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Abstract

The key concern of this thesis work is to design an Acoustic Echo Canceler (AEC)

which meets the requirements of fast convergence rate and less computational bur-

den. Adaptive filters are used for real time identification of the impulse response

of an acoustic echo path. The length of the acoustic echo path impulse responses

(often several hundred milliseconds) leads to the adaptive filters with very large

filter taps. Delayless subband filters offer computational savings, as well as faster

convergence over the correspondent fullband adaptive filters. However, conven-

tional delayless subband filters use LMS or normalized LMS (NLMS) algorithm

for coefficient adaptations in the subband domain. Application areas such as

hands-free communication in cars, mobile communications and video conferenc-

ing have created further demands for high-quality acoustic echo cancellation in

terms of Echo Return Loss Enhancement (ERLE). It is known that Kalman filter

(KF) algorithm shows better convergence rate than the conventional LMS and

NLMS algorithm but with the cost paid in computational complexity. In this

work we propose a new design method using parallel Kalman filters (PKFs) in

the subband domain which require less computations. Incorporation of parallel

architecture in each subband provides a flexibility in trade-off between the num-

ber of subbands and parallel filters in each subband for optimum performance of

subband adaptive filters. The simulation results show that proposed AEC per-

forms better both in terms of ERLE and computational complexity than that of

the LMS and NLMS algorithms.
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.'"

Chapter 1

Introduction

1.1 Echo Cancellation:' Background

Echo may incur whenever we talk or make sound. If the delay between the speech

and its echo is short, the echo is unnoticeable and referred to as reverberation.

On the other hand, if the delay exceeds a few tens of milliseconds, the echo is

distinctly noticeable [IJ. Echo is widely employed in sonar and radar for the

purpose of detection and exploration. But in telecommunication, echo degrades

the voice quality and echo cancellation is a vital part to meet acceptable quality

of service.

There are two types of echo in communication systems: telephone line hybrid

echo and acoustic echo. Hybrid echo can be generated electrically, due to the

impedance mismatch at points along the transmission medium of the public-

switch telephone network (PSTN). As the cost of leasing a jour-wire telephone

circuit is too high, a two-wire circuit is used to connect a subscriber to the main

four-wire telephone channels at the central office [2]. A device, named as hybrid,

provides the interface between a two-wire and a four-wire circuit as shown in

Fig. 1.1. As a hybrid device is shared among several subscribers, it is difficult

to achieve impedance matching. Due to this impedance mismatch between the

hybrid and the telephone channel, the input port becomes coupled to the output
". i.

port, causing "echo". Such echo is called telephone line hybrid echo. ,'.

On the other hand, the acoustic echo problem arises, whenever there is acous-

tic coupling between a loudspeaker and a microphone, such as in hands-free

phones, mobile phones, and teleconference systems. In thes~' systems, the mi-

crophone signal picks up the far-end speech after it has traveled through the

1



Hybrid B

>-_1i73JIft!!!J
.----- •...

ff3::'id A-<: Echo of B

1ft!!!J'
Speaker A

,
Echo of A :
.••----_.!

Speaker B

Fig. 1.1: Basic 2/4-wire interconnection scheme.

'•.
acoustic medium, and consequently, echo is heard at the far end. The acoustic

coupling between the loudspeaker and the microphone may even make the system

unstable and produce a howling [1].

Echo control methods are usually divided into two categories: echo cancella-

tion and echo suppression. Telephone companies employ "echo suppressor" which

is primarily a switch that lets the speech signal pass through during the speech-

active periods and attenuates the line echo during the speech-inactive periods.

This traditional voice-activated switched-loss echo suppressors meet the demand

only for terrestrial communication and fail to perform satisfactorily in systems

with extremely long round trip delay [3J. Adaptive echo canceler has been intro-

duced which is effective with both short and long time delays. The adaptive filter

creates a replica of the echo using the signal in the received path and subtracts

it from the signal in the transmitter path as indicated in Fig. 1.2.

Transmitted
signal of
speaker A Echo

Canceler
Estimated
echo of A

Hybrid

>-_f73JfsL!!!J
Speaker B

,,,,,,,
Echo of A :

••• ..1

+

Adaptive
AlogorithmReceived

signal of
speaker B /\

..J ~ i,,
/
/

\ ' .
Fig. 1.2: Adaptive echo canceler in landline telecommunication system.

Comparing typical impulse responses ~::>fthese two kinds of echo paths, it

becomes obvious that acoustic echo cancellation is far more challenging task than

the line echo cancellation. [4]. The impulse response of the acoustic echo path is

usually several times longer than that of line echo path and is the major topic of

this thesis work.
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Even though echo cancellation belongs to the traditional problems of signal

processing, it is still an active field of research. New attention has been drawn

to the subject with the advent of digital wireless communication systems for the

following reasons. The echo problem becomes severe because of longer signal path

delays produced by sophisticated speech coding algorithms. The effect of echo is

worst for telephone networks involving geostationary satellite circuits, where the

echo delay is about 540 ms [2]. Also, there are appreciable delays of up to 200 ms

inherent in digital mobile phones, which make any echo quite noticeable. For this

reason the employment of echo cancelers in PSTN and mobile switching centres is

a mandatory. The use of hands-free communication in cars, computer applications

and video conferencing has also created a demand for high-quality acoustic echo

cancellation. Thus, acoustic echo cancellation is an important aspect of the design

of modern telecommunication systems such as conventional wireline telephones,

hands-free phones, cellular mobile phones, or teleconference systems [5].

1.2 Literature Review

Acoustic echo cancellation is a long-lasting challenge since its invention in the

1960s at Bell Labs [6]-[8]. In recent years, adaptive filters are used in many

applications such as adaptive modeling, adaptive noise cancellation, and adaptive

signal enhancement [9]' [IOJ. Adaptive filter is also used for real time identification

of the impulse response of an acoustic echo path. The length of the acoustic

echo path impulse responses (often several hundred milliseconds) leads to the

adaptive filters with very large filter taps. In some applications, such as acoustic

echo cancellation and active noise control, where the number of filter taps to be

estimated is large, computational complexity is a burden. Moreover, adaptive

filters with many taps suffer from slow convergence, especially, if the eigenvalues

of the underlying correlation matrix of the input signal are widely spread [10].

One approach for reducing the computational complexity of long adaptive filters

is to use block signal processing methods [11]-[15]. The major disadvantage of

such approaches is a long block delay associated with the adaptive weight update.

The use of parallel Kalman filters (PKFs) in the time-domain is another approach
:,.' .

for improving the convergence rate [16]. . ,.I'
\

Recently, subband techniques have been developed for adaptive filters to re-"

3



duce the computational complexity and to improve the convergence rate [17]. This

technique has been applied to the acoustic echo cancellation problem in order to

overcome the problems of slow convergence due to spectrally dynamic input and

high computational costs associated with a single, long adaptive filter [17]-[30].

As both the number of taps and weight update rate can be decimated in each

subband, computational burden is reduced by approximately the number of sub-

bands. Faster convergence is achieved due to the reduction of spectral dynamic

range in each subband. The major disadvantages of subband structures, however,

are aliasing due to downsampling [21]and the transmission delay introduced into

the signal path due to the bandpass filters used for deriving the subband signals.

