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Abstract

Effects of wave function penetration into gate oxide on properties of n-MOS and

p-MOS devices in deep submicron regime are studied. Self-consistent modeling of

MOS inversion layers is performed, taking into account the effects of wave func-

tion penetration on the solutions of both Schrodinger's and Poisson's equations.

A new technique, based on Green's function formalism, has been used for the

solution of Schrodinger's equation that does not require any matrix manipulation

and is numerically efficient. Numerical results for n-MOS devices on (111) sili-

con show that the effects of wave function penetration on solution of Poisson's

equation are non-trivia!. Penetration effects on properties of inversion layers be-

come more important with scaling down of device dimensions. These effects are

more pronounced at strong inversion. Penetration effects on threshold voltage

are found to be insignificant. However, the effects of wave function penetration

on supply voltage can be as high as a few percents and these effects are weakly

dependent on device scaling. Numerical results for n-MOS and p-MOS devices

on (100) silicon show that the effects of wave function penetration on p-MOS

devices are more severe. This is found to be due to lower effective mass of heavy

holes compared to that for electrons in the longitudinal valley. Variation of dop-

ing density has opposite effects on the relative error in inversion capacitance for

n-MOS and p-MOS devices. Error in gate capacitance is insignificant in the sub-

threshold region and increases sharply around threshold. For n-MOS devices in

strong inversion, relative error in gate capacitance decreases with increasing dop-

ing density, while that for a p-MOSFET is insensitive to doping density. Large

difference in effective masses of electrons in longitudinal valley and in transverse

valley compared to that of heavy and light holes are found to be responsible for

this effect. Although the error in gate capacitance is only a few percent, this error

will have non-trivial effects on MOSFET parameter extraction from C-V mea-

surements. Comparison of numerical results for n-MOS structures on (111) and

(100) silicon shows that penetration effects are more pronounced in n-MOSFETs

on (111) silicon. This is found to be due to the lower effective mass of electron

in (111) silicon.
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Chapter 1

Introd uction

Throughout the history of integrated circuit design, a general scaling methodology

for MOSFET devices has been applied [1]. This scaling methodology relies heavily

on the use of successively thinner gate dielectric and higher level of channel doping

in order to simultaneously achieve the desired device turn-off and drive current

capabilities as feature sizes decrease. According to the 1997 National Technology

Road Map for Semiconductors (NTRS), the performance limit of a device will

correspond to a channel length, L= 100 nm with oxide thickness of 1.5 nm and

a substrate doping of NA = 2 X 1018 cm-3 [1]. But recently Assad et.al. have

reported a theoretical study in which they have examined device on-current,

transconductance and source to drain resistance for the ballistic limit (channel

length approaching zero or the mean free path approaching infinity) and the zero

oxide thickness limit [2J. They have concluded that the ultimate MOSFET limit

are considerably higher than previously estimated and well above those currently

achieved. Devices will have to operate significantly closer to the ballistic limit

if the NTRS targets are to be met. As gate length goes below deep submicron

dimensions (::; 0.25J,Lm), the device design, as guided by scaling rules, can result in

very large normal electric fields at the Si/ Si02 interface, even near the threshold

of inversion. This leads to a significant bending of the energy band at the Si/ Si02
interface. It has been long known that with sufficient band bending, the potential

well can become sufficiently narrow to quantize the motion of inversion layer

carriers in the direction perpendicular to the interface [3J. This gives I:ise to

a splitting of the energy levels into subbands (2-dimensional density-of-states),

such that the lowest of the allowed energy levels for electrons in the well does

not coincide with the bottom of the conduction band. Due to quantization,

1
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the electron density does not reach it's maximum at the oxide-semiconductor

. interface as in the semi-classical model [4, 5]' but instead at some distance inside
the semiconductor. Fig. 1.1 shows a typical conduction profile for an n-MOSFET

device and Fig. 1.2 shows the electron density in silicon near Si/ Si02 interface

as obtained from semi-classical and quantum mechanical (QM) calculations.

Energy

Tox

Ec

$,

Metal Oxide

I
z=o

Semiconductor

z

Fig. 1.1: A typical conduction band profile for an n-MOSFET.

Due to this extension of the electron density inside semiconductor, (i) the

electric potential value at the interface is greater and (ii) the capacitance and the

transconductance are reduced from those predicted by the semi-classical model.

At room temperature in deep submicron devices, the QM effects manifest them-

selves 'through such measurable device parameters as the inversion layer charge

density, threshold voltage and the oxide thickness extracted from capacitance vs.

voltage (C-V) or tunneling current measurement.

Thus, it is important that the above mentioned inversion layer QM effects are

accounted for in deep submicron device models. The use of the traditional or

semi-classical models [4, 5J in device analysis and design, in which these effects

are neglected, is inadequate at deep submicron dimensions and will lead 'to er-

roneous and misleading prediction of device structure and electrical behaviour,
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\
\ Semi-classical

/

.~ Quantum
' " /mcchanical
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".::::::
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Fig. 1.2: Electron distributions in the inversion layer of an n-MOSFET shown in r
Fig. 1.1. "':

such as the physical oxide thickness, threshold voltage, drive current, gate capac-

itance, on-state series resistance and polysilicon workfunction. For this reason,

the two-dimensional nature of electrons in inversion layers is studied in detail by

considering quantization of carrier energies.

1.1 Literature Review

QM effects in MOS inversion layers arise when high surface electric field makes

the quantum well for inversion carriers very steep and narrow, such that the elec-

tron energies are quantized in the direction normal to the interface. A significant

amount of work has been conducted to. understand and model the QM effects in

MOS devices. In this section, a partial review of these works is presented. ! ,

Stern first reported the detail formulation of self-consistent modeling for n-

type silicon inversion layer [3]' where he solved coupled Schrodinger's and Pois-

son's equation iteratively. In that calculation, the author made several approxi-

mations, e.g., effective mass approximation instead of periodic lattice potential,

the wavefunction vanishing at the Si/ Si02 interface and the potential well being
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triangular. For a triangular potential well, the solution of Schri:idinger's equa-

tion is the Airy function which .he used in his self-consistent formulation. In

that work, he presented numerical results for different surface orientations, bulk

carrier concentrations, temperature and inversion layer carrier concentrations to

understand the importance of QM effects on inversion layer parameters such as

the average penetration of inversion layer charge density from the surface, Zavg

and distribution of carriers among the subbands.

A triangular potential well is not consistent with a high density of inversion

carriers. Later, Moglestue overcame many of the shortcomings of Stern's formu-

lation and determined the wave functions self-consistently from Schri:idinger's and

Poisson's equations for populated subbands, using the Fermi-Dirac statistics [6J.

He calculated different results for both electrons and holes for the (100) silicon

at the interface. He compared the self-consistently obtained results with those

obtained with the triangular potential well approximation. It was shown that for

weak inversion, the self-consistent results do not deviate significantly from those

obtained assuming triangular potential well, but for strong inversion, the carriers

tend to move closer to the oxide. Thus he showed that the Airy function solution

becomes inadequate and a self-consistent solution is required in strong inversion

for the analysis of small transistor in VLSI applications. He also calculated gate

capacitance and found that the self-consistently calculated values agree with the

experimental data.

In their pioneering work, Dort et. al. proposed a simple model for explaining

measurements in the high doping level regime where the conventional model fails

to reproduce the experimental results [7]. The model proposed by them uses

the same drift-diffusion approximation used by the semi-classical model [4, 5]'

however some advanced physics is built in the simulators. This model modifies

the intrinsic carrier concentration for the silicon band gap inversion conditions.

They showed that their model agreed with the results given by self-consistent

calculation.

It is known that self-consistent solution of coupled Schri:idinger's and Pois-
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son's equations are numerically intensive and time consuming. Hareland et. al.
proposed a new computationally efficient model for predicting QM effects on the

inversion layer charge density and charge distribution [8]. Their model utilizes
analytical descriptions for the first three subbands of a 2-D density-of-states in

a quantized electron inversion layer. This model, along with the one proposed

by Dort et. al. [7], has been implemented in a device simulator software named

PISCES. They have shown that the inversion layer charge distribution and sub-

band energies predicted by the three-subband model agree very well with the

results obtained by self-consistent calculations.

Paasch et. al. studied the effects of influence of inversion channel quanti-

zation on surface potential [9]. They showed that the semi-classical description

gives erroneous results while calculating the surface potential or the total band

bending. They have shown that the error introduced in the calculation of surface

potential is up to some tenth of a volt with decreasing oxide width and increasing

gate voltage.

An important parameter for the MaS devices is the gate capacitance. Accu-

rate determination of the capacitance-voltage (C-V) characteristics is essential for

a MaS device as the transconductance is dependent on the gate capacitance [5J.

Moreover, a correct simulation of C-V curves is very important for MaS sys-

tem parameter extraction [10]. Main MaS parameters which can be obtained

from C-V measurement are oxide thickness, substrate and poly-Si doping etc. If

an accurate model is developed, then a good agreement between measured C-V

curve and simulated C-V curve confirms the correct estimation of the parameters.

