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Abstract

This thesis presents an improved thresholding technique with an accurate esti-

mation of noise level for speech enhancement in both wavelet and DCT domain.

Usually, setting of a threshold criteria requires an accurate estimation/knowledge

of the noise level in the noisy speech. In speech, most of the signal energy is re-

tained in the lower frequency range. The higher frequency region essentially

contains noise from which noise level is usually estimated. The amount of sig-

nal present in this region may be insignificant at low SNR but is not negligible

particularly at high SNR. Because of the presence of a small fraction of signal

coefficients at the high frequency region, we get an estimate of noise level that

suffers an upward bias. For this reason, most of the existing techniques show

deteriorating performance especially at high SNR.

In this work, the behaviour of the normalized kurtosis of the noisy transform

coefficients at the finest level is exploited for compensating this bias. Unlike other

conventional techniques, we propose a novel approach for computing a correction

factor to reduce the upward bias of the noise level obtained from the median

absolute deviation (MAD) of the high frequency coefficients of the degraded

speech. This signal-bias compensated noise level is then used as the threshold

parameter which prevents the fall of SNR even when the SNR of the given noisy

speech is high. The corrected noise level can also be used for estimation of

SNR more accurately. In this thesis, successive application of hard and soft

thresholding is proposed to devise an improved denoising method. Regions in

the transform domain, where signal strength is less than that of noise, hard

thresholding is applied by forcing the coefficients to be zero. This will eliminate

a significant portion of noise from the regions of coefficients where noise dominates

signal. After accomplishing hard thresholding, soft thresholding is applied over

the rest of the regions to further reduce the noise level. The performance of

the proposed algorithm is evaluated on speech corrupted by background white

Gaussian noise and real noise recorded inside a moving car.

IX



Chapter 1

Introd uction

1.1 Speech Enhancement: Background

Speech enhancement is the term used to describe algorithms or devices whose

purpose is to' improve some perceptual aspects of speech for the human listener

or to improve the speech signal so that it may be better exploited by other speech

processing algorithms. Development and widespread deployment of digital com-

munication systems during the last twenty years have brought increased attention

to the role of speech enhancement in speech processing problems [1J-[6]. Speech
enhancement algorithms have been applied to problems as diverse as correction of
reverberation, pitch modification, rate modification, reconstruction of lost speech

packets in digital networks, correction of so-called "hyperbaric" speech produced

by deep-sea divers breathing a helium-oxygen mixture and correction of speech

that has been distorted due to pathological problems of the speaker. However,

noise reduction is probably the most important and most frequently encountered
speech enhancement problem.

Speech enhancement attempts to improve the performance of voice commu-
nication systems when their input or output signal is corrupted by noise. The

improvement is in the sense of minimizing the effects of noise on the performance

of these systems. The need for enhancing speech signals arises in many situations

in which the speech either originates from some noisy location or is affected by the

noise over the channel or at the receiving end. Both digital and analog channels

are possible, and communication can be either between people or with a machine.
Hence speech enhancement is the problem of enhancing a given sample function
of noisy speech signal, as well as the problem of enhancing the performance of

1
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speech coding and recognition systems whose input signal is noisy [1J-[40]. Ex-

amples of important applications of speech enhancement include improving the

performance of 1) cellular radio telephone systems, which usually suffer from

background noise in the car as well as from channel noise; 2) pay phones located

in noisy environments (e.g., airports); 3) air-ground communication systems in

which the cockpit noise corrupts the pilot's speech; 4) teleconferencing systems

where noise sources in one location may be broadcast to all other locations; 5)

long distance communication over noisy radio channels; 6) paging systems located

in noisy environments (e.g., airports, machine rooms); 7) ground-air communica-

tion in which the cockpit noise corrupts the received messages; and 8) suboptimal

speech quantization systems.

In the cellular radio telephone example, the original speech is corrupted by

the noise generated by the engine, fan, traffic and wind [7J, [8J, as well as by

the channel noise .. The signals delivered by cellular systems may therefore be

noisy with impaired quality and intelligibility. If the cellular system encodes

the signal prior to its transmission, then further degradation in its performance

results, since speech coders rely on some model for the clean signal and normally

that model is not suitable for the noisy signal. Similarly, if the cellular system is

equipped with a speech recognition system which is used for automatic dialing,

then the recognition accuracy of such system deteriorates in the presence of noise,

since the noisy input signal is unlikely to obey the statistical model for the clean

signal used by the recognizer. Similar problems are encountered with pay phone

communication, air-ground communication, and teleconferencing systems. In the

air-ground communication examples, however, the messages of low quality and

intelligibility delivered to the air traffic controllers may have disastrous effects.

The situation in long distace communication, paging systems, and ground-air

communication is somewhat simpler, since the noise is added to the speech at the

channel and at the receiving end, respectively, rather than at the source location.

Hence, the clean signal can be "immunized" prior to being affected by the noise

[9J-[l1J. In suboptimal quantization of speech signals, the quantized signal is

considered a noisy version of the clean signal [12]-[13J. Hence, enhancement can

be applied to reduce the quantization noise, provided that quantization was not
optimally performed.
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The foregoing discussion demonstrates that speech enhancement has three

major goals:

1) to improve perceptual aspects (e.g., quality, intelligibility) of a given sample

function of degraded speech signal;

2) to increase robustness of speech coders to input noise;

3) to increase robustness of speech recognition systems to input noise.

The quality of speech signal is a subjective measure which reflects on the way

the signal is perceived by listeners. It can be expressed in terms of how pleasant

the signal sounds or how much effort is required on behalf of the listeners in or-

der to understand the message. Intelligibility, on the other hand, is an objective

measure of the amount of information which can be extracted by listeners from

the given signal, whether the signal is clean or noisy. A given signal may be of

high quality and low intelligibility, and vice versa. Hence, the two measures are

independent of each other. Both the quality and the intelligibility of a set of

given signals are evaluated based on tests performed on human listeners. Since

no mathematical quantification of these measures, in terms of closed-form per-

ceptually meaningful distortion measures, is known, algorithms for goals 1 and

2 above are difficult to design and evaluate. Goal 3 is significantly simpler since

the problem is that of decoding the signal into a finite number of classes and the

ultimate goal can be easily formulated in mathematical terms. Usually the prob-

lem is that of designing decoders which minimize the probability of recognition

error.

The speech enhancement problem consists of a family of subproblems char-

acterized by the type of noise source, the way the noise interacts with the clean

signal, the number of voice channels, or microphone outputs, available for en-

hancement, and the nature of speech communication systems. The noise, or the

interfering signals, may, for example be due to competitive speakers, background

sounds (music, fans, machines, door slamming, wind, traffic, etc.), room rever-

beration, or random channel noise. The noise may accompany the original signal

at the source location, over communication channels, or at the receiving end.

It may affect the original signal in an additive, multiplicative, or convolutional

manner. Furthermore, the noise may be statistically dependent or independent

of the clean signal. The number of voice channels available for enhancement is
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an important factor in designing speech enhancement systems. In general, the

larger the number of microphones, the easier the speech enhancement task The

communication system for which speech enhancement is designed can simply be a

recording which has to be displayed to audience, a man-machine communication

system (speech recognizer), a digital communication system, etc.

Speech enhancement based on spectral decomposing and filtering [14J-[22] re-

mains a common and effective approach for enhancing speech degraded by acous-

tic additive noise when only the noisy speech is available, This general class is

based on variations of optimum filters and encompasses such methods as Wiener

filtering, spectral subtraction and various maximum likelihood (ML) estimation

schemes. A common set ofrequirements in this class includes: 1) An appropriate

suppression rule based on an optimality criteria [15J, [16] and usually function

of the SNR (signal to noise ratio) and other speech and noise statistics. 2) An

estimation of the speech and noise power spectrai densities, or their respective

autocorrelation. 3) A quantification of the probability of speech presence to fur-

ther attenuate non-speech bands [17]. 4) A method for reducing residual noise

by appropriately smoothing the estimated quantities [15J and/or exploiting the

psychoacoustic properties of human hearing.