To avoid signal path delay, Morgan and Thi reported a new type of delayless

subband adaptive filter architecture in which the adaptive weights are computed

in subbands but collectively transformed into an equivalent set of wideband filter

coefficients [30]. An additional benefit accrues through a significant reduction of

aliasing effect. Commonly, subband implementations employ LMS or normalised

LMS (NLMS) algorithm for its coefficients adaptation in each subband. Although

the estimation algorithm of adaptive filters using such a method is simple, they

are weak for the case of nonwhite input signal [16].

The increasing use of teleconference systems and video conferencing where the

AEC plays a central role, has further led to the requirement of faster and better

performing adaptive filter. In this work, we modify the delayless subband adap-

tive filter [30] by replacing the conventional NLMS/KF algorithm with PKFs for

coefficients adaptation in each subband. Incorporation of parallel architecture

in each subband provides a flexibility in trade-off between the number of sub-

bands and parallel filters in each subband for optimum performance of subband

adaptive filters. A design method for PKFs in the subband domain is proposed.

Computational complexity and experimental results comparing the performance

of such adaptive subband parallel NLMS (PNLMS) and PKFs are shown.

1.3 Thesis Overview

This section is intended to give a short overview of the thesis, by describing the,
outline of each chapter. In Chapter 2 the acoustic echo problem is introduced, and

its traditional solution, AEC, is discussed. We also discuss parallel LMS/NLMS

4
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and PKFs algorithms in time domain for estimating the acoustic echo path of an

AEC.

Chapter 3 starts by conventional delay less subband AEC. Polyphase FFT

technique is also presented to derive complex subband signals. Then a modified

delayless subband AEC is presented where PKFs are employed in the subband

domain for coefficients adaptation. These modification gives better performance

and convergence rates when using speech signals for identification of the acoustic

channel. The chapter ends with an analysis of the computational complexity of

AECs.

In Chapter 4, simulation results are presented along with figures and remarks.

Comparison with the results of other methods is presented to show the superiority

of the proposed method specially when the acoustic echo path is long.

Chapter 5 contains the conclusions of the work and suggests future work.

In Appendix, uniform filter bank and its polyphase implementation are pre-

sented in detail.

5
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Chapter 2

Acoustic Echo Cancellation

The general concept of an echo canceler is described. Parallel LMS/NLMS and

PKFs algorithms are presented as a solution to acoustic echo problem.

2.1 The Acoustic Echo Problem

The acoustic echo problem arises, whenever there is acoustic coupling between

a loudspeaker and a microphone. Fig. 2.1 illustrates a system where a far-end

speaker (FEB) is impaired by the echo of his own voice which superposes on the

near-end speaker's (NEB) end. Because of the acoustic transmission path from

+ 4
e(k) y(k) I

x(k)

From FES

To FES

adaptive
algorithm

A

W

A

d(k)

- - -,

Fig. 2.1: The acoustic echo problem.

the loudspeaker to the microphone, the speech, x(t) from the FEB, feeds back

to the microphone as an echo signal, d( t). Assuming that acoustic channel is

linear, the echo signal received on the microphone is the result of the convolution flo
I
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between the signal present on the loud speaker x(t) and w(t), that is

d(t) wox(t) + W1X(t - 1) + ...+ WN_1X(t - N + 1)

- wT x(t) (2.1)

Here, w = [wo, W1, ... , WN-1]T is the echo path impulse response of finite length1

N, and x(t) = [x(t), x(t - 1), ... , x(t - N + 1)] is a vector comprising of N most

recent loudspeaker signal samples, and t denotes a discrete time index.

The microphone signal y(t) is transmitted back to the far-end speaker as the

sum of the echo signal d(t), near-end speech s(t), and the ambient noise n(t),

y(t) d(t) + s(t) + n(t)

- wT x(t) + s(t) + n(t) (2.2)

Eq. (2.2) will be considered as an acoustic model [31]. The echo signal d(t) needs

to be removed from the microphone signal y(t) for echo-free conversation.

2.2 Acoustic Echo Cancellation

.We will confine on single-channel AEC, with one loudspeaker and one microphone.

To cancel the echo signal d(t) from the microphone signal y(t), AEC estimates

d(t) using an approximation algorithm and subtracts the estimated echo signal,

d(t) from y(t). The estimation error signal e(t) is expressed as

e(t) - y(t) - d(t)

[d(t) - d(t)] + s(t) + n(t). (2.3)

The error signal is estimated in a mean square sense. The MSE is defined as

E{[d(t) - d(tW}

-2E{e(t)[s(t) + n(t)]}.

E{[e(t) - s(t) - n(tW}

E{ e2(t)} + E{ S2(t)} + E{ n2(t)} + 2E{ s(t)n(t)}

(2.4)

We simplify Eq. (2.4) by assuming that e(t), s(t), and n(t) are uncorrelated,

1The number of filter parameters could be reduced by modeling the acoustic echo path with
an infinite impulse response (IIR) filter. However, due to the practical difficulties associated
with the adaptation and stable operation, the IIR filter still has few degrees of freedom [4).

7



Neither s(t) nor n(t) depends on d(t), minimizing E{[d(t) - d(t)j2} is thus equiv-

alent to minimizing E{ e(t)2}. AEC creates the estimated echo signal d(t) based

on the identification of the acoustic channel w (t) between the loudspeaker and

the microphone,

d(t) = ill x(t). (2.6)

As the echo path, w(t) changes over time due to moving objects or change in

temperatures, the coefficients must therefore be estimated using an adaptive al-

gorithm. An adaptive algorithm is therefore an essential part of AEC. In any

conversation, usually the talkers do not speak simultaneously, and hence speech

and echo are sefdom present on a line at the same time. When the NES is quiet

[s(t) = 0] and the level of the ambient noise, n(t) is low [n(t) = 0]' the adaptation
process simplifies as

e(t) = d(t) - d(t). (2.7)

Then the adaptive filter can converge to the true echo path impulse response w(t).
During double-talk2, the near-end signal s(t) is acting as high-level uncorrelated

noise, leading to insufficient echo cancellation. Therefore, to avoid divergence,

"real world" acoustic echo controllers typically include in addition to the echo

cancellation filters (ECFs), a double talk detector (DTD) for freezing filter co-

efficients during the presence of NES speech. The echo only period is detected

by various DTDs based on cross-correlating properties [34]-[35]3. An AEC is

shown in Fig. 2.1 which produces a synthesized echo from the far-end speech

with an adaptive filter fine tuned to the echo path, and subtracts this echo from

the microphone signal.

2.3 Parallel Estimation of Acoustic Echo Path
in Time Domain

As mentioned in the preceding section, an adaptive filter is required to model

the unknown echo path w which is not only time-varying but also different for

2Double talk (DT) mode corresponds to the simultaneous presence of local speech and echo
(local and remote speakers speaking simultaneously), and single-talk (ST) mode corresponds
to the presence of echo only.

3Double talk aspects are not investigated in details. A theoretical study of those aspects
would be certainly very complex.

