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ABSTRACT

When the gate length of a MOSFET enters into deep-submicron regime,

Quantum Mechanical (QM) effects cannot be ignored. Quantization of in-

version layer electrons increase effective gate oxide width, which, in turn,

modifies the gate capacitance, threshold voltage, inversion charge density
etc. In addition, a gate leakage current flows due to direct QM tunneling

of electrons. This current has already been determined both experimentally

and theoretically. The existing simulation techniques involve direct solution

of Schr6dinger's equation that results in complex eigenenergies and requires

lengthy matrix manipulation. Moreover, it has been found that there is some

discrepancy between the experimental and simulation results.
In this work, the direct tunneling gate current has been calculated using

a simple technique which is easy to implement numerically. This method is

based on Green's function formalism with transmission line analogy. Also,

for the first time, the calculation of direct tunneling gate current incorporates

the effects of electron phase-breaking scattering in the gate oxide. The cur-

rent is calculated both ignoring and considering the effects of electron phase-

breaking scattering. These results have been compared with the existing
experimental and calculated values. The results found, proposes an explana-

tion for the discrepancy between measured and existing simulated currents.!t

is concluded that it is necessary to include effects of phase-breaking scattering

to accurately' simulate direct tunneling gate leakage current.
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Chapter 1

Introd uction

The advancement of the semiconductor device fabrication technology has grown
very rapidly in last few years, consequently the aggressive scaling down of the
same has taken place. It is expected that device length in nanometer range will be
common in the near future. According to scaling rules, different dimensions (gate
length, oxide width etc) of MOSFET are scaled down proportionately and the
substrate doping concentration is increased. According to National Technological
Roadmap for Semiconductors[l]' for a device of gate length less than 100 nm, the
oxide width should be less than 2.0 nm. For such deep submicron devices, when a

strong Surface Electric Field (Fs) is present at the Si/Si02 interface, the energy
band of silicon bends significantly, creating a quantum well. Due to quantization
of energies of the inversion layer carriers in this quantum well, the distribution
of carriers can no longer be represented by semi-classical models [2, 3]' rather
Quantum Mechanical (QM) model must be used. QM approach is essential for the
calculation of several parameters; such as, gate capacitance, carrier concentration,
effective oxide thickness, drive current, on-state series resistance, polysilicon work

function, gate leakage current etc.
The potential barrier for inversion electrons at the Si/ Si02 interface is finite

and nearly equal to 3.1 eV. Since the width of the oxide layer is also finite,
inversion electrons may tunnel through the oxide barrier and reach gate electrode.
The tunneling probability is extremely small in conventional MOSFETs. But in
deep submicron MOSFETs, with oxide width equal to 2 nm or less, the tunneling
probability is high. Consequently a dc gate leakage current due to quantum

mechanical tunneling flows in these devices.
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1.1 Literature Review

The Quantum Mechanical (QM) effects in MOS inversion layers arise when high
surface electric field makes the quantum well for inversion carriers very steep and
narrow, such that the electron energies are quantized in the direction normal
to the interface. A significant amount of research work has been conducted to
understand and model QM effects in MOS devices. In this section, a partial

review of these works is presented.
Stern first reported the quantum mechanical calculations for Silicon inver-

sion layer [4]' where he solved coupled Schrodinger's and Poisson's equations
self-consistently. Later Moglestue determined the charge distribution for elec-
trons and holes far {lOO}-oriented Si/Si02 interface, both for weak and strong

inversion [5].
In their pioneering work, Dort et al. proposed a simple model for explaining

measurements in the high doping level regime where the conventional model fails
to reproduce the experimental results [6]. The model proposed by them uses
the same drift-diffusion approximation used by semi-classical model [2]' however
some advanced physics is built in the simulators. This model modifies the intrinsic

carrier concentration for the silicon bandgap inversion conditions. They showed
that their model agreed with the results given by self-consistent QM calculation.

It is known that self-consistent solution of coupled Schrodinger's and Pois-
son's equations are numerically intensive and time consuming. Hareland et al.
proposed a new computationally efficient model for predicting QM effects on the
inversion layer charge density and charge distribution [7]. Their model utilizes
analytical descriptions for the first three subbands of a 2-D density-of-states in
a quantized electron inversion layer. This model, along with the one proposed

by Dart et al. [6]' has been implemented in a device simulator software named
PISCES. These models show similar threshold voltage shifts, and effective oxide
thickness' compared to classical simulation that use 3-D density-of-states at the

interface.
Paasch et al. studied the effects of influence of inversion channel quantiza-

tion on surface potential [8]. They showed that semi-classical description gives
erroneous results while calculating surface potential or total band bending. They
have shown that the error introduced in the calculation of surface potential is up

2



to some tenth volts with decreasing oxide width and increasing gate voltage.
Tagaki and Toriumi studied the inversion-layer capacitance of Si MOSFETs

quantitatively [9]. The total gate capacitance, that determines the transconduc-
tance of MOSFET, is reduced due to the presence of inversion-layer capacitance
(Ginv)' It is a fundamental problem in deep submicron MOSFETs. Ginv depends
on the surface orientation, which signifies the importance of QM effects on Ginv

at room temperature.
Tagaki et al. have also analyzed the influence of Ginv on low voltage operation

of scaled CMOSFET [IOJ. It is found that as the band bp-nding is not scaled with
a reduction of gate oxide width (tax), the band bending on Si substrate due to
(Ginv) poses a significant limitation on scaling down of supply voltage.

Jallepalli et al. have analyzed the effects of hole quantization on p-MOS device
characteristics, and electron quantization on n-MOS devices [11]. They have
provided a compact analytical model to describe the threshold voltage shifts due
to quantum effects as a function of gate oxide thickness and doping concentration.
The threshold voltage shift is also dependent on temperature, which is illustrated
by them. For a range of doping concentration, they have calculated the effective

oxide thickness as a function of oxide field.
Ritcher, Hefner and Vogel have very recently compared the results of an ex-

tensive ensemble of the most advanced available QM capacitance-voltage sim-
ulators and analysis packages for a range of metal-oxide-semiconductor device
parameters [12]. They found that, for different simulators, in the accumulation
capacitance region, extracted equivalent oxide thickness (EOT) shows on the or-
der of 0.2 nm variations for total Si02 thickness in the range of 1.0 to 3.0 nm.
Their study emphasizes on the fact that, when reporting experimentally derived
electrical thickness results, it is essential to describe fully how these values were
obtained. The same experimental curve can lead to different extracted EOT
depending upon which Quantum i'vlechanical software is used for the analysis.