Another important parameter for subrnicron MOSFETs is the inversion layer

capacitance, Ginv' Takagi et. al. experimentally and theoretically studied Ginv

with emphasis on the surface carrier concentration, Ns [11]. They found that at

lower N., Ginv is determined by the finite density-of-states, while, at higher N.,

Ginv is determined by the finite inversion-layer thickness. They have shown that

C;nv is dependent on surface orientation in higher Ns compared to lower Ns which

strengthens the above claim. They have also shown that the self-consistently cal-
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culated Ginv accurately represents the experimental Ginv. It is found that an

increase in substrate impurity concentration leads to an increase in Ginv. Finally
results showed that the reduction of gate capacitance due to Ginv becomes more

severe with decrease in the oxide thickness and this reduction is more severe in
low Ns. Takagi et. al. also experimentally and theoretically studied Ginv in p-

channel silicon MOSEFT's with emphasis on the surface carrier concentration,

N. [12]. They have found that the electrical gate oxide thickness is larger for

inversion-layer holes than for inversion-layer electrons, because of the smaller val-

ues of Ginv for inversion-layer holes. An important finding of their work is that

the calculation using the effective mass at the valance band edge can accurately

represent the experimental results for p-MOSFETs over a whole range of Ns.

Another important quantity which is affected by the QM effects is the sup-

ply voltage. The influence of inversion-layer capacitance, Ginv on supply voltage,

Vdd of n- and p-MOSEFT's is quantitatively examined by Takagi et. al. [13].

They have shown that the band bending of a silicon substrate in the inversion

condition due to Ginv remain unaffected with reduction of gate oxide thickness.

To accurately evaluate the band bending, they used the one-dimensional (I-D)

self-consistent calculation including 2-D subband structure of inversion layer elec-

trons and holes. As Vdd is defined as gate voltage to induce sufficient carriers to

keep the current drive, they have found that the influence of band bending due

to Ginv makes the operation with less than a certain value of supply voltage quite

difficult, even for extremely thin gate oxide thickness.

Fiegna et. al. have analyzed the effects on gate capacitance, threshold volt-

ages, effective mobility of electrons of nonuniformly doped MOS structures [14J.

Their results show that,. with the introduction of low doped region at the de-

vice surface, it is possible to manipulate the threshold voltage according to the

circuit application. Also, for a given charge sheet density, the introduction of

a low doped epitaxial region produces a reduction of the electron effective field,

resulting in the improvement of electron effective mobility. But it leaves the total

gate capacitance unaffected.

(
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Barlage et. al. have used the transmission line model for the MOSFET chan-

nel region for extraction of inversion MOS capacitance [15]. His. work corrects

the capacitance measurement error introduced from high gate-dielectric leakage

in the inversion regime. Jallepalli et. al. have reported a first-principle approach

to inversion layer quantization which is valid for arbitrary and complex band

structures [16]. They performed the self-consistent calculation for n-MOSFETs

and p-MOSFETs with the QM calculation based on full band formalism. They

have showed that the full band formalism though complicated, can accurately

calculate the threshold voltage, VT, shift and electrical oxide thickness. Finally,

they obtained a set of constant effective masses to describe the electrical effects of

quantization to first order. Using those effective masses the gate capacitance have

been calculated which shows a good agreement with the available experimental

data.

As mentioned earlier, one-band effective mass analysis is applied to study hole

quantization, using constant effective mass derived from bulk silicon to calculate

hole subband energies and threshold voltage, VT, shift in p-MOSFET. But due to

the valance band mixing, the traditional one-band effective mass approximation

(EMA) using bulk effective masses may not describe the hole quantization accu-

rately. Due to the strong band mixing effect, the dispersion of hole subband is far

from parabolic and also become dependent on electric field. Recently, Hou et. al.
have reported a model based on six-band (electric field dependent) effective mass

for hole quantization [17]. They also proposed a set of constant empirical effective

mass values to describe VT shifts. In their analysis, effects of inversion charges

were neglected, which implies that the model is valid only in sub-threshold and

near threshold regions and not in strong inversion. They have shown that the

calculated VT shift in p-MOSFET by the improved one-band EMA using field

independent empirical effective mass is well in agreement with the experimental

data.

Giannini et. al. have compared the results of measurements of MOS inter-

face states by capacitance-voltage (C-V) and charge pumping techniques [18].

They have shown that, if the effects of carrier tunneling in slow oxide traps are

(

: I
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not incorporated, the information on energy distribution of interface states given

by both capacitance-voltage and charge pumping techniques will be erroneous.

Pacelli et. al. have shown that semi-classical model is not acceptable even near
flat band region [19]. It is well known that a strong surface electric field causes

the confinement of carrier at the oxide interface. But the study of Pacelli shows

that even for a small vertical electric field, due to the presence of abrupt discon-

tinuity at the Si/ Si02, a "dark space" of a few nanometer results. In this "dark
space", the majority carrier density is much lower than in the bulk. This work

shows that significant quantum effects can occur in the absence of a full confining

potentia!.

Calculation of gate leakage current in submicron MOSFETs is another im-

portant topic of study. Rana et. al. used self-consistent solutions of accumulated

layers in n-type substrate MOSFET to calculate the tunneling current [20J. Tun-

neling current from inversion layer was studied by Lo et. al. [21]. They showed

that for the purpose of modeling tunneling characteristics of electrons, the trans-

mission probability concept is not acceptable and the well known WKB (Wentzel-

Krammer-Brioullion) approximation or the numerical integration of Airy function

is not valid. They have used the transverse resonant method, applicable for elec-

tromagnetic waves in a waveguide, for solving the Schri:idinger's equation. The

complex eigenenergy found from the solution of the Schri:idinger's equation is used

to calculate the gate leakage current. Shih et. al. have compared the leakage

current found from the numerical solution to that found by using WKB approx-

imation [22]. They showed that the gate leakage current found from the WKB

approximation shows poor agreement at high gate voltages. As the classical WKB

approximation does not account for the wave reflections from the material inter-

face, Yang et. al. have used a modified WKB approach [23]. This approach

addresses interface reflection, however, replaces the traditional trapezoidal bar-

rier with a rectangular one. The suggestion that comes from their study is that

alternative dielectrics with higher dielectric constant may be used in lieu of Si02
to reduce the tunneling current. In order to have a greater understanding about

how a dielectric stack with high-k materials would affect the direct tunneling cur-

rent, Mudanai et. al. have performed a study [24]. It is found that the reduction

(,
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in direct tunneling current in high-k dielectrics is less than as expected as the

barrier height are usually lower than that in Si02.

Abramo et. al. have reported a QM solver for the two-dimensional (2-D)

Schrodinger's equation based on the k-space representation of the solution [25].
They have applied it to simulate the 2-D electrostatic quantum effects in nano-

scale MOS transistors. They have shown the presence of quantum effects of purely

2-D nature in the channel and source/drain regions of scaled ULSI MOS devices,

which cannot be properly accounted for in I-D or quasi 2-D approaches.

Schrodinger's equation has been solved in Refs. [24,26] allowing wave function

penetration into the gate dielectric for the first time. Haque et. al. calculated

the effects of wave function penetration into gate oxide [26]. For simplicity, they

have avoided the self-consistent solution and used an exponential potential pro-

file. They have shown that the traditional boundary condition over estimates the

average distance of the carriers from the interface by a few angstroms. Mudanai

et. al. have done the self-consistent solution using the first order perturbation

approach for allowing wavefunction penetration into the gate oxide and gate elec-

trode [24]. Effects of wave function penetration on the gate capacitance has also

been studied recently by Mudanai et. al. [27J. They have shown that accounting

for wave function penetration into the gate dielectric causes the carrier profile

to be shifted closer to the gate dielectric reducing the electrical oxide thickness.

Due to this shift, the gate capacitance is increased in the presence of penetration

and this effect is more pronounced at higher gate voltages.

1.2 Objective of the Work

Quantization effects in MOS inversion layers are typically studied by self-consistent

solution of coupled Schrodinger's and Poisson's equations [3, 6]. The boundary

conditions commonly used for the solution of Schrodinger's equation are that the

wave function goes to zero at silicon-oxide interface and at some point deep in-

side the bulk [3]. The first condition is equivalent to assuming that the potential

barrier height at the silicon-oxide interface seen by the inversion carriers is infin-
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ity. It is known that the actual barrier height is finite, and for electrons, this is

approximately equal to 3 eV. Therefore, some penetration of the wave function

into the gate oxide is expected. While this penetration has negligible effects in

devices with thick oxide layers, its neglect in deep submicron MOSFETs cannot
be justified. Yet, in the absence of other suitable boundary conditions, zero pene-

tration of wave function into gate oxide is assumed in the simulation of even deep

submicron MOSFETs [3, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 19, 22, 23]. In fact, in

these devices, among other effects, wave function penetration is known to result

in a direct tunneling gate current [20, 21].

Very little work has so far been done to understand the effects of wave func-

tion penetration on MOS device performance. Recently, calculation of the wave

function including penetration into gate-oxide has been reported in the litera-

ture [24, 26]. It is found that when penetration is considered, the wave function

is shifted towards the oxide by a few tenths of a nanometer, but its shape essen-

tially remains unchanged. As a consequence, the average distance of the inversion

carriers from the interface is also reduced by a few tenths of a nanometer. A re-

duction in the average distance of the carriers will modify the inversion layer

capacitance of the devices. Effects of wave function penetration on the gate ca-

pacitance has recently been studied by Mudanai et. al. [27]. They have shown

that due to the shift of the charge centroid, the gate capacitance increases in

the presence of penetration and this effect is more pronounced at higher gate

voltages. In their calculations, Mudanai et. al. have used a quantum transmit-

ting boundary method [28] to include wave function penetration in the solution

of Schrodinger's equation. A consequence of using this boundary condition is

that the Hamiltonian becomes non-Hermitian, and complex eigenenergies of the

Hamiltonian matrix are required to be determined.

