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ABSTRACT 
 

A method of designing circularly symmetric shaped dual reflector antennas is presented 

in this thesis. The method is used to design shaped Cassegrain and shaped Gregorian 

reflector antennas. The two step design procedure includes a proposed method to define 

shaped dual reflector surfaces, and an optimization algorithm that determines the 

optimum shaped surfaces. The proposed method successfully describes practical shaped 

reflector surface using a small number of parameters compared to other commonly used 

methods found in literature. The reduction of design parameters reduces computational 

complexities. Differential evolution optimization algorithm is used to optimize the 

parameters that define the shaped geometry. Two separate sets of optimizations have 

been performed for each of the dual reflector geometries (Cassegrain and Gregorian). 

The first optimization concentrates on reducing beamwidth by creating uniform 

illumination of the main reflector while keeping main reflector size constant and 

spillover losses to a minimum. The second optimization concentrates on maintaining a 

small beamwidth by creating a uniform illumination over a smaller main reflector while 

keeping spillover losses to a minimum. The design requirements are incorporated into 

the definition of the cost function of the optimization algorithm.  

 

As the optimization requires evaluation of the radiation characteristics of the shaped 

dual reflectors, field analysis is inherent in the design procedure. Field characteristics of 

the feed, the subreflector, and the main reflector are formulated. A corrugated horn 

antenna is designed as the feed antenna and its field characteristics are evaluated using 

standard equations. Uniform theory of diffraction is used for analysis of the field 

scattered from the subreflector on to the main reflector. The field radiated from the main 

reflector is calculated using physical optics method. The beamwidth is computed for the 

shaped and unshaped dual reflectors from corresponding far-field patterns. It is found 

that the shaped reflectors outperform the unshaped reflectors in terms of beamwidth. 

Other performance characteristics of the designed shaped dual reflectors are also found 

to be within satisfactory limits. The obtained values are found to be in good agreement 

with numerical and experimental values reported in literature. 
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CHAPTER 1 

INTRODUCTION 

 

 
1.1 Reflector Antennas 

Antennas are key components of wireless communication systems. An antenna 

transforms an electrical signal to electromagnetic waves that propagate through space 

and can be received by another antenna [1]. For point to point communication, the 

radiated power of the antenna must be concentrated within a narrow angular region. 

Reflector antennas are suitable for such applications [2]. 

 

Reflector antennas are widely used in radars, radio astronomy, satellite communication 

and tracking, remote sensing, deep space communication, microwave and millimeter 

wave communications etc. [1], [3]. The rapid developments in these fields have created 

demands for development of sophisticate reflector antenna configurations. There is also 

a corresponding demand for analytical, numerical and experimental methods of design 

and analysis techniques of such antennas.  

 

The configuration of the reflectors depends heavily on the application. The dual 

reflector antennas are preferred in many applications because they allow convenient 

positioning of the feed antenna near the vertex of the main reflector and positioning of 

other bulky equipments behind the main reflector [3]. Also the feed waveguide length is 

reduced [4]. They also have some significant electromagnetic advantage over single 

reflector systems [5]. Although many dual reflector configurations exist, the circularly 

symmetric dual reflector antennas remain one of the most popular choices for numerous 

applications [1]. 

 

The most common circularly symmetric dual reflector antennas are the Cassegrain 

antenna and the Gregorian antenna. The Cassegrain antenna composes of a 

hyperboloidal subreflector and a paraboloidal main reflector. The Gregorian antenna 

composes of an ellipsoidal subreflector and a paraboloidal main reflector. In both cases, 
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a feed antenna (usually a horn antenna) illuminates the subreflector which in turn 

illuminates the main reflector. The main reflector produces the radiated electric field 

that propagates into space. The radiation performance of the dual reflector antennas 

depend on the radiation characteristics of the feed and the geometrical shapes of the 

main reflector and the subreflector. Modern wireless communication and RADAR 

applications enforce stringent requirements on the far-field characteristics of the 

antenna. For example, satellite communications imposes limitations on maximum 

beamwidth and maximum sidelobe levels of the antenna to avoid interference with 

adjacent satellites [2]. The traditional Cassegrain and Gregorian geometry have fixed 

geometries and offer limited flexibilities to antenna designers. As a result, the maximum 

performance that can be extracted from these antennas is limited by geometrical 

constraints.  

 

1.2 Reflector Shaping 

For high performance applications, the traditional hyperboloid/paraboloidal or 

ellipsoidal/paraboloidal geometry must be changed. Reflector shaping is the method of 

changing the shape of the reflecting surfaces to improve the performance of the antenna. 

Shaped reflector antennas outperform conventional unshaped reflector antennas. 

Reflector shaping allows the designers additional flexibility. The antenna designers have 

independent control over relative position of the reflectors, diameter of the reflectors 

and the curvature of the reflectors when shaped reflectors are used instead of 

conventional reflectors. This makes reflector shaping an essential tool for designing 

high performance reflector antennas.  

 

1.3 Literature Review 

Many methods of designing shaped reflectors are present in literature. One of the first 

major articles related to reflector shaping was published by Galindo in 1964 [6]. 

Galindo’s method required solution of multiple non-linear differential equations. Recent 

work has concentrated on approximating parts the reflector surfaces as conventional 

conic surfaces [7], [8]. These methods simplify the design procedure. Such methods are 

used to design shaped reflectors for many applications where high performance is 

required [1], [9]. The surface expansion based methods for designing shaped reflectors 

is one of the most popular design methods [10]. Rahmat-Samii has published multiple 
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research papers on this area [8], [10]. A more detailed literature review on the design 

and analysis methods of shaped reflectors is given in Chapter 2. 

 

The existing design methods give satisfactory performance for most cases. However, 

each method has its own limitations. The limitations are highlighted in Chapter 2. 

Moreover, most of the methods are computationally demanding. Creating a fast, 

accurate design method of shaped dual reflector antennas that is not computationally 

demanding, remains a challenging problem for antenna engineers.  

 

1.4 Objectives of the Thesis 

The thesis work concentrates on the design methods of circularly symmetric shaped 

dual reflector antennas. Design methods for both shaped Cassegrain and shaped 

Gregorian geometries are covered here. The work consists of derivation of analytical 

expressions and numerical simulations. The numerical simulations are performed using 

computer coding. The obtained results are verified by comparing the results with 

numerical and experimental results found in literature. 

 

The objectives of the thesis are: 

 

i. To propose a method of defining shaped reflector surfaces. The proposed 

method defines the shaped subreflector surfaces as distorted forms of 

conventional hyperboloidal/ellipsoidal subreflector surfaces. The distortion 

is controlled by small number of parameters. So, only a few parameters 

define the shaped subreflector surface. For verification, the method is used to 

define surfaces that represent practical shaped subreflector. The 

corresponding shaped main reflector surface is synthesized from the 

subreflector surface using geometrical optics (GO) method.  

 

ii. To find optimum shaped dual reflector surfaces that satisfy predetermined 

design goals. The optimization process involves finding the optimum value 

of the parameters that define the shaped surfaces. The optimization is 

performed using differential evolution (DE) algorithm. The optimization 

procedure requires formulation of the fields on the subreflector and main 

reflector surfaces. The corrugated horn feed antenna is designed and its 
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radiated field is calculated using standard equations. The fields scattered 

from the subreflector is computed using uniform theory of diffraction 

(UTD). The field radiated from the main reflector is evaluated using physical 

optics (PO).  

 

iii. To evaluate the performance of the designed antennas. Performance 

parameters are calculated to quantify the performance of the designed 

antennas. They results are compared with performance of conventional 

unshaped antennas. 

 

1.5 Organization of the Thesis 

The thesis consists of eight chapters. The chapters cover the design procedure and 

numeric results. 

 

Chapter 1 contains introductory discussion on the reflector antennas and reflector 

shaping. The objectives and outlining of the thesis are presented here.  

 

Chapter 2 gives a brief literature review of existing methods of designing dual reflector 

antennas. The proposed design method is also discussed here. 

 

Chapter 3 contains comprehensive description of defining the shaped geometries using 

the proposed design method. The co-ordinate system, and differential geometry based 

description of the reflectors are provided in this chapter. 

 

Chapter 4 contains the design and characterization of the feed antenna.  

 

Chapter 5 presents the UTD analyses of the fields scattered by the subreflectors. 

 

Chapter 6 includes a brief introduction of differential evolution optimization algorithm. 

The algorithm is used to optimize the shape of the reflectors. Two different sets of 

optimizations are performed with different design goals to design two sets of shaped 

dual reflectors. 
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Chapter 7 presents the formulation of the radiated field from the main reflector using 

PO method. The PO surface currents are defined and evaluated. The PO radiation 

integral is defined in this chapter.  

 

Chapter 8 contains the numerical results and discussion. The far-field radiation patterns 

of the designed antennas are calculated. The Performance parameters are defined and 

calculated. Comparisons of the far-field performance of the unshaped and shaped dual 

reflector antennas are presented in this chapter. 

 

Chapter 9 is the concluding chapter. It contains the summary of the work. The chapter 

also highlights scopes for future work. 



 

 

CHAPTER 2 

EXISTING METHODS AND PROPOSED METHODS OF DESIGN 

AND ANALYSIS OF SHAPED REFLECTORS 

 

 
2.1 Introduction 

Reflector surface shaping is an essential part of designing high performance reflector 

antennas. Efficient designing of such shaped reflector surfaces have been a popular field 

of research work for antenna engineers. The design procedure depends heavily on the 

method of defining the shaped surfaces. The shapes of the surfaces depend on the pre-

determined requirements imposed on the radiated field. These requirements depend on 

the applications of the antenna. A design method takes these requirements as input 

parameters and produces the shaped surface that satisfies these requirements.  

 

To evaluate the performance of a designed antenna, the radiation characteristics of the 

antenna must be analyzed. Accurate evaluation of the radiated field characteristics of the 

antenna is necessary before practical implementation can be done. Exact solutions of 

field values are almost never possible due to the complex geometry of the reflector 

surfaces. However, many numerical methods exist for such calculations. Each method 

has its own advantages and disadvantages.  

 

This chapter starts with brief descriptions of design methods of shaped reflector 

antennas. A short description of the proposed design method is presented next. After 

that, commonly used numerical methods of field analysis of reflector antennas are 

discussed. The chapter concludes with a brief description of the analysis method that 

will be used in this thesis. 

 

2.2 Existing Methods of Designing Shaped Reflectors 

There are several well known general methods of designing shaped reflectors. Most of 

these methods are applicable to both single reflector antennas and dual reflector 

antennas. They also apply to axially symmetric reflectors and offset configuration 
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reflectors. In most cases, the general methods are simplified for specific geometric 

configurations. For example, the geometry of circularly symmetric dual reflector 

antennas allows some simplifications of calculations due to symmetry. So, specialized 

methods have been developed efficient designing of circularly symmetric dual 

reflectors. Some of the widely used methods of shaped reflector design are described 

next, paying special attention to circularly symmetric shaped reflectors. 

 

2.2.1 Differential equation based design methods 

One of the first design methods that was capable of synthesizing shaped reflectors for an 

arbitrary phase and amplitude distribution over the aperture plane was proposed by 

Galindo in 1964 [6]. The method is based on geometrical optics (GO). For an arbitrary 

feed pattern and a required arbitrary aperture distribution, the method formulates a pair 

of non-linear ordinary differential equations. The solutions of these equations give the 

co-ordinate of the points on the reflector surfaces. The method has been successfully 

used to design shaped reflectors [11].  

 

The solutions of the non-linear differential equations are often computationally 

demanding. A computationally less demanding simplified method was presented by Lee 

in 1988 [12]. This method is very similar to Galindo’s method [6]. The difference is 

that, Lee divided the reflector surfaces into small sections and assumed the sections to 

be locally planar. This assumption converted the differential equations to algebraic 

equations, which are much easier to solve.  

 

Other variations of the differential equation based design procedure can be found in 

literature. Although the method gives satisfactory results in many cases, it suffers from 

some limitations. As the method is GO based, and GO algorithm is characterized by 

discrete set of points, it may render a surface that has discontinuities and irregular 

boundary [10]. Also, the GO method gives errors for small sized reflectors. The 

solutions of the differential equations require complex computations. Lee’s method [12] 

introduces errors unless a large number of sections are selected. The overall 

computational complexity is not significantly reduced in that case. For these reasons, 

this method is not commonly used any more. 
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2.2.2 Surface expansion based design methods 

In surface expansion based methods, the reflector surfaces are represented by an 

expansion set of orthogonal basis functions [13]. The expansion coefficients determine 

the shape of the surface. A small number of terms of the expansion set are sufficient to 

accurately describe a shaped surface. So, only a few expansion coefficients must be 

determined to define the surface. The differential equation based methods determines 

the co-ordinates of the points on the reflector surfaces, where as, the surface expansion 

based method only determines the expansion coefficients. Due to the decrease in 

number of unknowns, the surface expansion method is computationally less demanding. 

The surface expansion method can be incorporated with geometrical theory of 

diffraction (GTD) or its uniform version: uniform theory of diffraction (UTD) to 

produce an accurate design algorithm [10]. These design procedures are known as 

diffraction synthesis [10], [13]. 

 

Diffraction synthesis can be implemented using variety of expansion functions. One of 

the most popular is the Fourier-Jacobi expansion function [13], [14]. It has been widely 

used for reflector antenna design for various applications [9].  

 

This method is more efficient than the differential equation based approach. One of the 

advantages of this method is that different optimization algorithms can easily be 

incorporated in it [9]. The numerical analysis methods like physical optics (PO) can also 

be evaluated efficiently when the surface is expanded by orthogonal functions [14]. 

However, the method has some limitations. For large number of expansion coefficients, 

the optimization process is slow to converge. If the method is used with PO, the 

computational time can be very high due to the radiation integral which must be 

evaluated many times for a single iteration. Despite these drawbacks, the method is very 

popular and successful in most cases. 

 

2.2.3 Local surface approximation methods 

Recently, a few new efficient methods for designing circularly symmetric shaped dual 

reflector design have been developed. One of the first significant works on this method 

was reported by Kim and Lee in 2009 [7]. This method divides the shaped reflector 

surfaces into electrically small sections. Each section is assumed to be a conventional 

unshaped dual reflector system. Since well established methods for analyzing 
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conventional dual reflector system exist, the radiation characteristics of each section can 

easily be evaluated. The shaped surface is defined by combining all the local 

conventional surfaces. The method is GO based and requires solutions of several non-

linear algebraic equations. So, it is computationally convenient. 

 

Another method based on the same principle was proposed by Moreira and Bergmann 

in 2011 [8]. This method also divides the shaped surface into small local sections. The 

local sections are represented by unshaped conics. Each conic section is optimized to 

produce a desired aperture distribution, which is formulated by GO method.  

 

As these methods have recently appeared in literature, most of the advantages and 

drawbacks of the method have not been investigated. Reduction in computational 

complexity is an obvious advantage. However, as the local sections are formulated 

independently, when the entire surface is formed by concatenating these sections, it may 

result in an irregular or discontinuous surface.  

 

2.3 Proposed Design Method 

The method proposed in this work, is applicable for only circularly symmetric 

reflectors. The design procedure for dual reflector antennas are presented in this thesis, 

but the method can easily be used for single reflector antennas.  

 

In this method, the shaped surfaces are assumed to be distorted forms of unshaped 

surfaces. As most shaped reflectors resemble their unshaped counterparts [8], [11], the 

assumption is logical. So, it is expected that the shaped surfaces can be represented by 

modified versions of the equations that represent the conventional unshaped surfaces. 

 

An unshaped reflector surface which is circularly symmetric around the z axis can be 

represented by the equation: 

( , )surfz f x y  .      (2.1) 

Here, fsurf(.) is a function that depends on the surface shape. The unshaped reflecting 

surface can be a hyperboloid/ellipsoid (subreflector) or paraboloid (main reflector). The 

proposed method modified (2.1) to represent the shaped surface: 

( , ) ( , )surfz f x y x y   .          (2.2) 
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Here, δ(.) is defined as the distortion function. The distortion function has multiple 

parameters that determine the nature of the function. By adjusting these parameters, any 

required shape surface can be synthesized. The form of the distortion function depends 

on the nature of the surface. A general expression of δ(.) for circularly symmetric 

reflectors is given in Chapter 3.  

