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Abstract

This thesis work is concerned with the development of a new method for au-

toregressive (AR) system identification at a very low signal to noise ratio (SNR)

from output observations corrupted by noise. The identification of AR systems

at a very low SNR is still a chaliengingOproblem for researchers and no effective
(

method has yet been reported. In all the existing methods it is invariably as-

sumed that the AR signal and additive noise are uncorrelated. At a very low

SNR this assumption is violated and the estimate of the autocorrelation function

using the conventional method includes significant error. Thus all the autocor-

relation based techniques fail to estimate the AR parameters below a certain

positive value of SNR.

Intensive analysis of the underlying problem reveals that the basic assumption

of uncorrelation between the AR signal and additive noise be relaxed. Unlike con-

ventional approaches, in this thesis we present a novel method for computing the

autocorrelation function using the convolution sum representation of the noise-

free AR signal. Here, we express autocorrelation of the AR signal as a function

of the system roots leading to adam ped cosine model instead of conventional

autoregressive model consisting of system parameters. Basically, the magnitudes

and angular positions of the system poles are the unknowns of the new model. A

least-square based technique is used to estimate these model parameters. The de-

sired AR system parameters can then be obtained directly from these estimated

model parameters. Accuracy of estimation of the AR parameters by the damped

cosine model depends on the accuracy of estimation of the model parameters.

Therefore, a total search technique is adopted to scan the entire domain of the

unknown parameters. The proposed method guarantees the stability of the es-

timated AR system. The simulation results show that the method presented in

this work can estimate the AR system parameters with high accuracy even at an

SNR as low as -5 dB where no comparable results yet exist.
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Chapter 1

Introd uction

1.1 System Identification: Background

Mathematical modeling of a physical system from observed data is called sys-

tem identification. It has acquired widespread applications in many areas. In

control and system engineering, system identification methods are used to get

appropriate models for characterizing the dynamic behaviour of a given system,

and ultimately synthesizing a controller for the system [1]. In signal processing

applications (such as in speech and image analysis, communications and mechan-

ical engineering) models obtained by system identification are used for spectral

analysis, fault detection, pattern recognition, adaptive filtering, linear prediction,

image restoration, speaker recognition and other purposes. In economics, meteo-

rology, astronomy and several other fields, with the help of system identification

the hidden periodicity in the studied data may be determined, which are to be

associated with cyclic behaviour or recurring process. In radar and sonar systems,

the proper model of the system can provide information about the location of the

sources (or targets) situated in the field of view by analyzing the received sig-

nals. In biomedical signal processing, system identification from various signals

measured from a patient, such as electrocardiogram (ECG) signals, can provide

useful material for diagnosis. In seismology, system identification helps in predict-

ing some major events like volcano eruption or an earthquake. Seismic spectral

estimation is also used to predict subsurface geologic structure in gas and oil

exploration.

A dynamic system can be conceptually described as in Fig. 1.1. The system

is driven by input signal urn) uncorrelated with the observation noise v(n). The

1

,r.,;
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v(n)

urn) y(n)

Fig. 1.1: General model of a dynamic system

user can control u(n) but not v(n). However two different cases may arise.

i. Both the input sequence u(n) and the corresponding output sequence Yin) are

known.

11. The input sequence u(n) are totally unknown and only the output sequence

Yin) are known.

In the first case a definite mathematical model can be achieved by exploiting

input and corresponding output sequences. Modeling of a motor or an electric

heater are this type of problem. In the second case the system can be taken as a

random process. No exact model can be achieved but only can be predicted by

exploiting some statistical properties of observable output sequence yin). Speaker

identification, pattern recognition, modeling the temperature of a city etc. are

this type of problems. In both the cases the identification problem is to recover

the parameters of the unknown systems.

In general, a finite-dimensional system is modeled as an autoregressive (AR)

system, moving average (MA) system, or autoregressive moving average (ARMA)

system. For a single input single output (SISO) system, the transfer function of

the linear system is given by B(z)jA(z), where A(z) and B(z) denote two finite-

order coprime polynomials. When B(z) = 1 the system is called an AR system

and for A(z) = 1 the system is called an MA system. Otherwise, the system is

termed as an ARM A system. The first two systems, namely the AR and MA

systems, may be viewed as the special cases of the ARM A system. The choice of

an appropriate system depends upon the application. The problem of identifying

such a system from noisy observations of its output response to an unknown

input excitation, is of fundamental importance in many areas of engineering. For

example, in spectral analYSISof speech signal using linear prediction (LP) model,
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Yin)
Observed
Speech
Signal

Additive
Noise
v(n)

.4x(n)

Speech
Signal

Voiced! Vocal Tract
Unvoiced Parameters

Switch OJI urn) 1
--------~ -A(z).

AR System

NOise
Generator

Pitch
Period

Impulse
Train

Generator

Random
--

Fig. 1.2: Speech synthesis model based on AR system

the observed speech samples are assumed to be the output of an AR system driven

by a quasiperiodic train of pulses for voiced sounds, or a random noise sequence

for unvoiced sounds. Fig. 1.2 shows the model of speech signal corrupted by

noise.

1.2 Literature Review

Numerous works have focused on this topic of system parameter estimation so

far when the observations are noise-free [2]-[10]. In practical cases, however,

observations contain additive noise and its effect cannot be neglected. Most of

the recent works on system identification are for noise-corrupted observations [11]-

[30]. In particular, the correlation-based methods are widely used in estimating

the parameters of AR systems.

The problem of AR parameter estimation for the AR plus noise case was first

examined by Walker [11] who evaluated the variance for the parameter estimate

of a first-order AR process. Pagano [12]' noted that the correct model for an

AR(p) plus noise process is an autoregressive moving average (ARMA) process

of order (p, p). In [12]' an efficient AR parameter estimation method is described

by using nonlinear regression.

It is shown in [13J that the displacement in estimated AR poles of an AR
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process is due to the introduction of spectral zeros caused by noise. To overcome

the problem a large-order AR model is suggested. However, the order required

for an accurate representation of .the spectrum will depend upon the AR process

and the SNR. AR process possessing a peaky power spectral density (PSD) will

require a larger order model than an AR process with a smooth PSD. Also, the

maximum model order is limited by the data record length. Too large a model

order will result in spurious peaks. It is shown in [13] that these spurious peaks

are a result of slight perturbations in the estimated noise poles, i.e. the poles

which attempt to model the flat noise background.

The noise compensation based identification schemes require a priori knowl-

edge of the additive noise variance [14]' [15]. In [14J, a noise compensation based

approach is proposed which gives better results when the model order is larger

than' the actual AR order. This would seem to indicate that noise compensa-

tion is capable of only removing some of the noise effects and that to model the

resulting autocorrelation function requires slightly larger order.

The noise compensated lattice filter (LF) algorithm proposed in [15] totally

fails to estimate the AR parameters without a priori knowledge of the additive

noise variance. Another shortcoming is that the stability of the noise compensated

LF cannot be guaranteed [14J.

In [16]' it is shown that the successive autocorrelation will improve the signal-

to-noise ratio. This improvement is signal dependent, with long correlation length

signals (with respect to the sampling rate) showing the most pronounced improve-

ment. The use of a successive autocorrelation operation as a preprocessor to a

conventional all-pole parameter estimator can improve the parameter estimates

significantly. As some poles are improved readily than others, and some are not

improved at all, the estimates of the AR parameters do not demonstrate reduced

bias. This method gives better results only in the cases where the poles are

located near the unit circle in the z-plane.

The high-order Yule-Walker (HOYW) equations which do not require a priori

knowledge of the additive noise variance can be used to estimate the AR pa-

rameters [17], [18]. However, this approach may suffer from singularity problem

[31]. The possible singularity of the autocorrelation matrix leads to a substantial

increase in the variance of the AR spectral estimate [14J. It has been shown in
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[19] that the above method by Gingras [18J results in increased parameter esti-

mation variance, which limits its application. In [20]' [21] these problems were

addressed by considering a least-squares solution to a combination of more than

the minimal set of p HOYW equations.

Most of the previous methods either assume that the noise variance is known

[14]' [15] or subtract a suboptimal amount of noise power [22] to compensate for

the noise effect. Determination of the optimal amount of noise power to remove

the bias effect of noise is of utmost importance for AR parameter estimation

from noisy observations. To combat this problem, Yahagi and Hasan [23] have

proposed an iterative method using low-order Yule-Walker (LOYW) equations

to compensate for the influence of noise in determining the AR parameters and

to estimate the noise variance from a given set of noisy observations. But the

case of strong nonlinearity of LOYW equations at low SNR was not addressed.

Unfortunately, due to the inherent nonlinearity of LOYW equations when used

for noisy observations with unknown noise variance and system parameters, the

solutions found may not be unique depending upon the SNRs and the system

characteristics. In these cases, the method fails to estimate the actual solution

from the set of multiple solutions. Moreover, the method is computationally

expensive as very small constant step size is maintained throughout the total

range of search for better accuracy.

Davila [24J addressed a method of estimating the AR parameters and the noise

variance by solving a matrix pencil called the noise-compensated Yule-Walker

(NCYW) equations. For a p-th order AR system NCYW equations provide (p+q)
equations where the minimum value of q that will ensure a unique solution was

not established. Among the (p + q) equations, the first p equations are nonlinear

and include the unknown AR parameters and the noise variance. The next q

equations, however, are linear and include only the AR parameters. There are

(p + 1) number of unknowns, with p number of AR parameters and a noise

variance. One might expect that since there are a total of (p + q) equations in

(p + 1) unknowns, fewer than q = p linear equations are needed. But Davila in

his recent paper [25] has shown that this is not true and that q ::::p is also a I

necessary condition for there to exist a unique solution.

Recently, a joint technique has been proposed in [26] which efficiently esti-



6

mates the AR parameters and noise variance simultaneously. It is based on the

high order and true order AR. model fitting t.o the observed noisy process. In

t.his method the first approach utilizes t.he uncompensated lattice filt.er algorit.hm

t.o est.imat.e t.he paramet.ers of t.he over-fit.t.ed AR. model. The second approach is

iterat.ive and it uses t.he noise compensated LOYW equations to est.imate the true

order AR model parameters. The desired AR parameters, equivalent.ly the root.s,

are ext.ract.ed from t.he over-fit.t.ed model root.s using a root. matching technique

that utilizes the results obtained from the second approach. The major drawback

of this method is its high computational complexity.

Among different Least-Squares (LS) based methods, the ILSNP (improved

least-squares method wit.h no prefiltering) method proposed in [27]' provides ac-

curate est.imat.e of t.he AR paramet.ers with less comput.ational complexit.y but at

high SNR. The basic idea of the ILSNP method is to increase the order of the

underlying AR. model by one, with the resulting augmented model containing a

known paramet.er whose t.rue value is just. zero. The parameters of t.he augment.ed

AR model are est.imated by applying the st.andard least-square technique directly

to t.he noisy observations. The least.-square est.imat.e of t.he augmented parameters

is t.hen shown t.o be relat.ed t.o t.he t.rue augment.ed paramet.ers and the observation

noise variance in a very simple fashion, which forms a basis for estimat.ing the

observation noise variance. Using this estimated noise variance, the consistent

estimate of AR. parameters is obtained. The primary merits of this method are

that it makes direct use of noisy observations without prefiltering and produces

a direct estimat.e of t.he AR paramet.ers and noise variances wit.hout. parameter

ext.ract.ion.

In fact., all of the met.hods discussed can only ident.ify an AR. syst.em up t.o a

certain positive value of SNR. The phase mat.ching technique, proposed in [28]'

claims t.hat it can estimat.e the AR parameters at. a low SNR.. It minimizes t.he

difference between the phase of the all-zero model and the phase of the maximum

phase signal reconstructed from the power spectrum of the observed signal. The

parameters of the AR. model are obt.ained from the finite length sequence of the

est.imat.ed all-zero model. This met.hod involves nonlinear optimizat.ion. Due t.o

strong non-linearity of t.he object.ive funct.ion, however, t.he convergence of t.his

method is highly dependent. on good init.ial condit.ions.

(
\
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Additive
Noise

Input
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, Linear System

Output
Signal

+ Observed
Signal

Fig. 1.3: A linear system with noise

In this research work, we consider identification of an AR system that can

be modeled as in Fig. 1.3. The input signal is assumed to be white noise and

is independent of the additive white observation noise. The problem of system

identification is more critical in case of very low SNR (below 10 dB). In this work,

we consider identification of the coefficients of the AR systems at a very low SNR

using only the observed noisy signal.

1.3 Objective of This Research

The objective of this research is to propose a new technique for autoregressive

(AR) system identification at a very low signal to noise ratio (SNR) using the

damped cosine model for the autocorrelation function of the noise-free AR signal.

Most of the system identification methods fail to estimate the system parameters

at a low SNR, i.e., below 0 dB. Our aim was to overcome this situation. Intensive

analysis of the underlying problems of system identification at a very low SNR,

leads us to this new innovation.

In this research work, we have investigated the proposed method of AR pa-

rameter estimation for both low and high SNRs. The parameters of the damped

cosine model are estimated using the given noisy observations. Then the AR

system parameters can be directly obtained from this model parameters. With

the estimated system parameters we can also estimate the AR spectrum quite

accurately. A comparative study with the improved least-squares method with

no prefiltering (ILSNP) [27] is provided to demonstrate the effectiveness of the

proposed scheme. The proposed damped cosine method can estimate the system

parameters with high accuracy even at an SNR as low as -5 dB.
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1.4 Organization of the Thesis

In Chapter 2, a brief review of system identification techniques are presented. A

brief description of the three linear models and the reason behind the selection

of AR model are given. At first the deterministic models, where both the inputs

and outputs are known, are described. Then the random process identification

techniques are discussed where only the output sequences are known. The spec-

tral density definition and the parametric methods of spectral estimation are also

illustrated that are necessary to analyze the validation of the system identifica-

tion methods. The effect of additive white noise on AR system identification is

also elaborated in this chapter. A least-square based method [27] of AR system

identification from noisy observations is explained in detail as we compare the

results obtained by this method with the one proposed in this thesis.