When wave functions penetrate into the gate oxide, solution of Poisson's equa-

tion is affected in two ways. First, a fraction of the inversion charges reside within

the oxide region. In such cases, Poisson's equation cannot be solved for only the

silicon region in a self-consistent scheme without introducing errors. To account

for inversion charges in oxide, Poisson's equation should be solved for the com-
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bined oxide and semiconductor regions, with appropriate boundary conditions

applied at the gate metal-oxide interface. Second, due to the shift of the inver-

sion charge centroid in the presence of penetration, the band bending in silicon
will be different when penetration effects are considered. This, in turn, will mod-

ify the electrostatic potential. However, in Refs. [21, 22, 23, 24]' although effects

of wave function penetration on tunneling current have been included, these ef-
fects on solution of Poisson's equation have been neglected. These effects on

Poisson's equation have been accounted for only in Refs. [20, 27J. In Ref. [20]'

it has been assumed, rather arbitrarily, that the wave function vanishes at the

gate metal-oxide interface and Ref. [27Jhas applied the numerically complicated

quantum transmitting boundary method [28J. SOfar, the consequences of wave

function penetration on solution of Poisson's equation is yet to be studied in a

systematic manner.

In this study, self-consistent modeling of deep submicrdn n-MOSFETs for

both (111) and (100) orientations of silicon and p-MOSFETs for (100) silicon

are performed, taking into account the effects of wave function penetration on

the solutions of both Schri:idinger's and Poisson's equations. Thus, penetration

effects are included inside the self-consistent loop. To make the procedure nu-

merically efficient, Schri:idinger'sequation is solved using an efficient method with

new, open boundary conditions allowing for wave function penetration [29J".The

proposed technique, based on Green's function formalism, eliminates the need

for any matrix manipulations or determination of complex eigenenergies of non-

Hermitian Hamiltonians, thus saving considerable computatiOIial time. Results

of self-consistent calculations are presented and compared to those when no pene-

tration is considered. These results are used to discuss the effects of wave function

penetration on modeling of device properties and on scaling of deep submicron

MOSFETs. A comparison between the penetration effects in n-MOS and p-MOS

devices is also made.

1.3 Organization of the Thesis

Chapter 2 discusses the theory behind this work. In this section, at first, the

existing self-consistent modeling of MOS devices is described. Then a numer-
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ically efficient technique based on Green's function formalism to calculate the

wave function with penetration into the gate oxide is presented. Finally, the for-

mulation of a modified self-consistent loop is given which incorporates the wave

. function penetration effects into the gate dielectric on both Schriidinger's and

Poisson's equations. Chapter 3 deals with the results and discussions. In this

chapter various results obtained for n-MOSFETs and p-MOSFETs under differ-

ent conditions are reported and discussed. Concluding remarks of this work along

with suggestions for future work are presented in chapter 4.



Chapter 2

Theory

In this chapter, at first, the existing self-consistent model is reviewed. It is fol-

lowed by a description of a new numerically efficient technique based on Green's

function formalism to solve Schrodinger's equation. Finally a modified self-

consistent formulation is presented which uses the above mentioned technique

to include the effects of wave function penetration into the gate oxide.

2.1 Existing Self-Consistent Analysis

The self-consistent solution of coupled Schrodinger's and Poisson's equations as

proposed by Stern [3J and Moglestue [6] is presented in this section.

2.1.1 Model

The three major approximations that Stern made are:

(i) Effective mass approximation is valid, so that the periodic lattice potential

need not be taken into account explicitly.

(ii) Envelope wavefunction vanishes at the silicon surface.

(iii) Surface states are neglected and any charge in the oxide adjacent to the

semiconductor is replaced by an equivalent electric field. A typical conduction

band profile for an n-MOS is shown in Fig. 1.1.

Within the effective mass approximation, Schrodinger's equation for the wave

function 'l/JOij for this system can be written as,

(2.1)
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where m*-l represents the effective mass tensor, V(z) the electrostatic potential,

e the magnitude of the electronic charge and E;j is the energy. Z is reckoned

positive into the semiconductor. Following Stern [3]' the electronic wavefunction
,pOij for the jth subband in the ith valley can be expressed in terms of Bloch waves
traveling parallel to the interface, constrained by an envelope function normal to

it, thus:
(2.2)

here, kx and ky represent the transverse components of the wave vector k of the

electron measured relative to the band edge. ()depends on kx and kyo Envelope

function ,pij(Z) is the solution of

[-~ dd22 + ev(z)] ,pij(Z) = Eij,pij(Z), (2.3)
2m.i Z

where, m.i is the effective mass perpendicular to the interface and Eij is the.
eigenenergies of the jth subband in the ith valley in the same direction. Boundary

conditions commonly used for the solution ofEq. (2.3) are ,pij(OO) = a deep inside
the semiconductor and at the oxide-semiconductor interface, ,pij (0) = O. Each

eigenvalue Eij found from the solution of Eq. (2.3) is the bottom of a continuum

of levels called a subband, with energy levels given by the relationship,

(2.4)

here mx and my are the principle effective masses for motion parallel to the

surface. There can be as many as three values of m. depending on the surface

orientation because the conduction band of silicon has six ellipsoidal valleys along

the (100) direction of the Brillouin zone. In the effective mass approximation, the

valleys are degenerate in pairs. Thus, solution of Eq. (2:3) gives the eigenenergy

Eij and the envelope function ,pij (z).

The potential V(z) is found from the solution of Poisson's equation,

~V(z) [PdePI(Z)- e 2:ij Nijl,pij(ZW]
-

dz2 ~8i~O
(2.5)

where, ~8i is the dielectric constant of the semiconductor, Nij is the carrier con-

centration in the jth subband in the ith valley. Nij is given by the following

equation,

(2.6)

I
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where, nvi is the valley degeneracy and mdi is the density-of-states effective mass

of the ith valley, given by mdi = ,jmximyi. EF is the Fermi energy.

Pdepl(Z) is the charge density in the depletion layer, which is taken to be,

- 0, (2.7)

here, Zd is the depletion layer thickness given by

2E'iEO"'d
e(NA-ND)'

(2.8)

where "'d is the band bending due to depletion charge only. "'d can be calculated
from the following equation,

"'d = "', - kT _ eNinvZavg (2.9)
e fsiEO

Here, "', is the total band bending, Ninv is the total number of charges per unit

area in the inversion layer given by,

Ninv = LNij,
ij

(2.10)

and Zavg is the average penetration of inversion charge density into silicon given

by,

Zavg = (lINinv) ~Nij J ZI7/JijI2dz.
'J

(2.11 )

The two boundary conditions for solution of Eq. (2.5) are ~~ = 0 for large Z

and at the surface, it's value is -Fs, where,

Fs = e(Ninv + Ndepz),
EsiEO

is the surface electric field in silicon, and

is the number of charge per unit area in the depletion layer.

(2.12)

(2.13)
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2.1.2 Calculation

The self-consistent calculation starts with an initial estimate for the potential,
V(z) and then solves Eqs. (2.3) and (2.5) iteratively until the output potential

from Eq. (2.5) agrees with the input potential in Eq. (2.3) within the specified

limits.

The simplest approximation for the trial potential is.to replace the potential

V(z) in Eq. (2.3) by -Fsz for z > 0 and by an infinite barrier for z < O. This

is called triangular potential approximation. The solution of Eq. (2.3) for 1/Jij

and Eij with this approximation is given in Ref. [3]. But this approximation is
reasonable only when there is a small or no charge in the inversion layer.

When all the carriers are at the lowest subband, the trial potential can be

obtained by the variational approximation. For this approximation, the trial

eigenenergies for the initial solutions of Eq. (2.3) are obtained by an approxi-

mate formula using the variational technique and are described in Ref. [3J. This

trial potential generally leads to good convergence except at high temperature,

for which the assumption that all the carriers are in the lowest subband is partic-

ularly poor. At high temperature, one should start with small values of Ninv and

then gradually go to the larger values, taking the results of each case to construct

the starting potential for the next. After solving Eq. (2.3) for 1/Jij and Eij with

the approximate equation, the Fermi energy, EF can be found from Eq.(2.6) and

(2.10) for a given Ninv. Once the Fermi energy is known, Nij for each subband

can be calculated from Eq. (2.6).

The potential V(z) is determined by solving the Poisson's equation Eq. (2.5)

using the boundary conditions described above. The potential thus obtained is

inserted for V(z) in Schriidinger's equation, .which is re-solved in the manner just

described. New values for EF and Eij for all subbands under consideration are

re-estimated using the equations already given. Poisson's equation can be solved

again and this procedure is repeated until the potential distribution and energies

converge.

