average power flow density in an alternating field. The

complex electric and magnctic fields can be cxpressed by

e(t) = Re{Eeiw/ }=.!.- {Eel"" +E'e-iw/ }
2

(2.42b)

where * denotes the complex conjugate. The time average of the normal component of

the Poynting vector is then obtained as

(s.u,) = ((ex It). u,)

I( .. )="4 ExH +E xH .u,

= ~Re{(ExH').U,} (2.43)

where () denotes a time avcragc. Thcn thc time avcrage of the power flow is given by

p = H~ Re{(Ex H'). u,}ds
.I'd

(2.44)



23

Since E xH' often becomes real in the analysis of optical waveguides, the time average

propagation power in (2.44) is expressed by

p= fJ~(ExH*).u,dS (2.45)
s

2.5 MODE DESIGNATIONS

The following commonly used mode designations are usually adopted for optical

waveguides [1], [6].

• For homogeneous rectangular metallic waveguides

TE (or H ) if (Ez = 0),
mil 111/1

TMm" (or Em,,) if (Hz =0).

• For dielectric-slab-loaded rectangular metallic waveguides

LSEm" if there is no electric field component normal to the slab interface,

LSMm" if there is no magnetic field component normal to the slab

interface.

• For other inhomogeneous waveguides, modes are designated usmg the

dominant t;ansverse component

E:',,(or H;"" or HEm,,) if IExl >IE yl

E;,,,(or H,~" or EHm,,) if IEyl >IExl

(or IH y[ >IHxl ),

(or IHxl >IH yl ).

The indices m and n are used here to designate the number of maxima of the dominant

component in the guide region in the x and y direction, respectively.
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Chapter 3

FINITE ELEMENT METHOD.

In the finite element method (FEM), instead of differential equations (governing

equations) for the system under consideration, corresponding functionals (variational

expressions) to which a variational principle is applied are set up, where the region of

interest is divided into the so-called elements; an equivalent discretized model for each

element is constructed; and then all the element contributions to the system are

assembled. In other words, the FEM can be constructed a subclass of the Rayleigh-Ritz

method, in which piecewise defined polynomial functions are used for trial functions and

infinite degrees of freedom of the system are discretized or replaced by a finite number of

unknown parameters. In classic analytical procedures without subdivision processes, the

system is modeled using analytical functions defined over the whole region of interest,

and therefore these procedures generally are applicable only to simple geometries and

materials. Of the various- forms of discretization possible, one of the simplest is the finite

difference method (FDM). And its traditional versions use regular grid; that is, a

rectangular grid with nodes at the intersections of orthogonal straight lines. However, a

regular grid is not suitable for curved boundaries or interfaces, because they intersect

gridlines obliquely at points other than the nodes. Moreover, a regular grid is not suitable

for problems with very steep variations of fields. The FEM is somewhat similar to the

FDM. In the FEM, the field region is subdivided into elements; that is, into subregions.

Elements can have various shapes, such as triangles and rectangles, allowing the use of an

irregular grid. Therefore, the FEM is suitable for problems with very steep variations of

fields. Furthermore, this approach can be easily adapted to inhomogeneous and

anisotropic problems, and it is possible to systematically increase the accuracy of the

solutions obtained, as necessary. Furthermore, the finite element scheme can be

established not only the variational method but by the Galerkin method, which is a

weighted residual method. Therefore, the FEM may be applicable to problems where
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variational principle does not exist or cannot be identified. In this chapter the concept of

the FEM and its fundamentals are discussed.

3.1 THE RANGE OF APPLICATIONS

Recently, the finite-element method has been applied to a wide range of problems in

electrical and electronic engineering, and many successful results have been obtained as

well in the field. of electromagnetic-wave engineering, dealing with wave fields. In

particular, as the computer becomes faster, it is spawning a new interdisciplinary field,

called computational mechanics, in which finite element method plays important roles.

The research on the application of the finite-element method to the electromagnetic-wave

engineering has been made in earnest since the latter half of the 1960s, particularly from

the 1960s, and is now being made extensively. From various viewpoints, electromagnetic

wave problems may be classified into the following categories [3]-[4], [8]:

1. steady and unsteady problems

2. eigenvalue and deterministic problems

3. one, two and three dimensional problems

4. scalar and vector field problems.
5. homogeneous and inhomogeneous problems

6. isotropic and anisotropic problems

7. conservative and non conservative problems

8. bounded and unbounded field problems

9. linear and non linear problems

10. forward and inverse problems

Depending on the type of problems different boundary value equations anse III the

mathematical modeling of physical systems and their solution has long been a major topic

in mathematical physics. It is, of course, desirable to solve boundary value problems

analytically whenever possible. However, this is generally the exception since an

analytical solution can be obtained in only a few cases. In electromagnetics these include

the static potential between infinite parallel plates; wave propagation in rectangular,

circular, and elliptic waveguides; wave scattering by infinite planes, circular cylinders,

spheres etc. Many other problems of practical importance in the engineering fields do not

."
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have an analytical solution. To overcome this difficulty, various approximate methods

have been developed, and among them the Ritz and Galerkin methods have been used

most widely.

3.2 BASIC STEPS OF THE FINITE ELEMENT METHOD

The finite element method (FEM) is a powerful and versatile tool for solving accurately

and efficiently complicated problems [3]-[4]. It is very flexible to handle wide variety of

problems without the need for device dependent programming. Its principle characteristic

is the discretization of the problem domain into smaller subdomains (or elements) where

the mathematical model describing the fields can be simplified. The accuracy of this

method depends on these approximations, but also very importantly on the size and

distribution of the element divisions throughout the problem domain. The discretization

of the domain reduces the problem to an algebraic, matrix form involving large but

extremely sparse matrices.

The Finite Element Method (FEM) is a numerical procedure for obtaining solutions to

boundary value problems [3]-[4]. The principle of the method is to replace an entire

continuous domain by a number of sub-domains in which the unknown function is

represented by simple interpolation functions with unknown coefficients. Thus the

original boundary value problem with an infinite number of degrees of freedom is

converted into a problem with a finite number of degrees of freedoms, or in other words,

the solution of the whole system is approximated by a finite number of unknown

coefficients. Then a set of algebraic equations or a system of equations is obtained by

applying the Ritz variational or Galerkin procedure, and finally, solution of the boundary-

value problem is achieved by solving the system of equations. Therefore, a finite element

analysis of a boundary value problem should include the following basic steps:

(I) Discretization or subdivision of the domain

(2) Selection of the interpolation functions

(3) Formulation of the system of equations

(4) Solution of the system of equations
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3.2.1 DOMAIN DISCRETIZATION

The discretization of the domain, say S, is the first and perhaps the most important step

in any finite element analysis because the manner in which the domain is discretized will

affect the computer storage requirements, the computation time, and the accuracy of the

numerical results. In this step, the entire domain S is subdivided into a number of small

domains, denoted as S' (e = 1,2,3, M), with M denoting the total number of sub-

domains. These sub-domains are usually referred to as the elements. For one-dimensional

domain which is actually a straight or curve line, the elements are often short line

segments interconnected to form the original line [Fig. 3.I(a)]. For a two dimensional

domain, the elements are usually small triangles and rectangles [Fig. 3.I(b)]. The

rectangular elements are best suited for discretizing rectangular regions, while the

triangular ones can be used for irregular regions. In a three dimensional solution, the

domain may be subdivided into tetrahedra, triangular prism, or rectangular bricks [Fig.