In Chapter 3, a new method of AR system identification at a very low SNR

is proposed. The reason behind the failure of other autocorrelation based meth-

ods at a very low SNR is explained. By the convolution sum implementation

of the noise-free signal an alternative representation of the autoregressive signal

is introduced. Using this signal representation the damped cosine model for the

autocorrelation function of the noise-free AR signal is proposed. The method of

determining the damped cosine model parameters which in turn gives the esti-

mated AR parameters is presented.

In Chapter 4, different simulation results with figures and comments are in-

cluded in detail. To examine the effectiveness of the damped cosine model, thirteen

different AR systems are identified at various SNRs. Comparison with the re-

sults of other methods is presented in tabular form to show the superiority of the

proposed method specially at very low SNRs.

The thesis concludes by presenting an overall discussion on the work and

pointing out some unsolved problems for future work in Chapter 5.

In Appendix, the detail derivation of the convolution sum representation of

the AR signal model and the damped cosine model are given.



Chapter 2

System Identification Methods

2.1 Classification of Systems

The transfer function of a system with input u(n) and output x(n) can be ex-

pressed as,

where,

H( ) = X(z)
z U(z)

00

H(z) = L h(n)z-n
n=-(X)

(2.1)

In general, a system whose output x(n) at time n depends on any number of past

output values x(n -1), x(n - 2), ... is called a recursive system. The input output

relationship of a recursive system, described by a linear constant-coefficient dif-

ference equation, is linear and time-invariant. The system transfer function given

in Eqn. (2.1) can be described by a linear constant coefficient difference equation

of the form
p q

x(n) = - L akx(n - k) + L bku(n - k)
k=! k=O

Computing the z-transform of both sides, we obtain
p q

X(z) = - L akX(z)z-k + L bkU(z)z-k
k=! k=O

The system transfer function can be expressed as

(2.2)

(2.3)

H(z) =
X(z)
U(z)

q

Lbkz-k
k=O

p

1+ Lakz-k
k=!

9
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bo+ b1z-1 + b2z-2 + + bqz-q

1+ alz-1 + a2z-2 + + apz-P
q

Lbkz-k
k~O

p

1+ Lakz-k
k~l

B(z)
A(z)

q

II(z - gk)
b p-q k~lOZ -p---

II(z - Zk)
k=l

(2.4)

(2.5)

H(z) =

In Eqn. (2.4), if bk = 0 for k > 0, the system is called Autoregressive or AR

process. Then the system transfer function reduces to

bo
p

1+ Lakz-k
k~l

bozP----p

II(z - Zk)
k~l

The difference equation for input-output relationship under this condition can be

obtained from Eqn. (2.2) as

(2.6)
p

x(n) = - L akx(n - k) + urn), bo = 1
k~l

In this case, H(z) consists of p poles, whose values are determined by the system

parameters {ad and a p-th order zero at the origin z = O. We usually do not

make reference to these trivial zeros, consequently, the system transfer function

(Eqn. (2.5)) contains only nontrivial poles and the corresponding system is called

an all-pole system [16]. Due to the presence of poles, the impulse response of such

system is infinite in duration, and hence it is an IIR (Infinite Impulse Response)

system.

In Eqn. (2.4) if ak = 0 for k 2: 1, the system is called Moving Average (MA)

system. The system transfer function in this case reduces to
q

H(z) = L bkz-k
k~O

q

boz-q II(z - gk)
k~l

(2.7)

(
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The difference equation describing the input-output relationship under this con-

dition is given by
q

x(n) = L bku(n - k) (2.8)
k=O

In this case, H(z) consists of q zeros, whose values are determined by the system

parameters bk and a q-th order pole at the origin z = O. Since the system contains

only trivial poles (at z = 0) and q nontrivial zeros, it is called all-zero system

[29]. Due to the presence of zeros, the impulse response of such system is finite

in duration, and hence it is an FIR (Finite Impulse Response) system.

The general form of the system transfer function given by Eqn. (2.4) contains

both poles and zeros, and hence the corresponding system is called a pole-zero

system or an ARMA (Autoregressive Moving Average) system, with p poles and

q zeros. Poles and/or zeros at z = 0 and z = 00 are implied but are not counted

explicitly. Due to the presence of poles the pole-zero system is an also IIR system.

2.2 Why AR Model is Widely Used

Among the three linear models the AR model is by far the most widely used.

The main reasons are given below.

1. The AR model is suitable for representing spectra with narrow peaks.

2. The AR model results in very simple linear equations for the AR parame-

ters. It is possible to obtain reasonably good suboptimal estimates of the

unknown AR parameters by solving a simultaneous set of linear equations

[30].

3. Any minimum phase transfer function can be represented by a possibly

infinite order, stable minimum phase AR-model [32]. If an AR model is

picked erroneously, the unknown power spectral density can still be matched

closely as long as a large enough AR model order is chosen.

On the other hand, the MA model, as a general rule, requires many more

coefficients to represent a narrow spectrum. Consequently, it is rarely used by

itself as a model for spectrum estimation. By combining poles and zeros, the

ARMA model provides a more efficient representation, from the viewpoint of the

number of model parameters, of the spectrum of a random process.
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The decomposition theorem due to Wold (1938) asserts that any ARM A or

MA process can be represented uniquely by an AR model of possibly infinite

order, and any ARMA or AR process can be represented by an MA model of

possibly infinite order. In view of this theorem, the issue of model selection

reduces to selecting the model that requires the smallest number of parameters

that are also easy to compute. Usually, the choice in practice is the AR model.

The ARMA model usually gets the second preference due to the difficulties in

finding the MA parameters especially when the output is corrupted by noise.

2.3 Random Process Modeling

In this case, the input sequence and the system transfer function both are un-

known, only the output sequence is known. The unknown input sequence urn) is

random in nature. Hence the AR system output x(n) will also be random. We

can write

x(n) h(n) * urn)
002: h(k)u(n- k)

k=-oo
(2.9)

(2.10)

2.3.1 Yule-Walker equations

Correlation-based methods are widely used in estimating the parameters of AR

systems. The objective in computing the correlation between the two signals is

to measure the degree to which the two signals are similar and thus to extract

some information that depends to a large extent on the application. For the

two signal x(n) and urn), both of them having the same length of data N, the

crosscorrelation sequence is defined as

1 N-l

Rxu(l) = N 2: .x(n)u(n - l)
n=O

If x(n) and urn) are random signals, Eqn. (2.10) can be written as

Rxu(l) = E [x(n)u(n -l)] , for l ~ 0, (2.11)

where E [.] is the expectation operator. When x(n) = urn), the autocorrelation

of x( n) is defined as
1 N-l

Rxx(l) = N 2: x(n)x(n - l)
n=O

(2.12)
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Rxx(l) = E [x(n)x(n - I)] , for I ;::: 0, (2.13)

Multiplying both sides of Eqn. (2.2) by x(n - I) and taking expected value we

get,

p

E {x(n)x(n -In = - LakE {x(n - k)x(n -In
k=1
q

+ I>kE {u(n - k)x(n - In (2.14)
k=O

or, using the definition given in Eqn. (2.13) we get,

p q

Rxx(l) = - LakRxx(l ~ k) + LbkRux(l- k) (2.15)
k=! k=O

Using Eqn. (2.9) and Eqn. (2.11) we can write

Rux(l) - E {[~ h(k)u(n - k)] urn + l)}
00

L h(k)E {u(n - k)u(n + In
k=O

(2.16)

We consider u( n) as a white noise. In that case we can use the following relation

E {u(n)u(n + In = a~o(l)

Where o(l) is the Kronecker delta function, i.e.,

0(1) = 1, for I = 0

= 0, for l > 0

Using Eqn. (2.17), we can write Eqn. (2.16) as

00

Rux(l) = L h(k)a~o(k + I)
k=O

(2.17)

(2.18)

(2.19)

By the definition given in Eqn. (2.18), o(k + I) is nonzero only at k = -I. Hence

Eqn. (2.19) can be written as

= 0,

for I:S; 0

for I > 0 (2.20)
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Now the autocorrelation sequence of Eqn. (2.15) can be written as
p q

Rxx(l) = - I: akRxx(1 - k) + a~ I: bkh(k - I)
k~l k~O

(2.21)

If we change the variable (k -l) to k, the last term of the right hand side of Eqn.

(2.21) becomes a~L~:I_Ibk+1h(k). Imposing causality condition and replacing k

by k, we can write this term as

q

a~ I: bkh(k - I)
k~O

q-I

a~ I: bk+1h(k), for 0 :s; I :s; q
k~O

- 0 for I > q (2.22)

Substituting Eqn. (2.22) into Eqn. (2.21) gives,

p

Rxx(l) = - L akRxx(1 - k), for I > q
k~l

P q-l

- L akRxx(l- k) + a~ L bk+1h(k),
k~l k~O

for 0 :s; I :s; q
for I < 0 (2.23)

The relationship in Eqn. (2.23) applies, in general, to the ARMA(p, q) process.

For an AR(p) process, setting q = 0 in Eqn. (2.23), we obtain

p

Rxx(l) = - L akRxx(l- k), for I > 0
k~l
P

-L akRxx(l- k) + a~, for 1=0
k"'l

for I < 0 (2.24)

Thus we have a linear relationship between Rxx(l) and {ak} parameters. Eqn.

(2.24) is the Yule- Walker equation. To determine the AR parameters {ak}, any

p equations from Eqn. (2.24) for I > 0 may be solved. Then it is also possible to

estimate a~ from Eqn. (2.24) for I = O. The set of equations, for I = 1,2,'" ,p

can be expressed in the matrix form as

Rxx( -(p - 1)) ] [ al
Rxx( -(p - 2)) a2

. .. .. .
Rxx(O) ap

[

Rxx(l) ]
Rxx(2)

=-

Rxx(p)
(2.25)
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Using vector matrix notation Eqn. (2.25) can be written as

Ra= -T (2.26)

where R is the correlation matrix of dimension (p x p)Eqn. (2.25) is known as

the low-order Yule-Walker (LOYW) equation. Taking I = p + 1, p + 2, ... , 2p in

Eqn. (2.24), the resulting equation will not involve Rxx(O), i.e.,

Rxx(p) Rxx(p - 1) Rxx(1) al [ R""(p+ 1)Rxx(p + 1) Rxx(p) Rxx(2) a2 Rxx(p + 2)

Rxx(2p - 1) Rxx(2p - 2) Rxx(p) ap Rxx(2p)
(2.27)

Eqn. (2.27) is known as the high-order Yule-Walker (HOYW) equation. The

Levinson-Durbin algorithm [33]-[38] provides an efficient technique for solving

matrix Eqn. (2.25).

2.3.2 Power spectral density of random signals

In applications most of the signals encountered are indeterministic, i.e., their vari-

ation in the future cannot be determined exactly. Only the probabilistic state-

ments can be made about the variation. Signals of such category are described

by random sequence which consists of an ensemble of possible realizations, each

of which has some associated probability of occurrence. They can be categorized

as wide sense stationary (WSS), stochastic process with zero mean. In stochastic

system identification problems, only the output sequence is known. As we don't

know about the input sequence and the system transfer function, the variation

of the output sequences in future cannot be predicted exactly.

In addition to the system parameter extraction we are also interested in de-

termining the spectral behaviour of the system. Spectral analysis considers the

problem of determinig the spectral content (i.e., the distribution of power over

frequency) of a time series from a finite set of measurements, by means of either

nonparametric or parametric techniques. In this case the autocorrelation function

Rxx(l) = E [x(n + l)x'(n)] (2.28)

provides the basis for spectrum analysis, rather than the random process itself.

The Wiener-Khinchin theorem gives us the power density spectrum (PSD) PxU)
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as

PxU) = i:Rxx(l)exp(-j21rfl)dl
For an ergodic process Eqn. (2.28) becomes

Rxx(l) = lim 2.. iT x(n + l)x*(n)dn
1'->00 2T -1'

(2.29)

(2.30)

With the help of Eqn. (2.30) an alternate form of Eqn. (2.29) can be obtained

as [40]-[42]

PxU) = lim E{2..I!T x(n)eXP(-j21rfn)dni2}
1'->00 2T-T (2.31)

The indirect approach of PSD estimation using the autocorrelation function

was introduced by Blackman and Tukey [43] and the spectral estimator is known

as correlogmm. The other PSD estimator, based on the direct approach using

the FFT (Fast Fourier Transform) algorithm [44J is known as the periodogram.

The high variance of the. periodogram and correlogram methods motivates the

development of modified methods that have lower variance.

In the parametric or model-based method of PSD estimation at first an es-

timate of the system parameters are determined. The signal's spectral char-

acteristics of interest are then derived from the estimated system parameters.

Model-based method is better in case of shorter data length.

The system function H(z) for the ARMA process is described in Eqn. (2.4).

