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ABSTRACT

Fractal is an object whose Housdorff dimension is greater than its Euclidean dimension. 

This report presents the application of fractal theory to the analysis of Electrocardiogram 

(ECG). Three methods for calculating fractal dimension (FD) namely, relative dispersion 

(RD), rescaled range (RS) and power spectral density (PSD) methods are applied here. At 

first, the three methods are applied to simulated data with known FD. The FD by all the 

methods depends on data length which is taken as 1024, 2048 and 4096. The RS and PSD 

methods are less biased to data length and give more consistent result than RD method. 

The best result is obtained for a data length of 4096. 

The same three methods are applied to calculate FD of instantaneous heart rate (IHR) 

derived from ECG of both normal and abnormal records of MIT-BIH data base. The 

abnormalities considered here are premature ventricular contraction (PVC), bundle branch 

block (BBB) and atrial premature beat (APB).  The number of data sets for whose ECG 

are taken is 3 in each case except for BBB where 4 data sets are taken. The FD of IHR of 

normal ECG is by RD, RS and PSD methods are found as 1.46±0.071, 1.66±0.006 and 

1.80±0.025, respectively, where FD is provided as mean ± standard deviation. The 

respective values of FD for records containing PVC are 1.43±0.035, 1.51±0.029 and 

1.71±0.010 while that for left BBB are 1.28±0.015, 1.74±0.017 and 1.70± 0.043. The FD 

values for APB data are 1.35±0.015, 1.56±0.015 and 1.74±0.006. It is seen that the FD of 

ECG containing PVC, BBB and APB type abnormalities is different from that of normal 

ECG. Hence, it is can be said that fractal analysis can distinguish these types of 

abnormalities from the normal ones. However, due to small number of data sets studied 

here, absolute conclusion regarding the applicability of FD analysis to detect cardiac 

abnormality can not be made. This study shows the potential use of fractal analysis in the 

estimation of cardiac condition.
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Chapter 1 
INTRODUCTION 

 

1.1 Introduction to Fractals 
A fractal is an object whose Housdorff dimension is greater than its Euclidean dimension. 

The explanation of fractal should be observed on the same way as the biologists observe 

the explanation of life. There is no solid and swift definition. It gives the impression best 

to regard ‘fractal’ as a set, which has the properties of well arrangement, enough 

abnormalities to be described in conventional geometrical language and fractal dimension 

(FD) greater than its topological dimension. So we can say fractal is a mathematical 

investigation for characterizing complex, replicating geometrical patterns at different scale 

lengths. Signifying the fractal behaviour of a signal is inconsistent, since it incites the 

growth of new way for determining how the arrangement works. It has been established 

that fractal geometry can play significant role in the analysis of natural observable fact. 

Fractal dimension is also expansively used in understanding of the characteristic of 

extraordinary attractors.  

 

Fractals: 

 Fractals are of rough or fragmented geometric form that can be subdivided in 

parts, each of which is (at least approximately) a reduced copy of the whole.  

 They are puckered objects that defy conventional measures, such as length and 

are most often characterized by their fractal dimension.  

 They are mathematical sets with a high degree of geometrical complexity that 

can model many natural phenomena. Almost all natural objects can be 

observed as fractals (coastlines, trees, mountains, and clouds).  

 Their fractal dimension strictly exceeds topological dimension. 

 It is a quantity, very often non-integer, often it is the only one measure of 

fractals.  

 It measures the degree of fractal frontier disintegration or abnormality over 

multiple scales.  

 It determines how fractal differs from Euclidean objects (point, line, plane, 

circle etc.) 
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Mono-Fractals / Multi-Fractals: 

 Just a small group of fractals have one certain fractal dimension, which is scale 

invariant. These fractals are mono-Fractals.  

 The most of natural fractals have different fractal dimensions depending on the 

scale. They are composed of many fractals with the different fractal dimension. 

They are called “multi-Fractals“.  

 To characterize set of multi-Fractals (e.g. set of the different coastlines) we do 

not have to establish all their fractal dimensions, it is enough to estimate their 

fractal dimension at the same scale. 

 

Self-similarity/ Semi-self similarity: 

 Fractal is strictly self-similar if it can be expressed as a union of sets, each of 

which is an exactly reduced copy (is geometrically similar to) of the full set 

(Sierpinski triangle, Koch flake). The most fractal looking in nature does not 

display this precise form.   

 Natural objects are not union of exact reduced copies of whole. A magnified 

view of one part will not precisely reproduce the whole object, but it will have 

the same qualitative appearance. This property is called statistical self-

similarity or semi-self-similarity. 

 

Fractal analysis: 

 A compilation of mathematical procedures used to establish fractal dimension 

(or any other fractal characteristic) or set of fractal dimensions (in the case of 

multi-fractals) with the smallest error. 

 Now a day very often used to illustrate properties if natural objects. Methods 

are under continuous scientific improvement. 

 

1.2 Fractal Dimension 
The term "fractals" is derived from the Latin word ‘Fractus’, the adjectival form of 

‘Franger’, or "to break" [1]. Unlike conventional geometry, which deals with lines, 

triangles, circles, spheres and cones, fractal geometry is concerned with broken or 

"fractured" shapes as so commonly found in nature. Such shapes simply do not vary in 

degree from conventional geometry (for example, clouds that are not spheres, trees that are 
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not cones and rivers that do not run straight). Fractals have been used to explain objects 

and geometrical formations [2]. Many structures demonstrate an underlying geometric 

regularity, known as scale invariance or self-similarity that is the tendency of natural 

forms to repeat them. If these objects are observed at different size scales, there is the 

same fundamental pattern that is encountered. This repetitive pattern defines the fractional, 

or fractal dimension of the object structure. 

 

Fractal patterns exhibits, in many cases, chaotic behaviour. Chaos may be defined as the 

pattern that lies between the determinism and randomness of a system and it refers to a 

constrained type of unpredicted turbulent dynamics. It is emphasized that all fractal 

dimensional systems are chaotic and that the data they generate will be a periodic, 

complex, and apparently unpredictable. The analysis of the dynamics of human 

biomedical or biological signals is an important area of investigation to help control and to 

be able to predict the onset of pathological conditions. Fractal behaviour is exhibited by 

the heart in electrocardiogram signals and by the brain in electroencephalogram (EEG) 

signals [3], [4]. It has been emphasized that the demonstration of chaotic behaviour in 

humans opens out the possibility of rapid diagnosis and effective therapeutic control of 

conditions ranging from epilepsy to cardiac arrest [5]-[7]. What is required is a practical 

method or procedure that utilizes or translates chaos and/or fractal theory concept into a 

simple and straightforward manner to help distinguish between normal and pathological 

behaviour [8] 

 

Fractals are characterized by a scaling law that relates two variables: the scale factor and 

the object being measured. This scaling relationship is described by a power law, which in 

turn describes the inherent physical attributes of the object being analyzed. The exponent 

of the power law refers to the dimension [9]. From fractal linguistics perspective, fractal 

images are strictly limited visualizations of recursive equations that cannot be represented 

to the limit as an image on a computer. The Koch curve shown in Figure 1 is not a fractal, 

as the iteration level is not depicted at the level of infinity and has been referred to as pre-

fractal [2] 
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Fig 1.1: The Koch curve displaying the iteration process over several generations 

 

A fractal object is the result of repeated transformations of a geometrical figure that leads 

to self-similar patterns [1]. This self-similarity is a function of the scale invariance 

observed within the pattern between successive transformations. Viewing a fractal would 

therefore reveal identical patterns at different observation scales. In fact an important 

definition of fractals is that this self-similarity continues indefinitely. To explain the 

concept of fractal dimension, it is necessary to explain the dimension in the first place. A 

line is one dimensional and a plane is two dimensional. We can break a line into N self-

similar pieces, each with magnification factor N. A square can be decomposed into N2 

self-similar copies of itself, each of which must be magnified by a factor of N to yield the 

original figure as shown in figure 1.2. 

