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ABSTRACT

This thesis is concerned about the detection or pattern recognition of three

dimensionally distorted multiple target objects with the application of projection-slice

synthetic discriminant function and optical correlation technique. Though distortion

invariant recognition has been made for single and multiple target of same object, still

no work has been reported on 3-D distortion invariant optical pattern recognition with

better utilization of space bandwidth product. The previous method like phase-encoded

fringe-adjusted joint transform correlation technique is very much sensitive to the

number of objects and presence of noise in the input scene. In this thesis work, a

modified multi-target detection algorithm employing phase-shifting and phase-encoding

principle, has been proposed to get more prominent detection signal such as better

utilization of space bandwidth product of the input and output plane with same filter

parameters, even in the midst of very much similar non-target and noise. In this work,

the out-of-plane rotation of an object is considered as the 3-D distortion of the object.

The projection-slice theorem has been taken to create synthetic discriminant function-

based matched filters that are capable of discerning out-of-plane rotation of objects.

According to projection-slice theorem, the l-D Fourier transformation of the projection

of an image is equivalent to a l-D Fourier slice of that image taken on the line specified.

The idea introduced in this thesis is to integrate l-D Fourier slices from different images

to form a 2-D image for the recognition of the object after it has undergone a distortion.

To satisfY the equal peak criterion, the composite image becomes a weighted

combination of all the slices. In the previous works like synthetic discriminant function-

based techniques, the entire two-dimensional image is used in the design of filter

response that does not match any of the training images. The incorporation of

projection-slice theorem with synthetic discriminant function eliminates this problem,

where at least certain number of slices must match with each of the training image. As a

result, projection-slice synthetic discriminant function technique is well suited for

detection of 3-D distorted objects. In projection-slice synthetic discriminant function

XIX

. " "--f /'. \ ;



technique, the reduction of slice number with the increase of distortion range introduces

severe loss of information in the composite image. Therefore, for the detection of 3-D

distorted objects using projection-slice synthetic discriminant function, a modified

class-associative target detection algorithm has been incorporated. Class-associative

target detection employs a multi-target detection algorithm (MTDA) facilitating

multiple reference images for which more than one dissimilar objects or images of a

class can be detected. For detection of higher range of 3-D distorted images, different

composite images are formed relating to different 3-D distortion and are used as the

member of a class. An efficient and fast method for class-associative target detection

and an enhanced version of Generalized fringe-adjusted filter have been suggested.

Computer simulation shows satisfactory performance of the proposed scheme in getting

distortion invariant detection of members of the class mainly with out-of-plane rotation.

The proposed method also ensures almost equal target peaks while negligible peaks for

non-target objects.
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Chapter 1

INTRODUCTION

1.1 Introduction

Pattern recognition is an important task for both data processing and decision-making.

Pattern recognition technique is mainly concerned with the automatic detection and .

classification of objects and events. It deals with the detection and identification of a

desired pattern or target in an unknown input scene and determination of the spatial

location of the targets. There is no doubt that pattern recognition is an important, useful

and rapidly developing technology with cross-disciplinary interest and participation.

Pattern recognition techniques overlap with other areas such as (Adaptive) signal

processmg and systems, artificial intelligence, Neural modeling,

Optimization/estimation theory, Fuzzy sets etc. Some of the major applications of

pattern recognition techniques include target detection, computer vision, radar signal

classification, image and speech preprocessing, face recognition, biometric (fingerprint)

identification etc.

Pattern recognition, naturally, is based on patterns. A pattern can be as basic as a set of

measurements or observations, perhaps represented in vector or matrix notation. The

use of measurements already presupposes some preprocessing and instrumentation

system complexity. These measurements may be a two-dimensional image, a drawing, a

waveform, a set of measurements, a temporal or spatial history (sequence) of events, the

state of a system, the arrangement of a set of objects and so forth. On the other hand, the

characteristic features of a pattern are any extractable measurement used. Examples of

low level features are signal intensities. Features may also result from applying a feature

extraction algorithm or operator to the input data. The key is to choose and extract

features that are computationally feasible, lead to good pattern recognition system

success and reduce the problem data without discarding valuable information. The
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number of characteristic features is virtually always chosen to be fewer than the total

necessary to describe the complete target and thus there is a loss of information. It is

different from image processing where the input is an image and the output is also an

image. Since pattern recognition is fundamentally an information reduction process, it is

therefore not possible to reconstruct the original pattern but to make a precise decision

[1-2].

The methodology how a human being and a machine classify objects is quite different.

The main difference between human and machine intelligence comes from the fact that

humans perceive everything as a pattern, whereas for a machine everything is data. If

there is no pattern, then it is very difficult for a human being to remember and

reproduce the data later. Thus the storage and recall operations in human beings and

machines are performed by different mechanism. Again the major characteristic of a

human being is the ability to learn continuously from examples, which is not understood

well enough to implement in algorithmic fashion in machine [3].

1.2 Pattern Recognition Tasks

The inherent differences of information handling by human being and machine, have

led to identify different pattern recognition tasks which human beings are able to

perform very naturally and effortlessly. On the contrary, no simple algorithm has yet

been reported to implement these tasks in a machine. A brief description of several

pattern recognition tasks is given below.

1.2.1 Pattern Association

~.
Pattern association problem involves storing a set of patterns or a set of input-output

pattern pairs in such a way that when a test pattern is presented, the stored pattern or the

pattern pair corresponding to the test pattern is recalled. It is desirable to recall the
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correct pattern even though the test pattern is noisy or distorted. The problem of storage

and recall of patterns is called auto-association task. On the other hand, the problem of

storage and recall of pattern pairs is called hetero-association task [3].

1.2.2 Pattern Classification

The objective of pattern classification is to find out the implicit relation among the

patterns of the same class, so that when a test pattern is given, the corresponding output

class level is retrieved. Here the individual patterns of each class are not memorized. In

this case, the test patterns belonging to a class are not the same as the patterns used in

training. Speech spectra of steady vowels generated by a person or hand-printed

characters could be 'considered as examples of patterns for pattern classification

problems.

1.2.3 Pattern Mapping

In a pattern mapping, given a set of input pattern and the corresponding output patterns,

the objective is to capture the implicit relationship between the input and output

patterns, so that when a test input pattern is given, the pattern corresponding to the

output of the generating system is retrieved. In this case system should perform some

kind of generalization as opposed to memorizing the information.

1.2.4 Pattern Grouping

In this case, given a set of patterns, the problem is to identify the subset of patterns

possessing similar distinctive features, and group them together. Since the number of

groups and features of each group are not explicitly stated, this problem belongs to the

category of unsupervised learning. In the pattern classification problem the patterns of
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each group are given separately. In pattern grouping, patterns belonging to several

groups are given and the system has to resolve them into different groups.

1.2.5 Feature Mapping

In several patterns the features are not unambiguous. In fact, the features vary over a

continuum and hence it is difficult to form groups of patterns having some distinctive

features. In this case, it is desirable to display the feature variations in the patterns. In

this case the main purpose is to generate the feature map of a pattern and not to identifY

the group or class to which the pattern belongs.

1.2.6 Pattern Variability

There are many situations when the features in a pattern undergo unspecified distortions

each time the pattern is generated by the system. Human beings are able to recognize

them due to some implicit interrelations among the features, which are not known

precisely. Classification of such patterns falls into the category of pattern variability

task.

1.2.7 Temporal Patterns

All the tasks discussed so far, refer to the features present in a given static pattern. It is

sometimes required to capture the dynamic features present in a sequence of patterns as

in a movie on a television. All such situations require handling multiple static patterns

simultaneously, looking for changes in the features in the sub-patterns in adjacent

pattern pairs.

r
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1.2.8 Stability-plasticity Dilemma

In any pattern recognition task, if the input patterns keep changing, then it is difficult to

freeze the categorization task based on a set of patterns used in the training set. If it

frozen, then the system cannot learn the category that a new pattern may suggest. In this

case, the system is said to be loose its plasticity. If the system is allowed to change its

categorization continuously, based on new input patterns, it cannot be used for any

application such as pattern classification or grouping, as it is not stable. This is called

the stability-plasticity dilemma in pattern recognition.

1.3 Methods of Pattern Recognition Tasks

Generally speaking, the underlying and quantifiable statistical basis for generation of

patterns and the underlying structure of the pattern, provide the fundamental

information for pattern recognition tasks. Based on these, pattern recognition tasks can

be classified into three groups that are described as follows.

1.3.1 Statistical Pattern Recognition

This is a statistical basis for classification of algorithms. A set of characteristic

measurements is extracted from the input data and is used to assign each feature vector

to one of the classes. Features are assumed generated by a state of nature, and therefore

the underlying model is a state of nature or class-conditioned set of probabilities or

probability function.

Various methods for finding decision functions in decision theoretic approach are

matching, optimum statistical classifier and neural networks. There are two ways of

matching- one is minimum distance classifier and the other is matching by correlation

[4].
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1.3.2 Syntactic Pattern Recognition

Many times the significant information in a pattern is not merely in the presence or

absence of features. Rather, the interrelationships or interconnections of the features

yield important structural information, which facilitates structural description or

classification. This is the basis of syntactic pattern recognition. However, in syntactic

pattern recognition approach, one must be able to quantify and extract structural

information and to assess structural similarity of patterns.

Typically, syntactic pattern recognition approaches formulate hierarchical descriptions

of complex patterns built up from simpler sub-patterns. At the lowest level, primitives,

elements or characteristics of syntactic pattern recognition, involves the choice of

primitives. Primitives must be sub-pattern or building blocks whereas features are any

measurements.

1.3.3 Neural Pattern Recognition

Modem digital computers do not emulate the computational paradigm of biological

systems. The alternative of neural computing emerged from attempts draw on

knowledge of how biological neural systems store and manipulate information. This

leads to a class of artificial neural systems termed neural networks. Neural networks are

particularly suited for pattern association applications.

1.4 Implementation Techniques of Pattern Recognition

Pattern recognition techniques can be implemented either by a computer or by an

optical system. Signal processing through computer for traditional pattern recognition

has the temporal advantage, whereas optical system has an additional manipulation

advantage. Digital pattern recognition techniques mainly suffer from the intensive
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computation and implementation difficulties. On the other hand, optical pattern

recognition techniques inherently provide parallelism, ultrahigh processing speed, non-

interfering communication and massive interconnection capability. Therefore, optical

pattern recognition technique offers itself as a suitable candidate for real time pattern

recognition [5].

1.5 Optical Pattern Recognition

Optical pattern recognition is usually carried out on the basis of correlation, which can

be performed easily, and efficiently with the help of a lens. Correlation is a sensor

independent approach that generally does not require data specific operation. In

correlation based pattern recognition approach, complexity of the system depends on

the input image size but not on the number of objects in the scene. This avoids the

computational bottlenecks faced by some other techniques due to scene complexity,

clutter and no of objects present.

Optical correlators usually use the Fourier transform properties of lens. If an input

image is placed at the front focal plane of a lens and illuminated by a laser source, then

the Fourier transform of the input image will be got at the back focal plane of the lens

[6-7]. This transforming of input transparency can be performed in real time and

therefore making the optical correlator as a suitable candidate for real time target

detection process.

To perform the correlation between reference and target image, a joint image containing

reference and target images placed side-by-side is placed at front focal plane of a lens.

At the back focal plane, the Fourier transform of reference and target images are

multiplied in the frequency domain, which is equivalent to convolution in the spatial

domain. A second lens is used to transform the frequency function back to spatial

domain. Since an optical correlator provides parallel processing capability, it is a
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suitable candidate to provide better speed advantages compared to digital counter parts.

Other than lens, the optical devices that are used for optical pattern recognition

technique are Spatial light modulator (SLM), charge coupled device (CCD), mirror,

beam splitter, laser etc.

There are two widely used optical correlators namely VanderLugt Correlator (VLC) and

Joint Transform correlator (JTC).

1.5.1 VanderLugt Correlator (VLC)

VanderLugt Correlator is also known as matched filter based correlator. It was first

introduced in 1964 and since then it has spurred myriad of applications [8-13]. It

requires a priori fabrication of a complex matched filter used in the Fourier and perfect

alignment of this filter along the optical axis. Thus, it is not suitable for real time

operation and slight mismatch results in output intensity degradation for optical

correlation operation [14-16]. A schematic diagram of a VLC is shown in the figure 1.1.

Input Spatial
Domain PI

Lens
Ll

Fourier
Domain, P2

Lens,
L2

Output
Plane, P3

Fig. 1.1: VanderLugt Correlator

In Fig. 1.1, PI, P2 and P3 represent the input plane, Fourier plane and output plane

respectively. If an input signal fix, y) is placed at the input plane PI and illuminated by

a point laser source, the complex light field distribution produced at the plane P2 is

given by

F(u, v) = 3[f(x,y)J (1.1)

where 3 represents Fourier transform operation and u and v are frequency dependent

variables scaled by a factor of 2;r , where A. is the wavelength of collimating light andf
A.f

is the focal length oflens.
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The phase fronts of the wave emanating from plane PI and incident on P2 are both

curved and distorted. The phase transmittance of the matched filter H(u, v) at the plane

P2 must be the conjugate match to the phase of the Fourier transform of f(x,y). As a

result, the phase variations of the beam incident on plane P2 is cancelled and the

resulting distribution becomes a parallel beam. Lens L2 performs the inverse Fourier

transform and produces the output at plane P3. If the input is different from f(x,y), the

phase-front will not exactly be cancelled by the filter and the light distribution in plane

P3 will produce a spot of poor intensity or no spot at all. The complex light distribution

at plane P3 can be expressed as

g(x,y) = :r'[F(u, v)H(u, v)] (1.2)

where :r'(...)represents inverse Fourier transformation.

The intensity of bright correlation spot is proportional to the degree to which the input

and the filter functions are matched. Since the system is linear, superposition theorem

holds. The aforementioned arguments are also valid for multiple objects present at

different at different locations of the input plane. This correlation system provides a

great deal of sensitivity since it is both phase matched and amplitude matched [5].

1.5.2 Joint Transform Correlator (JTC)

Joint transform correlator is a device consisting of two optical systems in which two

signals are simultaneously transformed to produce their spectra, and these spectra are

multiplied and inverse Fourier transformed to produce the correlation output. Fig 1.2

shows the schematic diagram of a classical JTC architecture.

\
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Input
Image

Reference
Image

Fourier
Transform

Joint Power
Spectrum

Inverse
Fourier

Transform

Correlation
Output

Figure 1.2: Joint Transform Correlator

Optical pattern recognition by usmg joint transform correlation (JTC) was first

introduced by Goodman, in 1966 [17]. With the development of electronically

addressable spatial light modulator (SLM), JTC has been introduced as a real-time

programmable optical pattern recognition technique [18]. JTC does not require any

complex matched filter fabrication and accurate alignment of the filter along the optical

axis. It uses a spatial (impulse response) domain filter. In contrast to VLC, joint

transform power spectrum in JTC is dependent on input signal. Some of the major

advantages of JTC are that it allows real-time update of the reference image and permits

parallel Fourier transform of the reference image and the unknown input scene.

Although a classical JTC provides many attractive advantages, it is found to suffer from

large correlation side-lobes, large correlation width, wide zero order peak and low

optical efficiency [18-19].