• (
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The convergence criteria are that successive eigenvalues in the solution of the'
Schrodinger equation (Eq. (2.3)) with a given potential agree to within 10-6 eV

and that the potentials in successive rounds of iteration differ by no more than

the larger of KT/2000, (EF - Eo)/104, or 10-6 eV. Another important criteria

for the convergence is the convergence of EF because it is the most sensitive to
the change of 'Ij; and V.

2.2 Green's Function Formalism

The Green's function is a powerful concept that gives us the response at any point

due to an excitation at any other. For the MOS inversion layer, retarded Green's

function for the ith valley at any distance z is defined by the relationship,

[E + !!...- ~22 - eV(z) + iE] Cf(z, z'; E) = o(z - z'),
2mzi uZ

(2.14)

where E is an infinitesimally small positive energy. The retarded Green's function,

Cf(z, z'; E), can be viewed as the wave function at z resulting from a unit exci-

tation applied at z'. According to the nature of Green's function, it is continuous

at z = z' but it's derivative is discontinuous by, 2mz;/h? at z'.

Cf is used to calculate the one-dimensional density-of-states, NID, eigenen-

ergies, Eij and normalized wavefunctions, 7/Jij' The logarithmic derivative of the

retarded Green's function CR is defined by [30]:

Z.( "E) = 2h [BCf(z,Z';E)/CR( I'E)]
$ Z, Z ,. B Z Z, Z , .

- 'l,ffizi Z
(2.15)

Since Zi(Z, Zl; E) has a discontinuity at z = Zl, one needs two boundary condi-

tions. To obtain these con4itions, it is assumed that the potential is flat suffi-

ciently far from the oxide-silicon interface in both directions. Let V( -00) is the

value of constant potential deep inside the gate-metal and V(oo) is the value of

constant potential deep inside the bulk silicon. Green's function in those regions

may be expressed as,

and

CR(z ---t 00 Zl. E) '" e7i(OO)(Z-z'}t , , ,

CR(z ---t -00 z'. E) '" e-7i( -oo}(z-z')t , , ,

(2.16)

(2.17)

r
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wher~ li(::I:oo) = iV(2mz;/1i2
) (E - eV(::I:oo) + iE). The boundary conditions to

calculate Zi are determined from Eqs. (2.16) and (2.17). These are,

Zi(Z -t 00, z'; E) = Zo;(oo), z > z', (2.18)

and
Zi(Z -t -oo,z';E) = -Zoi(-OO),Z < z', (2.19)

where Zoi(::I:OO) = (21i/imzih;(::I:00). From the properties of ID Green's func-
tions, it can be shown [30] that, for all z > z' :

Zi(Z, z'; E) = Z/(z; E), (2.20)

and for all z < z' :
Zi(z,z';E) = Z;-(z;E). (2.21)

Note that Z/(Zi-) does not depend on z' as long as z > z'(z < z'). The method
for calculating Zi" have been discussed in detail in Ref. [31]. Zi" are calcu-

lated using a method analogous to the impedance transformation technique of

microwave transmission lines along with the two boundary conditions given in

Eqs. (2.18) and (2.19).

(2.22)C.R(z z'. E) = "" 'l/Jij(Z)'l/Ji/(Z')
• " L..JE E+"j - ij 1,(

The normalized wave function can be obtained from retarded Green's func-

tion. From the well known expansion of Ci
R in terms of the complete set of

eigenfunctions:

(2.23)

If Ei(j+l) - Eij » E for all values of j, only one term in the series dominates when

E -t Eij, since the discrete eigenenergies in one-dimension are nondegenerate.

For the diagonal elements of Cf, we obtain

CR(z z'E -t g.) ~ l'l/Jij(ZW
." 'J EE+"- ij ZE

Taking imaginary parts of both sides of Eq. (2.23) and substituting E = Eij,

l'l/Jij(ZW = -E'Srn [CiR(Z, z'; Eij)] .

It has been shown in Ref. [30] that,

(2.24)

'" [CRt "E)] _ 4", ( i )-osm i z,z, -/iosm Z+( .g.)-Z:-( .g.) ,
~ Z, t] Z Z, Z]

(2.25)



Substituting Eq.(2.25) in Eq.(2.24),

2 4E (. i )l7/Jij(Z)I = r;'Sm Z+(. E) - Z:-( . E) .
t Z, tJ t Z, tJ
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(2.26)

The 1D density-of-states, NlD, is related to the diagonal part ofGR. NlDi (z; E),
in terms of retarded Green's function, Gf is given by,

NlDi(z; E) = -~'Sm [Gf(z, z'; E)] , (2.27)

As E ---t 0+, the density-of-states (DOS), NlDi(z;E), becomes delta functions at

the eigenenergies, E = Eij in a bound system with the amplitude equal to the

probability density at that energy, i.e.,

NlDi(z; E) = L l7/Jij(zW5(E - Eij).
j

(2.28)

(2.30)

In the presence of inelastic scattering or in a leaky quantum well, Gf is defined

by Eq. (2.14) with E replaced by 11;. Here 11; = n/2Ti where 'Ii is the phase-

breaking time in the presence of inelastic scattering and is the carrier life time in

the quantum well in case of a leaky well. When E approaches Eij, the density-

of-states is given by the familiar Lorentzian shape:

11; l7/Jij(ZW
NlDi (z; E) = 71' (E _ Eij)2 + 11;2' (2.29)

Using the definition in Eq. (2.27), NlD can be expressed in terms of the logarith-

mic derivative Z,o' [29]:

NlDi (z; E) = 71'~'Sm (z+(Z; E) ~ Z- (z; E)) .

The eigenenergies of a quasi-bound state, Eij can easily be found by locating

the peaks of NlDi' evaluated using Eq. (2.30). Once the eigenenergies have been

found, the normalized wave functions can be calculated using Eq. (2.26).

2.3 Modification of Self-Consistent Analysis in
the Presence of Wave Function Penetration

Properties of carriers in MaS inversion layers are studied by solving coupled

Schriidinger's and Poisson's equations self-consistently. Within the effective-mass
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approximation, the 3D Schriidinger's equation in a MOS inversion layer may be

decoupled into a 1D equation that describes the envelope function in the direc-
tion normal to the interface. For a parabolic bandstructure, 1D Schriidinger's

equation is given by Eq. (2.3). When the traditional boundary conditions are

used, the effects of wave function penetration are neglected. In order to include

wave function penetration, an open boundary condition is required to be applied

at silicon-oxide interface that should take into account the quasi-bound nature of

the inversion layer states.

In this study, we use a new technique presented in Section 2.2. As already

indicated, open boundary conditions are used which are based on the assump-

tion that the potential profile is flat at deep inside the gate metal as well as

at deep inside the bulk semiconductor. This assumption implies that the wave

function deep inside the semiconductor is exponentially decaying (E < eV(oo))
and deep inside the gate metal, the wave function is a plane wave (E > eV( -00)).

Since a fraction of inversion charge resides within the gate oxide due to wave

function penetration, Poisson's equation should be solved for the combined oxide

and semiconductor regions. Considering wave function penetration, Poisson's

equation is written as

- Tox < Z < 0,

where

- [Pdepl(Z) + Pinv(Z)] /EoESi, Z > 0,

I: . 2Pinv(Z) = -eNijl1/Jij(z)1 ,
'J

(2.31)

(2.32)

and Pdepl(Z) is defined by Eq. (2.7). In Eq. (2.32), Nij is given by Eq. (2.6). When

l1/Jij(ZW, calculated with penetration, is used to define Pinv in Eq. (2.32), effects

of shift of inversion charges on the solution of Poisson's equation are also included.

The boundary conditions required to solve Eq. (2.31) can no longer be applied

at the semiconductor-oxide interface [3]due to the presence of inversion charges

in the oxide. Instead, the boundary conditions used are that dV / dz vanishes for

large Z and that its value at the gate metal-oxide interface (z = -Tox) be -Fox,

~"
\,
\,
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where
(2.33)

Nino and Ndep1 are given by Eqs. (2.10) and (2.13), respectively. Eq. (2.33)

assumes that the wave function tail in the gate oxide region has decayed to an

insignificant value at z = -Tax. This assumption has been found to be valid in

devices with Tax:::: 0.5 nm [27]. Another relationship necessary to relate oxide

field Fox to silicon field Fs at z = 0 is that EoxFox = ESiFs'

Under the modified self-consistent analysis, Eqs. (2.3) and (2.31) - (2.33) are

solved iteratively. The calculation should be started with small values of Nino

and then gradually go to the larger values, .taking the results of each case to

construct the starting potential for the next. The initial potentialV(z) is ob-

tained by solving Poisson's equation assuming Nino = O. For a given potential

V(z), the eigenenergies of the quasi-bound states, Eij, are calculated by locating

the peaks of NWi where the 1D DOS, Nw, is calculated using Eq. (2.30). The

logarithmic derivative, zt can be calculated as functions of z using Eqs. (2.18)

and (2.19) [31]. The corresponding wave functions including penetration into the

gate dielectric can then easily be obtained from the relationship mentioned in

Eq. (2.26). Once Eq. (2.3) is solved for Eij and 1/Jij, taking into account the

effects of wave function penetration, the Fermi energy, EF can be found from Eq.