8



each network path. However, as the parameters to be estimated is large in acous-

tic echo cancellation, real time processing becomes difficult using conventional

LMS/NLMS and KF methods because of large computational burden. As a so-

lution to this problem, PNLMS and KF methods for coefficients adaptation are

presented here.

The adaptive weights iv, to be estimated, are divided into J parts, namely

Part 1, Part 2,... , Part J. In the z-domain iv can be represented as
\

N-l

W(z) = L WiZ-
i

i=O

If we divide the adaptive weights into J parts, then iv can be expressed as

The adaptive weights of each part are given by

(2.8)

(2.9)

A [A A A]T
Wi = Wp(i-l), WP(i-l)+l, .. " WPi-l 1 i = 1, 2, ... , J (2.10)

where P = N/ J is the number of elements of each part. In Eq. (2.10), WP(i-l)

denotes the P * (i - 1)-th coefficient. If necessary some zeros should be 'added

to the J-th part of the adaptive weights so as to make P = N / J an integer. We

divide the reference signal x(t) into J parts expressed as

x(t) = [x'[(t), if(t), ... , x}'(tW

Here, :z;(t) represents i-th part reference signals defined as

(2.11)

:z;(t) = [x(t - P(i -1)), x(t - (P(i -1) + 1)), ... , x(t - (P(i -1) + P -1))] (2.12)

The J segments of the impulse response described in Eq. (2.10) are estimated

using J number of parallel filters as indicated in Fig 2.2. The total estimated

echo signal d(t) at time t of the J pieces of filters in parallel is given by

J J

d(t) =Ldirt) =L ivf (t - 1):z;(t).
i=l i=l

(2.13)

The superscript H indicates Hermitian transposition. Note that the order of the'

resultant filter is JP. '\ /
~

9
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I d(l)
x(t)

I I
1_______ .J
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NLMS/KF

A A

d,(I) + d (I) +
AW, + I _) I

+
NLMS/KF e(l)

I
;\

A 1;1

Z-(1-1)P A d ,(I)-. w,

Fig. 2.2: Echo canceler using parallel adaptive filter.
'i

2.3.1 Estimation using Parallel LMSjNLMS Methods

To obtain the optimal solution of the coefficients of the resultant filter, the total :1

error e(t) is used for estimation of the parameters. See Eq. (2.13). The LMS .~

estimation algorithm of the i-th part:'

e(t)

Wilt)

J

d(t) - L wf (t - l):z;(t),
i=l

Wilt - 1) + I":z;(t)e*(t)

(2.14)

(2.15)

The range of step size parameter, 1", is given by the equation:

2
O<I"<PS'

max

(2.16)

where Smax is the maximum value of the power spectral density of the reference

signal x(t). The superscript '*' denotes complex conjugation.

The NLMS estimation algorithm of the i-th part:

J

e(t) d(t) - L ivf (t - l):z;(t),
i=l

Wilt) = Wilt - 1) + II x~) 112 :z;(t)e*(t) (2.17)

where Ii is the adaptation constant given by:

o - 2E[1 Xi(t) 1
2JD(t)

< I" < E[I e(t) 12] ,

E[I e(t) 12] is error signal power, E[I Xi(t) 12] is reference signal power, and D(t) is

mean square deviation. Note that in Eq. (2.17), adaptive constant is normalized

10 0-
~<



using II X(t) 112 instead of II :z;(t) 112 for achieving better convergence rate. Because

of this modification, adaptive filter using PNLMS algorithm performs exactly

same to the adaptive filter using NLMS algorithm. Numerical difficulties may

arise if the squared norm II x(t) 112= O. To overcome this problem, Eq. (2.17) is

modified as

wilt) = wilt - 1) + <5+ II ~(t) 112 :z;(t)e*(t), (2.18)

where <5> O.

It is well-known that the NLMS algorithm exhibit a rate of convergence that

is potentially faster than that of the standard LMS algorithm for both correlated

and uncorrelated input data [36]. For both LMS and NLMS algorithms, Wi(O) =
0, as prior knowledge of the tap vector is unknown.

The computational complexity of the PNLMS algorithm in the time domain

is approximately 2N/p'td where Pstd denotes the number of parallel section for

time domain approach.

2.3.2 Estimation using Parallel Kalman Method

The optimal algorithm of PKF in time domain for the i-th part is:

k;(t)

e(t)

wilt)

Qi(t)

QJt - 1):z;(t)
o-~+ 'L(=1:z:[i (t) Qz(t - I)XI(t)

J
= d(t) - L wf (t - 1):z;(t)

i=l

wilt - 1) + k;(t)e*(t)

- [I-k;(t):z:f(t)]QJt-l)

(2.19)

(2.20)

(2.21)

(2.22)

Here i = 1,2, ... , J. For initialization,

(3;/; (3i> 0

0,

(2.23)

(2.24)

where 0-;; is the variance of measurement noise and I is the unit matrix of dimen-

sion P x P. 0-;; is assumed to be 1 which indicates that this method can be used

even when 0-;; is unknown [16]. The (3i denotes the degree of uncertainty of Wi(O),

which is taken to be large when initial filter taps are unknown. ,I ...., .
It is to be noted that the computational complexity of the PKFs in time!

domain is (8N/p'td)2 + 16N/p,td [16].
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Chapter 3

Delayless Subband Acoustic Echo
Canceler

Conventional delayless subband AEC is presented first. Modification is suggested

to this AEC by introducing PKFs in the subband domain which provides improved

performance both in terms of ERLE and computational complexity. Computa-,
tional complexity is addressed at the end.

3.1 Conventional Delayless Subband Acoustic
Echo Canceler

With the high number of adaptive filter weights required, popular adaptive filters

based on LMSjNLMSjKF algorithms in time domain become very computa-

tionally expensive and exhibit slow convergence. One possibility to combat these

problems is the use of adaptive algorithms, together with multirate techniques, to

split the full-band problem into smaller subband problems. Fig. 3.1 shows the ar-

chitecture of the delayless subband AEC (DSAEC) with conventional NLMS jKF

adaptation [30]. The coefficients in each band, can be calculated either by em-

ploying the error signal e(t) (closed loop case) or the microphone input signal d(t)
(open loop case). Here only open loop case is presented. Adaptive weights are

computed in the subband domain using the complex LMSjNLMSjKF algorithm

and then collectively transformed into frequency domain using the FFT, appropri-

ately stacked, and inverse transformed to obtain the wideband filter coefficients,

thereby eliminating any delay associated with the cancellation signal!. For N., .

lThe complex subband decompositions leads to a straightforward method of eliminating
the filter bank delay. Since the adaptive filter coefficientsare determined inside the subbands

12



r------,

d(t) ---+<J :
t .J

x(t) A
W

A

d(t)

CL e(t)

FFr -I

Frequency scaling & conjugate complement

xo(t)
NLMS/KF

dolt) leo(t)

poly x,(t) dt(t) le,(t)
poly

phase I NLMSIKF phase
FFr I FFr

I
I M/2M/2
x MI2(t)

NLMS/KF
dM12(t)/ "M12(t)

Fig. 3.1: Conventional delayless subband echo canceler; position OL for open
loop and position CL for close loop operation.

wideband adaptive weights and a decimation factor D, there are N / D = 2N / M

adaptive weights for each subband. Let Wm is a vector of N/ D subband weights,

xm(t) - [x(t), x(t - D), ... , x(t - N +D)] T is a vector comprising the N/ D most

recent signals of the subband filter reference signal. The adaptive weights of the

m-th subband are given by

Wm = [W(m,l), W(m,2}, ... , W(m,NID_l)]T (3.1)

In Eq. (3.1), W(m,i} denotes the i-th coefficient of the m-th subband. Estimated

echo of the m-th subband, dm(t) at time t

dm(t) = w;;Jt - l):zm(t) (3.2)

whereas desiredoutput d(t) is computed outside the subbands by convolvingthe referencesign~l,'l,
the signal path thus doesn't experienceany delay induced by the analysis/synthesis filter bank-,-
Note that synthesis filter bank is not required since the desired signal is not computed in tIiJ"J
subbands.