Giannini et al. have compared the results of measurements of MOS interface

states by capacitance-voltage (C- V) and charge pumping techniques [13]. They
have shown that, if the effects of carrier tunneling in slow oxide traps are not
incorporated, the information on energy distribution of interface states given by
both capacitance-voltage and charge pumping techniques will be erroneous.

It was commonly believed that QM effects were dominant only in strong in-

3



version conditions. However, Pacelli et al. have shown that semi-classical model
of heavily doped MOSFETs is not valid even near flat band region [14]. The
studv of Pacelli et al. shows that even for a small vertical electric field, due to
the presence of abrupt discontinuity, at the Si/ Si02 interface, a "dark space" of
a few nanometer results. In this "dark space", the majority carrier density is
much lower than in the bulk. Their work shows that even for a weak confining

potential the QM effects prevails.
Barlage et al. have used the transmission line model for the MOSFET channel

region for extraction of MOS inversion capacitance [15J. Their work corrects the
capacitance measurement error introduced from high gate dielectric leakage in
the inversion regime. Their approach incorporates accurately the leakage current
distribution along the channel and produces a gate length dependent correction
factor for the measured capacitance. This result overcomes the discrepancies that
arose in the previously reported results using discrete element based model.

Fiegna and Abramo have analyzed the QM effects on gate capacitance, thresh-
old voltages and effective mobility of electrons innonuniformly doped MOS struc-
tures [16J. Their results show that, with the introduction of a low doped region
at the device surface, it is possible to manipulate the threshold voltage according
to the circuit application. Also for a given charge sheet density, the introduction
of low doped epitaxial region produces a reduction of the electron effective field,
resulting in the improvement of electron effective mobility. But it leaves the total

gate capacitance unaffected.
An important aspect in the study of submicron MOSFETs is the calculation

of gate leakage current due to direct tunneling. Rana et al. used self-consistent
solutions of accumulation layers in n-substrate MOSFETs to calculate the tun-
neling current [17]. They used finite element method for the purpose. Tunneling
current for inversion layer was studied by La et al. [18]. In this paper, they have
mentioned that for the purpose of modeling tunneling characteristics of electrons,
exhibiting quasi two-dimensional character, the transmission probability applica-
ble to an incident Fermi gas of free electron is no more an acceptable concept
and the well known WKB (Wentzel-Krammer-Brioullion) approximation or the
numerical integration of Airy function is not valid. They have used the transverse
resonant method, applicable for electromagnetic waves in a non-uniform waveg-
uide, for solving the Schr6dinger's equation. The complex eigenenergy found from

4
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the solution of the equation is used to calculate the gate leakage current.
Taur has compared simulated and experimental results for MOSFETs having

oxide thickness 2.2-3.5 nm [19]. Shih et al. have compared the leakage cur-
rent found from the numerical solution to that found by using WKB approxima-
tion [20J. For the analysis, they have used Al as gate electrode. They had to find
the complex eigenenergy of a non-Hermitian matrix. Their finding is that the
gate leakage current found from the WKB approximation shows poor agreement

at high gate voltages.
A modified WKB approximation has been proposed by Register et al. [21].

It modifies the usual tunneling probability predicted by WKB, by accounting
the reflections from potential discontinuity. In this model, the barrier height to
tunneling is taken to be a function only of the total electron energy and the Si
bandgap dispersion relation is modeled as a two band Franz-type. Yang et al.
have used this modified WKB approximation model for the calculation of the
tunneling current [22]. However, for the self-consistent loop, the barrier at the
Sil Si02 interface has been assumed to be infinite. Yang et al. have also studied
the effects of variation of doping concentration of both substrate and polysilicon
and observed the effects on gate leakage current. The suggestion that comes from
their study is, alternative dielectric with higher dielectric constant may be used

in lieu of Si02.
In order to have a greater understanding of how a dielectric stack with higher

dielectric constant would effect the direct tunneling current, Mudanai et al have
done some studies [23]. They have performed the numerical solution of Schrodinger's
equation allowing wavefunction penetration into the gate dielectric stack. They
have adopted a first order perturbation technique to incorporate wavefunction
penetration effects into gate dielectric. This technique requires determination of
complex eigenenergies of a non-Hermitian Hamiltonian. Since this is numerically
a very time consuming technique, the wavefunction penetration effects were ne-
glected in the self-consistent loop and incorporated only after convergence of the
self-consistent loop assuming infinite barrier. If gate dielectric of high dielectric
constant is used, certain problems, such as, fringing induced barrier lowering,

may come into play.
Direct tunneling gate leakage current in devices with silicon nitride gate di-

electric for both nand p MOSFETs has been studied by Yeo et al. [24]. They
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have highlighted the important difference between silicon nitride and silicon di
oxide. They have projected that jet-vapor deposition Si3N4 gate dielectric can
be scaled down to 0.65 nm and 1.13 nm for high performance and low power

application, respectively.

1.2 Objective of the Work

Self-consistent solution of Schr6dinger's and Poisson's equations are usually used
to determine quantum effects in Si inversion layers. Commonly used two bound-
ary conditions for the solution of Schr6dinger's equation are that the wavefunc-
tion goes to zero at Si/Si02 interface and at deep inside the bulk Si [4]-[11]'
[14, 16, 18, 20, 22]. \Vhen these boundary conditions are used, the effects of
wavefunction penetration into the gate oxide, which is the cause of direct tun-
neling, on potential profile cannot be incorporated. To overcome this problem,
Rana et al. have imposed an artificial boundary condition in their finite element

analysis that the wavefunction is zero at oxide-gate electrode interface and at a
finite distance inside the bulk semiconductor [17J. However, this led to problems
of artificial charge pile up in bulk Si in their calculations. Others have bypassed
this problem in two steps [18, 20, 22, 23]. First, they calculated the self-consistent
potential profile neglecting the effects of wavefunction penetration into the ox-
ide. This potential profile was then used to find the direct tunneling current in
a postprocessor. The techniques used to calculate the direct tunneling current
are either approximate [17, 22J or requires numerical determination of complex
eigenenergies of a non-Hermitian matrix [18, 20, 23J. Recently, Mudanai et al.
have done some preliminary studies on the effects of wavefunction penetration
on self-consistent potential profile [23]. Without providing adequate justification,
they have claimed that these effects are negligible while different studies indicate
otherwise [25J. l\loreO\.er,. their technique is numerically too time consuming to

be used widely.
Another feature that has received almost no attention in the literature is the

effects of electron inelastic scattering in gate-oxide on direct tunneling current.
Due to the presence of phonons, defects and interface states in oxides, inversion
electrons are known to experience phase-breaking scattering [26]-[30]. This scat-
tering is expected to modify the lifetimes of quasi-bound inversion layer electrons

6



and change the gate leakage current.
In the present work, a new technique is presented to calculate direct tunnel-

ing gate current in MOSFETs with ultra-thin gate oxides. In this technique, new
boundary conditions' are used to solve schrodinger's equation, which incorporates
the effects of wavefunction penetration into the oxide. This technique is numeri-
cally efficient and does not require lengthy matrix manipulations. Phase-breaking
scattering of electrons are also be modeled in a straight forward manner. For the
first time, influence of electron phase-breaking scattering on direct tunneling are
studied. Numerical calculations based on this new technique are performed and
results are compared to those of existing experimental and simulation studies.