3.1(c)), among which tetrahedra are the simplest and best suited for arbitrary-volume

domains. We note that the linear line segments, triangles, and tetrahedra are the basic one,

two, and three-dimensional elements.

In most finite element solutions, the problem is formulated in terms of the unknown

function t/J at nodes associated with the elements. For example, a linear line element has

two nodes, one at each endpoint. A linear triangular element has three nodes, located at

its three vertices, whereas a linear tetrahedron has four nodes, located at its four corners.

For implementation it is necessary to describe these nodes. A complete description of a

node contains its coordinate values, local number, and global number. The local number

of the node indicates its position in the element, whereas the global number specifies its

position in the entire system.

The finite element formulation usually results in a banded matrix whose bandwidth is

determined by the maximum difference between the global numbers of two nodes in an

element. Thus, if a banded matrix solution method is employed to solve the final matrix

equation, the computer storage and processing cost can be reduced significantly by



28

properly numbering the nodes to minimize the bandwidth. However, when bandwidth

minimization is unnecessary, the numbering scheme can be arbitrary and is usually

chosen to simplify the programming.

The discretization of the domain is usually considered a preprocessing task because it can

be completely separated from the other steps. Most well developed finite element

program packages have the capability of subdividing an arbitrary shaped line, surface,

and volume into the corresponding elements and also provide the optimized global

numbering.

/
(a)

(c)

(b)

CI

,,
...".------
,

Fig. 3.1 Basic finite elements. (a) One-dimensional. (b) Two-dimensional.

(c) Three- dimensional.

3.2.2 SELECTION OF INTERPOLATION FUNCTIONS

The second step of a finite element analysis is to select an interpolation function that

provides an approximation of the unknown solution within an element. The interpolation

is usually selected to be a polynomial of first (linear), second (quadratic), or higher order.
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Higher-order polynomials, although more accurate, usually result in a more complicated

formulation. Hence, the simple and basic linear interpolation is still widely used. Once

the order of the polynomial is selected, we can drive an expression for the unknown

solution in an element, say element e , in the following form:
T

1" = I,N; 1; = {w} {1"}= {1"}'{w}
)=1

(3.1)

where n is the number of nodes in the element, 1; the value of 1 at node j of the

element, and N; the interpolation function, which is also known as expansion or basis

function. The highest order of N; is referred to as the order of the element; for example,

if N; is a linear function, the element e is a linear element. An important feature of the

functions N; is that they are nonzero only within element e, and outside this element

they vanish.

3.2.3 FORMULATION OF THE SYSTEM OF EQUATIONS

;rhe third step, also a major step in a finite element analysis, is to formulate the system of

equations. To clarify ideas of the FEM, consider a particular problem governed by the

Helmholtz equation. The specific governing equation is now written for a domain n
shown in Fig. 3.2 as

V'1+k'1=O in n (3.2)

where 1 is the electric or magnetic field component and the quantity k- is a constant
related to frequency. The Laplacian operator is given by

V' =a'/ax+a'/ay+a'/az (3.3)
in Cartesian coordinates.

Now, we assume that the boundary 1 of the region n consist of partly of lj on which

the value of 1is given as ~ and partly of 1" on which the value of at/J/an '" If is given
by Ij) , namely,

(3.4)



or/J/ on = n . \/ r/J= if/ on r" (3.5)
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where n is the outward unit normal vector. The gradient operator is described by the

matrix -differential operator

"'
"-
,
\
\
I,
I,

/

Fig. 3.2 Three dimensional region 0 surrounded by boundaries rf and rn

•
[
o/OX]

\/= 0/8y
%z

in Cartesian coordinates.

(3.6)

(3.7)

The boundary conditions, Esq. (3.4) and (3.5), are called Dirichlet and. Neumann

boundary conditions, respectively. Considering these boundary conditions, the functional

for Eq. (3.2) is given by

F = ~ fHJ\/r/J)' -k'r/J' ]dD- Hr, r/Jif/dr

The first and second terms in the right-hand side ofEq.(3.2) denote the integrals over

the region 0 and along the boundary r" , respectively. The Euler equation derived by the

stationary requirement

of =0 (3.8)

coincides with the governing equation, namely Eq. (3.2). The boundary condition in Eq.

(3.5) is called the natural boundary condition, because this condition is automatically

satisfied in the variational procedure. On the other hand, the boundary condition in Eq.
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(3.4) should be imposed on trial functions; therefore, this condition is called the forced

boundary condition.

Dividing the region Q into a number of elements e and considering the functional F,

(3.9)

for each element, the functional for the whole region is given by

(3.10)
,

The first and second terms in the right-hand side of Eq. (3.9) denote the integrals over

each element e and along the element boundary f" respectively, and the summation

L extends over all different elements.

Arranging n nodes in each element, r/Jcan be approximated as

"
. r/J = LNir/Ji

1=1

(3.11 )

where r/Ji is the with nodal parameter of the element e and N, is the interpolation or shape

• function.

When the functional value contains first order derivatives, to guarantee the convergence

of the solutions, the shape functions N, should satisfY the following two conditions:

(l) The variable r/Jand its derivatives must include the constant terms.

(2) The variable r/Jmust be continuous at the interface between two adjacent

elements.

These are called the completeness and compatibility conditions, respectively. The

completeness condition is simple to satisfY if complete polynomial expressions are used

in each element. First-order or linear elements are the most fundamental ones, and use

first-order polynomials. Higher-order elements, on the other hand, use higher-order

polynomials. The number of nodes within each element, n, coincides with the number of

terms in a complete polynomial expansion, and nodes are arranged to satisfY the

compatibility condition.
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We can express Eq. (3.11) in matrix form:

(3.12)

where the components of the {q.\Land {N} vectors are q.\;and Nprespectively, and T, {.j,

and {Y denote a transpose, a column vector, and row vector, respectively. Substituting

Eq. (3.11) into Eq. (3.9), we obtain

F,=~2: 2:[q.\;(Kij-k'Mij)q.\J-2:q.\; V/;
, J ,

with

Kij = JH(VNJ(VNJ)dO

M" = HJN;Nj dO

'P, = HNN/ dr

We can express Eq. (3.13) in matrix form as

(3.13)

(3.14)

(3.15)

(3.16)

•
where the components of the [KL and [ML matrices are KIj and M;J' respectively .

•

Assuming that boundary conditions at the interface between the two adjacent elements

are q.\,= q.\,and V/,= -V/" the functional for the whole region is given by

with

F = 2:F, =~{q.\nA]{q.\}-{q.\Y{V/}
,

(3.18)

(3.19)

where the components of the {q.\} vector are the values of q.\ at all nodes, and the global

matrices [K] and [M] come from adding the element matrices, [K Land [M L,

respectively. The components of the {q.\} vector corresponding to nodes on the boundaries

f" and f fare ifi and unknown, respectively, and the other components become zero.

The first variation of is given by



of =.!-o{~Y[A] {~}+.!-{~nA] o{~}- o{~Y{\if}2 2
where 0{~}is small admissible variation of {~}.

As the matrix [A] is symmetric, we have

Substituing Eq. (3.21) into Eq. (3.20), of becomes
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(3.20)

(3.21 )

(3.22)

Using the variational principle, Eq. (3.8), the discretized algebraic equation is derived as

(3.23)

For free vibration problems without the excitation term {\if}, one obtains

(3.24)

•

where {oj is a null vector. The so-called eigenvalue problem, Eq. (3.24), can be solved by

using computer programs for generalized eigenvalue problems, and thus we obtain

eigenvalues for the system under consideration, namely, eigen frequencies .