The choice of suppression rules is governed by many factors, such as com-

putational efficiency, optimality criteria, and the exploiting of human hearing

properties. In the reported literature, the range includes heuristic rules (e,g.,

[16]) as well as formally derived ones. The ML estimation approaches in [15]' [18]

attempt to better exploit the statistical properties of the DFT (discrete Fourier

Transform) of noisy speech. These methods assume a statistical model for the

DFT coefficients of noisy speech and derive optimum estimators of the magnitude

spectrum based on that modeL

An important contribution in this area is the smoothing approach proposed

III [15J whereby the variation in SNR between successive frames is reduced by

averaging the locally computed SNR (SNRpost) with the SNR estimated in the

previous frame after the filtering operation (SNRest)' The method results in a

significant reduction of the 'musical noise' artifacts, as shown in [14J:

Another speech enhancement approach is the signal subspace (88) method

[23]' [24J. The key idea is to decompose the vector space of the noisy signal into
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a signal-plus-noise subspace and a noise subspace under the assumption that the

additive noise is white. The enhancement is performed by removing the noise

subspace and estimating the clean speech from the remaining signal-plus-noise

subspace. Hidden Markov Model (HMM) based speech enhancement approaches

[25]' [26] have also drawn much attention in recent years.

Methods for speech enhancement have also been developed based on extrac-
tion of parameters from noisy speech, and synthesizing speech from these pa-
rameters [27]. All-pole modeling of degraded speech is one such method [28]. In
all-pole modeling, if wrong peaks are extracted, then these peaks may get en-

hanced. Temporal sequence of these peaks also produces discontinuities in the

contours of the spectral peaks when compared with the smooth contours in nat-

ural speech. Methods for speech enhancement have also been suggested based on
the periodicity due to pitch [29]. Noise samples in successive glottal cycles are
uncorrelated. On the other hand, the characteristics of the vocal tract system

are highly correlated due to slow movement of the articulators. These methods

for enhancement of speech depend critically on the estimation of pitch from the
noisy speech signal.

Many. speech enhancement algorithms make use of DFT to make it easier

to remove noise embedded in the noisy speech signal [1]-[22J. Recently, discrete

cosine transform (DCT) and wavelet transform have been widely used as analysis
tools in the field of speech enhancement [30J-[36J. DCT is widely used because
of its excellent energy compaction properties. During the past decade, wavelet
transforms have been applied to various research areas which include signal and

image denoising, compression, detection and pattern recognition. The application

of wavelet shrinking for speech enhancement has been reported in many works

[31]' [32]. The wavelet transform combined with other signal processing tools

has also been proposed for speech enhancement. Wiener filtering in the wavelet

domain [33]' wavelet filter bank for spectral subtraction [34]or coherence function
[35]' [36Jare the examples of such methods.

1.2 Objective of This Research

The objective of this research is to extract the speech signal from the observed

degraded version by applying a new speech enhancement technique based on the
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combined application of hard and soft thresholding of the transform coefficients

of the noisy signal with bias-compensated noise level as the threshold parameter.

Unlike other conventional techniques, more accurate estimate of the threshold

parameter, the noise level, is obtained by compensating the effect of the trace

of the signal remaining at the high frequency region of the transform coefficients

of the degraded speech. Using fourth-order statistics, we introduce a novel ap-

proach for computing a correction factor to reduce the upward bias of the noise

level obtained from the median absolute deviation (MAD) of the high frequency

coefficients of the degraded speech.

Here, we successively apply both hard and soft thresholding to devise an

.improved denoising method. The transform coefficients are first divided into

a number of blocks consisting of convenient number of consecutive coefficients

of the transformed signal. Then hard thresholding is applied to the blocks of

coefficients where average signal power is less than average noise power as these

blocks essentially contribute more noise than signal to the denoised speech. To

identify the blocks for hard thresholding, a window of length same as block size

is chosen and is slided over the whole range. This will eliminate a significant

portion of noise from the regions of coefficients where noise dominates signal.

The rest of the regions where signal strength is higher than that of noise, soft

thresholding is applied for further enhancement of the noisy signal. As the noise

power uniformly penetrates into the actual signal in the transformed domain,

subtraction of noise power from the transformed noisy signal power is expected

to improve the SNR of the enhanced signal. The coefficients with power less than

the average noise power are more susceptible to distortion; their amplitudes are

reduced proportionately.

We investigate performance of the proposed method in both wavelet and DCT

(discrete cosine transform) domain using corrected noise level as the threshold

parameter. The results will be compared with one of the most recent methods

proposed by Bahoura and Rouat [37J.

1.3 Organization of the Thesis

This thesis consists of five chapters. Chapter one gives an introduction followed

by literature review and objective of the work.

\,
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In Chapter two a brief review of speech enhancement techniques are pre-

sented. These include brief illustration of traditional approaches such as spectral

subtraction, Wiener filtering, enhancement based on speech model and wavelet

based method.

In Chapter three a new approach for speech enhancement in wavelet and

DCT domain considering the signal remaining at the finest level at the presence

of additive white noise is investigated. The method for determining the bias-

compensated noise level is extensively covered which is subsequently used as the

threshold parameter. Both hard and soft thresholding criteria to be applied

successively are then proposed.

The simulated speech enhancement results for the proposed method in both

wavelet and DCT domain are presented in Chapter four in order to compare the

results with the recent one proposed by Bahoura and Rouat [37J. Both subjective

and objective evaluation are also reported along with necessary measurements in
this chapter.

The thesis concludes by presenting an overall discussion on the work and

pointing out some unsolved problems for future work in Chapter five.



Chapter 2

Review of Speech Enhancement
Techniques

2.1 Introduction

Speech enhancement plays a key role in designing robust automatic speech and

speaker recognition systems. As the presence of noise deteriorates the perfor-

mance of the recognition systems and also shows an adverse effect on the per-

ceived quality and intelligibility of speech at the receiving end, several approaches

for speech enhancement in additive noise have been proposed. Speech enhance-

ment based on spectral decomposition and variations of optimum filters cover

the methods such as Wiener filtering, spectral subtraction and various maximum

likelihood (ML) estimation schemes. Speech enhancement systems which can

operate on the clean signal prior to its degradation by noise achieve significant

improvement in the intelligibility of the noisy signal [9]-[I1J. On the other hand,

the systems which can operate on the signal only after it has been contaminated

by noise primarily improve the quality of the noisy signal at the expense of some

intelligibility loss [1], [2]. The major breakthrough in speech enhacement tech-

niques are described in the following sections.

2.2 Speech Enhancement Techniques Based on
Short-Time Spectral Amplitude Estimation

In general, in enhancement of a signal degraded by additive noise, it is signifi-

cantly easier to estimate the spectral amplitude associated with the original signal

than it is to estimate both amplitude and phase. It is principally the short-time

8
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spectral amplitude rather than phase that is important for speech intelligibility

and quality. There are a variety of speech enhancement techniques that capitalize

on this aspect of speech perception by focusing on enhancing only the short-time

spectral amplitude. The techniques to be discussed can be broadly classified into

two groups. First, the short-time spectral amplitude is estimated in the frequency

domain, using the spectrum of the degraded speech. Each short-time segment of

the enhanced speech waveform in the time domain is then obtained by inverse

transforming this spectral amplitude estimate combined with the phase of the

degraded speech. In the second class, the degraded speech is first used to obtain

a filter which is then applied to the degraded speech. Since these procedures lead

to zero-phase filters, it is again only the spectral amplitude that is enhanced, with

the phase of the filter being identical to that of the degraded speech.

2.2.1 Speech enhancement based on direct estimation of
short-time spectral amplitude

A classical noise reductio~ approach for speech enhancement and robust recogni-

tion is the spectral subtraction method that was first proposed by Boll [IJ. The

basic idea is to restore the magnitude spectrum or power spectrum of a signal

observed in additive noise through subtraction of an estimate of the average noise

spectrum from the noisy signal spectrum. Assuming that the noise is a stationary

or a slowly varying process, the noise spectrum is estimated or updated during

the periods when the speech signal is absent. The estimation is performed on a

frame-by-frame basis, where each frame consists of 20-40 ms of speech samples.

The sample spectrum of the noisy signal is usually employed in the spectral sub-

traction approach, thus resulting in an estimate of the sample spectrum of the

clean signal. An estimate of the sample autocorrelation function of the clean sig-

nal is obtained from the inverse discrete Fourier transform (IDFT) of the estimate

of sample spectrum. The square root of the estimate of the sample spectrum is

considered an estimate of the magnitude spectrum of the speech signal. An es-

timate of signal is obtained by combining the estimate of magnitude spectrum

with the complex exponential of the phase of the noisy signal.