1.3 Organization of the Thesis

Chapter 2 reviews quantum effects in MOS devices. Chapter 3 discusses the trans-
mission line analogy and Green's function formalism. Chapter 4 narrates calcula-
tion of gate leakage current from the density-of-states. Here the current calcula-
tion is done without incorporating phase-breaking/inelastic scattering. Chapter
5 consists of the theory and results of the gate leakage current in the presence of
phase-breaking scattering of electrons in the oxide. Concluding remarks of this

work will be presented in chapter 6.

7
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Chapter 2

Review of Quantum Mechanical
Analysis of MOS Devices

Quantum effects in MOSFETs arise when the quantization of the inversion layer
carriers occur due to the presence of a high electric field (Fs) at the surface of
the semiconductor. In this chapter, a few approaches to the quantum mechanical
analysis of the MOS structures are reviewed. The Structure of an n channel

enhancement type MOS is seen in the Fig. 2.1.

2.1 Self-consistent Solution

The self consistent solution of coupled Schrodinger's and Poisson's equations as

proposed by Stern [4] is presented in this section.
The three major approximations that Stern made are;
(i) Effective mass approximation is valid, so that the periodic lattice potential

need not be taken into account explicitly.
(ii) Envelope wavefunction vanishes at the surface.
(iii) Surface states are neglected and any charge in the oxide adjacent to the

semiconductor is replaced by an equivalent electric field. A typical conduction

band profile for an nMOS structure is shown in Fig. 2.2
The band bending of a semiconductor can be characterized by a potential

<I>(z). In the effective mass approximation, the electronic wavefunction for the
ith subband is the product of the Bloch function at the bottom of the conduction

band and the envelope function.

(2.1)

8
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(2.2)

here, k1 and k2 are measured relative to the band edge, I) depends on k1, k2•

Envelope function (i(Z) is the solution of

d2(i 2m3
dz2 + y[Ei + e1>(z)](i(Z) = O.

_ 1i2ki 1i2k~
Etot(kll) = Ei + -2 - + -2 -, (2.3)

ml m2
here, ml and m2 are the principal effective masses for motion parallel to the
surface and kll = k1x+k2y. There can be as many as three values of m3 depending
on the surface orientation because the conduction band of Si has six ellipsoid
valleys along the (100) family of direction. In the effective mass approximation,
the valleys are degenerate in pairs. Solution of Eq. (2.2) gives the eigenenergy E,

and the envelope function (, (z).
The potential 1>(z) is found from the solution of Poisson's equation, which is

as follows,

Here, m3 is the effecti,'e mass in the direction perpendicular to the interface
and Ei is the energy of the ith bound state in the same direction. Boundary
conditions commonly used for the solution of Eq. (2.2) are (,(00) = 0 and at the
semiconductor-oxide interface, (i(Z = 0) = O. Each solution of Eq. (2.2) gives the
bottom of a continuum of levels called a subband. A subband is described by the

relationship,

= (2.4)

here, Esi is the dielectric constant of the of the semiconductor, N, is the carrier
concentration in the ith subband. N, is given by the following equation,

nvimdikT [ (EF - E,)] (2.5)N, = 1r1i2 In 1 + exp kT '

where, nv, is the valley degeneracy of ith valley, mdi is the density-of-states effec-

tive mass per valley and EF is the Fermi energy.
Pdepl(Z) is the charge density in the depletion layer, which is taken to be,

Pdepl(Z) = -e(NA - ND), 0 < Z < Zd

Pdepl(Z) = 0, Z > Zd

(2.6)

(2.7)

10



here, Zd is the depletion layer thickness given by [4] as following,

2EsiEo1>d

e(NA - ND)'
(2.8)

1>dis the band bending due to depletion charge only.

as following,

1>dcan be calculated from [4]

(2.9)

(2.10)

Where Ninv = Li Ni is the total number of charge per unit area in the inversion

layer and Zav is the average penetration of inversion charge density into Si. The
two boundary conditions for solution of Eq. (2.4) are * = 0 for large z and at

the surface, its value is Fs. From [4]' Fs is given by,

Fs = e(Ninv + Ndep1).
Csito

Ndep1 = Zd(N A - N D) is the number of charge per unit area in the depletion layer.
In a self-consistent formulation, Eqs. (2.2)-(2.9) are solved iteratively for a given

Fs until results converge.

2.2 Airy Function Technique

(2.12)

(2.11)(i(Z) = Ai (cm~~Fs)~ [z - CiJ]) ,
Ei ~ (2~J~[~1feFs (i +D]~

For the purpose of finding self-consistent solution of Schrodinger's and Poisson's
equations, it is necessary to solve them numerically. However, approximate results

can be obtained for some simple limiting cases.
A triangular potential approximation can be done by replacing the potential

1>(z), in Eq. (2.2), by assuming 1>(z) = -zFs for z > 0 and 1>(z) --+ 00 for z < O.
Analytical solution for this potential profile gives what is known as Airy functions

Ai from [4]:

11



2.3 Variational Technique

Triangular potential approximation fails when the inversion layer charge density
is comparable to or exceeds that of the depletion layer. When only one subband
is occupied, i.e., in the electric quantum limit, a Variational approach gives a
good estimate for the energy of the lowest subband. A trial eigenfunction given

in Eq. (2.13) is

(o(z) = Gb3) t ze-~. (2.13)

Here b is an unknown parameter. After some straight forward calculation, the

energy of the lowest state is as follows,

(2.14)

The term involving Ninv gives the interaction of inversion-layer charge density
with itself. The correct choice of b minimizes the total energy of the system, in

which the coefficient :~ is replaced by ~~. The last term of the Eq. (2.14) is small
for Si, as in Si the width of the inversion layer is generally much smaller than

that of the depletion layer.

12



Chapter 3

Review of Transmission Line
Analogy and Green's Function
Formalism

:\'umerical determination of eigenenergies and wavefunctions from Schr6dinger's
equation for an arbitrary potential profile is complicated and often requires lengthy
matrix manipulation. In this chapter, a simple technique based on transmission
line analogy for calculation of eigenenergies is presented. This technique is then
extended using Green's function formalism to find the wavefunctions and local

density-of-states (DOS).