To improve the performance of classical JTC, binary JTC has been proposed. A binary

JTC is found to be superior to a classical JTC in terms of the correlation peak intensity,

correlation width and discrimination sensitivity [20-22]. However, a binary JTC

involves computationally intensive Fourier plane joint power spectrum (JPS)

,~
. I

I
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binarization, which limits the system processing speed [23]. For multi-object input

scene, in particular, the JPS binarization process introduces harmonic correlation peaks

that may cause spurious correlation peaks and thus, results misses [24-25] and thereby

complicating the target detection process. However, the binary JTC cannot completely

eliminate the strong zero-order term at the output plane.

Recently, Tang et al. proposed a chirp-encoded JTC, which requires multiple spatial

light modulators for the input planes (to display the reference and input scene) as well

as multiple detectors for the output planes [26]. Hence, a large space-bandwidth product

is required for chirp-encoded JTC for multiple target detection process.

To overcome or reduce the zero diffraction and enhance the discrimination ability of a

classical JTC technique, several methods have been introduced. Different zero-order

elimination techniques have been proposed in the literature [27-32]. DC blocking, using

an opaque aperture to block the dc component can be easily carried out. But, when the

input scenes are noised, zero order items become very complicated which results in the

futility of the method. Fourier plane image subtraction [28], correlation plane image

subtraction [29] and phase-shift power spectrum subtraction [30] all can yield a better

correlation output. All of the methods need multiple processing steps to achieve it,

which limits their applications to the highly required real-time recognition tasks.

However, the above-mentioned JTCs still produce relatively broad correlation peaks

which complicates their application to multiple target detection process. To get a

sharper correlation peaks, one of the recent apodization based approaches is the use of a

fringe adjusted JTC (FJTC) based on Newton-Raphson algorithm [33]. Fringe adjusted

filter (FAF)-based JTC avoids many problems otherwise associated with other JTC

techniques. In FJTC technique, the JPS is multiplied by the transfer function of FAF

before inverse Fourier transformation. This technique yields better correlation

performance than alternate JTCs for the noise free single and multi-target binary input

scenes under normal as well as poor illumination conditions [34]. However, for noise



12

corrupted input scenes, whenever the reference power spectrum contains very low

values, the FJTC technique may suffer from low correlation output.

To overcome this problem, a fractional power fringe adjusted JTC has been proposed

for single target detection. This technique employs a family of real valued filters, called

generalized fringe adjusted filters (GFAF) [35]. By adjusting a parameter, one can

obtain classical JTC, fringe adjusted JTC and phase-only JTC without actually

fabricating these complex valued filters. It is found that the phase only JTC provide

better noise robustness than the fringe adjusted JTC technique.

Again all of the above methods utilize at most 50% of the input and output plane SLM

and therefore provides poor utilization of space bandwidth product. Again, multi-step

processing techniques to eliminate the extraneous signals, limit their operation in such

cases where processing speed is a crucial constant. To overcome the above-mentioned

problem, a phase encoding principle has been adopted with FAF [36] to get a sharper

and only a single correlation peak per target. This phase encoding operation is

performed in such a way that it does not have any detrimental effect on the system

processing speed. This technique uses separate reference and input planes and yields

one correlation peak per target instead of a pair of peaks thus ensuring better utilization

of space bandwidth product. This is significantly an improved target detection process

for real time operations.

A number of various other non-linear joint transform correlation have been proposed for

optical pattern recognition among which all-optical photo refractive crystal based JTC

have been found to be particularly attractive [37-40]. There are also some other phase-

encoding techniques that yield a single correlation peak per target and provide better

utilization of space-bandwidth product [41-43].
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1.6 Distortion Invariant Pattern Recognition

Target detection process may involve detection of a desired target object from a noisy

or uncorrelated data. A target in input scene may be distorted or corrupted by a variety

of ways. It may in-plane and out-of-plane rotation, scale variation or shifting of the

position of the object. Clutter, noise, obscuration and low illumination are some of the

other contribution factors of distortion. There are a number of different approaches for

distortion invariant pattern recognition tasks. Among these, methods using transform

coefficient features, algebraic features, visual features, moment-based methods and

synthetic discriminant function based methods are well known.

Moment invariant methods are found to be effective in obtaining full geometrical

invariance, such as rotation and translation [44-45]. Moment invariance method is often

utilized for invariant character recognition [46-47]. The disadvantage of moment

invariant method is the relatively time consuming computation and its inaminability of

optical implementation. It also falls short of expectation in case of noise degradation.

Circular harmonic (CH) method has been well utilized to deal with rotation invariant

recognition [48-49]. Mellin radial harmonic method is employed for scale invariant

recognition [50]. Fourier Mellin descriptors and Fang's self-transform employ the

pattern itself in the kernel of a transform that is invariant to objects scale, rotation and

translation variations [51-52]. Log-polar mapping is another popular method by which

object scale and rotation can be transformed into translation [53].

Basic Synthetic discriminant function (SDF)-based technique uses a training set of

distorted images, which are assumed to be representative of possible distortion [54].

The minimum variance synthetic discriminant filter (MVSDF) and minimum average

correlation energy filter (MACE) are examples of two such composite filter fabrications

[55-56]. Several researchers have used synthetic discriminant function for distortion

invariant pattern recognition [57-58]. Javidi successfully applied the SDF formulation

in a bipolar nonlinear JTC whereby SDF was used as the reference [59]. Recently, a
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rotation-invariant FJTC and a distortion invariant fractional power FJTC technique have

been proposed [60-61]. For discerning in-plane and out-of-plane 3D distortions, a

modification of basic SDF has been proposed namely projection slice synthetic

discriminant function (PSDF) [62]. Wavelet transformation and neural networks have

also been efficiently utilized for distortion invariant pattern recognition [63-66].

1.7 Class Associative Pattern Recognition

Sometimes a class of similar or dissimilar objects needs to be detected from a group of

different objects. For classification of objects from a given class, recently proposed

filter-based techniques utilized phase information from the Fourier transform of each of

the objects in that class. In this case consequent addition of objects requires a change in

the phase of the filter. Casasent and Tefler proposed a pattern recognition technique that

can perform hetero-association based pattern recognition [67]. Later Khoury el. a/.

proposed a new class-associative filter using cross-correlation enhancement. This

technique has the advantage of adding additional objects by changing only the

amplitude of the filter, i.e., it is phase restricted. In this technique the phase may result

from an object of one class or even from an object that may be completely different

from he classification set of objects. More, recently a class-associative target detection

technique has been proposed by using a new multi-target detection algorithm [69]. Here

an enhanced version of the fringe-adjusted filter called class associative fringe adjusted

filter (CFAF) has been developed for class associative multiple target detection.

1.8 Objectives of the Thesis

Though distortion invariant recognition has been made for single or multiple target of

same object, still no work has been reported on 3-D distortion invariant optical target

detection with better utilization of space bandwidth product. Most of the methods of

making distortion invariance are either too complex or not successful enough. Again
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most of the existing multi-target detection algorithm generates a pair of correlation peak

for each target, which may make the detection ambiguous in case of randomly

appearing objects in input scene.

The main objective of this work is to develop a method for getting distortion-invariant

optical pattern recognition for both binary and gray level images. The projection-slice

theorem has been taken to create synthetic-discriminant-function based matched filters

that are capable of discerning rotation and scale distortions. A modified multi-target

recognition algorithm is aimed to get more prominent detection signal such as better

utilization of space band width product of the input and output plane, even in the midst

of very much similar non-targets and noise. By combining the above-mentioned PSDF

and multi-target recognition algorithm a high performance optical correlator will be

proposed that will give almost equal correlation peak for all the targets for both in-plane

and out-of-plane distortions and whether there is noise in the input scene or not.

1.9 Thesis Outline

This thesis consists of five chapters. In the first chapter some introduction on optical

pattern recognition has been given, especially on joint transform correlation. Also a

brief description of the theories and problems associated with this work has been given.

Chapter 2 deals with joint transform correlation in details. Classical lTC, fringe-

adjusted lTC, fractional power fringe-adjusted lTC and phase-encoded fringe-adjusted

lTC are analyzed there with theory and simulation. Chapter 3 deals with the theory and

simulation of efficient multi-target detection algorithm that is a basis for both class-

associative target detection and 3D distortion invariant target detection. Chapter 4 gives

the theory and simulation of PSDF based composite image generation and its

application with the class-associative target detection algorithm for detection of 3D

distorted objects. Chapter 5 is the final chapter giving a conclusive remark on this work

along with some suggestive future works in this area.



Chapter 2

JOINT TRANSFORM CORRELATION TECHNIQUE

2.1 Introduction

Joint transform correlation technique is one of the most widely used correlation

technique for optical pattern recognition. In a JTC technique, the reference image and

the unknown input image are placed side-by-side by using a spatial light modulator

(SLM) and are illuminated by a coherent light source. A lens is used to produce the

Fourier transformation of the input joint image. The Fourier transform patterns

constructively interfere with each other to create an interference pattern called joint

power spectrum (JPS). This joint power spectrum is recorded by a CCD camera and is

further inverse Fourier transformed by using another lens to get the correlation output.

For a match between the reference and input scene, a pair of correlation peaks or bright

spots is produced and for a mismatch, negligible or no correlation peaks are produced.

A classical JTC suffers from many disadvantages and therefore several modifications

have been proposed to overcome these limitations. In this chapter the classical JTC and

fringe-adjusted JTC are discussed along with effect of image subtraction technique.

2.2 Classical Joint Transform Correlation Technique

A classical JTC architecture is shown in Fig. 2.1, where the reference image and the

input images are displayed side-by-side using an SLM illuminated by a coherent light

source. The combined light distribution passes through the first Fourier lens Ll and the

complex light distribution called JPS is recorded by a CCD array. In a classical JTC, the

JPS is then introduced into the second lens to get the correlation output.
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Fig 2.1: Classical JTC architecture
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In case of fringe-adjusted JTC (FJTC), the JPS is multiplied by the real valued FAF

before applying the inverse Fourier transformation to get sharp delta-like correlation

peaks. In this section the theory and simulation of classical JTC will be discussed first

for single target detection and then for multiple target detection. Then we will discuss

the FJTC and the phase-encoded FJTC (PFJTC) for both single and multiple target

detection.

2.2.1 Single Target Detection

2.2.1.1 Analysis

Let a reference image r(x,y) and a target image t(x,y) are displayed side-by-side in

the input plane by using an SLM. With r(x,y + Yo) representing the reference image

and t(x,y - Yo) representing the input scene in the input plane separated by a distance

2yo along the y axis, the input joint image f(x,y) can be expressed as

,01',"_ •.•.•.
/ "

I., \

f(x,y) = r(x,y + Yo) + t(x,y - Yo)

Lens LI performs the Fourier transform of f(x,y) to yield

(2. I)

F(u, v) =1 R(u, v) I exp[j<P,(u, v) + jvyo]+ 1T (u, v) 1 exp[j<p, (u, v) - jvyo;] (2.2)

where R(u, v) and T(u, v) are the amplitudes, <p,(u, v) and <p,(u, v) are the phases of the

Fourier transforms of r(x,y) and t (x,y), respectively; u and v are mutually

independent frequency domain variables scaled by a factor of 2:r , A is the wavelength
A

of collimating light, f is the focal length of lenses Ll and L2. The complex light

distribution produced in the back focal plane of Ll, called the JPS, is then detected by a

square-law device such as a CCD array. The JPS is given by

1F(u, v) 1'= F(u, v). F' (u, v)

=1 R(u, v) I' +IT(u, v)I' + 2IR(u, v)IIT(u, v)1x cos[<p,(u, v) - <P, (u, v) + 2vyo]

(2.3)

j
\
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In a classical JTC, this JPS is introduced into second SLM which is illuminated by

another laser of same frequency. Lens L2 performs the inverse Fourier transformation

of the JPS to yield the correlation output. The final output can be expressed as

o(x',y') = r(x' ,y') 0 r' (x' ,y') + f(X' ,y') 0 f' (x' ,y')

+ r( -x' ,-y' - 2yo) 0 f' (-x' ,-y') + r' (x' ,y' - 2yo) 0 f(X' ,y')

From Eq. (2.4), it is evident that the correlation output contains autocorrelation of the

reference image and the input scene objects and cross-correlation between the reference

image and the input scene objects. The first and second terms of Eq. (2.4) produce the

zero-order peak and only the third term generates the desired cross correlation peaks.

2.2.1.2 Simulation Results

To analyze the performance of a classical JTC, a binary character 'E' of English

Alphabet has been taken as the reference image. The size of the character is 32 x 32

pixels and it is placed in a joint image of size 256 x 256 pixels. The joint image also

contains a target image as shown in Fig. 2.2 and 2.3. The simulations are performed

using FFT2 routine of MATLAB software and the outputs are plotted using the 3-D

plotting routine.

In Fig. 2.2 (a), the target image is the same (i.e. 'E' in this case) as the reference image

and the corresponding classical JTC output is shown in Fig 2.2 (b). From the figure, it is

evident that there is the presence of a strong zero-order term at the middle of the output

plane and a pair of correlation peaks is produced for the target object.

The same analysis has been made with a non-target image 'M' for the same reference

image 'E' as shown in Fig. 2.3. In this case a pair of correlation peaks is obtained with

negligible intensity.
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Fig. 2.2 (a): Input joint image of identical target object

Fig. 2.2 (b): Classical JTC output of Fig. 2. 2 (a)
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Fig. 2.3 (a): Input joint image of non-target object
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Fig. 2.3 (b): Classical JTC output of Fig. 2.3 (a)
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From Fig. 2.2 and Fig. 2.3, it is evident that a DC term or zero-order diffraction is

obtained at the center of the output plane with a very high correlation peak intensity

compared to the target peaks which deteriorates the detection process and lowers the

optical efficiency. The position of the zero-order term is always fixed i.e. at the center

of the correlation plane while the positions of cross-correlation terms mainly depend on

the relative position of reference image in the joint image. If the reference image is

placed at the center of the joint image, then one of the correlation peaks will be

generated at the exact position of the target image. But the major disadvantage of this

method is that in this case the reference image may be superimposed to any input scene

image and therefore performance of the system may be deteriorated. The existence of

any cross-correlation peak provides the information about the presence of any object in

the input scene while the height of the cross-correlation peaks indicates the degree of

similarity between the reference image and the target images present in the input scene.

2.2.2 Multiple Target Detection

2.2.2.1 Analysis

If r(x,y+ Yo) represents the reference image and t(x,y- Yo) represents the input

scene containing nobjects t,(x-x"y- y,), t,(x-x"y- y,),

t" (x - x"' y - y,,), the input joint image may be expressed as

"f(x,y) =r(x,y+ Yo)+ LI;(x-x;,y- y;)
1=1

Applying Fourier transform to the input joint image by the lens Ll yields

(2.5)

"F(u,v) =1 R(u,v) I exp[j<p,(u,v)+ jvyo] +LI T,(u,v) I exp[j<P,Ju,v)- jux; - jvy;]
i=1

(2.6)
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where R(u,v)and T(u,v) are the amplitudes, <I>,(u,v)and <I>,;(u,v) are the phases of

the Fourier transforms of r(x,y) and t, (x,y), respectively; u and v are mutually

independent frequency domain variables scaled by a factor of 211: , A is the wavelength
A

of collimating light, f is the focal length of lenses Ll and L2. The complex light

distribution produced in the back focal plane of Ll, called the JPS, is then detected by a

square-law detector such as a CCD array. The JPS is given by
n n

IF(u, v) 1'=1R(u, v) I' +II T;(u, v) I' +2II T;(u, v) IIR(u, v) Icos[<I>,;(u,v)":' <I>,(U,v)
i",J i=l

n "
-ux; -vy; -2vyo]+2I II T;(u,v) IIT,(u,v) ICOS[<I>,JU,V)-<I>;k(U,v)

,,,,1 k"'l,ko'i

(2.7)

From Eq. (2.7), it is evident that the correlation output contains autocorrelation of the

reference image and the input scene objects, cross-correlation between the reference

image and the input scene objects, and cross-correlations between different input scene

objects. The first term produces the auto-correlation of the reference image only while

the second term produces the same for different input scene image only. The fourth

term produces the cross-correlation between different input scene images without

considering the reference image. Therefore, the first and second term of Eq. (2.7)

produce the strong zero-order peak and the fourth term produces the false alarms. Only

the third term generates the desired correlation peaks between the reference image and

different input scene images.