A block diagram of the spectral subtraction approach is shown in Fig. 2.1.

The noisy signal x(n) is given by x(n) = s(n) + v(n), where s(n) denotes the

•
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Fig. 2.1: The spectral subtraction approach

clean signal, v(n) denotes the additive noise sequence and it is assumed that sIn)

and v(n) are uncorrelated. The short time Fourier transform (STFT) of the noisy

signal x(n) [38]' is denoted by X(w), 0 :s: w :s: 27r. The sample spectrum of x(n) is

given by IX(wW. The estimate of the power spectral density of the noise process

v(n) is denoted by Sv(w). An estimate S(w) of the Fourier transform of sIn) is
then given by

S(w) = (lX(wW - Sv(WJP/2 X(w) (2.1)
. IX(w)1

provided that the difference of spectral estimates of the noisy signal and the noise

process is nonnegative. If this difference becomes negative, then it is usually

replaced by an arbitrary small nonnegative number, say t. The power spectral

density of the noise is normally estimated from portions of the noisy signal during

which speech is absent and only noise is present. The spectral subtraction based

signal estimator affects the magnitude spectrum of the noisy signal in each frame

while it keeps the phase of that signal intact. From a perceptual point of view

this is a desirable property, since the short-time magnitude spectrum of the clean

signal is considerably more important than its short-time phase spectrum [2]' [3]'

[39]' and optimal estimation of the short-time magnitude and phase spectrum of
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the clean signal cannot be simultaneously performed [15]' [25].

Many variations on the basic spectral subtraction approach have been pro-

posed [IJ, [2]' [18]' [40]. The most popular modifications are those that involve

averaging or smoothing of the estimate of the sample spectrum [1] controlling

the amount of subtracted noise [2] and using different degrees of nonlinearity in

estimating the magnitude spectrum of the clean signal [2]' [40]. The latter two
modifications are accomplished by the estimator reported in [2] as

S(w) = [IX(w)la - bE{IV(w)la}jl/a ,~i~~, (2.2)

where V(w) is the Fourier transform of the realization of the noise process, a > 0,

and b > O. Eq. (2.2) degenerates to the standard spectral subtraction estimator

given by Eq. (2.1) when a = 2 and Sv(w) "" E{IV(wW}.
The spectral subtraction estimation approach has an intuitive basis and is

relatively easy to implement. The advantage of the spectral subtraction method
is its simplicity and effectiveness. The major calculation in the spectral sub-
traction method is the discrete Fourier transform (DFT) and inverse discrete

Fourier transform (IDFT) which can be efficiently implemented using the fast

Fourier transform (FFT) algorithms. It is also proved by various researchers that

the spectral subtraction method can improve the signal-to-noise ratio (SNR) and

word recognition accuracy (WRA) under different SNR conditions [41]. The main
problem in spectral subtraction is the processing distortions caused by the random
variations of the noise spectrum and the use of noisy phase. For example, in order
to avoid the negative estimates of the signal spectrum, the spectral subtraction

output is usually post-processed by a mapping function T[.] of the form

T[lS(w)l] = {IS(w)1 if IB(w)1 > gIX(w)1,
gIX(w)1 otherwise (2.3)

where 9 is a positive parameter determined by the experiment. The distortion

caused by the nonlinear mapping in Eq. (2.3) will produce a metallic sounding
distortion, known as the "musical noise" which will be harmful to the automatic
speech recognition (ASR) system especially when the input SNR is low.

An approach which leads to a further modification of spectral subtraction

was proposed by McAulay and Malpass [19]. In this approach, the problem

was formulated by assuming that at each frequency the noise is Gaussian and
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developing the maximum likelihood estimate of IS(w)l. The resulting estimate
has the form

IS(w)1 = ~IX(w)1 + ~[IX(wW - E{IV(wWW/2
2 2 .

A further variation, proposed by McAulay and Malpass [19] modifies Eq .. (2.4)

by a factor which is chosen according to the probability of speech presence or
absence.

2.2.2 Speech enhancement techniques based on Wiener
filtering

In the previous section, the basis for enhancement was the explicit estimation

of the short-time magnitude spectrum through a process of spectral subtraction.

In this section, a frequency weighting for an "optimum" filter is first estimated

from the noisy speech. This filter is then applied either in the time domain or

frequency domain to obtain an estimate of the undegraded speech. As X(w),
S(w) and V(w) denote the short-time spectra associated with the time functions

x(n), s(n) and v(n), the estimate B(w) of S(w) takes the form

S(w) = H(w)X(w) (2.5)

As is well known, for x(n) = s(n) + v(n) in which s(n) and v(n) represent

uncorrelated stationary random processes, the linear estimator of s(n) which

minimizes the mean-square error is obtained by filtering x( n) with the noncausal

Wiener filter. The noncausal Wiener filter cannot be applied directly to estimate

s (n) since speech cannot be assumed to be stationary and the spectrum of the

clean signal cannot be assumed known. An approach often used is to approximate

the noncausal Wiener filter with an adaptive Wiener filter with frequency response

E[IS(wW]
H(w) = E[IS(w)l2J + E[IV(wWJ (2.6)

The function E[lV(wW] may be obtained either from the assumed known statis-

tics of v(n) or by averaging many frames of lV(wW during silence intervals in

which the statistics of the background noise can be assumed to be stationary.

E[lS(wWl may be approximated as IB(wW or by smoothing IB(wW where IB(wW
is obtained from the short-time spectral amplitude estimation scheme discussed

in the previous section.
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Given H(w), the short-time speech segment is then obtained as specified by

Eq. (2.5) applied either in the time domain or in the frequency domain. It should

be noted that in all of the above procedures, the frequency weighting H(w) has

zero phase and thus from Eq. (2.5) the phase associated with the estimate of

S(w) is that of X(w).

Generalizations of Wiener filtering may also be considered. One such gener-

alization which has been studied extensively in the context of image restoration

has the frequency response given by [42]

[
E[lS(wWJ ] d

H(w) = E[IS(w)l2] + eE[IV(w)12] (2.7)

for some constants "e", "d" and has been referred to as parametric Wiener filters.

By varying the constants "e" and "d", filters with different characteristics can be

obtained.

In the Wiener filter of Eq. (2.6) or its generalized form of Eq. (2.7) it is

assumed that the term representing E[lS(wWJ is first obtained and the frequency

weighting is then applied to X(w), Le.,

• . [ E[lS(wWl ] d
S(w) = E[lS(w)12] + eE[IV(w)l2J X(w). (2.8)

2.3 Speech Enhancement Techniques Based on
Speech Model

A digital model of sampled speech that has been used in a number of practical

applications and has a basis [43J in the physics of speech production system was

shown in Fig. 2.2. In the model, the excitation source is either a quasi-periodic

train of pulses for voiced sounds or random noise for unvoiced sounds. The digital

filter represents the effects of the vocal tract, lip radiation and for voiced sounds,

the glottal source. Since the vocal tract changes in shape as a function of time,

the digital filter in Fig. 2.2 is in general time varying. However, over a short

interval of time, the digital filter may be approximated as a linear time invariant

system. Many systems which capitalize on the underlying speech model discussed

in the preceding have been proposed in the literature for speech enhancement.

In the speech enhancement technique based on an underlying speech model,

the parameters of the speech model are first estimated and then speech is gen-
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Fig. 2.2: A speech production model

erated based on the estimated parameters. The parameters of the model consist

of the source parameters (pitch information) and the system parameters (vocal-

tract information). Given the estimated parameters of a speech model, speech

can be generated by a synthesis system based on the same underlying speech

model or by designing a filter with the estimated speech model parameters and

then filtering the noisy speech. The former approach requires both the source and

system parameters while the latter approach generally requires only the system

parameters. The techniques required for estimating the system parameters of

a speech model, of course, depend on the specific model assumed. Even for the

same speech model, however, there are again a variety of different techniques such

as all-pole or pole-zero model of the vocal-tract, nonparametric speech models,

etc. that may be used in estimating the model parameters.