In this section Eq. (3.23) was derived by applying a variational principle to the functional,

Eq. (3.9). It should be noted that the Galerkin method will yield the identical equation to

Eq. (3.23) derived from a variational principle. The variational expression, Eq. (3.9), is

not suitable for the study of dissipative systems, and the use of the G1arkin procedure is

recommended.

Before the system of equations is ready to be solved for a specific solution, we need to

apply the required boundary conditions. There are two kinds of boundary conditions that

are often encountered: one is the Dirichlet boundary condition, which prescribes ~ at the

boundary, and the other is the homogeneous Neumann boundary condition, which

requires the normal derivative of ~ to vanish at the boundary. The first is an essential

boundary condition that must be imposed explicitly, in contrast to the second, which is

usually satisfied implicitly and automatically in the solution process. For this reason, the

second one is often called the natural boundary condition.
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It is seen that in this step we actually have three sub-steps. First, we formulate the

elemental equation using either of the two methods. Then, we sum the elemental

equations over all elements to form the system of equations and this process is called

assembly. Finally, we impose the boundary conditions to obtain the final form of the

system of equations. We note that in computer implementation, the three sub-steps are

usually not separated; in stead, they are intertwined. The generation of the elemental

matrix and the imposition of the boundary conditions usually take place during the

process of assembly.

3.2.4 SOLUTION OF TI-IE SYSTEM OF EQUATIONS

Solving the system of equations is the final step in a finite element analysis. The resultant

system has one of the following two forms:

or

[K]{;6} = {b}

[A]{;6} = A [B]{;6}

(3.26)

(3.27)

• Equation (3.26) is of the deterministic type, resulting from either an inhomogeneous

differential equation or in.homogeneous boundary conditions or both.

In electromagnetics, deterministic systems are usually associated with scattering,

radiation, and other deterministic problems where there exists a source or excitation. To

the contrary, (3.27) is of the eigenvalue type, resulting from a homogeneous governing

differential equation and homogeneous boundary conditions. In electromagnetics,

eigenvalue systems are usually associated with source free problems such as wave

propagation in waveguides and resonance in cavities. In this case, the known vector {b}

vanishes and the matrix [K] can be written as[A]-A[B], where A denotes the unknown

eigenvalues. Once we have solved the system of equations for {;6}, we can then compute

the desired parameters, such as capacitance, inductance, input impedance, and scattering

or radiation patterns and display the result in form of curves, plots, or color pictures,

which are more meaningful interpretable. This final stage, often referred to as post-

processing, can also be separated completely from the other steps.
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Chapter 4

FINITE ELEMENT FORMULATION WITH

HYBRID EDGE/NODAL ELEMENT

For a proper computer simulation of the electromagnetic fields in a dielectric waveguide

we have to begin with an adequate mathematical description of the problem. The primary

concern of this chapter is the definition of the mathematical model, that is, the

interpretation of the physical problem in mathematical terms. This mathematical model of

the dielectric waveguide problem will be described in detail in section 4.1. Following this

discussion, the details of the hybrid edge/nodal element and it's construction are shown in

section 4.2. Next we show the discretization process with this element [26]-[27], [31]-

[32], [43] and the analysis procedure ofloss by perturbation technique [43].

•
4.1 DESCRIPTION OF THE PROBLEM

•

The term dielectric waveguide is used throughout this thesis to describe a waveguide of

general cross section as shown in Fig. 4.1. We assume the waveguide to be uniform along

the z- axis and with an arbitrary cross section Q in the plane x-yo The cross section of the

guide is bounded by an outer boundary Co which can extend (partially or completely) to

infinity. The cross section can consist of regions of linear dielectric materials and also

perfectly conducting material (imperfect dielectrics and imperfect conductors are

represented as dielectric materials with a complex permittivity). In electromagnetic

theory, idealizations such as perfect electric conductors (conductors, electrodes or baffles)

are frequently adopted. Perfectly conducting materials, such as regions 81 in the figure,

will in practice be considered outside the region of interest because the electromagnetic

field will be zero there. The boundaries of all such regions, such as C1 in the figure, are

part of the problem boundary therefore, and boundary conditions are applied on them.

Thus in the configuration shown in Fig. 4.1 the total boundary C is composed of Co andCI
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(and of the boundaries of any other region likes 81). It is convenient to introduce some

abbreviated notation for this and we adopt the point set union descriptor U for the union

of multiple point sets giving C = Co U C,. This set theory language for "C is the set of

all points of the outer boundary point set Co and point set C1".

• Fig. 4.1: A general structure of the dielectric waveguide .

•

The complete region of interest then consists of 8 and its boundary C. The closed region

(including its boundary) is denoted by 8. The dielectric material in 8 can be arbitrary

inhomogeneous, anisotropic and dissipative or active" (material showing uniform gain

along z can be represented in this model by a positive value of the imaginary part of the

permittivity, or a negative conductivity) and the complete structure can be bounded Qr

unbounded. Roughly, a closed region is one that includes its boundary and a boundary

region is one that does not extended to infinity. We assume that C, the boundary of 8,

consists of any combination of the following three types: perfect electric conductors,

perfect magnetic walls or regions extending to infinity. Perfect electric and magnetic

walls can appear in any type of waveguide in microwave and optics when considerations

are used to divide and reduce the region of study.
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We, in general consider the material anisotropic having diagonal permittivity tensor and

diagonal permeability tensor, such that

[<u 0

,:1[s] = ~ s yy
0

[""
0

JJ[P]= ~ Pyy
0

The most direct approach is based on a full electric and magnetic field description of the

problem. Assuming a harmonic time dependence of the form exp (j w t), where w is the

real angular frequency, the governing source free Maxwell's equations are

V'xE = - jw B = -jwpo[P]' H

V'xH = -jw D = -jwso[s]. E

V' .D=V' . (so [s].E)=O

V'.B ='17 . (Po [Pl. H)=O

(4.1)

(4.2)

(4.3)

(4.4)

~here E and H are the electric and magnetic field, respectively, D and B are the electric

flux and magnetic flux densities, respectively, [s] and [P] are the relative permittivity
•

and permeability tensors, and So and Po are the vacuum permittivity and permeability

scalars, respectively. Here, we also assume that the z-dependence of the propagation

constant,B is exp(j,Bz), where z is the propagation direction. There symbolic equations are

frequently displayed in the component "form by means of a matrix representation, with

fields described by the column matrices

and the curl and divergence operators described by the matrix-differential operators

o
V'x= %z

-~

-%az
o

%x

~.

-%ax
o
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in Cartesian coordinates. For field quantities, there are two more constitutive equations

D=&o (c]E

B = Jio Lu]H
The field vectors E, D, H, B should also satisfy the associated boundary conditions. At an

abrupt interface between two contiguous media a and b, the boundary conditions are

n x (Ea - Eh) = 0 (4.5a)

nx(Ha-Hh)=O (4.5b)

nx(Da-D,,)=&on([&J.Ea-(cJEb )=0 (4.5c)

nx(B, -Bh)=Jio n(LuJ.Ha -[Jih].Hh )=0 (4.5d)

n is normal unit vector at the interface pointing from medium a towards medium b.