2.2.2.2 Simulation Results

To simulate the performance of a classical joint transform correlator in case of multiple

objects (target and non-targets) present simultaneously in the input scene, the same

256 x 256 zero-padded image matrix is taken for the input scene. Here again the

alphabet 'E' is used as the reference image and is placed at the right side of each joint ..
I
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Fig 2.4 (a): Input joint image with identical targets
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Fig. 2.4 (b): Classical JTC output of Fig. 2.4 (a)
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image as shown in Fig 2.4 (a), 2.5 (a) and 2.6 (a). Three cases have been shown for

three combinations of input objects.

Case 1: Two target images 'E' are placed at the left side of the joint image as shown in

Fig 2.4 (a). The classical JTC output of Fig 2.4 (a) is shown in Fig 2.4 (b). The

correlation output shows the strong zero-order peak at the center. Two pairs of cross-

correlation peaks indicate two target images. But another pair of auto-correlation peaks

between the targets produces the false alarm. If the intensity of the target images is

higher than the reference image then the intensity of the false alarm may be higher than

the desired cross-correlation peaks and therefore simply obscures the detection.

Case 2: One target image 'E' and one non-target image 'M' are the input objects placed

at the left side of the joint image as shown in Fig 2.5 (a). The joint image is processed to

find the correlation output of Fig 2.5 (b). The correlation output shows a strong zero-

order peak, a pair of cross-correlation peaks for the target, a pair of cross-correlation

peak for the non-target (which is smaller than the target peak) and a pair of cross-

correlation peaks between the target and non-target.

Case 3: Multiple target images and multiple non-target images are the input objects

placed at the left side of the input plane as shown in Fig 2.6 (a). The joint image of Fig

2.6 (a) has been processed to find the correlation output of Fig 2.6 (b). The correlation

output shows the strong zero-order peak at the center of the output plane. It also shows

several cross-correlation peaks for the targets and non-targets and several auto-

correlation peaks among the target and non-target objects. Due to the presence of strong

false alarms, it is quite difficult to locate the actual position of the target images.



Fig 2.5 (a): Input joint image with one target and one non-target

Fig. 2.5 (b): Classical JTC output of Fig. 2.5 (a)
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Fig 2.6 (a): Input joint image with multiple target and non-target objects

'~

Fig. 2.6 (b): Classical JTC output of Fig. 2.6 (a)
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From this study, it is obvious that presence of strong zero-order peak and false alarms

make the multi-target detection process quite difficult in a classical JTC scheme.

2.3 Classical Joint Transform Correlation with Image Subtraction

2.3.1 Analysis

If the zero-order term of the j oint power spectrum is eliminated then the on-axis

correlation distribution can be avoided. Since the zero-order correlation are derived

from the individual power spectrum of r(x,y) and t(x,y), these power spectrum can be

eliminated from the joint power spectrum by the use of computer. After subtracting

these two terms from Eq. (2.3), the JPS for single object input scene becomes

P(u,v) = IF(u, v)I' -IR(u, v)I' -IT(u, v)I' (2.8)

Now inverse Fourier transform ofEq. (2.8) produces the final correlation output as

g(x',y) = r(-x' - 2xo'-Y) 0 t' (-x',-y) +r'(x' - 2xo'Y) 0t(x',y) (2.9)

In Eq. (2.9) there are only the cross correlation terms between the reference and the

target image of the input scene.

For the multi-object input scene, the zero-order power spectra are derived from the

Fourier transformation of the reference image r(x,y + Yo) and the input scene image

containing targets of tl(X-xl'y-yl)'t'(X-x,'y-y,), tn(x-xn,y-Yn)

respectively. By subtracting the reference only power spectra and the input scene only

power spectra, we get the modified JPS for multi-object input scene as given by

t
(
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"P(u, v) =1F(u, v) I' -I R(u, v) I' -2) TJu, v) I'
j",1

n

= LI R(u, v) IIT,(u, v) 1exp[j(cD,(u, v) - cD,Ju, v) + ux; + V(Yo + y;)]
i",]

"
+IIR(u, v) II J;(u, v) I exp[- j(cD,(u, v) - cD,;(u, v) + ux; + V(Yo + yJ)]

1'=1

(2.10)

Inverse Fourier transform ofEq. (2.10) gives the correlation output for the multi-object
input scene as expressed by

"g(x',y) = Ir(-x' -xp-y' - y; -2yo)0t'(-x',-y)
1=1
n

+Lr' (x' - x;,y' - y; + 2yo)0 t(x',y)
i=l

(2.11 )

In Eq. (2.11), again there are only cross-correlation terms between the reference and

target images only.

The above process of subtracting the reference only power spectra and the input scene

only power spectra from the joint power spectra at the Fourier plane is known as

Fourier plane image subtraction technique. The Fourier plarie image subtraction

technique eliminates the zero-order term and other false alarms generated by the cross-

correlation among different objects in the input scene.

2.3.2 Simulation Results

To eliminate the zero-order term and other false alarms, the Fourier plane image

subtraction technique is employed and the simulation result is shown for the joint image

as shown in Fig. 2.7 (a). The character 'E' on the right side represents the reference

image and all the characters on the left side represent the input scene images. Thus the

input scene contains both target and non- target objects. Fig. 2.7 (b) shows the classical

JTC output of Fig. 2.7 (a) with Fourier plane image subtraction. From the figure, it is

evident that the zero-order diffraction term and other false alarms are completely

eliminated from the output plane and there exits only a pair of cross-correlation peaks

[



Fig. 2.7 (a): Input joint image with multiple identical

targets and non-target objects

,,

i
i

Fig. 2.7 (b): Classical JTC output after image subtraction of Fig, 2,7 (a)
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for each input scene object. At the same time, the correlation peak intensity for the

target object is comparatively higher than that of the non-target object.

Thus the Fourier plane image subtraction technique provides better detection of target

objects while eliminating the false alarms and other extraneous signals. It also provides

comparatively better utilization of space bandwidth product and therefore, input scene

objects can be located as closely as we wish. But still there exits some problems with

the Fourier plane image subtraction technique. From the correlation output, it is obvious

that the target peak intensity is not much higher than the non-target peaks. Again, large

correlation width and large side-lobes lower the optical efficiency and therefore,

deteriorate the detection scheme.

2.4 Fringe-adjusted Joint Transform Correlation with Image
Subtraction

2.4.1Analysis

The classical JTC output with Fourier plane image subtraction suffers from lower

optical efficiency and wide correlation peaks. To yield better correlation performance

compared to alternate JTCs under various illumination conditions of the input scene, the

fringe-adjusted JTC (FJTC) technique has been proposed. In FJTC technique, the JPS is

multiplied by the real valued fringe-adjusted filter (FAF) transfer function before

applying the inverse Fourier transformation to get the correlation output. The transfer

function of the FAF is given by

. C(u, v) (2 12)HM(u,v) = 2 •
.. D(u,v)+IR(u,v)1

where C(u,v) and D(u,v) are either constants or functions of u and v. When C(u,v) is

properly selected, one can avoid an optical gain greater than unity. With very small

values of D(u,v), the pole problem otherwise associated with a inverse filter is

"'I

•
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eliminated, and it is still possible to obtain a large auto-correlation peak. When

D(u, v)« JR(u,v)J', C(u,v)=I, the transfer function of the FAF may be approximated

as H",(u, v) ~ JR(u,vf'. The function C(u,v) can also be used to suppress noise or band

limit the signal or both. Thus, in FJTC, the amplitude matching can be implemented

more effectively to yield sharper and larger correlation peak intensity. When C(u,v)=1

and IR(u,v)I' ;:0: D(u, v), the FAF becomes a perfect real-valued inverse filter function

unlike the VanderLugt filter, which consists of both magnitude and phase terms.

Therefore, the FAF is more suitable for practical implementation and computation

associated with the FAF can be performed before the practical implementation.

Therefore, it has no detrimental effect on system processing speed.

For single target input scene, the modified JPS after image subtraction is multiplied by

the transfer function ofthe FAF, Hf'rCU, v) and is thus given by

G,(u, v) = H",(u, v) x ~(u, v) ~ IR(u,vt x ~(u, v) (2.13)

For multiple target input scene, the modified JPS after image subtraction is multiplied

by the transfer function of the FAF, H',f(U, v) and is thus given by

Gm (u,v) = H",(u, v) x P,,, (u,v) ~ IR(u,vf' x p,,, (u,v) (2.14)

Inverse Fourier transformation of Eg. (2.13) and Eg. (2.14) produce a pair of sharp

delta-like correlation peak for each target object and almost negligible correlation peak

for non-target object. Simulation results prove the effectiveness of this method.

2.4.2 Simulation Results

The simulation for the fringe-adjusted joint transform correlation has been performed

with Fourier plane image subtraction so as to avoid the zero-order terms and unwanted

false alarms. The input joint image used for the simulation purpose is shown in Fig. 2.8

(a). The simulation is done for various values of parameter D(u,v) of the fringe-adjusted

filter. The corresponding correlation output is shown in Fig. 2.8 (b) to Fig. 2.8(e).

\
,I~i./
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Fig. 2.8 (a): Input joint image with multiple identical
targets and multiple non-target objects
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Fig. 2.8 (b): FJTC output of fig. 2.8 (a) with C=I and D=Ie-I

Fig. 2.8 (c): FJTC output fig. 2.8 (a) with C=I and D=Ie-4
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Fig. 2.8 (d): FJTC output fig. 2.8 (a) with C=! and D=!e-9
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Fig. 2.8 (e): FJTC output fig. 2.8 (a) with C=! and D=!e-!2
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From the correlation output as shown in Fig. 2.8 (b) to Fig. 2.8(e), it is obvious that the

FJTC technique produces a pair of sharp delta-like correlation peak for each target. At

the same time, it produces almost negligible correlation peaks for non-target objects.

The target peaks are almost of same intensity or height. For noise free input scene, the

value of D(u,v) parameter ofFAF, plays an important roleJor correlation output. As in

this case, higher the value of D(u,v) parameter from an optimal value, the target peaks

become more and more sharper. But at the same time, the correlation plane generates

spurious peaks and deteriorates the correlation performance. Now, if the value of D(u,v)

is set higher than the optimal value, then the width correlation peaks becomes more

wider and again hampers the system performance. Therefore, selection of an optimal

value of D(u,v) parameter is a must which is done here by trial and error method. An

intensive study is required to choose the best value of FAF parameters.

2.5.1 Fractional Power Fringe-adjusted Joint Transform Correlation

For noise-free input scenes, the fringe-adjusted JTC has been found to yield

significantly better correlation output compared to alternate JTCs. However, for noisy

input scenes, whenever the reference power spectrum contains very low values of

~R(u,v)j' J, it may accentuate the noise component of the input scene, which may

degrade the system performance. To overcome the aforementioned problems, and at the

same time to utilize the fringe adjusted filter as a versatile tool for various applications,

a fractional power fringe-adjusted JTC (FPFJTC) has been proposed, also termed as

generalized fringe-adjusted JTC (GFJTC) [35). In GFJTC the generalized fringe-

adjusted filter transfer function is given by

H (u v) = C(u, v)
lifaf' D(u, v) + IR(u, v)J"'

where m is a constant and C(u,v) and D(u,v) are either constants or functions of u and v.

When C(u,v) is properly selected, one can avoid an optical gain greater than unity. With
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very small values of D(u,v), the pole problem otherwise associated with an inverse filter

can be avoided. By adjusting the values of m, a family of different types of real-valued
filters can be achieved.

When m=O, D(u, v)=O and C(u,v)=I, the GFAF-based JTC corresponds to classical JTc.

In this case the transfer function of the filter becomes

. H~ar = I (2.1 6)

(2. I 7)

For m=l, D(u, v)« IR(u, v)/' and C(u,v)=I, the GFJTC technique corresponds to

phase-only JTC and in this case the transfer function of the filter becomes

HP ( ) = C(u,v)
gfaf U, v D(u, v) + [R(u, v)j

When m=2, D(u, v) «[R(u, v)I' and C(u,v)=I, the GFAF-based JTC corresponds to

fringe-adjusted JTC. In this case the transfer function of the filter becomes

Hf ( ) = C(u,v)
waf U,V 2
. D(u, v) + IR(u, v)1

(2.18)

Thus, all important types of matched filter based correlators can be implemented in real

time using the fractional power fringe-adjusted JTC while avoiding the limitations of

matched filter based correlators. For noise free input scene, the fringe-adjusted JTC

produces the highest correlation output. In case of noise corrupted input scene, the

fractional power fringe-adjusted JTC produces better correlation output than fringe-
adjusted JTC.

2.5.2 Simulation Results

To investigate the performance of the GFAF, we have chosen the same joint image as

shown in fig. 2.9 (a). The character 'E' on the right half portion represents the reference

image and all other characters on the left half portion represent the input scene image.



-\
i

Fig. 2.9 (a): Binary joint image

Fig. 2.9 (b): Performance of GFAF with m=O
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Fig. 2.9 (c): Performance ofGFAF with m=!
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Fig. 2.9 (d): Performance ofGFAF with m=2
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Fig. 2.9 (b) to fig. 2.9 (d) show the effect ofGFAF with C(u,v)=] and an optimal value

of D(u,v) parameter i.e. D(u,v)=le-4. For different values of m, GFAF may act as a

classical JTC filter, phase only filter or fringe-adjusted filter. For m=O, it will act as a

classical JTC filter; for m=l, it will act as a phase only filter and for m=2, it will act as a
fringe-adjusted filter.

Fig. 2.9 (b) shows the effect of GFAF with m=O. Here the correlation peaks are wide

and there is presence of side-lobes. There is also presence of wide correlation peaks for

non-target objects. All these characteristics match with that of the classical JTC

technique. Therefore, GFAF with m=O,acts as a classical JTC filter.

Fig. 2.9 (c) shows the effect of GFAF with m=1. Here the correlation peaks are much

sharper than that of the classical JTC technique but still there is presence of side-lobes

in the output plane. Though, there is presence of non-target peaks, the discrimination

between target and non-target peaks are much higher. Thus, GFAF with m= I, acts a
phase-only filter.

Fig. 2.9 (d) depicts the performance of GFAF with m=2. In this case sharp delta-like

correlation peaks are generated for each target object and there is almost no or

negligible correlation peaks for non-target objects. The performance of the correlation

output is much higher than that of classical or phase-only JTC technique. Therefore,
GFAF with m=2, acts a fringe-adjusted filter.