3.1 Transmission Line Analogy

:dicrowave transmission line theory can be used for solving problems related to
quantum mechanical wave as shown in [30]. The familiar equations for voltage

and current in transmission line are [31]'

J(z) = J+(e1'Z - fte-7'Z),

\I(z) = J+Zo(e7,Z + fte-"Y'Z).

(3.1)

(3.2)

(3.3)

Here J+ is the amplitude of incident current wave and Ir is the propagation

constant. The time dependence is implicitly assumed to be e-jwt. The wave

amplitude reflection coefficient f t is given by

f _ Zit - Zot
t - .

Zit + Zot

13



Region 1

Inci dent El ectron

.•....... , .

Region 2 .

,---------- V2

Reflected Electron
V,-~~-----

-----10
.z

Fig. 3.1: A potential barrier with an incident electron (solid line) and the reflected
wave( dashed line).

Here Zit and Zot are the load and characteristic impedance, respectively.
Let us now consider solution of Schriidinger's equation. In Fig. 3.1 a traveling

wave is incident on a potential barrier from the left. Energy of the electron is E.

The wavefunction 1/J can be written as

(3.4)

e-jEtjh is implicitly assumed to be the time dependence of the wavefunction. Here

2m',i= Cii + jl3i = j r/ (E - Vi), (3.5)

is the propagation constant, mi and Vi are effective mass and potential for the ith
(i = 1,2) region in Fig. 3,1, respectively and p is the wave amplitude reflection

coefficient.
When i = l(z < 0), the wavefunction is,

1/J,(Z) = .4i(e~IZ - pe-71Z),

when i = 2(z > 0), the wavefunction is

1/J2(Z) = Ate~2'.

14
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(3.7)
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(3.8)p=

Now, the two boundarv conditions, that the wavefunction and its derivative must

be continuous at z = G, gives the expression for p as
.n... _ .1..L
m; mi
.1l- + .1L .
m; mi

Let,
(3.9)

then,
(3.10)

(3.12)

(3.11)Z _ 2'('"
0- jm"

Using this expression of Zo in Eq.( 3.8), it is found that

Z02 - ZO!p=' ,
ZO,2+ ZO,!

where, ZO,! and ZO,2 are defined for region 1 and region 2, respectively. Compar-
ing Eq. (3.1) with Eq. (3.4) and Eq. (3.2) with Eq. (3.10) and, Eq. (3.3) with
Eq. (3.12) the analogy between I(z) and ?jJ(z), 1>(z) and V(z), f, and p can be
established. At any point z, the quantum mechanical wave impedance is defined

where,

as 1>(z)
Z(z) = ?jJ(z)' (3.13)

Z,' = ZoZtcosh('(l) - Zosinh('(l).
Zocosh('(l) _ Ztsinh('(l) (3.14)

Eigenenergies of arbitrary quantum \I'ells can also be determined using quantum
mechanical impedance. At any eigenenergy, the wave impedances looking to the
right (positive direction) and to the left (negative direction), at any plane z inside

the well, must be equal, i.e.

Thus, transmission line theory can be applied for QM calculations. For example,
the input impedance, Zi at z = -I may be expressed in terms of load impedance,
Zt at z = 0 as in transmission line theory. Using Eq. (3.4) and Eq. (3.10) in

Eq. (3.13) [31]

(3.15)

here, subscript Rand L refer to the impedance looking to the right and left,

respectively

15



3.2 Green's Function Formalism

The Green's function is used to calculate the wavefunction and the DOS as shown
in [32]. The logarithmic derivative of the retarded Green's function is defined by,

Z(z, z': E) = 21l [E!eR(~, 2'; E) jeR(z, z'; E)] .
]7n' z

(3.16)

Here, eR is the retarded Green's function that satisfies the following equation.

[E + 2~' ::2 - V(z) + iE] eR(z, z'; E) = o(z - z'), (3.17)

where, E is an infinitesimally small positive energy. Owing to the nature of eR,
Z(z, z'; E) has a discontinuity at z = z'. It can be shown that Z(z, z'; E) does

not depend on z' as long as z > z'(z < z') [32]. i.e,

Z(z, z'; E) = ZiR(Z; E) for all z' < z

Z(z, z'; E) = Zidz; E) for all z' > z.

(3.18)

(3.19)

(3.20)21l
Zo = -. -")'(z),

]m'

ZiR(ZiL) for a given energy can be calculated as functions of positions assuming
that the potential profile is flat in both directions sufficiently far from the region of
interest. This leads to the following two boundary conditions. The boundary con-
ditions for calculating Z are ZiR(OO;E) = Zo(oo) and Zid-oo;E) = -Zo(-oo),
where

and

(
2m' ) 1/2

")'(z) = j 7[E - V(z) + jE] (3.21)

Using the transmission line analogy the eigenenergies can be located, and then
the normalized wavefunction is obtained from the diagonal part of eR [32].

(3.22)

where, En is the eigenenergy corresponding to the nth wavefunction.
Eqs. (3.16), (3.17), (3.18) and (3.19), Eq. (3.22) can be expressed as

Using

(3.23)
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By definition, the one dimensional (10) DOS is also given by the imaginary part

of the diagonal term of 10 retarded Green's function CR

4 [ j ]N(z; E) = -'Sm -------- .
11"n ZiR(Z; En) - Zidz; En)

1N(z; E) = --'Sm[CR(z, z; E)].
11"

Relating diagonal part of CR to quantum mechanical impedance, Eq.

duces to,

17
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Chapter 4

Direct Tunneling Current from
Density-of-States

Inversion electrons can tunnel into gate electrode from Si inversion layers as
the height and width of the oxide barrier is finite. The tunneling probability
increases exponentially with reduction of gate-oxide thickness. As a consequence
of tunneling, a leakage current flows in the gate. Due to the leakage, the lifetime
of inversion carriers become finite and the DOS broadens in energy around the

eigenvalues.