In this case, the power spectrum at the output, Px (z), is related to the power

spectrum of the input stochastic process, Pu (z), as

* * B(z)B*(ljz*)
Px(z) = H(z)H (ljz )Pu(z) = A(z)A*(ljz*) .pu(z) (2.32)

(2.33)

If u( n) is assumed to be a white-noise sequence of zero mean and variance a~, then

Pu(z) = a~. Considering z = exp(j21r 1), where f is the normalized frequency,

the PSD of an ARMA process is given by

PARMAU) = PxU) = a~ I~iji 1

2

where AU) = A(exp[j21rf]) and BU) = B(exp[j21rf]). The PSD of an MA

process will be

(2.34)

,
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The PSD of an AR process will be

(2.35)

Though the primary objective of this work is to propose a method for AR pa-

rameter estimation, it is equally applicable for spectral estimation from noisy

observations. Conventional periodogram and Blackman- Tukey analysis lead to

spectral estimates that are characterized by many "hills and valleys", as it in-

volves the Fourier transform of a zero mean random process though a window

may be used for smoothing. A p-th order AR spectral estimate is supposed to

have peaks less than or equal to p.

2.4 Effect of Noise on AR System Identification

A very important problem with the AR system identification is its sensitivity to

the addition of noise to the observations [12]. As shown in Fig. 2.1, if a signal

x(n) is contaminated by zero mean white noise v(n), the observed signal y(n) is

described as

y(n) = x(n) + v(n) (2.36)

Assuming that x(n) is the output signal of a p-th order AR model excited by

urn) 1
A(z)

x(n) +

v(n)
+ y(n)

~

(2.37)

Fig. 2.1: Autoregressive process with noise

white noise u(n), substitution of Eqn. (2.6) into Eqn. (2.1) results
p

y(n) = - I: akx(n - k) + u(n) + v(n)
k=l

where, u(n)is the zero mean white noise uncorrelated with v(n) and E{u2(n)} =
o-~and E{ v2(n)} = 0-;. Here E[.] denotes the expectation operator.

Let us consider N samples of y(n), a < n :S N - 1. The autocorrelation

sequence of y(n) is given by,

1 N-l

R'Yy(l) = N I: y(n)y(n - l)
n::::oO

(2.38)

,J

\,
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Substituting Eqn. (2.36) into Eqn. (2.38), we obtain

1 N-l- L [x(n) + v(n)] [x(n - I) + v(n - I)]
N n=O

1 N-l- L x(n)x(n - I)
N n=O

1 N-]

+- L [x(n)v(n :...-I) +v(n)x(n - I)]
N n=O

1 N-l
+N L v(n)v(n -I)

n=O

Rxx(l) + Rxv(l) +Rvx(l) + Rvv(l) (2.39)

The first term Rxx(l) on the right-hand side of the Eqn. (2.39) is the au-

tocorrelation sequence of x( n). It has significant values when shift I is small in

comparison to N. However, as I approaches to N, the peaks are reduced in ampli-

tude due to the fact that we have a finite data record of N samples so that many

of the products x(n)x(n - I) are zero. The crosscorrelations Rxv(l) and Rvx(l)
between the signal x(n) and the additive random noise v(n) are expected to be

relatively small as they are mutually uncorrelated. Hence these two terms can

be neglected. Finally, the last term on the right-hand side of Eqn. (2.39) is the

autocorrelation sequence of the random sequence v(n). This correlation sequence

will certainly contain a peak at I = 0, but because of its random characteristics,

Rvv (l) is expected to decay rapidly toward zero. Hence Rvv (l) for I > ° can be

neglected. Now Eqn. (2.39) can be written as

Ryy(l) - Rxx(l) + <7;, for 1=0

for I > 0 (2.40)

Fig. 2.2 displays all the autocorrelation terms involve in Eqn. (2.39) at an

SNR=-5 dB for a sixth order AR system with the parameters al = -0.8600, a2 =

1.0494, a3 = -0.6680, a4 =; 0.9592, as = -0.7563 and a6 = 0.5656. The detail

analysis of this system is given in chapter 4 where the system is termed as system

12. From Fig. 2.2, it is clear that at a very low SNR even for I > 0, Rxv(l), Rvx(l)
and Rvv (I) cannot be neglected. With the increase in noise level the effect of

Rxv(l), Rvx(l) and Rvv(l) are pronounced. At a very low SNR the autocorrelation

function of the noisy signal includes significant error at all lags resulting from the

(,
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Fig. 2.2: Effect of noise on autocorrelation function. AR System 12 is considered
at an SNR=-5 dB : (a) Conventional autocorrelation function of the noise-free "signal (Rxx(l)) obtained by Eqn. (2.12) and autocorrelation function of the noisy ('signal (Ryy(l)) obtained by Eqn. (2.39); (b) Rxx; (c) Rvv; (d) Rxv and (e) Rvx.
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violation of assumption that the output AR signal x(n) and additive noise v(n)
are uncorrelated.

In Fig. 2.3 the effect of increase in noise on nonzero lags of the autocorrelation

function of the noisy signal is shown. For system 12, autocorrelation function

of the noise-free signal and the autocorrelation function of the noisy signal at

different SNRs are observed. The different SNRs considered are 10 dB, -5 dB and

-10 dB. At SNR.=-lO dB, the pattern of the Ryy(l) totally differs from Rxx(l).
Even at SNR.=-5 dB, Ryy(l) includes significant error at nonzero lags. Hence it

is very difficult to identify a system at low SNR. using the noisy autocorrelation

function.

Our research is carried out to estimate the AR. system parameters from the

noisy observations. The noise power a; is also assumed to be unknown. Noise

cancellation schemes that compensate the autocorrelation lags for the noise can

be found in [14]. A serious deficiency is that, one does not know how much noise

power to remove. Thus, if the subtracted noise power is inaccurate, there will be

wrong estimation of system parameters.

2.5 A Least-Square Based Method for Identi-
fication of AR Systems in the Presence of
Noise

In this section, we describe the improved least-square method with no prefiltering

(ILSNP) [27] that deals with the problem of estimating the unknown parameters

of an AR. system corrupted by white noise. For the noisy AR. system shown in

Fig. 2.1 the covariances 'J1 and <Pare

'J1 =

Y~

1 N-j

N LYnY~
n=O

1 N-j

N L Yny(n)
n=O

[y(n -1) y(n - 2) ... y(n - p)] (2.41 )

where y(n) is described in Eqn. (2.37). The transfer function of this AR. process

is described in Eqn. (2.5). Our aim is to determine the AR parameters a =

[aj a2'" apj.

\
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RlIy(l) of Eqn (2.38) and <I>of Eqn. (2.41) produce the similar results. On the

other hand R introduced in Eqn. (2.26) and q, of Eqn. (2.41) are also similar.

Hence like the low-order Yule-Walker equations described in Eqn. (2.26) we can

write

(2.42)

where aLS are the estimated AR. parameters. But there exists a basic difference

between Eqn. (2.26) and Eqn. (2.42). Eqn. (2.42) uses the noisy observations

y(n) instead of actual output x(n) that should be used in Eqn. (2.26). In the

previous section we have discussed that if we use noisy autocorrelation (Ryy(l))

instead of the true autocorrelation (Rxx (l)), there will be inaccurate estimation

of AR. parameters at low SNR.. Similarly the use of noisy covarianees instead of

the true eovariances will introduce error in the estimated AR. parameters, aLSo

To overcome the problem, in [27] a least-square based technique is described. Let

us introduce an additional parameter in the AR. model polynomial A(z) and thus

resulting augmented model polynomial A(z) can now be defined as

where

-T [ - ] [T - ]a = al a2 ap ap+l = a ap+!

(2.43)

(2.44)

For a p-th order AR. system the true value of the introduced parameter ap+l = O.

Using the least-square methods the augmented AR. parameters can be obtained

as

-T
Yn

where

1 N-l
q, = N LYnY~

n=O

1 N-l
N LYny(n)

n=O

[y(n - 1) y(n - 2) ... y(n - p) y(n - p - 1)]

(2.45)

(2.46)

According to the whiteness properties of u(n) and v(n) and the uncorrelativity

between them, we can obtain from Eqn. (2.45) the following expression:

(2.47)
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where a; is the observation noise variance. Let us consider a ((p + 1) xI) vector

J.l. If J.lT = [0 O... 0 1]' Eqn. (2.44) gives

(2.48)

Premultiplying Eqn. (2.47) by j.tT and using Eqn. (2.48), an estimate of a; can
be obtained as

T-
a2 = J.l _aLS (2.49)
v J.lT'JI-la

Now the iterative me'thod proposed in [27] for estimating the AR parameters can

be summarized as follows.

1. From a finite number of noisy observations {y(O), y(I), ... , y(N - In we

can evaluate ~ and eI> using Eqn. (2.46). Then the initial value of AR

parameters can be determined using Eqn. (2.45). This value will be the

initial estimate of the AR parameters by the ILSNP method, i.e.

-(D _. 0
aILSNP = aLS, ~=

where the superscript i denotes the iteration number.

2. Using Eqn. (2.49), a; can be computed as

3. Then the ILSNP estimate for a can be obtained from Eqn. (2.47) as

_(i) _ - 2(i).T.-1-(i-1)
aILSNP - aLS - av '" aILSNP

(2.50)

(2.51)

(2.52)

4. Repeat steps (2) and (3) until the termination criterion is satisfied. The

criterion may be chosen as

II-(i) _(i-I) IIaILSNP - aILSNP

11
_ (i) IIaILSNP

(2.53)

or when the number of iterations exceeds 20. With the fulfillment of the

chosen criterion, we can get the desired estimated AR parameters from
-(i)
aILSNP'
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2.6 Conclusion

In this chapter different methods for estimating the parameters of AR systems

have been discussed. Three linear models, ARMA, MA and AR, are explained and

the logic behind the popularity of AR model is stated. The detail analysis of the

random process modeling is given. Yule-Walker equation based on autocorrelation

function is derived. In addition the effect of noise on the autocorrelation function

is explained. The least-square based technique is also analyzed in detail as we

intend to give a comparative study of the results obtained by our method with

that of the improved least-squares method with no prefiltering (ILSNP) [27].



Chapter 3

AR System Identification by
Damped Cosine Method

3.1 Introduction

The problem of identifying an AR system from noisy observations of its output

response to an unknown white noise input excitation, is of fundamental impor-

tance in several areas such as speech processing, spectral estimation, economics,

seismology and biomedical signal processing. Several methods have focused on

this topic of AR parameter estimation from noise corrupted observations [14]-

[30]. The noise compensated lattice filter (LF) algorithm proposed in [15] fail

to estimate the AR parameters without a.priori knowledge of the additive noise

variance. Another shortcoming is that the stability of the noise compensated

LF cannot be guaranteed [14]. The high-order Yule-Walker (HOYW) equations

which do not require a.priori knowledge of the additive noise variance can be used

to estimate the AR parameters [23]. However, this approach may suffer from sin-

gularity problem [31]. The possible singularity of the autocorrelation matrix leads

to a substantial increase in the variance of the AR spectral estimate [14]. Re-

cently, an iterative method using the low order Yule-Walker (LOYW) equations

has been proposed in [26] which estimates the AR parameters and noise variance

simultaneously. The major drawback of this method is its high computational

complexity. Among other methods, the improved least-squares method with no

prefiltering (ILSNP) of noisy observations reported in [27] provides accurate es-

timate of the AR parameters at high SNR with less computational complexity.

In fact, all of the methods discussed can only identify an AR system up to a

certain positive value of SNR. The phase matching technique proposed in [28]

25
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claims that it can estimate the AR parameters at a low SNR. However, due to

strong non-linearity of the objective function, the convergence of this method is

strongly dependent on good initial conditions.

In this paper, we investigate a new method of AR parameter estimation from

noisy observations of very low to high SNRs. A damped cosine model for the

autocorrelation function of the noise-free signal is adopted for AR parameter

estimation. The parameters of the cosine model are estimated using the given

noisy observations. The desired AR system parameters are directly obtained from

this model parameters.

3.2 Problem Formulation

If a signal x(n) is contaminated by a white noise process v(n) with distribution

N(O, a;), the observed signal y(n) is obtained as

y(n) = x(n) + v(n) (3.1)

Assume that x(n) is the output signal of a p-th order AR system excited by a

sequence of white noise urn) with distribution N(O, a~) and is given by

p

x(n) = - L aix(n - i) + urn)
i=l

(3.2)

The observation noise v(n) is assumed to be independent of the input noise urn),
i.e., E[u(n)v(n - t)] = 0 for all t, where E[.] denotes the expectation operator.

The order p of the AR system is assumed to be known.

For the noise-free case, {ad can be obtained from the Yule-Walker Eqn. (2.24)

that is written here again

p

Rxx(l) = - L akRxx(l- k),
k=l

(3.3)

where Rxx(l), the auto-correlation function of the signal x(n), is generally com-

puted as
1 N-l-III

Rxx(l) = N L x(n)x(n + iii)
n=O

(3.4) f
I ',

and N is the number of data points. Clearly, any p equations are sufficient to

determine the AR parameters. Generally, I = 1,2, ... ,p is chosen which results in
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a set of symmetric Toeplitz equations. When noise is present, Rxx (l) is unknown

and is to be estimated from the noisy data sequence y( n). Exploiting the relation

for 1= 0
for 1 i- 0 (3.5)

where, Ryy(l), the autocorrelation function of the noisy signal y(n), is calculated

as
1 N-l-j11

Ryy(l) = N 2: y(n)y(n + Ill)
n=O

(3.6)

We can calculate Rxx(l) for all values of 1 except 1= 0 as the noise-variance (a;)

is unknown. Although the high-order Yule-Walker equations, where Rxx(O) is

absent, can be used to estimate the AR. parameters [14]' this approach suffers

from singularity constraint [31]. The possible singularity of the auto-correlation

matrix leads to a substantial increase in the variance of the AR. spectral estimate

[14].
It is a standard practice to assume that Rxx(l) obtained from Eqn. (3.5) and

Eqn. (3.6) for all I, with true value of a; substituted at 1 = 0, result in noise-

free autocorrelation sequence that satisfy Eqn. (3.3). In chapter 4 this standard

practice is termed as Method 1 and the result obtained by this method is pre-

sented. However, it is worth mentioning that at a very low SNR. the aut correlation

function of the noisy signal includes significant error at all lags other than zero

resulting from the non-ideal nature of the autocorrelation sequence of the addi-

tive noise. Under such a noisy condition, the conventional methods of computing

autocorrelation sequence from a finite set of noisy data fail to estimate the AR.

parameters with acceptable level of accuracy.