13



where wm(t) denotes the estimated weight vector. The m-th subband local error

signal is defined as

(3.3)

As the wideband error is not fed back to the subband weight calculation, this can

be thought of open loop version 2•

3.1.1 Subband Decomposition of Signals

Multirate digital processing systems employ multiple sampling rates in the pro-

cessing of digital signals. Subband decomposition is a special technique of mul-

tiresolution signal decomposition. The basic idea is to divide the frequency band

into a set of uncorrelated frequency bands, usually non-overlapping, by filtering

[38] .
There are several ways to derive complex subband signals [32]-[33]. In this

work, the reference signal x(t), and the disturbance signal d(t) are divided into

several sub band signals by using an analysis filter bank consisting M contiguous

filters Hm(z), m = 0, 1,...,M -1 as indicated in Fig. 3.2. The transfer function

Hm(z) in the z-domain can be expressed as

m = 0, 1, ... ,M - 1 (3.4)

It is to be noted that Hm(z) is derived from a lowpass prototype filter Ho(z),

ro• 2.

HM_'
0 <0• 12•
2.(M-I)
M

m~o__ dLro
Of 1t 21t

l\

Jd
o I

2.
M

I,,,y

x(t)

Fig. 3.2: Analysis filter bank for subband decompositions.
. t
" "-

2The closed-loop version converges somewhat slower initially because of the delay in the:; ",
wideband filter update. ' .•.-

14 c



where Hm(z) = Ho(zWM) for m = 0, 1,...,M -1 and the details of which are de-

scribed in Appendix A. Now, the m-th subband reference signal is mathematically

expressed as

00 j21fmk

xm(t) = L ho(k)e M x(t - k), t = 0,1,2, ....
k~O

(3.5)

Let ak = ho(k) are the coefficients of a K(= LM) point prototype filter, where

L is an integer. Eq. (3.5), the above equation can be rewritten as

K-1

xm(t) = L ake,2;;k x(t - k)
k=O
M-1 £-1L ei2:;,mk L an+lx(t - k).
n=O l=O

(3.6)

(3.7)

It is obvious that Eq. (3.6) expresses the convolution of the frequency-shifted

prototype filter with the filtered reference signal to obtain a single sideband ref-

erence signal. And the expression in Eq. (3.7) shows how the inverse FFT comes

into play. The signal d(t) is also decomposed in the similar way to obtain dm(t)

corresponding to the m-th subband.

Since the output of the lowpass filter is relatively narrow in bandwidth, the

signal can be decimated3 by a factor D :S M. The resulting decimated output

signal can be expressed as

. '.

Or, simply

00

xm(t) = L ho(k)e
i2:;,mk x(tD - k), t = 0,1,2, ...

k=O

00 j211"mk

xm(t) = L ho(k)e M x(t - k), t = D, 2D, 3D, ...
k=O

(3.8)

(3.9)

The subsampler, or down-sampler is represented by a square enclosing a down-

ward arrow in Fig 3.3. In order to reduce the effects of aliasing caused by down-

sampling, oversampled (D < M) schemes are often used instead of critically-

sampled (D = M) schemes which require additional adaptive cross filters to

compensate for the effects of aliasing. The oversampling factor for this design is

MID =2.

3The process of reducing the sampling rate by a integer factor D (downsampling by D) is
called decimation. The process of increasing the sampling rate by a factor I (upsampling by 1)
is called interpolation.
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I( x(l) HO(z) xo(l) X(/) Ho(z) xO(t)

x 1(I) xI (I)

, ,
, ,
, ,, ,

y HM_1(Z) ~XM_l(1) Y HM_1(Z) ~xM_l(1)

(a) (b)

Fig. 3.3: The M-channel oversampled digital filter bank with uniform decimation
ratio D.

.'

The time compression implicit in Eq. (3.9) is accomplished by stretching in

frequency domain so that the interval from 0 to 1r / M now covers the band from

o to 1r. It should be evident that the process of discarding sample can lead to a

loss of information. In frequency domain this is the aliasing effect [38].

As the bandwidth in each subband is reduced, the sampling frequency for each

subband filter can be lowered. Consequently adaptive filters need fewer taps in

comparison to fullband solutions to cover the same time interval and are updated

at a lower rate. This leads to a significant deduction of computational complexity.

Another technique which can be employed to extract complex subband signals

is the polyphase FFT technique described in [32]. This technique realizes M

contiguous single-sideband bandpass filters with their outputs downsampled by

a factor D = M/2 to produce M complex subband signals.

Fig. 3.4: Polyphase implementation of digital filter bank with uniform decimation
ratio D.

Also no band shifting is necessary due to regular structure; even sub bands

are centered at dc while odd subbands are centered at one half of the decimated

,..
16



sampling frequency [30]. Since for real signals, the wideband filter coefficient are

real, only half of the subbands need to be processed.

3.1.2 Coefficient Adaptation Methods

To obtain the optimal solution of the coefficients of the resultant filter, the sub-

band local error em (t) is used to estimate the parameters.

KF algorithm:

The optimal KF algorithm for the m-th sub band is obtained as shown in the

following:

For initialization:

k",(t)

emit)

wm(t)

Qm(t)

Qm(t -1)x".(t)
(J'~+ x;[,(t) Qm(t - 1)x".(t)'

- dm(t) - w;:'(t - 1) x". (t),

wm(t - 1) + k",(t)e;"(t)

[I - k",(t)x;:.(t)] Qm(t - 1)

t = D, 2D, 3D .

(3.10)

(3.11)

(3.12)

(3.13)

13mI; 13m> 0,

o
(3.14)

(3.15)

. \.

The superscript' *' denotes complex conjugation and the H indicates Hermitian

transposition as usual. (J'~ is the variance of measurement noise and I is the unit

matrix of dimension M x M. The 13mdenotes the degree of uncertainty of m-th

subband filter taps, which is taken to be large when initial filter taps are unknown .

NLMS algorithm:

The optimal NLMS algorithm for the m-th subband is obtained as shown in the

following:

dm(t) - w;:.(t - 1)x".(t),

wm(t - 1) + <5+ II ~(t) 112 x".(t)e;"(t),

where fl is the adaptation constant given by:

o - 2E[1 xm(t) 1
2]D(t)

< J.L < E[I emit) 12] ,

17
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t = D, 2D, 3D .....

