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ABSTRACT 
 

This study is concerned with the brittle fracture characteristics of an infinite plate with a 

functionally graded material (FGM) coating around a circular hole. The incompatible eigenstrain 

induced in the FGM coating after cooling from the sintering temperature, due to mismatch in the 

coefficients of thermal expansion (CTE), is taken into consideration. Two diametrically opposed 

radial edge cracks emanating from the circular hole are considered for the analysis of brittle fracture 

characteristic. A uniform internal pressure is assumed to be applied to the surfaces of the hole and 

cracks. The FGM coating is homogenized simulating the material nonhomogeneity by distribution 

of equivalent eigenstrain. Consequently, an approximation method of determining stress intensity 

factors (SIFs) is introduced representing the cracks by a continuous distribution of edge 

dislocations. This approximation method is used in analyzing the effects of material distribution in 

the coating, crack length, temperature, coating thickness and strength factor on fracture 

characteristics of the plate. Furthermore, apparent fracture toughness corresponding to prescribed 

material distributions is also analyzed as a function of the above mentioned parameters except for 

strength factor. To present numerical results, an infinite plate with TiC/Al2O3 FGM coating around a 

circular hole is considered. It is found that material distribution in the FGM coating around a 

circular hole has significant effects on the SIF and apparent fracture toughness which can be 

controlled by choosing the material distribution appropriately. 
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Chapter 1 : INTRODUCTION 
 

1.1 Background  
 
Functionally graded materials (FGMs) are new generation materials consisting of two or more 

material phases, such as different ceramics or ceramics and metals. It is characterized by the 

variation in microstructure details with space variables through the non uniform distribution of these 

reinforcement phases. This continuously varying material distribution induces chemical, material, 

and microstructural gradients, and makes functionally graded materials different in behavior from 

homogeneous materials and traditional composite materials [1,2]. Traditional composite materials 

are homogeneous mixtures of two or more ingredients with distinct physical and chemical 

properties. Composite material offers an excellent combination of properties which are different 

from the individual parent materials but fail under extreme working conditions through a process 

called delamination (separation of fibers from the matrix). The solution to this problem leads to 

the use of FGM, as it eliminates the sharp interfaces existing in traditional composite material 

which is where failure is initiated.  

 

The concept of a typical FGM body consisting of two different materials A and B is illustrated in 

Fig. 1.1. The left surface of the FGM plate shown in Fig. 1.1(a) has 100% material A while the right 

surface of the plate has 100% material B. In between these two surfaces, the material distribution 

composition denoted by the volume fractions VA and VB of the constituents A and B, respectively, 

continuously changes as shown in Fig. 1.1(b). The material distribution shown in Fig. 1.1(b) may 

vary linearly, exponentially, or following any power function depending on the desired properties 

and application of FGMs.  

 

One unique characteristic of FGMs is the ability to tailor a material for specific application via 

the design of the gradients in chemistry and microstructure, which, in turn, depend on the material 

distribution. A specific property of FGMs can be optimized by properly selecting their material 

distribution profiles. From a mechanics viewpoint, the main advantages of material property 

grading appear to be improved bonding strength, toughness, wear and corrosion resistance, and 

reduced residual and thermal stresses.  
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Initially, the purpose of these materials was to develop superheat resistant material for propulsion 

systems and airframes of spacecraft. Now they are also used as high temperature, wear- and 

corrosion-resistant materials. Some typical applications include thermal barrier coatings of high 

temperature components in gas turbines, surface hardening for tribological protection and graded 

interlayers used in multilayered microelectronic and optoelectronic components, artificial bones, 

joints and teeth. [3] 

On the basis of wide applications in many branches of engineering, one of the important analyses 

regarding FGMs is to identify their probable failure modes and design them against those failures. 

In designing with FGMs, a crucial aspect of the problem is the mechanical failure, specifically the 

fracture failure. Although the absence of discontinuous interfaces in FGMs does largely reduce 

material property mismatch, crack may occur when they are subjected to external loadings [1, 2]. In 

most of the cases, the failure process starts with the formation of microcracks at locations of 

corrosion pits, surface flaws, or stress concentration. These microcracks are coalesced into a local 

dominant crack, which would then propagate under cyclic or sustained loading. Even very small 

mechanical imperfection such as uncertainties arising from voids and defects has adverse effect on 

the fracture strength. Therefore, fracture analysis of these materials is important in order to 

understand, quantify, and improve their toughness. 