The objective of this paper is to propose a novel method using damped cosine

model of the autocorrelation function to estimate the AR. parameters especially at

a very low SNR.. Using Ryy(I), calculated from a finite set of noisy observations,

we can estimate the damped cosine model parameters. Even at a very low SNR

the model parameters can be estimated quite accurately. Thus the problem of

AR. parameter estimation at a very low SNR. reduces to the problem of cosine

model parameter estimation. (}
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3.3 Estimation of Damped cosine Model Param-
eters

To develop a mathematical model for better estimation of the autocorrealtion

function of x(n) from a finite set of noisy signal y(n) we introduce an alternative

representation for x(n). The transfer function of a p-th order AR system in the

z-domain can be expressed as

(3.7)

where A(z) = 1+ alz-1 + a2z-2 + ... + apz-P, Zk denotes the k-th pole of the AR

system and Ck is the partial fraction coefficient corresponding to the k-th pole.

The unit impulse response h(n) of the causal AR system described in Eqn.

(3.7) can be expressed as

P

h(n) = L Cdzkt,n = 0,1,2," ',N-l
k=l

(3.8)

If this relaxed AR system is excited by a sequence of white noise urn) with

distribution N(O, (J"~), the response xM (n) is given by

n

xM (n) = urn) * h(n) = L u(m)h(n - m)
m==O

Using Eqn. (3.8), Eqn. (3.9) can be written as

P n
xM (n) = L L Cku(m)(zk)n-m

k=lm=O

(3.9)

(3.10)

Eqn. (3.10) is the proposed autoregressive signal model. It is found that first ,.

(p - 1) terms of xM (n) are zero and after that x(n) of Eqn. (3.2) and xM (n) of

Eqn. (3.10) are identical. Hence their relationship can be expressed as

(3.11)

Thus Eqn. (3.2) is the difference equation implementation of x(n) using the sys-

tem parameters and Eqn. (3.10) is the convolution sum implementation ofx(n)

using the system roots. The detail derivation of this convolution sum represen-

tation of AR signal is given in the Appendix A.
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Using Eqn. (3.10), the autocorrelation of the noise-free signal xM (n) can be

obtained as

p

Rxx(l) = L 13k(zd
k=l

(3.12)

and 13k = (3.13)

The coefficient 13kmay be real or complex depending on whether the pole is real

or complex. Since x(n) is real, in the latter case, a complex pole will always be

accompanied by its complex conjugate pole. The detail derivation of this model

is given in the Appendix B.

Considering the effect of complex and real poles, Eqn. (3.12) can be expressed

as a summation of cosine terms that is given below

9

Rxx(l) = LGjlrJ)1 cos(wjl + cPj)
j=!

(3.14)

where Gj and cPj are constants that depend on 13j, rj is the magnitude of the

j-th pole, Wj is the angular position of the j-th pole and g= Number of pair of

complex conjugate poles + Number of real poles. For a stable system, rj is always

less than one. With the increase in lag points I, the factor (rj)l always decreases.

As a result the cosine function will be decaying in nature. Hence Eqn. (3.14) is

termed as the damped cosine model of autocorrelation function for noise-free

signal.

For the computational convenience we have decomposed the model in the

following form.

9

Rxx(l) = L (rj)l [Pj cos(wjl) + Qj sin(wjl)] ,for 1 ::::0
j=!

(3.15)

where Pj = Gj cos cPj and Qj = -Gj sin cPj are constants that depend on 13j. In
general, rj governs the decay rate of the AR system response and Wj determines
the angular position of the pole of the AR system in the z-plane.

We estimate each of the damped cosine function of the alternative represen-

tation of Rxx(l) described in Eqn. (3.15) in an iterative fashion. At first from

the given set of noisy data points y(n), the autocorrelation function of the noisy

signal R.yy(l) is calculated using Eqn. (3.6). It is sufficient to consider only a



30

few nonzero positive lags of Ryy(I), where 1= 1,2, ... ,M. The j-th component

function R~x(l) of Eqn. (3.15) can be referred as

(3.16)

The component function R~x(l) of Eqn. (3.15) is then estimated by optimally

fitting a finite sequence of this function with Ryy(l) for 1> o. The fitted parame-

ters at the first step will give an estimate of Tj and Wj, j = 1. The corresponding

fitted function is then subtracted from Ryy(l) to obtain the first residue function

~1 (I). In the second step, another function of the proposed model is fitted to this

residue function to get the second set of Tj and Wj, j = 2. Then a second residue

function ~2(1) is calculated by subtracting the second fitted function from the

first residue function. The k-th residue function is thus defined as

(3.17)

where Fk = Pk COS(Wkl) + Qk sin(wd). For 0 < Wk < 71", we obtain Tke(xjwk) as

one pair of complex conjugate poles of the AR system. However, Wk = 0 or 71"

represent a real pole given by Tk or -Tk, respectively. Proceeding this way when

all the p poles are identified no further steps are required. As for example, in case

of a fourth order system with two real poles and a pair of complex-conjugate poles

we need three steps. Once the poles are estimated, the AR system parameters

can be obtained from their unique relationship [26].

In the proposed method, the parameters Wk, Tk, Pk, and Qk of the k-th com-

ponent function are chosen such that the sum-squared error (Jki)), between the

(k -1)-th residue function and the k-th component function is minimized, where

and

Jii) = L I~k-l(I) - Hi))l Fn2
,

1

1 = 1,2, ... ,M, k = 1,2, ... ,g-1 (3.18)

(3.19)

Since the proposed method is iterative, the superscript '(i)' denotes the iteration

index, i.e., wii) denotes the angle of the k-th pole at iteration i. The optimum

parameters are found as Pk = pii), Qk = Qii), Tk = Tii), and Wk = wii) for the

value of i at which Jii) is minimum. For arbitrary values of Tii) and wii), p~i) and
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Q~i) can be obtained by minimizing Jkil in the least-squares sense. As in this case

only Pki) and Q~il will be the variable terms in Jki), to minimize Jki) the following

two equations are sufficient.

o

o

(3.20)

(3.21)

From Eqn. (3.20) we get,

M 8F(i)2L: [Wk-1(l) - (r~i))IFkil] (rk'l)l----t.J = 0
1=1 8Pk

M M

===> Pkil L:(rii))21 cos2(wiill) + Q~il L:(riil)21 sin(wii)l) cos(wii)l)
~1 1=1

M

= L:Wk-1 (l)( rii))l cos (wii) l)
1=1

Similarly from Eqn. (3.21) we get,

M 8F(i)2L: [Wk-1(l) - (rii»)IFkil] Hi))I----t.J = 0
1=1 8Qk

M M
===> Pki) L:Hi))21 cos(wii)l) sin(wii)l) + Q~i) L:Hi))21 sin2(wii)l)

1=1 1=1
M

= L:Wk_1(l)(rii))1 sin(wii)l)
1=1

Combining Eqn. (3.22) and Eqn. (3.23) we get

(3.22)

(3.23)

(3.24)
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Eqn. (3.24) can be rewritten with simpler matrix notations as

\

DU=V (3.25)

where the elements of the (2 x 2) matrix D are defined by Dll = Ll(rii»)21
cos2(wii)l), Dn = Ll(r1i»)21 sin2(w1i)l), DI2 = D21 L1Hi»)21'cos(wiill)
sin(w1i)l), and UT = [p~il Q1i)] , VT = [VI V2] with Vi = Ll ~k_l(l)(rii))l
cos(wii)l), and V2 = Lm ~k-I(l) (rii»)l sin(wii1l).

3.4 Conclusion

In this research work, a novel method for the identification of AR systems at a

very low SNR using damped cosine model of autocorrelation function of the noise-

free AR signal has been proposed. The conventional correlation based techniques

fail to estimate the AR parameters below a certain positive value of SNR due to

inaccurate estimation of the autocorrelation function from a finite set of noisy

data. This research results have shown that the calculation of autocorrelation

function using a damped cosine model can alleviate this problem and can identify

AR systems even at an SNR as low as -5 dB.
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Chapter 4

Simulation Results

Ii '\.

"
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4.1 Introduction
\'

In this chapter, we evaluat.e the performance of the damped cosine method of AR

system identification by presenting several numerical examples. First, we verify

the convolution sum representation of the AR signal with a known system. Next

we demonstrate the intermediate steps of the proposed method using numerical

examples. Then we present the results obtained by the proposed method in the

identification of various AR systems at different SNRs. Finally, a comparison

between the proposed method and the improved least-square method with no

prefiltering (ILSNP) [27] is given in tabular form.

4.2 Different AR Systems Used in Simulation

We have considered various AR systems on the basis of the following factors.

1. Order of the system.

2. Pole position in the z- plane.

3. Type of a pole, i.e., real or complex. In fact, the angular position of a pole

determines whether the pole is real or complex.

4. Impulse response of the system.

In the proposed method the order of the AR system is assumed to be known.

Considering the other three effects we have taken twelve various AR systems for

simulation. For each AR system, the difference equation and AR polynomial

(A(z)) are given below.

33
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1. System 1: Secondorder AR system

x(n) - 1.8x(n - 1) + 0.97x(n - 2) = urn)

A(z) = 1- 1.8z-1 + 0.97z-2

Poles = 0.984gectj0.4182 (4.1)

2. System 2: Second order AR system

x(n) - 0.15x(n - 1) - 0.76x(n - 2) = urn)

A(z) = 1- 0.15z-1 - 0.76z-2

Poles = 0.95, -0.85 (4.2)

3. System 3: Second order AR system

x(n) + x(n - 1) + 0.5x(n - 2) = urn)

A(z) = 1+ Z-1 + 0.5z-2

Poles = 0.7071ectj2.3562

4. System 4: Third order AR system

(4.3)

x(n) - 0.65x(n - 1) - 0.72x(n - 2) + 0.76x(n - 3) = urn)

A(z) = 1- 0.65z-1 - 0.72z-2 + 0.76z-3

Poles = -0.95, 0.8944ectj0.4636 (4.4)

5. System 5: Third order AR system

x(n) - 0.5x(n - 1) - 0.61x(n - 2) + 0.585x(n - 3) = urn)

A(z) = 1 - 0.5z-1 - 0.61z-2 + 0.585z-3

Poles = -0.9,0.8062ectjO.5191 (4.5)

6. System 6: Third order AR system

x(n) - 0.45x(n - 1) - 0.68x(n - 2) + 0.6175x(n - 3) = urn)

A(z) = 1 - 0.45z-1 - 0.68z-2 + 0.6175z-3

Poles = -0.95, 0.8062ectjO.5191 (4.6)
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7. System 7: Fourth order AR system

x(n) - 2.7607x(n - 1) + 3.8106x(n - 2) - 2.6535x(n - 3)

+0.9238x(n - 4) = u(n)

A(z) = 1 - 2.7607z~1 + 3.8106z-2 - 2.6535z-3 + 0.9238z-4

Poles = 0.9805e"jO.8798,0.9803e"jO.6909 (4.7)

8. System 8: Fourth order AR system

x(n) - 2.595x(n - 1) + 3.339x(n - 2) - 2.2x(n - 3)

+0.731Ox(n - 4) = u(n)

A(z) = 1 - 2.595z-1 + 3.339z-2 - 2.2z-3 + 0.73lOz-4

Poles = 0.9498e"jO.6289,0.9002e"jO.9420 (4.8)

9. System 9: Fourth order AR system

x(n) - 0.55x(n - 1) - 0.155x(n - 2) + 0.5495x(n - 3)

-0.6241x(n - 4) = u(n)

A(z) = 1 - 0.55z-1 - 0.155z-2 + 0.5495z-3 - 0.6241z-4

Poles = -0.95,0.9, 0.8544e"j1.212

(4.9)

10. System 10: Fourth order AR system

x(n) + 0.55x(n - 1) - 0.155x(n - 2) - 0.5495x(n - 3)

-0.6241x(n - 4) = u(n)

A(z) = 1+ 0.55z~1 - 0.155z-2 - 0.5495z-3 - 0.6241z-4

Poles = 0.95, -0.9, 0.8544e"j1.9296

(4.10)

11. System 11: Fifth order AR system

x(n) + 0.6x(n - 1) - 0.2975x(n - 2) - 0.1927x(n - 3)

+0.6329x(n - 4) + 0.7057x(n - 5) = u(n)

A(z) = 1+ 0.6z-1 - 0.2975z-2 - 0.1927z-3 + 0.6329z-4

+0.7057z-5

Poles = -0.9, 0.9605e"jO.6747,0.921ge"j2.2794 (4.11)
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12. System 12: Sixth order AR system

x(n) - 0.86x(n - 1) + 1.0494x(n - 2) - 0.6680x(n - 3)

+0.9592x(n - 4) - 0.7563x(n - 5) + 0.5656x(n - 6) = u(n)

A(z) = 1 - 0.86z-1 + 1.0494z-2 - 0.6680z-3 + 0.9592z-4

-0.7563z-5 + 0.5656z-6

Poles = 0.95e"j2.2143,0.9203e"j1.2387,0.8602e"jO.6203 (4.12)

Impulse response (IR) of an AR system strongly depends on the type and

magnitude of its poles. For an AR system, with a pole (or a complex conjugate

pair of poles) near the origin, the impulse response decays more rapidly than

one associated with a pole near (but inside) the unit circle. It is expected that

the pattern of the autocorrelation function of the AR signal will follow the same

nature. Hence before selecting the AR systems for simulation, we have analyzed

their impulse responses. Fig. 4.1 shows the impulse response of three different

AR systems. Fig. 4.1(a) shows the impulse response of System 1 that con-

sists of a pair of complex conjugate poles with magnitude 0.9849. The impulse

response of this system decays very slowly and it retains significant percentage

of its initial value even after 100 instances. Impulse response of this system can

be categorized as 'long IR'. Fig. 4.1(b) shows the impulse response of System

8 that consists of two pair of complex conjugate poles with magnitude 0.9498

and 0.9002. The impulse response of this system decays moderately and after

60 instances it reaches almost to zero. Impulse response of this system can be

categorized as 'medium IR'. Fig. 4.1(c) shows the impulse response of System

3 that consists of a pair of complex conjugate poles with magnitude 0.7071. The

impulse response of this system decays very rapidly and it reaches almost to zero

just after the 15 instances. Impulse response of this system can be categorized

as 'short IR'. For simulation, we have chosen various AR systems covering all the

three categories of impulse responses.
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4.3 Results on the Convolution Sum Represen-
tation of AR Signal

In chapter 3, we proposed the convolution sum representation of AR signal. The

relationship between the difference equation representation and the convolution

sum representation of x(n) is established in Eqn. (3.11). We have implemented

Eqn. (3.2) and Eqn. (3.10) for the System 12 which is an AR(6) system.