 

The proposed design method defines the subreflector surface with (2.2). The main 

reflector is synthesized using GO method. Differential evolution (DE) optimization 

algorithm [15] is used to find the optimum parameters of δ(.) for desired results. The 

scattered fields are numerically evaluated using methods that will be discussed in the 

following Sections. 

 

The method is used to synthesize shaped hyperboloidal and shaped ellipsoidal surfaces. 

It is shown in Chapter 3 that the method successfully defined practical shaped surfaces. 

The performances of the shaped surfaces defined by this method are evaluated in the 

following chapters. 

 

Although the work is limited to circularly symmetric cases, by choosing appropriate 

distortion function, the proposed method is expected to applicable for other cases as 

well. 

 

2.4 Common Numerical Methods of Reflector Antenna Analysis 

Most electromagnetic problems are complex in nature and closed form solutions of 

fields are rarely possible. So, numerical methods are necessary. There are many accurate 

numerical methods for antenna analysis. But not all these methods can be efficiently 

used for reflector antenna analysis. For example, finite element (FEM) method and 

finite difference time domain (FDTD) method are not suitable for reflector antenna 

analysis due to the large size of the reflecting surfaces compared to the wavelength of 

radiation. Method of moments (MoM) is another method which is impossible to use 

economically for reflectors larger than a few wavelengths [1]. The commonly used 

methods are geometrical optics (GO), geometrical theory of diffraction (GTD) and 

uniform theory of diffraction (UTD), physical optics (PO), equivalent current method 

(ECM) and aperture field (AF) method. These methods are more suitable for analysis of 

reflector antennas. Short descriptions of these methods are provided next. 
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2.4.1 GO method 

GO method is the most commonly used methods for reflector analysis. The method is 

easy to implement and it is computationally convenient. The reflected field at an 

observation point is assumed to be dominantly depended on the incident field on a small 

area of the reflecting surface [16]. So, field values over the entire reflecting surface are 

not necessary for the calculation of reflected field at an observation region. The 

assumption that reflection is a local phenomenon dramatically reduces computational 

complexity. This makes it one of the most popular methods for reflector analysis [12], 

[16]. However, the method has some limitations. It ignores the fields diffracted from the 

edge of the reflecting surfaces. As a result, the method predicts zero field values at 

shadow regions, which is inaccurate. This results in discontinuous fields. It also reduces 

the accuracy of the results in other regions. GO also fails in caustic regions [16]. It still 

remains a popular choice analysis of single or dual reflector antennas. 

 

2.4.2 GTD and UTD methods 

The inability of GO method to account for the diffracted fields led to the development 

of GTD. The first GTD method was developed by Keller in the 1950s. A list of earlier 

works on GTD can be found in [16]. The method added diffracted field terms along 

with the reflected field terms of GO. The earlier GTD methods suffered from the 

problem that the fields became singular in shadow regions. UTD is the uniform version 

of GTD. It solved the singular field problem by introducing a transition function [16]. 

GTD and UTD are much more accurate compared to GO and it has been widely used in 

various types of reflector analysis [11], [17]. However, UTD fails in caustic regions like 

GO. The diffraction coefficient calculations increase computational complexity. The 

method remains popular because it gives more accurate results compared to GO, and 

requires less computation compared to PO and other methods which involve the 

radiation integral [18]. 

 

2.4.3 PO method 

The PO method formulates radiated field by performing integration of the currents over 

entire reflecting surface. The exact integral (without approximations) is used to 

formulate the fields. But the currents used in the integral are not exact. The currents are 

approximated from the field incident on the reflecting surface. These currents are often 

referred to as PO currents [1]. Although these currents do not accurately describe the 
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actual currents on the reflecting surfaces, they represent the actual currents closely. 

Therefore, the results from the integral are sufficiently accurate for many applications. 

One of the main problems of the PO method is that the radiation integration must be 

performed for every observation point [4]. The integration is carried out over the entire 

reflecting surface. As the integration must be repeated for every observation point, the 

PO method becomes extremely computationally demanding. Some works have been 

done to for finding efficient way to evaluate the radiation integral and make the method 

faster [14]. Despite the complexities, PO is used in many cases where accurate results 

are needed [19]. 

 

2.4.4 ECM, AF  and other methods 

ECM method uses the concept of fictitious current over the reflecting surface to 

formulate scattered fields [16]. The method has been successfully used to formulate 

fields near the caustic regions where UTD fails [18]. Another useful method is the AF 

method. It calculates the tangential field component at hypothetical aperture plane in 

front of the reflecting surface using GO/UTD techniques. The far-field at an arbitrary 

observation point is obtained using equivalence theorem [1].  

 

There are a few other methods that are sometimes used for reflector antenna analysis. 

Physical theory of diffraction (PTD) is a modified version of PO that is more accurate. 

All of these methods have their own advantages and disadvantages. A summary of the 

relative performance of the methods can be found in [18]. 

 

2.5 Numerical Methods Used 

In this thesis, a combination of the methods described in the previous section will be 

used. Any many cases, using a combination of two methods is more computationally 

efficient than using a single method [19]. For the dual reflector systems discussed in this 

thesis, the fields from the feed are first reflected by the subreflector and then those fields 

are reflected by the main reflector. For calculation of fields scattered by the subreflector, 

UTD method is used. For calculations of field from the main reflector, PO method is 

used. The combination of the two methods is termed as UTD/PO method. 

 

A common method of dual reflector analysis is GO/PO [19]. The UTD/PO method used 

in this work is expected to be more accurate as UTD is more accurate than GO. The 
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fields scattered by the subreflector cover a large angular region. Applying PO method 

over this large region is not efficient. For this reason, PO is rarely used on subreflectors. 

GO or UTD methods are more suitable for these cases. During the optimization process, 

GO is used to approximate the subreflector scattered field as it requires less processing 

time compared to UTD. But for final subreflector scattered field calculations, UTD is 

used. On the other hand, the field reflected by the main reflector usually spans a small 

angular region near the axis of the reflector. PO is very suitable for such cases as it 

gives very accurate for small angular regions near the axis. This region covers the main 

lobe of the antenna along with the significant sidelobes. The small observation region of 

interest also implies that the PO radiation integral will have to be evaluated at a 

relatively small number of points. For these reasons, UTD/PO method is selected as the 

analysis method for this thesis. 

 

2.6 Conclusion 

Brief discussions of several design and analysis methods of reflector antennas have been 

discussed in this chapter. A method of designing shaped reflector surfaces has been 

proposed. An efficient hybrid UTD/PO method is chosen for numerical analysis of 

scattered fields. The design method along with the numerical analysis will be covered in 

the following chapters. 



 

 

CHAPTER 3 

GEOMETRY OF THE SHAPED REFLECTORS 

 

 
3.1 Introduction 

The radiation characteristics of a shaped dual reflector antenna system depend on the 

geometrical shape and position of the reflecting surfaces. The size of the reflectors and 

the relative position of the reflectors and the feed antenna are important design 

parameters. The design of the feed antenna is dependent on the geometry. The geometry 

also significantly affects the radiation characteristics of the antenna. The shape of the 

reflector surfaces can be modified from the standard hyperboloid-paraboloid (for 

Cassegrain geometry) or ellipsoid-paraboloid (for Gregorian geometry) to improve the 

radiation performance of the antenna. Optimum shaped dual reflector can outperform 

traditional dual reflector systems in terms of beamwidth, gain, compactness and size 

reduction, aperture efficiency etc.   

 

This chapter starts with a description of dual reflector geometries and the dimension 

parameters used for analysis. After that, a method of defining shaped hyperboloidal and 

shaped ellipsoidal subreflector surfaces is described. Next, verification of the capability 

of this method to accurately describe practical shaped reflector surfaces is presented. It 

is followed by representation of the shaped subreflector surfaces using differential 

geometry. The surface and the normal vector at each point of the surface are defined in 

this section. The co-ordinate system used throughout this thesis is also covered in this 

section. The chapter concludes with the GO based synthesis of the main reflector 

surface and highlighting the difference between the shaped and unshaped surfaces. 

 

3.2 Geometry of the Dual Reflector Systems 

This section presents the geometry of the traditional Cassegrain and Gregorian dual 

reflector systems. The geometry of the shaped dual reflector systems will be very 

similar to these geometries. The position of the feed antenna the reflectors will be 

unchanged. The focus points of the traditional dual reflector geometries are constant, 
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but for shaped reflector systems, the focus points can not be defined easily. Each point 

on the reflector surfaces correspond to different focus points. The shift in focus point of 

the shaped subreflector is compensated by corresponding shift of the focus of the shaped 

main reflector. So, the focus point positions are not very important for analysis. 

Therefore, the basic dual reflector geometry presented here will provide sufficient 

description of both shaped and unshaped reflector systems. 

 

3.2.1 Cassegrain geometry 

The geometry of a Cassegrain dual reflector system is shown in Fig. 3.1.  

 
Fig. 3.1: Geometry of a Cassegrain dual reflector antenna. 

 

The antenna system consists of a feed antenna, a hyperboloidal subreflector and a 

paraboloidal main reflector. The main reflector is often termed as the primary reflector. 

In most cases, a horn is sued as the feed antenna. For this reason, a horn is shown as a 

feed antenna in Fig. 3.1. The hyperboloid has two focus points [20]. One of these focus 

points coincide with the focus of the paraboloid [4], [21]. This point is known as the 

primary focus, Fp [3].  The other focus point coincides with the phase center of the feed 
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antenna [1]. This is known as the secondary focus, Fs [3]. The positioning of the 

reflectors and feeds at these points ensure that an incoming plane wave will be focused 

in phase at the secondary focus (for receiving case). Also, spherical wave front 

generated by the feed antenna will be transformed to a plane wave front (for 

transmitting case).   

 

The following parameters describe the geometry of the Cassegrain system: 

dp = diameter of the main reflector,        
fp = focal length of the main reflector, 
ds = diameter of the subreflector,         
2c = distance between the foci, 
e = c/a = subreflector eccentricity, 
Δp = depth of the paraboloid,           
lp = distance from feed to paraboloid vertex, and, 

,o o   = opening half angle of the main reflector and subreflector respectively. 
 

3.2.2 Gregorian geometry 

The Gregorian dual reflector geometry is shown in Fig. 3.2. 

 
Fig. 3.2: Geometry of a Gregorian dual reflector antenna. 
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The antenna system consists of a feed antenna, an ellipsoidal subreflector and a 

paraboloidal main reflector.  The only difference between the Cassegrain and Gregorian 

geometry is the subreflector shape. The two focus points of the ellipsoid fall on the 

same side of the subreflector surface. In the Cassegrain system, the hyperboloid focus 

points are at opposite sides of the subreflector surface. So, the ellipsoidal subreflector 

has ray caustic at real space compared to the ray caustic of the hyperboloidal 

subreflector which is at virtual space [16]. The geometrical parameters in Fig. 3.2 are 

identical to the ones described in Fig. 3.1 and Section 3.2.1. Therefore, the description is 

not repeated. The eccentricity of the ellipsoid is less than unity, where as it was larger 

than unity for the hyperboloid. 

 

3.3 Dimension Parameters 

The geometries described in Fig. 3.1 and Fig. 3.2 has numerous dimension parameters. 

However, only four independent dimensional parameters are required to be defined [22]. 

The other parameters can be found using geometrical relations found in literature [3], 

[22].  

Table 3.1: Dimensional parameters of the dual reflector geometries. 

Dimensional parameter Cassegrain geometry Gregorian geometry 

Main reflector diameter, dp 10 m 10 m 

Main reflector focal length, fp 5 m  5 m  

Subreflector diameter, ds 1.25 m 0.78 m 

Distance of the feed from main 
reflector vertex, lp 

1 m  2.9072 m 

Distance between the foci, 2c 4 m  2.0928 m 

Depth of the main reflector, Δp 1.25 m 1.25 m 

Eccentricity, e 1.4261 0.7199 

Opening half angle of the main 
reflector, o  53.13° 53.13° 

Opening half angle of the sub-
reflector o  10.037° 9.31° 
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For numerical analysis, a set of typical dimensional parameters are selected. The 

parameters are listed in Table 3.1. The numerical values are taken from Granet’s paper 

[22]. For a main reflector diameter of 10 m, the geometrical parameter values selected 

are standard values used by antenna designers. The operating frequency is taken to be 

14 GHz through out the thesis. 

 

3.4 Defining Shaped Subreflector Surfaces 

A shaped subreflector is no longer hyperboloidal or ellipsoidal. The focus points of such 

shaped subreflectors are not well defined. However, the geometrical features of these 

shaped surfaces are very similar to the geometrical features of unshaped 

hyperboloidal/ellipsoidal surfaces. Due to these similarities, the shaped surfaces can be 

considered as a distorted form of the unshaped surfaces. The method presented in this 

thesis is based on the modifications of the unshaped surface equations to define the 

shaped surfaces. The method of visualizing the shaped surface as perturbed/distorted 

form of unshaped surface has not been reported in literature yet. 

 

The shaping of the subreflector surfaces is significant to extract the best performance 

from the dual reflectors. The shape of main reflector is directly depended on the shape 

of the subreflector. Shaped subreflector surfaces for both shaped Cassegrain and shaped 

Gregorian geometries are discussed in the following sub-sections. 

 

3.4.1 Shaped hyperboloidal subreflector surface 

The Cassegrain geometry uses a hyperboloidal subreflector. The unshaped hyperboloid 

must be defined before the shaped surface can be defined. It is assumed that the feed 

antenna is located at the origin and direction of feed radiation is towards the negative z 

axis. So, the hyperboloid must be located at the negative side of the z axis. One of the 

focuses of the hyperboloid must be at origin so that it coincides with the feed. The 

equation of such a hyperboloidal surface symmetric around the z axis is given by the 

following equation [20]: 
2 2 2

2 2

( ) 1z c x y
a b
 

    .                     (3.1) 

Where, 
2 2 2b c a  .                                               (3.2) 
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The parameters a and c are related to the position of the vertex and focus of the 

hyperboloid as shown in Fig. 3.1 [20]. The parameter ρs is defined as the radius of 

surface point projected on the xy plane. It is related to x and y by: 
2 2 2
s x y     .                                                  (3.3) 

Equation (3.1) can be modified as: 
22

2 2

( ) 1sz c
a b


  ,                              (3.4) 

   2 2
s

az c b
b

     .              (3.5) 

 

For a circularly symmetric shaped subreflector, (3.4) and correspondingly (3.5), needs 

to be modified. A distortion function, δ(.) is introduced in the equations to get the 

shaped surface: 

 
22

2 2

( ) 1s
s

z c
a b


 

   ,          (3.6) 

 2 2
s s

az c b
b

       .                       (3.7) 

 

The distortion function, δ(.) must be a function of ρs to maintain circular symmetry. The 

shape of the surface depends on the expression of δ(.). Through literature review, it is 

found that shaped hyperboloidal subreflectors are usually different from unshaped 

hyperboloids near the edges [11]. The shaped surface curves towards the vertex at the 

edges. An exponential function with arguments containing even powers of ρs can give 

the desired shaped. The following generalized expression of the distortion function is 

developed: 

2

1

( ) exp n

N
n

s n s
n

   


   
 
   .         (3.8) 

The function contains 2N number of parameters denoted by τn and ζn. Here, τn is denoted 

to as the nth amplitude distortion parameter and ζn is denoted to as the nth exponent 

distortion parameter. The parameters together are termed as distortion parameters. For 

high values of N, the control over the curvature of the surface is more precise. But it 

increase the number of parameters required to define the surface. It is found that for 

practical subreflector surfaces, N = 2 is sufficient and only 4 parameters are required to 

define the surface. N = 2 is used through out this thesis. 
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Fig. 3.3: Three dimensional representation of the subreflector surface for  
(a) unshaped hyperboloid, (b) shaped hyperboloid. 
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Fig. 3.4: Multiple shaped hyperboloidal subreflector surfaces defined  
by varying sets of distortion function parameters. 

 
 

An unshaped surface and a shaped surfaces defined by (3.8) along with (3.7) is shown in 

Fig. 3.3. It can be seen that the shaped surface has the desired curvature near the edge. 