The study of fracture of solids is carried out from one of the three points of view, namely 

microscopic or atomic, microstructural, and macroscopic or continuum mechanics [4]. From the 

standpoint of engineering applications, it has been the macroscopic theories based on the notion 

of continuum solid mechanics and classical thermodynamics that have provided the quantitative 

working tools in dealing with the fracture of structural materials. From the macroscopic point of 

view, the fracture may roughly be classified as brittle and ductile. Brittle fracture is associated 

with low energy, and for unstable loading conditions, it usually takes place under high fracture 

velocities. Ductile fracture is associated with large deformations, high energy dissipation rates, and 

slow fracture velocities. Again loading of cracked body is usually accompanied by inelastic 

deformation and other nonlinear effect in the neighborhood of the crack tip, except for the case of 

ideally brittle materials. But in the situations where inelastic deformation and nonlinear effects are 

very small compared to the crack size and any other characteristic length of the body, the linear 

theory is adequately justified to address the problem of stress distribution in the cracked body.  



3 
 

The microstructure is another factor that affects the fracture characteristics of solids. The 

techniques often used to fabricate FGMs are thermal spray, powder processing and chemical 

vapor deposition (CVD). The microstructure of  FGMs depends on these manufacturing processes 

[5].However, in the idealized case of FGMs, the effect of microstructure is neglected and materials 

are assumed to be simple nonhomogeneous with continuous variation of material properties. It has 

been found that the stress intensity factor approach holds as long as the elastic properties remain 

piecewise continuous and differentiable [6]. 

 Another important factor in the fracture study of FGMs is the eigenstrain, which is a generic name 

of such nonelastic strains as thermal expansion, phase transformation, initial strains, plastic strains 

and misfit strains [7]. The incompatibility of this eigenstrain produces eigenstress, which affect the 

fracture strength of FGMs. In FGMs, eigenstrain is induced due to nonuniform coefficient of 

thermal expansion (CTE) when FGMs are cooled from sintering temperature. 

1.2  Motivation of the Present Work 
 
The thermo-mechanical deformation of FGM structures have attracted the attention of many 

researchers in the past few years in different engineering applications which include design of 

aerospace structures, heat engine components and nuclear power plants, etc. Consequently, 

enormous studies have already been carried out to analyze various aspects of FGM beams, 

cylinders, spheres and plates. For instance, Xiang and Yang [8] considered thermal load for the 

analysis of free and forced vibration of a laminated functionally graded Timoshenko beam of 

variable thickness. A Timoshenko beam of FGMs was also considered to investigate the post-

buckling behavior in response to the thermal load [9]. FGM circular cylinders were considered by 

Obata and Noda [10] and Liew et al. [11] to analyze the thermal stresses. FGM circular cylinders 

were also considered by Afsar et al. [12] for the analysis of brittle fracture characteristics by taking 

into account the effect of incompatibility of eigenstrain developed in the cylinder due to nonuniform 

CTE as a result of temperature change. Loghman  et al. [13] investigated the magnetothermoelastic 

creep behavior of thick-walled spheres made of functionally graded materials(FGM) placed in 

uniform magnetic and distributed temperature fields and subjected to an internal pressure using 

method of successive elastic solution. 

 Among various geometrics of FGM bodies, FGM plates have received wide attention for the 

analysis of various aspects as FGM plates have potential application in different branches of 

engineering. A huge amount of works are available in  literature t hat  performed  evaluation 
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of thermomechanical behavior of functionally gradient material plates using finite element 

techniques. It includes both linearity and non linearity in various areas. A number of approaches 

have been employed to study the static bending problems of FGM plates. The assessment of 

thermo-mechanical deformation behavior of functionally graded plate structures considerably 

depends on the plate model kinematics. For instance, Praveen and Reddy reported theoretical 

formulations and finite element analysis of the thermomechanical, transient response of 

functionally graded cylinders and plates with nonlinearity [14]. Qian et al [15] analyzed static 

deformations, free and forced vibrations of a thick rectangular functionally graded elastic plate by 

using a higher order shear and normal deformable plate theory and a meshless local Petrov–

Galerkin (MLPG) method. Chung, Chang [16] studied the mechanical behavior of rectangular 

plates with functionally graded coefficient of thermal expansion subjected to thermal loading. 

Ashraf and Daoud [17] determined the thermal buckling response of functionally graded plates 

using sinusoidal shear deformation plate theory (SPT). 