2.6 Phase-encoded Fringe adjusted Joint Transform Correlation
2.6.1 Analysis

For multiple target detection, either Fourier plane image subtraction [28J, or correlation

plane image subtraction [29J, or phase-encoded FJTC [36J may be used depending on

the system constraint. The Fourier plane and correlation plane image subtraction
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techniques involve multiple processing steps and generate a pair of correlation peaks for

each target. The phase-encoded fringe adjusted JTC (PFJTC) technique overcomes

these problems by yielding one peak per target in one processing step. Fig. 2.10 shows
the block diagram of a PFJTC technique.

Input Scene )

(
Reference

Image

Fourier
Transform

General ized
FAF ) (Phase Mask

Inverse Fourier
Transform

Fourier
Transform

Square Law
Operation

Phase Mask)

(
Correlation

Output
Inverse Fourier

Transform

Fig 2.10: Block diagram ofPFJTC Technique

In the PFJTC technique, a random phase mask, defined by

<P(u, v) = exp[j'P(u, v»)

is multiplied by the input scene power spectrum, yielding

"ITph(u, v) 1=.II T;(u, v) Iexp[j<P1i - j(ux, - vy,») x <P(u, v)
i=1

(2.19)

(2.20)
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An inverse Fourier transform of Eq. (2.20) yields the phase encoded input scene, given
by

n

'ph(X,y) = 2:1;(x-x"y- y,)@~(x,y)
i=l

(2.21)

where @ represents convolution operation. The phase-encoded input scene of Eq.

(2.21) is combined with the reference image to form the input joint image, which is then

Fourier transformed to yield the phase-encoded JPS, given by
n

I F(u, v) 1'=1R(u, v) I' +2:1 T,(u, v) I'
j",1

n

+ 2:1 R(u, v) II T,(u, v) 1exp[j(<!>,(u, v) - <!>,,(u,v) + UX, + v(Yo + y,)] x <!>'(u, v)

n

+ 2:1 R(u, v) /I T,(u, v) I exp[-j(<!>,(u, v) - <!>I'(U,v) + ux, + v(Yo + y,»] x <!>(u,v)
1=1

n n

+22: 2:1T,(u,v) IIT,Ju, v) Icos[<!>,,(u,V)-<!>lk(U,V)-u(x, -xk)-v(y, - Yk)]
j=] k=l,k~1

(2.22)

where the superscript * represents the complex conjugate. The phase-encoded JPS is

again multiplied by the same phase mask <!>(u, v) to yield the modified JPS, given by
n

O(u, v) =1R(u, v) I' <!>(u,v) + 2:1 T,(u, v) I' <!>(u,v)
i=l

n

+ 2:1 R(u, v) II T,(u, v) 1 exp[j(<!>,(u, v) - <!>,,(u,v) + ux, + v(Yo + y,»]
;=1

n

+ 2:1 R(u, v) II T,(u, v) 1 exp[ -(<!>,(u, v) - <!>,,(u,v) + ux, + v(Yo + y,»] x <!>(u,v)<!>(u, v)
j",1

n n

+ 2I IIT,(u, v) II 1;(u, v) I cos[<!>,,(u, v) - <!>Ik(u, v) - u(x, - xk) - v(y, - Yk)]<1J(U,v)
i=l k=l,k;t.j

(2.23)
It is obvious from Eq. (2.23) that the third term, which yields the desired correlation

peak, is not affected by the phase mask. Rather the unwanted or extraneous correlation

signals are intentionally disturbed by the phase mask. If the phase mask is chosen

randomly, the extraneous correlation signals can be scattered in various directions so

that the zero-order terms and false alarms can automatically be eliminated from the
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desired portion of the correlation plane. Also, only a single correlation peak is generated
for each target [36].

To achieve high discrimination capability, phase-encoded JPS, is multiplied by FAF
given by

O.(u v)- qu,v)xO(u,v)
ja" D(u, v)+ 1 R(u, v) 12 (2.24)

However, it is observed that the PFJTC technique is sensitive to noise and the number

of target and non-target objects present in the input scene. The aforementioned problem

can be tackled by adjusting the FAF parameter, D(u, v), which is not always a

convenient option for practical applications. With the increase of non-target objects in

the input scene, the amplitude of noisy surface in the correlation plane starts to rise

which may complicate the target detection process. Assume that the input scene contain

two identical targets, fl(X-XI, Y-YI) and f,(x-x" Y-Y'), which are identical to the reference

,
+I 1R(u, v) I' exp[ - j(ux; + v(Yo + y;»] x <I>(u,v)

i=J
2 2

+2I II R(u, v) I' cos[ -ux; - UXk -vy; - VY,]x <I>(u,v)
i",] k==l,k •••i

image rex, y). Then the modified JPS ofEq. (2.24) can be expressed as

1R(u, v) I' <I>(u,v) + 21 R(u, v) I' <I>(u,v),
+I 1R(u, v) I' exp[j(ux; + v(Yo + y)]

j=)

o (u v) = qu, v) x
jar' D(u, v)+ 1R(u, v) I'

(2.25)
From Eq. (2.25), it is evident that all terms involve constant magnitude spectra, and

only the third term produces a sharp correlation peak while the remaining correlation

peaks are steared outside the correlation due to the application of the phase mask.

Now consider a case involving one target fl(x-X],Y-YI) and a non-target object f,(x-x"y-
y,). Then, Eq. (2.24) can be written as
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C(u, v) ,
,OfO{(u,v)= ,x[2IR(u,v)1 x<D(u,v)
. . D(u, v)+ I R(u, v) I

+ IT,(u, v) I' x<D(u,v)+ IR(u, v) I' explj(ux\ + v(Yo + y\))
+ IR(u, v) I' exp[- j(ux\ + v(Yo + y\))] x <D(u,v)

.+ I T,(u, v) I x I R(u, v) I exp[j(ux, + v(Yo + y,))
+ I T,(u, v) I x 1R(u, v) I exp[ - j(ux, + v(Yo + y,)) x <D(u,v)

, ,
+ il: 2:T,(u, v) II T,,(u,v) I cos[<D,(u, v) - <D'k(u, v) - ux, - uxk - vy, - VYk]x <D(u,v)

j",] k=l,k~i

(2.26)

In Eq. (2.26), only the first, third and fourth terms contain constant magnitude spectra,

while the remaining terms contain magnitude spectra amplitude-modulated by the

corresponding non-target objects. Therefore, D(u, v) must be selected to ensure that the

desired correlation peak is significantly higher than false alarms.

2.6.2 Simulation Results

The performance of PFJTC technique is investigated for binary images of character as

shown in Fig. 2. II (a). In the Figure, the character 'E' on the right side represents the

reference image and the characters 'E', 'A', 'T' and 'E' on the left side represent the

input scene images. Thus, as in this case, the input scene contains both target and non-

target images.

~
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Fig. 2.11 (a): Input joint image with multiple identical targets

and multiple non-target objects
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Fig. 2.11 (b): PFJTC output of fig. 2.11 (a) with C=I and D=le-4

The simulation is performed for an optimal value of D(u,v) to get the best performance

of fringe-adjusted filter. Here the values used for FAF parameters are C(u,v)=1 and .~T1
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D(u,v)=1 0-4• Fig. 2.11 (b), shows the PFJTC output for the joint image of Fig. 2.11 (a).

From Fig. 2.11 (b), it can be easily deduced that the PFJTC technique efficiently

eliminates the zero-order terms and other false alarms. This technique also produces a

single delta-like sharp peak per each target instead of a pair of peaks and thus ensures

better utilization of space bandwidth product.

For a pair of peaks per target object, it is always a complicated task to locate the exact

position of the object. In FJTC technique, with the increase of target objects, the

correlation plane is over crowed with pair of peaks and makes the target detection job

more and more tedious. On the other hand, in PFJTC technique only a single peak is

produced for each target and makes the target detection job easier. Here all the

processing tasks can be performed in a single step and therefore, this technique is

always a preferred one where processing time is a severe constraint. However, the

performance of the system is very much input scene dependent and therefore, a

modification is proposed in the next chapter.

2.7 Conclusion

This chapter describes the various JTC techniques for optical correlation purposes. A

classical JTC technique is the simplest one but it suffers from large correlation width,

strong zero-order term and low optical efficiency. Image subtraction technique with

classical JTC technique, eliminates the false alarms and zero-order terms present in the

classical JTC technique. But here still the correlation peaks are wide and there is

presence of side-lobes in the output plane. To overcome this problem, the modified JPS

after image subtraction, is multiplied by the transfer function of a real valued fringe-

adjusted filter. Incorporation of FAF, produces sharp delta-like correlation peaks for

each target object and there is almost none or negligible correlation peaks for non-target

objects. Instead of producing a single fringe-adjusted filter, a family of filters is

generated by using a generalized FAF transfer function. Here by varying a single

~l-

(',
i \,

o
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parameter (i.e. m), the GFAF can be performed as a classical lTC filter, phase-only

filter or fringe-adjusted filter. All of the above techniques are multi-step processing

techniques and therefore, these cannot be used where processing time is a severe

constraint. To overcome this problem, a PFlTC technique is employed where a random

phase mask is used to steer the unnecessary signal outside of the correlation plane. In

PFJTC technique, all the processing is performed in a single step and furthermore, it

produces single correlation peak for each target object instead of a pair of peaks.

Therefore, PFJTC technique provides ultra-high-speed processing with better utilization

of space bandwidth product of output plane. Simulation results validate the performance

of all the techniques.
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Chapter 3

EFFICIENT
ALGORITHM

3.1 Introduction

MULTIPLE TARGET DETECTION

If the input scene contains multiple identical target objects, then in addition to desired

cross-correlation peaks between the reference and target object, additional peaks will be

generated due to dc terms and other false alarms produced by the correlation of the

target objects themselves. Presence of these extraneous signals complicates the target

detection process to a great extent. The exclusion of correlation peaks produced by

similar target or non-target objects eliminates the possibility of false alarms in the

output plane. Fourier plane image subtraction, correlation plane image subtraction or

power-spectrum subtraction technique may be employed to remove the zero-order

diffraction term and other false alarms. All these techniques require a multi-step

processing technique and therefore these cannot be applied where processing time is

crucial constraint. Moreover, existing JTCs utilize at most 50% of the input plane

spatial light modulator (SLM) to display the input scene and only 50% of the output

plane to detect the correlation output. Thus these techniques cause a poor utilization of

space bandwidth product (SBP). The phase-encoded FJTC technique can overcome this

problem by using separate input and reference planes and yields a single correlation

peak per target instead of a pair of peak. Thus PFJTC ensures the better utilization of

space bandwidth product. However, for multi-object target in noisy input scenes, the

PFJTC technique may require the adjustment of a parameter used in the FAF

formulation for successfully detecting a target. To overcome the aforementioned

problem and, at the same time, to enhance the correlation peak intensity, a phase-shifted

PFJTC (PSPFJTC) technique is proposed here, which involves the phase-shifted power

spectrum subtraction technique and the PFJTC technique. This technique requires only
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one extra processing step compared to PFJTC technique but the performance of the

system is much than that of the PFJTC technique.

3.2 Multi-target Detection

3.2.1 Theoretical Analysis

Let rex, y +Yo) represents the reference image and t(x, y - Yo) represents the input

scene containing nobjects t\(x-xl'Y- y\), t,(x-x"Y- Y,),

tn (x - X n ' Y - Y n ) . Fig. 3.1 shows the block diagram of the proposed scheme. A random

phase mask is used in this technique as expressed in Eq. 2.19. Here, the reference image

is Fourier transformed and fed to two channels, as shown in Fig. 3.1, where one channel

introduces 1800 phase shift. Then random phase mask is applied to both the channels

and the resultant signals are given by

8\ (u, v) =1 R(u, v) 1exp[i<l>,(u, v) + ivyo] x <l>(u,v)

8,(u, v) =1 R(u, v) 1exp[j 7Z' ]exp[j<l>,(u, v) + ivyo] x <l>(u,v)

Applying inverse Fourier transform to Eqs. (3.1) and (3.2), we get

s\(x,y) = r(x,y+ Yo)0~(x,y)

s,(x,y) = -r(x,y+ yo)0~(x,y)

(3.1)

(3.2)

(3.3)

(3.4)

The input scene is then added to both channels to form two input joint images, given by
n

f,(x,y) = r(x,y+ yo)0~(x,y)+ Lf;(x,y-y;)
i=\

n

j,(x,y) = -r(x,y+ yo)0~(x,y)+ Lt;(x,y- y;)
1=1

(3.5)

(3.6)

The 1800 phase-shifted version of the reference image, S2 (x, y), can be displayed in a

SLM by adding a dc value as suggested by Yu et. al. [30]. Applying Fourier transform

to Eqs. (3.5) and (3.6), we get
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Figure 3.1: Architecture of the proposed PSPFJTC scheme
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n •

.. I F;(u, v) ['=1 R(u, v) [' +2:1 T(u, v) I' + 2:R(u, v)T,'(u, v)exp(J(vyo - vY,)] x <1>(u,v)
i",] j",1

n n n

+ 2:R'(u,v)T,(u,v)exp(-j(vyo ~vy,)]x<1>'(u,v)+ 2: 2:T,(u,v)T.'(u,v)exp(-j(vy, -VYk)]
;",1 j",) hl,k ••.;

n n

+I IT,'(u,v)T.(u,v)exp(J(vy, -VYk)]
r:=) k=1,k",;

(3.7)

and
n n

IF, (u, v) 1'=1R(u, v) [' +II T(u, v) I' - IR(u, v)T,'(u, v)exp(j(vyo - vy,)] x <1>(u,v)
1_1 i_I

n n n

- IR'(u,v)T,(u,v)exp(-j(vyo -vy,)]x <1>'(u,v) +I IT,(u,v)T;(u,v)exp(-j(vy, -VYk)]
1=1 j",lk",l,k ••.i

n n

+I IT,'(u,v)T.(u,v)exp(J(vy, -VYk)]
i=1 k=l,k ••.i

(3.8)

The JPS corresponding to Eqs. (3.7) and (3.8) can be calculated in parallel and does not

have detrimental effect on the processing speed. The phase-encoded JPS ofEq. (3.8) is

then subtracted from that ofEq. (3.7) and the corresponding output is multiplied by the

phase mask yielding

P(u, v) = ~F;(u, v) I' -I F,(u, v) I'Jx <1>(u,v)
n

IR(u, v)T'(u, v)exp(J(vyo - vy,)] x <1>(u,v)
.= 2 '=1 .

n

+ IR' (u, v)T,(u, v)exp(- j(vyo - vy,)] x <1>'(u,v)
i=1

x <1>(u,v)

(3.9)
n

= 2I R(u, v)T,'(u, v)exp(J(vyo - VY,)] x <1>(u,v) x <1>(u,v)
1=1

n

+ 2IR'(u, v)T,(u, v)exp( - j(vyo - vy,)] x <1>'(u, v) x <1>(u,v)
j",oj

It is obvious from Eq. (3.9) that the zero-order term and the false alarms are eliminated

due to the application of the random phase mask. The modified JPS obtained in Eq.

(3.9) is then multiplied by the FAF transfer function, yielding C":,

/.