These conditions assume a simplified form at the boundary:

On a perfect electric conductor, the boundary conditions are

nxE=O
•

n. B.= 0 (or n. [Ji]' H = 0 )

On a perfect magnetic conductor

nxH=O

n . D = 0 (or n. (c]. E = 0 )

(4.5e)

(4.5f)

(4.5g)

(4.5h)

And at infinity, for all non-radiation waveguide modes, all field components

vanish and we can simply consider

E=D=H=B=O (4.5i).

'The situation can be effectively treated using infinite elements, as we shall see later,

respecting the fields in the region that extends to infinity by simple functions, which

satisfy the condition (4.5i) asymptotically at infinity. Leaky waves cannot be treated in

this way. The same treatment can be applied to non radiating modes too, for added

accuracy, instead of using infinite elements.
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For simplicity, we will not consider the condition at infinity in the following discussion.

The boundary problem is unambiguously defined by the two curl equations (4.5a) and

(4.5b), and either the tangential boundary conditions (4.5a), (4.5b), (4.5e) and (4.5g) or

the normal boundary conditions (4.5e), (4.5d), (4.5f) and (4.5h). Solutions to these satisfy

implicitly the divergence equations (4.3) and (4.4) and their corresponding

complementary boundary conditions. This is evident on taking the divergence of

equations (4.1) and (4.2). The boundary value problem can be defined by only one field

(i.e., the electric or magnetic field) and the associated boundary conditions. This may

simplify the problem and increases the efficiency of a numerical solution by reducing the

number of unknowns in the problem. The other field, if necessary, can be obtained later

by using then corresponding curl equations (4.1) and (4.2). In this way, the two curl

equation (4.1) and (4.2) can be transformed into a single double-curl equation in terms of

the magnetic field or electric field only. For example, eliminating the electric field from

(4.1) and (4.2) the magnetic field double-curl equation is obtained:

Vx([crvxiI)-kgLu]H=O (4.6)

where ko = OJ~f.1oEio is the free space wave number, [c] and Lu] are relative permittivity

!md relative permeability tensors, respectively .

•

The tangential boundary conditions are:

On dielectric interface:

n x (Ha -Hh)= 0

n x ([Eio[1 .Vx Ho - [EiJI .V xHh)= 0

On perfect magnetic walls:

nxH=O

And on perfect electric conditions:

nx([c]-I.VxH)=O

The normal boundary conditions are:

On dielectric interface:

n.([f.1al Ha - LuJHh)= 0

n. (Vx Ho - Vx Hb)= 0

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.8a)

(4.8b)



On perfect electric conditions:

n.[,u].H=O

On perfect magnetic walls:

n.V.H=O
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(4.8c)

(4.8d)

Similarly one can derive the double-curl electric field equation (from Maxwell's

equations) as

With the corresponding tangential boundary conditions:

On dielectric interface:

(4.9)

•

n x (Ea -Eb)= 0

nx([,uJl .VxE, -[,ub]-l .VxEb)=O

On perfect electric conductors:

nxE=O

And on perfect magnetic walls:

n x ([,u]. V x E) = 0

(4.10a)

(4.10b)

(4.10c)

(4.10d)

And the normal boundary conditions:

On dielectric interfaces:

n .((Cal.Ea -(cb].Eb)= 0

n . (V x Ea - V x-Eb) = 0

On perfect magnetic walls:

n.(c].E=O

And on perfect electric conductors:

n.VxE=O

(4. 11a)

(4. 11b)

(4.l1.c)

(4. 11 d)

Methods of analyzing truly general anisotropic waveguides, such as the finite element

method, usually start either from (4.6) or from (4.9). While the tangential components of

the fields are always continuous, the normal components are discontinuous across

material interfaces, where jumps in the values of (c] and [,u] occur. However, in nearly
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all cases of interest, where Lu] = I, the normal component of magnetic field is also

continuous across material interfaces. As far as the enforcement of the boundary

conditions are concerned, the use of the full-H equation is more convenient. Eventhough,

the equations are showing anisotropic form, they can be used for isotropic waveguides

with [s] = sand Lu] = I , where s is the (scalar) dielectric constant (whose square root is

the refractive index).

For the sake of formulation, we express the vector wave equations (4.6), (4.9) as [26]-

[27]

V' x ([p] V' x ljI) -kg [q] ljI = 0 (4.12)

[p> 0

}Jwith [P]= ~ Py

0

[q, 0

:,1[q] = : qy
0

In (4.12), ljI denotes either electric field E or magnetic field H, and the components of [P]
•
and [q] in terms of refracti,;e indices are given by

Px = Py = P, = I
2qx = nx
2qy = ny
2q, = n,

px=lln;

py=l/n~

p, =l/n;
qx =qy =q, =1

for <t> =E

for ljI = H

(4.13)

(4.14)

Here nx' ny' n, are the refractive indices III the x, y, zdirections, respectively. The

functional for (4.12) which can be obtained by using the variational principle is given by

[26]-[27]

F = In(V' x ljI)' .([p]v x ljI) - k~ [q] ljI'.ljI] dx dy
n

(4.15)
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where the asterisk denotes complex conjugate.

4.2 HYBRID EDGEINODAL ELEMENTS

Various elements are available in the FEM. Also, various special elements are being

developed to solve different microwave and optical problems. The hybrid type edge/nodal

triangular as well as rectangular elements are such special elements, and have found a

great deal of practical applications. In this work, we will use triangular type hybrid

element which is composed of edge and nodal elements, where edge elements model the

transverse field ensuring tangential continuity along the element interfaces and nodal

elements model the axial fields. As the edge elements assign the degrees of freedom to

the edges, they allow the field to change its direction abruptly and thus are capable of

modeling the field properly at sharp edges at which singularity occurs. With hybrid

elements, the finite element method overcomes all the shortcomings, that clouded many

of the analyses before.

The hybrid edge/nodal triangular element [26]-[27] for which we will show the

tormulation is shown in Fig. 4.1. Here the lowest order element is composed of a constant

edge element with three tangential unknowns, tP" to tPtJ, and a linear nodal (conventional
Lagrange) element with three axial unknowns, tP" to tP". The higher order element here
is composed of a linear edge element with six tangential unknowns defined at the three

vertices of the triangle, tP" to tPl6' and a quadratic nodal (conventional Lagrange) element

with six axial unknowns, tP,1 to tP,o' For the lowest order element, the tangential

component tP, is constant along each side of the triangle, but for higher order element it is
approximated to linear order. Since both tP, and tP, are tangential to material interfaces,
the tangential continuity can be straightforwardly imposed in the hybrid edge/nodal

element analysis.

For the hybrid type edge/nodal triangular element as shown in Fig. 4.1, the transverse

components tPx, tPy and the axial component tP, of the unknown Ijl in each element are

approximated as

i,
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(4.16)

(4.17a)

(4.17b)

where {v?,t is the edge variables (field vectors) in the transverse plane for each element,

{v?,})s the nodal variables (field vectors) for each element, and T denotes a transpose.