(2.6) and (2.10) for a given Nino' Once the Fermi energy is known, Nij for each

subband can be calculated from Eq. (2.6). The potential V(z) is determined by

solving the Poisson's equation Eq. (2.31) and (2.32) using the boundary condi-

tions described in Eq. (2.33). The potential thus obtained is inserted for V(z)
in Schrodinger's equation, which is re-solved in the manner just described. New

values for EF and Eij for all subbands under consideration are re-estimated us-

ing the equations already given. Poisson's equation can be solved again and this

procedure is repeated until the potential distribution and energies converge. .n

As a convergence criteria, percent changes in Fermi energy, EF and the first

eigenenergy Ei1 of the new iteration are compared to those of the previous itera-

tion and the self-consistent loop is terminated when a accuracy of 0.05% or less

is reached. A flow chart of our algorithm is given in Appendix A.



Chapter 3

Results and Discussions

The results of the self-consistent calculation for MOS devices considering the

effects of wavefunction penetration are presented in this Chapter. The self-

consistent calculations for n-MOSFETs have been performed for two different

orientations of silicon, (HI) and (100). Calculations have also been done for

p-MOSFET on (100) silicon to compare the effects of penetration on electrons

and holes.

3.1 Effective mass approximation

In MOS devices, for the chosen interface that Iiesin the (100) crystal planes, the

effective mass tensor becomes diagonal in the co-ordinate system which has its

z-axis perpendicular to the surface pointing into the semiconductor. It is known

that silicon has six ellipsoidal constant energy surfaces in the conduction band.

The (HI) surfaces have only one ladder of subbands with degeneracy 6 in the

direction normal to the interface, since all the valleys have the same orientation

with respect to the surface. For the (100) oriented surfaces, mz for electrons can

take the value of the longitudinal effective mass, ml, for the two bulk constant

energy ellipsoid perpendicular to the surface giving rise to a two-fold degenerate

subband ladder and the value of the transverse effective mass, mt, for the other

four ellipsoids, giving rise to a four-fold degenerate ladder. The valleys which

present the higher effective mass perpendicular to the surface have the lowest

kinetic energy and lowest energy levels. Effective mass approximation has been

found to be accurate in describing the quantization effects of electrons in aMOS

22
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inversion layer [16]. The values of different parameters used in the calculation

are taken from Ref. [3] and are summarized in Table 3.1.

Surface (111) (100)
Valleys All ml mt

Degeneracy, nv 6 2 4
Normal mass, mz/mo 0.258 0.916 0.190

Density of state mass, md/mo 0.358 0.190 0.417

Table 3.1: Effective masses of electrons in different valleys.

It is known that the energy band structure for holes is non-parabolic. So,

it is questionable to represent the valance band within the effective mass ap-

proximation. A first principle formalism has been used to completely describe

the valance band structure including the periodic lattice potential [16J. But this

technique is very complicated and is numerically inefficient. On the other hand,

bulk effective mass approximation has been found to be accurate in describing

the inversion layer capacitance for holes [12]. Recently, Ref. [17] showed that the

effective mass of the inversion layer holes are different from that of the bulk near

threshold region. But this analysis neglects inversion charge, and as a result, is

not valid in strong inversion. For these reasons, in this study, we also use the

bulk effective mass approximation of Refs. [6, 12].

The constant-energy surfaces of the light hole and the heavy hole bands are

represented by,

(3.1)

and is reckoned positive downwards into the valance band. Here, + and - corre-

sponds to the light hole and heavy hole bands, respectively. The parameters A,

B, C are physical constants which are determined experimentally in Ref. [6J.

For the split-off band holes, the constant energy surfaces are isotropic and

centered around r (zone center). With the three types of hole bands, we get

three energy ladders. In the bulk, the light and heavy hole bands are degenerate

at the r point (valance band edge), while the third one is separated from the

r
\
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other two by !J.E = 44 meV due to spin-orbit coupling.

The effective mass perpendicular to Si/ Si02 interface, mz and density-of-

states effective mass, md at the valance band edge on a (100) surface are reported

in Refs. [6, 12]. The values of the effective masses for holes in (100) silicon used

in this study are listed in Table 3.2.

mz/mo md/mO
Heavy hole 0.29 0.433
Light hole 0.20 0.169

Split-off hole 0.29 0.433

Table 3.2: Effective masses for different types of holes.

3.2 n-MOS Devices on (111) silicon

Self-consistent calculations for n-Mas deviCes on (111) silicon are presented in

this section. All the results are calculated at room temperature. Values of differ-

ent parameters for silicon are taken from Ref. [3] and Table-3.1. The potential

barrier height at silicon-oxide interface is considered to be 3.1 eV. Electron effec-

tive mass in oxide is assumed to be 0.5 mo with a parabolic dispersion relationship.

Aluminum is considered as the gate electrode with a work function equal to 4.1

eV. Our numerical calculations have shown that the effects of wave function pen-

etration on F, obtained from the solution of Poisson's equation due to presence

of charges in oxide layer is around 1 % at strong inversion. Influences of this

change in Fs on Eij are non-trivia!'

Fig. 3.1 shows Pinv(Z) as a function of z calculated using both boundary con-

ditions. The doping density NA = 5 X 1017 cm3, the oxide thickness Tox = 1.5

nm and the calculation is for an inversion carrier density Ninv = 1013 cm-2. As

expected, the charge density profiles calculated with both boundary conditions

are essentially similar, but the distribution calculated with penetration -isshifted

towards the oxide by a few tenths of a nanometer [26, 27J.
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Fig. 3.2 is the plot of the average distance Zavg of the inversion electrons from

the interface as a function of inversion carrier density, Ninv' Zavg is given by

Eq. 2.11. Here, the doping density and the oxide thickness are the same as those

used in Fig. 3.1. Zavg is weakly dependent on Ninv in weak inversion regime, but

decreases sharply with increasing inversion charge density in strong inversion. It

is observed that when penetration is not considered, Zavg is over-estimated by

about 0.25 nm, and this difference is insensitive to inversion charge density (or

gate voltage). It is reported in Ref. [27J that the shift in peak increases with

increasing gate voltage. However, Fig. 3.2 shows that gate voltage (or inversion

charge density) has little effect on the amount of shift in average distance of

carriers from the interface. fJ.zavg, the relative difference between Zavg calculated
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using both boundary conditions is shown in Fig. 3.3. Since the value of the shift

in Zavg remains constant, it's relative error increases with increasing Ninv due to

decrease in Zavg' We have calculated ,6.zavg for three different oxide thickness and

for two different doping densities. For a given doping density, ,6.zavg is found

to be independent of oxide thickness. On the other hand, the magnitude of the

relative error increases with increasing doping density. Results show that the

relative error in estimating Zavg is significant over the entire inversion region for

all values of oxide thickness and doping densities considered.

Next, we study the effects of penetration on band bending. Band bending

cPs consists of two components: cPs = cPd + cPI, where cPd is the band bending

due to depletion charges and c/JI is the band bending due to inversion charges.

Since band bending is obtained from the solution of Poisson's equation, in or-

)
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der to study this effect, it is essential that effects of wave function penetration

are incorporated within the self-consistent loop. Our numerical calculation has

demonstrated that wave function penetration into the gate oxide has no effect on

</>d' Fig. 3.4 shows ,pI as a function of Ninv for the same values of doping density

and gate oxide thickness as used in Fig. 3.1. </>1 calculated with penetration is

lower than that calculated without penetration and the difference between the

two increases as the inversion grows stronger. This can be explained in terms of

lower Zavg when penetration is considered and in terms of increasing error, !:lzavg

with increasing Ninv' Fig. 3.5 is the plot of !:l</>J,the relative error in ,pl' It is

seen that !:l,pI, too, is independent of oxide thickness and the magnitude of the

relative error increases with increasing doping density. The magnitude and the

variation of !:l</>Jin Fig. 3.5 is found to be identical to that of !:lzavg (Fig. 3.3).
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This is due to the fact that in a given device for a certain Ninv, h is proportional

to Zavg'

Another important quantity that has significant effects on MOS properties

is the inversion capacitance Ginv, defined as Ginv = eoNinv/oc/J, [13]. The gate

capacitance Gg of a MOSFET is expressed as a series combination of the oxide

capacitance Gox and Ginv, i. e., Gg = Gox/(l + Gox/Ginv). Fig. 3.6 shows Gino
as a function of Nino calculated using both the boundary conditions. Since Zavg

with penetration is smaller, Gino is higher when penetration effects are consid-

ered. Fig. 3.7 is the plot of tJ.Ginv, the relative error in Gino. Again, we find that

oxide thickness has no effect on calculation of Gino and the relative error slightly

increases with increasing doping density.



29

N 1 17 .3
A=5x 0 cm

-10

.11

~
:R. -120..•.•
~-

-13
0&-
c: .14•..
0•..•.. -15CI)
CI)
> .16.•.•
ell
CI)a: .17

-18
10'0

N -1018cm.3A-

--Tox=1.0 nm
....•... Tox=1.5 nm
....•.... Tox=2.0 nm

10"

Inversion carrier density, N. (cm-2)InV

1013

Fig. 3.5: Relative error in 'PI, 6.rPr vs Ninv for Tox = 1.0 nm, 1.5 nm, 2.0 nm and
NA = 5 X 1017 cm~3 and 1018 cm-3.