)
~.
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Pfaf (U, v) = P(u, v) x H(u, v)

2C(u,v)=-------x
D(u, v)+ 1 R(u, v) 1

2

"LR(u, v)T;" (u, v)exp[j(vyo - vy;)] X <!l2(U, V)
i=1

"+ 2LR" (u, v)T;(u, v)exp[ - j(vyo - vy;)]
i=l

(3.10)

(3.11)

Finally, the inverse Fourier transformation of Eq. (3.10) produces the desired

correlation output. Assume that the input scene contains two objects, where (I (x,y-YI) is

the target object and (2(X,y-Y2) is the non-target object. Assuming C(u,v)=1 for unity

gain andl R(u, v) 1
2» D(u, v), Eq. (3.10) becomes

Prar(u, v) ~ 2P(u, v)x I R(u, v) 1-2

~ 2exp[ - jVYl] + 2 T; (u, v) exp[j(<!l, (u, v) - <!lt2(u, v) - VY2)]+ ..: ...
R(u, v)

Here, the first term produces a delta like correlation output for the target object, but the

second term contributes negligible correlation output due to the mismatch between the

reference and non-target objects.

3.2.2 Edge Extraction of Images

Edge extracted images produce higher correlation peak intensity and therefore enhance

target detection performance. Here the two joint images as expressed by Eq. (3.5) and

(3.6), are edge extracted by using Roberts operator. The kernel of the extractor is given

by

+ [I 0 ]
R = 0 -I' (3.12)

Convolution of these two kernels with the two joint images and summation of the

absolute values of the outputs give the edges of the images. This is an all-digital

process. Since this technique requires the edge extraction of input scene images that are

unknown before the real time operation, this technique cannot be used where processing

time is a severe constraint.

t

t

1
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3.2.3 Simulation Results

Performance of the proposed PSPFJTC technique is investigated by considering a

binary input scene involving characters as shown in Fig. 3.2 (a), and a gray-level input

scene containing tanks and truck, as shown in Fig. 3.3 (a). In Fig. 3.2 (a), the letter Eon

the right side is used as the reference image and a set of four binary characters E, A, T,

E, is used as the input scene. In Fig. 3.3 (a), the tank in the upper half of the input joint

image represents the reference image and the set of two tanks and a truck represents the

input scene. The simulation tests are performed using the MATLAB software package.

The correlation output obtained using classical JTC technique is shown in Figs. 3.2 (b)

and 3.3 (b) for binary and gray-level input scenes, respectively, from where it is evident

that the classical JTC yields a poor correlation output; strong zero order term which is

truncated, as shown in figures 3.2 (b) and 3.3 (b), to make visible the desired cross-

correlation peaks; and a pair of false correlation peaks due to autocorrelation between

two similar input scene targets. To eliminate the zero-order term and false alarms, and

to suppress the effects of input scene clutter, Fourier plane image subtraction is applied

[15] and the corresponding correlation output for Figs. 3.2 (a) and 3.3 (a) are shown in

Figs. 3.2 (c) and 3.3 (c), respectively. Although the Fourier plane image subtraction

improves the correlation output of a classical JTC, the width of the correlation peak is

still very broad.
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Fig. 3.2 (a): Binary joint input image

Fig. 3.2 (b): Classical JTC output of fig. 3.2 (a)
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Fig. 3.2 (c): JTC output of fig. 3.2 (a) after image subtraction

I

\I~I':;

Fig. 3.2 (d): FJTC output of fig. 3.2 (a) with image subtraction
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Fig. 3.2 (e): PFJTC output of fig. 3.2 (a)

.'

Fig. 3.2 (1): PS PFJTC output of fig. 3.2 (a)



Fig. 3.3 (a): Gray level joint input image
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Fig. 3.3 (b): Classical JTC output of fig, 3.3 (a) / ---',
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Fig. 3.3(c): JTC output after image subtraction of fig. 3.3 (a)
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'S(~
Fig. 3.3 (d): FJTC output with image subtraction of fig. 3.3 (a)
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Fig. 3.3 (e): PFJTC output of fig. 3.3 (a)
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Fig. 3.3 (f): Phase shifted PFJTC output offig. 3.3 (a)
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When the FJTC technique is applied to the input scenes of Figs. 3.2 (a) and 3.3 (a), the

corresponding correlation output using Fourier plane image subtraction are shown in

Figs. 3.2 (d) and 3.3 (d), respectively. The simulation test was performed by setting the

parameters C(u,v) = I and D (u,v) =10-4 and the figures depict that the FJTC technique

yields a pair of delta-function-like correlation peaks for each input scene target.

Figures 3.2 (e) and 3.3 (e) show the correlation output generated by the PFJTC whereas

figures 3.2 (f) and 3.3 (f) by the proposed PSPFJTC technique for the binary and gray-

level images of Figs. 3.2 (a) and 3.3 (a), respectively. In both cases a single peak is

generated for each target object and thus ensuring better SBP utilization.

To compare the performance of the PFJTC technique with the proposed PSPFJTC

technique, an input scene with identical targets (five tank images) is considered as

shown in Fig. 3.4 (a). The correlation outputs for the PFJTC and PSPFJTC techniques

are shown in Figs. 3.4 (b) and 3.4 (c), respectively. Here the same filter parameters,

C(u,v) = I and D(u,v) = 10-4, are used for both the techniques. Figures 3.4 (b) and 3.4

(c) show that both PFJTC and PSPFJTC techniques produce one correlation peak per

target, however, the correlation peak intensity (CPI), is higher in PSPFJTC than that in

PFJTC and PSPFJTC satisfies the ECP (equal correlation peak) intensity criteria for all

identical targets.

Next simulation is carried out for different cases of input scene having 5 objects where

the number of targets and number of non-targets are varied gradually replacing each

desired target tank by each non-target truck till the input image contains only one target

tank and four non-target tucks. Both the PFJTC and PSPFJTC technique can produce

distinct correlation peaks with the same FAF parameters as in previous simulation. The

results are summarized in Table 3.1 for different combinations of input scene and as an

example, the result is shown for one condition having two tanks and 3 trucks in Fig. 3.5

(a).



Fig. 3.4 (a): Gray level joint input scene of 5 tanks as target, without noise
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1: •

Fig. 3.4 (b): PFJTC output of fig. 3.4 (a) with D=IO.4

:.

,>'"'

Fig. 3.4 (c): PSPFJTC output of fig. 3.4 (a) with D=IO-4



Fig. 3.5 (a): Gray level joint input scene without noise of2 tanks as target and

3 trucks as non-target
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Fig. 3.5 (b): PFJTC output offig, 3.5 (a) with D=1O-4
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Fig. 3.5 (c): PS PFJTC output of fig. 3.5 (a) with D=1O-4 /,
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To investigate the nOise robustness of the PSPFJTC technique, additive noise with

signal-to-noise ratio (SNR) of 0 dB is added to the input scene as shown in Fig. 3.6 (a)

and 3.7 (a). It is obvious from the correlation outputs in Fig. 3.6 (b), 3.6 (c), 3.7 (b) and

3.7 (c) that PSPFJTC technique can produce distinct correlation peaks with the same

FAF parameters used without noise whereas PFJTC failed to detect desired targets for

input scene including 3 or more identical targets. Though PFJTC can detect single or

two target(s) in the noisy input scene, the correlation output is corrupted by strong noise

as shown in figure 8(b) for the input scene with two tanks and three trucks in Fig. 3.7

(a). To detect 3 or more identical targets in presence of noise by PFJTC the value of the

parameter D should be greater than that is used for noise-free scene and still with the

changed value, it produces correlation peaks of non-uniform heights for similar targets.

Moreover, the correlation output is overflowed by such noise that the difference

between the minimum target peak and maximum noise peak is negligible as shown in

figure 3.6 (d) as an example with five similar tanks. As far we have examined, PFJTC

provides best result for noisy input scene with D= 10-3 irrespective of number of targets

as shown in figures 3.6 (d) and 3.7 (d) while PSPFJTC offers best result for either

D= 10-4 or D= I0-3 with noise free or noisy input scene having any number of similar

targets as shown in figures 3.6 (c), 3.6 (e), 3.7 (c) and 3.7 (e). So the PSPFJTC

technique has better noise robustness compared to the PFJTC technique and it produces

almost uniform cpr for all the targets and most importantly in case ofPFJTC technique,

the FAF parameters need to be readjusted for getting correlation peaks having 3 or more

targets in the noisy input scene which is not a feasible condition for real time target

detection process.

-,
! '\

U



Fig. 3.6 (a): Gray level joint input scene with noise of 5 tanks as target

66



. ,

Fig. 3.6 (b): PFHC output of fig. 3.6 (a) with D=IO'4
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Fig. 3.6 (c): PS PFJTC output of fig. 3.6 (a) with D=lO-4
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Fig. 3.6 (d): PFJTC output of fig. 3.6 (a) with D=IO"J
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Fig. 3.6 (e): PSPFJTC output of fig. 3.6 (a) with D=IO-J



Fig. 3.7 (a): Gray level joint input scene with noise of2 tanks as target and

3 trucks as non-target
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Fig. 3.7 (b): PFJTC output of fig. 3.7 (a) with D=1O.4

J:J
~..

Fig. 3.7 (c): PS PFJTC output with D=1O.4
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Fig. 3.7 (d): PFJTC output of fig. 3.7 (a) with D=\O-3

..
# .. t't"""ll~

J 1; -.

Fig. 3.7 (e): PSPFJTC output of fig. 3.7 (a) with D=1O-3
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The detection performance by PFJTC and PSPFJTC are summarized in Table 3.1 and

3.2 for noise free and noisy input scene respectively. From the comparative study it is

obvious that the PSPFJTC technique produces the desired uniform correlation peak

irrespective of the number of objects and presence of noise in the input scene, which

makes it an efficient method for multiple target detection.

Table 3.1: Performance comparison for noise free input scene
. Input Scene Objects PFJTC PSPFJTC

without Noise D Peakmllx Peakmin P min/Pmax D Peakmllx Peakmin PminlPmllx
5 tanks 10" 4.4x I0" 4.17 xlO" 0.95 10" 3.2xlO" 3.2 xlO" I

4 tanks, I truck 10" 5.45 xIO" 5.36 xlO" 0.98 10' 4 xlO" 4 xIO" I
3 tanks, 2 trucks 10" 7 xIO" 6.82 xIO" 0.97 10' 5.2 xIO') 5.2 xIO" I
2 tanks, 3 trucks 10'4 9.4xI0" 9 xIO" 0.96 10-' 6.4xlO" 6.3 xIO" 0.98
1 tank, 4 trucks 10" 1.3 xIO" 10" 8.3xI0"

Table 3.2: Performance comparison for noisy input scene
Input Scene PFJTC PSPFJTC
Objects D Peakmax ! Peakmin J Pmini? max D Peakmax Peakmin Pmi/Pmax

with Noise
5 tanks 10" Can not detect 10" 1.66x10' 1.44xI0" 0.87

4 tanks. I truck 10" Can not detect 10-' 2.26xI0" 1.83x I0" 0.81
3 tanks. 2 trucks 10" Can not detect 10' 3.43xI0" 3.24xlO'o 0.94
2 tanks, 3 trucks 10'4 I.67xI0'O I 1.47x10' I 0.88 10' 5.27xI0.8 5.lxI0'o 0.97
1 tank, 4 trucks 10.4 3xI0" I I 10' I.04xlO'

Input Scene Objects PFJTC PSPFJTC
with Noise D Peakmax Peakmin Pmin/Pmal( D Peakmllx Peakmin Pmin/Pmax
5 tanks 10" I.I !xIO" 7.5xI0'w 0.68 10" 3.4x I0-' 2.9xI0" 0.85

4 tanks, 1 truck 10') 1.84xl0" 1.31xlO" 0.71 10" 4.43xlO" 4.24xI0" 0.96
3 tanks, 2 trucks 10" 2.6xl0" I.6x I0.0 0.61 10" 7.26xI0'0 7xI0" 0.96
2 tanks, 3 trucks 10') 3.4xI0" 2.9xI0' 0.85 10" 1.18xI0" 1.15xIO" 0.97
I tank, 4 trucks 10" 5xI0" 10" 2.17xI0'S

(
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3.3 Class-associative Target Detection

3.3.1 Theoretical Analysis

Class-associative target detection means detecting a group of objects, which may be

similar, slightly similar or totally dissimilar. The class-associative target detection

technique is formulated by combining the algorithm discussed in the previous section

and an enhanced version of the generalized fringe-adjusted filter. The main advantage

of the proposed scheme is that here the no of processing steps is always fixed

irrespective of the number of included objects in a class.

3.3.1.1 Two Objects in a Class

Let, r, (x,y) and r, (x, y) be the two reference images in a class and t(x,y) be the input

scene image containing various unknown objects. First, each of the reference image in a

class, is placed side-by-side using a SLM to form a composite joint reference image as

expressed by

r(x,y) = r,(x,y- y,)+r,(x,y- y,) (3.13)

This composite joint reference image is then phase encoded and phase shifted as

expressed by Eq. (3.1) to Eq. (3.4) in the previous section and then two joint images are

formed which are also expressed by Eq. (3.5) and Eq. (3.6).

After Fourier transformation of these two j oint images, we get JPS as

"-~,.-..,.,'.
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1 F;(u,v) 1 = L,I R,(u,v)x<!>(u,v) I +R,(u,v)R,(u,v)+R, (u,v)R,(u,v)
j",J

n n

+ III;(u, v) I' + IR,(u, v)I;' (u, v)exp[j(vy, - vy,)] x <!>(u,v)
j=] 1=1

n

+ IR, (u,v)I;' (u,v)exp[j(vy, -vy,)]X<!>(U,V)
i=[

n

+ IR;(u,v)I;(u,v)exp[-j(vy,-vyJ]X<!>'(U,V)
i",]

n

+ IR;(u,v)T,(u,v)exp[-j(vy, -vY,)]X<!>'(U,V)
i=1

n n

+I II;(u,v)T;(u,v)exp[-j(vy, -vyJ]
i=] k=].k"."

II 11

+I II;'(u,v)7;,(u,v)exp[j(vy, -Vh)]
j=! k=l,k~i

(3.14)
,

IF, (u, v) I'= IIR,(u, v) x <!>(u,v) I' + R, (u, v)R; (u, v) + R; (u, v)R, (u, v)
j=]

n n

+III;(u, v) I' - I R, (u, v)T,' (u, v) exp[j(vy, - VY,)]x <!>(u,v)
j=] i=d

n

- IR,(u,v)T,'(u,v)exp[j(vy, -vy,)]X<!>(U,V)
1=1
n

- IR;(u,v)T,(u,v)exp[-j(vy, -vy,)]X<!>'(U,V)
i=l
n

- IR;(u,v)T,(u,v)exp[-j(vy, -vy,)] x <!>'(U,V)
i=1
n n

+I IT,(u, v)T; (u,v) exp[-j(vy, -VYk)]
1=1k=l,hi

11 11

+ I IT,'(u, v)Tk (u, v)exp[j(vy, -VYk)]
1=1 k=l,kM

(3.15)

Again, calculation of these two JPS has no detrimental effect on processing speed, as in

both the channels processing can be performed in parallel. Again, the steps are always

fixed irrespective of the number of objects in the class. Then the phase encoded JPS in

c
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Eq. (3.15) is subtracted from that III Eq. (3.14) and the resultant signal IS again

multiplied by the phase mask. Thus,

P(u, v) = ~F;(u, v) I' -I F,(u, v) I'Jx <D(u,v)
n

= 2[2:R, (u, v)J;' (u, v)exp[j(vy, - vyJ] x <D(u,v)
1=]

n

+ 2:R, (u, v)J;' (u, v)exp[j(vy, - vyJ] x <D(u,v)
i=1
n

+ 2:R;(u,v)J;(u,v)exp[-j(vy, -vyJ]x<D'(u,v)
j=]

n

+2:R; (u, v)J; (u, v)exp[ - j(vy, - vy,j] x <D' (u, v)] x <D(u,v)
1=1

n

= 22:R,(u, v)J;' (u, v)exp[j( vy, - vy;)] x <D(u,v) x <D(u,v)
i=]

n

+ 22:R, (u, v)J;' (u, v) exp[j(vy, - vy,j] x <D(u,v) x <D(u,v)
j=]

n

+ 2IA' (u, v)T,(u, v)exp[ - j(vy, - vyJJ x <D' (u, v) x <D(u,v)
i=l
n

+ 22:R; (u, v)J;(u, v)exp[ -j(vy, - vyJJ x <D' (u, v) x <D(u,v)
i=j

(3.16)

Due to random nature of phase mask, the first and second terms of Eq. (3.16) are

scattered in various directions, and only one cross-correlation term exists between the

reference images and each target object, which will contribute single correlation peak

per target in the output plane.