4.1 Theory

J=LeNi. (4.1)
i Ti

Here, Ni is the concentration of the electrons in the ith eigenstate, Ti is the lifetime
of the electrons in the ith eigenstate and J is the total gate leakage current. The
carrier concentration due to ith eigenstate from [4] is given by Eq. (2.5). Typically,
eigenenergy Ei and concentration Ni are calculated numerically from the solutions
of Schrodinger's equation for bound systems [18, 20]. In the presence of leakage,
the Hamiltonian for a closed system becomes non-Hermitian and the eigenenergies
become complex. The real parts give the energies of the quasi-bound states and
the imaginary parts are related to the lifetimes. Since calculation of complex

The gate current due to quantum mechanical (QM) tunneling is calculated from
the carrier concentration and the lifetimes of the carriers at all eigenstates using

following relationship [18]'

18



eigenenergies is numerically complicated, a simple alternate technique is used in
this work. The DOS is known to broaden in energy in systems with quasi-bound
states. The peak of the DOS occurs at the eigenenergies of the quasi bound
states and the lifetimes of the inversion layer electrons are related to the energy

broadening of DOS according to,

h
T; = 2f,', (4.2)

Here, fi is the Full-Width at Half-Maximum (FWHM) of the energy broadening
around the ith eigenenergy. The position dependent DOS as a function of energy
around each eigenenergy is calculated using Eq. (3.24). The FWHM of the DOS
can be evaluated anywhere inside the well since it has been shown earlier that the
energy broadening of the DOS is the same at all positions [33]. The gate leakage

current can easily be calculated from Eqs. (2.5), (4.1) and (4.2).
It may be mentioned that the inversion layer potential profile and the total

band bending depend on the applied gate voltage, which, in turn, depends on
Fs, the surface electric field at the Si/ Si02 interface. The gate voltage (Vg) is
related to Fs by the equation

(4.3)

here, tox is the physical gate oxide width, Fox = ESiFS/Eox is the electric field
in the oxide, Ws is the total band bending, Wms is the difference between 'metal'
and semiconductor workfunctions and dm is the polysilicon depletion width. Here
gate electrode has been taken to be heavily doped polysilicon.

4.2 Results and Discussion

The analysis has been done for {lll} Si at room temperature. Results of numer-
ical calculations for nMOS structures are presented in this section. The substrate

doping density, Na = 5 X 1017 / cm3
.

Ideally the potential profile should be determined from self-consistent solution
of Schr6dinger's and Poisson's equations. However, for the sake of simplicity,
self-consistent calculation is avoided. The potential profile has been assumed to
be exponential and the relationship between surface electric field, Fs and band

19



bending <Ps is described by an empirical formula that agrees well with the self-
consistent results reported in [34]. The formula is as following,

(4.4)

where, k is an arbitrary constant. The dependence of <Ps with Fs is shown in

Fig. 4.l.
The conduction energy band diagram for the MOS inversion layer for two Fs

is shown in Fig. 4.2. The conduction band minima in polysilicon gate is chosen
as the reference of the zero energy. With the increase of Fs, the total band
bending (<ps) increases and the potential well gets steeper. As the potential well
gets steeper, the number of eigenstates decreases, as well as, the value of any
eigenenergy increases. Table 4.1 shows the values of the eigenenergies for three

Fs .and tox = 2 nm.
The total concentration of electrons (Ninv = I:i Ni) in the inversion layer

increases almost exponentially with the increase of Fs, as seen in the Fig. 4.3.
This variation is expected, as from Eq. (2.5), it is seen that the concentration
increases with the increase of the difference of Fermi energy and the values of the

eigenenergies. This difference increases with the increase of the Fs.
Fig. 4.4 shows the variation of FWHM with the number of eigenstates for a

certain Fs and three different tox. For any eigenstate, the FWHM (which signifies
the broadening) increases exponentially with the decrease of tox for a given Fs. It
means that, the tunneling probability increases as the gate oxide width decreases.
Another feature of merit is that, the FWHM does not increase monotonically with
increasing number of eigenstates for a given tox and Fs. It increases for the first
few eigenstates, then starts to decrease. A qualitative explanation for this unusual
behaviour is given in [33]. As expected, the behaviour of Ti is opposite to that
of rio The lifetime is related with the FWHM by Eq. (4.2). Fig. 4.5 shows the
decreasing nature of lifetime of electrons in any eigenstate with decrease of tox
for a given Fs.

Fig. 4.6 shows the variation of FWHM for first three eigenstates with Fs
for a given tox. It is seen that the broadening of any eigenstate, or the tunneling
transparency of the barrier increases nearly exponentially with the increase of Fs.
Also, as Fig. 4.7 shows, with increase of Fs, the lifetime decreases exponentially.
At lower fields, the lifetimes of all three states have similar values, but at higher

20
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Fig. 4.1: The empirical relationship between total band bending iPs and surface
electric field Fs.
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Eigen- Fs = 0.50 Fs = 1.07 Fs = 3.00
number (r-IY fern) (MY fern) (MY fern)

1 0.151235 0.236237 0.43054
2 0.264077 0.410502 0.737405
3 0.349723 0.537857 .0.940681
4 0.420419 0.639105 1.085279
5 0.480979 0.722499 1.189329
6 0.533945 0.792432 1.262625
7 0.580877 0.851616 1.311296
8 0.622822 0.901886 1.339545
9 0.660529 0.944562 -
10 0.694561 0.980639 -
11 0.725354 1.010894 -
12 0.753254 1.035949 -
13 0.778546 1.056313 -
14 0.801463 1.072412 -
15 0.822206 1.084607 -
16 0.840942 1.093206 -
17 0.857819 1.098478 -
18 0.872964 - -
19 0.886489 - -

20 0.898494 - -
21 0.909068 - -
22 0.918291 - -
23 0.926234 - -
24 0.932965 - -
25 0.938541 - -
26 0.943019 - -
27 0.946449 - -
28 0.948876 - -

Table 4.1: The values of eigenenergies in eY measured from the bottom of the
potential well for three different surface electric fields, and gate oxide width, tox =
2 nm.
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fields, the lifetime of the lowest state is higher than that of the third state by
almost an order of magnitude. This is due to the fact that with increasing field,
the barrier becomes increasingly narrower at higher energies (see Fig 4.2).

Figs. 4.8 and 4.9 are the plots of 1D DOS as function of energy around the first
three eigenenergies evaluated at two different checkpoints z = 28 it and z = 55
it from the oxide-silicon interface, respectively. Although the magnitudes of the
DOS are very different at these two points, their energy dependences are identical
in the two figures. This signifies that the value of eigenenergy and the FWHM
does not depend on the checkpoint as long as the point is within the potential

well.
The variation of contributions of first three eigenstates to gate leakage current

with Fs is shown in Fig 4.10. The contribution of the first and second eigenstate
increases with the increase of Fs. However, the contribution of the third one
starts decreasing at higher electric fields. It is due to the fact that, when the
electric field increases, the value of the eigenenergy increases, and the differences
between the Fermi energy and the third eigenenergy are greater at higher fields
than that for lower one. This results in less concentration of electrons in that
state at higher fields. Fig 4.10 also shows that the contribution to the direct
tunneling current comes primarily from the lowest eigenstate.