Fig. 3.8 is the plot of gate capacitance, Gg, as a function of Vg for both

with penetration and without penetration conditions. Here Gg is calculated from

the basic definition that Gg = e8Ntotl8Vg, where Ntot = Ndep + Ninv, and no

additional approximation has been invoked. Here gate voltage, Vg is given by,

Vy = rPms + ToxFox + rPs> where rPms is the work function difference between gate

metal and silicon. The slight non-monotonic nature of Gg is due to numerical

differentiation and has no physical significance. Because Ginv is higher when pen-

etration is considered, Gg with penetration is higher. Fig. 3.9 is the plot ofrelative

error in gate capacitance, 6.Gg, as a function of Vy. It is already known that due

to finite Ginv (non-zero Zovg), gate capacitance is attenuated in deep submicron

MOSFETs. Our results indicate that the degradation of Gg is over-estimated

when penetration effects are not considered. This over-estimation is more severe

at higher gate voltages as 6.Ginv higher in that region. The relative error in Gg,

(
'\



30

. ~
0-m
(J
c:
o
en•..
CI)
>c:

10'
10"

...................................

--With pen.
..........Withoutpen.

N = 5x1 0" em"A

Tox=1.5 nm

10"

Inversion carrier density, N
inv

(cm'2)

10"

Fig. 3.6: Inversion capacitance Ginv VS Ninv for NA = 5 X 1017 cm-3 and Tox = .
1.5 nm.

!::..Gg is small in the sub-threshold region and increases sharply near threshold. In

strong inversion, the error is greater than 5% and is weakly dependent on Vy.

Finally, the effects of wave function penetration on threshold voltage, VTH,

and supply voltage, VDD, of scaled MOSFETs are investigated. It has been shown

in Ref. [13]that a finite value of Ginv leads to higher value of gate voltage required

to induce a certain inversion carrier concentration in the channeL Following Ref.

[13]' VTH, and VDD are defined as the gate voltages necessary to induce an Ninv
equal to lOll cm-2 and 7x 1012 cm-2, respectively. Fig. 3.10 shows relative errors

in threshold voltage, !::..VTH and in supply voltage!::..VDD as functions of doping

density NA for different values of oxide thickness. These errors are contributed

mostly by the error in estimating <PI (Figs. 3.4 and 3.5). It is seen that wave

function penetration effects on threshold voltage is important only in devices with
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low substrate doping and thin gate-oxides. However, since this condition is not

usually realized in practical devices, penetration effects on threshold voltage of

real devices are said to be insignificant. As the inversion carrier density is small

at threshold, the band bending at threshold is mainly due to depletion charges,

and we have already seen that this is not influenced by penetration effects. On

the other hand, the relative error in estimating VDD can be as high as a few per-

cent. In Fig. 3.10, decreasing oxide thickness increases the magnitude of b.VDD

and increasing doping density decreases the magnitude of b.VDD. The reasons

for these two opposite trends can be explained with the help of the following

arguments. When the oxide thickness is reduced, gate voltage for a given Ninv
also reduces and the same percentage error in calculating (PI constitutes a greater

fraction of the total gate voltage and the error in VDD increases. On the other

hand, when doping density increases, cPd required to reach strong inversion also

,..
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increases (so does Ndepl and Fox) and <h becomes a smaller fraction of the total

gate voltage, thereby reducing the error in VDD. It can, therefore, be concluded

that when device dimensions are scaled down, the relative error in supply voltage

due to neglect of wave function penetration is only weakly affected.



33

6

.....
~0 5~

01

~

'"
4

()

c:
3•..

0•..•..
CI) 2
CI)
>.•..
ell 1
CI)a:

0
0.0 0.2 0.4

N 5 017 ~
-- A= x1 em

Tox=1 nm
nMOS

0.6 0.8

Gate voltage, Vg (Volts)

Fig. 3.9: Relative error in Cg, !::>'Cg in (%), as a function of Vg for the device
studied in Fig. 3.8.

3.3 n-MOS and p-MOS Devices for (100) silicon

Results for n-MOS and p-MOS devices on (100) silicon are presented in this sec-

tion. Again, the results are calculated at room temperature. In our calculation

for electrons, we have considered two valleys of the conduction band as men-

tioned earlier. For holes we have considered three types of bulk hole sub-bands,

i.e., light, heavy and split-off holes. The potential barrier height at silicon-oxide

interface has been considered to be 4.78 eV for holes.

Figs. 3.11(a) and 3.11(b) are the plots of the average distance Zavg of the in-

version carriers from the interface as a function of inversion carrier density, Ninv,

for n-MOS and p-MOS devices, respectively. It can be seen in Fig. 3.11(a) that

the average distance of the longitudinal valley electrons is much smaller than that
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of the transverse valley electrons. It is due to the heavier effective mass of the

longitudinal valley compared to the transverse valley. It can also be seen that

the Zavg is closer to Zavgl for n-MOSEFTs. This is because the carrier density

associated with the longitudinal valley is greater. When we compare these re-

sults with those in Fig. 3.2 for (111) silicon devices, Zavg is found to be smaller

for (100) devices. As already mentioned, heavier effective mass for longitudinal

valley electrons in (100) silicon is responsible for this. Due to the same normal

effective mass, m" of heavy holes and split-off holes, the average distances for

both were found identical and results for split-off holes are not shown explicitly.

Zavg for holes is found higher than that for electrons. This implies that holes,

on the average, stay further away from the interface than electrons. Again, the

reason behind this is the lower effective mass of holes. We, therefore, conclude

o
•



35

that lower effective mass of inversion carriers causes the avreage distance from

the interface to increse. The results for holes are consistent with those obtained

in Ref. [6].

Figs. 3.12(a) and 3.12(b) are the plots of the relative error in average distance,

t:>.zavg (in nm) of the inversion carriers from the interface as a function of inversion

carrier density, Ninv, for n-MOS and p-MOS devices, respectively. It is observed

that when penetration is not considered, Zavg is over-estimated by about 0.1 nm

for electrons and 0.18 nm for holes. It indicates that the shift of average distance

due to penetration is almost double for holes compared to electrons in (100) de-

vices. As the barrier height at the silicon-oxide interface for holes is greater than

that for electrons, it is commonly believed that penetration effects are more severe

in n-MOS devices. However, our results indicate otherwise. Again, this can be

explained in terms of the relative magnitude of effective masses of electrons and

holes in different valleys. The penetration effect is also more severe for transverse

valley electrons than for longitudinal valley electrons (similar observation also

for holes). Thus, we can conclude that the penetration effect depends upon the

effective mass of carriers and is more dominant for carriers with lower effective

mass. An unusual feature observed in Fig. 3.12(a) is that for electrons, t:>.zavg may

decrease with increasing Ninv and at high inversion carrier density, t:>.zavg for all

electrons is actually smaller than the error for electrons either in the longitudinal

or in the transverse valley. This odd result will be explained later in this section.

Figs. 3.13(a) and 3.13(b) are the plots of t:>.zavg in percent of Zavg with penetra-

tion as a function of Ninv, for n-MOS and p-MOS devices, respectively. Since the

value of the difference in Zavg remains almost constant for holes, it's relative error

increases with increasing Ninv due to decrease in Zavg. But due to the decrease

in t:>.zavg for electrons, it's relative error decreases with increasing Ninv except at

very high Ninv. We have also calculated Zavg for different gate oxide thickness.

It is observed that oxide thickness has no significant effect on Zavg. Comparing

Fig. 3.13 with Fig. 3.3, it is found that the relative error in average penetration is

the maximum for electrons on (111) silicon devices. This observation is consistent

with the remarks made in the discussion on Figs. 3.11 and 3.12 (see Tables 3.1
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and 3.2).

Figs. 3.14, 3.15 and 3.16 are the plots of the relative concentrations of inversion
carriers among different valleys as a function of inversion carrier density, Ninv,

for three different doping densities, respectively. Results for both n-MOS and p-

MOS devices are shown in each figure. From these figures, it can be seen that the

relative concentrations of holes are almost independent of substrate doping and

boundary conditions although these change slightly with Ninv' But for electrons,

the relative concentrations are severely affected by the substrate doping, bound-

ary conditions and Ninv' It can be seen that with increase in NA, longitudinal

valley becomes more dominaJlt. The relative concentration for longitudinal valley

increases with increasing Ninv, and that for the transverse valley decreases with

increase in Ninv' Finally, if penetration is considered, the relative occupancy of

longitudinal valley decreases with a corresponding increase in that of transverse

valley. It has been numerically verified that the large difference between effective

masses for electrons in longitudinal and transverse valleys and the corresponding

small difference for heavy and light holes are responsible for the observed effects

in these figures.

Figs. 3.17(a) and 3.17(b) are the plots of eigenenergies measured from Fermi

energy, (Eij - EF), as a function of inversion carrier density, Ninv, for n-MOS

and p-MOS devices, respectively. From Fig. 3.17, it can be seen that for electrons

(Eij - EF) are sensitive to the penetration effects and the effects increase with

increase in Ninv. In the longitudinal valley, (Eij - EF) are under-estimated when'

penetration effects are neglected whereas in the transverse valley, neglect of pen-

etration effects causes (Eij - EF) to increase. But for holes, calculated (Eij - EF)

are almost independent of the boundary conditions. Since the probability of occu-

pancy of any eigenstate depends on (Eij - EF) according to Fermi-Dirac statistics,

a change in this quantity with boundary condition results in the boundary con-

dition dependence ofrelative concentration observed in Figs. 3.14, 3.15 and 3.16.