The value of the distortion parameters for Fig. 3.3 are: τ1 = –3.8923, ζ1 = 2.0005, τ2 = 

1.0112, and ζ2 = 0.6803. By varying these 4 parameters, almost any desired shaped 

hyperboloid can be defined. Fig. 3.4 shows multiple shaped hyperboloids in the xz plane 

defined by various sets of values of the distortion parameters. It can be observed that, 

the shaped surface can curve in both directions compared to the unshaped surface by 

using appropriate values of the distortion parameters. So, (3.8) along with (3.7) can 

define wide range of shaped hyperboloid surfaces. 

(a) (b) 
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3.4.2 Shaped ellipsoidal subreflector surface 

The shaped ellipsoidal subreflector surface is defined in a similar way as the shaped 

hyperboloidal surface was defined. An unshaped ellipsoid with one focus on the origin 

and symmetric around the z axis can be defined by the following equation [20]: 

 
2 2 2

2 2

( ) 1z c x y
a b
 

   .                     (3.9) 

Where, 
2 2 2b a c  .               (3.10) 

Using (3.3) in (3.9): 
22

2 2

( ) 1sz c
a b


  .      (3.11) 

 

Introducing the distortion function in (3.11): 

 
22

2 2

( ) 1s
s

z c
a b


 

    ,       (3.12) 

 2 2
s s

az c b
b

        .          (3.13) 

It is found that the distortion function defined in (3.8) can be used to define shaped 

ellipsoidal surfaces as well. So, defining another distortion function is not necessary.  

 

Fig. 3.5: Three dimensional representation of the subreflector surface for  
(a) unshaped ellipsoid, (b) shaped ellipsoid. 

 

An unshaped surface and a shaped surfaces defined by (3.13) along with (3.7) is shown 

in Fig. 3.5. It can be seen that the shaped surface curves towards the vertex direction 

(a) (b) 
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near the edges. It is found form literature review that most ellipsoidal shaped 

subreflectors have this characteristic [23]. The value of the distortion parameters for 

Fig. 3.5 are: τ1 = –4.1986, ζ1 = 1.7049, τ2 = 1.0213, and ζ2 = 0.9257.  
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Fig. 3.6: Multiple shaped hyperboloidal subreflector surfaces defined  

by varying sets of distortion function parameters. 
 

By varying the 4 distortion parameters, almost any desired shaped ellipsoid can be 

defined. Fig. 3.6 shows multiple shaped hyperboloids in the xz plane defined by various 

sets of values of the distortion parameters. 

 

3.5 Representing Practical Shaped Subreflector Surfaces 

It is seen that the using the distortion function defined in (3.8), the surfaces represented 

by (3.7) and (3.13) can resemble shaped hyperboloidal/ellipsoidal reflector surfaces. 
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Fig. 3.7: Representation of practical shaped subreflector surfaces: 

(a) shaped hyperboloid, (b) shaped ellipsoid. 
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However, it is necessary to establish that practical shaped subreflector surfaces can be 

accurately represented by these equations. Practical data of a shaped hyperboloidal and 

shaped ellipsoidal subreflector surfaces are taken from literature [11], [23]. The 

dimensions are normalized with respect to subreflector diameter in [11] and with respect 

to wavelength in [23]. Equations (3.7) and (3.13) along with (3.8) are used to find a 

surface that closely resembles these surfaces. By adjusting the distortion parameters, it 

is found that surfaces very close to these can be generated. The results are shown in Fig. 

3.7. It is clear that the unshaped surfaces are very different from the shaped surface in 

both cases. With, τ1 = –3.3363, ζ1 = 0.5706, τ2 = 2.1697, and ζ2 = 0.1951, the sum of 

squares of the error between the defined shaped hyperboloidal surface and the practical 

data of [11] is 3.2 × 10–5. Similarly, with, τ1 = 1.1394, ζ1 = 0.4987, τ2 = –1.4815, and ζ2 

= 0.2126, the sum of squares of the error between the defined shaped ellipsoidal surface 

and the practical data of [23] is 2.3 × 10–2. So, in both cases, the derived equations 

represent the practical shaped surfaces very closely. 

 

3.6 Differential Geometry Based Analysis of Shaped Subreflector Surfaces 

Analysis methods of reflector antennas are often related to differential geometry. 

Specially, the reflected field analysis using GO methods often require formulation using 

differential geometric quantities [16]. Many calculations of PO and UTD require 

differential geometry.  In this Section, using differential geometry, the shaped 

subreflector surfaces and the normal vectors on the surfaces will be defined. 

 

3.6.1 Analysis of the shaped hyperboloidal surface 

The shaped hyperboloidal surface defined by (3.7) can be represented using parameters 

s and s  in differential geometrical form as [16], [24]: 

2 2ˆ ˆ ˆcos sin ( )s s s s s s
ac b
b

             
r x y z   .    (3.14) 

Here, ( , )s s   is the polar co-ordinates of the projection of a surface point on the xy 

plane. The unit normal vector, ˆ sn , is defined by the following equation [25]: 

ˆ s s

s s

 

 

 


 


 


 

s

r r

n
r r

  .              (3.15) 
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Fig. 3.8: Differential geometrical representation of the shaped hyperboloid.  

 

The differential geometrical parameters along with the co-ordinate system are shown in 

Fig. 3.8. The incident ray vector ( ˆis ) and the reflected ray vector ( ˆrs ) are also shown in 

Fig. 3.8. As the unit normal vector is required for many calculations later, (3.15) needs 

to be evaluated. The partial derivates can be calculated from (3.14) using (3.8): 

2

1

2 2

( ) 2
ˆ ˆ ˆcos sin

2 ( )

n

N
n

s s n
n

s s
s s s

a
b b

    
 

   


         
  
 
 

r x y z  ,         (3.16) 

ˆ ˆsin coss s s s
s

   



  


r x y  .           (3.17) 

Substituting these values in (3.15): 

2 2 2 2 2 2

( )cos ( )sin ( )ˆ ˆ ˆ ˆ
( ) ( ) ( ) ( ) ( ) ( )

s s s s H s

s H s s H s s H s

    

     

  
  

        
sn x y z .  (3.18) 

Where, 

2 2( ) 2 ( )H s s sb b      ,         (3.19) 

( ) ( ) ( )s s sa      ,               (3.20) 

2

1

( ) 2n

N
n

s s n
n

    


   
 
 .          (3.21) 
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These equations will be used in the following chapters for field calculations. 

 

3.6.2 Analysis of shaped ellipsoidal surface 

The shaped ellipsoidal surface defined by (3.13) can be represented using parameters 

s and s  in differential geometrical form as [16], [24]: 

2 2ˆ ˆ ˆcos sin ( )s s s s s s
ac b
b

             
r x y z   .    (3.22) 

Here, ( , )s s   is the polar co-ordinates of the projection of a surface point on the xy 

plane. The parameters along with the co-ordinates system is shown in Fig. 3.9. 

 
Fig. 3.9: Differential geometrical representation of the shaped ellipsoid. 

 

The only difference between (3.14) and (3.22) is the sign of the second term inside the 

squire root. The normal vector is still defined by (3.15). The partial derivatives for the 

shaped ellipsoidal surface are calculated to be: 

2
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2 2

( ) 2
ˆ ˆ ˆcos sin
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   


         
  
 
 

r x y z  ,  (3.23) 

ˆ ˆsin coss s s s
s

   



  


r x y  .           (3.24) 
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Using (3.15), the normal vector is found to be: 

2 2 2 2 2 2

( ) cos ( )sin ( )ˆ ˆ ˆ ˆ
( ) ( ) ( ) ( ) ( ) ( )

s s s s E s

s E s s E s s E s

    

     

  
   

        
sn x y z  .  (3.25) 

Where, 

2 2( ) 2 ( )E s s sb b       .    (3.26) 

( )s  and ( )s   are defined by (3.20) and (3.21) respectively. These derived 

equations will be used in the following chapters for field calculations. 

 

3.7 Defining Shaped Main Reflector Surface 

In a dual reflector system, the shape of the main reflector is completely dependent on 

the shape of the subreflector. Once the shape of the subreflector is defined, the main 

reflector must be shaped so that the path lengths of the rays are constant at an 

observation plane perpendicular to the main reflector axis. Using GO methods to 

calculate the incident and reflected ray vectors, the required position of a point on the 

main reflector surface for a given point on the subreflector surface can be formulated. 

 
Fig. 3.10: Synthesis of main reflector surface for a given shaped subreflector. 

 

The geometry of dual reflector system with a shaped hyperboloidal subreflector is 

shown in Fig. 3.10. An observation plane is defined parallel to the xy plane. In the two 
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dimensional diagram of Fig. 3.10, the observation plane is shown as line parallel to x 

axis going through the point (0, 0, zref). For a ray emitted from the feed, the sum of the 

distances d1, d2 and d3 must be constant (k1), irrespective of the position of reflection on 

the subreflector surface. So, 

1 2 3 1d d d k     .                 (3.27) 

The distance k1 can be calculated by considering an axial ray from the feed (along the z 

axis). From Fig. 3.10, for the axial ray, the distance from feed to subreflector is (a+c), 

then the subreflector to main reflector distance is (a+c+lp), and finally the distance from 

main reflector to observation point is (lp – zref), considering zref to be a negative quantity. 

So, k1 is calculated as: 

1 ( ) ( ) ( ) 2( )p p ref p refk a c a c l l z a c l z           .     (3.28) 

The parameter lp can be related to the geometrical parameters of the unshaped 

subreflector, c and the unshaped main reflector fp as seen in Fig. 3.10. 

2p pl f c    .           (3.29) 

Using (3.29) in (3.28): 

1 2( )p refk a c f z      .      (3.30) 

 

The distance d1 is related to the co-ordinates of the subreflector surface point (xs, ys, zs) 

as: 

2 2 2
1 s s sd x y z     .              (3.31) 

The reflected ray from the main reflector is parallel to the z axis. The distance d3 can 

easily be related to the co-ordinates of the main reflector surface point (xm, ym, zm) as: 

3 m refd z z   .             (3.32) 

To calculate distance d2, it is necessary to calculate the reflected ray vector. The unit 

vector in the direction of the reflected ray is found from GO method and is given by 

[16]: 

 ˆ ˆ ˆ ˆ ˆ2  r i s i ss s n s n  .                        (3.33)  

Where,  

ˆ ˆ i
rs r
r

  .        (3.34) 

The vector r is defined by (3.14) or (3.22) and ˆ sn  is defined by (3.18) or (3.25) 

depending on the subreflector shape. Once the unit vector along the reflected ray is 
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formulated, the reflected ray vector, srd defined from the reflection point on the 

subreflector surface can be defined as: 

2ˆ ˆ ˆ ˆs s sd x y z   rd rs s x y z  .          (3.35) 

Equation (3.35) can be reorganized as: 

        2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆs s sd x d y d z        rd r r rs s x x s y y s z z  .  (3.36) 

The components of this vector indicate the co-ordinates of the main reflector [24], [25]. 

So, 

 
 
 

2

2

2

ˆ ˆ

ˆ ˆ

ˆ ˆ

m s

m s

m s

x d x

y d y

z d z

   


   
   

r

r

r

s x

s y

s z

 .      (3.37) 

 

Substituting the value of zm from (3.37) to (3.32): 

 3 2ˆ ˆ s refd d z z   rs z  .        (3.38) 

Now, replacing (3.38) and (3.31) in (3.21): 

    2 2 2
2 1 1 3 2ˆ ˆ2 p ref s s s s refd k d d a c f z x y z d z z             rs z  .  (3.39) 

Solving for d2: 

 
 

2 2 2

2

2
ˆ ˆ1

p s s s sa c f x y z z
d

     


 rs z
 .      (3.40) 

Equation (3.40) can be used to calculate d2 for a given subreflector surface point and it 

can be replaced in (3.37) to calculate corresponding main reflector surface point. Thus 

the derived equations can synthesize the main reflector surface for an arbitrary 

subreflector surface. Although Fig. 3.10 shows the diagram for a shaped hyperboloidal 

subreflector, the derived equations can be used for shaped ellipsoidal subreflector 

surfaces as well. 

 

To verify the method, the main reflectors for an unshaped hyperboloid and an unshaped 

ellipsoid are synthesized. It is known that the main reflector shaped should be an exact 

paraboloid for both these cases. The results are shown in Fig. 3.11. It is found that the 

surfaces are exact paraboloidal surfaces. Thus the method is verified. 

 

 



 29 

-4 -3 -2 -1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z (meter)

x 
(m

et
er

)

-4 -3 -2 -1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z (meter)

x 
(m

et
er

)

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z (meter)

x 
(m

et
er

)

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z (meter)

x 
(m

et
er

)

 
Fig. 3.11: Synthesis of main reflector surfaces for:  

(a) unshaped hyperboloidal subreflector, (b) unshaped ellipsoidal subreflector. 
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Fig. 3.12: Synthesis of main reflector surfaces for: 

(a) shaped hyperboloidal subreflector, (b) unshaped ellipsoidal subreflector. 
 

The main reflector surfaces for a shaped hyperboloidal subreflector and a shaped 

ellipsoidal subreflector are synthesized using (3.37) and (3.40).  The results are shown 

in Fig. 3.12. The shaped hyperboloidal subreflector surface used here, is defined by the 

parameters shown in Table 3.1 with the subreflector diameter extended to 1.7 m and the 

distortion parameter set: τ1 = –3.3928, ζ1 = 1.7212, τ2 = 2.5015, and ζ2 = 0.7184. 

Similarly, the shaped ellipsoidal subreflector surface used here, is defined by the 

parameters shown in Table 3.1 with the subreflector diameter extended to 0.98 m and 

the distortion parameter set: τ1 = –3.7836, ζ1 = 1.6870, τ2 = 1.2241, and ζ2 = 0.6001. The 

significance of the used distortion parameter set will be explained in following chapters. 

Although, the results for only one pair of shaped surfaces are shown here, the main 

reflector synthesis method described here is general. 

(a) (b) 

(a) (b) 
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Fig. 3.13: Difference of surface depth of the shaped main reflector compared to 

unshaped main reflector for: (a) shaped Cassegrain geometry, 
(b) shaped Gregorian geometry. 

 

The difference between the shaped main reflector surfaces shown in Fig. 3.12 and the 

unshaped main reflector surfaces shown in Fig. 3.11 is not noticeable in Fig. 3.12 and 

Fig. 3.11. This is because of the fact that, the distortion of the main reflector surface is 

very small. The difference in unshaped main reflector surface and shaped main reflector 

surface is shown in Fig. 3.13. It shows the xy plane view of the main reflector surface. 

The shadings in the contour plot indicate the difference of the surface depths (difference 

of z values) of the shaped main reflector compared to the unshaped main reflector. The 

depth difference is mostly positive for the shaped Cassegrain system, implying that the 

shaped main reflector curves towards the positive z axis more compared to the unshaped 

main reflector. The depth difference is negative for the shaped Gregorian system, 

implying that the shaped main reflector curves towards the negative z axis more 

compared to the unshaped main reflector. In both cases, the depth difference high 

towards the edge of the main reflector. This is expected as the shaped subreflector also 

differs from the unshaped subreflector towards the edge region.  

 

3.8 Conclusion 

In this chapter, a method of defining shaped subreflector surfaces has been presented. 

Important geometrical parameters have been defined. Also, the method of synthesizing 

shaped main reflector surface for a given shaped subreflector has been discussed. The 

geometries defined in this chapter will be used in the following chapters for field 

calculations. 

 

(a) (b) 



 

 

CHAPTER 4 

FEED ANTENNA DESIGN 

 

 
4.1 Introduction 

One of the most important parts of a reflector antenna system is the feed antenna. A feed 

antenna supplies energy to (or receives energy from) the reflectors. For this reason, feed 

antennas are often referred to as primary feed and the reflectors are referred to as the 

secondary antenna. For the same reason, the radiation pattern of the feed antenna is 

known as the primary pattern and the radiation pattern of the composite reflector 

system is known as the secondary pattern [5]. Most of the radiation characteristics of 

the secondary antenna depend on the characteristics of the feed antenna. The proper 

choice of feed antenna is determined by the application of the secondary antenna. The 

design procedure of the feed antenna takes into account the frequency band of 

operation, the geometry of the reflectors, and other radiation parameters. 