Fig. 4.11 shows that the value of eigenenergies and the Fermi energy with the
variation of surface field. It is seen from the figure that the differences between
higher eigenenergies and Fermi energy increase for higher fields which results
in less concentration of electrons in those eigenstates, as can be predicted from
Eq. (2.5). So for higher fields, the current is contributed mainly by the lowest

eigenstate.
The variation of total gate leakage current with Fs is shown in Fig. 4.12. It

shows that, the gate current increases with the increase of surface electric field
for a given tox' This increase of gate leakage current is due to the increase of
both electron concentration in the inversion layer and the increase of FWHM
with increasing Fs as seen in Figs. 4.3 and 4.6. Another feature of Fig 4.12 is
that, for same Fs, with the increase of tox, the leakage current decreases. This is
due to the fact that, with the increase of tox, the carrier concentration remains
unchanged, but the lifetimes of electrons in any eigenstate increase, as can be
seen from Fig. 4.5. So according to Eq. (4.1), ,,'ith the increase of lifetime, the
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current will decrease.
Fig 4.13 shows the variation of same gate leakage current due to direct tunnel-

ing current with respect to gate voltage, where the gate voltage (Vg) is calculated
using Eq. 4.3. In MOSFETs with thinner gate oxide, same surface" electric field
Fs leads to a lower gate voltage compared to those with thicker gate-oxide .

•
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Chapter 5

Direct Tunneling Current in the
Presence of Scattering

It is known that due to the presence of phonons, defects, interface states and
impurities, electrons tunneling through the oxide experience phase-breaking or
inelastic scattering and hence, influence direct tunneling current. In this chapter,
the effects of such scattering process on direct tunneling gate current are studied.

5.1 Theory

Inelastic scattering in oxide is represented by a position and energy dependent
phase-breaking time Tcoll(Z; E). The position and energy dependence of Tcoll is de-
termined by the nature of the scattering processes present in the oxide. Inelastic
scattering may be included in the Schrodinger's equation by an imaginary poten-
tial term jV1, where vi = 1i/2Tcoll' It is known that inelastic or phase-breaking
scattering also causes broadening of the 1D DOS around the eigenenergies [32].
When broadening is due to more than one processes, the total broadening is ex-
pressed as the sum of the partial widths [35]. But, it has been shown elsewhere
that for this relationship to hold true, all the broadening widths must be smaller
than the separation between the eigenenergies [36]. Since this condition is satis-
fied by the populated states in Si inversion layers [33]' it can be said that for the
ith state,

[ti = [Ii + ['i, (5.1)

where, [, is the total broadening, [, is the broadening due scattering only and
[I is the broadening due to coherent leakage only. It has been recently shown
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that, although the states broaden in energy, the existing self-consistent formula-
tion neglecting such broadening may be applied to determine the self-consistent
potential profile, energies and wavefunctions [33].

Eq. (5.1) implies that the carriers in the inversion layer are lost by two mech-
anisms. First is due to direct tunneling of electrons from Si to gate electrode
(represented by fl) and the second is due to inelastic scattering of electrons (rep-
resented by f,). The first process is already shown to contribute to gate leakage
current. The second process also contributes to gate leakage current when the
width of the oxide layer is thin. Total current is the sum of the two components.

The tunneling current associated with fl can be calculated in a straight for-
ward manner using Eq. (4.1),i.e.,

(5.2)

where,
n

Tli = 2f
li
. (5.3)

Calculation of current associated with inelastic scattering is somewhat compli-
cated. The quantity Li(eNdT,i) ( where T,i = n/2f'i) represents the rate of
loss of inversion charge due to inelastic scattering and hence the current due to
inelastic scattering at the oxide-silicon interface. However, as the carriers expe-
rience inelastic collisions, a fraction of these will backscatter and return to the
silicon inversion layer. In order to calculate this current considering multiple
back-scattering effects, a formalism developed in [37] is used. According to this
theory, the current flowing in the oxide at energy Ei is divided into a positive
flowing and a negative flowing component. i.e.,

J,(z; Ei) = J,+(z; Ei) + J,-(z; Ei). (5.4 )

= -a+(z, Ei)J,+(z, Ei)+r+(z, Ei)[a+(z, Ei)J,+(z, Ei)+a-(z, Ei)J,-(z, Ei)],
(5.5)

Assuming that the current from any eigenenergy is not coupled to that of an-
other eigenenergy via inelastic scattering, the left hand side of Eq. (5.4) becomes

position independent from current conservation requirements. J1' are known to
satisfy the following first order differential equations [37].

dJ,+(z, Ei)
dz
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dJ;(z, Ei)
dz

-a-(z, Ei)J,-(z, E;) + r-(z, Ei)[a+(z, Ei)J;(z, Ei)

+ a-(z,E;)J,-(z,Ei)], (5.6)

(5.7)-eNdT'i
Js(Ei) = 1 + B(-t 0 E)'ox, 1 t

here, rI(z, Ei) = [Iv;(z, Ei)l] / [Ivt(z, Ei)1 + Iv;(z, Ei)l] represents the proba-
bility that an electron scattered at z will travel in :l:z direction, v; is group
velocity of an electron moving in:l:z direction. aI(z, Ei) = 1/ (Teoll(Z)V;(z, Ei))
is the linear scattering rate. Eqs.( 5.5) and ( 5.6) can be solved analytically for
oxide region if the injected currents at the two boundaries Ji~j(Z = -tax, Ei)
and Ji~j(Z = 0, Ei) are known. Here silicon-oxide interface is treated to be
z = O. Since electrons are injected into the oxide only from the right (from
the semiconductor) and their is no injection of electrons from the left (from the

gate electrode), the boundary conditions used are, Ji~j(Z = -tax, Ei) = 0 and
Ji~j(Z = 0, Ei) = -eNjT'i' Solutions of Eqs.( 5.5) and (5.6), when substituted

in Eq. (5.4) gives [37]

"

where,

fo' , ,
B( -tax, 0, Ei) = -tax ~(z , Ei)A(z ,0, Ei)dz ,

~( E) _ 1 [ vt(z,Ei) ]
z, , - Teoll(Z,Ei) [vt(z,Ei) - vg(z,Eil] vg(z,Ei) ,

A(a, 0, Ei) = e- fa' [3(z,E;)dz,

(5.8)

(5.9)

(5.10)

(5.11)

and,

(3(Z,Ei)=_(_I_)[+(1 )+ _(1 )].TeallZ, Ei Vg Z, Ei Vg Z, Ei
Considering the magnitudes of the current in Eq. (5.7) for all the eigenstates,

J, = L IJ,(Ei)l, (5.12)

and the total gate leakage current due to direct tunneling in the presence of

inelastic scattering in the oxide is,

(5.13)
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5.2 Results and Discussions