It is seen that although various aspects of FGM plates have been analyzed, analysis of fracture 

characteristics has received only a little attention.Systems of bearing and shaft with a lubricant 

between them are common components of almost all engines, turbines and other devices with 

relative motion. FGM coatings around the bearing surfaces can be used to prevent wear and 

oxidation, and at the same time substantially reduce the mismatch thermal stresses, whereby 

providing strong bonding between substrates and coatings. However, using liquid lubricant exerts 

considerably high pressure at the bearing surfaces due to which surface cracking may occur 

from initial flaws or other defects and propagate into the coatings. Since the thickness of the 

coatings around the bearing surfaces is small, the systems can be considered as infinite FGM 

plates with a circular hole. 

Afsar and Sekine[18] carried out an analysis of fracture characteristics of such an infinite plate 

with an FGM coating around a circular hole. However, they confined their attention only to a 

single crack emanating from the circular hole. It is well known that two diametrically opposed 

edge cracks emanating from a hole is the worst case than a single crack. Thus, it is important to 

carry out the analysis of fracture characteristics for two diametrically opposed edge cracks. This 

motivates the author to consider the case of two diametrically opposed edge cracks emanating 

from a circular hole with an FGM coating in an infinite plate in order to understand, quantify, and 

improve the fracture characteristics.  
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1.3 Objectives 
 

Two diametrically-opposed edge cracks emanating from a circular hole with an FGM coating in an 

infinite plate are considered for the analysis of brittle fracture characteristics. 

The specific objectives of the study are 

a) To modify an existing method developed for a single edge crack with view to applying it to 

the case of two diametrically-opposed edge cracks. 

b) To analyze fracture characteristics corresponding to prescribed material distributions in the 

FGM coating around a circular hole in the plate. 

c) To analyze the effects of temperature gradient, coating thickness, and strength factor on the 

fracture characteristics. 

d) To evaluate and analyze apparent fracture toughness as a function of material distribution, 

temperature gradient, and coating thickness. 

e) To compare the results of two diametrically-opposed cracks with those of the single crack. 

 

 It is expected that the modified method to be developed here in this study and the results to be 

presented would be helpful in designing with bearings having an FGM coating at the inner surface 

from the viewpoint of fracture characteristics. It is also expected that the outcome of the present 

research will provide important information to the academicians and industrialists for further 

research in the similar field. 
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Chapter 2 : LITERATURE REVIEW 
 
Over the past few years, there have been a number of works, both theoretical [19-21]and 

experimental[22], to study the responses of FGMs to mechanical and thermal loads for various 

geometries in various fracture mechanisms. Putting concern on the effects of material 

nonhomogeneities on the stress field at crack tips Cook and Erdogan [23], and Erdogan and Cook 

[24] showed that the stress field around a crack tip terminating at the interface has a behavior of the 

form rα, where r is the distance from the crack tip and 10. By further research, an important 

conclusion is given that the nature of the stress singularity at a crack tip in nonhomogeneous 

materials would remain to be the standard square-root type as homogeneous solids, provided that 

the spatial distribution of the material properties are continuous and piecewise continuously 

differentiable [25-29].Hence the stress intensity factor concept can still be used to study the fracture 

behavior of FGMs as long as the crack-tip nonlinear deformations and process zones are completely 

included within the region dominated by the stress intensity factors. 

Extensive investigations have been carried out to analyze the effects of nonhomogeneities of FGMs 

on the stress intensity factor (SIF) for various geometries and loading conditions. However, 

mathematical difficulties due to nonhomogeneous properties have made analytical studies for 

cracked nonhomogeneous bodies inappropriate. Therefore, it is often conventional to regard the 

material properties to be some certain assumed functions of space variable such as exponential and 

power functions. 

A series of papers on the crack problems of nonhomogeneous materials have appeared in the 

literature in which the material properties have been assumed to vary following an exponential 

function [30-34]or a power function[35-37] . Delale and Erdogan [34] solved the crack problem of 

nonhomogeneous infinite plate assuming constant Poisson’s ratio and exponentially varying 

Young’s modulus. They found that the Poisson’s ratio did not have much effect on the resulting 

stress intensity factors. They also found that the strain-energy release rate of the crack embedded in 

the portion of the medium with higher stiffness is lower than that corresponding to the crack tip in 

the less stiff side of the material. Gu and Asaro [31] considered a semi-infinite crack in a strip of an 

isotropic, functionally graded material under edge loading and in-plane deformation conditions. 