Ell em(t) 12] is local error signal power, E[I xm(t) [2] is reference m-th subband

signal power, and D(t) is mean square deviation. Here (j > 0 and wm(O) = 0, as

prior knowledge of the tap vector is unknown.

3.1.3 Subband to Wideband Weight Transformation Tech-
mque

The wideband filter has N taps, the filter length in each subband is N/ D =
2N / M, with D = M /2. An N/ D-point FFT is calculated on the adaptive weights

in each subband. These are subsequently stacked to form a [0... (N/2-1)] element

of array. The array is then completed by setting element N/2 to zero and using

the complex conjugate of elements [1...(N /2- 1)] in reverse order. Finally, the N

element array is transformed by a N-point inverse FFT to obtain the wideband

filter weights [30]' [39].

A numerical example is presented here to illustrate the subband to wideband

mapping. Consider the design, of an AEC with N = 512 filter taps and M = 32

subband. MATLAB firl(127,1/32) routine is used for the design of K = 128-

tap lowpass prototype filter. More sophisticated techniques can be employed in

the filter design to achieve overall flat response [18]' [33]. Fig. 3.5 shows the

- 20

0.50.450.40.350.2 0.25 0.3
Normalized Frequency

0.150.10.05

- 80

- 100 o

iIi"
"-; - 40

~
~ -60
'":2

Fig. 3.5: Frequency response of the first M/2 + 1 = 17 filters.

resulting frequency response of the first M /2 + 1 = 17 filters which are used to

extract the complex. subband signa:s. Fig ~.6 clearly depicts how ~ncor.rela\~~ ~

spilt subbands are piled or stacked III the wldeband. Note that, deCimatIOn has~.,

the effect of stretching the interval. The interval from 0 to 7f / M now covers the

18 C?



H, H, H, H14 H15 H16

Fullband 0 2 .r:r:n
0 16 32 224 240 256

Subband 08 {lI

0 16 32

I H,

Subband 1 0
0 16 32

Subband 2 8 n
•••

I

0 16 32
• •• •

'"~"'''8
•

I G
0 16 32

Subband 151 [?\
i 0 16 32
'.. '"""""..8

I 8
0 16 32

Fig. 3.6: Example of frequency stacking for 32-subband polyphase FFT imple-
mentation with 512-point impulse response and 32 taps per subband.
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band from 0 to 1f in the the frequency domain. As already stated, even subbands

are centered at dc while odd subbands are centered at one half of the decimated

sampling frequency [30]. The correspondence between the FFT bins for the sub-

band filter and the full-band filter are given according to Table 3.1. The example

given here is only for illustration; the general technique can accommodate an

arbitrary number of taps, number of subbands, decimation factor, etc.
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Table 3.1: Frequency mapping from subband FFT bin numbers to wideband FFT
bin numbers for a 32-subband polyphase FFT implementation with 512-point
impulse responses and 32 taps per subband

Subband FFT Wideband FFT Bin Number
Bin Number SB 0 SB 1 SB 2 ... SB 14 SB 16 SB 16

0 0 - 32 224 - -
1 1 - 33 225 - -

2 2 - 34 226 - -

3 3 - 35 227 - -

4 4 - 36 228 - -

5 5 - 37 229 - -

6 6 - 38 230 - -

7 7 - 39 231 - -
8 - 8 - - 232 -

9 - 9 - - 233 -
10 - 10 - - 234 -

11 - 11 - - 235 -

12 - 12 - - 236 -

13 - 13 - - 237 -

14 - 14 - - 238 -

15 - 15 - - 239 -
16 - 16 - - 240 -

17 - 17 - - 241 -

18 - 18 - - 242 -

19 - 19 - - 243 -
20 - 20 - - 244 -

21 - 21 - - 245 -
22 - 22 - - 246 -

23 - 23 - - 247 -
24 - - 24 216 - 248
25 - - 25 217 - 249
26 - - 26 218 - 250
27 - - 27 219 - 251
28 - - 28 220 - 252
29 - - 29 221 - 253
30 - - 30 222 - 254
31 - - 31 223 - 255
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3.2 Proposed Delayless Subband Acoustic Echo
Canceler using Parallel Kalman Filters

The acoustic echo canceler has been implemented using the proposed subband

PKF algorithm as shown in Fig. 3.7. To decompose the signals, the same proce-

dure described in Sec. (3.1.1) is followed.

r------,

d(t) ----+cJ ) I

I .J

x(t)

OL
CL

e(t)

Frequency scaling & conjugate complement

xo(t) PKF do(t) /eo(t)

poly
dl(t) /e,(t)

poly
phase ~,(t) PKF phase
FFf I I FFf

I I
I I M/2M/2 PKF
x MI2(t) dM12(t)/ "MJ,(t)

Fig. 3.7: Proposed delayless subband echo canceler using parallel Kalman filters

3.2.1 Configuration of Parallel Kalman Filters in Subband
Domain

In this work, adaptive weights are computed in the subband domain using the

complex PKF algorithm and then collectively transformed into frequency domain

using the FFT, appropriately stacked, and inverse transformed to obtain the

wideband filter coefficients, thereby eliminating any delay associated with thO

cancellation signal. For N wideband adaptive weights and a decimation factor

D, there are N/ D adaptive weights for each subband. Let Wm is a vector of o
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N/ D subband weights, xm(t) == [x(t), x(t - D), ... , x(t - N + D)] T is a vector
comprising the N/D most recent signals of the subband filter reference signal.

Each subband signal is split into J segments for coefficients adaptation using the

PKF algorithm as shown in Fig. 3.8 for the m-th subband. The adaptive weights

A

A d m.I (I)
W(m,l)

KF

Fig. 3.8: Configuration of the parallel Kalman filters of m-th subband.

of each subband are divided into J parts, namely Part 1, Part 2,... , Part J. As

an example, the m-th subband FIR adaptive filter weights Wm in the z-domain

can be represented as
NjD-l

Wm(z) = L W(m,i)Z-i
i=O

(3.18)

If we divide the adaptive weights of the m-th subband, Wm into J parts, then Wm

can be expressed as

Wm [W(m,o), W(m,l), , W(m,NjD-l)f,

[Wfm,l), w(m,2) , , wfm,J)]T

The adaptive weights of each part of the m-th subband are given by

W(m,i) = [W(m,P(i-l)), W(m,P(i-l)+l), ... , W(m,Pi-l)f,

i = 1,2, ... , J

(3.19)

(3.20)

where P = N/(JD) is the number of elements of each part and J denotes the

number of division in each subband. In Eq. (3.20), W(m,P(i-l)) denotes the P* (i -t"i
l)-th coefficient of the m-th subband. If necessary some zeros should be added •. ,

to the J-th part of the adaptive weights so as to make P = N/(JD) an integer.
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We divide the m-th subband signal Xm (t) into J parts expressed as

Xm(t) = [Xfm,1) (t), x(m,z) (t), ... , xfm,J)(t)f (3.21)

Here, X(m,i)(t) represents the m-th subband signals of the i-th part defined as

X(m,i)(t) = [xm(t - P(i - l)D), xm(t - (P(i - l)D + D)), ..