Next we have developed an enhanced version of GFAF, which can be expressed as

H(u v) _ qu, v)
, D(u,v)+aIR,(u,v)I'" +fJIR,(u,v)I'"

(3.17)

where a+p=1. The ratio of a and p can be varied depending on the energy content of

the power spectra of the reference images in the class to get equal correlation peak.

Since the power spectra of reference images can be pre-calculated and stored,

implementation of this filter does not deteriorate the processing speed in real time.



76

Now, the JPS as found in Eg. (3.16) is multiplied by the enhanced version of the GFAF
as given by

PM(u, v) = H(u, v) x P(u, v)

qu, v) x P(u, v)
=
D( u, v) + a I R, (u, v) I'" +.8 I R, (u, v) I'"

(3.18)

Inverse Fourier transformation of Eg. (3.16), gives a sharp delta like correlation peak

for each target object in the class.

3.3.1.2 Three Objects in a Class

If there are three objects in a class, then there will be three references. Accordingly the

composite reference image can be expressed as

r(x,y) = Ij(x,y- y,)+r,(x,y- y,)+rJ(x,y- yJ) (3.19)

(3.20)

(3.21 )

Now all the processing steps are almost same as expressed in the previous section. The

only difference is that we have to formulate the GFAF as follows

H(u v) = qu, v)
, D(u,v)+aIR,(u,v)I'" +.81 R,(u,v) I'" +rIRJ(u,v)I'"

where a + .8 + r = I and R, (u, v), R, (u, v) and R,(u, v) are the Fourier transforms of

Ij(x,y), r,(x,y) and rJ(x,y) respectively.

,
Next the phase encoded JPS, calculated using the reference image as expressed in Eg.

(3.19), is then multiplied by the modified GFAF as given by

PJar(u,v) = H(u,v)xP(u,v)
C(u, v) x P(u, v)

D(u, v) + a I R, (u, v) I'" +.81 R, (u, v) I'" +rIR,(u, v)/"'

where P(u, v) is the phase encoded JPS that has been calculated using the reference

image as expressed in Eg. (3.19). Inverse Fourier transformation of Eg. (3.21) produces

a single correlation peak for each target in the class.
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3.3.1.3 Multiple Objects in a Class

For multiple objects in a class, we have just to modify the OFAF. All other processing

steps are always fixed. Again, since the OFAF fabrication can be performed and stored

before the real time operation, this modification has no detrimental effect on system

processing speed. In summary, the no of processing steps will be always fixed for two

or more objects in a class and this is the major advantage of this proposed scheme.

3.3.2 Simulation Results

Let us consider that English alphabets 'H' and 'F' are two objects forming a group or

class to be detected in a binary input scene. Then these are the two reference objects

forming the group or class. First let us assume that the input scene contains only these

two objects. Fig. 3.8 (a) shows the joint image where the left half portion indicates the

reference images and the right half portion indicates the input scene images. Now class-

associative target detection algorithm is applied as described in section 3.3.1 and the

corresponding PSPFJTC output is obtained as shown in Fig. 3.8 (b). In PSPFJTC

technique, the FAF parameters are set as C=I, D=le-9 and m=1. Thus, here we get the

phase encoded phase only correlation output of the joint image. Initially, the value of

power spectra parameters are a=0.5 and 13=0.5. Fig. 3.8 (c) shows the side view of the

correlation output. Here the values of unequal correlation peaks are 159.6665 and

148.5638. This difference is due to the difference in energy contents of the two objects.

So by adjusting the power spectra parameters as a=0.45 and 13=0.55 the correlation

output for both the targets of the class can be made equal as shown in Fig. 3.8 (d) and

(e). In this case the peak intensities are 153.9597 and 153.3183 respectively.



Fig. 3.8 (a): Binary joint image with two objects in the class and in the input scene
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Fig. 3.8 (b): Correlation output of fig. 3.8 (a) with equal values of power spectra

parameter
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Fig. 3.8 (c): Side view of Fig. 3.8 (b)
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Fig. 3.8 (d): Correlation output of Fig. 3.8 (a) with unequal values

of power spectra parameter
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Fig. 3.8 (e): Side view of Fig. 3.8 (d)
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Next we have considered the input scene with multiple objects as shown in Fig. 3.9 (a).

In this case the input scene contains two target objects representing the member of the

class and four non-target objects. The correlation output with phase-only filter and

power spectra parameters adjusted is given in Fig. 3.9 (b). In this case the values of

power spectra parameters (a and (3) are chosen as has been taken in the previous case.

Fig. 3.9 (c) shows the side view of Fig. 3.9 (b).

Fig. 3.9 (a): Binary joint image with 2 objects in the class and multiple objects in the

input scene
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Fig. 3.9 (b): Correlation output of Fig. 3.9 (a)
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Fig. 3.9 (c): Side view of Fig. 3.9 (b)
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The values of correlation peaks are 160.8953, 158.9873, 52.2917, 46.1420, 40.5454 and

29.5725 where the first two values represent the peaks for two target objects. Here it is

observed that the peak intensities for the targets are almost equal and non-target peaks

are negligible compared to target peaks. Attempts could be made by adjusting the

values of a and P to make the peak intensities much nearer. But it is insignificant and

not necessary as with the present values of a and P the ratio of maximum target peak to

minimum target peak is only 1.0120.

So, once the targets of a class are defined or chosen, the required values of power

spectra parameters can be selected by making test runs with only the desired objects of

the class in the input scene. For these however several trial and error attempts are

needed. The determined values can then be used for a real input scene with multiple .

targets and non-targets with no or negligible degradation of performance.

Now let us take three objects as the member of the target class. So there will be three

reference objects in the class or group. The joint image is shown in Fig. 3.10 (a) where

the input scene contains only the three target images. The class-associative PSPFJTC

output is shown in Fig. 3.10 (b) with equal values of power spectra parameters (i.e.

a=p=y=0.33).

Fig. 3.10 (c) shows the side view of Fig. 3.10 (b) and here the target peak intensities are

173.0164, 162.7981and 145.6842. By adjusting the power spectra parameters i.e.

a=0.328 P=0.467 and 10.205, almost equal correlation peaks are obtained as shown in

Fig. 3.10 (d) and its side view in Fig. 3.10 (e). In this case the correlation peak

intensities become 158.7356, 158.0923 and 158.0336.

~"
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Fig. 3.10 (a): Binary joint image with three objects in the class and in the input scene
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Fig. 3.10 (b): Correlation output of Fig. 3.10 (a) with equal values of u, p and y
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Fig. 3.10 (c): Side view of Fig_ 3.10 (b)
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Fig. 3.10 (d): Correlation output with unequal u, ~ and y
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Fig. 3.10 (e): Side view of Fig. 3.10 (d)
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Next we have placed these three objects in a multi object input scene and correlation

output is obtained with the same values of power spectra parameters as are used in the

correlation output shown in Fig. 3.10 (a) and (b). First of all, the joint image is shown

in Fig. 3.11 (a) and its correlation output in Fig. 3.11 (b) and (c) where Fig. 3.11 (c) is a

side view of Fig. 3.11 (b). In this case the input scene contains four target objects;

therefore we should get four distinct and almost equal peaks. From Fig. 3.11 (b) and (c),

four distinct target peaks are evident but they are not all equal. This is due to the

random nature of phase mask used in PSPFJTC technique. The peak intensities of

correlation output are 172.6194, 159.2031, 156.9767, 138.5146,53.3552 and 51.7385;

where the first four values represent the peak intensity of four target objects.

Fig. 3.11 (a): Binary joint image with 3 objects in the class and multiple objects in the

input scene
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Fig. 3.11 (b): Correlation output of Fig. 3.11(a)
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Fig.3.11 (c): Side view of Fig. 3.11 (b)
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The ratio of maximum target peak to minimum target peak is 1.2462 and the ratio of

minimum target peak to maximum non-target peak is 2.5961. Since the later one is

2.0832 times higher than that of the former one, this deviation of peak intensities is

quite acceptable.

3.4 Conclusion

In this chapter a novel technique named PSPFJTC is proposed for improved pattern

recognition that employs phase shifting and phase encoding methods along with fringe

adjusted filter for optimization of the correlation performance. The proposed PSPFJTC

technique yields single correlation peak per target and thus ensures the best utilization

of input and output plane SBP. This technique overcomes the limitations of currently

available PFJTC technique, which is found to be very much sensitive to the number of

non-targets and the presence of noise in the input scene. The proposed PSPFJTC

technique can detect the targets from an input scene at any condition of non-target and

also in presence of noise, with the same system parameters. Computer simulation

confirms the effectiveness of the technique in multiple target detection. Next we have

proposed an efficient high-speed class-associative target detection algorithm for the

detection of a class of objects. The proposed algorithm utilizes multi-reference-based

PSPFJTC technique along with an enhanced version of generalized fringe-adjusted

filter. In this technique, the number of channels and number of processing steps are

always fixed irrespective of number of objects in the class whereas in the previous

methods the number of processing steps and number of channels are always increased

for the same situation. Thus the proposed method. ensures high-speed and low cost

compared to other methods. Simulation results prove the validity of the proposed

method.
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Chapter 4

PROJECTION SLICE SYNTHETIC DISCRIMINANT
FUNCTION-BASED JOINT TRANSFORM CORRELATION

4.1 Introduction

All JTC techniques provide shift invariance property in the input scene while suffer

from high sensitivity to distortions such as scale variations and rotation. A classical JTC

has a rotation invariance of i:1 degree. To overcome this problem, several researchers

have incorporated the synthetic discriminant function (SDF) formulation with JTC

techniques. Distortion invariant pattern recognition using fractional power fringe

adjusted joint transform correlation technique has been proposed which can successfully

detect multiple distorted targets [61]. Recently, some researchers have introduced

projection slice theorem with SDF formulation to achieve distortion invariance [62].

According to projection slice theorem, a set of projections is taken from each of the

training images and then each projection is converted to a ID dimensional Fourier slice.

Finally, combining all of these Fourier slices forms a composite image. This composite

image then can be used for detection of distorted objects. Now most of the JTC

techniques produce a pair of correlation peaks for each target. Again for multiple target

detection, the discrimination ratio between target and non-target objects is not so high.

Here, we have introduced the projection slice synthetic discriminant function (PSDF)

formulation with FAF. A phase encoded and phase shifted version of the reference

image is used to produce a single correlation peak per target. Finally, a post processing

technique has been adopted to increase the discrimination between similar target and

non-target objects. Computer simulations show that the proposed technique can realize

not only distortion invariance but also produces a sharp single correlation peak with

high discrimination ratio.
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4.2 Synthetic Discriminant Function

For distortion invariant pattern recognition, the reference image r(x,y) is synthesized

from a set of training images. Let us assume that the N training images, Ij (x,y),

r,(x,y), r,,(x,y), containing the desired distortion invariant features, are

used to construct the spatial SDF r'd{(x,y). Typically, the r'd/(x,y) is a linear

combination of the training images as given by
n

r'd/(x,y) = La, x r,(x,y)
i=1

(4.1)

(4.2)

where aj represents the weights or coefficients used. This composite image is used as

reference image for all types of JTC for distortion invariant recognition. In FJTC

technique the OFAF is now modified as

H"d{ ( ) _ C(u, v) ,
gfal U, v - m

, D(u, v) + IR",{(u, v)1

where R'd/(U, v) is the Fourier transformation of the spatial SDF r'd{(x,y). The SDF-

based JPS is obtained by multiplying the JPS with the filter function of Eq. (4.2). This

modified JPS is inverse Fourier transformed to obtain the correlation output.

4.3 Projection Slice SDF

According to projection slice theorem, the ID Fourier transformation of the projection

of an image is equivalent to a ID Fourier slice of that image taken on the line specified.

The ID projection ofa functionj(x,y) along a line 1 and at an angle~, is given by

g(rjJ,s) = fj(x,y)dl
I

All points on this line satisfY the equation

xsinrjJ - ycosrjJ = s

(4.1)

(4.2)

where s is the distance from the origin. Now the projection function can be written as



,

g(rp,s) = f ff(x,y)8(xsinrp - ycosrp - s)dxdy

The ID Fourier transformation ofEq. (4.3) is given by

G(rp,OJ) = fe-J<"'g(rp,s)ds
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(4.3)

(4.4)

Eq. (4.4) represents the ID Fourier slice of the 2D Fourier transform of the function

f (x, y). Now combining all the Fourier slices, we can get back the original function

again. Substituting the value of g(rp,s) in Eq. (4.4) and using the shifting property of

Dirac delta function we get

G(rp,OJ) = f ff(x,y)e-JWiHiO ~-Y'O'~)dxdy

Ifwe make change of variables from rectangular to polar coordinate, then from Eq.

(4.5)f(x, y) can be written as

f(x,y) = 4~2 f fG(rp,OJ)eJ<viHiO~-Y"'~) I OJ I doxirp

(4.5)

(4.6)

where I OJ I is the determinant of the Jacobian of the of the change of the variable from

rectangular to polar coordinate.

Now if we take M equispaced projections of each of the N training Images, the

separation in angle of the mth slice of nth training image is expressed as

m 7r n7r
rPmn = +--

M MN
n = 0,I, 2, N -I
m = 0, I, 2, M -I

(4.7)

The generalized projection slice synthetic discriminant function filter transfer function

can be defined by
N M

R(u, v) = L L:aPn (OJcos rp,OJsin rp)8(rp - rpmn) I OJ I
n=O m=O

(4.8)

where Gn is the Fourier transform of the nth training image and an is a normalization

factor similar to that used in SDF filter design. The relation between rectangular (u, v)

and polar (OJ,rp) coordinate can be given (\
I

i
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OJ = .Ju' +v',
u = OJcos(rp),

rp = tan-I(.!:.)
u

v = OJsin(rp)
(4.9)

Inverse Fourier transformation of Eq. (4.8) produces a composite image. If we use this

composite image as a reference image then it is possible to obtain the distortion

invariant pattern recognition.