Their results showed that the fracture modes of the cracks in FGMs are inherently mixed when they 

are not parallel to the direction of material property variation, i.e. there are 
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typically both normal and shear tractions ahead of the crack tips because of the non-symmetry in the 

material properties. The crack problems of FGMs with the exponential variation of material 

properties and involving various geometries discussed above were solved for mechanical loadings. 

Numerous researchers have also carried out a number of studies for cracked FGM bodies subjected 

to thermal loadings assuming the same exponential function for the material properties. Jin and 

Noda [38], Noda and Jin [39] have studied crack problems of FGMs under steady thermal loading 

in order to reduce the thermal stresses and the thermal stress intensity factors. All of these authors, 

in their research work, conclude that the appropriate selection of the mechanical and the thermal 

nonhomogeneous parameters of the material reduces the thermal stresses and, hence, the thermal 

stress intensity factors. Bao and Wang [35] studied multiple cracking in functionally graded 

ceramic/metal coatings and considered both mechanical and thermal loads. The gradation in the 

FGM coating was taken to be of a power function, both linear and nonlinear. It was found that the 

gradation of the coating could significantly reduce the crack driving force. It was also found that 

under mechanical loading the effect of different gradations on the crack driving force was relatively 

small. However, under thermal loading, the influence of coating gradation could be significant.  

Dynamic fracture of FGMs and experimental investigations into the fracture of FGMs, due to the 

high cost and elaborate facilities required for preparing FGM specimens has received very little 

attention. Nakagaki et al. [40] addressed a numerical treatment of fracture occurring in an FGM 

under dynamic loading. 

From the above reviews discussed so far, it can be summarized that the various aspects of crack 

problems of functionally graded materials have been studied, both analytically and experimentally, 

under various mechanical and thermal loading conditions, and for various geometries. However, 

these studies are concerned with the direct problems in which the fracture characteristics of FGM 

bodies can be analyzed only for certain assumed functions of the material properties e.g. 

exponential and power functions. 

An important aspect of FGM bodies still remaining to be dealt with is the inverse problems in which 

the improved characteristics of FGM bodies under mechanical and thermal loadings can be 

prescribed and the corresponding material composition profiles via the material properties can be 

obtained by inverse calculation [41-46]. A general inverse design procedure for FGMs was 

addressed by Hirano and Wakashima [47] to determine both the basic material combination and 

optimum material distribution profile with respect to the objective structural shape and the 
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thermomechanical boundary conditions. Markworth and Saunders [48] considered the inverse 

problem of optimizing an assumed functional form for the spatially dependent material distributions 

subject to certain constraints such as maximizing or minimizing the heat flux across the material. In 

all the references mentioned above, the inverse problems were considered in order to design FGMs 

optimally from the viewpoint of thermal characteristics. The analytical solution to the inverse 

problems of designing FGMs from the viewpoint of fracture characteristics turns out to be very 

complicated due to their nonhomogenous material properties. Obviously, the inverse problems 

cannot be restricted to certain assumed functions for the material property distributions as Zuiker 

[49] pointed out that these assumed property distributions are not physically realizable for certain 

material composition profiles which may be obtained by the inverse problems. Afsar and Sekine 

[18] dealt with the inverse problem of calculating material distribution for prescribed apparent 

fracture toughness in FGM coatings around a circular hole in infinite elastic media. They also 

considered semi-infinite FGM media with a single [50] and periodic [51] edge cracks and computed 

material distribution profiles for improved fracture characteristics. In another work [52], they 

calculated the optimum material distribution in a thick-walled FGM circular pipe with a single edge 

crack for desired apparent fracture toughness.  

It is found that some of the above mentioned studies were concern about the presence of a single 

crack in an infinite elastic medium under different loading conditions. However, for an infinite 

plate, two diametrically opposed cracks emanating from a circular hole with an FGM coating have 

not been considered so far. Since the case of two diametrically-opposed cracks is the worst case 

than that of a single crack, this should be addressed to understand, quantify and improve the brittle 

fracture characteristics. Therefore, the present study focuses on the analysis of brittle fracture 

characteristics of an infinite plate with two diametrically opposed edge cracks emanating from a 

circular hole with an FGM coating. 
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Chapter 3 : APPROXIMATION METHOD OF STRESS INTENSITY  
FACTOR FOR INFINITE PLATE WITH FGM COATING 

 

3.1 Method of Homogenization 

Functionally graded materials being nonhomogeneous solids, their nonhomogeneities complicate 

the analytical study of fracture characteristics due to mathematical difficulties. This complexity 

gives rise to a trend of assuming the material properties as certain assumed functions of space 

variable, for instance, exponential and power functions, in order to simplify the problems. However, 

in designing with FGMs i.e. in the inverse problems, in which material composition profiles have to 

be determined to achieve desired fracture characteristics, special functional forms of the properties 

cannot be assumed. Since these assumed functional forms of the properties may not be physically 

realizable for some material composition profiles obtained by inverse calculation. Therefore, in this 

study, as an alternate approach, an approximation method to calculate the stress intensity factor 

(SIF)  developed by Sekine and Afsar [50] is adopted for a crack in FGMs, which is not restricted to 

any specific property distributions, but can treat any arbitrary distributions of the properties. The 

concept of the approximation method is explained below. 