Here for the lowest order element of Fig. 4.1 (c)

{v?,t = lv?t1 v?" v?,J T

{v?,t = lv?" v?" v?,J T

and for the higher order element of Fig. 4.1(f)

{v?,L = lv?t1 V?" v?'3 v?'4 v?,s v?'6]T

{v?,t = lv?" v?" V?,] v?,4 v?,s V?"P
Here {U} and {V} are the shape function vectors for edge elements and

(4.18a)

(4.18a)

{N} is the

ordinary shape function vector for nodal elements. The shape function vectors are given

in Table 4.1 and Table 4.2, where Lk'S (k=I,2,3) are the area coordinates, Ac the area of

the element, lk the length of the side between two corner points (Xk, Yk) and (Xl, Yl), and,
coefficients ak, bk, Cf are given by

•

with

[
L,]_ I [a, b,
L, -- a, b,

2A,
L3 a3 b3

I I I

2A, = Xl X, x3
Y, Y, Y3

Qk = x{Ym - xmY,

and bk = Y, - Y",

(4.19)

(4.20)

Here Xk, Yk are the Cartesian coordinates of the corner points I to 3 of the triangle, and the

subscripts k, I, m always progress modulo 3, that is, cyclically around the vertices of the

triangle.

The shape function vectors for the constant edge elements shown in Table 4.1 are very

simple compared with the shape functions of other special elements. Noting that the unit

tangential vector on the side between two corner points (Xk, Yk) and (XI, YI), tk, is given by
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(4.21)

with i, ,i, being the unit vectors in the x, y directions, respectively. It is seen that for the

constant edge elements, the following relations are satisfied:

9" = (9" i, +9y' i,) .tk (4.22)

where 9Xk,9y,(k = 1,2,3) are the values of 9" 9y at any point on the side of length h,

respectively, and thus the tangential component 9, is constant along each side of the

triangle. The vector shape function for the constant edge element can also be expressed

as:

(4.23)

where W k is the vector shape function and h is the length of kth edge along the node i to

node j. For the linear edge elements on the other hand, the following relations are

satisfied:

•

9" = (9,li, + 9Yli,). tl

9'2 = (9X2i, + 9Y2 i,). 12

9" = (9x,i, +9y,i,).I,

9" = (9x2i, + 9y2i,). tl
9" = {9x,i, +9y,i,).t,
9'6 = (9x,i, +9Yli,).I,

(4.24)

where 9", 9y,(k = 1,2,3) are the values of 9x,9y at the vertices of the triangle,

respectively. For better understanding of the shape functions, first we describe the

significance of shape functions for a linear nodal triangular element of Fig. 4.2(a). For

this element, the shape functions can be derived as

Nj'(X,Y)=L>2~ (aJ+bJ'+C:)(j=1,2,3),
It can be easily shown that the shape functions have the property

N'(' ,)- i5 _II i=j
j x}'Yj - Ii - to i"'J

(4.25)

(4.26)
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(a) Linear nodal element.

rPz3

(c) Lowest order hybrid edge/nodal triangular element.

•
•
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(b) Constant edge element.

t/J z I

rPz 5

(d) Quadratic nodal element.

rPll

rP"
rPI'

2 5

rP" rPI2 rP"

(e) Linear edge element. (f) Higher order edge/nodal triangular element.

Fig. 4.2: Hybrid edge/nodal triangular element.



1
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(b)

2 1

(c)
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Fig. 4.3: Shape functions for a linear nodal triangular element. The planer surfaces of the

functions are shaded. (a)N,'. (b)N;. (c)N;.

and, as a result, at any node, the elemental values ql'reduce to its nodal value ql;'.

Another important feature of Nj (x, y) is that it vanishes when the observation point (x, y)

i~ on the element side opposite to the jth node. Therefore, the element value ql' at an

element side is not relatea to the value of ql at the opposite side, but rather it is

determined by the values at the two endpoints of its associated side. This important

feature guarantees the continuity of the solution across the element side. In order to

emphasize there features, we show the shape function Nj in Fig. 4.3. In Fig. 4.4, we

show the vector shape functions as defined by (4.23) for a constant edge triangular

element. A vector shape function has a tangential component only at associated edge as

shown in Fig. 4.4.
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no triangular
component along
edge 23, 31

(a)

no triangular
component along
edge 12,31

2
(b)

3

';/\ .
,,/ --\

/ \ no triangular
// /' /:', •...~\ component along

/ / /' ,/ _\ edge 12,23

A
~~//I~II// //,,-,):\

1/'/ I / I / /

~L/~' ,'I! / I • ' \

1'1' r-- I r I -1 • • 2

(c)

Fig. 4.4: Vector basis functions for a triangular element. (a) WI', (b) W;. (c) W;
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TABLE 4.1

Shape funetion vectors for constant edge and linear nodal element.

{u} {V} {N}

[1'Vdl] 1 l,('-',l] [~]2~, I,(y, - y) - I (x-x)
13(y, - y) 2A' ,

. ' 13(x-x,)

TABLE 4.2

Shape function vector for linear edge and quadratic nodal element.

{u} {V} {N}

l,b,L, l,c,L, L,(2L1 -1)

l,b3L,
-, l,c3L, L, (2L, -1)

1 13b,L3 1 13c,L3
L3 (2L3 -1)

- -
2A, -I,b,L, 2A, -I,c,L, 4L,L,

-I,b,L3 -I,c,L3 4L,L3

-13b3L, . -13c3LI 4L3L1

48
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4.3 FINITE ELEMENT DISCRETIZATION

Dividing the waveguide cross section [2 into a number of hybrid type edge/nodal

triangular elements shown in Fig. 4.1, we expand the field components in each element

using (4.16). Equation (4.16) may be expressed as

and then we can express \7 x q> = [BY {qlL
(4.27)

where

and

[
{U} {V} {a} ]

[N]= {a} {a} JfJ{N}

[B]=[JfJ{V} -JfJ{u} -{Uyl+{VJ]
JfJ{NJ - JfJ{NJ {a}

{qlL = [{ql,L].
{ql, L

Here {a} is a null vector. We substitute (4.27) into (4.15) and using the standard finite

element procedure, we find an eigenvalue equation.

'.
with

[K ]{ql}- k,; [M ]{ql}= {a}

[K]= L, sns]' p[BYdxdy. ,

[M]= L, InN]' q[NY dxdy
,

(4.28)

and {ql} is the global field vector.
Now equation (4.22) may be rewritten as ..

[K" ]{ql,} - fJ' [K" ]{ql,} - fJ' [M" ]{ql,}= {a}
- fJ[K" ]{ql,}+ fJ[K,,]{ql,} = {a}

So, finally we get

[
[K,,] [an [{ql, }] _ fJ,[[M,,] [K,,]] [{ql, }] = {a}

[a] [aU {ql,} [K"J [K,,] {ql,}
with
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[K,,] = [K" Y =L: H[py {U}{NxY +Px {V}\NJ]dxdy
e e

[K,,]= L: H[q,k~{N}{N}' - py{NJ{NxY - pJNJ{NJ]dxdy
e e .

[Mil] = L:H[py {U}{U}' + Px {V}{VYJdxdy
,

The resultant matrix eigenvalue equation thus shows the forms of

(4.29)

where {O}is a null vector, {j&} vector is composed of edge, {t,} and nodal, {tz} variables,

[K land [M] are finite element matrices and take the form of

[K]=[[KII] [On
[0] [o]J and

The final eigenvalue problem gives a solution directly for the propagation constant f3
and the corresponding field distribution and involves the edge and nodal variables. As we

used the recent trend of variable transformation [35] in (4.16), it is now possible to

exploit sparsity of final matrices, and the method can be applied to analyzing propagation

• characteristics of integrated waveguides with sharp metal or dielectric edges .