Figs. 3.18(a) and 3.18(b) are the plots of (Eij - EF) as a function of substrate

doping density, for n-MOS and p-MOS devices, respectively at an inversion car-
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rier density of Ninv = 1012 cm -2. It can be seen that for electrons, penetration

effects on (Eij - EF) are sensitive to the change in doping density and are more

dominant at higher substrate doping. But for holes, boundary conditions have

no significant effect on (Eij - EF), and this effect is very weakly dependent on
doping density. Fig. 3.18 explains the doping density dependence of the relative

concentration observed in Figs. 3.14,3.15 and 3.16.

The unusual feature observed in Figs. 3.12 and 3.13 for electrons can now

be explained. ,6.zavg for a given Ninv is defined by the following relationship,

,6.zavg = z:t'g - Z~eg' where, 'wp' stands for with penetration and 'np' implies no

penetration. Here for electrons,

wp _ 1 [NwP wp NWP wp]
Zavg - N invlZavgl + invtZavgt 1

mv

'and
np _ 1 [Nnp np Nnp np]

Zavg - N invlZavgl + invtZavgt,
mv

(3.3)

and similar expression apply for holes. Note that in Eqs. (3.2) and (3.3), Ni":.~l+
Nwp - Nnp + Nnp - N
invt - invl invt - inv'

For holes, penetration has no significant effect on relative concentrations of

carriers. So, for holes, Ni":.~L ~ Ni':L and Ni":.~H ~ Ni':lI' Defining ,6.zavgL -
wp np d A _ wp np 't ~ h I

ZavgL - ZavgL an UZavgH - ZavgH - ZavgH' we wn e lor 0 es,

,6.zavg ~ N
1

[Ni":.~,6.ZavgL+ Ni":.~H,6.ZavgH+ Ni~s,6.ZavgsJ. (3.4)
mv

Here ,6.zavgs = ,6.zavgH. So, ,6.zavg will be a weighted average of ,6.zavgL and ,6.zavgH
and ,6.zavg will lie between the two.

But for electrons, significant changes in relative carrier concentrations in lon-

gitudinal and transverse valleys occur due to wave function penetration. In such

case, ,6.zavg will not be a simple weighted average of ,6.zavgl and ,6.zavgt. Depen-

dence of ,6.zavg on Ninv can be explained in terms of a sample calculation shown

in Table 3.3.

('
'- ~

From this calculation, it becomes evident that although the error for any given

valley increases with increasing Ninv, due to different weighting factors associated

.~,
I '''.( .
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Ninv Zavgl Ninvl Zavgt Ninvt fl.zavg fl.zavg1 fl.zavgt
cm-2 nm 101Ocm-2 nm 101Ocm-2 nm nm nm
1011 1.671 (wp) 6.11 (wp) 2.421(wp) 3.89(wp) -0.094 -0.072 -0.329

1.743(np) 6.88(np) 2.75(np) 3.12(np)
1013 1.075(wp) 682(wp) 1.786(wp) 318(wp) -0.074 -0.085 -0.434

1.16(np) 798(np) 2.22(np) 202(np)

Table 3.3: Sample calculation of fl.zavg for electrons.

with different boundary conditions, fl.zavg can decrease with increase in Ninv and

can even become less than either fl.zavg1 or fl.zavgt'

Figs. 3.19(a) and 3.19(b) show Ginv as a function of Ninv calculated using

both the boundary conditions for n-MOS and p-MOS devices, respectively. It

can be seen that the inversion layer capacitance calculated for both n-MOS an(1 I

"p-MOS devices without considering penetration are identical to those obtained in .••

Ref. [12Jfrom self-consistent calculations for (100) silicon devices. This indicates

the accuracy of our numerical calculation. At strong inversion, Ginv for electrons

is higher than that for holes. We also find that penetration effects are more in

p-MOS structures. Comparison of Fig. 3.19 with Fig.3.6 reveals that penetration

effects are the most visible for (111) nMOSFETs.

Figs. 3.20(a) and 3.20(b) are the plot of fl.Ginv, the relative error in Ginv as

a function of Ninv, for n-MOS and p-MOS devices, respectively. Again, we find

that oxide thickness has no effect on calculation of Ginv' A significant finding in

Fig. 3.20 is that the effect of substrate doping on relative error in Ginv is opposite

for n-MOS and p-MOS devices. The relative error increases for holes, whereas

decreases for electrons with increasing doping density. It is because in (100)

structures for a given Ninv, fl.zavg decreases for electrons with increasing doping',

density, while fl.zavg increases for holes with increasing doping density. Also t~e \

percentage error is greater for holes. A comparison of Fig. 3.20 with Fig. 3.7

shows that the effects of doping density on (111) n-MOS are similar to those for;

(100) p-MOS. t
Figs. 3.21(a) and 3.21(b) are the plot of Gg as a function of Vg , for n-MOS

and p-MOS devices, respectively. Results show that Gg is under-estimated when
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penetration effects are not considered and the error is more at higher gate volt-

ages. Moreover, wave function penetration has more influence on Cg for p-MOS

rather than for n-MOS. This apparently small error in Cg due to penetration will

have non-trivial effects on device parameter extraction from C-V measurements.

Figs. 3.22(a) and 3.22(b) are the plot of t:>.Cg (%) as a function of Vg , for n-

MOS and p-MOS devices, respectively. The results show some interesting trends.

The error is ,negligible in the sub-threshold region, increasing sharply around

threshold and becomes almost linear in inversion region. Since increasing doping

density increases the threshold voltage of a MOSFET, t:>.Cg curves are shifted

to the right with increase in doping density. For n-MOS structures, there is a

decrease in the error with an increase in NA in the strong inversion region. On

the other hand, for p-MOS devices, the error is almost independent .of doping

density in strong inversion. These results are explained in the following way with

the help of Fig. 3.20. In MOSFETs with a given Vg, -Ninv is higher for a device

with lower substrate doping density. Thus for a fixed Vg, a point in Fig. 3.22 for a

curve with higher doping density corresponds to a lower Ninv' Now in Fig. 3.20,

we find for electrons that as doping density increases, t:>.Cinv for the same Ninv
decreases. Consequently, the reduction in t:>.Cinv is even greater when Ninv is also

reduced (to keep Vg fixed). Since, Cg is the series combination of Cox and Cinv, a

reduction in error in Cinv, in turn, reduces the error in Cg with an increase in NA.

Therefore, in strong inversion t:>.Cg is reduced as NA increases. Fig. 3.20(b) for

holes show that the dependence of t:>.Cinv on N D is opposite to that for electrons.

When doping density increases for a fixed Ninv, the error increases. A decrease

in Ninv (to keep Vg fixed) then reduces the error. Due to these competing effects

in t:>.Cinv, the resulting error in Cg essentially becomes independent of substrate

doping density for p-MOSFETs in strong inversion.

Figs. 3.23(a) and 3.23(b) are the plots of t:>.Cg (%) as a function of Vg , for

n-MOS and p-MOS devices, respectively. The plots are for a certain substrate

doping density but different oxide thickness. It can be seen that with decrease

in oxide thickness, the relative error in Cg increases for both n-MOS and p-MOS

devices but the error is much higher for the later devices. This results can be

( " .
'I
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explained with the help of electrical oxide thickness, Tele. Gate capacitance is

inversely proportional to Tele where electrical oxide thickness, (Tele) is given by,

Tele = Tox + (Eox/E,i)Zavg [8J. With scaling down of MOSFET device dimensions,

Tox decreases and substrate doping density increases. But as the relative error in

Zavg is independent of oxide thickness, the same percentage error in estimating

Zavg will have a much greater effect on Tele or C - g with decrease in oxide thick-

ness.

From the results presented so far, we can compare the effects of wave func-

tion penetration on surface orientation of the n-MOS devices. Comparing the

results for (111) and (100) electrons, we conclude that penetration effects are

more severe for the (111) orientation. (111) silicon has only one bulk subband

in the conduction band with six valleys of degeneracy, having an effective mass

(mz = 0.258) which is much lower than that for an electron in the longitudinal

valley (ml = 0.916) in (100) silicon. Due to the lower effective mass of electrons

in (111) silicon, the average distance of carrier from the interface is high and the

effect of penetration is more. Another, important finding is that the dependence

of the relative error in Cinv on doping density is opposite for devices on (111) and

on (100) silicon.

We can now summarize the comparison of penetration effects on n-MOSFET

and p-MOSFET on (100) silicon. As the barrier height for holes is greater than

that for electrons, penetration effects were expected to be more severe for n-MOS

devices. But, from Figs. 3.12 and 3.13, we found that the penetration effect

actually is more severe for p-MOS devices. It is due to the lower effective mass of

the heavy holes compared to that of electrons in the longitudinal valley. The effect

of doping density on gate capacitance of both p-MOS and n-MOS structures are

presented in Figs. 3.20 and 3.22. It can be seen that with an increaSe in substrate

doping density, 6.Cg vs Vg curve is shifted to the right due to an increase in the

threshold voltage. For, n-MOS devices, 6.Cg decreases in strong inversion with

increase in doping density, but for p-MOS devices, 6.Cg in strong inversion is

more or less independent of doping density.