'" xm(t - (P(i - l)D + (P - l)D))] (3.22)

The J segments of the impulse response described in Eq. (3.20) are estimated

using J number of parallel filters. The total output of the J pieces of the filters
in parallel is given by

J J

dm(t) = L d(m,i)(t) = L w[;",i)(t - l)x(m,i)(t)
i=l i=l

(3.23)

where dm(t) is the estimated subband disturbance signal at time t, and W(m,i)(t)
denotes the estimated weight vector. Notice that the order of the resultant filter

in each sub band is JP.

3.2.2 Estimation Algorithm

To obtain the optimal solution of the coefficients of the resultant filter, the local

error em (t) is used to estimate the parameters.
Proposed PKFs algorithm:

The optimal PKFs algorithm for the i-th part in the m-th subband is obtained

as shown in the following:

em(t)

W(m,i)(t)

Q(m,i)(t)

Q(m,i)(t - l)x(m,i)(t)
0-'; + 2::(=1 xr;",I)(t)Q(m,l)(t -l)X(m,I)(t)'

J

dm(t) - L W[;",i)(t - l)X(m,i) (t),
i=l

W(m,i)(t - 1) + k(m,i) (t)e;',,(t)

- [1- k(m,i)(t)x[;",i)(t)]Q(m,i)(t -1)

i = 1,2, ... , J; t = D, 2D, 3D .....

(3.24)

(3.25)

(3.26)

(3.27)

For initialization:

Q(m,i) (0)

W(m,i) (0)

f3(m,i) I; f3(m,i) > 0,

o

24

,-........
\ '-...-.\'-...J

(3.28h
(3.29)

(~;~



The superscript '*' denotes complex conjugation and the H indicates Hermitian

transposition as usual. O"~ is the variance of measurement noise and I is the unit

matrix of dimension P x P. The O(m.;) denotes the degree of uncertainty of the

i-part filter taps of m-th subband, which is taken to be large when initial filter

taps are unknown.

PNLMS algorithm:
For the purpose of comparison, PNLMS algorithm is also presented. The optimal

PNLMS algorithm for the m-th subband is obtained as shown in the following:

J

em(t) = dm(t) - L w[;".n(t - l)x(m,;)(t),
i=l

W(m,;)(t) = W(m,;)(t -1) + 0+ II :;"(t) 112X(m,;)(t)e;;'(t),

where p, is the adaptation constant given by:

a - 2E[1 xm(t) 12]D(t)
< f.L < E[I em(t) 12] ,

i = 1,2, ... , J; t = D, 2D, 3D .....

(3.30)

(3.31)

E[I em(t) 12] is local error signal power, E[I xm(t) 12] is reference m-th subband

signal power, and D(t) is mean square deviation. Here 0> a and W(m,;) (0) = 0, as

prior knowledge of the tap vector is unknown. Note that in Eq. (3.31), adaptive

constant is normalized using II x,.,,(t) 112 instead of II X(m,;)(t) 112 for achieving
better convergence rate like the PNLMS algorithm for time domain4.

For subbband to wideband mapping, estimated weights are stacked as:

(3.32)

Then an N / D-point FFT is calculated on the adaptive weights in each subband,

which are then properly stacked as the same procedure described in Sec. (3.1.3).

3.3 Computational Complexity

Here, computational complexity is calculated based on the number of multipliers

per input samples, assuming that the product of complex values is implemented.0,------------ \ \
4Because of this modification, adaptive filter using PNLMS algorithm in the subband struc- ,._!

ture performs exactly same to the adaptive filter using NLMS algorithm in the subband struc-
ture.
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through 4 real multiplies. The overall computational complexity is divided into

four parts.

1. Subband decomposition of x(t) and d(t): For M subbands, the 2x oversampled

subband decomposition [32] requires one convolution of a K-length prototype

filter and one M-point real FFT for each block of M /2 input samples. Therefore,

the subband decomposition requires

(3.33)

real multiplies per input sample.

2. Updating the adaptive weights: Since only half of the M complex subband

signals are processed and subband filters are downsampled by a factor D = M /2,

each of the M /2 lower subbands has to update 2N /M complex adaptive weights

for each block of M/2 input samples. For close-loop version, with NLMS or

PNLMS algorithm this requires

diLMS/PNLMS = 8N/(ps * M) (3.34)

real multiplies per input sample. Here Ps denotes the number of parallel section

in each sub band. For KF or PKF, the value of C2 is given by

CfKFs = 8(2N/(ps * M))2 + 16(2N/(ps * M)) (3.35)

For open-loop version, an additional C2 real multiplies per input sample are re-

quired to evaluate the subband signal path convolutions [13].

3. Subband to Wide band mapping: The subband-to-wideband filters mapping re-

quires a 2N/M-point complex FFT for each of the M/2 lower subbands and

an N-point inverse real FFT. An 2N/M-point complex FFT requires about

4N/Mlog2(2N/M) real multiplies. In practice, the wideband weights transfor-

mations are performed every N/ J input samples, because the wideband filter

output cannot change much faster than the length of its impulse response [30].

Typical value of J is in the range one to eight. This part thus requires

,
(3.36)
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~ real multiplies per input sample.

4. Wide band signal path convolution: The wideband convolution is performed by

partitioning the wideband filter into p segments. The number of multiplies per

input sample is given by

C4 = Np + 2p log2(2Np) + 4(p - 1) + 210g2(2Np)
= N/p + 2(p + 1) log2(2N /p) + 4(p - 1) (3.37)

considering that the product of complex values is implemented through 4 real

multiplies. Here Np = N/p and the value of p is optimized so that the com-

plexity over the direct convolution is optimized. Thus the total number of real

multiplications required for the open-loop echo canceler is

(3.38)

for the close-loop echo canceler is

(3.39)

As a comparison, it is to be noted that the computational complexity of the

fullband LMS algorithm is approximately 2N and that of fullband Kalman filter

is 8N2 + 16N [16].
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(4.1)

.\

Chapter 4

Simulation Results

Simulation results are presented comparing the performance of different adapta-

tion algorithms used in AECs. The chapter concludes with some remarks.

4.1 Parameters used to Asses an AEC

To evaluate the modified AEC, we present several computer simulation results.

The AEC performance is assessed by using three objective measured. The first

one is the steady state echo return loss enhancement (ERLE), expressed as

ERLE( )
average power of d(t)

t == 10 IOglO --------
average power of e(t)

where t - S ::;j.::; t, S is the number of samples taken to calculate steady state

ERLE. Thus, ERLE is the additional reduction in echo level accomplished by

the echo canceler. An echo canceler is not a perfect device; the best it can do

is attenuate the level of the returning echo. ERLE is a measure of this echo

attenuation performed by the echo canceler. The second objective measure is the

time of initial convergence (TIC) to a specified level of ERLE. The third objective

measure is the number of multiplies required for computation.