First, the FGM bodies are homogenized by simulating the material nonhomogeneities by a 

distribution of equivalent eigenstrain. The distribution of the equivalent eigenstrain to be 

determined is such that the elastic fields are identical in both the FGM and the homogenized bodies 

under the same loading conditions. Then a method is formulated to calculate the stress intensity 

factor for cracks in the homogenized bodies subjected to external loadings. Since the equivalent 

eigenstrain is determined from the condition of identical elastic fields in the uncracked FGM and 

homogenized bodies, the elastic filed in the cracked homogenized bodies cannot exactly represent 

the elastic field in the cracked FGM bodies. Therefore, the stress intensity factors calculated for 

cracks in the homogenized bodies with the equivalent eigenstrain represent the approximate values 

of the stress intensity factors for the same crack in the corresponding FGM bodies and hence it is 

referred to the approximation method. 
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The resultant stress field in the cracked homogenized bodies can be obtained by the principle of 

superposition. Initially, the stress field in the uncracked bodies is determined due to external 

loadings, and incompatible and equivalent eigenstrains. The disturbed stress field due to the 

presence of two diametrically opposed radial edge cracks is then determined. Finally, the resultant 

stress field in the cracked homogenized bodies is obtained by superposing the disturbed stress field 

and the one obtained for the uncracked bodies. Thus the following boundary condition along the 

crack surfaces is satisfied for the disturbed stress field 

s
h
s

d
s T ,                              (3.1) 

where h
s  is the stress component along the prospective crack line in the uncracked homogeneous 

bodies, d
s  is the stress component of the disturbed field due to the presence of a crack, and sT  is 

the traction applied to the crack surface. The disturbed stress field can be determined by 

representing the crack by a continuous distribution of edge dislocations. 

3.2 Apparent Fracture Toughness of FGMs 

There are possibilities of three independent kinematic movements of the crack surfaces with respect 

to each other [3]. Depending on this relative movement of crack surfaces, crack propagation is 

classified as Mode I, Mode ΙΙ, and Mode ΙΙΙ as shown in Fig.3.1. Of these three basic modes of 

deformation Mode I resemble the characteristics of the present problem as the stress is normal to the 

crack surface. So we will consider Mode I  deformation. 

The stress intensity factors for a crack in homogeneous materials without any initial stresses or 
eigenstrains can be expressed, in general, for the Mode I as [53] 

IK Fp l ,       (3.2) 

where F is a geometric factor that depends on the geometry of the crack and the cracked body and 

the loading configuration, l is the crack length, and p  is the applied pressure. 

For a specific crack length l, the above expression gives the intrinsic fracture toughness of 

homogeneous materials when the applied pressure p  approaches its critical value cp , because cp  

alone contributes to the crack driving force. 



11 
 

In contrast, the effective crack driving force in the case of FGMs is obtained due to the resultant 

effects of the applied critical pressure cp  and the induced incompatible eigenstrain resulting from 

non-uniform CTE when FGMs are cooled from sintering temperature. However, apparently it seems 

that the crack extension in FGMs occurs due to the applied critical pressure Cp  alone. Therefore, 

the above expression gives the apparent fracture toughness in the case of FGMs when p  is 

substituted by Cp . 

 
 Thus the apparent fracture toughness a

ICK  of FGMs can be defined by, 

a
cICK Fp l .   (3.3) 

Since the factor F is a function of the geometry and the loading configuration, the apparent fracture 

toughness a
ICK  is also a function of the same. Thus in calculating the apparent fracture toughness of 

FGM bodies, it is necessary to consider crack geometries as well as loading configuration. 

3.3  Intrinsic Fracture Toughness of FGMs 

The intrinsic fracture toughness of FGMs represents the fracture resistance that a FGM actually 

possesses. It is related to the effective critical stress acting at the crack tip. Therefore, in 

determining the intrinsic fracture toughness of FGMs, the stress arising from the incompatible 

eigenstrain will also have to be considered along with the applied critical pressure. 