Fig. 4.2 shows the simulation results obtained using these equations. For both

the representations we have used the same random white noise input urn) with

distribution N(O,oD. Fig. 4.2(a) shows the response of the AR system using

Eqn. (3.2). Fig. 4.2(b) shows the response of the AR system using Eqn. (3.10).

It can be seen that in this case, first 5 responses are zero and from sixth instant it

follows the pattern as in Fig. 4.2(a). Fig. 4.2(c) shows that the results obtained

by these two equations are essentially identical.

4.4 Effect of Data Length on the Damped Co-
sine Model

To test the validity of the damped cosine model we have implemented Eqn. (3.12)

with a known system. We have considered that the system parameters are known

i.e., the transfer function coefficients Ci and the poles Zi can be calculated. In the

derivation of Eqn. (3.12), the data length is considered infinity. In the practical

case we consider the length of data as long as possible. To observe the effect of

data length, Eqn. (3.12) is simulated for different data lengths. In Fig. 4.3 we

have shown the effect of increase in data lengths on the proposed autocorrelation

model.

Autocorrelation function determined by Eqn. (3.4) is termed as the conven-

tional estimation of the autocorrelation function and the simulation result of Eqn.

(3.12) is termed as the proposed model based estimate. Number of data points

used are 128, 512, 4096 and 2,62,144. From Fig. 4.3 it is clear that, with the

increase in data lengths the proposed model based estimate matches the conven-

tional estimate more accurately.
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Fig. 4.2: System response generated by difference Eqn. (3.2) and convolution sum
representation given in Eqn. (3.10). For System 12 : (a) response generated
by Eqn. (3.2); (b) response generated by Eqn. (3.10) and (c) response generated
by Eqn. (3.10) is plotted from 6-th instant over the response generated by Eqn.
(3.2).
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4.5 General Considerations for All Systems

Data was generated according to Eqns. (3.1) and (3.2) given by
p

x(n) - L aix(n - i) + urn)
i=l

y(n) - x(n) + v(n) (4.13)

where x(n) is the output signal of a p-th order AR system excited by a sequence

of white noise urn) with distribution N(O, O"~), v(n) is the additive white noise

with distribution N(O, 0";) and y(n) is the observed noisy signal. The variance of

the input signal is fixed at O"~= 1 and the variance 0"; of the observation noise

v(n) is selected to give different SNRs defined as

(dB) (4.14)

where 0"; is the variance of x(n). In all the simulations, N = 4000 samples of

the noisy data were used. As explained in chapter 3, we calculate the desired

AR system parameters from the damped cosine model parameters. With this

view, for determining the damped cosine model parameters, we use Ryy (I) for

1= 1,2,"', M with M = 'lOp in all the simulations. In order to estimate Wk and

'Tko a domain of Wk from 0 to IT was scanned at a resolution of 0.001 for different

values of'Tk' Scanning interval of'Tk was taken to be 0 < 'Tk ~ 1 and scanning

resolutions were chosen to be 0.001. For all the systems, the parameters were

estimated for 25 independent runs. The standard deviations from true (SDT)

values and the standard deviations from the mean (SDM) are used as two indices

for comparing the consistency of the proposed method with other methods. SDM

and SDT can be defined as

SDM=

SDT=

£ PL L(a.; - ai)2
j=l i=l

C - 1

£ PL L(a.{ - ai)2
)=1 i=l

c -1

(4.15)

(4.16)

where ai is the true AR parameter, ii{ is the estimated AR parameter at the j-th

run, ai is the mean value of the i-th estimated parameter, c is the total number

of runs and p is the system order.

I'.
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4.6 Simulation Results for Yule-Walker Equa-
tions

In chapter 2, we have described modified Yule-Walker equations for identifying

AR systems. Here, we present simulation results for three different methods based

on the Yule-Walker equations.

1. Method 1 : It is based on the noise compensated lower-order Yule-Walker

(LOYW) equations. True value of the noise variance, u; is used in Eqn.

(2.40). Then substituting Rxx(l), in Eqn. (2.25) by Ryy(l) according to

Eqn. (2.40), AR parameters may be estimated.

2. Method 2 : It is based on the noise compensated higher-order Yule-Walker

(HOYW) equations. Substituting Rxx(l), in Eqn. (2.27) by Ryy(l), AR

parameters may be estimated.

3. Method 3 :In this case modified HOYW equation is used. It differs

from the basic HOYW equations in that, more than p equations are used.

Here we take lOp equations resulting the correlation matrix of dimension

(lOp x pl. In this case also Rxx(l) is substituted by Ryy(l) in the modified

HOYW equations to identify the AR parameters.

Table 4.1: AR Parameter Estimation by Method 1 for System 7 (Under each
estimated parameter first SDT and then SDM are shown)

True AR Estimated parameters
parameters 20 dB 10 dB o dB
aj--2.7607 -2.7223 -0.9248 -2.8736

:i:D.7974 :!:2.781O :!:8.7047
:!:0.7964 :!:2.0551 :!:8.7040

a2-3.8l06 3.7349 -0.6378 5.6645
:!:1.9011 :!:6.7256 :!:23.2631
H.8995 :!:4.9619 :!:23.1860

a3=-2.6535 -2.5863 1.8092 -5.2122
:!:1.8950 :!:6.7429 :!:24.6393
:!:1.8938 :!:4.9720 :!:24.5004

a4-0.9238 0.9043 -0.3435 2.5612
:i:D.7834 :!:2.8197 :!:11.6071
:!:0.7831 :!:2.0780 :!:11.4862

"1""!:!'
''1"

, '

c

•*,
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Table 4.2: AR Parameter Estimation by Method 2 for System 7 (Under each
estimated parameter first SDT and then SDM are shown)

True AR Estimated parameters
parameters 20 dB 10 dB o dB
al--2.7607 -2.7583 -1.4414 -2.8736

::1::0.5146 ::1::5.3781 ::1::8.7047
::1::0.5146 ::1::5.2068 ::1::8.7040

a2=3.8106 3.8026 0.4115 5.6645
::1::1.2025 ::1::13.0302 ::1::23.2631
::1::1.2024 ::1::12.5599 ::1::23.1860

aa--2.6535 -2.6436 0.7678 -5.2122
::1::1.1622 ::1::12.8007 ::1::24.6393
::1::1.1622 ::1::12.3153 ::1::24.5004

a4=0.9238 0.9178 -0.5774 2.5612
::1::0.4693 ::1::5.3637 ::1::11.6071
::1::0.4692 ::1::5.1402 ::1::11.4862

Tables 4.1, 4.2 and 4.3 show the results obtained by these methods for System 7.

The first two methods fail totally below 20 dB. Even at 20 dB the value of SDT

Table 4.3: AR Parameter Estimation by Method 3 for System 7 (Under each
estimated parameter first SDT and then SDM are shown)

True AR Estimated parameters
parameters 20 dB 10 dB o dB
aj--2.7607 -2.7598 -2.7070 -1.5324

::1::0.0076 ::1::0.0620 ::1::1.2623
::1::0.0076 ::1::0.0290 ::1::0.1477

a2-3.8106 3.8080 3.6848 1.0992
::1::0.0161 ::1::0.1456 ::1::2.7841
::1::0.0159 ::1::0.0685 ::1::0.3053

aa=-2.6535 -2.6510 -2.5323 -0.1210
::1::0.0154 ::1::0.1405 ::1::2.5994
::1::0.0152 ::1::0.0666 ::1::0.2754

a4-0.9238 0.9226 0.8760 -0.0162
::1::0.0066 ::1::0.0560 ::1::0.9644
::1::0.0065 ::1::0.0274 ::1::0.0986

and SDM are very high that reflect the inconsistency of estimation at different

runs. Method 3 performs better than these two methods. Its performance at

10 dB is satisfactory but below 10 dB it fails to identify the system. For other

systems also similar performances of these methods are expected.
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4.7 Step by Step Estimation of Damped Cosine
Model

In chapter 3, we have explained each step involved in the damped cosine method

in detail. Here we explain the step by step estimation procedure for System

9. For this system there exists two real poles and a pair of complex conjugate

poles. Damped cosine method estimates one angle (Wk) and its corresponding

magnitude of pole (Tk) at each step. If 0 < Wk < "Jr,we construct a pair of

complex conjugate poles Tkexp(:f::jwk). If Wk = 0 or Wk = "Jr,we construct a single

pole Tk or -Tk respectively. Hence to identify all the poles of System 9, we need

three steps. Fig. 4.4 shows the different steps of damped cosine method for this

system at SNR=-5 dB. In Table 4.4 the estimated model parameters at each

step are summarized. The three steps involved in this case are explained below.

Table 4.4: Estimated Damped Cosine Model Parameters at Each Step for System
9 at SNR=-5 dB

Model Estimated values
parameters 1st 2nd 3rd

step step step
Wk 0 3.1416 1.2706
Tk 0.9512 0.9512 0.8840
Pk 0.4589 0.5075 0.4931
Qk 0 0 0.2123

1. Step 1 : Performing the fitting operation on the noisy autocorrelation

function 14y (l), the first component function of the damped cosine model

is estimated. This gives the model parameters of the first step. In Fig.

4.4(a) the 1st component function is plotted with R.yy(l). The true values

of Wk and Tk are stated in Eqn. (4.9). From Table 4.4 we see that in this

case the angle chosen is zero which is absolutely correct but the estimated

Tk = 0.9512 differs from the original Tk = 0.9. Number of pole obtained

is one and it is 0.9512. The 1st residue function (1Rj) is obtained by

subtracting the 1st component function from Ryy(l).

2. Step 2 : Performing the fitting operation on the 1st residue function (1RJ),

the second component function of the damped cosine model is estimated.

..
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This gives the model parameters of the second step. In Fig. 4.4(b) the 2nd

component function is plotted with 1st residue function. The true values

of Wk and Tk are stated in Eqn. (4.9). From Table 4.4 we see that in this

case the angle chosen is IT which is absolutely correct and also the estimated

Tk = 0.9512 almost exactly matches with the original Tk = 0.95. Number of

pole obtained is one and it is -0.9512. The 2nd residue function (~2) is

obtained by subtracting the 2nd component function from 1st residue.

3. Step 3 : Performing the fitting operation on the 2nd residue function (~2),
the third component function of the damped cosine model is estimated.

This gives the model parameters of the third step. In Fig. 4.4(c) the 3rd

component function is plotted with 2nd residue function. The true values

of Wk and Tk are stated in Eqn. (4.9). From Table 4.4 we see that in this

case Wk = 1.2706 which is very closer to the actual value of 1.212. The

estimated Tk = 0.8840 almost matches with the original Tk = 0.8544. A

pair of complex conjugate poles are obtained which is 0.884e"j1.2706. As

now the total number of poles obtained is 4, no further step is required.

Summing the three component functions obtained at three steps, an estimate

of the autocorrelation function using the proposed model is obtained. In Fig.

4.4( d) autocorrelation function of the noise-free signal calculated using Eqn. (3.4)

and estimated autocorrelation function using damped cosine model are plotted.

In this case the true and estimated AR parameters are given below.

True parameters

Estimated parameters

[1 - 0.5500 - 0.1550 0.5495 - 0.6241J

[1 - 0.5227 - 0.1234 0.4730 - 0.7070J

At this low SNR condition, the estimated autocorrelation function matches with

the noise-free autocorrelation function quite accurately. Unlike conventional

methods, estimated autocorrelation function is not directly used for estimating

the AR parameters. Rather, the values of Wk and Tk, obtained at each step, are

used to estimate the AR parameters in the proposed method. The estimated AR

parameters also show the efficiency of the proposed method at this low SNR of

-5 dB. The results shown in Table 4.4 is just the result of a single run. In our

simulation, we always use 25 independent runs and then take their average.
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Fig. 4.4: Estimation of autocorrelation function at different steps of damped co-
sine model for AR System 9 at SNR=-5 dB : (a) Ryy(l) and 1st component
function of the proposed damped cosine model; (b) 1st residue and 2nd com-
ponent function of the proposed damped cosine model; (c) 2nd residue and 3rd
component function of the proposed damped cosine model; (d) Conventional au-
tocorrelation function of the noise-free signal obtained by using Eqn. (3.4) and
estimated autocorrelation function using damped cosine model.
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4.8 Results on AR Parameter Estimation Using
Damped Cosine Method

Different systems are analyzed by the damped cosine method in noisy observa-

tions. Our main interest is in extreme noisy situations where most of the system

identification methods fail. From Table 4.5 to Table 4.10 we have listed the sim-

ulation results for System 1 through System 12. We have estimated the AR

parameters by using both the damped cosine method and ILSNP method [27J for

all of these systems for SNR = 10 dB and -5 dB. In each Table, the average

value of the estimated AR parameters and their standard deviations from the

mean (SDM) and standard deviations from the true values (SDT) using the pro-

posed and the ILSNP methods are summarized. In Fig. 4.5 to Fig. 4.16, we

have shown the true and estimated poles on the z-plane and the power spectra

obtained by the proposed method for all the twelve systems. For each AR system,

at first we have depicted the true spectrum with the spectrum obtained by the

average value of the estimated AR parameters. As stated earlier, that we have

taken the average of 25 independent runs. In each figure we have also shown the

plot of 25 estimated AR spectra obtained in each step to show the variance of
spectral estimates.