•
For all the above equations, subscripts t and z stand for tangential and axial components,

respectively. {Uy};: a{u}/ 0', {Vx};: a{v}/ ax, {Nx};: a{N} / ax, and {NJ;: a{N}/ 0', and

their explicit forms are given in Table 4.3 and 4.4. Using equations (4.19) to (4.28), we

can easily construct the above matrices. for constructing the final global matrix of the

eigenvalue problem. The integrals necessary to construct the element matrices are shown

in Appendix A and B. In this approach, the frequency is specified as the input parameter

and the system is solved for the propagation constant as an eigenvalue. Therefore, it is

possible to handle lossy waveguides also. Taking advantages of the sparsity of the finite

element matrices in the hybrid element algorithm, it is possible to handle problems

involving matrices in several thousands. A detailed formulation is however is given in

[27]. For graded index profiles, it is not possible (0 integrate the expressions for element

matrices in closed form as described in appendix A and B. Then numerical integration
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has to be used. The Hammer's formula for numerical integration over a triangular

element is described in Appendix C.

4.4 CALCULATION OF LOSS BY PERTURBATION METHOD

The perturbation method described in [46J.is incorporated with scalar FEM by Themistos

et. al. [41]-[42]. We can also use the technique [46] with the edge/nodal element based

vector FEM. The attenuation constant due to dielectric loss, ad' is defined by

(4.30)

(4.31 )

where P d is the time averaged power dissipated in the dielectric medium and Po is the

unperturbed power along the direction of propagation and are given by L

Pd = ())c tan 0 fiE 01' dO.
n

and (4.32)

where Eo and Ho are unperturbed fields of the loss less optical waveguides and tanO IS
•
the loss tangent related to tl;e real and imaginary parts of permittivity, c = c, + j c; by

c
tano=-'

c,
(4.33)

Using Maxwell's equations the power flow Po can be expressed inlerms of magnetic

fields as

(4.34)

The hybrid edge/nodal triangular element based finite element procedure is then used

over the cross section of the waveguide to calculate unperturbed power flow Po and an

equation is obtained as

(4.35)

and to calculate power dissipation in dielectric, an equation is derived as

(4.36)
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where {H,} and {N,} are found from unperturbed field solutions in the form of

eigenvectors of the global system. The matrices [C], [S], and [7'] can be easily constructed

from the finite element matrices and shape function vectors. The ~ in the equation denotes

a complex conjugate and transpose .

•



TABLE 4.3

Derivatives of shape functions of lowest order element.

Elements {Uy} {vxl {Nxl {Ny}
Constant _1[=: ]

2~, [i:] ["]
2~,[::]

edge and _1_ b
linear nodal 2A ' 2A, b:elements ' -I. ]

TABLE 4.4
Derivatives of shape functions of higher order elements .

•
Element {Uy} • {Vxl {Nxl {Ny}

I,b,c, I,c,b, b,(4L,-I) c, (4L, -I)
Linear

l;b]c, l,cA b, (4L, -I) c, (4L, -1)
edge and

I]b,c] 1 I]c,b,. 1 b](4L, -1) 1 c](4L] '-1)quadratic 1 - -
nodal ,

-/,b,c,
,

-/,c,b, 2A, 4(b,L, +b,LJ 2A, 4(c,L, +c,L,)4A, 4A,
elements - I,b,c] -I,c,b, 4(b,L] +b]L,) 4(c,L] +c,L,)

-/]b]c, -/]c]b, 4(b]L, +b]L,} 4(c]L]+c]L,}

53
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Chapter 5

RESULTS AND DISCUSSION

5.1 STRUCTURE OF THE FEM PROGRAM

In the prevIOus chapter, we have described the VFEM formulation for the general

waveguide problems. In this chapter, we will demonstrate the capabilities of the finite

element approach by applying it to a number of dielectric waveguide structures. The

finite element formulation has been programmed with FORTRAN 77 and the system uses

some library routines for specific purposes. Before showing numerical results, a brief

. description ofthe system should be given .

•
Input File.

Main Program
(Controller)

Output file

Mesh generation

Matrix Eigenvalue
problem solver

Post -processing

Further processing

Fig. 5.1 Basic structure of the FEM program.

•
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The program is formed of five parts: main program or controller, pre-processing part,

matrix .assembly part, eigenvalue solver part and post-processing part, as shown in

Fig.5.!.

The main program or controller basically defines the options for running the program.

These are of three kinds: input options, as for example whether to take input data from a

pre-prepared file or from the pre-processor or mesh generator; solution options, in the

matrix eigenvalue solver and loop parameters for repeated solution in the case where a

dispersion curve is required; and output options, as for example the number of modes for

which the field distribution is required as output for further processing.

The pre-processmg part consists basically of a mesh generator and a module that

establishes the boundary conditions. Mesh generation can be performed in different ways.

Here in our program mesh generation is a simple, problem-dependent program which

produces a topologically regular mesh of triangular elements The pre-processing part can

also be run as an independent program to generate a file (to be used subsequently as an

input file) containing the mesh definition with nodal description, permittivity profile and
•
boundary conditions.

The matrix assembly part is the central part of the program. Its purpose is to construct the

global matrices as the assembly of contributions for each element in the mesh. With the

enforcement of boundary conditions, the global size of the assembled matrix is greatly

reduced. The matrix eigenvalue solver is an implementation of the subspace iteration

algorithm for complex, non-Hermitian matrices. It returns a number of selected

eigenvalues and eigenvectors. The post-processing part calculates the propagation

constants of the waveguide modes and, using the solution of the matrix solver and the

boundary conditions, finds the corresponding field distribution. This part of the program

also generates output files for further graphic processing of the solution, using standard

packages. The field solutions from the output file are to be used with perturbation

equations to find the loss when lossy waveguides are analyzed. This system has been

tested using pes with Pentium processor for a number of dielectric waveguides. The

results will be shown for different lossless and lossy waveguides with step index profile.
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5.2 NUMERICAL EXAMPLES

In order to check the accuracy of the FEM approach of this work, first consider a loss less

rib waveguide having step index profile. By the symmetry of the system, half of the

waveguide cross section can be divided into elements. For the structure shown in Fig. 5.2,

we assume that ,1,0=1.15 f-lm,W=3Jlrn, l+h=I.OJlrn,nf =3.44,n, =3.40, and n, =1.0 and

calculate the effective refractive index, neJf= £, for the Etl and the EiI modes of the
ko

rib waveguide taking about 660 elements. The calculated values are

•

l'
1

ne
\

/

• t nr

t
ns

Fig. 5.2: Cross section of an optical rib waveguide.

shown in Table 5.1. Our result agree well with the results of the scalar finite element

method (SFEM) and the scalar finite difference method (SFDM). Figs. 5.3, 5.4, 5.5, and

5.6 show plots of Etl' E~I' H(), and H~) modes of the rib waveguide. Boundary

conditions are properly applied to realize the modes. However, with the approach

described here, the fundamental modes .are efficiently calculated. As expected, the fields

of fundamental modes are concentrated at the core region. In the calculation, we used

symmetry of the structure and half of the cross section is divided into elements. This



57

reduced the size of the global matrices and required less memory space. Fig. 5.7 shows

the refractive index versus h of the same rib waveguide. From this figure we can see

that our result agree well with the results of SFEM and SFDM. The boundary conditions

on the symmetry plane required for different mode calculations are given in Table 5.2.