 

This chapter starts with a discussion on desired characteristics of a feed antenna 

followed by brief description of different types of feed antennas. After that, the design 

requirements are discussed. A conical corrugated horn is found to be a suitable feed 

antenna as it meets all the design criteria. The geometry of the corrugated horn antenna 

is described. The dimensions of the horn and the corrugations are designed for optimum 

performance for Ku band frequencies. The chapter concludes with the calculation and 

analysis of radiation characteristics of the horn antenna. 

 

4.2 Desired Characteristics of Feed Antennas 

An antenna must have a set of specific radiation characteristics to be used as a feed 

antenna. The radiation parameters of the feed antenna must be within specific range for 

practical applications. The desired range of these parameters depends on the application 

of the antenna. A properly designed feed will have optimum values of these parameters 

which will increases the overall performance of the reflector antenna. For optimum 

design, it is necessary to know the important radiation parameters and the desired range 
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of their values. A brief description on the desired characteristics of a feed antenna is 

provided next. 

 

4.2.1 Radiation pattern 

An axially symmetric radiation pattern is usually desired for a feed antenna. A 

symmetric primary pattern can produce a symmetric secondary pattern. In a dual 

reflector system, the feed antenna illuminates the subreflector. The feed antenna pattern 

should be such that the entire subreflector surface is illuminated by the main lobe. The 

ratio of the field strength at the edge of the illuminated surface to the maximum field 

strength on the illuminated surface is known as edge taper [2]. The edge taper of the 

main reflector depends on the edge taper of the subreflector. The edge taper of the 

subreflector depends on the radiation pattern of the feed. The edge taper of the main 

reflector is related to the beamwidth and sidelobe levels of the secondary pattern [3]. 

High value of edge taper gives high gain, but it also increases spillover loss. Typical 

value of main reflector edge taper is around –12 dB [2]. The radiation pattern of the feed 

antenna must be such that it provides the desired taper. As the position of the edge of 

the subreflector is depended on the geometry of the reflector system, the geometry must 

be knows before designing the feed. For a –12 dB edge taper, the –12 dB beamwidth of 

the feed antenna must be equal to twice the opening-half angle (or half-subtended angle) 

of the subreflector.        

 

4.2.2 S11 parameter 

The reflection coefficient of an antenna is known as the S11 parameter. The S11 

parameter of a feed antenna indicates how much power is transmitted towards the 

reflectors and how much power is reflected back due to the mismatch between the 

medium and the feed antenna. Low value of S11 parameter is desirable. For satellite 

ground station reflector antennas, feed reflection coefficient value below –17.7 dB is 

desirable [2]. S11 parameter is a function of operating frequency. So, it is necessary for 

feed antenna to have low S11 parameter value throughout the entire operating frequency 

band. Well designed microstrip feeds can have very low values of S11 parameter [26]. 

 

4.2.3 Polarization 

Electric field radiated by an antenna can be either linearly polarized or circularly 

polarized. For both cases, the electric field can be separated into two components: the 
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desired polarization or the copolarized component and the usually undesired cross-polar 

component [2]. These components are orthogonal to each other. Copolar and cross-polar 

field components can be calculated from the expression of radiated electric field of the 

antenna using Ludwig’s definition of cross-polarization [27]. Cross-polarization 

becomes important when two orthogonal polarizations are used to transmit two different 

communication channels at the same frequency. Frequency reuse by using dual 

polarization effectively doubles the bandwidth of the antenna. If an antenna suffers from 

high cross polarization, then it will have significant power in both polarizations. In such 

cases, the orthogonal polarizations will interfere with each other resulting in a very low 

signal to interference ratio (SIR).  The high interference level will make the antenna 

unsuitable for practical communication systems.  

 

Feed antennas are often used in reflector antennas used in communication systems. In 

such cases, orthogonal polarizations are used to create two communication channels 

having the same frequency. So, the feed antenna must have low cross-polarization level 

to create sufficient isolation between the two channels.   

 

4.2.4 Bandwidth 

The bandwidth of an antenna is defined as the frequency range over which the 

performance of the antenna is satisfactory [2]. The parameter most commonly used to 

measure the antenna performance is reflection coefficient (S11 parameter). Other 

parameters like: beamwidth, gain, cross-polarization level etc. can also be used to 

calculate bandwidth. In practical cases, effective bandwidth of an antenna is defined as 

the frequency range over which all the desired parameters have acceptable values.  Feed 

antennas used in communication systems must have bandwidth greater or equal to the 

bandwidth of the communication channels.  

 

4.3 Different Types of Feed Antennas 

There are many different types of feed antennas. Small dipoles, open-ended 

waveguides, horn antennas, microstrip patches, arrays, traveling wave antennas etc. are 

used as feed antennas [2]. Each of these types of feed antennas has certain qualities 

which makes them suitable for specific applications. A brief description of commonly 

used feed antennas for reflector antenna system is presented next. 
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4.3.1 Horn antennas 

Horn antennas are the most commonly used feed antennas. Their simple geometry, and 

directive radiation characteristics makes them suitable as feeds of reflector antennas. 

Horn antennas of various geometries exist. Horn antennas can be pyramidal or conical 

in shape. The profile of the flare section of the horn can be linear, Gaussian or other 

curved shaped. Horns can also be dielectric filled or hollow. The inside walls of a horn 

antenna can be smooth or corrugated. The most common horn antennas are the smooth-

walled pyramidal horn and the smooth-walled conical horn. But these horns usually do 

not have axially symmetric radiation pattern [2], which is a desired characteristic of feed 

antennas. Potter horns use discontinuities or steps to excite higher order modes, which 

improve the radiation characteristics and produce a more symmetric pattern [1]. Conical 

corrugated horns have corrugated inner surface which creates hybrid modes [1]. This 

creates symmetric radiation pattern and low cross polarization level. For these reason 

Potter horns and corrugated horns are often used as feed antennas.  

 

4.3.2 Microstrip feeds 

Microstrip patch antennas can be used in feed applications.  Microstrip arrays are often 

used as feeds instead of single microstrip patch. The main advantage of microstrip 

antennas is that it can be easily integrated to electronics. Unlike a horn antenna, the 

radiation pattern of a microstrip array can be electronically controlled to create a phased 

array. A reflector antenna with a phased array feed in known as Hybrid Antenna (HA) 

[26]. Such antennas have high gain and also provide beam scanning capability, which 

makes it suitable for RADAR applications. The excitation of the array elements can be 

controlled to provide any type of illumination for the reflectors. This gives control over 

the gain and sidelobe level of the secondary pattern. Microstrip antennas also have 

smaller size and lower weight compared to a horn antenna.  

 

Microstrip antennas are more difficult to fabricate compared to horn antennas. Creating 

a phased array feed with microstrip patches require expensive electronic circuits and 

instruments. Microstrip antennas usually have asymmetric pattern and have high cross 

polarization levels [2].  In most communication applications, horn antennas are a better 

choice compared to microstrip antennas as feed antennas. Microstrip feed is suitable in 

applications where the primary feed pattern needs to be changed, or very specific 

illumination of the reflector surface is required.  
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4.4 Design Requirements and Selection of Feed Antenna Type 

The design requirements and the subsequent selection of feed antenna type depend on 

the application of the overall antenna system. The dual reflector antennas presented in 

this thesis is designed for communication system application. Communication antennas 

used for satellite ground station or deep space communication has similar set of design 

requirements. Dynamic primary radiation pattern is usually not necessary for such 

applications. So, horn antennas are preferred as feed antennas over microstrip patches. 

As communication systems require low reflection coefficient and low cross-polarization 

level, conical corrugated horn antenna with linear flare is selected as the desired feed 

antenna type. Also, the geometry of the Cassegrain and Gregorian dual reflector 

requires –12 dB beamwidth of the feed to be 10.04° and 9.28° respectively, for a –12 dB 

edge taper at the subreflector surface. 

 

4.5 Conical Corrugated Horn Antenna 

The conical corrugated horns must be designed based on the frequency of operation and 

reflector geometry. Since both Cassegrain and Gregorian dual reflector systems are 

discussed in this thesis, corrugated horn feeds for both geometries is designed. Both 

horns are designed for Ku-band frequencies. The geometry, field characteristics and 

design parameters of the corrugated horns are discussed in the following sections. 

 

4.5.1 Geometry of the conical corrugated horn 

A cross sectional view of a conical corrugated horn is shown in Fig. 4.1. Here, aH is the 

aperture radius of the horn, aW is the radius of the feed waveguide, LH is the length of 

the horn, LHf  is the length of the horn flare section, and θHf is the semi-flare angle of the 

horn.  As the horn is rotationally symmetric, the two dimensional view of Fig. 4.1 gives 

complete description of the horn geometry.  

 

The inside walls of the flare section of the horn is corrugated. Part of the waveguide 

section may also be corrugated. The corrugated surface can be visualized as a series of 

slots and teeth. A zoomed in view of the corrugated surface is shown in Fig. 4.1. Here, 

dn is the depth of the nth corrugation, wn is the width of the nth slot, and tn is the width of 

nth tooth. 
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Fig. 4.1: Geometry of a conical corrugated horn antenna. 

 

4.5.2 Design of the horn 

For design, the Ku-band operating frequency of 14 GHz is selected. First, the corrugated 

surface needs to be defined. Conical corrugated horn antennas with uniform 

corrugations are much simpler to fabricate compared to antennas in which each 

corrugation has different depths and widths. Keeping the corrugation length uniform 

does not significantly hamper the performance of the horn for most applications. The 

corrugation depth is taken to be a quarter of the operating wavelength for optimum 

performance [1]. The tooth width is taken to be 20% of slot width (t = 0.2w), and slot 

width is taken to be 10% of wavelength (w = 0.1λ) [2]. 

 

The aperture radius and the length of the horn are selected based on the required 

beamwidth of the horn. For a given beamwidth, the horn gain can be approximated [21]. 

For the current design problem, the –12 dB beamwidth of 10.04° and 9.28° is required 

for the Cassegrain and the Gregorian geometry respectively. Using simple equations, the 

horn length and aperture radius can be calculated [2]. The waveguide radius is selected 

from the standard Ku-band waveguide sizes. The waveguide radius can be selected 

independently without effecting LH and aH as LfH adjusted (within limits) without 

effecting the horn performance significantly. The geometric parameters are fine tuned 

after performing far-field analysis of the horn. The final design of the feed horns for 

Cassegrain and Gregorian system is given table 4.1.  

2aH 
θHf 

LH 

2aW 

LHf 

tn 

dn 

wn 
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Table Error! No text of specified style in document..1: Design parameters of the feed 
horns. 

Dimension parameter 
Feed horn for the 

Cassegrain geometry 

Feed horn for the 

Gregorian geometry 

Aperture radius, aH 63 mm 69 mm 

Horn length, LH 380 mm 380 mm 

Semi-flare angle, θHf 9.4° 10.3° 

Waveguide radius, aW 15.08 mm 15.08 mm 

Horn flare length, LfH 289 mm 297 mm 

Corrugation depth, dn 5.36 mm 5.36 mm 

Slot width, tn 0.43 mm 0.43 mm 

Tooth width, wn 2.14 mm 2.14 mm 

Number of slots 112 116 

 

The number of slots (or the number of corrugations) is calculated from the tn, wn and 

LfH, assuming that the corrugations only exist in the flare section. The design parameters 

of both horns are similar because of the similarity in the size of the Cassegrain and 

Gregorian geometries considered here. These designs are made for the unshaped 

reflector systems. Slight modifications are needed for shaped reflectors. This happens 

because the beamwidth requirement of the feed changes as the subreflector is shaped. 

But the only the horn aperture radius is required to be modified slightly for such cases. 

The change in radiation performance is negligible for such variations.   

    

4.5.3 Radiation characteristics 

The radiation characteristics of the conical corrugated horn antenna are determined by 

the mode of propagation of electromagnetic waves inside the horn. Corrugated horns 

support hybrid modes.  The hybrid modes are distinguished from the TE and TM modes 

by the non-zero field components in the direction of propagation. The dominant mode in 

a conical corrugated horn antenna is HE11 mode, which is combination of TE11 and 

TM11 modes [1]. The radiation from the horn operating in HE11 mode near balanced 

hybrid conditions can be formulated using aperture field methods.  Radiated fields of 

horn antennas are often expressed in terms spherical field components. For far-field 

region, the spherical components of the radiated electric field for θHf < 35° can be 

approximated as [1] by the following equations: 
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Fig. 4.2: Thee dimensional co-ordinate system showing electric field components. 
 

0( , , ) ( ) cos
jkr

o H
eE r E ka F G w

r   


 ,         (4.1) 

0( , , ) ( )sin
jkr

o H
eE r E ka F G w

r   


  .         (4.2) 

Here, ( , , )r    is the spherical co-ordinates of the observation point, E and E are 

spherical field components as shown in Fig. 4.2. The direction of propagation is 

assumed to be along positive z axis with the horn being located at the origin. G0(w) is 

given by the integration:    

     2
0 0 11 02 0

1( ) exp 2Ha

H H
H

G w J p a J w jk L d
a

          .       (4.3) 

F  and F  are obliquity factors and are given by: 

1 1 cos 1 cos
2

F
k k
            

,                   (4.4) 

1 cos cos
2

F
k k
            

.                     (4.5) 
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E  

θ 

  

r 

P(r, θ, ) 
Observation 
point 

Antenna 
Position 

  θ = 90°  
  = 90° 

  θ = 90° 
  = 0° 

θ = 0° 

  θ = 90° 
  = 270° 
 

θ =180° 
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Here, 
k wave number = 2    (λ = wavelength), 

oE   amplitude of the dominant HE11 mode, 
sinw k   angular co-ordinate, 

   reflection co-efficient at the horn aperture, 
(.)mJ Bessel functions of the first kind & order m, 

11p  1.84118 = first non-vanishing root of 1(.)J  , where, 1(.)J   = first derivative of 1(.)J , 
   variable of integration, and, 
  dominant HE11 mode propagation constant, 

2
2.40481

H

k
ka

 
   

 
 . 

The other symbols used in the equations are horn geometrical parameters discussed in 

section (4.5.1).  The copolarized component (Ecp) and cross-polarized component (Exp) 

of the electric can be computed from Ludwig’s definition of cross-polarization [1], [27]. 

The quantities are given by the matrix equation: 

cos( ) sin( )
sin( ) cos( )

cp o o

xp o o

E E
E E





   
   
      

            
 .             (4.6) 

Where, o is the reference direction which is taken to be 0°. 

The reflection coefficient at the horn aperture can be calculated from the self admittance 

which is given by the equation [1]: 

  
22
0

11 22 20 22

( )5.783 (2 )
( ) 1 2.4048

H

H
H

J ka wk w wy dw
ka w w ka

 
 

 
   .          (4.7) 

The S11 parameter or the reflection coefficient is now given by: 

11
11

11

1
1

yS
y


  


  .                   (4.8) 

Using (4.6) along with (4.1) – (4.5), the copolarized and cross-polarized far-field pattern 

of the design horns are calculated. Г can be assumed negligible for these calculations. 

The results for the designed Cassegrain feed horn and the Gregorian feed horn at 

operating frequency of 14 GHz and 0    plane are shown in Fig. 4.3 and Fig. 4.4. The 

cross-polarized components are normalized with respect to the co-polarized component.  
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Fig. 4.3: Far field radiation pattern at 14 GHz and 0   plane of the conical corrugated 

feed horns for the (a) Cassegrain geometry, (b) Gregorian geometry. 
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Fig. 4.4: Maximum cross-polarization level of the conical corrugated feed horns for the 

(a) Cassegrain geometry, (b) Gregorian geometry. 

 

The corrugated horn has almost completely symmetric radiation pattern. So, the pattern 

at other   planes is almost identical. The angle χ is used as the variable here which is 

exactly the same as θ used in the equations. So, χ = θ in this case. χ is used here to be 

match notations with the dual reflector geometry.  