The recent research on the model-based speech enhancement approaches use

composite source models for the signal and noise. The composite source model is

the most general statistical model known for speech signals, and it has proven ex-

tremely useful in speech recognition and enhancement applications. This model

can also be useful for a wide class of noise sources encountered in practice, e.g.,
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wideband noise, a mixture of noise sources, and competitive speech. A parametric

model for the speech signal must be capable of providing a reasonable represen-

tation of at least the second-order statistics of this signal. These statistics have

been shown to be extremely useful in speech processing as they can be used for

synthesizing intelligible signals [44J and for recognizing speech signals [45]. By

the second-order statistics we mean the different spectra of speech signals as well

as the time-frequency correlation of those signals. This correlation can be ex-

tremely useful for speech enhancement applications, since it imposes smoothness

constraints and thus significantly improves the robustness of the signal estimator.

2.4 Wavelet Speech Enhancement Based on the
Teager Energy Operator

Wavelet transform has recently been evolved as a powerful tool for removing noise

from speech and image signals. Bahoura and Rouat [37] have recently proposed

a wavelet speech enhancement technique using the teager energy operator. The

main idea was to define a discriminative threshold in various scales as a function

of speech components.

In general, the measurements of a clean speech signal s(n) are corrupted by

noise. Usually, the noise v(n) is modeled as an additive white Gaussian process

with zero-mean and variance u;. The noisy speech signal x(n) is then given by

x(n) = s(n) + v(n), n = 1,2,"', N

2.4.1 Wavelet packet analysis

(2.9)

For a given level j, the wavelet packet (W P) transform decomposes the noisy

signal x(n) into 2j subbands corresponding to wavelet coefficients sets w(m as

given by [46]

W(m = WP{x(n),j} (2.10)

In other words, w~m represents the mth coefficient of the kth subband, where,

m = 1,2,"', N/2j and k = 1,2,''', 2j. For this application, VV:P decomposes

the given signal at level 4 over which this method is applied.
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2.4.2 Teager energy approximation

The Teager energy operator (TEO) is a powerful nonlinear operator proposed

by Kaiser [47], capable of extracting the signal energy based on mechanical and

physical considerations. For a bandlimited signal x(n), this operator can be

approximated by

rld[x(n)J = [x(nW - x(n + l)x(n - 1). (2.11)

The discrete-time teager energy operator (TEO) is applied to the resulting wavelet

coefficients wt m,
(2.12)

This operation enhances the discriminability of speech coefficients among those

of noise.

2.4.3 Masks construction

For each subband coefficients, an initial mask is obtained by smoothing the TEO

coefficients

Mt,m = ttm * hk(m)

where hk is a second order IIR lowpass filter.

2.4.4 Threshold modulation criterion

(2.13)

Ideally the standard threshold should be adapted only for speech frames and kept

unchanged for nonspeech ones. The speech presence is interpreted by a significant

contrast between peaks and valleys of Mt, while its absence is observed with a

weaker contrast (smoother masks). To distinguish these frames, a parameter S:
named offset is defined, which estimates the valley's level. It is given by the

abscissa of the maximum of the amplitude distribution H of the corresponding

. mask Mt m and is estimated over the analyzed frame,

st = abscissa[max(H(Mt,m))J (2.14)

This parameter is close to 0 for speech frames and close to 1 for noise ones. If

st is below the discriminatory value of O.35max(Mt,m), then the threshold is

modulated or it remains unchanged.
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2.4.5 Mask processing for the time-adapted threshold

The modulated threshold is then adapted to speech waveform by suppressing the

offset and normalization before applying a root power function

[
M4 _ S4 ] 1/8M14 _ k,m k

k,m - max(Mt,m - st)

2.4.6 Time-adapted threshold

(2.15)

Donoho and Johnstone, [48J proposed a universal threshold A for removing added

white noise

A = aJ21og(N) (2.16)

with a = MAD /0.67 45 where a is the noise level. Median absolute deviation

(M AD) is estimated in the first scale. In the wavelet packet case, the threshold

becomes

A = aJ21og(Nlog2 N).

For a given sub band k, the time adapted threshold is defined as

where ~ is an adjustment parameter (~ = 1).

2.4.7 Thresholding WP coefficients

The soft thresholding function is defined as [31]' [46]

(2.17)

(2.18)

(2.19)

where Wk represents the wavelet coefficients. The soft thresholding is then applied

to the wavelet packet coefficients

where Aa is the threshold corresponding to the analyzed frame

\ _ {Ak,m, if S: ~ 0.35 max(Mt,m)
. Aa - 4 ( 4 )>., if Sk > 0.35max Mk,m

(2.20)

(2.21 )

\.
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2.4.8 Inverse transformation

The enhanced signal is synthesized with the inverse transformation Wp-l of the
modified WP coefficients

(2.22)

2.5 Conclusion

In this chapter some milestones in the development of speech enhancement have

been reviewed. The general principle of speech enhancement based on the esti-

mation of the short-time spectral amplitude of the speech is first discussed. This

basic principle encompasses a variety of techniques and systems including the

specific methods of spectral subtraction, parametric Wiener filtering, etc. Then'

a variety of systems that rely on more specific modeling of the speech waveform

have been discussed briefly. Lately, discrete cosine transform (DCT) and wavelet

transform have been widely used as analysis tools in the field of speech enhance-

ment. An wavelet transform based enhancement method proposed by Bahoura

and Rouat [37] is covered at the end of this chapter. In subsequent chapters

a new method is proposed as an improved denoising technique which is equally

applicable to both wavelet and DCT domain and the performance of this method

will also be reported with necessary evaluations.



Chapter 3

Bias-compensated Noise Level for
Wavelet and DCT Speech
Enhancement

3.1 Introduction

Speech samples are usually corrupted by noise in the real world. To reduce

the influence of noise, two research topics - the speech enhancement and speech

recognition in noisy environments - have arose. For speech enhancement, i.e., the

extraction of a signal corrupted by noise, several approaches are available. Among

them, spectral subtraction [1]-[20] is one ofthe most popular single-channel speech

enhancement methods due to its computational efficiency. Despite its capabil-

ity of removing background noise, this method introduces musical noise. Speech

enhancement has also been accomplished by modifying the temporal contours of

the parameters or features, like spectral band energies [22]. In recent years sev-

eral alternative approaches such as signal subspace methods [23]-[24] and HMM-

based algorithms [6]' [25]-[26] have been proposed for enhancing degraded speech.

Methods for speech enhancement have also been developed based on extraction

of parameters from noisy speech, and synthesizing speech from these parameters

[27]' [28]. Recently, discrete cosine transform (DCT) and wavelet transform have

been widely used as analysis tools in the field of speech enhancement [30]-[36].

Bahoura and Rouat [37] have recently proposed a speech enhancement tech-

nique in the wavelet domain. The main idea was to define a time adapted thtesh-

old in various scales as a function of speech components. Setting of a threshold

criterion requires an accurate estimate/knowledge of the additive noise level in

19
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the noisy speech. In speech, most of the signal energy is usually retained in the

lower frequency range. The higher frequency region of the transform coefficients

mostly contains noise from which noise level is usually estimated [48J. The effect

of the signal components present in this region may be insignificant at low SNRs
but is not negligible particularly at high SNRs. For this reason, this method
shows deteriorating performance at a relatively high SNR. As for example, a sig-

nal having an SNR of 20 dB deteriorated to an SNR of 16.47 as shown in Table
I of [37].

In this research, we propose an improved speech enhancement method in both

wavelet and DCT domain. Unlike other conventional techniques, more accurate

estimate of the threshold parameter, the noise level, is obtained by compensating
the effect of the trace of the signal remaining at the high frequency region of the

transform coefficients of the degraded speech. Using fourth-order statistics, we

introduce a novel approach for computing a correction factor to reduce the upward

bias of the noise level obtained from the median absolute deviation (MAD) of

the high frequency coefficients of the degraded speech.

3.2 Problem Formulation

In general, the measurements of a clean speech signal sen) are corrupted by noise.