(,
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Fig. 3.21: Gate capacitance Og vs Vy for (a) n-MOS and (b) p-MOS devices,
respectively. Calculation are for, NA = 1018 cm-3 and Tox = 1 nm.
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Fig. 3.22: Relative error in 09, 6.09 in (%), as a function of Vg for (a) n-MOS
and (b) p-MOS respectively. Calculations are for Tox = 1 nm and NA = 1017
cm-3, 5 x 1017 cm-3 and 1018 em-a
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Chapter 4

Conclusion

An improved and numerically efficient self-consistent model has been proposed for

MOSFET simulation which incorporates the wave function penetration into the

gate oxide region. This new model is used to study the effects of wave function

penetration on n-MOS and p-MOS devices by comparing the numerical results

with those of the existing self-consistent model.

4.1 Summary

Effects of wave function penetration into gate oxide on properties of n-MOS

and p-MOS devices in deep submicron regime are studied. Penetration effects

are included within the self-consistent loop by solving both Schrodinger's and

Poisson's equations taking into account wave function penetration. A new tech-

nique based on Green's function formalism has been used for the solution of

Schrodinger's equation. Under this technique the solution of Schrodinger's equa-

tion, i. e., eigenenergies and wavefunctions are found using the logarithmic deriva-

tive of Green's function which is calculated using a method analogous to the

impedance transformation technique of microwave transmission lines with open

boundary conditions. So, no matrix manipulation is required for the solution of

Schrodinger's equation and the whole technique is numerically efficient. Poisson's

equation is solved for the combined oxide and semiconductor regions by applying

an appropriate boundary condition at the gate metal-oxide interface.

Numerical results for n-MOS devices on (111) silicon show that when the ef-

fects of wave function penetration are not considered within the self-consistent

54
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loop, the errors made in estimating the electrostatic potential and the values of

eigenenergies are non-trivial. Penetration effects on properties of inversion carri-

ers become more important as device dimensions are scaled down. In particular,

the effects are more pronounced when the devices are operating in strong inver-

sion. It is observed that penetration effects on threshold voltages are insignificant.

However, the effects on supply voltage, defined as the gate voltage required to

induce certain inversion carrier density, can be as high as a few percents. Increase

in doping density and reduction in oxide thickness have two opposing effects on

the error made in estimating supply voltage when penetration effects are not con-

sidered. Consequently, effects of wave function penetration on supply voltage are

weakly sensitive to device scaling. Comparison of numerical results for n-MOS

and p-MOS structures on (100) silicon shows that contrary to the common belief,

penetration effects are more pronounced in p-MOSFETs. This is found to be due

to lower effective mass of heavy holes compared to that for electrons in the lon-

gitudinal valley. Variation of doping density has opposite effects on the relative

error in inversion capacitance for n-MOS and p-MOS devices. These opposite

trends manifest themselves in the relative error in gate capacitance in an inter-

esting way. Error in gate capacitance is insignificant in the sub-threshold region

and increases sharply around threshold. For n-MOS devices in strong inversion,

relative error in gate capacitance decreases with increasing doping density, while

that for a p-MOSFET is insensitive to doping density. Large difference in effective

masses of electrons in longitudinal valley and in transverse valley compared to

that of heavy and light holes are found to be responsible for this effect. Although

the error in gate capacitance is only a few percent, this will have non-trivial ef-

fects on MOSFET parameter extraction from C-V measurements. Comparison

of numerical results for n-MOS structures on (111) and (100) silicon shows that

penetration effects are more pronounced in n-MOSFETs on (111) silicon. This is

found to be due to the lower effective mass of electron in (111) silicon. The de-

pendence of the relative error in Ginu on doping density is opposite for devices on

(111) and on (100) silicon. Large difference in effective masses of (100) electrons

in longitudinal valley and in transverse valley is found to be responsible for this

effect.
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4.2 Suggestions for Future Work

Self-consistent solution is an important tool for simulation of many devices where

the QM effects become significant. Our self-consistent model may be used for

simulating many systems, such as high electron mobility transistor (HEMT), res-

onant tunneling diodes and quantum well lasers, where self-consistent calculation

with open boundary conditions is necessary. A few suggestions for future work is

given below.

We have applied our model to calculate device properties in depletion and

inversion regions. Certain modifications of the model is necessary to use it for

simulating the accumulation region. Calculation of gate-capacitance accurately

in accumulation is important from a parameter extraction point of view.

We have performed 1-D self-consistent solution of a MOS capacitor. But when

voltage is applied between the drain and the source, quantum effects of 2-D nature

arise in the channel and source/drain region of scaled ULSI MOS device, which

may not be properly accounted for by 1-D or quasi 2-D approaches. So, to take

into account the effects of the 2-D quantization, the existing 1-D self-consistent

model should be modified.

The direct tunneling gate current of a deep submicron MOSFET flows due to

QM tunneling of inversion layer carriers from semiconductor to the gate electrode.

Our model may be applied for accurate determination of direct tunneling current.

As the gate length of CMOS devices are continued to be scaled down to sub-

100 nm regime, scaling rules dictate that the gate oxide thickness be scaled down

to well below 2 nm. As the thickness is decreased below 2 nm, the direct tun-

neling gate current increases rapidly. In order to decrease this leakage current,

high-K materials should be used as gate dielectric. The modeling of such devices

can be done easily with the proposed self-consistent model.

In our calculations, we have used effective mass approximation for both elec-

trons and holes. However, due to anisotropy and mixing of valance bands, the
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use of effective mass approximation for holes has been a topic of debate. The

present model for p-MOS devices may be further improved by incorporating the

nonparabolicity of the valance band structure.
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Appendix A

The modified self-consistent model, which has been used in this study, has been

described in section 2.3. Here, some important points, which should be followed

to get better results and save valuable computational time, are highlighted. At

the end, the whole self-consistent model is presented in flowchart form.

A.I Brief Description of Calculation

In our self-consistent calculation, Ninv is the independent variable. For analysis

at room temperature one has to start with a lower value of Ninv (~ 108 cm-2)

then gradually go to higher values. As the number of points increased, so does

the accuracy, but at the cost of increased computational time. Since the model-

ing of threshold region depends critically on the number of Ninv points selected,

the standard practice is to choose much closer values of Ninv near the threshold

region, but in the sub-threshold region or strong inversion region the values need

not be so close.

As the self-consistent solution is an iterative technique, a better initial guess

provides quicker convergence. So, the semi-classical model can be used to give

a better initial guess to start the analysis with a very low Ninv. For a certain

Ninv, the value of <Pd can be calculated using the depletion approximation and

the whole procedure is give in detail in Ref.[5].

After defining the total MOS structure as shown in Fig. 1.1, for numerical

calculation, the system should be sub-divided into small grids in the Z direction.

An important decision to make is how many grids one should choose in different

regions. Higher the no. of grids, more accurate will be the numerical results,
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but in expense of a proportionately increased computational time. As the wave-

function mainly concentrates in the inversion region (i.e. region in silicon near

the Si/Si02 interface), for more accurate simulation, the no. of grids should

be high in that region. But in metal or deep inside the semiconductor the grids

may be small in no.. So, the above decision can optimize the results as well as

computational time.

Some times, due to numerical reasons, the loop may diverge or fluctuate

around a point. To avoid such problems, a weighting factor can be incorporated

which will construct the new potential profile by taking an weighted average of

the new and the old potential profiles.
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A.2 Flowcharts

Calculate Zd and Pdepl(Z)
from <Pd using Egs. (2.8)

and (2.7)

Calculate, $d using
depletion approximation

No. ofNi~v 2
Total no. of

Main Routine

End)

No

Assume, Ninv =:= 0,
piny (z) =0.

Double integrate Eg.
(2.30) to find V(z) using
the initial conditions given

in Eg. (2.32).

( Return)

Fig. A.I: Flowchart.
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Find energy
corresponding to peaks of

1-D DOS

Find, Ep by solving
coupled Eqs. (2.6) and

(2.10).

Calculate Nij using
Eq. (2.6).

Iter = 0
Error =10

Find, Zi.:t using technique
suggested in Ref. [30]

Calculate, I-D DOS using
Eq. (2.29)
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Fig. A.2: Flowchart (continued). c
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F

While
(Error> 0.05 or
iteration<5)

T

Calculate I '¥il using
Eq.(2.25). Calculate Z.vg

usin.l! Eq. (2.11).

Calculate piny (z) and
pdepl(Z) using

Eqs. (2.31) and (2.7)
respectively

Double integrate Eq.
(2.30) to get V(z) using
the initial conditions of

Eq. (2.32)

C aleu late,
~. = V(z=bulk) - V(z=Tox)

Calculate $d , Zd and N depl

using Eqs. (2.9), (2.8) and
(2.] 3) respectively.

Eigcnenergy
calculator

Find EF by solving the
coupled Eqs. (2.6) and

(2.10). Calculate Nij using
Eq.(2.6).

Find
Error = { (new EF - old EF)

*lOO}/ new EF.
Iter = Iter + 1.
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