4.9 Conclusion

The results show that the proposed method can estimate complex poles as well

as real poles on either side of the z-plane quite accurately both at low and high

SNRs. It can also be seen that the estimated AR parameters, SDT and SDM of

both the methods are comparable at 10 dB, but at -5 dB the ILSNP method fails

to estimate the AR parameters. Also notice that SDM and SDT of the estimated

AR parameters using the proposed method are consistently satisfactory. The

spectrum estimation and the z-plane plot vividly show the accuracy of estimation

of the proposed method.

• l'"_~.,
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Table 4.5: Performance Comparison of the Proposed and ILSNP Estimators for
System 1 to System 3 (Under each estimated parameter first SOT and then
SOM are shown)

System True Proposed Method ILSNP Method
values 10dB -5dB 10dB -5dB

1 al= -1.7983 -1.8003 -1.8006 -0.3093
-1.8000 :1::0.0049 :1::0.0105 :1::0.2091 :1::0.0947

:1::0.0046 :1::0.0105 :1::0.2091 :1::2.2310
a2= 0.9683 0.9700 0.9671 -0.1421
0.9700 :1::0.0049 :1::0.0115 :1::0.1410 :1::0.0354

:1::0.0046 :1::0.0115 :1::0.1410 :1::1.2380
2 al= -0.1462 -0.1031 -0.1527 -0.1907

-0.1500 :1::0.0265 :1::0.1572 :1::0.0274 :1::0.4030
:1::0.0262 :1::0.1497 :1::0.0007 :1::0.1576

a2= -0.7646 -0.7741 -0.7559 -0.7505
-0.7600 :1::0.0250 :1::0.0652 :1::0.0624 :1::0.5345

:1::0.0245 :1::0.0636 :1::0.0038 :1::0.2744
3 al= 1.0015 0.9969 0.9901 1.0125

1.0000 :1::0.0658 :1::0.1652 :1::0.0347 :1::0.0365
:1::0.0658 :1::0.1652 :1::0.0013 :1::0.0014

a2= 0.5033 0.5271 0.4945 -0.5093
0.5000 :1::0.0257 :1::0.0743 :1::0.0221 :1::0.0313

:1::0.0255 :1::0.0690 :1::0.0005 :1::0.0010

I
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Table 4.6: Performance Comparison of the Proposed and ILSNP Estimators for
System 4 to System 6 (Under each estimated parameter first SDT and then
SDM are shown)

System True Proposed Method ILSNP Method
values lOdB -5dB lOdB -5dB

4 aj= -0.6556 -0.6570 -0.6467 -0.2778
-0.6500 :1:0.0227 :1:0.0403 :1:0.0582 :1:0.2908

:1:0.0220 :1:0.0397 :1:0.0033 :1:0.2197
a2= -0.7277 -0.7362 -0.7168 -0.3881

-0.7200 :1:0.0184 :1:0.0372 :1:0.0310 :1:0.4962
:1:0.0166 :1:0.0333 :1:0.0009 :1:0.3465

a3= 0.7885 0.7961 0.7521 -0.2966
0.7600 :1:0.0350 :1:0.0504 :1:0.0537 :1:0.6446

:1:0.0195 :1:0.0344 :1:0.0028 :1:0.6136
5 aj= -0.5023 -0.4822 -0.5054 -0.2766

-0.5000 :1:0.0542 :1:0.1938 :1:0.0665 :1:0.3360
:1:0.0541 :1:0.1929 :1:0.0667 :1:0.1616

a2- -0.5979 -0.5790 -0.6103 -0.2911
-0.6100 :1:0.0297 :1:0.1380 :1:0.0499 :1:0.4471

:1:0.0270 :1:0.1343 :1:0.0499 :1:0.2996
a3- 0.6467 0.6412 0.5887 -0.2000

6.5850 :1:0.0675 :1:0.0985 :1:0.0855 :1:0.5524
:1:0.0243 :1:0.0800 :1:0.0856 :1:1.4503

6 aj= -0.4605 -0.4549 -0.3385 -0.2757
-0.4500 :1:0.0671 :1:0.1456 :1:0.0871 :1:0.2091

:1:0.0662 :1:0.1455 :1:0.0197 :1:0.0723
a2= -0.6595 -0.6408 -0.6156 -0.6069

-0.6800 :1:0.0876 :1:0.1309 :1:0.0655 :1:0.1995
:1:0.0850 :1:0.1246 :1:0.0083 :1:0.0435

a3= 0.6502 0.6559 0.4909 -0.4427
0.6175 :1:0.0472 :1:0.0774 :1:0.1108 :1:0.2748

:1:0.0333 :1:0.0668 :1:0.0278 :1:0.1030

'"
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Table 4.7: Performance Comparison of the Proposed and ILSNP Estimators for
System 7 and System 8 (Under each estimated parameter first SDT and then
SDM are shown)

System True Proposed Method ILSNP Method
values 10dB -5dB lOdB -5dB

7 a]= -2.7285 -2.7433 -0.5489 -1.2390
-2.7607 :1:0.0364 :1:0.0802 :1:0.7014 :1:3.2250

:1:0.0157 :1:0.0782 :1:5.3644 :1:12.300
a2= 3.7722 3.7867 0.0739 0.3478

3.8106 :1:0.0504 :1:0.1341 :1:0.4425 :1:1.0434
:1:0.0316 :1:0.1341 :1:14.151 :1:13.036

a3= -2.6408 -2.6457 0.3768 0.7234
-2.6535 :1:0.0340 :1:0.1005 :1:0.1209 :1:2.0638

:1:0.0314 :1:0.1005 :1:9.1965 :1:15.492
a4- 0.9298 0.9258 0.2866 -0.4142

0.9238 :1:0.0170 :1:0.0290 :1:0.5125 :1:3.6782
:1:0.0159 :1:0.0289 :1:0.6581 :1:14.778

8 a]= -2.6194 -2.6764 -0.5828 -0.4987
-2.5950 :1:0.0992 :1:0.1764 :1:0.6756 :1:0.5010

:1:0.0961 :1:0.1556 :1:4.4873 :1:4.6354
a2= 3.4545 3.5805 -0.0498 -0.0368

3.3390 :1:0.2092 :1:0.3593 :1:0.4903 :1:0.4304
:1:0.1728 :1:0.2614 :1:11.715 :1:11.574

a3- -2.3348 -2.4472 0.3121 0.2279
-2.2000 :1:0.1894 :1:0.3108 :1:0.1279 :1:0.2533

:1:0.1302 :1:0.1814 :1:6.3265 :1:5.9562
a4- 0.7906 0.8272 0.2812 -0.3656

0.7310 :1:0.0679 :1:0.1058 :1:0.4313 :1:0.3251
:1:0.0302 :1:0.0396 :1:0.3809 :1:0.2349

r,

,
I ,..

\,
••••
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Table 4.8: Performance Comparison of the Proposed and ILSNP Estimators for
System 9 and System 10 (Under each estimated parameter first SDT and then
SDM are shown)

System True Proposed Method ILSNP Method
values 10dB -5dB 10dB -5dB

9 aj= -0.5425 -0.5839 -0.5532 -0.4322
-0.5500 :J:0.0375 :J:O.01820 :J:0.0451 :J:0.3394

:J:0.0367 :J:0.01787 :J:0.0020 :J:O.1242
a2- -0.1347 -0.1059 -0.1518 -0.0205

-0.1550 :J:0.0364 :J:O.0941 :J:0.0258 :J:0.3402
:J:0.0360 :J:0.0797 :J:0.0006 :J:0.1292

a3- 0.5447 0.5714 0.5569 0.2825
0.5495 :J:0.0312 :J:0.1536 :J:0.0434 :J:0.7226

:J:O.0308 :J:0.1520 :J:O.0019 :J:0.5726
a4= -0.6711 -0.6990 -0.6316 -0.4619

-0.6241 :J:0.0546 :J:0.1045 :J:0.0406 :J:0.4290
:J:0.0262 :J:O.0713 :J:0.0016 :J:0.2030

10 aj- 0.5071 0.5356 0.5527 0.4113
0.5500 :J:0.0555 :J:0.1136 :J:0.0423 :J:0.5449

:J:0.0342 :J:0.1126 :J:0.0424 :J:0.3132
a2- -0.1428 -0.1090 -0.1547 -0.1912

-0.1550 :f0.0331 :J:O.0931 :J:0.0228 :J:0.4124
:J:0.0301 :J:0.0804 :J:0.0228 :J:0.1697

a3- -0,5363 -0.5634 -0.5512 -0.4054
-0.5495 :J:0.0348 :J:0.1054 :J:0.0324 :J:1.0839

:J:0.0321 :J:0.1044 :J:0.0325 :J:1.1840
a4= -0.6625 -0.6913 -0.6255 -0.5226

-0.6241 :J:0.0508 :J:O.0996 :J:0.0319 :J:O.6757
:J:0.0324 :J:0.0723 :J:0.0319 :J:O.4623 •
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Table 4.9: Performance Comparison of the Proposed and ILSNP Estimators for
System 11 (Under each estimated parameter first SDT and then SDM are shown)

System True Proposed Method ILSNP Method
values 10dB -5dB 10dB -5dB

11 aj= 0.5573 0.5839 0.6003 0.4989
0.6000 :1:0.0619 :1:0.0641 :1:0.0424 :1:0.3333

:1:0.0441 :1:0.0620 :1:0.0017 :1:0.1168
a2= -0.2957 -0.2947 -0.2997 -0.2214

-0.2975 :1:0.0211 :1:0.0497 :1:0.0177 :1:0.5825
:1:0.0211 :1:0.0497 :1:0.0003 :1:0.3316

a3= -0.1778 -0.1895 -0.1980 -0.1368
-0.1927 :1:0.0347 :1:0.0665 :1:0.0310 :1:0.4632

:1:0.0312 :1:0.0664 :1:0.0010 :1:0.2091
a3- 0.6015 0.6125 0.6304 0.5004
0.6329 :1:0.0481 :1:0.0498 :1:0.0336 :1:0.6452

:1:0.0358 :1:0.0453 :1:0.0011 :1:0.4172
a4= 0.7671 0.7529 0.7081 0.5748
0.7057 :1:0.0652 :1:0.0577 :1:0.0466 :1:0.7653

:1:0.0181 :1:0.0318 :1:0.0021 :1:0.5794

.~....,....
'"~~.",,~,)1
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Table 4.10: Performance Comparison of the Proposed and ILSNP Estimators
for System 12 (Under each estimated parameter first SDT and then SDM are
shown)

System True Proposed Method ILSNP Method
values 10dB -5dB lOdB -5dB

12 al= -0.9027 -0.9738 -0.8577 -0.6984
-0.8600 :J:O.0679 :1:0.1576 :1:0.0369 :1:0.5453

:1:0.0520 :1:0.1066 :1:0.0013 :1:0.3115
az- 1.0033 1.0567 1.0451 0.4973
1.0494 :1:0.0617 :1:0.1207 :1:0.0407 :1:1.0767

:1:0.0398 :1:0.1205 :1:0.0016 :1:1.4177
a3- -0.6880 -0.7145 -0.6596 -0.1145

-0.6680 :1:0.0454 :1:0.1515 :1:0.0451 :1:1.3772
:1:0.0405 :1:0.1438 :1:0.0020 :1:2.1271

a4= 0.9525 1.0180 0.9596 0.4983
0.9592 :1:0.0368 :1:0.1501 :1:0.0400 :1:0.9481

:1:0.0361 :1:0.1376 :1:0.0015 :1:1.0754
a5= -0.7864 -0.8075 -0.7518 -0.7274

-0.7563 :1:0.0479 :1:0.1070 :1:0.0371 :1:0.3716
:1:0.0368 :1:0.0934 :J:O.0013 :1:0.1334

a6- 0.6202 0.6880 0.5709 0.4616
0.5656 :1:0.0626 :1:0.1324 :1:0.0225 :1:0.5080

:1:0.0285 :1:0.0624 :1:0.0005 :1:0.258 6
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Fig. 4.5: Estimated poles and power spectra obtained by proposed method for
AR System 1 : (aJ estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.6: Estimated poles and power spectra obtained by proposed method for
AR System 2 : (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=lO dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.7: Estimated poles and power spectra obtained by proposed method for
AR System 3 : (a) estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.8: Estimated poles and power spectra obtained by proposed method for
AR System 4 : (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.9: Estimated poles and power spectra obtained by proposed method for
AR System 5 : (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=lO dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.10: Estimated poles and power spectra obtained by proposed method for
AR System 6: (a) estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=10
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.11: Estimated poles and power spectra obtained by proposed method for
AR System 7: (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=lO dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.12: Estimated poles and power spectra obtained by proposed method for
AR System 8 : (a) estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.13: Estimated poles and power spectra obtained by proposed method for
AR System 9 : (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=10
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.14: Estimated poles and power spectra obtained by proposed method for
AR System 10 : (a) estimated poles at SNR=lO dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.15: Estimated poles and power spectra obtained by proposed method for
AR System 11 : (a) estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=10 dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=lO
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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Fig. 4.16: Estimated poles and power spectra obtained by proposed method for
AR System 12 : (a) estimated poles at SNR=10 dB (0: true, x: estimate), (b)
estimated poles at SNR=-5 dB (0: true, x: estimate), (c) true and estimated
average power spectrum at SNR=lO dB, (d) true and estimated average power
spectrum at SNR=-5 dB, (e) estimated power spectrum of 25 runs at SNR=10
dB, (f) estimated power spectrum of 25 runs at SNR=-5 dB.
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'Chapter 5

Conclusion

A novel method for the identification of autoregressive (AR) system from noisy

measurements of its output response has been proposed. The major focus of the

research was to develop an accurate estimation technique for AR parameters spe-

cially at low SNR. To achieve this goal, unlike conventional approaches, a damped

cosine model of autocorrelation function of the noise-free AR signal is employed.