4.2 Different Models used in Simulation

Two different reference signals (x(t)) are considered. The color stationary signal

is obtained from the output of the ARMA model of Eq. (4.2)

x(t) O.4x(t - 1) - O.34x(t - 2) + O.396x(t - 3) - O.7565x(t - 4) + u(t)

O.lu(t - 1) - 1.37u(t - 2) + O.353u(t - 3) + O.6984u(t - 4), (4.2)
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where u(t) is zero-mean white noise [16J. See Fig. 4.1. The speech signal

"Hello" is used as the nonstationary input signal. This signal is depicted in

Fig. 4.2, Three different echo paths are considered. The assumed length of

them are 512, 1024 and 2048. See Fig. 4.3-4.5. The value of S to calculate

the steady state ERLE is taken to be 200, 400 and 600. The echo-ed signal or

the micsignal d( t) is obtained from these echo paths for simulation purpose. To

decompose the signals into 8, 16, 32, and 64 subbands, we use the MATLAB

fir1(31,1j8), fir1(63,1j16), fir1(127,1j32), fir1(255,1j64) routine, respectively. As

the polyphase FFT implementation is assumed, only Mj2 + 1 subband signals

are estimated in all cases. Only open-loop configuration is considered.
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Fig. 4.1: Color signal used as stationary reference signal.
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4.3 Results and Comparisons

1. Echopath of length 512: For comparison among different algorithms, consider

the design of an N = 512 tap real wideband AEC. The performance is evalu-

ated using two reference signals (color and speech). Fig. 4.6 and 4.7 show

ERLE obtained for different algorithms namely PNLMS, KF and PKFs for color

and speech signal, respectively. As expected, with equal number of subbands,

KF /PKFs show better results than the conventional NLMS/PNLMS filter. The

number of real multiplications required and ERLE obtained after 4000 iterations

for each adaptive scheme are calculated and summarized in Table 4.1. The com-

putational complexity is very large for KF than that of NLMS/PNLMS. But

computational complexity drastically reduces for PKF's. As for example, with

M = 16 and Ps = 1, the number of real multiplies required for NLMS is 511

and that for KF is 4863. Whereas, with M = 16 and Ps = 8, the number of

real multiplies required for PKFs is only 383. For color signal, with M = 16 and
Ps = 8, ERLE obtained for PNLMS is 17.52 and that for PKFs is 30.67. Also, .

for speech signal, with M = 16 and Ps = 8, ERLE obtained for PNLMS is 8.280
and that for PKFs is 20.46. Hence the proposed AEC, which utilizes PKFs in

the subband structure for coefficients adaptation, has a significant performance
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Fig. 4.6: ERLE obtained by different algorithms of the AEC of length 512 with
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Table 4.1: Comparison of computational complexity and ERLE for echo path 1
of length 512.

Type of No. of No. of parallel LMS Kalman
reference subbands sections algorithm algorithm
signal (M) per subband C ERLE C ERLE

16 1 511 17.52 4863 27.88
16 4 319 17.52 639 27.59

Color 16 8 287 17.52 383 30.67
1 8 - - 133338 30.78
16 1 511 8.28 4863 20.35
16 4 319 8.28 639 20.33

Speech 16 8 287 8.28 383 20.46
1 8 - - 133338 32.28

advantage over the traditional DSAEC in terms of the convergence rate and com-

putational efficiency.

2. Echopath of length 1024: Now, consider the design of an N = 1024 tap real

wide band AEC. The performance is evaluated using two reference signals (color

and speech) as usual. Fig. 4.8 and 4.9 show ERLE obtained for different algo-

rithms namely PNLMS, KF and PKFs for color and speech signal, respectively.

The number of real multiplications required and ERLE obtained after 5000 iter-

ations for each adaptive scheme are calculated and summarized in Table 4.2. As

expected, with equal number of subbands, KF /PKFs show better results than the

conventional NLMS/PNLMS filter. The computational complexity is very large

for KF than that of NLMS/PNLMS. But computational complexity drastically

reduces for PKFs. As for example, with M = 32 and p, = 1, the number of real

multiplies required for NLMS is 852 and that for KF is 17748. Whereas, with'

M = 32 and p, = 8, the number of real multiplies required for PKFs is only

724. For color signal, with M = 32 and p, = 8, ERLE obtained for PNLMS is

11.03 and that for PKFs is 21.84. Also, speech signal, with M = 32 and p, = 8,

ERLE obtained for PNLMS is 11.67 and that for PKFs is 19.83. Although PKFs

in the time domain show better convergence rate, they require a huge amount of

computational complexity. So, for both types of reference signal, the proposed

AEC show better results in terms of both ERLE and computational complexity.
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Table 4.2: Comparison of computational complexity and ERLE for echo path 2
of length 1024.

Type of No. of No. of parallel LMS Kalman
reference subbands sections algorithm algorithm
signal (M) per subband C ERLE C ERLE

32 1 852 11.03 17748 24.83
32 4 468 11.03 1620 22.45

Color 32 8 404 11.03 724 21.84
1 16 - - 133420 -

32 1 852 11.67 4863 23.47
32 4 468 11.67 1620 21.54

Speech 32 8 404 11.67 724 19.83
1 16 - - 133420 -

3. Echopath of length 2048: The assumed length (N) of the acoustic "echo

path 3" is 2048. As usual, the performance of the' AEC is evaluated by two

reference signals (color and speech). Fig. 4.10 and 4.11 show ERLE obtained

for different algorithms namely PNLMS, KF and PKFs for color and speech

signal respectively. As expected, with equal number of sub bands, KF /PKFs

show better results than the conventional NLMS/PNLMS filter. The number of

real multiplications required and ERLE obtained after 12000 iterations for each

adaptive scheme are calculated and summarized in Table 4.3. The computational

Table 4.3: Comparison of computational complexity and ERLE for echo path 3
of length 2048.

Type of No. of No. of parallel LMS Kalman
reference subbands sections algorithm algorithm
signal (M) per subband C ERLE C ERLE

64 1 1001 17.87 17897 35.29
64 4 617 17.87 1769 33.00

Color 64 8 553 17.87 873 28.52
1 32 - - 133566 -
64 1 1001 14.07 17897 18.73
64 4 617 14.07 1769 10.69

Speech 64 8 553 14.07 873 22.57
1 32 - - 133566 -

36



40

35

30

25

m 20
;Q.
w 15
...Ja:
w 10

- 5

M=64,PKF=1

. 1
,'" ''',

: ltl"l"'\

; \,/ ....\
, '
: ~.~~J

I
\

- 10o 5000
Iteration

10000 15000

Fig. 4.10: ERLE obtained by different algorithms of the AEC of length 2048 with
color signal as a reference signal.

M=64,PKF=8

1
30

25

20

15
m
;Q.
w 10
...Ja:
w

5
I
I

o I '"

. I "-:: M ~ 64, PKF = 1
- 5 . \

. \
: I

- 10o

~":.::

5000

I~.;;~'';''~''~..'':"y.'f,,,,.,.; ..•!,~'

f.',
;1

M = 64, PNLMS = 8

10000
Iteration

15000

Fig. 4.11: ERLE obtained by different algorithms of the AEC of length 2048 with
speech signal as a reference signal.

37



complexity is very large for KF than that of NLMSjPNLMS. But computational

complexity drastically reduces for PKFs. As for example, with M = 64 and

p, = 1, the number of real multiplies required for NLMS is 1001 and that for

KF are 17897. Whereas, with M = 64 and p, = 8, the number of real multiplies

required for PKFs is only 873. Note that for time domain PKFs, we don't even

dare to evaluate its performance due to high computational complexity. For color

signal, with M = 64 and p, = 8, ERLE obtained for PNLMS is 17.87 and that

for PKFs is 28.52. Also, speech signal, with M = 64 and Ps = 8, ERLE obtained

for PNLMS is 14.07 and that for PKFs is 22.57.