 

    

    

    

    

 

 

 

Fig 1.2: Breaking of a square into N2 self similar pieces, each with magnification factor N 
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Now we see an alternative way to specify the dimension of self similar objects. The 

dimension is simply the exponent of the number of self similar pieces with magnification 

factor N into which the figure can be broken. 

N

N

factorionmagnificat

piecessimilarselfofNumber
Dimension

log
log

)log(
)log(

2






 

             = 2 

So, the dimension of the square is 2. This we take as the definition of fractal dimension of 

a self similar object:   

)log(
)log(

factorionmagnificat

piecessimilarselfofNumber
DimensionFractal


                 (1.1) 

Now we can compute the dimension of S for the Sierpinski triangle consisting of three self 

similar pieces, each with magnification factor 2. So the fractal dimension is 

)log(
)log(

factorionmagnificat

piecessimilarselfofNumber
DimensionFractal


  

                  
2log
3log

      

                                                 = 1.58       

 

 

 

Fig1.3: Construction of Sierpinski gasket 

 

So, the dimension of S is somewhere between 1 and 2. Unfortunately, similarity 

dimension is meaningful only for a small class of self-similar sets. Very roughly, fractal 

dimension is a measure of how “complicated” a self similar figure is. It provides a 

description of how much space a set fills. It is a measure of the prominence of the 

irregularities of a set when viewed at very small series. Fractal system, both in time and 

space, has neighbour to neighbour correlation at all levels of scale. In spatial statistics, the 

variance of the local measure depends on the resolution of measurement. For instance, the 
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variance of regional blood flow in the heart increases as the resolution of measurement is 

increased. In an experiment where the heart is divided into many sections for the 

measurement of the concentration of a flow proportional marker in each of the sections, 

the relation between the resolution mass of observed tissue element, m, and the variance, 

Var, of the regional blood flows, is well described by a power law function: 

 Var (m) =Var (m0) 
22

0













H

m

m                                                                               (1.2)   

Where H is the Hurst coefficient, H=2-D and D is the fractal dimension lying between 1.0 

and 2.0. The spatial distribution is considered to have fractal properties. The consequence 

of D is that it describes very compactly the relation between the variance of the signal and 

the time scale. No assumptions on the underlying system for which the signal is observed 

are made and therefore it is a purely statistical tool. The fractal dimension estimated  these 

techniques form a time series in between 1 to 2 i.e. for one dimensional function y(t), the 

fractal D lies between the Euclidean dimension E(=1) and E+1. 

 

1.3  Historical Background 
There is long history of using image analysis to determine the morphology of a system 

associated with an image. Recently, techniques based on concepts from the field of 

artificial life have been used for image analysis [3]. The measures of complexity they use 

involve fractal dimension and percolation. The concept of fractal dimension to describe 

structures which look the same at all length scale, was first proposed by Mandelbrot [1]. 

Although in strict terms, this is a purely mathematical concept, there are many examples in 

nature that closely approximate a fractal object, though only over particular range of scale. 

From the historical analysis fractals initiate to take form in the seventeenth century when 

mathematician and philosopher Leibniz measured recursive self-similarity (although he 

made the oversight of thinking that only the straight line was self-similar in this sense). It 

captured until 1872 before a function appeared whose graph would today be considered 

fractal, when Karl Weierstrass [10] gave an example of a function with the non-intuitive 

possessions of being everywhere continuous but nowhere differentiable. In 1904, Helge 

von Koch, dissatisfied with Weierstrass’s very conceptual and analytic definition, gave a 

more geometric definition of a similar function, which is now called the Koch curve [2]. In 

1915, Waclaw Sierpinski constructed his triangle and, one year later, his carpet. Originally 

these geometric fractals were described as curves rather than the 2D shapes that they are 



  7 

known as in their modern constructions. In 1918, Bertrand Russell recognized a "supreme 

beauty" within the emerging mathematics of fractals. The idea of self-similar curves was 

taken further by Paul Pierre Lévy, who, in his 1938 paper Plane or Space Curves and 

Surfaces Consisting of Parts Similar to the Whole described a new fractal curve, the Lévy 

C curve [10]. Georg Cantor also gave examples of subsets of the real line with unusual 

properties—these Cantor sets are also now recognized as fractals. Iterated functions in the 

complex plane were investigated in the late 19th and early 20th centuries by Henri 

Poincaré, Felix Klein, Pierre Fatou and Gaston Julia [10]. However, without the aid of 

modern computer graphics, they lacked the means to visualize the beauty of many of the 

objects that they had discovered. In the 1960s, Benoît Mandelbrot started investigating 

self-similarity in papers. Finally, in 1975 Mandelbrot created the word "fractal" to denote 

an object whose Hausdorff-Besicovitch dimension is greater than its topological 

dimension. He illustrated this mathematical definition with striking computer-constructed 

visualizations. These images captured the popular imagination; many of them were based 

on recursion, leading to the popular meaning of the term "fractal". The fractal analysis can 

also be applied further in image analysis, fluid dynamics, investing natural phenomenon 

and so on. By determining the Fractal Dimension of an ECG signal, an estimation of heart 

condition can be made, which can be helpful in medical science [11]. 

 

1.4  Objective of the Project 
The aim in this study to apply frequently a time varying signal is required to be examined 

to pull out characteristics of awareness. For example, medical diagnosis often requires the 

analysis of time varying cardiac, respiratory, or brain signals in order to detect cardiac, 

pulmonary, or mental problems. In industrial control, electrical sensors produce signals in 

response to sensed parameters which occur over time in a manufacturing process and a 

control system responds to characteristics detected in the resultant signals. In general, 

most temporal processes are analyzed using Fourier Transform technique (frequency 

domain); chaos dynamics (position-velocity phase plane) and other complex mathematical 

techniques have been applied to signal analysis. A common drawback of these methods is 

that they are often complex, not easily amenable to analysis, and require some data pre-

processing procedures, such as filtering, etc. Thus there remains a need for simple and 

practical methods for analyzing such time varying electrical signals. Images and shapes 

within images which cannot be represented by Euclidean geometry have been analyzed by 



  8 

Fractal geometry. Unlike conventional geometry, which deals with lines, triangles, circles, 

spheres and cones, fractal geometry is concerned with broken or "fractured" shapes as so 

commonly found in nature.  

 

1.5  Organization of the Report 
The rest of the report is organized as the following:  

 Chapter 2 contains the method of calculation of fractal dimension (FD) of time 

series data. The methods considered are relative dispersion (RD), power spectral 

density (PSD) and rescaled range (RS) methods.  

 Chapter 3 contains the calculation of FD of simulated data. Data of known FD is 

simulated and FD is calculated to compare the applicability of different methods.  

 Chapter 4 describes the ECG and its different patterns for normal and abnormal 

cardiac conditions. 

 Chapter 5 contains the calculation of FD of heart rate (HR). FD based analysis of 

HR time series data of healthy persons as well as pathologic patients are performed 

using three different methods. The abnormalities considered are premature 

ventricular contraction (PVC), bundle branch block (BBB), atrial premature 

contraction (APC) and so on. 

 Chapter 6 discusses the findings of the project and future perspectives. 
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Chapter 2 
CALCULATION OF FRACTAL DIMENSION  

 

2.1 Introduction 
Fractal analysis is a mathematical investigation for characterizing complex, replicating 

geometrical patterns at different scale lengths. We shall inspect three methods, relative 

dispersion (RD), power spectral density (PSD) and rescaled range (RS) methods, [2], [12], 

[13], for analyzing one-dimensional time series data. All of these methods give the value 

of fractal dimension D. When adjacent elements in a time series or a spatial distribution 

are positively correlated, the measured variance will drop less rapidly as the resolution is 

decreased. Based on this property, the fractal dimension (FD) can also be estimated 

directly from a RD analysis. The statistical method, Hurst’s rescaled range (RS) analysis 

from which the fractal dimension can be calculated depends on the scaling properties of 

self-affine signal [2]. For analysis of flows in rivers the range is of the integral of deviation 

from the mean of the interval and it is normalized by dividing by the standard deviation of 

the differences from the mean. This method can also be used to estimate the fractal 

dimension from a fractional Brownian noise. The modification of RS was performed by 

using the differences from the mean. The signals analyzed by a specific power spectrum of 

the form [9]: 

 S(f) ≈ fB 

Where, f is the frequency. Thus Fourier analysis is another procedure used to estimate 

fractal dimension.  