TABLE 5.1: Effective refractive index of the E(I andE?; modes ofa rib waveguides.

•

E(I E?;
t This work SFDM SFEM This work SFDM SFEM

(flm)

0.0 3.41106 3.41188 3.41204 3.41163 3.41051 3.41028

0.1 3.41225 3.41200 3.41214 3.41074 3.41060 3.41037

0.2 3.41253 3.41217 3.41229 3.41082 3.41073 3.41051

0.3 3.41263 3.41240 3.41249 3.41104 3.41092 3.41070

0.4 3.41282 3.41271 3.41276 3.41137 3.41117 3.41097

0.5 3.41328 3.41310 3.41311 3.41169 3.41150 3.41132

0.6 3.41368 3.41358 3.41353 3.41187 3.41190 3.41174

0.7 3.41423 3.41415 3.41404 3.41248 3.41241 3.41227

0.8 3.41478 H1484 3.41468 3.41306 3.41303 3.41293

0.9 3.41567 3.41568 3.41553 3.41394 3.42385 3.41383

TABLE 5.2: Boundary conditions on the plane of symmetry for modal calculations.

Mode Symmetry plane

Etl Electric wall

H1
x
1 :Magnetic wall

E' Magnetic wall21

Hi! Electric wall
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Fig. 5.6: H21 mode of the rib waveguide. (a) Surface plot. (b) Contour plot.
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~ i;
Now let us consider a lossy optical ribYVilveguide. Fig. 5.8 shows an integrated laser rib

waveguide with the active layer thickness, T=0.15 /-lm, no=1.0, nl=3.38+jO.001 and

n2=3.17. Here the operating wavelength, A = 1.5 /-lm. In the discretization process we

take the half of the cross section using the symmetry plane of the structure along the y_

axis as shown in Fig. 5.8. For this structure, we first consider that the refractive index nl

is real, i.e., the structure is lossless. Using appropriate boundary condition on plane of

symmetry, we first calculate the E,~(i.e., H,~)mode. Fig. 5.9 shows the contour plot of

E;; mode for a height H of 0.6 /-lm. The contour plot shows similar to that of Fernandez

and Lu [38]-[39]. Fig. 5.10 shows the variation of the normalized attenuation constant

(alko) and normalized phase constant (fJlko) for the H (, mode with the thickness of the

top confinement layer, H. The rib height is assumed to be very large. In this case we took

the value 2.5 /-lm. The solid and dashed lines show the results of Lu and Fernandez [39],

and our calculated values are shown by circles and dark circles. Good agreement can be

observed between the results for the phase constant, while for the gain coefficient,

although the trend is similar, the discrepancy is greater. This discrepancy could be due to

the insufficient number of elements in the analysis .

•
We consider another example of Themistos et. al. [41]-[42]. In Fig. 5.11, we show the

results. The solid line shows the result of our calculation. The dashed line and the dark

circles show the results of a scalar FEM [41] and vector FEM [42], respectively. We can

see that our result agree well with those of vector FEM [42]. Now we increase the active

layer thickness, T, to 0.2 /-lm and re-examine the rib waveguide of the previous example.

Fig. 5.12 shows the normalized attenuation constant for the dominant TEll (E,~) mode

with the thickness of the top confinement layer, H. The solid line shows our result and the

dark circles show the results of Themistos et. al. [42]. We can see that our result agree

well with the results of Themistos et. al.: [42] in this case also. So, all these verify that our

approach is giving satisfactory results for the loss constant. As a matter of fact, if the

imaginary part of the refractive index is positive, the material is said to have gain and

then a is called the gain coefficient.

j
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Fig. 5.11: Variation of the gain constant versus top confinement layer thickness of a
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Next, we consider a lossy dielectric waveguide (an embedded channel waveguide) as

shown in Fig. 5.13. In this work, the width of the active region, W, is five times greater

than the height of the active layer, d. Here, in this example, the imaginary part of the core

refractive index is positive, i.e., nl=3.5+jIO-J, indicating a gain medium and that of the

substrate region is negative, i.e., n2=3.2-jnz", indicating a loss in that region. Variations of

the normalized modal gain g/ko (i.e.,-al ko) with the normalized waveguide dimension

(kodJ for different negative imaginary values (with loss) of the cladding refractive index

arc shown in Fig. 5.14 for the fundamental Hi; (i.e., TEll) mode. Results obtained using

our approach agree well with the results of Themistos et. al [42]. The solid lines in the

figure indicate our result and the dark circles show the results of Themistos et. al. [42].

Even though, we can observe a difference between our result and those of Themistos et.

al. for nZ"~lo-z in the figure, we believe that this could be due to insufficient number of

elements in the calculation.

Finally, we consider another example of a dielectric block loaded rectangular waveguide

as shown in Fig. 5.15. The refractive index of the dielectric block is given by

O{;,. = err - jl.5 . For this case, the whole cross section is used in the analysis. As usual, the

boundary is a perfect elec1:rical wall. Fig. 5.16 and Fig. 5.17 show the normalized phase

constant and the normalized attenuation constant, respectively. For phase constant our

results agree well with those of Sheng and Xu [44]. Also, it can be observed that loss is

greater for smaller values of the real part of the complex refractive index.

,. .,
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Chapter 6

CONCLUSION

6.1 SUMMARY

The finite element method has become a powerful tool for the analysis of electromagnetic

waveguide problems. Different vector and scalar wave formulations are there in the

literature for the analysis of electromagnetic dielectric waveguide and some of them are

reviewcd in the introduction of this thesis. Here in this work, a very efficient vector wave

based finite element technique is formulated for the analysis of lossless and lossy

dielectric waveguides .

•
.Hybrid edge/nodal type tljangular elements are employed here with the finite element

approach in this work. The formulation is modified to give an eigenvalue equation, where

sparsity of final matrices can be exploited and high-speed computation is possible. An

indirect approach based on perturbation technique is presented here for the calculation of

loss of optical waveguides. The methods are implemented on Pentium-II and Pentium-III

computers and useful numerical results are calculated for slab loaded dielectric

waveguides, rectangular waveguides and optical rib waveguides. The results agreed well

with the previously published results.

Since the approach here is developed to give solutions of propagation constants directly

as eigenvalue and fields as eigenvector for a given frequency, the method can be

employed to many complcx structures for modal analysis. The analysis also ensures true

hybrid mode propagation through the use of hybrid edge/nodal elements. Thus, the

analysis here reveals that the approach is very simple and efficient for the solution of
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lossless and lossy optical waveguides. Also, the system developed eliminates the need to

solve complex eigenvalue problem when complex eigenvalue solver is unavailable.

Numerical methods are usually evaluated in terms of their generality, accuracy,

efficiency, and complexity. But most of the numerical techniques represent some sort of

compromise bctween these aspects. No method is superior to the other in all aspects.

However, our present approach is rather efficient and provide very good accuracy.

Accurate computer analysis of waveguide devices are always needed today with the

growing intricacy in integrated circuits. So, the systems developed in this work may be

incorporated to produce.an efficient CAD system.

6.2 SUGGESTIONS FOR FUTURE WORK

Since the system developed in this work is found to be very efficient, the system can be

generalized for general anisotropic waveguides with full permittivity and permeability

tensors.