A least-square based technique is used to estimate the model parameters from

the autocorrelation function of the noisy signal. Even at a low SNR the model

parameters can be estimated quite accurately. Once the model parameters are

estimated, the AR system parameters can be obtained directly from these pa-

rameters. The conventional correlation based techniques fail to estimate the AR

parameters below a certain positive value of SNR due to inaccurate estimation of

the autocorrelation function from a finite set of noisy data. This research results

have shown that the calculation of autocorrelation function using a damped cosine

model can alleviate this problem and can identify AR systems even at an SNR as

low as -5 dB.

Accuracy of the estimation of AR parameters by the Damped cosine model

depends on the accuracy of the estimation of the model parameters, e.g. , the

magnitude (r) and the angular position (w) of the poles. With a view to achieve

the desired accuracy, the entire domain of these two unknown parameters for each

pole is scanned at a high resolution. Thus the proposed searching technique may

be considered as computationally expensive.

The proposed method strongly depends on the pole position of the AR sys- ","

tern. Poles located near the unit circle of the z-plane can be identified with high \ .' I
accuracy even at a very low SNR, e.g. -5 dB. It has been observed that the per-
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formance of the proposed method alike the conventional methods deteriorates for

the systems with poles away from the unit circle. As with the other methods, the

proposed one may fail to identify AR systems with very short duration impulse

response, or in other words for systems having poles closer to the origin. The

main reason behind this failure is that at a very low SNR the observed signal

autocorrelation function includes pronounced error even after the zero lag due

to the existence of correlation between the AR signal and the noise and also be-

cause of the fact that, except for first few lags, the values of the autocorrelation

sequence are comparable to this error. Further investigation is required to solve

this problem.

We have considered that the observation nOIse is a white noise. In some

practical cases the additive noise may not be white. Recently, Zheng [45] has

extended the ILSNP method [27] to AR system identification from white noise

corrupted observations for AR signals corrupted by colored noise. Extension of

the damped cosine method for estimation of AR parameters in presence of colored

noise is to be investigated.

Modeling human vocal-tract as all-pole system and the corresponding speech

signal as AR process is one of the most important applications of AR modeling

[46]. Using the damped cosine model proposed in this work the two important

phenomena, speaker identification and pitch detection, may be analyzed in future.

Another important topic is the estimation of the order of AR systems. In

this work, order of the AR system has been assumed to be known. A great deal

of work has been done on the AR system order estimation [47]-[51] when the

observations are noise-free. However, the accurate estimation of the system order

from noisy signal is yet a challenging problem.
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Appendix A

Derivation of The New AR
Signal Model

The transfer function of an AR system in z-domain can be expressed as

H(z) __ 1__ ~ Ck
- A(z) - ~ 1- Z Z-l

k=l k

where,

p - Order of the AR system, assumed to be known

Zk k-th pole of the AR system

Tk = magnitude of pole Zk

Wk angular position of pole Zk

Ck - Partial fraction coefficient corresponds to the

k-th pole of the AR system

(A. 1)

(A.2)

We shall consider a causal, stable and minimum phase linear time-invariant (LTI)

system whose unit impulse response h( n) satisfies the condition

h(n) = 0, for n < 0 (A.3)

The unit impulse response h(n) of the system described in Eqn. (A.l) can be

expressed as
p

h(n) = L Ck(Zkt
k=l
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This p-th order relaxed AR system is excited by it sequence of white noise urn)

with distribution N(O, O"~). The response to the white noise input can be ex-

pressed as the convolution of u( n) and h( n). Using convolution summation, the

response xM (n) can be written as

urn) * h(n)
00

L u(m)h(n - m)
m::=-oo

(A.5)

(A.6)

Using causality condition as in Eqn. (A.3) and replacing h(n - m) according to

Eqn. (A.4), Eqn. (A.5) can be written as

xM (n) = to u(m) [~Ck(Zk)n-m]

Thus the proposed signal model for the p-th order AR system is

P n
xM(n) = L L Cku(m) (Zk)n-m (A.7)

k=l m=O

For clear visualization of this model, the matrix representation of Eqn. (A.7) is

given below

(A.S)u(l) ... urn)]
PL Ck [u(O)

k=1

PL Ck [U(O)(Zkt u(1)(Zkrl ... urn -1) urn -1)zk urn)]
k=1

(Zk)n
(zkln-I

Let us now investigate the responses at different instances generated by this

alternate representation of the autoregressive signal. For a first order system, the

output at the first instant, i.e. x('.f (0) can be found from Eqn. (A.S)

1

x('.f(0) = L CkU(O) = C1u(O)
k=1

(A.9)

The subscript 1 is added with xM to indicate the order of the system. It is obvious

that the partial fraction coefficient C1 for a first order AR system, will be always

1. Hence

x~ (0) = u(O) (A.lO)
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As xM(n) is real, the AR system parameters {ai} are real. Hence the complex

poles of the AR system must come in conjugate and the corresponding coefficients

in the partial fraction expansion of the AR system transfer function are also

complex conjugates. However, in case of a second order system the two poles are

either two real poles or a pair of complex conjugate poles. For both the case sum

of partial fraction coefficients is zero. For a second order system, the output at

the first instant, i.e. x~ (0) as found from Eqn. (A.8) is

2

x~ (0) L Cku(O)
k=1

- [CI + C2] u(O)

o X u(O)
o (A.H)

The output at the second instant, i.e. x~ (1), obtained from Eqn. (A.8) is

2

L Ck [U(O)Zk + u(I)]
k::::l

[CIZI + C2Z2] u(O) + [CI + C2] u(l)

[CIZI + C2Z2] u(O) + 0 (A.12)

Let us consider a second order system containing a pair of complex conjugate poles

ZI and Z2, where ZI = 0<1+ )/1 and Z2 = 0<1 - )/1' The corresponding partial

fraction coefficients CI and C2 must be a complex conjugate pair. Evaluating the

.partial fraction coefficients we get,

1

With this CI and C2 we get,

J----
ZI - Z2 2/1

_1_ = -.L =C;
Z2 - ZI 2/1

(A.13)

(A.14)

Using Eqn. (A.14), we can find x~ (1) in Eqn. (A.12) as

x~ (1) = v.(O) (A.15)
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For two real roots PI and P2, C1 = -C2 = 1/(ZI - Z2) = 1/(Pl - P2)' Again the

right hand side of the Eqn. (A.14) will be 1 and as a result, we get xr(1) = u(O).

Let us now analyze a third order system, i.e. p = 3. The system contains

a pair of complex conjugate poles ZI, Z2 and a real pole P3' The corresponding

partial fraction coefficients are C1, C2 and C3. We take ZI = 001 + j"(l and

Z2 = 001 - )"(1. Evaluating the partial fraction coefficients we get,

1
(Z3 - Zl)(Z3 - Z2)

1
{(P3 - (01) - hd {(P3 - (01) + j"(l}

1
(P3 - (01)2 + "(f

1
(Zl - Z2) (Zl - Z3)

1
{j2"(d {(al - P3) + hd
-"(1 - j(a1 - P3)

2"(1 bl+ (001 - P3)2}

(-C3)2"(1 ["(1+ j(a1 - P3)]

C*1

(-C3)2"(1 ["(1 - j(a1 - P3)] (A.16)

As in the case of a second order system, here we also see that the sum of the partial

fraction coefficients is zero. We have also analyzed higher order systems with

different combination of poles and evrywhere we get the same result. Therefore,

we can conclude in general that for an AR system with real xM (n), the sum of

the partial fraction coefficients of the system transfer function is zero, i.e.
PLCi = 0

i=l
(A.17)

For a third order system, the output at the first instant, i.e. xr (0) as found from

Eqn. (A.S) is

3xr (0) = L Cku(O) = 0
k=1

(A. IS)

The output at the second instant, i.e. xr (1), obtained from Eqn. (A.S) is

3

xfj (1) = L:Ck [u(O)Z~ + u(I)]
k=l
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The output at the third instant, i.e. xr (2), obtained from Eqn. (A.8) is

3

x~ (2) = L Ck [u(O)Z~ + u(l)zk + u(2)]
k=1
3 3

- L CkZ~U(O) + L Ckzku(l)
k=1 k=!

3 3

Now we evaluate LCiZi and LCiz; as follows
i=l i=l

~ C.z; - (~~3) [1'1 + j(al - P3)J[a! + htl +

(~~3 ) [')'1- j(al - P3)] [al - hI] + C3P3

(-C3) [2{')'ral - (al - P3hd] + C3P3
21'1

_ (~~3)[2,IP3] + C3P3

o

( ~~3 ) [,1 + j(al - P3)] [al + htl2+

( ~~3) [')'! _ j(al - P3)] [al - hI]2 + C3P~

- (~~3) [2 {ai,! - ,r - 2aiJ'! + 2a!P3II}] + C3P~

C3(ai + Ii - 2a!P3) + C3P~

- C3(P~ - 2aIP3 + ai + I'i)

[( \2+ 2] [(P3-aI)2+I'i]P3 - alII
1 .

Using Eqn. (A.21) and Eqn. (A.19), xr (1) can be found as

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

Similarly using Eqn. (A.21), Eqn. (A.22) and Eqn. (A.20), xr (2) can be found

as

x~ (2) = u(O) (A.24)

.' . "~.'_.
.': .: .~••
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We now compare this signal model with the difference equation of the AR

system given by
p

x(n) = - L akx(n - k) + u(n) (A.25)
k=!

From the difference Eqn. (A.25), we see that x(O) is always u(O). To comment
about the signal model described in Eqn. (A.7), we rewrite the responses that we

have found by using Eqn. (A.7) for the first, second and third order AR systems.

For a first order system,

xi'" (0) = u(O) (A.26)

For a second order system,

x~ (0) - 0

x~ (1) u(O)

For a third order system,

xf (0) 0

xf (1) - 0

xf (2) u(O)

Proceeding in this way, we can write initial responses for a p- th order system

x~(O) 0

x~ (1) 0

x~ (2) 0

x;;" (p - 1) = u(O)

Hence the response obtained from the proposed signal model at the p-th instant

x~ (p - 1) is similar to the response obtained from the first instant of the dif-

ference equation. Therefore, the two models generate the same sequences. It is

to be mentioned that for a p-th order AR system the proposed signal model will

generate (p -1) number of zeros at the beginning and then it generates the same
sequence as that would be generated by the difference equation. Therefore, we

can relate the responses of the two representations as

(A.27)

t:::.... .' f'.•



Appendix B

Derivation of the Damped Cosine
Model

The signal model proposed in Eqn. (3.10) is

p n
xM (n) = L L Cku(m)(zk)n-m

k:::::l m=O
(B. 1)

To derive the general formula for the damped cosine model of autocorrelation

function, let us consider a p-th order relaxed AR system excited by a sequence of

white noise urn) with distribution N(O, a~). The response to the white noise at

different instances are as follows:

C1u(0) + C2u(0) + ... + Cpu(O)

C1 {U(O)ZI + u(l)} + C2 {1L(0)Z2+ u(l)} + .
+Cp {u(O)zp + u(l)}

- C1 {u(O)zr + U(l)ZI + 11.(2)} + C2 {u(O)z~ + u(1)z2 + u(2)} +

... + Cp {u(O)z~ + u(l)zp + u(2)}

xf: (2)

xf: (0)
xf:(l) -

xf: (I) - C1 {u(O)z; + u(l)Z;-1 + ... + u(1 - l)ZI + u(I)} +

C2 {u(O)z~ + u(l)Z~-1 + .,,+ u(1 - 1)z2 + u(I)} +

+Cp {u(O)z~ + u(l)Z~-1 + ' ,,+ u(1 - l)zp + u(I)}

79
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xi: (l + 1) - 01 {1t(O)Z(+1 + 1t(l)z( + + 1t(l)ZI + 1t(l + I)} +
O2 {1t(O)Z~+l+ 1t(l)z~ + + 1t(l)Z2 + 1t(l + I)} +

+Op {1t(O)Z~+1+ 1t(l)z~ + + u.(l)zp + 1t(l + I)}

xi: (l + 2) 01 {1t(0)Z(+2 + 1t(l)z~+l + + 1t(l + l)ZI + 1t(l + 2)} +
O2 {1t(0)Z~+2 + 1t(l)z~+l + + 1t(l + 1)z2 + 1t(l + 2)} +