Again, the intrinsic fracture toughness of FGMs can be determined from their effective properties. 

If a material A is distributed in a matrix material B and forms an A/B FGM, the intrinsic fracture 

toughness of the FGM can be determined from equation [54], 

0

B
C C

EK K
E

 ,  (3.4) 

where B
CK  is the intrinsic fracture toughness of the material B, E0 is the Young’s modulus of the 

material B, and E is the effective Young’s modulus of the A/B FGM, which can be obtained by using 

an appropriate model of mixture rule. 
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3.4 Effective Properties of FGMs 

To calculate the effective properties of FGMs, an appropriate and reliable model of mixture rule is 

required. In fact, the mixture rule developed for conventional composites cannot be used for FGMs 

as the microstructure in FGMs varies with the volume fractions of the constituents. Moreover, a 

dispersive phase at one side of FGMs transforms to matrix phase at the other side. Therefore, a 

special attention is necessary to give while deriving a mixture rule for FGMs. Among various 

models of mixture rules, which are developed giving emphasis on different aspects of their interests, 

the mixture rule introduced by Nan et al. [55] is adopted in this study, as it appears to be more 

accurate for the entire range of volume fractions of the constituents. For an FGM whose 

constituents are A and B, this mixture rule is given by, 

0
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K
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)3(
9








K
KE , (3.5e) 

where V is the volume fraction, K is the bulk modulus, E is the Young’s modulus and   is the shear 

modulus of elasticity,   is the coefficient of thermal expansion. The subscripts A and B denote the 

respective properties of the constituent materials, and the non-subscripted variables are used to 

denote the effective properties of the FGM. 
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Chapter 4 : THEORETICAL FORMULATION OF THE CRACK 
PROBLEM 

 
Application of FGM as coating around a bearing surface helps preventing wear and oxidation as 

well as reduce the mismatch thermal stresses, whereby providing strong bondage between substrates 

and coatings. However, due to inherent imperfections introduced while manufacturing, surface 

cracking may occur and propagate into the coatings when liquid lubricant exerts considerably high 

pressure. With small coating thickness around the bearing surface, the system can be considered as 

infinite plate with FGM coating around a circular hole. 

 

4.1 Modeling of the Problem 
In the present model of the problem, consider an FGM coating around a circular hole of radius R in 

an infinite plate as shown in Fig.4.1, which is referred to the Cartesian coordinate system x-y and 

the polar coordinate system r- having the same origin located at the center of the circular hole. 

The constituents of the FGM coating are denoted by the materials A and B, and their volume 

fractions VA and VB are assumed to vary in the radial direction only. The FGM coating extends upto 

the radius Rf. Thus, the region fRrR   has a gradation of the properties while the infinite region 

r  Rf is homogeneous consisting of the material B. The continuously and arbitrarily varying 

Young’s modulus, Poisson’s ratio and the coefficient of thermal expansion of the FGM coating are 

represented by E,  and , respectively while the corresponding properties of the homogeneous 

region are, respectively, denoted by 0E , 0  and 0 . An incompatible eigenstrain )(* r , which is a 

function of r only, is induced in the FGM coating due to mismatch in coefficients of thermal 

expansion when it is cooled from the sintering temperature. The incompatible eigenstrain )(* r  can 

be defined by 

Tr  )()( 0
*  , (4.1)

  

where, T  is temperature difference between  sintering and room temperatures, α is the coefficient 

of thermal expansion which is determined by using the mixture rule in Eq. (3.5). 
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For this model of the problem, fracture characteristics will be examined by considering two 

diametrically opposed radial edge crack emanating from the circular hole and assuming that the 

surfaces of the hole and the crack are subjected to a uniform pressure p.  

4.2 Equivalent Eigenstrain to Simulate Nonhomogeneities 

The FGM coating around the circular hole shown in Fig.4.1 is homogenized by a distribution of 

equivalent eigenstrain. As stated earlier, the equivalent eigenstrain is determined from the condition 

of identical elastic fields in the uncracked FGM and homogenized coatings subjected to the same 

loading condition. To determine the elastic fields, we first consider the FGM coating subjected to a 

uniform applied pressure p around the circular hole. For this purpose, a special technique is adopted 

in which the FGM coating is radially divided into layers of infinitesimal thickness as shown in Fig. 