 

2.2 Relative Dispersion (RD) Method 
Originally, the RD method was introduced in 1988 for evaluating the fractal characteristics 

of regional flow distributions in the heart distribution analysis [2]. This technique, which 

we will discuss in detail below, is a one-dimensional approach that can be applied to an 

isotropic signal of any dimension. Making estimates of the variance of the signal at each 

of several different levels of resolution form the basis of the technique; for fractal signals a 

plot of the log of the standard deviation versus the log of the measuring element size (the 

measure of resolution) gives a straight line with a slope of 1 - D, where D is the fractal 

dimension. For a specified value of H, the Hurst coefficient, we can determine the FD as D 
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= 2 – H with 1 < D < 2. H is a measure of irregularity; the irregularity or anticorrelation in 

the signal is maximal at H near zero. White noise with zero correlation has H = 0.5. 

Smoother correlated signals have H near to 1.0. It is reported that there is a strong 

relationship between the measure of variation (the coefficient of variation) and the 

resolution of measurement. This is a simple one dimensional spatial analysis which we 

level as RD analysis, where RD is derived by dividing the standard deviation by the mean. 

Mathematically it can be expressed as: 

                
Mean

SD
RD   

                           
 
N

xx
iondardDeviatS

n

i i 


 1

2

tan                                                      (2.1)                                        

where,   ix = Random variable 

   x = Mean of the variables 

  N = Number of Samples 

The dependence of the variance of a variable also found by the same fractal analysis of 

time series, for example, the velocity of blood cells passing through  a small artery as a 

function of time. If a signal y(t) is divided into intervals of length Δt and the mean is 

calculated for each interval, one can calculate the variance of these means; there will be a 

lower variance when the interval length is increased. The relationship between the 

variance and the sample time may fit a power law, and if so, the fractal dimension of the 

time series can be calculated by same RD analysis as was used for a spatial measure. In 

time series analysis, one stars by measuring at the highest of resolution, the variance of the 

signal over its whole time course. The next step is to average the signal over pairs of 

consecutive values, find the variance and repeat for longer strings of values of y(t). String 

length increasing geometrically, grouping by 2, 4, 8 etc, is efficient because pairs of 

average are combined for a next iteration. When the signal is uncorrelated (white noise), 

with H = 0.5, one expects that the standard deviation, when two consecutive values are 

averaged, is reduced by a factor 5.02
1 , or when n consecutive values are averaged, by 5.0

1
n

. 

The mean remains the same. Now one will find that with a correlation function fBn, and H 

not equal to 0.5, the SD will be proportional to , n being the bin size or time 

resolution interval. By calculating the RD (RD = SD / Mean) for different bin sizes, n and 

fitting the square law function: 
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













0

1

0
n

n
RDRD

H

                                                                                                (2.2) 

where, RD0 is the RD for some reference bin size n0. 

The whole data set is used for each calculation of RD (n) at each level of resolution or 

number of pieces, n. The exponent can be best estimated by a log-log transformation. 

  log (RD)=log(RD0) +(H-1)log(n/n0)                                                                  (2.3) 

Here,     H-1 = slope                                                                                                         (2.4) 

For fractal dimension, D=2-H                                                                                         (2.5)           

            D=2-(1+slope) 

                So,   D =1-slope                                                                                   (2.6) 

So, we can easily estimate the fractal dimension from this equation. 

 

The fit is little improved when longer signals are used. The RD analysis yields essentially 

the same result only the first three or four points on the graph (i.e. the smallest bin sizes 2, 

4, 8 and 16) are used. With very large bin sizes, the number of bins is of course small and 

the measure of the variance is less accurate. This relationship is an important advantage of 

RD analysis, because especially in spatial statistics, signals may not be very long due to 

limited resolution and domain size. 

 

In the years since its introduction in 1988, RD analysis has been fairly extensively applied, 

for example to regional flow distributions in the heart, the lung and more recently, the 

kidney. While it is intuitively obvious that greater heterogeneity will be observed when the 

spatial resolution of the observations is more refined, when the spatial distributions are 

fractal, the heterogeneity observed at each of many different levels of resolution is 

describable in terms of two numbers, a fractal dimension, D, and the variance at a chosen 

level of resolution. Such two-number descriptors allow the results from various 

laboratories around the world to be compared even when the raw observations have not 

been made on pieces of tissue of the same size at all these laboratories. Dispersion analysis 

is also applicable to signals that are functions of time (i.e., true one-dimensional signals 

such as might be obtained for blood pressure, heart rate, or local concentration of a solute). 

 

 

 



  12 

2.3  Rescaled Range (RS) Method 
The basis of the rescaled range analysis was laid by Hurst [2]. Mandelbrot and Wallis 

examined and further elaborated the method. Feder [10] gives an excellent overview of the 

history, theory and applications, and adds some more statistical experiments. Rescaled 

range analysis is a statistical method to analyze long records of natural phenomena. There 

are two factors used in this analysis: firstly the range R, this is the difference between the 

minimum and maximum 'accumulated' values or cumulative sum of X(t,τ) of the natural 

phenomenon at discrete integer-valued time t over a time span τ, and secondly the standard 

deviation S, estimated from the observed values X(t,τ). Hurst found that the ratio R/S is 

very well described for a large number of natural phenomena by the following empirical 

relation [2]: 

 
 

H

S

R





  

Where τ is the time span, and H the Hurst exponent. The coefficient C was taken equal to 

0.5 by Hurst. R and S are defined as 

     


,min,max
11

tXtXR
tt 

  

and,     
2
1

1

21








 











t

tS  

where  











1

1
t

t  

and,     



t

u

utX
1

,


  

The relation between the Hurst exponent and the fractal dimension is simply  

D=2-H. 

We calculate the individual calculations for each interval length. A straight line is fitted in 

the log-log plot: 

Log[R(T )/S(T )] = C + H log(T ) 

Where H = slope. 

So, Fractal dimension, D= 2-H 

With the help of this equation we can easily evaluate fractal dimension in rescaled range 

analysis, this method handles observations in time. The graphical representation uses time 

in the abscissa, and the observed value in the ordinate. The estimation from the R/S 
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analysis depends on the way of way of subsets from the signal is taken to calculate the 

rescaled range. With longer signal, larger lags can be used along with more points per lag. 

Also, the length of the shortest lag can be increased, which proves the fit further.  

 

2.4      Power Spectral Density (PSD) Method 
The power spectrum (the square of the amplitude from the Fourier transform) of a 

unpolluted fractional Brownian motion is   known to be described by a power law function 

[2]:  

|A|2 = 1/ f β 

Where |A| is the magnitude of the spectral density at frequency f, with an exponent equal 

to    β = 2H + 1.  

In general, fractal signals always have such a very broad spectrum. When the derivative is 

taken from a fractal signal, β is reduced by two. Thus, for fractional Brownian noise, fBn, 

β is expected to be: β=2H+1. Here again, a straight line is fitted from a log-log plot, and H 

is calculated from the slope β. Power spectrum method applies the power law variation of 

time series. A strong relationship exists between fractal dimension and power law index of 

time series. In the frequency domain, fractal time series exhibit power law properties: 

                                                     P(f) ~ f -α 

Where P(f)  is the power spectral density f, and the exponent α is the so called power-

spectral index. For the values region between D or FD=1 and FD = 2 the following 

relationship between FD and α is valid [2], [12]: 

    FD = (5- α)/2, for 1<FD<2 

In other words, the fractal dimension of a time series can be calculated directly from its 

power spectrum. The influence for longer signals in the Fourier analysis is not clear from 

the individual plots, but the estimates are quite accurate even for shorter signals. 
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Chapter 3 
FRACTAL DIMENSION OF SIMULATED DATA 

 

3.1 Introduction   
In calculating the fractal dimension (FD), we face some typical problems. The first 

problem is how to distinguish between the effects from different signal generating 

algorithm and the estimation methods. Another problem is, the production of a truly fractal 

signal is itself a non-trivial exercise and may be as difficult as producing random noise. 