In this section, results of numerical calculations are presented. In these calcula-
tions, energy .dependence of Teall is neglected and two different position depen-
dences are considered. First, the validity of Eq. (5.1) is studied. fl is obtained
from a structure with finite tax that has no phase-breaking processes. f, is ob-
tained from a device having phase-breaking processes with tax approaching infin-
ity, since, there is no direct tunneling when the oxide width is very large. The
broadening in a structure containing finite tax and phase-breaking scattering in
oxide gives ft. In all three cases, identical inversion potential profile is consid-
ered. Two profiles of Teall have been used, these are, constant value throughout
the oxide and an exponential function, that decays from the silicon-oxide inter-
face towards gate-electrode. The exponential form is described for -tax < Z < 0

by the equation,
zll

Teall = Toe . (5.14)

The characteristic length, l has been taken to be 10 nm. This is consistent
with the trap distribution of profile as reported in [38]. Tables 5.1- 5.4 show that
indeed, Eq. (5.1) holds true. Moreover, it is observed that the effects of scattering
are more pronounced at lower electric fields and as expected, at smaller values of
Teall' It is also observed that although fl exhibits non-monotonic behaviour, f,
decreases monotonically with increasing eigennumbers.

The current due to scattering is given by the Eq. (5.7), where B is given by
Eq. (5.8). B is a dimensionless quantity, that represents the effects of backscat-
tering on J,. The variation of B for lowest two eigenstates with Fs is shown
in Fig. 5.1 for constant collision time. It is seen that B is very sensitive to the
changes in either the surface electric field or the oxide thickness. Increase in Fs
or decrease in tax causes exponential decrease in the value of B. Fig. 5.2 shows
the variation of B for lowest eigenstate for different values and profiles of collision
time. The figure signifies that the chosen collision time profile variations has little
impact on the value of B.

Fig. 5.3 shows the variation of lifetimes with No of eigenstate, for tax =2 nm
and Fs =0.51 MV fcm, without scattering and with scattering, for two collision
times (constant). The effects of collision time on electron lifetime is seen here.
The same phenomenon for Fs =1.66 ?vIVfern is shown in Fig 5.4. Figs. 5.3 and 5.4
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Eigen- f, f, f, f,+ f, % Error
number (ne\') (neY) (neY) (neY) (10-4)

1 2.162528 1.052517 1.110012 2.16253 -0.83
2 2.376464 1.351437 1.025024 2.376461 1.64
3 2.574864 1.619789 0.9550689 2.574858 2.45
4 2.760032 1.866953 0.8930779 2.760031 0.33
5 2.929936 2.093552 0.8363741 2.929926 3.28
6 3.08168 2.298096 0.7835866 3.081683 -0.78
7 3.212368 2.478448 0.7339049 3.212353 4.68
8 3.319376 2.63256 0.6868002 3.31936 4.71
9 3.400512 2.758608 0.6419057 3.400514 -0.35
10 3.454096 2.855136 0.5989576 3.454094 0.69
11 3.478928 2.921168 0.5577575 3.478925 0.86
12 3.474416 2.956272 0.5181521 3.474424 -2.42
13 3.440464 2.960432 0.4800176 3.44045 4.02
14 3.377456 2.934192 0.4432626 3.377455 0.44
15 3.28632 2.878512 0.407803 3.286315 1.55
16 3.1684 2.794832 0.3735721 3.168404 -1.33
17 3.025424 2.684912 0.3405205 3.025432 -2.58
18 2.859456 2.550864 0.3085936. 2.859458 -0.53
19 2.672816 2.395056 0.2777571 2.672814 0.89
20 2.46808 2.220112 0.2479713 2.468083 -1.46
21 2.247952 2.028736 0.2192086 2.247944 3.48
22 2.015216 1.82376 0.1914365 2.015197 9.55
23 1.77272 1.60808 0.1646339 1.772714 3.39
24 1.52328 1.384496 0.1387746 1.523271 5.91
25 1.26968 1.155856 0.1138384 1.269695 -11.36
26 1.014608 0.9248158 0.089807 1.014623 -14.51
27 0.7605602 0.6939043 0.06665918 0.7605635 -4.35
28 0.5099041 0.4655202 0.04437934 0.5098996 8.84

Table 5.1: Relationship among calculated ft, f[ and f, for different eigenstates
for Fs = 0.51 MY jcm, Teoll = 1O-9s and tox = 2 nm.
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Eigen- f, fl f, fl + f, % Error
number (neV) (neV) (neV) (neV) (10-4)

1 12.1527 1.05252 11.1001 12.1526 2.23
2 11.6017 1.35144 10.2502 11.6017 1.76
3 11.1705 1.61979 9.55067 11.1705 1.67
4 10.7977 1.86695 8.93077 10.7977 2.17
5 10.4573 2.09355 8.36373 10.4573 1.52
6 10.134 2.2981 7.83587 10.134 -0.06
7 9.8175 2.47845 7.33906 9.8175 -0.03
8 9.50058 2.63256 6.868 9.50056 1.74
9 9.17766 2.75861 6.41907 9.17768 -1.70
10 8.84472 2.85514 5.98958 8.84472 -0.034
11 8.49877 2.92117 5.57758 8.49875 1.95
12 8.13779 2.95627 5.18152 8.13779 0
13 7.76062 2.96043 4.80018 7.76061 2.05
14 7.3668 2.93419 4.43262 7.36682 -2.12
15 6.95653 2.87851 4.07803 6.95654 -2.38
16 6.53056 2.79483 3.73573 6.53056 -0.05
17 6.0901 2.68491 3.4052 6.09011 -2.42
18 5.63682 2.55086 3.08594 5.6368 2.72
19 5.17262 2.39506 2.77758 5.17264 -3.08
20 4.69982 2.22011 2.47973 4.69984 -3.52
21 4.22082 2.02874 2.19208 4.22082 0.Q7
22 3.73813 1.82376 1.91438 3.73814 -4.18
23 3.25442 1.60808 1.64632 3.2544 4.62
24 2.77224 1.3845 1.38774 2.77224 0.22
25 2.29422 1.15586 1.13838 2.29424 -6.81
26 1.82286 0.924816 0.898063 1.82288 -8.57
27 1.3605 0.693904 0.666592 1.3605 -0.22
28 0.909328 0.46552 0.443792 0.909312 17.19

Table 5.2: Relationship among calculated ft, fl and f, for different eigenstates
for Fs = 0.51 f.,IIV/cm, Teoll = 10-1°5 and tox = 2 nm.
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Eigen- f, f, f, f,+ f, % Error
number (10-'eV) (10-7eV) (neV) (10-7eV) (10-4)

1 1.71916 1.65709 6.20675 1.71916 -0.17
2 3.95003 3.89848 5.15558 3.95004 -0.97
3 6.71581 6.67336 4.24631 6.71582 -2.24
4 9.28666 9.25254 3.4137 .9.28668 -2.68
5 10.7704 10.744 2.63865 10.7704 -1.72
6 10.505 10.4859 1.91788 10.505 -2.56
7 8.374 8.36149 1.25206 8.37401 -1.03
8 4.85915 .185269 0646083 4.85915 0.65

Table 5.3: Relationship among calculated ft, fl and f, for different eigenstates
for Fs = 3 MV /cm , Teoll = 1O-9s and tox = 2 nm.