+Op {1t(0)Z~+2 + 1t(l)z~+l + ... + 1t(l + l)zp + 1t(l + 2)}

xi: (n - 1) 01 {1t(O)Z?-1 + 1t(1)z?-2 + + 1t(n - 2)ZI + 1t(n - I)} +
O2 {1t(O)Z~-1 + 1t(1)z~-2 + + 1t(n - 2h + 1t(n - I)} +

+Op {1t(O)Z;-1 + 1t(1)z;-2 + ... + 1t(n - 2)zp + 1t(n - I)}

xi: (n) - 01 {1t(O)z? + 1t(l)Z?-l + + 1t(n - l)Zl + 1t(n)} +

O2 {1t(O)z~ + 1t(l)Z~-1 + + 1t(n - 2)Z2 + 1t(n)} +

+Op {1t(O)Z; + 1t(l)Z;-l + ... + 1t(n - 2)zp + 1t(n)}

(B.2)

Calculating the autocorrelation function of x~ (n) as in Eqn. (3.4), we obtain

R;;'(l) = ~ [xi: (O)xi: (l) + xi: (l)xi: (l + 1) + ... + xi: (N - 1 - l)xi: (N - 1)]

(B.3)
Next, we evaluate each terms in the autocorrelation function as given in the

following

xi: (O)xi: (l) =
p

L 0; {1t(0)2Z! + 1t(O)1t(l)z!-1 + ... + 1t(O)1t(l)} +
i=l

, .
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p p

L L GiGj {U(WZ; + U(O)U(1)Z;-1 + ... + u(O)u(I)}
i=l j=l,j#i

x{: (1)x{: (l + 1) =
t G2 { U(O)2Z!+2 + u(O)u(1)zj+1 + + u(O)u(1 + l)zi }
i=1 i +u(l)u(O)z!+1 + u(1)2z! + + u(l)u(l + 1) +
t t GG { U(O)2ZiZ;+1 + u(O)u(l)ziz; + + u(O)u(l + l)zi }
i=1 j=I,#i 'J +u(l)u(O)Z;+1 + u(1)2z; + + u(l)u(1 + 1)

x{: (2)x{: (l + 2) =
P { u(0)2zj+4 + u(O)u(1)Z!+3 + + u(O)u(1 + 2)z; }
LG; +u(1)u(O)z!+3 + u(1)2zj+2 + + u(l)u(l + 2)z, +
i=1 +u(2)u(O)zj+2 + u(2)u(1)z!+J + ... + u(2)u(l + 2)

p p { u(0)2z;Z;+2 + u(O)u(l)z;z;+J + + u(O)u(l + 2)z; }
L L GiGj +u(1)u(O)ziz;+2 + 1J(1)2zd+1 + + u(l)u(1 + 2)Zi
'=1 j=I,#' +U(2)U(O)Z;+2 + u(2)u(1)z!+J + + u(2)u(l + 2).

p

LG;
i=l

x{: (/l )x{: (l + /l) =
U(O)2Z!+2~ + u(O)u(1)zj+2~-1 + ... + u(O)u(1 + /l)z;
+u(1)u(O)Z!+2~-1 + u(1)2z!+2/,-2 + ... + u(l)u(1 + /l)Z;-I+

+

p p

L L GiG]
i=1 j=I,#i

+u(lt)u(O)zi+~ + ... + U(/l)2Z! + ... + u(/l)u(l + /l)
U(O)2Z;Z;+/' + u(O)u(l)z;z;+~-1 + ... + u(O)u(1 + /l)z;
+u(l)u(O)z;-IZ;+~ + + u(l)u(l + /l)Z;-I+

(B.4)

Here /l = N-1-1 and theoretically N tends to infinity, i.e. we have to consider a

large number of data points. We know that autocorrelation function is a decaying

function. The rate of decay depends on the magnitude of pole r, Le., on the system

parameters. After few lags I = lZllz « N, autocorrelation function decays to
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negligible values. Thus for significant values of autocorrelation function, it is

sufficient to take I «N. Then tt ~ N, i.e., the value of tt is very large. As the

magnitude of a pole of a stable AR system must be less than one, the value of

z; corresponding to a pole Zi will be very small. In the derivation of the formula

for autocorrelation function we need to consider all the factors discussed above.

Summing all the terms in Eqn. (BA), we get the following result.

p

L c;zj(u(W + 11.(1)2+ ... + U(tt)2) +
i=l

p

L C;zj+2(U(0)2 + 11.(1)2+ ... + 11.(/1- 1)2) +
i=I

p

+L C;z!-l(u(O)u(l) + 11.(1)11.(2)+ ... + u(tt)u(tt + 1)) +
i=l

P

+L C;zj+l (11.(0)11.(1)+ 11.(1)11.(2)+ ... + u(tt - l)u(tt)) +
i=I

p

+L C;z!-2(u(0)u(2) + 11.(1)11.(3)+ ... + u(tt)u(tt + 2)) +
i=l

p

+L C;z!(u(0)u(2) + 11.(1)11.(3)+ ... + u(tt - l)u(tt + 1)) +
i=I

p

+L Ci
2Zj+l(u(1)U(0) + 11.(2)11.(1)+ ... + u(tt)u(tt - 1)) +

i=I
P

+L c;zj+3(u(l)u(0) + 11.(2)11.(1)+ ... + u(tt - l)u(tt - 2)) +
i=l

p

+L C;z!+2(u(2)u(0) + 11.(3)11.(1)+ ... + u(tt)u(tt - 2)) +
i=l

p

+L c;zj+4(u(2)u(0) + 11.(3)11.(1)+ ... + 11.(/1- l)u(tt - 3)) +
i=l

j.
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+L L CiCjZ;(U(W + u(I)2 + ... + u(J.t?) +
i=l j=llJ"ii
p p

+L L CiCjZiZ;+l(U(W + u(I)2 + ... + u(J.t - 1)2) +
i=l j=l,j#i

P

+L L CiCjzlz;+2(u(W + u(I)2 + ... + u(J.t - 2)2) +
i=l j=l,j,ei

p p

+L L CiCjZ;-l(U(O)u(l) + u(l)u(2) + ... + u(J.t)u(J.t + 1)) +
i=l j=l,jf;i
p p

+L L CiCjziz;(u(O)u(l) + u(l)u(2) + ... + u(J.t -1)u(p,)) +
i~l j~l,#i
p p

+L L CiCjZlz;+l(u(O)u(l) + u(l)u(2) + ... + u(J.t - 2)u(J.t - 1)) +
i=l j=l,j#i

p p

+L L CiCjZ;-2(U(O)u(2) + u(l)u(3) + ... + u(J.t)u(J.t + 2)) +
i=l j=l,j:f:i

P p

+L L CiCjZiZ;-1(U(O)u(2) + u(l)u(3) + ... + u(p, - l)u(p, + 1)) +
i~l j~l,j#i
p p

+L L C;Cjzlz;(u(o)u(2) + u(l)u(3) + ... + u(J.t - 2)u(J.t)) +
i=l j=l,j:j:.i

p p

+L L CiCjZ;+l(U(I)u(O) + u(2)u(l) + ... + u(J.t)u(J.t - 1)) +
i=l j=l,jii

P P
+L L CiCjziz;+2(u(l)u(O) + u(2)u(l) + ... + u(p, - l)u(p, - 2)) +

i=l j=l,ii:-i
P P .

+L L CiCjzlz;+3(u(l)u(O) + u(2)u(l) + ... + u(J.t - 2)u(J.t - 3)) +
i=l j=l,j::pi

p p

+L L CiCjZ;+2(U(2)u(O) + u(3)u(l) + ... + u(J.t)u(J.t - 2)) +
i~l j~l,#i
p P

+L L CiCjZiZ;+3(U(2)u(O) + u(3)u(l) + ... + u(p, - l)u(J.t - 3)) +
i=l j=l,ji-i

83
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p p

+ L L CiCjZ[zj+4(u(2)71,(0) + 11,(3)71,(1)+'" +U(j,!- 2)u(j,!- 4)) +
i=l j=1 ,j-j.i

(B,5)

According to the definition given in Eqn, (3.4), autocorrelation function of white
noise input urn) for different lags can be determined,

1
N (u(W + u(1? + '" +U(j,!)2) = Ruu(O) = a~
1
N (u(O)u(l) + u(l)u(2) + '" + u(j,!)u(j,! + 1)) = Ruu(1)
1
N (u(0)u(2) + u(1)u(3) +'" + u(j,!)u(j,! + 2)) = Ruu(2)

(B.6)

Dividing the sum obtained in Eqn, (B,5) by N and using Eqn, (B.6), we get
p

Rxx(l) = L C;Ruu(O)z! (1 + z[ + zt + "')
i=l

p

+ LC[Ruu(1)Z!-1 (1 + z[ + zt +" ,)
i=l
P

+ LC[R,,,,(2)z!-2 (1 +z[ +zt +, ..) +
i=l

p

+ LC[Ruu(1)z!+l (1 +z[ +zt + ...)
i=l
P

+ LC;R",u(2)z!+2 (1 + z; + zt + ...) +
i=l

p p

+ L L CiCjRuu(O)zj (1 + ZiZj + z[z; +, ..)
i=1j=I,j#i
P p

+L L CiCjRuu(1)zj-l(l+zizj+Z[Z;+"-)
i=l j=l,j#i
p P

+ L L CiCjRuu(2)z~-2 (1+ ZiZj + z;z; + ... ) +
i=l j=l,j#i
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p p

+ L L GiGjRuu(1)z;+l (1 + ZiZj+ z~z; + ...)
i::=l j=l,j:j;i

p P
+ L L C;GjRuu(2)z;+2 (1 + ZiZj+ z~z; + ...) +

i=l j=l,j::p.i

(B.7)

The autocorrelation sequence of urn) will certainly contain a peak at I = 0, but

because of its random characteristics, Ruu(I) is expected to decay rapidly toward

zero. Considering Ruu(l) "" 0, for I > 0, Eqn. (B.7) can be written as

p

Rxx(l) = Ruu(O)LGlz!(l+z~+z;+ ... )+
i=l

p p

Ruu(O)L L C;Gjz; (1 + ZiZj+ z~z; + ...)
i=l j=l,j#i

P zl PP zl.

- Ruu(O) LGl _i 2 + Ruu(O)L L GiGj1_ J ..
i=1 1 Zi i=1j=I,#i z,zJ

(B.8)

It is obvious that

pp zl. PP l

L L GiGj J = L L GiGj Zi
i=1j=I,#i 1 - ZiZj i=1j=I,#i 1 - ZiZj

Using Eqn. (B.9) in Eqn. (B.8) we get

(B.9)

(B.IO)

Changing the notations i and j with k and q, respectively, we can rewrite Eqn.

(B.IO) as

(B.ll)
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Therefore, the autocorrelation function of the noise-free AR signal can be written
as

where,

p

Rxx(l) =L 13k(zd
k=1

(B.12)

13 - 2 [Cf t CkCq] (B.13)
k - CJ

u 1- (Zk)2 + q=l,q¥k 1- ZkZq

The coefficient 13kmay be real or complex depending on whether the pole is real

or complex. Let us consider there are gr number of real poles and remaining

(p - gr) or ge number of complex poles. Since x(n) is real, complex pole will

always be accompanied by its complex conjugate pole. Hence the number of pair

of complex conjugate poles is gee = ge/2. As gee cannot be a fraction, for a p-th

order AR system with p being odd, gr must be odd. Separating the terms with
real poles from the terms with complex poles, we can write Eqn. (B.12) as

gc 9c+gr

Rxx(l) = L (3dzkj + L 13kr(Zkr)1
kc=l kr=ge+l

(B.14)

For a pair of complex conjugate poles corresponding (3will also be complex conju-

gate pair. Let us consider the effect of a pair of complex conjugate poles Z1 and Z2,

. where ZI = rlejw" Z2 = rle-jw1 and corresponding (31 = (leN, and 132= (Ie-j<l>,.

(I(rdej(w,IHl) + (I(rde-j(w1l+<I>1l

2(I(rd cos(wil + r/Jtl

- GHrd cos(wil + r/Jtl (B.15)

where G~ = 2(1 is a constant that depends on (31. Hence the sum of terms with
complex poles in Eqn. (B.14) can be expressed as

(B.16)

where Gjo = 2(jo is a constant that depends on 13j,' As in the case of a complex

pole, a real pole can be expressed as Zk = rkejwk where Wk is 0 or 7r and the

corresponding 13k= (kej<l>kwhere r/Jk is also 0 or 7r. Hence the sum of terms with

'-.
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real poles in Eqn. (B.14) can be expressed as

ge+gr

L /3k,(Zkj
kr=ge+1

g,

L /3j,(Zj,)l
;r=l
g,

- L (j,(Tj,)lej(w;.lHj,)
;r=l
g,

- L (j,(Tj.)l cos(wj,l + <Pj.)
jr=l
g,

- L Gj, h,)l cos (Wj, I + <Pj.) (B.17)
jr=l

where Gj, = (j, is a constants that depends on /3j,. Combining Eqn. (B.16) and

Eqn. (B.17), we can write Eqn. (B.l4) as

gee gr

Rxx(l) = L Gj,(TjjCOS(Wj) +<Pj.) + L Gj,h,)lcos(Wj,1 + <Pj.)
je=l jr=l

9

- L Gj(Tj)l cos (wjl + <Pj)
j=1

(B.18)

where Gj is a constant and 9 = gee + 9r = Number of pair of complex conjugate

poles + Number of real poles. Eqn. (B.18) can be further expanded as

9

Rxx(l) = L(Tj)l [Gj cos <Pjcos(wjl) - Gj sin <Pjsin(wjl)j
j=1

9

L(Tj)l [Pj cos(Wjl) - Qj sin(wjl)]
j=1

(B.19)

\

where Pj = Gj cos <Pjand Qj = -Gj sin <Pjare constants that depend on /3j.
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