Usually, the noise v(n) is modeled as an additive white Gaussian process with

zero-mean and variance a;. The noisy speech signal x(n) is then given by

x(n) = sen) + v(n), n = 1,2,"', N (3.1)

The objective of this research is to extract the speech signal sen) from 'the de-
graded observed signal x(n) by applying a new speech enhancement technique
based on the combined application of hard and soft thresholding of transform

coefficients of the noisy signal with bias-compensated noise level as the thresh-

old parameter. We investigate the performance of the proposed method in both
wavelet and DCT domain.
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3.3 Estimation of Noise Level: Conventional Ap-
proach

According to Donoho and Johnstone [48]' the noise level is defined by

CTv+ = MAD/0.6745 (3.2)

where MAD (median absolute deviation) is computed from the wavelet coeffi-

cients at the finest level. In OCT based analysis, MAD of the OCT coefficients is

computed at the finest level (N /2 + 1 to N) to estimate the threshold parameter

for the denoising process. Usually, the coefficients at the finest level are predom-

inantly noise. Because of the presence of a small fraction of signal coefficients,

we get an estimate of the noise level that suffers an upward bias [48]. To signify

this fact the subscript "v+" is used instead of just "v" in Eq. (3.2).

Fig. 3.1. (a) and (b) shows the variation of CTv+ with SNR for a given noisy

sequence in the wavelet and OCT domain, respectively. The curve is obtained by

adding white noise to a given speech signal at various SNR levels, and that the

corresponding CTv+ is calculated using Eq. (3.2). It is interesting to observe that

CTv+ shows asymptotically flat behaviour for higher values of SNR. This indicates

that the coefficients at the finest level contains signal whose MAD corresponds

to this asymptotic value. Applying CTv+ as a threshold parameter removes some

of the signal components which have significant adverse effect at high SNRs. For

this reason, most of the existing methods concerning denoising of the speech

signal encounter a strong drawback of SNR reduction of the denoised speech [37].

This is due to undesired inclusion of the effect of the signal components while

calculating CTv+' As for example, as shown in Table I of [37J the SNR of the

enhanced speech is found to be 14.47 and 16.47 dB while the original SNR of

the noisy speech was 15 and 20 dB, respectively. This justifies our observation

on the behaviour of CTv+ depicted in Fig. 3.1 and suggests that introduction of a

correction factor in CTv+ is necessary to make the threshold value more effective.

3.4 Wavelet Transform Based Proposed Enhance-
ment Algorithm

. For a given level j, the wavelet packet (W P) transform decomposes the noisy

signal x(n) into 2j subbands corresponding to wavelet coefficients sets xt,m as
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given by [46]

w1m = WP{x(n),j} (3.3)

In other words, wt,m represents the mth coefficient of the kth subband, where

m = 1, 2, ... ,N /2i and k = 1,2,' .. , 2i. For this application, W P decomposes

the given signal at level 4 over which the proposed method is applied. But in

estimating the noise level, WP transform of the degraded speech at first scale is
used.

3.4.1 Calculation of corrected value of noise level

In this research, the noise level used as the threshold parameter is estimated

taking into account the speech component present at the finest level. It is known

that for white Gaussian noise the kurtosis is 3 [49]. On the other hand, the

distribution of signal coefficients remaining at the finest level is sharply peaked,

i.e., leptokurtically distributed with kurtosis much larger than 3. Thus, at the

finest region the kurtosis gradually decreases with increasing noise to a given
speech and asymptotically reaches 3 when noise is much greater than signal.
Therefore, kurtosis can be used to estimate the correction factor in proportional

to the signal present in the MAD of the wavelet coefficients at the finest level.

The kurtosis of wavelet coefficients is computed as [49]

(3.4)

where E[.] denotes the expectation operator. The normalized kurtosis defined in
[21] is given by

. E{[Wk,m]4}
1'4 = (E{[Wk,m]2) )2 - 3 (3.5)

It may be mentioned that the lower-bound on 1'4 is zero for wavelet coefficients

of a purely white Gaussian noise sequence, the upper limit of ')'4 is a (unction of

the signal present at the finest level and may vary widely from speech to speech,

and lies in between for different noisy versions with varying noise level of a given

speech. Therefore, scaling of ')'4 is necessary to re-normalize it between 0 and 1

for a given speech under different noisy conditions. Here, we deliberately add
different white Gaussian noise sequences of increasing strength to the given noisy

speech signal. Let ')'4 ((p) denotes the normalized kurtosis after the addition of the

pth auxiliary noise sequence with the given noisy speech so that the SNR (in dB)
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is (p with (0 for p = 0 being the SNR of the original given noisy speech. Then,

the scaled values of kurtosis, I'((p), may be obtained as

(()=I'4((P) 012 Pl' p 1'4((0)' p= , , , ... ,

We select arbitrarily 20 clean speeches from the TIMIT and other standard

databases to investigate the behaviour I'((p) under different noisy conditions. The

variation of I'((p) with SNR is shown in Fig. 3.2 (a). It is interesting to note

that all curves show asymptotically flat behaviour giving 1 and 0 for higher and

lower values of SNR, respectively. This complies with the presumption that at a

high SNR, the high frequency region of the noisy signal contains predominantly

speech coefficients with negligible noise coefficients, whereas signal coefficients

can be considered negligible in comparison to that of noise at low SNR values.

We shift each curve in Fig 3.2 (a) horizontally such that I'((p) = 0.5 occurs

at an SNR (p = 20 dB for each curve without loss of generality. The results

are shown in Fig. 3.2 (b). It is found that this transformation gives a single

curve with negligible thickness. Therefore, different I'((p) curves in Fig. 3.2

(a) are actually identical in shape. This shifting is only due to the variation of

the amount of speech component present at the finest level for different speeches.

Now, an empirical function that best fits the curve in Fig. 3.2 (b) can be obtained

as

r((p) = 1 + e-:(,-20) (3.7)

where a is numerically found to be 0.27. Then any curve in Fig. 3.2(a) may be

obtained simply by shifting r((p) as r((p - i) where i is the shift parameter in

SNR. This function r((p) would be termed as the template function subsequently.

The template function defined in Eq. (3.7) is used as a basis function for

determining the correction factor in order to reduce the undesired signal-bias

included in O'v+. This is done in the following way. First, a curve similar to the

template function is 'generated from the given noisy signal. In a real situation,

only a single value 1'4((0) of the given noisy signal can be calculated. However, a

set of 1'4 ((p) can also be found by adding computer generated known white noise

sequences with increasing power to the given noisy sequence. The process of

adding auxiliary noise sequences with the given signal is terminated when I'4((p)

reaches zero (i.e., I'4((p) ::; 0). Scaling these values as in Eq. (3.6) generates a
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curve which is denoted here as 'Y((p)' Second, the degree of similarity between the

template function r((p) and the generated curve 'Y((p) is measured for determining

the signal proportion in the mixture of signal plus noise coefficients at the finest

level. The curve 'Y((p) generated in the preceding way closely resembles the

template function r((p), though may be shifted in SNR, if the SNR of the given

noisy speech ((0) is very high. Because, the whole curve as that of the template

function can be generated adding auxiliary noise to the given noisy speech except

a possible shift in SNR due to difference in the speech signals. On the other hand,

for a very low SNR the degree of mismatch is very high as 'Y((p) 'resembles only a

small portion of the bottom part of the template function. For an intermediate

SNR of the given noisy signal, the degree of similarity between the curves 'Y((p)

and r((p) vary in between the above two cases. In this research, the maximum

value of the cross-correlation between the curves 'Y((p) and r((p) is used as a

measure of the degree of similarity. Because, irrespective of the shape, 'Y((p)

is in general shifted from r((p) in SNR and thus the maximum value of cross-

correlation is achieved when they overlap. The cross-correlation between the two

functions 'Y((p) and r((p) is defined [50] as

1 p
Ryr(d) = p Lr(P)-y(P- d), d = 0,1,2,'"

p=!
(3.8)

where 'Y(p) refers to 'Y((p) and r(p) refers to r((p) at the pth instant of auxiliary

noise addition and P denotes the number of points used to generate the template

function. The maximum value of the function Ryr(d), denoted by Rmax, indicates

the degree of similarity between the template and the test functions.

The values of Rmax are examined using different known speeches for various

SNRs. It is observed that for very high values of SNR, the value of Rmax is ~ 0.48

and is almost independent of speech signal. Let us denote this value by 1Ji. On the

other hand, when the SNR of the given noisy speech is very low, Rmax is found

to be :S 0.255. However, under such a low SNR value the effect of signal bias

is insignificant on the estimated value of the noise level. Therefore, we choose

0.255 to be a practical lower limit for Rmax at a very low SNR. This is denoted

as 'Ij;. When Rmax is 1Ji, (Jv+ in Eq. (3.2) solely gives the signal level. Hence 100%

compensation is needed. On the contrary, when Rmax is 'Ij;, (Jv+ is completely

dominated by the noise level and no compensation is required. If the value of
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Rmax lies between Wand 1/!, a linear interpolation for the proposed correction
factor denoted by f3 is assumed and is defined by

f3 = { min (1, ~a=- ~1/J), if Rmax ~ 1/!