So, we must concern about capability of generating algorithm as well as the analysis 

algorithms. Some judgment may require a very long signal, whereas other provides good 

result at shorter signal length. It has already been established that FD depends on data 

length, the method of calculation and obviously, on the variation characteristics of the 

signal [12]. To find out fractal dimension and its dependency on different parameters, we 

have simulated a time series data with known fractal dimension (D=1.1 to 1.9). This 

chapter describes the estimation of FD of the simulated data with three methods described 

in Chapter 2. Based on the analysis of simulated data in the specified three methods, our 

aim is to find out the best method that gives fractal dimension closer to that dimension 

with which the data is simulated. All the possible parameters such as size, time interval 

between data are varied to reach at the desired solution of the FD. Then we will use these 

methods to estimate the fractal dimension of instantaneous heart rate (IHR) data of healthy 

persons and define a range of FD of healthy subjects for each method. Then we will use 

the methods to determine fractal dimension of IHR of subjects with different abnormalities 

and determine the range of variation of FD for each abnormality type. 

 

3.2 Data Simulation  
There is no unique method to generate a signal of known fractal dimension. Since our 

ultimate objective is to calculate FD of heart rate and we know that it lies between 1 and 2, 

we use the familiar Weierstrass function [10] to generate a time series signal. The function 

is reproduced below:  







1

)2( )sin()(
k

kkH ttf         (3.1) 
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where 1 <H < 2 and λ represents FD which is greater than 1. The data was simulated for 

signal H = 1.5 and λ = 1.5. The detailed representation of simulated data is presented in 

[14].  

 

3.3  FD with Relative Dispersion Analysis 
The simulated time series data is loaded from the ‘time_value.mat’ file in the first place. 

The data series is then segmented into intervals and individual mean of each segment is 

calculated and saved in ‘mean.mat’ file. The means, equal to the number of segmented 

intervals, are loaded from the ‘mean.mat’ file and the final mean is calculated and saved in 

‘mean_final.mat’ file. The final mean of the data series is then used to determine the 

standard deviation of each individual data point from the final mean. Finally, the standard 

deviation is normalized by dividing with the total number of data point in the data series, 

which yields the relative dispersion RD of the data series. The results are then plotted 

against log2(n) versus  log2(RD), where n is the bin size or the time resolution interval. 

The MATLAB function ‘polyfit()’ is used to fit a least square straight line over the log2(n) 

versus  log2(RD) curve. The slope of the straight line is then used to calculate the fractal 

dimension. The important equations are listed below: 

  
Mean

SD
RD   

 
N

xx
iondardDeviatS

n

i i 


 1

2

tan  

Log(RD)=log(RD0) +(H-1)log(n/n0) 

Fractal dimension, D=2-H 

Fractal dimension, D=1-slope 

 
The typical curve of log2(n) versus  log2(RD) plot along with the least square 

approximated line for a typical data length (N =4096) is provided in Fig. 3.1. The different 

parameters with different time intervals are shown in the Tables 3.1. 
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Fig 3.1: Actual and approximated straight line for relative dispersion method using 4096 

simulated data. 

 

Table3.1: Relative dispersion method using 4096 simulated data 

Bin size n Mean    SD    RD log2n Log2(RD) Hurst  

coefficient 

Fractal  

dimension 

2048 0.0744 0.0183 0.2466 11 -2.019  

 

 

 

  0.553 

 

 

 

 

1.447 

1024 0.0744 0.2047 2.7532 10 1.461 

512 0.0744 0.2510 3.3732 9 1.755 

256 0.0744 0.7474 10.0495 8 3.3291 

128 0.0744 0.9704 13.0498 7 3.706 

64 0.0744 1.0984 14.7707 6 3.885 

32 0.0744 1.1577 15.5683 5 3.961 

16 0.0744 1.1992 16.1257 4 4.011 

8 0.0744 1.2199 16.4046 3 4.036 

4 0.0744 1.2305 16.5468 2 4.048 

2 0.0744 1.2362 16.6240 1 4.055 
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The results obtained with other 2 values of N (1024 and 2048) are also calculated. The 

results are provided in Table 3.2.  

Table 3.2: FD of simulated data by RD method 

Data size, N Fractal Dimension, D 

4096                          1.4471 

2048 1.2182 

1024 1.2892 

 

The best result is achieved with N=4096. But use of longer and closely spaced data do not 

provide any clear indication about the performance of RD method as we tried to reach the 

known fractal dimension by analyzing various data series. In general, with the increase of 

data length, calculated fractal dimension in general, gets closer to the actual result D=1.5. 

 

3.4 FD with Rescaled Range Analysis 
After loading the simulated data from ‘time_value.mat’ the data is read from the file in 

different lag size, i.e. in the different bin size or resolution time interval. Mean of the data 

series is then calculated and from the mean the difference of individual data point of all 

lags are determined. The integral of the difference for each data point over the lag time 

interval is then saved in ‘data_slot.mat’ file. Maximum and minimum of integral for each 

lag interval is then calculated to find out the range of each interval and saved in 

‘slot_range.mat’ file. Standard deviation of the data points for each lag interval is 

determined to find the ratio of rescaled range to standard deviation for each lag interval 

and saved in ‘slot_avg_r_sd.mat’ file. Finally, the R/S ratio is calculated from the average 

of each slot R/S ratio. The results are then plotted against log2(T ) versus log2(R/S) , where 

T  is the length of the time spans as stated by Mandelbrot and Wallis. As previous, The 

Matlab function ‘polyfit ()’ is used to fit a least-square straight line. The slope of the 

straight line is then used to calculate the fractal dimension. The typical results of plotting 

and FD calculation for a data length of 1024 are provided in Fig. 3.2 and Table 3.2, 

respectively. 

 

 

 

 



  18 

 
Fig: 3.2: Rescaled range analysis using 1024 simulated data. 

Table 3.3: Rescaled Range analysis using 1024 simulated data. 

Slot size, T R/S log2(T ) log2(R/S) 

512 2198.600 9 11.1024 

256 1478.300 8 10.5297 

128 1087.100 7 10.0862 

64 727.8666 6 9.50750 

32 499.7584 5 8.96510 

 

The results of FD with different data length are provided in Table 3.4. 

Table 3.4: FD by Rescaled Range analysis 

Data size, N Fractal Dimension , D 

1024 1.4703 

2048 1.4617 

4096 1.4744 
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From the graph, it is seen that in rescaled range analysis there is no linear variation of 

fractal dimension with data length or closely spaced data series. The best result is obtained 

with data size, N=4096. But one may find a quick hint from the fact that, in general, data 

series is suited better by RS analysis rather than RD analysis. 

 

3.5   FD with Power Spectral Density Analysis 
Theoretically, power spectral analysis yields the least biased results .The power spectrum 

is the Fourier transform of the autocorrelation function. The autocorrelation function is 

closely connected with the power spectrum of f, defined by 

   
T

T

it

T dtetf
T

S 
2
1lim  

The power spectrum reflects the strength of frequency  in harmonic decomposition of f. 

At first simulated data is loaded from the ‘time_value.mat’ file. Power spectral density is 

estimated by using MATLAB function ‘PSD’. Function Format: 

                      [Pxx,F] = psd(x,nfft,fs,window,noverlap) 

It returns a vector of frequencies, the same size as Pxx at which the PSD is estimated. The 

PSD is plotted on log scale by using ‘log log’ command. Least-square straight line is then 

fitted over the PSD plotted. The slope of the estimated straight line is used in calculating 

the fractal dimension of the simulated data. The plots of the power spectral densities 

against the normalized frequency in the log scale are shown in Figure 3.3.  
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Fig 3.3: PSD and approximated straight line using 4096 simulated data. 
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Measuring the slope of the fitted straight line, we have calculated the FD for different data 

length (1024, 2048 and 4096) using the following equation:  

 D= (5-Slope)/2 
The found results are provided in Table 3.5. 