4.2, which exhibits one half of the elastic medium. Each layer is assumed to have constant material 

properties but different from those in the other layers. The inner and the outer radii of the ith layer 

are, respectively, denoted by ri-1 and ri, where r0 = R and rn = Rf. The region fRr   is 

homogeneous. The pressures at the inner and the outer surfaces of the ith layer are, respectively, f
iP 1  

and f
iP  which are the resultant of the pressures due to the uniform applied pressure p and the 

incompatible eigenstrain * . For this layered FGM coating, it can be easily shown that the resultant 

stress components in the ith layer, in axisymmetric case and plane stress condition [50], are 
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where 

,1

i

i
i r

rc   (4.3a) 

.*, f
i

f
i

f
i ppP   (4.3b) 

At the right hand side of Eq. (4.3b), the first term appears due to the uniform applied pressure p 

while the second term appears due to the incompatible eigenstrain * .  
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The strain and the displacement components in the ith layer are derived as 

,)(
1
1)(

)1(
1 *

1
2

2

2

1
2

2, i
f

i
f

ii
i

i

if
i

f
ii

ii

ii
fr PPc

r
rPPc

cE





 





















 (4.4a) 

,)(
1
1)(

)1(
1 *

1
2

2

2

1
2

2, i
f

i
f

ii
i

i

if
i

f
ii

ii

ii
f PPc

r
rPPc

cE





























 (4.4b) 

  ,
)1(

2 *
1

2
2, i

f
i

f
ii

ii

ii
fz PPc

cE



 





 (4.4c) 

.
1
1

1
1

)1(
)1( *2

1
2

2 ii
i

i

i

i

f
i

i

i

i

i

f
ii

ii

iif
i rc

r
r

r
rP

r
r

r
rPc

cE
ru 


















































 (4.5) 

In deriving the above equations, it has been assumed that all the components of the incompatible 

eigenstrain are equal i.e. *
,

*
,

*
,

*
iziiri 


 . 

The unknown pressures f
ip  and f

ip*,  are determined from the condition that the displacements at 

irr   are identical for the ith and the (i+1) th layers, which gives 
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The stress and displacement components in the region fRr   are derived as 
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To solve Eq. (4.6), it is necessary to know the pressures f
np  and f

np*, at the outer surface of the nth 

layer. These are determined from the condition that the displacements f
nu  of the nth layer and fu  of 

the homogeneous region are equal at fRr  . From this condition, we obtain 

,
})1()1{()1()1(

2
2

0
2

0

1
2

0

nnnnn

f
nnf

n cEcE
pcEp

 
   (4.11a) 

.
})1()1{()1()1(

2)1(
2

0
2

0

*,
1

2
0

2*
0*,

nnnnn

f
nnnnnf

n cEcE
pcEcEEp








   (4.11b) 

Now we consider a homogeneous infinite medium with the same geometry and determine the 

elastic field in the region of the coating following the same procedure as FGM coating. In this case, 

the pressure at the outer surface of the nth layer is taken same as FGM coating so as to achieve the 

same elastic field in the region fRr  . The equivalency in the elastic fields of the region fRrR   

is achieved by assuming a distribution of equivalent eigenstrain. First, we determine the elastic field 

in the ith layer of the coating region due to the uniform applied pressure p and the incompatible 

eigenstrain *  as, 
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where, 
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The unknown pressures h
ip  and h

ip*,  are, respectively, determined from the following equations: 
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Now we assume a distribution of equivalent eigenstrain i
ej ,  in the ith layer of the coating region, 

where j = r,   and z. From the equivalency of the stress fields in the coating regions, we can write 
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where i
er ,  and i

e,  are, respectively, the radial and the circumferential stress components in the ith 

layer of the coating region of the homogeneous medium due to the equivalent eigenstrain i
ej , . 

From the equivalency of the total strains, we can write, 
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where i
eje ,  is the elastic strain associated with the equivalent eigenstrain i

ej ,  in the ith layer of the 

coating region of the homogeneous medium. 