0, otherwise

where f3 is intended to limit in the interval [0,1]. The corrected noise level av is
now defined by

av = (1 - (3)av+, 0 ~ {3~ 1 (3.10)

It is obvious that av = 0 when {3= 1 (i.e., high SNR case), and av = av+ when

{3= 0 (i.e., low SNR case), and compensate for the signal-bias in proportion

to the signal component present at the finest level of the wavelet coefficients in
between these two limiting cases as expected.

3.4.2 Thresholding W P coefficients

In this research, conventional amplitude subtraction based soft thresholding alone

and the successive application of hard and soft thresholding are applied on the

W P coefficients at level 4. Details of the thresholding techniques are given in the
following.

A. Application of soft thresholding alone

In line of the reported literature, soft thresholding is applied for enhancement

of the noisy speech signal. The amplitude subtraction based soft thresholding
technique is defined as [31]' [46]

Wi = { sign(Wl,mHIWl,ml- av), if IW(ml ~ av (311)
k,m 0 if IWJ I < a ., k,m v

Notice that unlike other methods [31]' [46]' the corrected noise level av is used as
the threshold parameter.

B. Combined application of hard and soft thresholding

We simultaneously apply both hard and soft thresholding to devise an im-

proved denoising method. Regions in wavelet domain, where average signal

strength is less than that of noise, hard thresholding is applied by forcing the.

coefficients to be zero. After accomplishing hard thresholding, soft thresholding

is applied over the rest of the regions to further reduce the noise level.

The W P coefficients at a particular level is first divided into a number of
blocks consisting of convenient number of consecutive W P coefficients. Then
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hard thresholding is applied to a block of WP coefficients where average signal

power is less than the average noise power as that block essentially contributes

more noise than signal in the denoised speech. To identify the blocks for hard

thresholding, a window of length same as the block size is slided over the whole
range. The hard thresholding used in this paper is defined as

wj = {Wi,w, if P::! 2': 2P;:
k,w 0 if pw < 2pw, x v

(3.12)

where w = m to m + 1- 1, I is the length of the window and P: (= P,w+ P;:)
represents the total power of the W P coefficients inside a given window and P;:
denotes the power of the noise component over the same window. An estimated

value of P;: can be obtained using the relation P;: = l(7v2 and P::! can be estimated
simply by taking the sum of the squared value of the W P coefficients for that
given window.

The hard thresholding described earlier eliminates a significant portion of

noise from the regions of wavelet coefficients where noise dominates signal. The

rest of the regions where signal strength is higher than that of noise, soft thresh-

olding is applied for further enhancement of the noisy signal. As the noise power

uniformly penetrates into the actual signal in wavelet domain, subtraction of
noise power from the signal power is expected to improve the SNR of the en-

hanced signal. The coefficients with power less than average noise power are

more susceptible to distortion; their amplitudes are reduced .proportionately and

the soft thresholding applied in this paper is defined as

- j _ { si~n(Wi,m)/I(Wf,m)2 - (7;1,
Wk,m - W' IW' Ik,m k,m

Uv '

where (7v is the corrected noise level.

if Iwt,mi 2': (7v
if Iwt ml < (7v,

(3.13)

3.4.3 Reconstruction of the original signal

The enhanced signal is synthesized with the inverse transformation Wp-1 of the

modified WP coefficients (Wf,m)' i.e.,

(3.14)
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3.5 DCT Based Proposed Enhancement Algo-
rithm

The topic on speech enhancement is widely researched and many speech enhance-
ment algorithms make use of the Discrete Fourier Transform (DFT) to make it

easier to remove noise embedded in the noisy speech signal. This is often done as
it is easier to separate the speech energy and the noise energy in the transform

domain. For example, the energy of white noise is uniformly spread throughout

.the entire spectrum, but the energy of speech, especially voiced speech, is concen-

trated in certain frequencies. Most of the algorithm only attempt to modify the

spectral amplitudes of the noise corrupted speech signal in order to reduce the
effect of noise component while leaving the noise corrupted phase information
intact. It is of interest to note that in [15], the best estimate of the phase of

the speech component was shown to be the phase of the corrupted signal itself.

Hence, the advantage of using a real transform, such as Discrete Cosine Trans-

form (DCT), is that the problem of not correcting for the phase will result in

less severe consequences [30]. Also, the DCT has the added advantage of higher

spectral resolution than the DFT for the same window size. For a window size of

N, the DCT has N independent spectral components while the DFT only pro-

duces N/2 + 1 independent spectral components, as the other components are
just complex conjugates. Thus, the DCT outperforms the DFT [30].

The forward DCT of the noisy signal {x(n), 0 :s: n:S: N -I} is given by [30]

N-l [7f(2n + l)k]X(k) = a(k) ~ x(n) cos 2N ' O:S:k :s: N - 1 (3.15)

where

a(k) = f If,l~,k=O (3.16)

We have to denoise the speech signal with enhanced SNR and better subjective

performance by modifying the noisy DCT coefficients X (k) using a new tech-

nique with signal-bias compensated noise level as the threshold parameter. The

reconstructed signal, s( n), can be obtained using the following inverse discrete
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cosine transformation [30]

N-l _. [1l"(2n + l)k]
s(n) =Ea(k)X(k) cos 2N ,0::::: n::::: N-l

where X (k) denotes the denoised DCT coefficients.

3.5.1 Calculation of corrected value of noise level

(3.17)

(3.18)

A similar procedure described in section 3.4.1 is adopted to estimate the correction

factor fJ in the DCT domain. The corresponding scaled and shifted kurtosis curves

obtained using DCT instead of wavelet transform is presented in Fig. 3.3. The

biased noise level is then corrected according to the Eq. (3.10).

3.5.2 Thresholding DCT coefficients

As described in section 3.4.2, here we also apply two types of thresholding, namely,
soft thresholding alone, and the combined application of hard and soft threshold-
ing.

A. Application of soft thresholding alone

The amplitude subtraction based soft thresholding technique is defined as

Xk = { sign(Xk)(IXkl - O'v), if IXkl 2: O'v
0, if IXkl < O'v

Notice that unlike other methods [31]' [46]' the corrected noise level O'v is used as
the threshold parameter.

B. Combined application of hard and soft thresholding

We simultaneously apply both hard and soft thresholding in the DCT domain

using the bias-compensated noise level as the threshold parameter. The hard
thresholding used here is defined as

X(k) = {X(k), if P;' 2: 2P;:'
O if pw < 2pw (3.19)
, x v

where P: represents the total power of the DCT coefficients inside a given window
and P;:' denotes the power of the noise component over the same window.

Hard thresholding eliminates a significant portion of noise from the regions

of DCT coefficients where noise dominates signal. The rest of the regions where

signal strength is higher than that of noise, soft thresholding is applied for further

enhancement of the noisy signal. The soft thresholding is defined as
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o 10 W m ~ ~
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Fig. 3.3: Variation of scaled kurtosis with SNR in DCT domain: (a) }'((p) vs.
SNR; (b) Shifted }'((p) VS. SNR.



X(k) = { s_ign(X(k))[IX(k)2 - a;l,
X(k)IX(k)1

CT. '

where av is the corrected noise level.

3.6 Conclusion

if IX(k)1 ~ av
if IX(k)1 < av
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(3.20)

Speech enhancement using a new thresholding technique in both wavelet and

DCT domain has been proposed. The major focus of this chapter was to develop

a method for better estimation of the noise level (i.e., signal-bias compensated

noise level) considering the signal remaining at the finest level. The signal-bias

is compensated by exploiting the behaviour of fourth-order statistics of the co-
efficients at the high frequency region. A new thresholding technique is then
proposed that employs both hard and soft thresholding successively. Using cor-

rected noise level as the threshold parameter, conventional amplitude subtraction

based soft thresholding alone and the proposed thresholding technique in both

wavelet and DCT domain have been applied. The performance of the threshold-

ing techniques will be discussed with necessary measures in the following chapter.