The 10.04° and 9.28° beamwidth are indicated by a horizontal line on the curves 

respectively. It is seen that the taper at this angle is near –12 dB which is one of the 

design requirements. The cross polarization level is found to be relatively small 

compared to the co-polarized component. In fact, the maximum cross-polarization level 

is below –20 dB through out the entire Ku-band (12 – 18 GHz) for both horns as shown 

in Fig. 4.4. 

(a) (b) 

(a) (b) 
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Fig. 4.5: Edge taper of the conical corrugated feed horns for the  

(a) Cassegrain geometry, (b) Gregorian geometry. 
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Fig. 4.6: S11 parameter of conical corrugated feed horns for the  

(a) Cassegrain geometry, (b) Gregorian geometry. 

 

Although the edge taper has the required value at 14 GHz, it varies with frequency. The 

edge taper variation with frequency is shown in Fig. 4.5. This variation leads to gain and 

sidelobe fluctuations of the secondary pattern with frequency. However, the variations 

are within acceptable limits in this case. The S11 parameters of the horns are calculated 

using (4.7) and (4.8). The results are shown in Fig. 4.6. The reflection coefficient has 

very small values for Ku band frequencies, as expected for corrugated horns. The values 

are below –45 dB, which is very satisfactory for most practical communication system 

applications. 

(a) (b) 

(a) (b) 
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Fig. 4.7: Three dimensional radiation pattern of the designed corrugated feed horn at  
14 GHz for the (a) Cassegrain geometry, (b) Gregorian geometry. 

 

The three dimensional radiation pattern of the horn antennas at 14 GHz are shown in 

Fig. 4.7. As expected, the pattern is found to be highly symmetric. The peak of the 

surface plots indicate z axis and χ = θ = 0°. The horizontal xy plane indicates χ = θ = ± 

π/2 plane. The low sidelobe levels imply that the spillover loss will be small. This 

makes the designed horns ideal to be used as feed antennas. 

 

4.6 Conclusion 

Based on the design requirements, conical corrugated feed horns are selected as the 

optimum feed antenna choice. Two feed horns are designed for the Cassegrain and the 

Gregorian geometry requirements respectively. The radiation characteristics of the 

designed horns are computed. The performance parameters of the feed antenna are 

selected to be beamwidth, edge taper, cross-polarization level and S11 parameter. After 

calculating these quantities, it is found that the performances of the feed horns satisfy all 

the design requirements. Although, the designs are made for unshaped dual reflector 

systems, only slight modifications of the feed antenna geometries are necessary for them 

to be suitable for the shaped reflector systems. The radiation characteristics of the feed 

horns will not change significantly due to these modifications. So, they will have 

characteristics almost identical to the ones described in this chapter. 

 

(a) (b) 



 

 

CHAPTER 5 

SUBREFLECTOR SCATTERED FIELD FORMULATION 

 

 
5.1 Introduction 

The feed antenna illuminates the subreflector is a dual reflector antenna system. Many 

of the radiation characteristics of the antenna system depend on the characteristics of the 

field scattered from the subreflector. Using the field equations of the feed antenna 

described in Chapter 4, the field intensity on the surface of the subreflector can be 

formulated. The scattered field depends on the incident field and the shape of the 

subreflector. The shapes of the subreflector surfaces have been covered in Chapter 3. 

Using these data, the scattered field can be formulated using a suitable numerical 

analysis method. UTD is used for this purpose here. The reasons have been discussed in 

Chapter 2. 

 

This chapter starts with a discussion on the major contributing components of the 

scattered field and concept of ray tubes. After that, the reflected field is formulated 

using GO method. The observation points are defined on the surface of the main 

reflector. Next, the diffracted fields are computed using UTD. Finally, the overall 

scattered field is found from the reflected and the diffracted fields.  

 

5.2 Components of the Scattered Field 

For reflector antennas, the total scattered field from the reflecting surface results mainly 

from reflection and diffraction. The dominant part of the scattered field for majority of 

the observation region is the reflected field. GO method is a universally accepted 

method for reflected field calculations when the reflecting surface is large compared to 

the wavelength of the field [16]. The fields can be expressed as ray optic fields for such 

cases.  

 

The diffracted fields originate from the edges of the reflector surface. These fields 

follow Keller’s law of diffraction [16]. The diffracted fields are dominant near the 
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shadow boundaries. The incident shadow boundary (ISB) is defined as border where the 

incident field can not directly illuminate due to an obstacle. Similarly, the reflection 

shadow boundary (RSB) is defined as border where the reflected field can not directly 

illuminate due to an obstacle. The shadow regions are shown in Fig. 5.1. A flat 

reflecting surface is shown in Fig. 5.1 for convenience. The GO method predicts zero 

field values at the shadow boundaries as no incident or reflected field exist at those 

regions. This discontinuity in field distribution is compensated by the diffracted fields.  

 

 

Fig. 5.1: Incident and reflection shadow boundaries. 

 
The diffracted field has relatively small magnitude in most of the observation angles. 

However, near ISB and RSB, the diffracted field has significant magnitude. So, for 

accurate results, diffracted fields must be accounted for. UTD calculates both reflected 

and diffracted fields to give accurate results. 

 

5.3 Rays Tubes 

The reflected field formulation in UTD method is the same as the formulation in GO 

method. The fields are visualized as ray tubes. The energy is transported through this 

ray tubes in the direction of propagation. The variation of amplitude of the fields within 

the ray tube is determined by the law of conservation of energy [4]. An astigmatic ray 

tube is shown in Fig. 5.2. The direction along the ray is expressed by the variable s. An 

arbitrary reference point is shown in Fig. 5.2, labeled at s = 0. The two curved surfaces 

shown at s = 0 and s = s, represent two surfaces where the phase of the field is constant. 

These surfaces are normal to the direction of rays (direction of propagation). Such 

surfaces are referred to as eikonal [4]. The surfaces are characterized by the curvature at  
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Fig. 5.2: An astigmatic ray tube. 

  

two principal radii of curvatures ρ1 and ρ2, measured on the central or axial ray. The 

field at a point s = s on the ray tube can be calculated from the field at s = 0 using: 

1 2

1 2

( ) (0) exp( )
( )( )

s jks
s s
 

 
 

 
E E   .           (5.1)  

Here, k is the wave number and E is the electric field along the ray tube. 

 

Equation (5.1) gives invalid results at s = –ρ1 or s = –ρ2. These points are called 

caustics [16]. The linear caustic regions are highlighted in Fig. 5.2 as 1-2 line and 3-4 

line. The GO fields fail to give accurate results in caustic regions. This is one of the 

limitations of GO methods. As the UTD uses GO to find reflected fields, it also fails in 

the caustic regions. However, if the observation region does not contain any caustic 

points, the results are sufficiently accurate. 

 

 

5.4 Reflected Field Formulation 

The general expression of GO reflected field at an observation point P is can be 

calculated from the equation [16]: 

 

1 2

1 2

( ) ( ) exp( )
( )( )

r r
r r

r r r r

P Q jks
s s
 

 
 

 r rE E   .      (5.2) 
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Here, ρ1r and ρ2r are the principal radii of curvature of the reflected ray tube, sr is the 

distance of the observation point along the ray, Qr is the point of reflection, Er(P) is the 

reflected electric field at point P, and Er(Qr) is the reflected electric field at point Qr. 

Er(Qr) can be calculated from the field incident at Qr using: 

 

 ˆ ˆ( ) ( ) 2 ( )r r rQ Q Q   r i s i sE E n E n  .      (5.3) 

 Here, ˆ sn  is the normal on the subreflector surface defined in Section 3.6.1 and Section 

3.6.2 of Chapter 3. Ei(Qr) is the incident field at Qr, which can be calculated from the 

feed antenna characteristic equations discussed in Section 4.5.3. The normal vector 

along with the observation points, feed position and point of reflection are shown in Fig. 

5.3. Diagrams for the shaped hyperboloidal and shaped ellipsoidal subreflector are 

shown separately. The observation point, P, is defined on the main reflector surface. 

The main reflector surface points are found from equations derived in Section 3.7. The 

angle χ shown in Fig. 5.3 is related to the polar co-ordinate of Qr. It is required to 

formulate Ei(Qr). 

 

Fig. 5.3: GO vectors used for reflected field formulations: (a) shaped hyperboloidal 
subreflector, (b) shaped ellipsoidal subreflector. 

 
 

The point of reflection Qr must be determined to calculate the fields. The position of Qr 

depends on the position of P and the reflecting surface. It can be determined from the 

law of reflection [16]: 

ˆ ˆ ˆ ˆ   s i s rn s n s  .        (5.4) 

(a) (b) 
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For a given P and Qr, the vectors ˆis and ˆrs  can be calculated from equations derived in 

Section 3.7. The point on the subreflector surface that satisfies (5.4) for a given P, is the 

required Qr for that P. Equation (5.4) is a nonlinear equation, which can be easily solved 

using any suitable numerical methods. For unshaped hyperboloidal or ellipsoidal 

subreflectors, only one Qr is possible for one P location. However, for some shaped 

surfaces, multiple values of Qr is possible for a given P. This must be noted while 

solving (5.4). The length parameter sr is the distance between P and Qr. It can easily be 

calculated from the co-ordinates of the points. 

 

The only parameters of (5.2) that haven’t been formulated yet are ρ1r and ρ2r. There are 

multiple methods of formulating the radii of curvature. A method which is especially 

suitable antenna applications is used here. For an axially symmetric reflecting surfaces 

(like the shaped hyperboloidal or shaped ellipsoidal subreflectors), the radii of curvature 

can be expressed as: 

1 2
s

r r
s

m
M

    .             (5.5)   

Where, 
ˆ

ˆ ˆ
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s s
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s s
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 

 
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r

r r

sr

s s
 .       (5.6)  

The parameter s  and the vector r are defined in Section 3.6.1 and Section 3.6.2.  
 
Using the derived equations, the scattered field from an unshaped hyperboloidal 

subreflector and an unshaped ellipsoidal subreflector is calculated. The results are 

shown in Fig. 5.4. The geometrical parameters used for the analysis is described in 

Chapter 3. From Fig. 5.4, it can be observed that the reflected field falls sharply at the 

RSB. The RSB for the unshaped Cassegrain geometry is 87.1345° and for the unshaped 

Gregorian geometry is 71.532°. The discontinuity of the reflected field past the RSB is 

expected. However, the total scattered field will not be discontinuous, as the diffracted 

field is not discontinuous around RSB. This fact will be shown in the following 

sections.  

 

Although results are shown for unshaped surfaces, general equations of the shaped 

surfaces are used for calculations. Setting the distortion parameter τ1 and τ2 to zero gives  
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Fig. 5.4: Normalized reflected field from the (a) hyperboloidal subreflector,  
(b) ellipsoidal subreflector. 

 
an unshaped surface. The optimum value of the distortion parameters are selected in the 

Chapter 6. The scattered field for the shaped subreflectors will be covered in that 

chapter.   

 

5.5 Diffracted Fields 

Complete formulation of the scattered field requires the formulation of the diffracted 

fields. Diffracted fields originate mostly from the edge of the reflecting surface. In this 

section, diffraction points will be identified. UTD diffraction coefficients, transition and 

function will be calculated. Finally, the overall diffracted field will be formulated. 

 

5.5.1 Diffraction points 

For an axially symmetric reflecting surface with the feed located on the axis at a finite 

distance for the surface, only two single edge-diffracted rays are possible for an 

observation point [28]. The rays emit from the two edges in the xz plane view of the 

subreflector. The edge points are arbitrarily termed as Qep and Qen. The points as Qep 

and Qen along with the diffracted rays are shown in Fig. 5.5 and Fig. 5.6. An incident 

ray at a single point on the reflecting surface results in only one reflected ray; but an 

incident ray on an edge point creates infinite number of diffracted rays which occupy 

Keller’s diffraction cone [16]. However, at an arbitrary observation point, there is only 

one diffracted ray from each diffraction point. So, the total diffracted field at point P is 

the vector summation of the two edge diffracted fields from Qep and Qen. 

 

(a) (b) 
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Fig. 5.5: Edge diffracted rays from point Qep for (a) shaped hyperboloidal subreflector, 
(b) shaped ellipsoidal subreflector. 

 
 

 

Fig. 5.6: Edge diffracted rays from the point Qen for (a) shaped hyperboloidal 
subreflector, (b) shaped ellipsoidal subreflector. 

 

 

5.5.2 UTD edge diffraction coefficients 

Diffracted fields are characterized by diffraction coefficients. The three dimensional 

diffraction coefficients are given by: 

1 2 3 4

1 2 3 4

( )
( )

s

h

D D D D D
D D D D D

    
    

 .     (5.7) 

(a) (b) 

(a) (b) 
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Here, Ds and Dh are the soft and hard diffraction coefficient [28]. The components of the 

diffraction coefficients are given by the following equations: 

 

 1
0

( )exp( 4) cot ( )
22 2 sin

d i
i d i

jD F kL a
nn k

    
  

       
 ,          (5.8) 

 2
0

( )exp( 4) cot ( )
22 2 sin

d i
i d i

jD F kL a
nn k

    
  

       
 ,             (5.9) 

 3
0

( )exp( 4) cot ( )
22 2 sin

d i
rn d i

jD F kL a
nn k

    
  

       
 ,          (5.10) 

 4
0

( )exp( 4) cot ( )
22 2 sin

d i
ro d i

jD F kL a
nn k

    
  

       
 .          (5.11) 

 

The angles i  and d  are angles of the incident and diffracted rays measured from the 

tangent line at the diffraction point. The angles are shown in Fig. 5.7.  

 

 

Fig. 5.7: Diffraction angle defined at the point of diffraction. 

 

Equation (5.8) – (5.14) contains multiple parameters. Each parameter needs to be 

defined.  The angle β0 is the diffraction cone half-angle, which is 90° for the shaped 

circularly symmetric subreflectors having the geometric propertied discussed in Chapter 

3 [16]. The parameter n has a value of 2 when the both faces of the reflecting surface 

have the same curvature [16]. This assumption is made through out this thesis and 

therefore, n = 2 is used. F(.) is the transition function that will be discussed in detail in 

the following Sections.  

 

Li, Lro, and Lrn are distant parameters associated with the incident shadow boundary and 

reflection shadow boundaries. The o and n subscripts refer to the two faces or the 
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reflecting surface. The faces are shown in Fig. 5.8. The labeling of o and n is completely 

arbitrary. The faces can be identical or different as depicted in Fig. 6.8. It is assumed 

throughout this thesis that the two faces are identical. So, the o and n subscripts are 

equivalent.  

 

Fig. 5.8: o face and n face of the reflecting surfaces (identical faces on the left and non-
identical faces on the right). 

 
The distant parameter Li can be expressed by the following equation for a spherical 

incident field wave front: 

2
0sin ( )d i

i
d i

s sL
s s




 .      (5.12) 

sd is the distance from the diffraction point to observation point, and si is the distance 

from the feed antenna to the diffraction point. The distant parameters Lro and Lrn can be 

expressed for discussed case as [16]: 

21 2
0

1 2

( ) sin ( )
( ) ( )
d er d r r

ro rn
er r d r d

s sL L
s s

  


  


 
 

 .         (5.13) 

Where, 

   1

2
0

ˆ ˆ ˆ ˆ21
sin ( )er

i es a





  

  
 

e s i sn n s n
 .               (5.14) 

Here, ˆ en is vector normal to the edge and depends on the shape of the reflecting surfaces 

and the position of the diffraction point [16]. The radii of curvature ρ1r and ρ2r have 

been defined in (5.5). Alternate expressions of these quantities also exist. The term ae is 

the radius of curvature of the reflecting surface at the diffraction point. It can be 

numerically evaluated by taking two points P1(xe, ze) and P2(xe+Δxe, ze + Δxe) close to 

the diffraction point and using the following equation: 

   
 

2 2

1 ˆ ˆcos
e e

e

x z
a 

  


s1 s2n n
 .        (5.15) 

Here, ˆ s1n  and 2ˆ sn  are normals on the surface at P1 and P2. The equation can be derived 

from the definition of radius of curvature [25]. 
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The functions a+(.) and a–(.) are defined as: 

2

2

2( ) 2cos
2

2( ) 2cos
2

n Na

n Na

 

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

       

 .            (5.16) 

Where, N+ and N– are integers that most nearly satisfy: 

2
2

n N
n N
  
  





  
   

  .      (5.17) 

Using (5.7) – (5.17), the diffraction coefficients can be calculated. 