1\s for the elements the interpolating functions may be modified to build hybrid

edge/nodal curvilinear elements so that they can be used to accommodate them in the•
curved boundaries of arbitrary cross sectional structures.

Furthermore, all these systems may be incorporated to produce an efficient CAD system

for optical integrated circuits.
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Appendix

A. Lowest order element

[H {U}{U}'dxdy J ij

= 4~, IJj[Y;+'Yj+' - Yc(Y;+, + Yj+,)+ l~(Yl' + Y; + yi +9Y;)]

[H {V}{V}'dxdy J ij

[fi{UJ{UJdxdY 1
= [II{Vx }{vx}' dxdy J ij

= -[ H{uJ{vJ' dxdy1
= -[ H{Vx }{u y Y dxdyJ ij

1=-I,Ij
4A,
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with

x, = (x, + x, + x3)/ 3
Y, = (Yl + Y, + YJ)/3

where [ . ] ij(ij:= 11,12, ,33) indicates the (i,j)components of the matrix [ . ], and
the subscripts i, j always progress modulo 3.

•



'/

B. Higher order element

[ fl{u}{u}' dxdyt
. {~UjUj for ij=11,22,33,44,55,66,16,61,24,42,35,53
_ 6 .
- A

_e U iU j for others
12 .

{

~ViVj for ij=ll,22,33,44,55,66,16,61,24,42,35,53_ 6
- A

_e Vi V j for others .
12

•••
[f1(UyHUJdxdy t = A:uyjuyj

81



[Ir{V}{N IT dxdyJ . = A, v (C(I) + 2C(2) + C(3) + 4C(4))Je y 4) 12 4 Y) Yl YJ Yl

[Ir{V}{N IT dxdyJ . = A, v (C(l) + C(2) + 2C(3) + 4C(4))Je y 5) 12 5 Yl YJ Yl Yl

[fr{V}{N lTdxdy] = A, v (2C(I) +C(2) +C(3) +4C(4))Je y 6j 12 6 Yl YJ Yl Yl

[Ir{U}{N }TdXdyJ = A, u (2C(I) + C(2) + c'3) + 4C(4))
j" x 12 I Xl xl Xl xlc. I}'

[Ir{U}{N }T dxdyJ = A, u (C(i) + 2C(2) + c'3) + 4C(4))
j" x 12 2 Xl xJ Xl xlc 2)

[ fr {U}{N }Tdxdy] = A, u (CO) + C(2) + 2C(3) + 4C(4))J x 12 3 XJ xl Xl Xje 3/

[Ir{U}{N }TdXdy] = A, u (C(I) + 2c'2) + C(3) + 4C(4))J x . 12 4 Xl xl Xl xle 4}

[Il{U}{N }TdxdyJ = A, u (CO) +c'2) +2c'3) +4C(4))
. x 5) 12 5 xl Xl .'(J xl

01.
{U}{N }TdxdyJ = A, u (2C(I) +c'2) +C(3) +4C(4))

,x 12 6 Xl xl XJ Xle 6). .

[Ir{V}{N IT dxdyJ . = A, v (2C(I) +c'2) +C(3) +4c'4))J, y 12 I Yj Yj Yj Yj
Ij ,

[frrV}{N IT dxdy] . = A, V (c'I) +2c'2) +c'3) +4C(4))Je y 2) 12 2 Yl Yl Yl YI

[II {V}{N IT dxdy] . = A" v (CO) + C(2) + 2C(3) + 4C(4))
, y 3j 12 3 YJ Yl XI Yl

6 -1 -1 0 -4 0
-] 6 -1 0 0 -4

fi{N}{Nrdxdy=~
-] -] 6 -4 0 0

, 180 0 0 -4 32 16 16
-4 0 0 16 32 16
0 -4 0 16 ]6 32
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[ II {N }{N }T dxdyJ. = A, (CO)e") + e'2)C(2) + e'J)C(J))
,x x .6 XIX} XIX) XIX)

U

+ A, (C(')e'2) + C(')C(3) + e'2)C(.') +C(2)C(J) + e'J)e") + C(3)C(2))12 XI X} XI X} XI XI XI X} XI:(/ XI X.J

A, (C(i)C(4) + e'2)C(4) + e'3)C(4) + C(4)e") + C(4)C(2) + C(4)C(3))+ A C(4)C(4)3 XI Xl XI Xl XI X} XI X} XI XI Xl X} e XI Xl

[If{N UN }T dxdyJ . = A, icO)c6) + C(')C(2) +C(J)C(J))
Je yft y . 6 ~ Y' Yl Y' Y1 Y' Yl

"
+ A, (C(I)C(') + C(I)e'3) + C(')C(J) + C(')C(J) + C(3)C(') + e'J)C('))

12 Y' Yl . YI Yl Y' Y) Y' YI Y' Y' Y' Yl

A, (C<')C(4) + C(2)C(4) + C(3)C(.4) + C(4)C(i) + C(4)C(') + C(4)e'3))+ A C(4)C(4)
3 Y' Yl yl Yl YI >'./ Y' Yl Y' Y' Y'):J ey' Yl

where [ . ] ij (ij= 11,12, 66 ) indicates the (i.j ) components of the matrix [ . ], and
the values of u,' v"uyi' vx' and C~:)to Ci:) are listed in Table AI.
~

•

Table AI: Values ofu" v"uYi' vx' and C~;) to Ci:)

u, v, uyi Vxi
C(l) C(,) C(3) C(4) CO) C(,) C] C(4)

X< x, XI XI Y' Y' Y' Y'

I l,b, l,c, u,c, v,b, 4b, 0 0 -b, 4c, 0 0 -c,

2 l,bJ l,cJ u,c, v,b, 0 4b, 0 -b, 0 4c, 0 -c,

3 13b, IJcJ uJc3 vJb3 0 0 4bJ -b3 0 0 4c3 -c3

4 -l,b, -l,c, U4C2 v4b2 4b, 4b, 0 0 4c, 4c, 0 0

5 -l,b, -12c2 USc) v,bJ 0 4b3 4b, 0 0 4cJ 4c, 0

6 -13b3 -IJcJ u6c] v6b, 4bJ 0 4b, 0 4c3 0 4c, 0

<
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C. Numerical Integratiop.

Finite element methods are always based on integral formulations. For some cases the
integration's are possible and the algebraic expressions can be obtained easily. However,
in some cases, e.g., graded-index profiles, it is impossible to integrate the expression in
closed form. Then the use of numerical integration is a must. Also, elements with curved
or distorted sides, it is always necessary to use numerical integration. The use of
numerical integration avoids lengthy algebraic expressions and simplifies the
programming of the element matrices.

For an integral over a triangular element, Hammer's formula follows

"
H/(L"L"L3)dx dy = IA, W, I(L,; L,; L3i)

i=l

where Ae is the area of the element, and data for the weighting coefficients W; and area
coordinates Ln L2;, L]; associated with n=7 sampling points are presented in Table A2.

Table A2: The values of the weighting coefficients and area coordinates .

•••.i W; (Ln L2;, L]; )

•1 0.225 (a,a,a) a = 1/3
2 0.13239415 (f3,y,y) 13= 0.05971587
3 0.13239415 (y, 13,y) y = 0.47014206
4 0.13239415 (y,y,f3) 8 = 0.79742669
5 0.12593918 (8,s,s) S = 0.10128651
6 0.12593918 (s,8,s)
7 0.12593918 (s,s,8)

(
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