Chapter 4

Results

4.1 Data Used

The proposed enhancement algorithm is tested for a data set consisting of 20
different continuous speech sentences from the TIMIT and other sources. Half

of the sentences are spoken by female speakers while the remaining sentences

are by male speakers. Simulations for four different clean speeches from the

TIMIT database are reported for comparing the proposed method with the one

described in [37]. The speech signals are sampled at 8 kHz and quantized to 16

bits. Noise types considered in our experiments include white Gaussian noise
and real noise recorded inside a moving car with air cooler turned on. White

noise was used for the following reasons: First, white noise affects the entire

frequency band of the speech signals and is therefore considered one of the most

perceptually harmful noise sources. Second, white noise is a good model for

wideband noise sources which are often encountered in practice, e.g., thermal

noise in communication systems. Third, white noise has been commonly used in

studying the performance of enhancement systems and can therefore be seen as
a "standard" test noise source.

4.2 Estimation of Corrected Noise Level

The SNR of the given noisy signal is to be estimated prior to the estimation

of the correction factor (f3). The noisy speech is obtained by adding computer

generated white Gaussian noise with the clean speech. For this, a female clean

speech "She had your dark suit in greasy wash water all year" termed as s1 and

a male speech "Should we chase those cowboys?" termed as s2 are taken from

33
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Table 4.1: Comparison of actual and corrected noise levels along with the correc-
tion factor, /3, for the speech, "She had your dark suit in greasy wash water all
year", at different SNRs.

SNR of given Estimated Biased Corrected Actual
Method noisy speech correction noise level noise level noise level

(dB) factor /3 av+ av aT
v

-10 0.00 0.2973 0.2973 0.2993
-5 0.00 0.1713 0.1713 0.1683
0 0.07 0.0987 0.0916 0.0946
5 0.09 0.0580 0.0528 . 0.0532

Wavelet 10 0.17 0.0360 0.0299 0.0301
15 0.28 0.0227 0.0164 0.0168
20 0.42 0.0159 0.0092 0.0095
25 0.54 0.0120 0.0055 0.0053
30 0.62 0.0100 0.0038 0.0030

-10 0.00 0.3041 0.3041 0.2993
-5 0.00 0.1690 0.1690 0.1683
0 0.02 0.0982 0.0965 0.0946
5 0.06 0.0580 0.0548 0.0532

DCT 10 0.18 0.0365 0.0299 0.0301
15 0.26 0.0239 0.0178 0.0168
20 0.42 0.0175 0.0101 0.0095
25 0.54 0.0129 0.0059 0.0053
30 0.64 0.0112 0.0040 0.0030
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the TIMIT database and then added with the computer generated white noise

sequences. The noise power is first estimated using Eq. (3.2) and then the signal
power is obtained by subtracting it from the noisy speech power. The values of
the noise and signal power thus obtained give an under estimate of SNR due to
the upward bias in the estimated noise level. However, this error is found to have

insignificant effect on fJ. As shown in Fig. 4.1, the final estimate of SNR using

the corrected noise level is much more accurate than the one using the biased

noise level.

As described in section 3.4.1, we add computer generated auxiliary white

Gaussian noise sequences of increasing power with the given noisy signal of 22220
(s1) and 15616 (s2) samples. For convenience, we choose the noise power such
that it results in a decremental SNR of 1 dB. Note that samples from the template

function has to be taken at the same interval. The addition of noise sequences

with the given signal is terminated when 14((p)::S 0 is satisfied. The SNR was

found to be -5.51 and -3.27 dB at the termination condition for s1 and s2,

respectively. Estimated results of fJ (Eq. (3.9)) at the high frequency region for

different SNRs are presented in Tables 4.1 and 4.2 for two different utterances

s1 and s2 along with the corrected noise level (O'v) using Eq. (3.10) and the
actual noise level (0';'). It is seen that the corrected values are fairly close to the

actual ones. Since O'v determines the threshold level for the noisy coefficients, an

over-estimation of O'~ would have an adverse effect on the denoised speech. In

particular, Tables 4.1 and 4.2 show that the biased noise level O'v+ (Eq. (3.2)) is

significantly higher than the proposed corrected noise level O'v (Eq. (3.10)) at a

relatively high SNR.

4.3 Performance Test

To evaluate the performance of the proposed algorithm, both objective and sub-

jective tests are performed in wavelet and DCT domain. The non-stationarity

of speech signals require that the duration of an analysis segment be of approxi-

mately 20 ~ 40 ms. But, since wavelet transform itself is a time-scale represen-

tation, it requires no segmentation of the noisy W P coefficients. For this reason,

no segmentation is adopted during wavelet based analysis. During DCT based
analysis, the given noisy speech is segmented so that each segment be of 32 ms

\.
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Table 4.2: Comparison of actual and corrected noise levels along with the cor-
rection factor, fJ, for the speech, "Should we chase those cowboys?", at different
SNRs.

SNR of given Estimated Biased Corrected Actual
Method noisy speech correction noise level noise level noise level

(dB) factor fJ a,,+ a" aT
"-10 0.00 0.4066 0.4066 0.4045

-5 0.00 0.2310 0.2310 0.2274
0 0.00 0.1312 0.1312 0.1279
5 0.09 0.0769 0.0698 0.0719

Wavelet 10 0.13 0.0455 0.0396 0.0404
15 0.25 0.0290 0.0219 0.0227
20 0.36 0.0188 0.0121 0.0158
25 0.53 0.0126 0.0059 0.0072
30 0.68 0.0093 0.0030 0.0040

-10 0.00 0.3996 0.3996 0.4045
-5 0.00 0.2283 0.2283 0.2274
0 0.00 0.1311 0.1311 0.1279
5 0.03 0.0763 0.0739 0.0719

DCT 10 0.11 0.0475 0.0426 0.0404
15 0.22 0.0306 0.0239 0.0227
20 0.32 0.0208 0.0141 0.0158
25 0.46 0.0166 0.0089 0.0072
30 0.52 0.0105 0.0051 0.0040

.•
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Fig. 4.1: Estimation of SNR of noisy speech.
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Table 4.3: Results on SNR improvement for the speech, "Should we chase those
cowboys?", corrupted by additive white noise

Proposed wavelet Proposed DCT
Wavelet packet packet method method

SNR using Ref. [37] soft hard and soft hard and
thr. alone soft thr. thr. alone soft thr.

(dB) (dB) (dB) (dB) (dB) (dB)
-10 -1.95 -1.25 1.78 -1.05 2.53
-5 1.84 1.53 4.66 3.17 5.64
0 5.92 5.56 7.81 6.85 9.10
5 9.68 9.50 11.20 10.76 12.49
10 13.09 13.53 14.70 11.67 16.11
15 15.68 17.54 18.55 18.63 19.71
20 18.D1 21.69 22.47 22.52 23.43
25 20.13 26.04 26.54 26.70 27.23
30 22.14 30.57 30.75 31.07 . 31.01

duration, i.e. 256 samples, and the overlapping between two consecutive segments
is taken to be 115 samples (2" 45% of segment duration).

4.3.1 Objective test

In objective tests, the SNR is evaluated to quantify the overall quality of the

enhanced speech signal. The SNR of the noisy signal is defined as

N-l

Ls2(n)
SNR = 1OloglON-l n=O dB

L (x(n) - s(n))2
n=O

(4.1)

The clean samples of a female speech ("She had your dark suit in greasy

wash water all year") and a male speech ("Should we chase those cowboys?")

signals are corrupted by additive white Gaussian noise for various SNRs ranging

, from -10 to 30 dB. The noisy speech signal is then denoised using the proposed

technique. The soft thresholding alone and the combination of hard and soft
thresholding defined in the previous chapter are applied in both wavelet and

DCTdomain for enhancement of the speeGh signal. The average results of 25

independent runs for each SNR (-10, -5, ... ,30 dB) are shown in Fig. 4.2 for

the female speech sl and in Table 4.3 for the male speech s2. For comparison,
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Table 4.4: Results on SNR improvement for two utterances (s3 and s4) corrupted
by recorded real car noise

Proposed wavelet Proposed DCT
Wavelet packet packet method method

Speech SNR using Ref. [37J soft hard and soft hard and
thr. alone soft thr. thr. alone soft thr.

(dB) (dB) (dB) (dB) (dB) (dB)
s3 9.69 11.83 12.13 13.19 13.17 13.87
s4 17.93 19.17 19.91 20.93 20.76 21.83

the results obtained using a recent method described in [37J are also included.