Eigen- ft f, f, fl + f, % Error
number (10-7 eV) (10-7eV) (10-7 eV) (10-7 eV) (10-2)

1 2.27774 1.65709 0.620675 2.27777 -0.11
2 4.41397 3.89848 0.51556 4.41404 -0.16
3 7.09782 6.67336 0.42463 7.09799 -0.23
4 9.59368 9.25254 0.341371 9.59392 -0.24
5 11.0076 10.744 0.263864 11.0079 -0.23
6 10.6773 10.4859 0.191787 10.6776 -0.28
7 8.48648 8.36149 0.125205 8.48669 -0.25
8 4.91718 4.85269 0.0646096 4.9173 -0.23

Table 5.4: Relationship among calculated flo f, and f, for different eigenstates
for Fs = 3 MV /cm, Teoll = 10-lOs and tox = 2 nm.
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Fig. 5.1: Variation of B for lowest two eigenenergies for different tox' Bl corre-
sponds to the lowest state and B2 corresponds to the second lowest state.
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Fs fc(A/em~) fc(A/em")
(MV/em) Exponential profile Constant profile

(To = 10-lOs) (Teall = 10-lOs)
0.395 51.30125 51.61685
0.517 216.4169 216.4129
0.669 843.5441 837.6783
0.853 3025.785 2982.124
1.07 9947.525 9728.363
1.34 29854.06 28987.26
1.66 81668.08 78872.58
2.0-1 205335.9 197958.4
2.48 489438.9 473572.6
3.00 1176310 1148238

Table 5.5: Comparison of the value of gate leakage current for exponential and
constant profiles of Teall. tax = 2 nm.

show an interesting effect of phase-breaking scattering on the lifetimes of the
quasi-bound states. In the absence of any scattering the lifetimes of populated
states (lower eigenenergies) decrease with increasing energy. However, as the
phase-breaking scattering becomes stronger, this trend becomes weaker and at
sufficient strong scattering, lifetimes of these states even increase with increasing
energy. However, the trend of lifetimes of higher energy states remain unaffected
by phase-breaking scattering. This observation can be explained in terms of

results presented in Tables 5.1- 5.4.
The effect of using different scattering profile has little impact on the value of

simulated gate leakage current. This fact is illustrated in Table. 5.5. So, although
the exponential variation of scattering potential is more realistic, for ease of nu-
merical implementation, the constant profile may be used without introducing

significant error.
Figs. 5.6 and 5.5 are the plots of direct tunneling current in the presence of

phase-breaking scattering as a function of gate \'oltage for two different values of

Teall' These results have also been compared to the case when there is no scat-
tering. It is observed that scattering increases the gate current and has more
pronounced effects in devices with thicker gate oxides. The current in the device
with tox=1.5 nm is almost unaffected by scattering. It is also found that scat-
tering effects are more significant at lower gate voltages. These results explain
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the discrepancies between experimental and simulated direct tunneling currents
reported in [18, 19, 22]. In these studies it was seen that although the simulated
currents agreed well with experimental values in thin gate oxide devices (tox < 1.8
nm), in devices with tox 2': 2 nm, especially at lower gate voltages, the experimen-
tally measured gate current was higher than the simulated one when effects of
scattering were not included. Thus, the results of the present study provide an ex-
planation for the difference between experimental and existing simulated results
and demonstrate the need for incorporating phase-breaking scattering effects for

accurate simulation of direct tunneling gate current.
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Chapter 6

Conclusion

The direct tunneling gate current of a deep submicron MOSFET flows due to
Quantum Mechanical tunneling of inversion layer carriers from semiconductor to
the gate electrode. The value of direct tunneling current is influenced by the
presence of inelastic or phase-breaking scattering caused by phonons, defects,

interface states and impurities in the oxide.

6.1 Summary

A new technique is presented to calculate the direct tunneling gate current in
deep submicron MOSFETs. In this technique, the effects of wave function pen-
etration on self consistent potential profile can be incorporated. The method
is numerically simple and does not require either lengthy matrix manipulation
or calculation of complex eigenenergies. An attractive feature of this technique
is that electron inelastic scattering effects on tunneling current can be included
in the modeling. The eigenenergies and the lifetimes of the quasi-bound states
are calculated from the peaks and the broadening of the ID DOS around each
eigenenergy. It is seen that the lifetimes are sensitive to the changes in either
the surface electric field or the oxide width. The contribution to the direct tun-
neling current comes dominantly from the lo,yest eigenstate. Scattering effects
are found to be more significant in devices with thicker oxides at lower gate volt-
ages. Scattering also has non-trivial effects on the lifetimes of the inversion layer
states. Numerical calculations of direct tunneling current are presented. Results
show that inclusion of inelastic scattering can explain the observed mismatch be-
tween experimental and simulated tunneling currents in the literature at low gate
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voltages that did not take into account inelastic scattering effects.
The present study suffers from certain limitation, such as, lacking self-consistent

calculation of potential profile, using simple and incomplete model for collision
time and calculation of current for only certain condition of device.

6.2 Suggestions for Further Work

The self-consistent calculation of carrier concentration for determining the poten-
tial profile involves coupled solution of Schr6dinger's and Poisson's equations. The
self-consistent potential profile will result in a closer match between the simulated
current and the measured one. In the present work, in order to avoid numerical
complexity, potential profile has not been calculated in a self-consistent manner.
But it leaves the scope of incorporating self-consistency in the calculations.

A thorough study demands the calculation to be made in different device
conditions. The current calculated in this work is for no signal condition and
after inversion has occurred. But calculation may be done for weak inversion, as

well as, for accumulation.
Accurate modeling of inelastic scattering considering actual collision process

should be made. This requires proper determination of energy and position de-
pendence of collision time. The inelastic scattering phenomena includes phase
change, as well as, energy change of tunneling electrons colliding with phonons,
defects, interface states or impurities. Although, for simplifying the calculation,
the energy change of the scattered electrons has been ignored in the present work,

its inclusion will increase the accuracy of the calculation.
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