 

Table: 3.5: FD by PSD method 

Data size, N Fractal Dimension, D 
1024 1.4788 

2048 1.4542 

4096 1.4763 

 

 

3.6 Discussion 
As in the case of RD method, the best result is achieved with longer data series. From the 

analysis it is obvious that, PSD and RS methods show least biased results and the FD is 

close to the actual dimension of 1.5. The results for the RS analysis depend on the number 

of subintervals, the minimum and maximum lags. It is not clear how important the number 

of subintervals is. In the analysis, we choose not to use overlapping sub intervals so that 

extra dependency between these sub intervals occurs in calculating the FD. 

 

Since the simulated data, generated from a nonlinear equation, represents a parametric 

model may have different characteristics from the actual natural data. So, no single 

method can be established as the best one at this stage to relate the nature of data series 

and the calculated FD. Hence, we need to apply all the methods to calculate FD of heart 

rate data. The study is presented in the Chapter 5. 
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Chapter 4 
ELECTROCARDIOGRAM 

 

4.1 Introduction  
An electrocardiogram (ECG or EKG) is a recording of the electrical activity of the heart 

over time produced by an electrocardiograph, usually in a noninvasive recording via skin 

electrodes. Its name is made of different parts: electro, because it is related to electrical 

activity, cardio, Greek for heart, gram, a Greek root meaning "to write". 

 

Electrical impulses in the heart originate in the sinoatrial node and travel through the heart 

muscle where they impart electrical initiation of systole or contraction of the heart. The 

electrical waves can be measured at selectively placed electrodes (electrical contacts) on 

the skin. Electrodes on different sides of the heart measure the activity of different parts of 

the heart muscle. An ECG displays the voltage between pairs of these electrodes, and the 

muscle activity that they measure, from different directions, also understood as vectors. 

This display indicates the overall rhythm of the heart and weaknesses in different parts of 

the heart muscle. It is the best way to measure and diagnose abnormal rhythms of the 

heart, particularly abnormal rhythms caused by damage to the conductive tissue that 

carries electrical signals, or abnormal rhythms caused by levels of dissolved salts 

(electrolytes), such as potassium, that are too high or low. In myocardial infarction (MI), 

the ECG can identify damaged heart muscle. But it can only identify damage to muscle in 

certain areas, so it can't rule out damage in other areas. The ECG cannot reliably measure 

the pumping ability of the heart; for which ultrasound-based (echocardiography) or 

nuclear medicine tests are used. 

 

4.2 ECG Leads 
The term lead is used to indicate a particular group of electrode. Because ECG signal is 

measured from electrodes placed on the surface of the body, the waveform of the signal is 

varies depending on the placement of the electrodes. 
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4.2.1 Limb Leads  
Leads I, II and III are the so-called limb leads because at one time, the subjects of 

electrocardiography had to literally place their arms and legs in buckets of salt water in 

order to obtain signals for Einthoven's string galvanometer. They form the basis of what is 

known as Einthoven's triangle. Eventually, electrodes were invented that could be placed 

directly on the patient's skin. Even though the buckets of salt water are no longer 

necessary, the electrodes are still placed on the patient's arms and legs to approximate the 

signals obtained with the buckets of salt water. They remain the first three leads of the 

modern 12 lead ECG. 

 

Lead I is a dipole with the negative (white) electrode on the right arm and the positive 

(black) electrode on the left arm. 

 

Lead II is a dipole with the negative (white) electrode on the right arm and the positive 

(red) electrode on the left leg. 

 

Lead III is a dipole with the negative (black) electrode on the left arm and the positive 

(red) electrode on the left leg. 

 

4.2.2 Augmented V Leads 
 

                                     
Fig 4.1 Augmented Limb Leads 
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Leads aVR, aVL, and aVF are 'augmented limb leads'. They are derived from the same 

three electrodes as leads I, II, and III. However, they view the heart from different angles 

(or vectors) because the negative electrode for these leads is a modification of 'Wilson's 

central terminal', which is derived by adding leads I, II, and III together and plugging them 

into the negative terminal of the ECG machine.  

 Lead aVR or "augmented vector right" has the positive electrode (white) on the 

right arm. The negative electrode is a combination of the left arm (black) electrode 

and the left leg (red) electrode, which "augments" the signal strength of the 

positive electrode on the right arm. 

 Lead aVL or "augmented vector left" has the positive (black) electrode on the left 

arm. The negative electrode is a combination of the right arm (white) electrode and 

the left leg (red) electrode, which "augments" the signal strength of the positive 

electrode on the left arm. 

 Lead aVF or "augmented vector foot" has the positive (red) electrode on the left 

leg. The negative electrode is a combination of the right arm (white) electrode and 

the left arm (black) electrode, which "augments" the signal of the positive 

electrode on the left leg. 

 

The augmented limb leads aVR, aVL, and aVF are amplified in this way because the 

signal is too small to be useful when the negative electrode is Wilson's central terminal. 

Together with leads I, II, and III, augmented limb leads aVR, aVL, and aVF form the basis 

of the hexaxial reference system, which is used to calculate the heart's electrical axis in the 

frontal plane. 

 

4.2.3 V Leads 
The V leads V1, V2, V3, V4, V5, and V6 are placed directly on the chest. Because of their 

close proximity to the heart, they do not require augmentation. Wilson's central terminal is 

used for the negative electrode, and these leads are considered to be unipolar. The 

precordial leads view the heart's electrical activity in the so-called horizontal plane. The 

heart's electrical axis in the horizontal plane is referred to as the Z axis. Leads V1, V2, and 

V3 are referred to as the right precordial leads and V4, V5, and V6 are referred to as the 

left precordial leads. The QRS complex should be negative in lead V1 and positive in lead 

V6. The QRS complex should show a gradual transition from negative to positive between 
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leads V2 and V4. The equiphasic lead is referred to as the transition lead. When the 

transition occurs earlier than lead V3, it is referred to as an early transition. When it occurs 

later than lead V3, it is referred to as a late transition. There should also be a gradual 

increase in the amplitude of the R wave between leads V1 and V4. This is known as R 

wave progression. Poor R wave progression is a nonspecific finding. It can be caused by 

conduction abnormalities, myocardial infarction, cardiomyopathy, and other pathological 

conditions. 

Lead V1 is placed in the fourth intercostal space to the right of the sternum. 

Lead V2 is placed in the fourth intercostal space to the left of the sternum. 

Lead V3 is placed directly between leads V2 and V4. 

Lead V4 is placed in the fifth intercostal space in the midclavicular line (even if the     

apex beat is displaced). 

Lead V5 is placed horizontally with V4 in the anterior axillary line 

Lead V6 is placed horizontally with V4 and V5 in the midaxillary line. 

 

4.2.4 Waves and intervals 

 
Fig 4.2: Schematic representation of normal ECG 

 

A typical signal from one ECG lead is quasi-periodic with periodicity of one second. 

Within one period, called a cardiac cycle, the ECG is comprised of 4 to 5 bumps of 

different characteristics. This pattern of bumps, known as waves, represents the electrical 

activity coordinating a series of muscle contraction that makes one heart beat. The 

electrical current generated by atrial depolarization is recorded as the P wave and that 

generated by ventricular depolarization is recorded as the Q, R, and S waves: the QRS 

complex. Atrial repolarization is recorded as atrial T wave (Ta) and ventricular 

repolarization as ventricular T wave or simply T wave. Because atrial repolarization 
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normally occurs during ventricular depolarization, the atrial T wave (Ta) is buried or 

hidden in the QRS complex. In a normal cardiac cycle, the P wave occurs first, followed 

by the QRS complex and the T wave as shown in figure 4.2. The section of ECG between 

the waves and complexes are called segments and intervals: the PR segment, the ST 

segment, the TP segment, the PR interval, the QT interval and the RR interval. Intervals 

include waves and complexes, whereas segments do not. When electrical activity of heart 

is not being detected, the ECG is a straight line, flat line- the isoelectric line or base line. 