It is evident that the proposed method in both wavelet and DCT domain show

better enhancement performance than the previous one for almost all SNRs. The

results for conventional soft thresholding in both wavelet and DCT domain also

exhibit improved performance due to the compensation intr'oduced in the biased

noise level. Also notice that the proposed method prevents the undesired fall of
SNR of the denoised speech even when the original signal has an SNR of 30 dB.

Fig. 4.3 (a) shows the white noise degraded speech x(n) at an SNR of 10

dB for the female speaker (sl) and the corresponding enhanced speech resulting

from the wavelet packet method described in [37] and the denoising methods in

wavelet and DCT domain using only soft and the combination of hard and soft

thresholding proposed in this work are shown subsequently. The noise-free speech

s(n) is also plotted along with the enhanced speech for comparison. It is apparent

from Fig. 4.3 (a) that the proposed method eliminates noise in a better way than
the one in [37]. It is also obvious from the spectrograms shown in Fig. 4.3 (b)
that the enhanced speech by the proposed method includes less musical noise as

compared to that of reported in [37]. Another speech (s2) by a male speaker

is also corrupted by white noise and the simulation results in time domain are

presented in Fig. 4.4 (a) and the corresponding spectrograms are in Fig. 4.4 (b).

Next, we generate noisy speech signal adding real noise recorded inside a slowly
moving car with air cooler turned on with 17200 samples of a male and female
clean speech, namely, "Would you please confirm government policy" termed as

s3 and a numerical counting "1 2" termed as s4, respectively, from the TIMIT
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in greasy wash water all year" corrupted by additive white noise: (a) Time-
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Fig. 4.6: Enhancement results for the numerical counting "One two" by a female
speaker corrupted by the recorded real car noise: (a) Time-domain; (b) Spectro-
gram; (i) clean, (ii) noisy, (iii) denoised using Ref. [37]' (iv) soft thresholding
in wavelet domain, (v) hard and soft thresholding in wavelet domain, (vi) soft
thresholding in DCT domain, (vii) hard and soft thresholding in DCT domain.
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database to evaluate the performance of the proposed method. The SNR of the

noisy speech was found to be 9.69 and 17.93 dB for s3 and s4, respectively. The

corrected noise level is estimated using the similar procedure described in section

3.4.1. All other simulation conditions were kept same as that of white noise case.

The SNR of the enhanced speech are shown in Table 4.4 for the proposed method

along with the recent one [37]. It is also obvious that the proposed method in both

wavelet and DCT domain show better enhancement performance for this recorded

real noise. The enhancement results both in time and time-frequency domain are

shown in Figs. 4.5 and 4.6 for s3 and s4, respectively. Also in this case, the

proposed method removes noise comparatively introducing less distortion in the

enhanced speech. This is also supported by the subjective test results presented

in Tables 4.5 and 4.6.

4.3.2 Subjective test

It is known that SNR cannot faithfully indicate the quality of the enhanced

speech. Thus we conduct subjected speech quality tests, employing a preference

evaluation similar to one reported in [23]. The tests are performed by a group of 10

listeners with no previous familiarity with the test materials. The aforementioned

two different speeches sl and s3 are used in the test. Each subject participates

in two listening sessions. In the first session, for each type of noise, listeners

compare the outputs of the proposed system in the wavelet domain with the one

reported in [37J. In the second session, the comparison is in between the outputs

of the proposed system and the noisy inpu t signal. In both sessions, listeners are

asked to compare between a pair of speech signals played in random order and

vote for one or none of them. Throughout the subjective tests, input SNRs are

set to 5, 10, 15 and 20 dB. Table 4.5 summarizes the comparative results of both

sessions.

In a similar fashion, another subjective test results between the proposed

method in DCT domain and the one reported in [37] is given in Table 4.6: As

shown, for both types of noise, the output of our proposed system has a higher

preference percentage compared to the .one reported in [37]. Also the listeners

predominantly preferred the denoised signal using the proposed method as com-

pared to the noisy signal.
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Table 4.5: Results of subjective evaluation in terms of preference percentage in
wavelet domain

Proposed Wavelet
Session Noise method in method Noisy No

type wavelet domain in [37] signal preference
1st white noise 40% 30% - 30%

real car noise 35% 20% - 45%
2nd white noise 90% - 5% 5%

real car noise .80% - 10% 10%

Table 4.6: Results of subjective evaluation in terms of preference percentage in
DCT domain

Proposed Wavelet
Session Noise method in method Noisy No

type DCT domain in [37J signal preference
1st white noise 65% 28% - 7%

real car noise 60% 28% - 12%
2nd white noise 80% - 10% 10%

real car noise 78% - 12% 10%

•
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4.4 Conclusion

In this chapter various results have been reported. The estimate of the bias-

compensated noise levels are shown for two utterances by a male and a female

speaker at different SNRs and the results are fairly close to the actual ones. As
a result, SNR of the given noisy signal can be estimated accurately. The results
for objective tests of the proposed method are shown along with the results of

the recent method reported in [37]. Also the results for conventional amplitude

subtraction based soft thresholding in both wavelet and DCT domain are pro-

duced using the corrected noise level as the threshold parameter. In addition to

subjective evaluation, time and time-frequency plots of the proposed method in

comparison to the recent one [37Jare also reported at the end of this chapter. It

can be conferred from the simulation results, i.e., from both subjective and ob-

jective tests, that DCT based method is preferable for speech enhancement over
wavelet based method. Because, speech can be better represented by a sinusoidal

model [51J than other basis functions usually used in the wavelet transform.



Chapter 5

Conclusion

5.1 Summary

A novel method for speech enhancement in wavelet and DCT domain has been

proposed. The major focus of this research was to develop a highly accurate

estimation of noise level considering the signal proportion remaining at the finest

level. The upward bias due to signal proportion remaining at the finest level is

reduced by exploiting the behaviour of the fourth-order statistics i.e., kurtosis of

the transform noisy coefficients at the finest region. Unlike other conventional
techniques, the signal-bias compensated noise level is then used as the thresh-

old parameter for speech enhancement in both domain. Since coefficients at the

. trailing end contains both signal and noise component, neither hard nor soft

thresholding alone is expected to result optimum enhancement. For this rea-

son, a new thresholding technique is proposed that employs both hard and soft

thresholding successively over the noisy transform coefficients. Hard threshold-

ing is done by comparing the contribution of signal and noise strength to the
restored speech. When the strength of noise is greater than signal, the coef-
ficients are set to zero. Because, these coefficients contribute more noise than
signal to the denoised speech. After hard thresholding, the power subtraction

based soft thresholding is proposed to further reduce the noise in the enhanced

speech. The results for coventional amplitude subtraction based soft thresholding

in both wavelet and DCT domain are also produced to show the improvement

over the recent one [37]' which is only due to the correction introduced iii the

biased noise level. Using bias-compensated noise level as the threshold param-
eter, the proposed method show significant improvement in SNR than the very

56
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recent results reported in [37]. The noise and signal power estimation schemes

proposed here can be used for estimation of SNR with very good accuracy for

further processing of the noisy speech signal.

5.2 Suggestions for future work

For noisy speech, energies of unvoiced segments are comparable to those of noise.

Applying thresholding uniformly to all coefficients not only suppresses additional

noise but also some speech components like unvoiced ones. Consequently, the

perceptive quality of the filtered speech will be affected to some extent. The

major goal of speech enhancement is to improve the perceptual aspects, i.e.,

intelligibility and quality of speech. The intelligibility of speech can be assured

by applying the bias-compensated noise level as the threshold parameter. The

proposed hard and soft thresholding has shown better performance for objective

tests in terms of enhanced SNR. But, it may not always show better performance

in subjective evaluations, due to the introduced distortions and artifacts known

as the musical noise. Therefore, a modification in the thresholding technique may

be investigated for further improvement of the quality of enhanced speech.

A linear assumption between the maximum value of cross-correlation (be-

tween template and test function), Elmax and the correction factor, f3 has been

adopted in this work. But practically it may have some deviation from linearity

for different utterances. Therefore, a nonlinear approach incorporating speech

dependent parameters may be proposed to get an exact correction factor for the

biased noise level. Obviously, this will estimate the noise level more accurately

and the SNR estimation scheme will be more appropriate.

Further research is needed to include other types of real noise with enhanced

denoising performance.
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