4.4 Calculation of Weighting Factor

To calculate the weighting factor Gk , k=1,2, , N , for N training images rk ,

k=1,2, ,N respectively, we have employed a simple iterative method. First ofall,

all the weight factors are taken as unity. Then a fixed number of slices are taken from

each of the training image and finally all the slices are placed according to the angle

difference as expressed in Eq. (4.7). Finally, 2D inverse Fourier transform of all these

slices give the composite image. This composite image is now used as the reference

image to find the correlation with all the other training images.

First of all, we find the correlation output of the composite reference image generated

previously with all the training images. In the first iteration of finding the correlation

with the training set, unequal correlation peak intensities are obtained due to

dissimilarity in the training images of training set. Since our main aim is to make equal

correlation peaks for all the training images, the weighting factor associated with each

training image is updated according the following formula

i+l i (i i)
Gk = Gk + 7J x Pm" - Pk (4.10)

where Gk is the weight factor for the k1h image of the training image, i is the iteration

number, pmax is the maximum correlation heights obtained from all the training images

in a particular iteration number and Pk;5 is the correlation peak for the k'h image. 7J is

a relaxation factor and the value of which has the direct effect in changing the values of

weighting factor from previous iteration to the next iteration. With the new values of 1'\
. I

"
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weight factor, the slices of the composite reference image are updated again and the

modified reference image is used for the next iteration. This iterative process is

continued until the correlation peaks for all the training images are equal or the

difference between the maximum and minimum peak reaches a predetermined value.

This limiting value of error is expressed as
, ,

~I = Pmax ~ Pmin

Pmax
(4.11 )

where ~i is the error factor obtained in the i'h iteration, P:n" is the maximum correlation

peak and P;nin is the minimum correlation peak obtained in the i'h iteration. The

composite Image thus obtained is the desired projection-slice SDF (PSDF) based

composite reference image.

4.5 Simulation Results

To investigate the performance of the PSDF based technique for composite Image

generation, we first test the projection-slice theorem for image projections and

reconstruction. For simulation purpose we use an undistorted binary character 'E' of

size 32x32 pixels. Then a number of projections are taken from this image and finally

the image is reconstructed using the projections of the image. For image projections and

reconstruction, we have used the radon and iradon routine of MATLAB software. Fig.

4.1 (a) shows the binary character 'E'. Fig. 4.1 (b), (d) and (f) show the plot for different

number of projections taken from the original image whereas Fig. 4.1 (c), (e) and (g)

show the corresponding reconstructed image.
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Fig 4.1 (a): Original binary image of 'E' character
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Fig 4.1 (b): 10 projections of fig. 4.1 (a)
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Fig 4,1 (c): Reconstructed image of fig. 4.1 (a)
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Fig 4.1 (d): 60 projections offig. 4.1 (a)

Fig 4.1 (e): Reconstructed image of fig. 4.1 (a)
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Fig 4.1 (f): 180 projections of fig. 4.1 (a)

Fig 4.1 (g): Reconstructed image of fig. 4.1 (a)
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From these figures, it is evident that the number of projections taken is an important

factor to reconstruct the original image. Higher the number of projections, the smoother

is the reconstructed image. Theoretically, an infinite no of projections is required to

reconstruct the actual original image. Thercforc, all the reconstructed images using

projection-slice theorem contain somc amount of distortion and this is an inherent

property of this method. In all the practical cases, a certain amount of distortion is

allowed and for this reason, the number of projections must not be less than a

predefined quantity.

4.5.1 Composite Image Formation using Two Training Images

Here we form a composite image using PSDF technique using only two training images.

Fig. 4.2(a) shows the two training images. Between the two training images, one is the

original image and the second one is the 90° in-plane rotated version of the original one.

Fig 4.2(a): 2 training images



Fig 4.2 (b): 90 projections from each of the training images of fig. 4.2 (a)

Fig 4.2 (c): Composite image using 2 training images in fig. 4.2 (a)
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Fig 4.2 (d): 60 projections from each of the training images of fig. 4.2 (a)

Fig 4.2 (c): Composite image using 2 training images in fig. 4.2 (a)
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Fig 4.2 (1): 120 projections from each of the training images of fig. 4.2 (a)

Fig 4.2 (g): Composite image using 2 training images in fig. 4.2 (a)
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For composite image formation, the number of projections from each of the training

image must depend on the image number of the training set and the projection number

can be expressed as

(180)M = round N (4.12)

where M is the number of projections taken from each training image and N is the total

number of training images. Fig. 4.2 (b) and (c) show the composite placement of all the

projections taken from each of the training image as described in Eq. (4.7). In Fig. 4.2

(b), the number of projections taken is 90 for two training image as expressed by Eq.

(4.12). But, in Fig. 4.2(d) and (t), an arbitrary number of projections are taken and in

this case, tbe number of projection is 60 in Fig. 4.2(d) and 120 in Fig. (t). Fig. 4.2(c), (e)

and (g), show the corresponding reconstructed composite image.

From the simulation output, it is obvious that only the Fig. (c) incorporates the

necessary information of all the training images while the other composite images

contain some erroneous information of the training set. This results due to the over or

under number of slices in the composite image formation. Another important thing is

that with the increase of training images, the number of slices will be reduced which

may cause information loosing from each of the training image. Therefore, the number

of training images and tbe number of slices must require an optimization for generation

of a less distorted composite image.

4.5.2 Composite Image Generation for In-plane Rotation

For generation of composite image from a set of training images containing in-plane

rotation, we have used binary character 'E' of 32x32 pixels. For simulation purpose, we

have taken 9 training images rotated an interval of 5 degree. Therefore, the required

number of slices for each training image is 20 and the maximum rotation distortion that

is incorporated with this training image is 45 degree. To calculate the correlation peaks

l



104

after successive iteration, we have used phase-only JTC technique since it performs

better for distorted images.

Fig 4.3 shows the nine (9) training images containing only in-plane rotation. Fig. 4.4 (a)

shows the composite image where weight factors are all unity. To get an almost equal

peak criterion, we have set the maximum number of iteration equal to 50 and the error

limit equal to 0.01. Fig. 4.4 (b) shows the correlation output after first iteration. From

figure 4.4 (b), it is observed that initially the peaks are not all equal due to dissimilarity

between the training images.

Fig 4.3: Training images
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Fig 4.4 (a): Composite image using equal (=unity) weight factor
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Fig 4.4(b): PSPFJTC output of all training images in fig. 4.3
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Fig 4.5 (a): Composite image after 100 iterations
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Fig 4.5 (b): PSPFJTC output of all training images in fig. 4.3
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Fig 4.5 (a) shows the weighted composite image after 100 iterations. The corresponding

correlation output of all the training images with the weighted composite image is

shown in figure 4.5 (b). Here all most equal correlation peaks are generated for all the

training images of the training set. For better visualization, the side view of figure 4.5

(b) is shown in figure 4.5 (c). The value of correlation peaks after 100 iterations is given

in table 4.1 as below

Table 4.1: Peak intensity and weight factor after 100 iterations

Image I 2 3 4 5 6 7 8 9

Number

Peak 27.8128 28.6982 28.2498 28.4420 28.4112 28.4685 28.2876 28.5472 28.1385

Intensity

Weight 14.7462 1.3918 6.8685 5.4971 4.6699 4.4365 7.2524 4. I097 7.3869

factor

Though all the peaks are not exactly equal height, the difference between them is so

small that we can easily neglect it. Therefore, the composite image generated in this

way is the desired one that may be used for distortion invariant (in-plane) pattern

recognition.

4.5.3 Performance Evaluation of In-plane Rotated Composite Image

To investigate the performance of the generated composite image, we have replaced

some of the training images in the training set with some similar and dissimilar non-

target objects or images. For similar non-target objects we have used the character 'F'

and for dissimilar non-target object we have introduced the character 'M'. Both the

characters 'F' and 'M' have the same size as the composite reference image of 'E'. Fig.

4.6(a) shows the joint image where the composite image of character 'E' on the upper

left corner represent the reference image and all other characters on the right side
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Fig 4.6 (a): Input binary joint image of characters containing

in-plane rotated target and non-target images

,

Fig 4.6 (b): CJTC output of fig. 4.6 (a) after image subtraction
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Fig 4.6 (e): POJTC output of fig. 4.6 (a)
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Fig 4.6 (d): PSPFJTC output of fig. 4.6 (a)

110

i

(
I
I

.'

':
L



111

represent the input scene images. Here the input scene contains five (5) target images

and four (4) non-target images.

Fig. 4.6 (b) shows the classical JTC output with image subtraction. From the figure, it is

obvious that there are five pairs of high peaks for five target images while two

appreciable peaks for two similar non-target images (for 'F') and two negligible peaks

for two dissimilar non-target images (For 'M'). Again, all the target peaks are not

almost equal and the discrimination ratio (the ratio between the minimum target peaks

and maximum non-target peaks) is not so high. Fig. 4.6 (c) shows the phase only JTC

output with image subtraction technique. Here a pair of sharp delta like correlation

peaks is generated for each target object and the height of correlation peaks are almost

equal with a slight difference in a pair of peaks. Finally, figure 4.6 (d) shows the

correlation output of PSPFJTC technique. From figure 4.6 (d), it is evident that all the

target peaks are almost equal. Though there is slight difference among the values of the

correlation peaks, this can easily avoided for target detection purpose. The major

advantage of PSPFJTC technique is that it produces a single correlation peak for each

target object and therefore it can be easily incorporated in class-associative target

detection purpose.

4.5.4 Composite Image Formation for Out-of-plane Rotation

The major difference between in-plane rotation and out-of-plane rotation is that in in-

plane rotation, the feature of the image remains same only a rotated version of the

original image. But in case of out-of-plane rotation, new features may be incorporated

with the original image. In normal SDF approach, these new features may interfere with

the original features and may lead to erroneous result. Since in PSDF approach, all the

slices of the individual training images are placed side-by-side, there is no theoretically

no chance of interference among all the features of the training set. Therefore, PSDF

based approach is highly preferable one for three dimensional distortion invariant target

detection process.
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The out-of-plane rotation distortion can be widely classified into two categories. First,

the distortion introduced due to the azimuth change and the second one is due to the

change of elevation of the target objects. Here first, we have considered these two

distortions individually and then a combination of both is used to verify the system.

4.5.4.1 Composite Image for Azimuthally Rotated Objects

To incorporate the three-dimensional distortion mainly out-of-plane rotation due to

azimuth change, we have used gray-level car images of size 64x48 pixels. Here all the

training images contain only the azimuth change and there is no variation in elevation

angle. Fig. 4.7 (a) shows the PSDF composite image after 100 iterations. Fig. 4.7 (b)

shows all the training images used for the composite image generation. We have used

PSPFJTC technique with filter parameter C=I and D=le-9. The error limit is set 0.01

and the maximum iteration number equal to 100. After 100 iterations, the PSPFJTC

output of all the training images is shown in Fig. 4.7 (c). Fig. 4.7 (d) shows the side

view of Fig. 4.7 (c) for better visualization of the height of correlation peaks. Table 4.2

shows the numerical values of correlation peaks of all the training images and the

corresponding weight factor associated for the generation of the composite image.

•
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Fig. 4.7 (a): Composite gray-level car image for azimuth change
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Fig. 4.7 (b): Training images
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Fig 4.7 (c): PSPFJTC output of all training images in fig. 4.7 (b)
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Fig. 4.7 (d): Side view of Fig. 4. 7 (c)
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Table 4.2: Peak intensity and weight factor after 100 iterations
Image 1 2 3 4 5 6 7
number

Peak 10.7485 10.9860 11.0965 11.5194 12.0820 11.5771 8.6587
intensity

Weight 84.3795 69.9793 68.5629 39.0600 1.3340 53.1598 204.0730
factor

From fig. 4.7 (c), (d) and Table 4.1, it is evident that though the peaks are not equal, the

difference among them is quite small and therefore they are quite acceptable for target

detection purposes.

4.5.4.2 Performance Evaluation of the Composite Image for

Azimuthally Rotated Objects

To investigate the performance of the generated composite image, we have introduced

both target and non-target objects of same size in the input scene. First of all, Fig. 4.8

(a) depicts the joint image containing the composite reference image and input scene

images of target objects only. Fig. 4.8 (b) and (c) show the phase only JTC (POJTC)

and PSPFJTC outputs of the joint image ofFig.4.8 (a).

In POJTC technique, four distinct pair of peaks is generated for four target objects

while in PSPFJTC technique, four single correlation peaks is generated for the same

number of target objects. The variation of correlation peak height is slightly less than

that of the PSPFJTC technique. In case of target detection process, the number of

distinct peaks is important rather than the equal peaks of all the target objects. In that

reason, both the systems are quite suitable for distortion invariant target detection

process.
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Fig. 4.8 (b): POJTC output of Fig. 4.8 (a)
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Fig 4.8 (c): PSPFJTC output of Fig. 4.8 (a)
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To compare the formation of target and non-target peaks and their relative height, we

have placed non-target objects of different car model of same size in the input scene.

Fig. 4.9 (a) shows the joint image where the input scene contains two target images and

two non-target images of almost same orientation. Fig. 4.9 (b) and (c) show the POJTC

and PSPFJTC output of the joint image of Fig. 4.9 (a). Both the techniques produce

distinct target peaks for two target objects and almost negligible non-target peaks for

non-target objects. Therefore, both the techniques can successfully detect the target

objects from the input scene.

Fig 4.9 (a): Joint image containing two target and two non-target images
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Fig. 4.9 (b): POJTC output of Fig. 4.9 (a)
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Fig. 4.9 (c): PSPFJTC output of Fig. 4.9 (a)
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Finally, to compare the performance of the system with the increasing number of non-

target objects, we have placed three non-target objects with only one target object as

shown in Fig. 4.10 (a). As previous, the POJTC and PSPFJTC outputs of the Fig. 4.10

(a) are shown in Fig. 4.10 (b) and (c) respectively. It is evident from both the figures

that there is distinct pair of target peaks (POJTC technique) or a single target peak

(PSPFJTC technique) and almost none or negligible peaks for non-target objects. This

certainly ensures the better performance of the generated composite image and

effectiveness of both the techniques.

Fig. 4.10 (a): Joint image containing one target and three non-target images
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Fig. 4.10 (b): POJTC output of Fig. 4.10 (a)

Fig. 4.10 (c): PSPFJTC output of Fig. 4.10 (a)
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4.5.4.3 Composite Image for Change of Elevation Angle of Objects

To incorporate the distortion due to change of elevation angle, we have used the same

gray-level car images of size 64x48 pixels. Here all the training images contain only the

change of elevation angle and there is no variation in azimuth. Fig. 4.11 (a) shows the

generated composite whereas the Fig. 4.11 (b) shows all the training images used for the

composite image generation.

We have used PSPFJTC technique with filter parameter C=I and D=le-9. The error

limit is set 0.01 and the maximum iteration number equal to 50. After 50 iterations, the

PSPFJTC output of all the training images is shown in Fig. 4.11 (c). Fig. 4.7 (d) shows

the side view of Fig. 4.11 (c) for better visualization of the height of correlation peaks.

Table 4.3 shows the numerical values of correlation peaks of all the training images and

the corresponding weight factor associated for the generation of the composite image.