   

4.3 Typical Values of Normal ECG Parameters 
   Heart rate  120 beats per minute (BPM) 

Amplitudes: 

   P wave   0.25mV 

   R wave  1.60mV 

   Q wave  25% of R wave 

   T wave   0.1 to 0.5mV 

Duration: 

   P-R interval                0.12 to 0.20 sec 

   Q-T interval                0.35 to 0.44 sec 

   S-T interval                 0.05 to 0.15 sec 

   P wave interval           0.11sec 

   QRS interval               0.09 sec 

 

4.4   Loading of Data 
The source of the ECGs included in the MIT-BIH Arrhythmia Database is a set of over 

4000 long-term Holter recordings that were obtained by the Beth Israel Hospital 

Arrhythmia Laboratory between 1975 and 1979. Approximately 60% of these recordings 

were obtained from inpatients. The database contains 23 records (numbered from 100 to 

124 inclusive with some numbers missing) chosen at random from this set, and 25 records 

(numbered from 200 to 234 inclusive, again with some numbers missing) selected from 

the same set to include a variety of rare but clinically important phenomena that would not 

be well-represented by a small random sample of Holter recordings. Each of the 48 

records is slightly over 30 minutes long. An initial set of beat labels was produced by a 

simple slope-sensitive QRS detector, which marked each detected event as a normal beat. 



  26 

Two identical 150-foot chart recordings were printed for each 30-minute record, with 

these initial beat labels in the margin. For each record, the two charts were given to two 

cardiologists, who worked on them independently. The cardiologists added additional beat 

labels where the detector missed beats, deleted false detections as necessary, and changed 

the labels for all abnormal beats. They also added rhythm labels, signal quality labels, and 

comments. The annotations were transcribed from the paper chart recordings. Once both 

sets of cardiologists' annotations for a given record had been transcribed and verified, they 

were automatically compared beat-by-beat, and another chart recording was printed. This 

chart showed the cardiologists' annotations in the margin, with all discrepancies 

highlighted. Each discrepancy was reviewed and resolved by consensus. The corrections 

were transcribed, and the annotations were then analyzed by an auditing program, which 

checked them for consistency and which located the ten longest and shortest R-R intervals 

in each record (to identify possible missing or falsely detected beats). 
 

The analog outputs of the playback unit were filtered to limit analog-to-digital converter 

(ADC) saturation and for anti-aliasing, using a passband from 0.1 to 100 Hz relative to 

real time, well beyond the lowest and highest frequencies recoverable from the recordings. 

The bandpass-filtered signals were digitized at 360 Hz per signal relative to real time 

using hardware constructed at the MIT Biomedical Engineering Center and at the BIH 

Biomedical Engineering Laboratory. The sampling frequency was chosen to facilitate 

implementations of 60 Hz (mains frequency) digital notch filters in arrhythmia detectors. 

Since the recorders were battery-powered, most of the 60 Hz noise present in the database 

arose during playback. In those records that were digitized at twice real time, this noise 

appears at 30 Hz (and multiples of 30 Hz) relative to real time. The ECG’s are taken for 30 

minutes and sampled at 360Hz. The database includes ECG (Holter recordings) of 50 

persons, including both normal and abnormal heart condition. 

 

The database contains approximately 109,000 beat labels. Sixteen were corrected in the 

first seven years after the database was released in 1980 (in records 104, 108, 114, 203, 

207, 217, and 222); in addition, all of the left bundle branch block beats in record 214 

were originally labelled as normal beats. The rhythm labels have been more substantially 

revised and now include notations for paced rhythm, bigeminy, and trigeminy, which were 

missing in early copies. 
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Table 4.1:  The beat types in MIT-BIH data base (entire records) 

Rec

ord 
N V F O N E P F O Q 

R

e

c

o

r

d 

. L R A a J S V F !  . L R A a J 

100 2239 - - 33 - - - 1 - - - - - - - - - 

101 1860 - - 3 - - - - - - - - - - - - 2 

102 99 - - - - - - 4 - - - - - 2028 56 - - 

103 2082 - - 2 - - - - - - - - - - - - - 

104 163 - - - - - - 2 - - - - - 1380 666 - 
1

8 

105 2526 - - - - - - 41 - - - - - - - - 5 

106 1507 - - - - - - 520 - - - - - - - - - 

107 - - - - - - - 59 - - - - - 2078 - - - 

108 1739 - - 4 - - - 17 2 - - 1 - - - 11 - 

109 - 2492 - - - - - 38 2 - - - - - - - - 

111 - 2123 - - - - - 1 - - - - - - - - - 

112 2537 - - 2 - - - - - - - - - - - - - 

113 1789 - - - 6 - - - - - - - - - - - - 

114 1820 - - 10 - 2 - 43 4 - - - - - - - - 

115 1953 - - - - - - - - - - - - - - - - 

116 2302 - - 1 - - - 109 - - - - - - - - - 

117 1534 - - 1 - - - - - - - - - - - - - 

118 - - 2166 96 - - - 16 - - - - - - - 10 - 

119 1543 - - - - - - 444 - - - - - - - - - 

121 1861 - - 1 - - - 1 - - - - - - - - - 

122 2476 - - - - - - - - - - - - - - - - 

123 1515 - - - - - - 3 - - - - - - - - - 

124 - - 1531 2 - 29 - 47 5 - - 5 - - - - - 

200 1743 - - 30 - - - 826 2 - - - - - - - - 

201 1625 - - 30 97 1 - 198 2 - - 10 - - - 37 - 

202 2061 - - 36 19 - - 19 1 - - - - - - - - 

203 2529 - - - 2 - - 444 1 - - - - - - - 4 

205 2571 - - 3 - - - 71 11 - - - - - - - - 

207 - 1457 86 107 - - - 105 - 472 - - 105 - - - - 

208 1586 - - - - - 2 992 373 - - - - - - - 2 
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209 2621 - - 383 - - - 1 - - - - - - - - - 

210 2423 - - - 22 - - 194 10 - - - 1 - - - - 

212 923 - 1825 - - - - - - - - - - - - - - 

213 2641 - - 25 3 - - 220 362 - - - - - - - - 

214 - 2003 - - - - - 256 1 - - - - - - - 2 

215 3195 - - 3 - - - 164 1 - - - - - - - - 

217 244 - - - - - - 162 - - - - - 1542 260 - - 

219 2082 - - 7 - - - 64 1 - - - - - - 133 - 

220 1954 - - 94 - - - - - - - - - - - - - 

221 2031 - - - - - - 396 - - - - - - - - - 

222 2062 - - 208 - 1 - - - - - 212 - - - - - 

223 2029 - - 72 1 - - 473 14 - 16 - - - - - - 

228 1688 - - 3 - - - 362 - - - - - - - - - 

230 2255 - - - - - - 1 - - - - - - - - - 

231 314 - 1254 1 - - - 2 - - - - - - - 2 - 

232 - - 397 1382 - - - - - - - 1 - - - - - 

233 2230 - - 7 - - - 831 11 - - - - - - - - 

234 2700 - - - - 50 - 3 - - - - - - - - - 

 

Symbols used in plots 
Symbol Meaning 

· or N Normal beat 

L Left bundle branch block beat 

R Right bundle branch block beat 

A Atrial premature beat 

a Aberrated atrial premature beat 

J Nodal (junctional) premature beat 

S Supraventricular premature beat 

V Premature ventricular contraction 

F Fusion of ventricular and normal beat 

[ Start of ventricular flutter/fibrillation 

! Ventricular flutter wave 

] End of ventricular flutter/fibrillation 

e Atrial escape beat 

j Nodal (junctional) escape beat 
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E Ventricular escape beat 

/ Paced beat 

f Fusion of paced and normal beat 

x Non-conducted P-wave (blocked APB) 

Q Unclassifiable beat 

| Isolated QRS-like artifact 

Rhythm annotations appear below the level used for beat annotations: 
AB Atrial bigeminy 