Thus it is clear that PKFs show better results in terms of both ERLE and

computational complexity when optimal number of parallel sections are incor-

porated in each subband. Moreover, the computational complexity of PKFs is

comparable with that of PNLMS with much better ERLE index.
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Chapter 5

Conclusions

In this work, we have designed an echo canceler using optimal number of parallel

sections in each subband for coefficient adaptations. Incorporation of parallel

architecture in each subband has provided a flexibility in trade-off between the

number of subbands and parallel filters in each subband for optimum performance

of subband adaptive filters. Like the conventional DSAEC, it hasn't suffered from

the inherent delay usually found in subband schemes. On the other hand, by em-

ploying PKFs in the sub band domain, it has yielded improved convergence rate

over the conventional DSAEC. The computational complexity has founded to be

very large for KF even in the subband domain than that of NLMS and PNLMS.

But computational complexity has drastically reduced for PKFs. Moreover, the

computational complexity of PKFs has became comparable with that of PNLMS

with much better ERLE index. Hence the proposed AEC, which utilizes PKFs in

the subband structure for ,coefficients adaptation, has a significant performance

improvement over the traditional DSAEC in terms of both the convergence rate

and computational efficiency when optimal number of parallel sections are incor-

porated in each subband.

5.1 Future Plan

A number of additional studies would be interesting to perform on our proposed

AEC. The performance of the PKFs has degraded somewhat with the increase of

parallel sections in the sub band domain. PKFs algorithm should be modified so

as to make its performance similar to that of KF. In this work we didn't consider

the noise affect. Over the past few decades there has been a tremendous increase
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in the level of ambient environmental noise. A new echo cancellation method

based on the combined acoustic echo cancellation and noise reduction structure

can be proposed. In this study the simulations were run off-line. The system

should be implemented running in real-time to evaluate the performance of the

AEC under more realistic circumstances.
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Appendix A

Digital Filter Banks

Uniform filter bank and its polyphase implementation play an important role in

deriving complex subband signals and are subject to discussion in this section.

A.I Uniform Filter Banks

The digital filter bank is a set of digital bandpass filters with either common input

or a summed output [2]. There are two types of filter bauks, analysis filter bank

and synthesis filter bank. An analysis filter bank consists of a set of filters, with

system function Hm(z), arranged in parallel as shown in Fig. A.I(a). A synthesis

filter bank consists of a set of filters with system function Fm(z), arranged as

indicated in Fig. A.I (b).

Here, a simple technique for the design of the uniform filter bank, i.e., filter

bank with equal passband widths, has been developed. A casual lowpass digital

filter, Ho (z), with passband edge wp and stopband edge Ws around 1r /M, is defined

A

~

~W(I)x(l) Ho(z) v0(1) v0(1) Fo(z)

HA

V I (I) v I (I) F,(z)

t
I
I
I
I

Y HM_,(z) f---. VM)') ~ (1)--1 FM_1(Z) ~M-I

(a) (b)

Fig. A.I: (a) Analysis filter bank, and (b) Synthesis filter bank.
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as
00

Ho(z) = L ho(k)z-k
k=O

(A.l)

where ho( k) is the impulse response of a prototype filter and M is an arbitrary

integer. Now, consider the transfer function Hm(z) which can be expressed in the

time domain as

Le.,

m = 0,1, ...,M - 1,

m = 0, 1, ... ,M - 1,

(A.2)

(A.3)

where WM =-j27r/M. Thus,
00 00

Hm(z) = L hm(k)z-k =L ho(k)(zW~:})-k,
k=O k~O

or,

m = 0, 1, ... ,M - 1, (A.4)

Hm(z) = Ho(zW;}) m = 0, 1, ... ,M - 1,

with a corresponding frequency response

(A.5)

m = 0, 1,...,M-l (A.6)

Hence the frequency response characteristics of the filters Hm(z), m = 0, 1, ... ,M-
1 are obtained by uniformly shifting the frequency response of the prototype filter

by multiples 21r/M, as indicated in Fig. A.2. The M filters Hm(z) defined by Eq.

(A.5) can be used as the analysis filters in the analysis filter bank of Fig. A.l(a)

or as the synthesis filters in the synthesis filter bank of Fig. A.l(b) [2].

A.2 Polyphase Implementation of Uniform Fil-
ter Bank

To develop a computationally efficient filter bank, Ho(z) is expanded as

Ho(z) ho(O) + ho(l)z-l + ho(2)z-2 + ...
[ho(O) + ho(M)z-M + ho(2M)z-2M + ...j
+[ho(l)z-l + ho(M + l)z-(M+l) + ...j
...+ [ho(M _1)z-(M-l) + ho(2M - I)Z-(2M-l) + ...J
M-l (00 )t; z-l ~ ho(l + kM)z-kM
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Fig. A.2: The bank of M filters Hm(z) with uniformly shifting frequency re-
sponses.
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From the above expression

M-I

Ho(z) = L z-z EZ(ZM),
, z~o

where Ez(z) is the lth polyphase component of Ho(z):

(A.8)

00

Ez(z) = L ho(l + kM)z-k,
k=O

1= 0, 1, ..M - 1. (A.9)

Substitution z with zW,i? in Eq. (A.8) and using the relation Hm(z) = Ho(zW,i?)

of Eq. (A.5)

M-I

L z-zW,;:;.mIEz(ZMW,i?M)
z~o
M-I

L z-IW,;:;.mIEz(ZM), 1= 0, 1, ..M - 1,
z=o

(A. 10)

using the identity, W,i?M = 1. Rewriting Eq. (A.lO) in the matrix form, we

obtain

[ Hm(z) ] = [1 W,;:;.k ... WM(M-I)k]

Expanding the above Eq. (A.ll) gives

(A.ll)

[ Hoi.)
1 1 1 [ "'I.M

)H1(z) 1 W-l W-(M-I) Z-l E1(ZM)M M A.12)

H(M-I)(Z) 1 W-(M-I) W-(M-I)2 Z-(M-I)~M_I(ZM)
M M

which is equivalent to

= MD-1

where D denotes the DFT matrix,

1
1D=
1 W(M-I)

M

1
W(M-I)
M
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Fig. A.3: Polyphase implementation of a uniform analysis filter bank.

" EO<zM)vo(t) ---+ w(t)

" I;: E ,(ZM)v, (t) ---+ Q

"
~
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'",
:E ,
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"vMJt)

\,

i,

•
Fig. A.4: Polyphase implementation of a uniform synthesis filter bank.

From Eq. (A.13) it is evident that, the uniform filter bank of Fig. A.l(a) can be

efficiently implemented by the polyphase decomposition of Ha(z) followed by the

DFT as indicated in Fig. A.3. The structure of Fig. A.3 is commonly known as

uniform DFT analysis filter bank.

By following a similar approach, a structure of Fig. A.4 can be derived, which

is commonly known as uniform DFT synthesis filter bank.
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