Table 4.3: Peak intensity and weight factor after 50 iterations

Image 1 2 3 4 5 6 7
number

Peak 9.7964 9.8940 9.8138 9.8377 . 9.8761 9.9300 9.7889
intensity

Weight 17.7293 7.4464 16.1234 1J .0276 9.5799 7.1354 15.1704
factor
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Fig. 4.11 (a): Composite image of gray-level car image for change in Elevation angle
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Fig. 4.11 (b): Training images
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Fig. 4.11 (c): PSPFJTC output of all training images in fig. 4.11 (b)
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Fig. 4.11 (d): Side view of Fig. 4.11 (c)
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4.5.4.4 Performance Evaluation of the Composite Image for Change of

Elevation Angle of Objects

To investigate the performance of the generated composite image as shown in Fig

4.11(a), we have placed non-target images of almost same orientation and size with the

target images and correlation operation is performed by both the POJTC and PSPFJTC

techniques. Fig. 4.12 (a) shows the joint image where the image at the lower half

portion represents the composite reference image and the images on the upper half

portion represent the input scene images. Here the input scene contains three target

images of different elevation angle. It also contains four non-target images of almost

same orientation and size of the target images. Fig. 4.12 (b) and (c) show the POJTC

and PSPFJTC output of the figure 4.12 (a). From Fig. 4.12 (b) and (c), it is obvious that

POJTC technique produces three distinct pair of peaks for three target objects while

PSPF JTC techllique produces only three peaks for the same number of target objects.

~ - ~~, ~ ~ ~ ~ ~

Fig. 4.12 (a): Joint image containing three target and four non-target images
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Fig. 4.12 (b): POJTC output of Fig. 4.12 (a)

Fig. 4.12 (c): PSPFJTC output of Fig. 4.12 (a)
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Next the performance of the system is investigated with the increased number of non-

target objects. Fig. 4.13 (a) shows the joint image where the input scene contains six

non-target images with only one target image. As usual Fig. 4.13 (c) and (d) show the

POJTC and PSPFJTC outputs of the joint image respectively. Here again both the

techniques can produce distinct correlation peaks for the target objects. Though there is

presence of some non-target peaks, the discrimination between them is appreciable and

therefore, we can easily avoid them.

Fig. 4.13 (a): Joint image containing one target and six non-target images
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Fig. 4.13 (b): POJTC output of Fig. 4.13 (a)

Fig. 4.13 (c): PSPFJTC output of Fig. 4.13 (a)
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4.5.4.5 Performance Evaluation of the Composite Images for 3-D

Distortions

To investigate the performance of the composite images for 3D distortions containing

both azimuth change and change of elevation angle, we have placed the two composite

reference images as shown in Fig. 4.7 (a) and Fig. 4.11 (a), side-by-side in the joint

image. These two reference images now form the joint composite reference image

where both azimuth and change of elevation angle are incorporated. Next the class-

associative target detection algorithm is applied for 3D distortion invariant target

detection purpose. Here the FAF filter as expressed in Eq. 3. I6 is used with filter

parameters C=I, D=le-9 and m=1. The value of a and P are set by trial and error

method to get appreciable correlation height for each of the target objects. Fig. 4.14 (a)

shows the joint image where two images on the lower half portion represent two

Fig. 4.14 (a): Gray-level joint image containing out-of-plane

rotated target images only
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Fig. 4.14 (b): PSPFJTC output of Fig. 4.14 (a)

Fig. 4.14 (c): Side view of Fig. 4.14 (b)
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composite reference images and they form the joint composite reference image. The

images on the upper half portion represent the input scene images. Here the input

contains seven 3D distorted target images and their distortion ranges mainly from

azimuth change to change of elevation angle. Fig. 4.14 (b) shows the PSPFJTC output

of Fig. 4.14 (a). For better visualization the side view of Fig. 4.14 (b) is shown in Fig.

4.14 (c). To get almost equal correlation height for all the target objects, we set a=0.82

and P=0.18. The value of all the peaks are given in table 4.4 as below

Table 4.4: Detection performance for 3D distorted images

Image I 2 3 4 5 6 7
No
Peak 18.8991 18.4032 18.1739 17.2327 16.9701 15.1008 14.0482
intensity

From table 4.4, the ratio of maximum target peak to minimum target peak is equal to

1.3453 and error form the exact equal peak criterion is 34.37%. Though this IS a

relatively high percentage error, we can accept it for pattern recognition purpose.

Next, we have placed 3D distorted target and non-target images in the input scene of

joint image as shown in Fig. 4.15 (a). In this case, the input scene contains five out-of-

plane rotated target images and two non-target images of almost same orientation. The

lower half portion of the joint image represents two composite reference images for 3D

distortion invariant target detection. These two reference images again represent two

members of a class. Finally, the class-associative target detection algorithm is applied

with FAF parameters as set previously, i.e. C=I, D=le-9, m=l, a=0.82 and P=0.18. The

corresponding PSPFJTC output is shown in Fig. 4.15 (b). Fig. 4.15 (c) shows the side

view of Fig. 4.15 (b) for clarity of peak heights. From Fig. 4.15 (b) and 4.15 (c), it is

evident that there are four distinct peaks for four target objects. Again, all the peaks

contain side-lobes that certainly reduce the optical efficiency but there is no

deterioration of the visibility of target peaks. Table 4.5 summarizes the detection
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Fig. 4.15 (a): Gray-level joint image containing out-of-plane

rotated target and non-target images
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Fig 4.15 (b): PSPFJTC output of Fig. 4.15 (a)
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performance in terms of ratio of maximum target peak to minimum target peak and

maximum non-target peaks.

Table 4.5: Detection performance of 3D distorted objects

Maximum Target Minimum Target Maximum Non-
~mlx J;nax

Peak (Tm,,) Peak (Tml,) target Peak
~nin Nmax(Nma:.,)

17.3242 13.4567 8.0502 1.2874 2.1520

From table 4.5, we can summarize that there is appreciable discrimination between

target and non-target peaks and therefore, the proposed system is feasible for target

detection purposes.

Next to investigate the noise robustness of the system, additive gaussian white noise is

added in the input scene. Fig. 4.16 (a) shows the joint image with an additive white

noise of 5 dB in the input scene. Fig. 4.16 (b) and (c) show the corresponding PSPFJTC

output of the Fig. 4.16 (a).

Fig. 4.16 (a): Joint image with an additive white noise of 5 dB
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Fig. 4.16 (b): PSPFJTC output of Fig. 4.16 (a)
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Then the sample simulation is performed with an additive noise of 0 dB and the

corresponding joint image and output are given in Fig. 4.17 (a), (b) and (c). From Fig.

4.16 (c) and Fig. 4.17 (c), it is obvious that with the addition of noise, the peak

intensities are varied but do not hamper the target detection purpose so much. Table 4.6

gives the summary of detection performance of the PSPFJTC technique in noisy

conditions.

Fig. 4.17 (a): Joint image with an additive white noise of 0 dB
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Fig. 4.17 (b): PSPFJTC output of Fig. 4.17 (a)
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Fig. 4.17 (c): Side view of Fig. 4.17 (b)
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Table 4.6: Detection performance of 3-D distorted objects in noisy conditions

Noise in dB Max. Target Min. Target Max. non- Tmax Tmin

peak (Tmax) peak (Tmin) target peak Tmin Nmax

(Nmax)

5 17.5036 14.1366 8.3825 1.24 1.69

0 17.6687 14.0694 9.7018 1.26 1045

From table 4.6, the discrimination ratios between target and non:target peak (i.e. ratio

between minimum target peak and maximum non-target peak) are successively lowered

with the addition of more and more noise in the input scene. With noise of 0 dB, the

ratio becomes 1.45. Since in comparative judgment, here the target peak is at least 1.45

times higher than that of non-target peak and this is an appreciable limit for threshold.

Therefore, by using suitable threshold value, the target peaks can be easily extracted in

the midst of non-target peaks and other spurious signal generated due to noisy signal.

In the thesis work, a post-processing technique has been developed to increase the

discrimination ratio. Here, the normalized correlation output is first squared by a CCD

and is then divided by the negative exponential of the correlation output as expressed by

•

o X JO(x,y)I'
p( ,y) - e-()(x,y)

(4.13)

where O(x, y) is the normalized actual correlation output and Op(x,y) is the output after

post-processing. Fig. 4.18 (a) and (b) show the after effect of post-processing technique

of the correlation outputs as shown in fig. 4.16 (c) and 4.17 (c) respectively.

Table 4.7: Detection performance of3-D distorted objects in noisy conditions after

post-processing technique

Noise in dB Max. target Min. Target Max. non- . I:nax ~nin

peak (Tmax) peak (Tmin) target peak Tmin Nmax

(Nmax)

5 2.7183 1.9839 0.9567 1.37 2.07

0 2.7183 1.9436 1.1520 lAO 1.69

,.•
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Fig. 4,18 (a): Correlation output of fig. 4.16 (c) after post-processing
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Fig. 4.18 (b): Correlation output of fig. 4.17 (c) after post-processing
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This technique certainly increases the target peak intensity variation but the major

advantage is that it gives much higher discrimination between target and non~target

objects .. Table 4.7 gives the peak intensity and corresponding ratios after the post-

processing technique for figure 4.16 (c) and 4.17 (c).

4.6 Conclusion

This chapter is mainly concerned about the aistortion-invariant pattern recognition

using PSDF. All JTC suffers from high sensitivity to distortions such'as scale variations

and rotation. Again such distortions may be in-plane and out-of-plane ~istortiQns. SDF

based JTC provides better distortion invariance for in-plane distortions. To achieve out-

of-plane distortion invariance, projection-slice theorem is incorporated with SDF. Here

the out-of-plane rotation of an object is widely divided into two category- Distortion

due to azimuth change and distortion due to change of elevation angle. 'Then using

PSDF, two composite images are formed for two different distortion types. These

composite images are used as members of a class and application of efficient class-

associative target detection algorithm and PSPF JTC technique, produce a sharp single

correlation peak for each target object in a class. Finally, to improve the discrimination

ratio between look-alike target and non-target object, a post-processing technique is

proposed here. Simulation results show that the proposed system performs well in the

midst of target and non-targ,et objects even with the presence of noise.



Chapter 5

CONCLUSIONS

5.1 Conclusion
Optical correlators, especially joint transform correlators are versatile tool for pattern

recognition or pattern classification. They provide real time detection of the targets with

very high optical efficiency and reduced cost. Since the advent of joint transform

correlators, various works have been performed on it and various modifications or

improvements have been proposed. Among the various forms of joint transform

correlation techniques, the fringe-adjusted joint transform correlation and recently

devised multi-target detection algorithm are suitable for successful detection of objects

or images when there are multiple targets and non-targets in the input scene. The later

one facilitates class-associative target detection by using multiple references whereby

two or more dissimilar objects representing a class can be detected with equal

correlation peaks. All these techniques produce a pair of peaks for each target object.

Phase-encoding with fringe-adjusted filter technique produce a single peak per target

object. Again, this technique is very much sensitive to the number of objects and noise

in the input scene.

In this work, a phase-shifted phase-encoded fringe~adjusted technique has been adopted

for detection of multiple targets and with better utilization of space bandwidth product.

In the proposed method, the phase-shifting and phase-encoding principle is applied to

the reference image since this can be done prior to real time operation and therefore

does not hamper the system processing speed. The inclusion of phase-shifting principle

with phase-encoding principle provides the robustness of the system. Simulation results

suggest that the phase-shifted phase-encoded fringe-adjusted technique is much better

than phase-encoded fringe-adjusted technique in terms. of fringe-adjusted filter

parameters variations. The proposed method also performs well even in the midst of

noise in the input scene whereas the phase-encoded fringe-adjusted technique may fail

/
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to detect target in those cases. Furthermore, it facilitates the class-associative target

detection.

For detection of a class of dissimilar objects, a new fast and efficient multiple target

detection method has been proposed. In the proposed scheme, the number of processing

steps is always fixed irrespective of the number of objects in the class whereas the

number of processing steps is increased in the earlier methods. To achieve this goal,

instead of calculating the separate power spectra from each of the reference images, a

multi-reference joint image with an enhanced version of fringe-adjusted filter is used to

detect multiple dissimilar target objects with almost equal correlation peaks. Inclusion

of phase-shifting and phase-encoding principle with the .. newly proposed class-

associative target detection technique provides better performance of the system with

the generation of single correlation peak per target object.

However, the 'proposed .schemes are sensitive to target distortion as all other JTC

techniques. Synthetic discriminant function (SDF) and projection-slice synthetic

discriminant .function (PSDF) are the two tools in the areas of joint transform

correlation for distortion invariant target detection. Between these two techniques, the

PSDF technique is the preferred one for detection of 3-D distorted objects. In this thesis

work, mainly the_out-of-plane rotation of an object is considered as the 3-D distortion.

For the detection of distorted objects, a composite image is formed first from a set of

training or distorted images that specify the range of distortion to be detected. In PSDF

technique, inclusion of higher range of distortion in a single composite image causes

loss of important information. To get rid of the problem, the newly proposed class-

associative target detection technique is incorporated with PSDF technique where

different PSDF -based composite images are formed for different distortion range and

are used as members of a class.

In this thesis work, the binary images of English block-lettered alphabets are used to

show and testify the performance of the proposed schemes for in-plane rotation
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distortion. For in-plane rotation invariance, the binary images are rotated by MATLAB

software and up to 45° rotations invariance has been shown. For out-of-plane rotation of

an object, two different gray-level car images are used. The images contain the actual

out-of-plane rotation of the objects. The training set contains an azimuth change of

almost 45° and a change in elevation angle of almost 90°. Simulation results show that

the proposed schemes can successfully detect the 3-D distorted (mainly out-of-plane

rotation) targets. Though the target peaks are not all equal, the discrimination between

target and non-target peaks are so high that the inequality of target peak heights does

not hamper the target det~ction purpose. Therefore, it can be said that the proposed

scheme is a successful one though more works can be done on it for further excellence.

5.2 Future Works

In this thesis work, mainly out-of-plane rotation of a still object is considered. But in

real world, an object may be moving and in that case the image of a real 3-D object

contains much more distortion other than the out-of-plane rotation. The other types of

distortions may be distortion of a portion of image rather than the whole image, the

distortion of radial components of the image. In these cases, features extraction using

wavelet transform may be useful. The feature extraction of an image using wavelet

involves the convolution of the image with a dilated and translated version of suitable

mother wavelet. Extracting the basic features of the training images, a composite image

can be formed by the weighted sum of all these features.

Again, in this work, the target detection operation is performed on a stationary image.

Here the object is assumed to be still. In case of moving objects, another important

application arises that is target tracking from moving objects. In this case frame-based

analysis is important. A set images or frames are taken and the object is identified from

each of this frame. Finally, a trajectory of the moving object can be plotted to trace the

future position of the object.

(~.,.,.
\.,' ('....-~
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Another important work of pattern recognition is the remote sensing using radar images.

In these cases thermal images are used instead of images of line-of-sight of vision.

MACH (Maximum average correlation height) and MACE (Maximum average

correlation energy) filters are the important types of filters used for the above purposes.

All real objects are color objects and contain more information than binary or gray level

images. Therefore, to dealt with color images, three basic colors i.e. RED, GREEN and

BLUE have to be extracted from the actual image and would have to be processed using

three channels. For distortion invariant target detection process, projection-slice SDF

based formulation may be adopted on individual channels. At the output plane, the

output from the three channels may be fused to get a single correlation output.

Another important application of projection-slice theorem may be the multi-input single

output system design. Here the outputs from different input channels are sliced and then

these slices are arranged to produce a single output.

All of these are an overview of future works in this field. Further study and detailed

analysis is required in every case to implement the purpose.
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