 

5.5.3 The transition function 

Keller’s original GTD became unbounded in the shadow boundaries [16]. The problem 

was solved in UTD by introducing the transition function, F(.), in the diffraction 

coefficients. The transition function used in the UTD diffraction coefficients keep the 

diffracted field value bounded. The transition function is expressed as: 

2( ) 2 exp( ) exp( )
x

F x j x jx ju du


   .       (5.18) 

The integral part of the transition function resembles a Fresnel integral [20]. The 

function can be evaluated numerically. However, if the function can be converted to a 

standard integral, computer routines for evaluating the function will be easier. F(.) can 

be expressed in terms of the incomplete gamma function, Г(.),which is defined as: 

1( , ) exp( )
x

x t t dt


    .         (5.19) 

By reorganizing (5.18) in the form of (5.19), F(.) can be expressed as: 

1( ) exp( ) ,
2

F x jx jx jx   
 

 .            (5.20) 

 

In the ISB and RSB region, the arguments of F(.) in (5.8) – (5.11) have small values. 

The cotangent functions become very large in ISB and RSB region. Therefore, F(.) must 

have small values to compensate the overall value of the diffraction coefficient. In other 

regions, the effect of F(.) should be negligible. The transition function fulfills these 

requirements. It can be observed from the magnitude and phase plot of F(.) as shown in 

Fig.  5.9. 
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Fig. 5.9: Characteristics of the transition function (a) magnitude plot, (b) phase plot. 

 

5.5.4 Diffracted field formulation 

The diffracted fields can be formulated using the following equation: 

 
 

, ,

, ,
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hd d d di e

E E QD
jks

DE s sE Q
 

 




    
              

 .      (5.21) 

Here, , ddE   and , ddE   are the components of the diffracted field expressed in the edge 

fixed co-ordinate system [16]. Similarly, , iiE   and , iiE   are the components of the 

incident field expressed in the edge fixed co-ordinate system and evaluated at the 

diffraction point Qe. Any arbitrary polarized wave can be resolved into edge fixed 

component using: 

   
   
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i i i i i

d d d d d d d

E E β β E

E E β β E
 .             (5.22) 

The edge fixed co-ordinate vectors depend on the geometry of the surface and the 

position of the diffraction point. They can be easily formulated from the set of equations 

provided in [16] and therefore is not repeated here. 

 

The term ρd of (5.21) can be evaluated using: 

 
 

1
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sind

i es a





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  
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 .          (5.23) 

 

Using (5.21) along with the other derived equations, the diffracted field at an 

observation point for a given diffraction point at Qe. The diffracted field for both Qep 

(a) (b) 
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and Qen points are formulated separately and vector sum is performed to find the total 

diffracted field. The diffracted fields for the unshaped hyperboloidal subreflector and  
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Fig. 5.10: Diffracted field for the (a) hyperboloidal subreflector,  
(b) ellipsoidal subreflector. 

 

the unshaped ellipsoidal subreflector are shown in Fig. 5.10. The diffracted fields are 

normalized with respect to the maximum value of the reflected field. It can be observed 

that the diffracted fields have maximum value near the RSB which is located at 

87.1345° for the unshaped Cassegrain geometry and at 71.532° for the unshaped 

Gregorian geometry. The oscillatory nature of the diffracted field is due to the fact that 

it is a vector summation of two edge diffracted rays. The phase mismatch between these 

rays causes the oscillation. Near the RSB, the effect of one edge ray is much larger than 

the other, causing the oscillation amplitude to decrease. 

 

5.6 Total Scattered Field 

The total scattered field is calculated using the vector summation of the reflected and 

scattered field. The incident field component at the observation region is neglected it. 

This is because of the fact that the observation region is defined on the main reflector 

surface. In the dual reflector geometries, the main reflector is located behind the feed 

antenna. Since a horn antenna is used as the feed, the radiated field of the horn at angles 

near 180° from its axis is expected to be very small. So, neglecting the feed field at 

observation region will have no significant affect on accuracy of the results. 

 

The total scattered field can be expressed as: 

 s r dE E E  .            (5.24) 

(a) (b) 
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The reflected field is zero past the RSB, and the total scatted field is the diffracted field 

only. The diffracted field has non-zero values everywhere. The total scattered field for 

the unshaped Cassegrain and Gregorian geometry is shown in Fig. 5.11 and Fig. 5.12. 
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Fig. 5.11: Total scattered field from the unshaped hyperboloidal subreflector. 
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Fig. 5.12: Total scattered field from the unshaped ellipsoidal subreflector. 

 

It can be observed that the total scattered field is continuous through out the observation 

region. Thus the UTD calculation is accurate.  
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Similar calculations will be performed for the shaped geometries. Appropriate values of 

the distortion parameters are required to define the required shaped surfaces. These 

values will be calculated in Chapter 6. The scattered field from the shaped surfaces will 

be discussed in that chapter, after the distortion parameter values are selected. 

 

5.7 Conclusion 

The fields scattered from the subreflector have formulated in this chapter. The reflected 

fields and the diffracted fields are formulated separately. Vector addition is performed 

to find the total scattered field. Numerical results are shown for unshaped hyperboloidal 

and unshaped ellipsoidal subreflectors. The results for the shaped surfaces will be 

discussed in Chapter 6 after optimized subreflector surfaces are defined.  



 

 

CHAPTER 6 

OPTIMIZATION USING DIFFERENTIAL EVOLUTION 

 

 
6.1 Introduction 

Optimization refers to finding values of a set of design parameters that give the best 

possible results. Optimization is a key step for many design problems. For shaped dual 

reflector antennas, the shape of the reflectors must be optimized to satisfy certain design 

requirements. As discussed in Chapter 3, the shapes of the reflector surfaces are 

determined by the value of the distortion parameters. Optimum value of these 

parameters must be determined. The complex relationship between the distortion 

parameters and radiation characteristics of the antenna is not apparent. Due to the lack 

of a direct relation, differentiation based optimization approach can not be easily 

applied. So, a search based optimization algorithm is expected to be suitable to find the 

optimum values of the parameters. Differential evolution (DE) algorithm is used in this 

thesis for optimizing the parameters.  

 

In this chapter, a brief discussing on DE algorithm is given. It is followed by the 

formulation of the cost function for the current problem. Next, two different 

optimization is performed for the shaped Cassegrain geometry for two different goals. 

The performance of the optimized design is compared with that of the unshaped 

geometry. The same steps are repeated for the shaped Gregorian geometry.   

 

6.2 Differential Evolution Algorithm 

DE is a stochastic global optimization algorithm. The algorithm was first proposed by 

Storn and Price in 1997 [15]. Since then, DE has been used successfully in many 

engineering applications including electromagnetics [29], [30].  The algorithm has been 

proven to be highly robust. It also has a fast converging rate. DE is a search based 

approach, and therefore differentiation is not required. Other popular search based 

optimization algorithm includes: genetic algorithm (GA), particle swarm optimization 

(PSO), simulated annealing (SA) etc. These algorithms are well known and they have 
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been used for many applications. Each algorithm has its advantages and disadvantages. 

DE algorithm often outperforms PSO, GA and other algorithms [29]. For this reason, 

DE is used in this thesis. 

 

Since DE algorithm is covered in literature [15], [29], only a brief overview of the 

algorithm is presented here. The terminology used in the algorithm is discussed first. A 

potential solution of the optimization problem is represented by a vector. The 

dimension, D, of the vector is equal to the number of parameters that need to be 

optimized. So, for the reflector shaping problem discussed here, the dimension of the 

vectors will be 4, representing τ1, τ2, ζ1, and ζ2. The algorithm starts with a set of random 

vectors, which are potential solutions of the problem. The set of vectors is known as a 

generation. Each vector of a generation is known as a member of the population. The 

number of population in a generation is known as population size, Np. The optimization 

problem can be evaluated for each population. An objective function must be defined 

that quantifies the quality of the solution of each population. This objective function is 

known as the fitness function or cost function. The fitness/cost function relates the 

problem with the algorithm. If the objective of the optimization algorithm is to 

minimize the objective function, then it is referred to as the cost function. For 

maximization problem, it is known as fitness function. Minimization procedure is 

assumed in this thesis. Therefore, the term cost function will be used from now on. The 

cost function takes a population as an input and gives a single numerical value as 

output. Each member of a population in a generation is associated with its cost value 

evaluated from the cost function. The lower the cost value, the better the population is 

suitable as a solution. The DE algorithm starts with an initial generation, and produces a 

new generation at each iterative step based on the population of the previous generation 

and their cost values. So, each generation represents an iterative step. The number of 

iteration is often limited by maximum generation number, Gmax. After a significant 

number of generations, all the population converges to a single value representing the 

solution of the problem. 

 

The DE algorithm is characterized by a set of equations. Let the ith population of the Gth 

generation be represented by the vector xi,G. It can be expressed as: 
1 2
, , ,

D
i G i G i Gx x x   i,Gx   .           (6.1) 
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Here, i = 1, 2, … Np and G = 1, 2, … Gmax. For, the reflector shaping problem, D = 4, 

representing the 4 distortion parameters. For, each vector, a mutant vector, vi,G+1, is 

generated using: 

 2 3mF   i,G+1 r1,G r ,G r ,Gv x x x  .                 (6.2) 

Here, r1, r2 and r3 are random indexes satisfying: 

 1, 2, 3 1,2,3,

1 2 3
pr r r N

r r r i

 

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
 .             (6.3) 

Fm is known as mutation scale factor. A common value of Fm = 0.9 is used here [29]. 

 

A trial vector, ui,G+1 has the same dimension as the population and can be written as: 
1 2
, 1 , 1 , 1

D
i G i G i Gu u u     i,G+1u   .              (6.4) 

The trial vector is defined as: 

, 1
, 1

,

, if rand or    rand

, if rand and    rand

j
i G j r ij

i G j
i G j r i

v C j
u

x C j




   
 

 .                   (6.5) 

Here, j = 1, 2, …  ,D. The terms randj and randi are random numbers taken from an 

uniform distribution in the range 0 to 1, and they are evaluated every time j and i is 

varied respectively. Cr is the crossover constant. It is limited within 0 to 1. The 

commonly used value Cr = 0.9 is used here. 

 

A new generation is defined from the following equation: 

cost cost

cost cost

, if ( ) ( )
, if ( ) ( )

f f
f f

  

i,G+1 i,G+1 i,G
i,G+1

i,G i,G+1 i,G

u u x
x

x u x
   .            (6.6) 

Here, fcost is the cost function. The first generation is selected randomly using a uniform 

random number generator. The next generations are formulated using (6.6) and 

corresponding equations.  

 

A solution space needs to be defined initially. It defines the region over which optimum 

the values of the parameters will be searched. A valid range of optimized parameters 

can usually be obtained from observation. These values are used to define the solution 

space. To ensure that the algorithm is bounded within the solution space, the trail vector 

defined (6.5) is checked. If it falls outside the range, the vector is re-evaluated.  
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Fig. 6.1: Positions of the population vectors at (a) initial stage, (b) 5th iteration,  
(c) 10th iteration, (d) 20th iteration. 

 

The operation of the DE algorithm can be expressed using a numerical example. The 

two dimensional peaks function is used as the cost function. The function is given by: 

 

 

2 2 2
cos

3 5 2 2 2 2

( , ) 3(1 ) ( 1)

110 ( ) ( 1)
5 3

tf x y x exp x y

x x y xp x y expe x y

    

      
 


 



 .     (6.7) 

The solution space is defined with x = –2.3 to 2.3 and y = –2.3 to 2.3. The population 

size is taken to be 200. The position of the vectors at different iterative step is 

superimposed over the contour plot of the cost function over the solution space in Fig. 

6.1. The positions of the vectors are denoted by black crosses. It can be seen that the 

initial random vectors move towards to minimum cost value regions (denoted by the 

blue region). Within 20 iterations, almost all the population vectors converge to the 

global minima.  

(a) (b) 

(c) (d) 
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A more detailed description of the DE algorithm along with its working principal can be 

found in [29]. 

 

6.3 Cost Function Formulation 

The cost function depends on the objective of the optimization. For the optimizations 

performed in this thesis work, the main objective is to create a shaped dual reflector 

geometry with uniform field distribution over the main reflector and yet have a small 

spillover. Spillover is defined as the power that is scattered by the subreflector which is 

not intercepted by the main reflector. For numeric evaluation, spillover in terms of the 

maximum distance away from the main reflector edge where the reflected field 

component of the total scattered field exists. This region is defined as the spill region, 

xspill.. The uniformity of the field distribution over the main reflector is numerically 

evaluated by computing the edge taper at main reflector. (level of the field at the edge 

of the main reflector compared to the maximum field on the main reflector). The cost 

function is defined as the weighted sum of the edge taper and the spill region. It is 

expressed as: 

 cos 1 2 1 2 ,, , , 10t p dB spillf T x        .      (6.8) 

Here, Tp,dB is the edge taper on the main reflector expressed in dB. The parameter will 

have negative values. For uniform distribution, it will have zero value. So, low values of 

the cost function indicate a good solution of the optimization problem. To evaluate fcost, 

the scattered field of the subreflector must be calculated for a set of distortion parameter 

(τ1 , τ2 , ζ1 and  ζ2) values. 

 

 For each iterative step of the optimization, the cost function must be evaluated for 

every member of the population. Evaluation of the cost function should take as little 

computational time as possible for fast analysis. For this reason, only reflected field 

component is considered when evaluating the cost function. The computational time is 

reduced as the complex calculations of the diffracted fields are avoided. Once the 

optimum data is found, the total scattered field is taken into consideration for increasing 

accuracy.  
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6.4 Optimization of the Shaped Cassegrain Geometry 

Using DE algorithm along with the defined cost function of (6.8), the shaped Cassegrain 

system can be optimized. Two separate optimization process is performed with two sets 

of different design goals. The optimization gives design of two distinct shaped 

Cassegrain reflector systems. The optimization processes are described in the following 

sections. 

 

6.4.1 Optimization 1: uniform illumination over the aperture 

The first optimization process is performed with the objective of creating a shaped dual 

reflector system (of Cassegrain geometry) to create a more uniform field distribution 

over the main reflector compared to the unshaped dual reflector system. Spillover is also 

required to be as less as possible. The cost function defined by (6.8) is used. The 

diameter of the main reflector is kept same for the unshaped and shaped system. The 

entire geometrical parameter set is given in Table 3.1. The parameters of the unshaped 

system are same as the shaped system except for the diameter of the subreflector. 
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Fig. 6.2: Convergence of the distortion parameters during optimization 1  
of the shaped Cassegrain system. 
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The diameter of the subreflector is increased to 1.7 m which was 1.25 m for the 

unshaped case. The additional length of the subreflector is expected to focus more 

energy towards the main reflector and decrease edge taper. The feed horn aperture 

diameter is decreased to 57 mm from 63 mm to provide similar edge taper on the 

extended subreflector. The other dimensions of the horn are the same as described in 

Table 4.1. 

 

The DE algorithm is implemented with parameters Np = 15, Fm = 0.9, Cr = 0.9, and Gmax 

= 200. The solution space is defined by limiting τ1 , τ2 , ζ1 and  ζ2 within (–3.4, –1), (2.5, 

3.4), (1.5, 3.5), and (0.7, 1.3) respectively. The values are obtained from observation of 

multiple trial runs. The convergence of the distortion parameters with iteration is shown 

in Fig. 6.2. It can be seen that the 4 parameters becomes constant at iterations near 200, 

signifying convergence. The initial search of the solution space is depicted by the initial 

variations of the parameters during the first few iteration steps. The convergence can 

also be noted from the cost function values as shown in Fig. 6.3. 
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Fig. 6.3: Cost function value variation with iteration during optimization 1  
of the shaped Cassegrain system. 

 

The cost function value decreases with iteration, as the algorithm finds better solutions. 

Fig. 6.3 is truncated to 50 iterations, as the cost function becomes nearly flat after this 

region. This implies that the improvements in solution qualities after 50 iterations are 

not significantly high. The term average cost is defined as the average of the cost values 
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of the entire population for a given generation (iteration). Minimum cost is defined as 

the lowest cost value found among the population for a given generation. The average 

cost coincides with the minimum cost as the algorithm converges.  