AFIB Atrial fibrillation 

AFL Atrial flutter 

B Ventricular bigeminy 

BII 2° heart block 

IVR Idioventricular rhythm 

N Normal sinus rhythm 

NOD Nodal (A-V junctional) rhythm 

P Paced rhythm 

PREX Pre-excitation (WPW) 

SBR Sinus bradycardia 

SVTA Supraventricular tachyarrhythmia 

T Ventricular trigeminy 

VFL Ventricular flutter 

VT Ventricular tachycardia 

Signal quality and comment annotations appear above the level used for beat 

annotations: 

qq 

Signal quality change: the first character (`c' or `n') indicates the quality of the 

upper signal (clean or noisy), and the second character indicates the quality of 

the lower signal 

U Extreme noise or signal loss in both signals: ECG is unreadable 
M or 

MISSB 
Missed beat 

P or PSE Pause 

T or TS Tape slippage 
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Chapter 5 
FRACTAL ANALYSIS OF HEART RATE 

 

5.1 Introduction 
The ECG represents the cardiac electrical activities of the heart and it provides 

information about the cardiac conditions. The mean and instantaneous heart rates, derived 

from ECG, can provide vital information about the functioning of heart. The heart rate can 

vary widely even for a short period of time, instantaneous heart rate (IHR) can provide 

more information. There have been different methods developed for the analysis of the 

IHR. Due to the large number of patients in intensive care units and the need for 

continuous observation of such conditions, several techniques for automated abnormality 

detection have been developed. Classical techniques based on time and frequency domain 

analysis have long been used to detect cardiac abnormality. However, since ECG as well 

as IHR is nonlinear in nature, these techniques seem to provide only a limited amount of 

information as they normally ignore the underlying nonlinear dynamics. So, there has been 

an increasing interest in applying nonlinear techniques in analyzing electrocardiogram to 

detect cardiac abnormalities. A technique of nonlinear analysis, the fractal analysis, is 

recently having its popularity to many researchers working on nonlinear data for which 

most mathematical models produce intractable solutions. This chapter provides the 

calculation of fractal dimension (FD) of IHR derived from normal and abnormal ECG to 

estimate the cardiac conditions. All the ECG records have been taken from MIT-BIH data 

base. We have used data records 115, 117 and 122 as the representatives of normal ECG. 

Three types of abnormalities have been considered. They are premature ventricular 

contraction (PVC), bundle branch block (BBB) and atrial premature beat (APB). The data 

sets taken for PVC are 116, 119 and 221, for BBB are 109, 111, 207 and 214, while that 

for APB are 209, 220 and 232.   
 

5.2   Calculation of IHR  
The IHR was calculated from ECG of MIT-BIH data base. The calculation is performed 

after detecting R waves of ECG. For this, the QRS complex of ECG was detected. The 

detailed description of detecting QRS complex is provided in [14] and reproduced in 

Appendix. Figure 5.1 represents the ECG of 3 records of healthy subjects.  
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Fig 5.1: ECG of healthy subjects. From top panel: Record 115, 117 and 122 
 

5.3   FD of IHR of Healthy Subjects  
The IHR data of healthy persons are loaded using MATLAB code ‘mitdb’. The three 

methods namely relative dispersion (RD), rescaled range (RS) and power spectral density 

(PSD) methods are applied to calculate the FD of each data set. The procedures for 
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calculating FD by each method are described in Chapter 3. In Chapter 3, it was found that 

FD depends on number of data points taken for calculation and we have found consistent 

and best results by all methods for a data length of 4096. So, in calculating FD by each 

method, 4096 data points are taken. The results found by the three methods are provided in 

Table 5.1. 

 

Table 5.1: Fractal Dimension of IHR of Healthy Persons by three methods 

Data set FD by RD method FD by RS method FD by PSD method 

115 1.40 1.66 1.80 

117 1.54 1.66 1.82 

122 1.45 1.65 1.77 

 

5.4  FD of IHR of Subjects with PVC Beats 
Premature ventricular contraction (PVC), also known as ventricular premature beat (VPB) 

or extra systole is a relatively common condition where the heartbeat is initiated by the 

heart ventricles rather than the sinoatrial node, the normal heartbeat initiator. This may be 

perceived as a "skipped beat" or felt as palpitations in the chest. In a normal heartbeat, the 

ventricles contract after the atria, forcing blood both to the body and to the lungs. In a 

PVC, the ventricles contract first which means that circulation is inefficient. However, 

single beat PVC arrhythmias do not usually pose a danger and can be asymptomatic in 

healthy individuals. Premature ventricular contraction can occur in a healthy person of any 

age, but becomes more frequent in the elderly, and is more commonly found in men. 

 

 
Fig 5.2: A typical ECG of a patient with PVC 
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   Fig 5.3: ECG of PVC subjects. From top panel: Record 116, 119 and 221 
 

 

 

 



  34 

The abnormalities present in the records are provided below: 

 

Record 

                             N V F O N E P F O Q V 

. L R A a J S V F ! e j E P f p Q 

116 2302 - - 1 - - - 109 - - - - - - - - - 

119 1543 - - - - - - 444 - - - - - - - - - 

221 2031 - - - - - - 396 - - - - - - - - - 

 

In the above chart ‘V’ denotes ‘Premature Ventricular Contraction’. These records contain 

only PVC and normal beats. Fractal dimensions obtained from these data sets are provided 

in Table 5.2.  

 

Table 5.2: Fractal Dimension of IHR of PVC beats by three methods 

Data set FD by RD method FD by RS method FD by PSD method 

116 1.47 1.53 1.71 

119 1.43 1.48 1.70 

221 1.40 1.53 1.72 

 

 
5.5  FD of IHR of Subjects with BBB 
Excitation of the ventricular myocardium develops in an orderly manner because of the 

conduction system of the A-V node, bundle of His (with left and right branches) and 

Purkinje fibers. This conduction system has a propagation velocity that is higher than in 

ventricular muscle. The net result is that both ventricles contracts almost simultaneously 

and the beat that results develops the maximum force. BBB is of two types: left bundle 

branch block (LBBB) and right bundle branch block (RBBB). A block of excitation in one 

of the branches will cause the effected side to be excited, that is, depolarize late and this 

fact will be revealed in a prolongation of the duration of the QRS. So, in BBB, the 

ventricles will be excited serially, the effected side being excited last. Excitation first 

appears on the surface of the thin walled right ventricles owing to the nature of the 

conduction system and differing thickness of ventricular Myocardium. In ECG signal, the 

right sided V leads show a large, broad, downward wave. Left-sided V leads show a large, 

broad, upward wave. QRS is prolonged and downward in V5-V6. Little evidence delayed 
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conduction is shown in V1-3. We have considered data records 109, 111, 207 and 214 that 

contain LBBB only. The types of beats in these records are provided below: 

 

 

Record 

                             N V F O N E P F O Q V 

. L R A a J S V F ! e j E P f p Q 

109 - 2492 - - - - - 38 2 - - - - - - - - 

111 - 2123 - - - - - 1 - - - - - - - - - 

207 - 1457 86 107 - - - 105 - 472 - - 105 - - - - 

214 - 2003 - - - - - 256 1 - - - - - - - 2 

 

Although the records contain other types of abnormalities as well, LBBB are prominent. 

The ECG waves of these records are provided in Figure 5.4. 

 

Table 5.3 provides the FD of IHR from LBBB patients. 