 

The optimized value of distortion parameters is found to be: τ1 = – 3.3928, τ2 = 2.5015, 

ζ1 = 1.7212 and ζ2 = 0.7184. The scattered field from the shaped hyperboloidal 

subreflector is shown in Fig. 6.4. 
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Fig. 6.4: Scattered field from the shaped hyperboloidal subreflector 
 defined from optimization 1. 

 

It can be seen that the total scattered field is very uniform and only tapers near the RSB 

(characterized by the zero value of the reflected field). The overall performance 

characteristics of the scattered field will be discussed in Section 6.6. 

 

6.4.2 Optimization 2: reduction of main reflector size 

The second optimization process concentrates on reducing the main reflector size. The 

goal is to reduce the antenna size without decreasing the gain of the antenna 

significantly. The gain of a reflector antenna is related to its size [21]. Decreasing main 

reflector diameter will decrease the gain, unless the distribution of the field over the 

main reflector has been made more uniform to compensate for the size reduction. The 

optimization process is performed with the objective of creating a shaped dual reflector 

system (of Cassegrain geometry) to create a significantly more uniform field 
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distribution over the main reflector of a smaller size compared to the unshaped dual 

reflector system. Spillover is also required to be as less as possible. The cost function 

defined by (6.8) is again used.  
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Fig. 6.5: Convergence of the distortion parameters during optimization 2  
of the shaped Cassegrain system. 
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Fig. 6.6: Cost function value variation with iteration during optimization 2  
of the shaped Cassegrain system. 
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The diameter of the subreflector is kept same for the unshaped and shaped system. The 

parameters of the unshaped system are same as the shaped system except for the 

diameter of the main reflector. The entire geometrical parameter set is given in Table 

3.1. The main reflector diameter is decreased to 7.5 m from 10 m. The feed horn is kept 

identical. The geometry of the feed horn is defined in Table 4.1. 

 

The DE algorithm is implemented with parameters Np = 15, Fm = 0.9, Cr = 0.9, and Gmax 

= 200. The solution space is defined by limiting τ1 , τ2 , ζ1 and  ζ2 within (–3.9, –2.0), 

(1.0, 2.3), (2.0, 3.5), and (0.2, 1.3) respectively. The solution region is selected based on 

observation from multiple trial runs. The convergence of the distortion parameters with 

iteration is shown in Fig. 6.5. The cost function is shown in Fig. 6.6. The plots have 

typical shapes. 

 

The optimized value of distortion parameters is found to be: τ1 = – 3.8923, τ2 = 1.0112, 

ζ1 = 2.0005 and ζ2 = 0.6803. The scattered field from the shaped hyperboloidal 

subreflector is shown in Fig. 6.7. 
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Fig. 6.7: Scattered field from the shaped hyperboloidal subreflector 
 defined from optimization 2. 

 
It can be observed from Fig. 6.7 that scattered field is very uniform and only tapers near 

the RSB (characterized by the zero value of the reflected field). The distribution is more 

uniform compared to results of optimization 1 as well. This is because of the fact that 
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maintaining uniformity over a smaller aperture is relative easier. The overall 

performance characteristics of the scattered field will be discussed in Section 6.6. 

 

6.5 Optimization of the Shaped Gregorian Geometry 

The shaped Gregorian geometry can be optimized using the same procedure that was 

used for the shaped Cassegrain system. In this case, two separate optimization process is 

performed as well. They optimizations are characterized by two sets of different design 

goals. The optimization gives design of two distinct shaped Gregorian reflector systems. 

The optimization processes are described in the following sections. 

 

6.5.1 Optimization 1: uniform illumination over the aperture 

Like the first optimization process of the Cassegrain geometry, the first optimization 

here is performed with the objective of creating a shaped dual reflector system (of 

Gregorian geometry) to create a more uniform field distribution over the main reflector 

compared to the unshaped dual reflector system while maintaining low spillover. The 

cost function defined by (6.8) is used. The diameter of the main reflector is kept same  
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Fig. 6.8: Convergence of the distortion parameters during optimization 1  
of the shaped Gregorian system. 
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for the unshaped and shaped system. The diameter of the shaped subreflector is taken to 

be 0.98 m whereas the subreflector diameter of the unshaped subreflector is 0.78 m. The  

rest of the geometrical parameters for both shaped and unshaped system are same and 

they are given in Table 3.1. The feed aperture diameter is taken to 65 mm for the shaped 

system and 69 mm for the unshaped system. The other parameters of the horn for both 

systems are identical and are shown in Table 4.1. 
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Fig. 6.9: Cost function value variation with iteration during optimization 1  
of the shaped Gregorian system. 

 

The DE algorithm is implemented with parameters Np = 15, Fm = 0.9, Cr = 0.9, and Gmax 

= 200. The solution space is defined by limiting τ1 , τ2 , ζ1 and  ζ2 within (–3.8, –2.0), 

(1.0, 2.4), (1.5, 2.5), and (0.6, 1.1) respectively. The solution region is selected based on 

observation from multiple trial runs. The convergence of the distortion parameters with 

iteration is shown in Fig. 6.8. The cost function is shown in Fig. 6.9. The plots have 

typical shapes. It is noted that the cost function takes longer to converge for this 

optimization process compared to the optimization processes of the Cassegrain system. 

 

The optimized value of distortion parameters is found to be: τ1 = – 3.7836, τ2 = 1.2241, 

ζ1 = 1.6870 and ζ2 = 0.6001. The scattered field from the shaped ellipsoidal subreflector 

is shown in Fig. 6.10. It can be observed from Fig. 6.10 that scattered field is uniform 

and tapers near the RSB (characterized by the zero value of the reflected field). The 

overall performance characteristics of the scattered field will be discussed in Section 

6.6. 
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Fig. 6.10: Scattered field from the shaped ellipsoidal subreflector 
 defined from optimization 1. 

 
 
6.5.2 Optimization 2: reduction of main reflector size 

The second optimization process of the Gregorian system is similar to the second 

optimization performed for the Cassegrain system. It concentrates on reducing the main 

reflector size. The goal is to reduce the antenna size without decreasing the gain of the 

antenna significantly. The optimization process is performed with the objective of 

creating a shaped dual reflector system (of Gregorian geometry) to create a significantly 

more uniform field distribution over the main reflector of a smaller size compared to the 

unshaped dual reflector system. Spillover is also required to be as less as possible. So, 

the cost function defined by (6.8) is again used. 

 

The diameter of the subreflector is kept same for the unshaped and shaped system. The 

parameters of the unshaped system are same as the shaped system except for the 

diameter of the main reflector. The entire geometrical parameter set is given in Table 

3.1. The main reflector diameter is decreased to 7.5 m from 10 m. The feed horn is kept 

identical. The geometry of the feed horn is defined in Table 4.1. 

 

The DE algorithm is implemented with parameters Np = 15, Fm = 0.9, Cr = 0.9, and Gmax 

= 200. The solution space is defined by limiting τ1 , τ2 , ζ1 and  ζ2 within (–4.2, –2.0), 

(1.0, 2.4), (1.5, 2.5), and (0.6, 1.1) respectively. Like previous cases, the solution region 
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is selected based on observation from multiple trial runs. The convergence of the 

distortion parameters with iteration is shown in Fig. 6.11. The cost function is shown in 
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Fig. 6.11: Convergence of the distortion parameters during optimization 2  
of the shaped Gregorian system. 
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Fig. 6.12: Cost function value variation with iteration during optimization 2  
of the shaped Gregorian system. 
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Fig. 6.12. The plots have typical shapes. The optimized value of distortion parameters is 

found to be: τ1 = – 4.1986, τ2 = 1.0213, ζ1 = 1.7049 and ζ2 = 0.9257.  
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Fig. 6.13: Scattered field from the shaped ellipsoidal subreflector 
 defined from optimization 2. 

 

The scattered field from the shaped ellipsoidal subreflector is shown in Fig. 6.13. It can 

be observed from Fig. 6.10 that scattered field is uniform until the RSB (characterized 

by the zero value of the reflected field) in accordance with the design requirement. The 

overall performance characteristics of the scattered field will be discussed in Section 

6.6. 

 

6.6 Performance Evaluation of the Shaped Subreflectors 

To evaluate the performance of the shaped reflectors, some performance parameters 

must be defined related to the scattered field characteristics. This scattered field from 

the main reflector will be discussed in Chapter 7. The scattered fields from the 

subreflectors have already been calculated and the results have been shown in Fig. 6.4, 

Fig. 6.7, Fig. 6.10 and Fig. 6.13. Performance parameters related to the scattered field 

from the subreflector is defined in this section. 
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The uniformity of the field distribution over the main reflector has been quantified using 

the edge taper parameter. Edge taper of the subreflector (Ts), and the edge taper of the 

main reflector (Tp) can be defined separately. The quantities are expressed as: 

Field intensity at the edge of the subreflector
Maximum field intensity on the subreflectorsT   .                (6.9) 

Field intensity at the edge of the main reflector
Maximum field intensity on the main reflectorpT   .           (6.10) 

A more accurate estimation of uniformity can be described using the illumination 

efficiency parameter. It is defined by the following equation [3]: 

 

 

2
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,
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ill
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F r dA
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

  
 
  



  .         (6.11) 

Here,  ,distF r  field distribution over the aperture of the main reflector and Am is the 

main reflector area. The integrations are performed over the entire surface of the main 

reflector.  ,distF r   is calculated as the absolute value of the subreflector scattered field 

which is incident on the main reflector. So, 

 ,distF r   sE  .            (6.12) 

Another design requirement is low spillover. Spillover can occur when some of the feed 

field is not intercepted by the subreflector. It can also occur when some of the 

subreflector scattered field is not intercepted by the main reflector. The spillover 

efficiency can be defined for both these cases as: 

,
Power incident on the subreflector surface

Total power radiated by the feedspill f   .   (6.13) 

,
Power incident on the main reflector surface

Total power scattered by the subreflectorspill s   .    (6.14) 

For the optimized designs, these performance parameters are evaluated. The results are 

shown in Table 6.1 and Table 6.2. As the main reflector diameter and the subreflector 

diameter is different for each optimization, that information is also provided in the table. 

The rest of the geometrical parameters are constant and have already been shown in 

Table 3.1. They are not repeated here. 
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Table 6.1: Performance parameters of the optimized shaped hyperboloidal subreflectors. 

 
Cassegrain geometry 

Parameters 
Unshaped Opt. 1 Opt. 2 

pd  10 m 10 m 7.5 m 

sd  1.25 m 1.7 m 1.25 m 

,s dBT  –11.94 dB –20.22 dB –12.14 dB 

,m dBT  –14.76 dB –17.41 dB –12.75 dB 

,spill f  97.05 % 99.40 % 97.10 % 

,spill s  99.65 % 99.98 % 99.71 % 

ill  85.87 % 87.92 % 92.82 % 

 

 

Table 6.2: Performance parameters of the optimized shaped ellipsoidal subreflectors. 

 
Gregorian geometry 

Parameters 
Unshaped Opt. 1 Opt. 2 

pd  10 m 10 m 7.5 m 

sd  0.78 m 0.98 m 0.78 m 

,s dBT  –11.94 dB –19.623 dB –11.42 dB 

,m dBT  –13.19 dB –10.40 dB –4.45 dB 

,spill f  97.06 % 99.38 % 96.44 % 

,spill s  99.66 % 99.36 % 97.08 % 

ill  85.68 % 90.44 % 97.37 % 
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From Table 6.1 and Table 6.2, it can be observed that the illumination efficiency has 

been significantly increased through optimization. Spillover efficiency related to 

subreflector scattered field have been kept at approximately same value. Feed spillover 

is also approximately unchanged. The uniform illumination is expected to decrease the 

beamwidth of the radiation pattern of the main reflector. This will be shown in the 

following chapters. 

 

6.7 Conclusion 

In this chapter, DE algorithm is used to optimize the shape of the dual reflector 

geometries. The optimization process has been implemented multiple times to create 

optimum shaped reflectors for different design goals. It has been shown that the DE 

algorithm performed well in terms of quick convergence. The performances of the 

shaped reflectors have been compared with that of unshaped reflectors. The 

performance parameters are defined for the subreflector scattered field. The main 

reflector scattered field will be calculated in the next chapter. It has been found that the 

optimization process produced shaped antennas that have more uniform field 

distribution over the main reflector without significantly affecting other parameters. 

This was one of the design criterions. So, the optimization process was successful. 



 

 

CHAPTER 7 

FORMULATION OF RADIATED FIELD FROM  

THE MAIN REFLECTOR 

 

 
7.1 Introduction 

The radiated field from the primary reflector (main reflector) is the output 

characteristics of a dual reflector antenna. The feed field and the subreflector scattered 

field are limited only within the dual reflector geometry. It is the primary reflector 

radiated field that connects the antenna to the outside. The feed design and the reflector 

shaping are performed to produce a desired radiated field. The far-field of the dual 

reflector antenna implies the radiated field from the main reflector. Most design 

requirements are enforced on the far-field characteristics of the antenna. So, formulation 

of the radiated field is essential.  

 

In this chapter, the radiated field from the primary reflector is formulated. Physical 

optics (PO) method is used to formulate the field. The chapter starts with formulation of 

PO currents. The distribution of the PO currents on the main reflector surface due to the 

field scattered from the subreflector is calculated. Using the PO currents, the radiated 

field is formulated using the PO radiation integral. 

 

7.2 PO Surface Currents 

In PO method, the radiated field from a conducting body is determined using the surface 

current induced on the reflecting body due to an incident field [4]. The incident field on 

the main reflector is the subreflector scattered field, which have been calculated for the 

shaped and unshaped geometries in Chapter 5 and Chapter 6. In PO, it is assumed that 

the field incident on the reflecting body is a GO field [4]. As the GO field is zero in the 

shadow regions, the PO method assumes that current is zero in those regions. The PO 

surface current is approximated by the following equation [4], [16]: 
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ˆ2 ,  in the illuminated region

0,                in the shadowed region


 


p inc
PO

n H
J    .  (7.1) 

Here, ˆ pn is the unit normal vector pointed outwards from the reflecting surface, incH  is 

the magnetic field incident on the reflecting surface and POJ is the PO surface current 

density. The current density is referred to as PO current density because this is an 

approximation of the actual surface current density. 

 

The incident magnetic field can be calculated from the electric field as: 

   ˆ ˆY Y   inc ip inc r incH s E s E   .        (7.2) 

Here, ˆips  is the unit vector representing the incident GO field direction on the main 

reflector surface. As, the incident GO field direction on the main reflector surface is the 

same as the reflected GO field direction from the subreflector, ˆips  is the same as ˆrs  (the 

unit vector representing the subreflector reflected field direction). Y is the characteristic 

admittance of the medium, which is the inverse of the characteristic impedance, η. It can 

be expressed as: 

1Y 
 

   .                 (7.3) 

Here, µ and ε are the permittivity and permeability of the medium respectively. In this 

thesis, the medium is taken to be air.  

 

The incident field on the main reflector is the same as the scattered field from the 

subreflector. So, 

inc sE E   .                         (7.4) 

 

Using (7.1) – (7.4), the PO surface current density on the main reflector surface can be 

calculated. The magnitude of the PO surface currents for the shaped and unshaped dual 

reflector geometries are shown in Fig. 7.1. Contour plots are used to superimpose the 

PO currents on the surface geometry. The Cassegrain geometries are shown on the left 

column and the Gregorian geometries are shown on the right column. The color scales 

of the shaped and unshaped geometries are kept same for comparison. It can be 

observed that the PO currents become more uniform for the shaped geometries 

compared to the unshaped geometry. The currents are symmetric due to the geometry. 
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Fig. 7.1: PO surface current density on the main reflector for (a) unshaped Cassegrain 
geometry, (b) unshaped Gregorian geometry, (c) shaped Cassegrain geometry (opt. 1), 

(d) shaped Gregorian geometry (opt. 1), (e) shaped Cassegrain geometry (opt. 2)  
and (f) shaped Gregorian geometry (opt. 2). 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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7.3 Radiated Field Formulation 

The radiated field from the main reflector can be formulated from the PO surface 

current density. The radiated field can be approximated from the vector magnetic 

potential A. The quantity is related to the PO surface currents through the following 

equation [4]: 

 exp

m

m
S

jkR
dS

R
    

  
 poJ

A  .               (7.5) 

Here, R is the distance from a point on the main reflector surface to the observation 

point. The distance along with vectors required to calculate JPO is shown in Fig. 7.2. 

 

Fig. 7.2: Formulation of the main reflector radiated field. 

 

Here, Pm is a point on the main reflector surface, Po is the observation point in space and 

χ is the angle measured from the main reflector axis (–z axis) to the observation point. 

The radiation field from the main reflector is related to A as: 

2j f  radE A  .                 (7.6) 

Substituting A from (7.5) into (7.6): 

 exp
2

m

m
S

jkR
j f dS

R
 

     
  

 po
rad

J
E   .          (7.7) 
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The integration in (7.7) is performed over the entire surface of the main reflector, Sm. 

But the integration is dependent on R. So, every time R is changed, the integration must 

be repeated. This implies that the integration must be performed for every observation 

point.  

 

The surface integration in (7.7) can be transformed using parameters m  and m . The 

parameters are shown in Fig. 7.3.  

 

Fig. 7.3: Parameterization of the main reflector surface. 

 
 

The parameters are related to the co-ordinates of the point on the main reflector surface 

(xm, ym, zm). The relations can be easily seen from Fig. 7.3 as: 

cos
sin

m m m

m m m

x
y

 
 

 
 

 .     (7.8) 

The shaped main reflector varies very little from the unshaped main reflector (as shown 

in Section 3.7). So, it can be approximated as a paraboloid without any significant error. 

Therefore, the surface equation of the main reflector is: 
2 2 2

4 4
m m m

m p p
p p

x yz l l
f f


       .             (7.9) 

In differential geometry form: 
2

ˆ ˆ ˆcos sin
4

m
m m m m p

p

l
f


   
 

      
 

r x y z   .     (7.10) 
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The differential surface area can be computed from [25]: 

m m m
m m

dS d d 
 
 

 
 

r r   .         (7.11) 

The partial derivatives can be easily calculated to give: 

 
2

1
2

m
m m m m

p

dS d d
f


  
 

    
 

  .            (7.12) 

Substituting (7.12) in (7.7): 

 
22 2

0 0

exp
1

2

p

m m

d
m

m m m
p

jkR
j d d

R f



 


   

 

              
  po

rad

J
E .  (7.13) 

The limits of the integrations in (7.13) are selected so that the integrations cover the 

entire main reflector surface. The main reflector radiated field can be calculated from 

(7.13) along with the derived equations in this section. 

 

 

7.4 Conclusion 

In this chapter, the field radiated from the main reflector is formulated using PO 

method. The PO surface currents on the main reflector surface are calculated using the 

value of the magnetic field incident on the main reflector surface due to scattering from 

the subreflector. The distribution of the PO currents on the reflector surface is shown 

graphically.  The PO radiation integral is formulated which can be used to find the 

radiated field. Numerical results of the radiated fields are given in Chapter 8. 



 

 

CHAPTER 8 

RESULTS AND DISCUSSION 

 

 
8.1 Introduction 

The overall performance of a reflector antenna system is determined from its far-field 

radiation characteristics. The field radiated by the main reflector has been formulated in 

Chapter 7. Using the equations presented in Chapter 7, the far-field characteristics of the 

dual reflector antennas can be numerically evaluated. In this chapter, numerical results 

of the far-field pattern of the unshaped and shaped dual reflector antennas are provided. 

Performance parameters related to the far-field radiation characteristics are defined and 

evaluated. The chapter concludes with the performance comparison of the unshaped and 

shaped dual reflector antennas. 

 
8.2 Numerical Results for the Far-field Region 

The far-field radiation pattern of the unshaped and shaped dual reflector geometries are 

calculated using PO method. The operating frequency is assumed to be 14 GHz for all 

cases. The observation region is selected 2000 m away from the main reflector axis to 

make sure that it falls within far-field region. It has been checked that moderate 

variation of the observation distance does not affect the radiation pattern. This is a 

characteristic of far-field region. The far-fields of the Cassegrain and Gregorian 

geometries are discussed in the following sections. 

 

8.2.1 Far-field of the Cassegrain geometries  

The far-field radiation pattern of the unshaped Cassegrain geometry is shown in Fig. 

8.1. The observation region is limited to 15° from the main reflector axis. Power levels 

for larger observation angle are negligible. The zoomed in view of the main lobe region 

is shown in Fig. 8.2. The far-field radiation pattern of the shaped Cassegrain geometry 

found from optimization 1, is shown in Fig. 8.3. The zoomed in view of the main lobe 

region is shown in Fig. 8.4. Similarly, the far-field pattern and the zoomed in view of 
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the main lobe region of the shaped Cassegrain geometry found from optimization 2 are 

shown in Fig. 8.5 and 8.6 respectively. 
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Fig. 8.1: Far-field radiation pattern of the unshaped Cassegrain geometry. 
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Fig. 8.2: Zoomed in view of the main lobe region of the radiation pattern of the 
unshaped Cassegrain geometry. 
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Fig. 8.3: Far-field radiation pattern of the shaped Cassegrain geometry  
obtained from optimization 1. 
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Fig. 8.4: Zoomed in view of the main lobe region of the radiation pattern of the shaped 
Cassegrain geometry obtained from optimization 1. 
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Fig. 8.5: Far-field radiation pattern of the shaped Cassegrain geometry  
obtained from optimization 2. 
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Fig. 8.6: Zoomed in view of the main lobe region of the radiation pattern of the shaped 
Cassegrain geometry obtained from optimization 2. 
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8.2.2 Far-field of the Gregorian geometries  

The far-field radiation pattern of the unshaped Gregorian geometry is shown in Fig. 

8.10. The zoomed in view of the main lobe region is shown in Fig. 8.11.  
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Fig. 8.7: Far-field radiation pattern of the unshaped Gregorian geometry. 
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Fig. 8.8: Zoomed in view of the main lobe region of the radiation pattern of the 
unshaped Gregorian geometry. 
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The far-field radiation pattern of the shaped Gregorian geometry found from 

optimization 1 and optimization 2 and their corresponding zoomed in views are shown 

in Fig. 8.9, Fig. 8.10, Fig. 8.11 and Fig. 8.12 respectively. 
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Fig. 8.9: Far-field radiation pattern of the shaped Gregorian geometry  
obtained from optimization 1. 
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Fig. 8.10: Zoomed in view of the main lobe region of the radiation pattern of the shaped 

Gregorian geometry obtained from optimization 1. 
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Fig. 8.11: Far-field radiation pattern of the shaped Gregorian geometry  

obtained from optimization 2. 
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Fig. 8.12: Zoomed in view of the main lobe region of the radiation pattern of the shaped 

Gregorian geometry obtained from optimization 2. 
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8.3 Far-field Performance Evaluation 

The far-field radiation pattern of the unshaped and shaped dual reflector geometries 

have been shown in Section 8.2. To evaluate the far-field performance of the antennas, 

some performance parameters must be defined. The performance of the shaped and 

unshaped geometries can be compared using these performance parameters. 

 

8.3.1 Defining performance parameters 

The objective of the optimizations performed in Chapter 6 was to provide uniform 

illuminated over the main reflector aperture. This was expected to create far-field 

radiation pattern with smaller beamwidth [3]. A larger the diameter of the main reflector 

results in a smaller beamwidth [3]. The optimizations performed concentrated on 

creating uniform illumination, which also can reduce beamwidth without increasing 

antenna size. A narrow beamwidth is necessary for satellite communications to avoid 

interference with neighboring satellites [1]. It is also necessary for deep space 

communication because a narrow beamwidth implies power is not wasted on unwanted 

directions [1]. Even a small angular covers a large area when the distance is large. For 

these reasons, beamwidth is one of the most important performance parameters. The 

half power beamwidth (HPBW) is defined as the angular region where half of total 

radiated power is concentrated. 

 

Another important parameter is the gain or directivity of the antenna. Usually a smaller 

beamwidth implies a larger directivity. However, sidelobe levels also affect the 

directivity value. An antenna with smaller beamwidth may have a smaller gain 

compared to an antenna with larger beamwidth if the sidelobe levels are significantly 

larger. Usually, reducing beamwidth increases sidelobe levels. Therefore, antenna 

directivity does not change too much for a fixed antenna size. The maximum directivity, 

Do, is defined as [21]: 

max
2

0 0

( , )
4

( , )sin

rad
o

rad

F
D

F d d
 

 

 

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 



 
 .        (8.1) 

Here, ( , )radF   is the radiation intensity and ( , )   are the spherical co-ordinates of the 

observation region. ( , )radF    can be found from taking the magnitude of Erad defined 

in (7.13). So,  
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radF  radE  .              (8.2) 

Another performance parameter is the blockage efficiency, ηblock. It is related to the area 

of the main reflector aperture that is blocked by some geometric structures of the 

antenna. The maximum blockage is created by the subreflector. The blockage due to 

feed and supporting mechanical structures are negligible. Assuming blockage created by 

the subreflector only, the blockage efficiency is defined as: 
222

Area of the subreflector1 1
Area of the main reflector

s
block

p

d
d


                       

 .        (8.3) 

Blockage efficiency should be kept high to increase effective area.  

 

The performance parameters defined in this section can be used to compare the 

performance of the unshaped and shaped geometries. 

 

8.3.2 Far-field performance comparison of the unshaped and shaped reflectors 

The performance parameters of the unshaped Cassegrain geometry and the shaped 

Cassegrain geometries are shown in Table 8.1. The illumination efficiency, main 

reflector diameter and the subreflector diameter data are repeated from Table 6.1 for 

convenience. 

 

Table 8.1: Far-field performance comparison of the Cassegrain geometries. 

Cassegrain geometry 
Parameters 

Unshaped Opt. 1 Opt. 2 

pd  10 m 10 m 7.5 m 

sd  1.25 m 1.7 m 1.25 m 

HPBW 0.1436° 0.1278° 0.1800° 

oD  61.92 dB 58.94 dB 56.03 dB 

block  96.9 % 94.3 % 94.5 % 

ill  85.87 % 87.92 % 92.82 % 
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It can be observed from Table 8.1 that the shaped Cassegrain reflectors obtained from 

optimization 1, outperforms unshaped reflectors in terms of beamwidth. However, 

around 3 dB gain drop is also observed. This is dues to the increased sidelobe levels of 

shaped reflectors compared to the unshaped reflectors as seen in Fig. 8.1 and Fig. 8.3. It 

is also evident that the shaped antenna obtained from optimization 2 has beamwidth 

comparable to the unshaped antenna, even though it has a smaller main reflector.  

 

The performance parameters of the unshaped Cassegrain geometry and the shaped 

Gregorian geometries are shown in Table 8.2. The illumination efficiency, main 

reflector diameter and the subreflector diameter data are repeated from Table 6.2 for 

convenience. 

 

Table 8.2: Far-field performance comparison of the Gregorian geometries. 

Gregorian geometry 
Parameters 

Unshaped Opt. 1 Opt. 2 

pd  10 m 10 m 7.5 m 

sd  0.78 m 0.98 m 0.78 m 

HPBW 0.1492° 0.1460° 0.1770° 

oD  61.66 dB 57.31 dB 55.12 dB 

block  98.8 % 98.1 % 97.8 % 

ill  85.68 % 90.44 % 97.37 % 

 

It can be observed from Table 8.2 that, the shaped Gregorian antenna obtained from 

optimization 1 has a smaller half power beamwidth. The slight decrease in directivity is 

due to the increase sidelobe levels as can be seen by comparing Fig. 8.7 and Fig. 8.9. 

The shaped antenna with the smaller aperture are obtained from optimization 2, has 

beamwidth comparable to the unshaped antenna.  
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The obtained values are comparable with experimental and numerical values reported in 

literature [1], [2]. So, the results can be considered accurate. It can be concluded that the 

shaped reflectors have satisfactory far-field performance. 

 
8.4 Summary 

In this chapter, the radiated fields of the unshaped and shaped dual reflector antennas 

have been computed using PO method. Performance parameters have been defined to 

quantify the performance of the shaped and unshaped reflectors. It has been found that 

the shaped reflectors satisfy the design criterions. The shaped reflectors outperform the 

unshaped reflectors in terms of beamwidth. It has been shown that an optimized shaped 

dual reflector antenna with a smaller sized main reflector can have beamwidth 

comparable to a larger unshaped reflector. This implies that main reflector size 

reduction is possible without increasing beamwidth or decreasing antenna directivity 

significantly.  

 



 

 

CHAPTER 9 

CONCLUSION 

 

 
9.1 Summary 

The work presented in this thesis concentrates on the design of circularly symmetric 

shaped dual reflector antennas. The design procedure consists of a proposed method of 

defining shaped dual reflector surfaces and an optimization algorithm that determines 

the optimum shaped surfaces. The proposed method uses a small number of parameters 

to describe the shaped surfaces. It has been shown that, only four parameters are 

required to accurately describe practical shaped surfaces. So, only four parameters need 

to be optimized to find an optimum shaped surface. This number is less than the number 

of parameters required to represent a shaped surface using other methods found in 

literature. Due to small number of parameters that need to be optimized by the 

optimization algorithm, the computation complexities are significantly reduced. 

Differential evolution algorithm is selected to as the optimization algorithm for its fast 

convergence characteristics. Two separate sets of optimizations have been performed 

for each of the dual reflector geometries (Cassegrain and Gregorian). The design goal 

for the first optimization is to decrease beamwidth without changing antenna size. The 

design goal of the second optimization is to reduce the antenna size while keeping the 

beamwidth small. These can be implemented by creating a uniform illumination over 

the main reflector aperture. So, the objective of the optimization procedure is taken to 

be uniform illumination of the main reflector surface without significantly increasing 

spillover losses. The design requirements are integrated into the optimization algorithm 

through the definition of the cost function. The optimization requires evaluation of the 

radiation characteristics of the shaped dual reflectors. So, field analysis is inherent in the 

design procedure. Fields from the feed antenna, the subreflector and the main reflector 

must be analyzed separately. A corrugated horn is designed as the feed antenna. The 

geometry of the dual reflectors is taken into account when designing the horn. The fields 

of the horn are calculated using standard equations. UTD method is used for analysis of 

the field scattered from the subreflector on to the main reflector. The optimization 
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algorithm checks the uniformity of the scattered field from the subreflector and 

optimizes the shape of the subreflector to create maximum uniformity without 

increasing the spillover losses significantly. The main reflector surface is synthesized 

based on the shape of the subreflector surface. The field radiated from the main reflector 

is calculated using PO method. The beamwidth is computed for the shaped and 

unshaped dual reflectors from corresponding far-field patterns. It has been found that 

the beamwidth requirements have been satisfied for the optimized shaped reflectors. 

Other performance characteristics of the designed shaped dual reflectors are also within 

satisfactory limits. The obtained values are found to be in agreement with numerical and 

experimental values reported in literature. Thus the obtained results can be considered 

accurate. 

 

9.2 Scope for Future Work 

The presented work gives satisfactory results. But it has some limitations. Only the 

design procedures of shaped circularly symmetric dual reflectors have been presented in 

this thesis. The analysis of single reflector antennas has not been presented. But the 

design method can be used for single shaped reflector antennas that are circularly 

symmetric. However, the proposed method can not be used to synthesize shaped offset 

single reflector or shaped offset dual reflector antennas. The method also fails if the 

subreflector or the main reflector has non circular cross sectional area. The method is 

limited to only circularly symmetric cases. This limitation arises due to the definition of 

the distortion function that determines the shape of the subreflector. The defined 

distortion function is inherently circularly symmetric. A more general expression of the 

shaped surfaces is necessary to design reflectors of offset geometries and un-symmetric 

shapes. 

 

The accuracy of the proposed design method depends on the accuracy of the numerical 

methods used. The UTD and PO analysis is accurate for electrically large reflectors 

only. The design method can be made suitable for electrically small reflectors by 

applying different numerical methods that are accurate for small structure analysis. 
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