 

Table 5.3: Fractal Dimension of IHR of LBBB beats by three methods 

Data set FD by RD method FD by RS method FD by PSD method 

109 1.27 1.73 1.68 

111 1.26 1.76 1.66 

207 1.29 1.72 1.76 

214 1.29 1.74 1.70 
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Fig 5.4: ECG of LBBB subjects. From top panel: Record 109, 111, 207 and 214 
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5.6  FD of IHR of Subjects with APB 
The term atrial premature beat describes beats arising from the atrium and occurring 

before the expected sinus beats. Premature beats can occur randomly or in a pattern. P-

wave morphology differs from sinus beats and varies, depending on the origin of the 

impulse in the atria. In general, beats arising in the high atria have upright P waves in 

leads II, III and aVF, and those originating in the low atria have inverted P waves in those 

leads. Depending on the prematurity of the atrial impulse and refractoriness of the AV 

node and His-Purkinje system, the P wave may conduct with normal or prolonged PR 

interval with narrow or aberrant QRS complex or may block and not be followed by a 

QRS complex. Premature atrial beats generally depolarize and reset the sinus node so that 

the next sinus beat occurs sooner than the expected sinus P wave. Expressed differently, 

the interval from sinus to atrial premature beat plus the next sinus beat measures less than 

two sinus cycles. This phenomenon, incomplete compensatory pause, is fairly common 

with atrial premature beats. Atrial premature beats (APBs) are slightly less frequent than 

ventricular premature beats (VPBs) but much more frequent than supraventricular 

premature beats arising in the atrio-ventricular (AV) junction. Often, APBs are not 

associated with heart disease. In up to 64% of healthy young individuals, some APBs are 

found in an ambulatory electrocardiogram (Holter ECG), and in most cases without 

symptoms. 
 

It has been empirically noted that alcohol in excess, fatigue, cigarettes, fever, anxiety and 

infectious diseases of all sorts may result in atrial premature beats, and elimination of 

these factors may correct the disorder. Atrial premature beats also occur in some patients 

with CHF and in some with myocardial ischemia. They may also be noted in patients with 

underlying myocardial disease, in those with pulmonary disease and systemic hypoxia. 

Premature beats are usually perceived by patients as "palpitations," and sometimes are of 

concern to patients who notice "skipped" beats or "fluttering" that are frightening. Often 

atrial premature beats cause no symptoms and are not recognized by the patient. Atrial 

premature beats require no specific therapy. If they are a source of aggravation or concern 

to the patient and one of the above-mentioned factors can be identified and easily 

corrected, this should be done. Some ECG signals of data with APB are shown Figure 5.5.  
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Fig 5.5: ECG of APB subjects. From top panel: Record 209, 220 and 232 

 

The types of beats present in these records are provided below where A denotes APB: 

 

Record 

                             N V F O N E P F O Q V 

. L R A a J S V F ! e j E P f p Q 

209 2621 - - 383 - - - 1 - - - - - - - - - 

220 1954 - - 94 - - - - - - - - - - - - - 

232 - - 397 1382 - - - - - - - 1 - - - - - 

  

Fractal dimensions obtained from these data are provided in Table 5.4. 
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Table 5.4: Fractal Dimension of IHR of APB by three methods 

Data set FD by RD method FD by RS method FD by PSD method 

209 1.35 1.58 1.75 

220 1.33 1.55 1.74 

232 1.36 1.56 1.74 

 

 

5.7 Discussion 

As in the simulated data, RS and PSD methods provide consistent results. The RD method 

was found to be very much biased with data length. The summary of the FD, (mean ± 

standard deviation), in different beat types are provided in Table 5.5. 

 

Table 5.5: FD of IHR for different beat types 

Beat type RD method RS method PSD method 

Normal (3 data sets) 1.46 ±  0.071 1.66 ±  0.006 1.80 ±  0.025 

PVC (3 data sets) 1.43 ±  0.035 1.51 ±  0.029 1.71 ±  0.010 

LBBB (4 data sets) 1.28 ±  0.015 1.74 ±  0.017 1.70 ±  0.043 

APB (3 data sets) 1.35 ±  0.015 1.56 ±  0.015 1.74 ±  0.006 

 

From the above Table, it is seen that all the three methods can distinguish abnormal beats 

(PVC, LBBB and APB) from the normal beat type. It should be noted that we have 

calculated FD of only a few data sets in each case, normal and abnormal. So, we, at this 

stage, are unable to make absolute comments about the applicability of fractal analysis to 

estimate cardiac abnormality. However, the analysis shows that there is a great potential of 

fractal analysis to analyze ECG. 

 

 

 

 

 

 

 

 



  40 

Chapter 6 
CONCLUSION 

 
6.1 Discussions 
The fractal dimension provides a measure of the heterogeneity of the system and takes the 

correlation structure into account. In the simulation study where we have taken D as 1.5 

implies that we are not dealing with a random distribution, but that there is correlation 

between adjacent regions. We have compared three numerical methods to estimate the 

fractal dimension. Relative dispersion analysis is well suited for long signals. We obtained 

best result for Weierstrass function using RS analysis. This report represents a brief 

application of fractal theory to model analyze heart rate dynamics. The fractal dimension 

for normal hearts as well as hearts with various abnormalities is calculated here using 

three methods. We have found that the three methods applied here can distinguish some 

typical abnormalities (PVC, LBBB and APB) form the normal ECG. However, due to a 

very small number of data sets analyzed, we can not make absolute and generalized 

comments regarding the applicability of the methods.  

 

6.2 Future Perspectives 
To make this method applicable to medical science, especially to a nonlinear and 

nonstationary signal like ECG, much works are needed to be done. A large number of data 

sets, both of normal and abnormal ECG, should be subjected to the analysis. More 

rigorous methods of calculating fractal dimension should also be investigated. By 

determining the fractal dimension of an ECG signal, an estimation of heart condition can 

be made, which can be helpful in medical science. The same methods can be used for the 

one-dimensional analysis of other special signals, for the analysis of thicknesses of tree 

growth rings, and mud layers. For the analysis of two- and three-dimensional signals, the 

methods can be extended to account for anisotropy, making the analysis more complicated 

but adhering to the same basic theory. The fractal analysis can also be applied further in 

image analysis, fluid dynamics, investing natural phenomenon and so on.  
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Appendix-A:  QRS Detection Algorithm 
An ECG beat is defined as the signal sample from one R-wave to the next. Figure A.1 

shows the block diagram of the QRS detection algorithm. 

 
Fig A.1: Block diagram of QRS detection algorithm 

 

At first the ECG signal is passed through a linear phase bandpass filter (4 hz to 40 hz) for 

smoothing operation and reducing base line shifting. The impulse response, magnitude 

response and the phase response of the bandpass filter is shown in the figure A.2 and A.3. 

The group delay of the filter is 150.  

 

 
Fig A.2: Impulse response of the bandpass filter 
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Fig A.3:  (a) The magnitude and (b) phase response of the bandpass filter 

 

Differentiation of the filtered signal provides the slope information of QRS complexes. 

Since there are quick rise and fall times of the QRS complex in the ECG signals, the 

derivative makes it easier to detect the time of occurrence of the QRS complexes. The 

transfer function of the five-point differentiation equation is given by  

    2 1 1 21( ) ( 2 2 )
8

H z z z z z  
     
 

          (A.1) 

The absolute value of the output of derivative filter can be found by the following 

operation 

    2( ) ( )y n x n                (A.2) 

This absolute valued signal is then passed through a moving average filter which produces 

high value at the region of QRS complex. The window size has to be taken properly, 

neither so wide that merges the QRS complex and T wave together, nor so narrow that 

produces several peaks in the integration waveform. It is calculated from the equation 

below: 

                    1( ) [ ( ( 1)) ( ( 2)) ........ ( )]y n x n N x n N x n
N

 
        
 

                (A.3) 

where N is the width of the integration window. This work takes N as 18 
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As seen in figure A.1, the algorithm sets two thresholds T1 and T2 to make decisionsT1 is 

set 40 for the filtered ECG, and T2 is set 7 for the signals produced by the moving window 

integration. The thresholded filtered signal is then delayed by 10 samples and a logical 

‘and’ operation is performed with the thresholded moving squared average signal. As a 

result, possible location of peaks of the original ECG signal is found. These locations are 

delayed by160 samples from the original ECG. Searching in these regions, we get the 

peaks. If there are more than one peak in the vicinity of 50 samples, the highest peak is 

considered from those. 

 

The sequences of the QRS detection algorithm is shown in figure A.4 where the ECG 

signal is taken from the record 100/MLII of MIT-BIH arrhythmia database.  
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Fig A.4: The sequences of peak detection of the ECG signal taken from the record 

                  100 (MLII) of MIT-BIH arrhythmia database. 
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