The elastic strain i
eje ,  is related to the stress i

ej ,  by Hooke’s law as follows 
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Combining Eqs. (4.2), (4.3), (4.12), (4.13) and (4.19)-(4.20), the expressions for the equivalent 

eigenstrains in the ith layer can be derived as 
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Although the equivalent eigenstrains derived above and the incompatible eigenstrain *
i  are 

stepwise continuous, discontinuities in their values occur at the interfaces between the layers, which 

are physically inadmissible for an FGM with continuously varying material properties. Therefore, 

for physically admissible results, we obtain continuous distributions of the equivalent and the 

incompatible eigenstrains for the non-layered coating region of the homogeneous medium, as 

shown in Fig. 4.3, by spline interpolation of the stepwise continuous eigenstrains. Including this 

equivalent eigenstrain, the resultant stress components in the non-layered homogeneous medium as 

shown in Fig. 4.3 are derived as, 



20 
 

2 2 *,2 2

2 2 2 2 2 2

2
* *

0 2 2 2 2

2

0

2 2

( )
1 1

1 1
1

1 1
( ) ( ) 1 ;

2

f

f f

f f n nh

r

f f

Rr

R Rf

r r
e e e e

r r f

R R

R R p ppR R

R R r R R r

R
E r dr r dr

r r R R

E R
r dr dr C R r R

r r r 



 

   


   

 

   


        

   
   

  

  
  

  

 
 

  

 

 

 

(4.23a)

 

,;1)(1)(12
2

111

1
)(

1

2

2

2
0

*
222

2
*

2
*

0

2

2

22

*,2

2

2

22

2

f

r

R

r

R

ee
r

ee
r

e

r

R

R

Rf

f

f
n

f
nff

f

h

RrR
r
RCdr

r
drr

r
E

drr
RRr

Rdrr
r

E

r
R

RR
ppR

r
R

RR
pR

f






































































 

 











 

(4.23b)

 

f
f

f
nf

f
nh

r Rr
r

Rp
r
Rp

 ;
2

2*,

2

2

 , (4.23c) 

f
f

f
nf

f
nh Rr

r
Rp

r
Rp

 ;
2

2*,

2

2


 , (4.23d) 

where, 
















  
f fR

R

R

R

ee
rf

ee
r

f

dr
r

Rdrr
RR

C )(1)(1 2
22 

 , (4.24) 

and *  and e
j  represent, respectively, the incompatible and the equivalent eigenstrain distributions 

which are continuous over the entire range of interest. 

 
4.3 Formulation for Stress Intensity Factor 

The stress field in the uncracked homogeneous infinite medium shown in Fig. 4.3 has been 

determined in the preceding section. Now let us consider two diametrically opposed radial edge 

cracks of equal length l each emanating from the circular hole in this homogeneous infinite plate as 

shown in Fig. 4.4. The surfaces of the hole and the crack are subjected to the uniform applied 

pressure p. In this case, the boundary condition along the crack surface given by Eq. (3.1) reduces to 
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0Crack I : ; , 0d h p R r l R          . (4.25a,b) 

0Crack II : ; , 180d h p R r l R             

The stress component h
  in the uncracked homogenized plate has been determined in the previous 

section. The disturbed stress field d
   can be determined by representing the crack by a continuous 

distribution of edge dislocations. The method of complex potential functions is used to calculate the 

stress field due to the edge dislocations. The complex potential functions for an edge dislocation 

making an angle β with the positive x axis and passing through a point z = h in an infinite medium 

with a circular hole of radius R as shown in Fig. 4.5, are given by[50] 
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where h = R+s,b1  and b2 are the components of Burgers vector, and 0  is Kolosov’s constant which 

is equal to (3- 0 )/(1+ 0 ) for plane stress condition and iz x iy re      

and, 

0 0, 0,for dislocation only as it represent stress distribution at infinitya a                                 (4.27a)   
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1 2( ) i
pB Pi b ib e    ,                                                                                                          (4.27h) 

1 2( ) i
pB Pi b ib e     ,                                                                                   (4.27i)           

1 2( ) i
mB Pi b ib e    ,                                                                                  (4.27j)     

1 2( ) i
mB Pi b ib e      ,                                                                                 (4.27k)                                                                                           

    

In the present study, two diametrically opposed radial edge cracks, crack Ι and crack ΙΙ emanating 

from the surface of a circular hole are considered. For crack Ι the disturbed stress component is first 

determined. Now we consider that, for this crack, the discrete edge dislocation is located on the x 

axis and at a distance h=R+s. For this configuration of the dislocation β=-90o,so 
0 0cos90 sin90ie i i     . 

Also, for the orientation shown, the crack tip experiences mode Ι deformation only. So, 2 0b   

Now, the complex potential functions of Eqs.(4.26a) and(4.26b)can be written as  
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where, 
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If the crack is represented by a continuous distribution of edge dislocation, the potential functions 

are rewritten as [53] 
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The stresses can be expressed in terms of the complex potentials )(z , )(z  and their complex 

conjugates as below [56]: 
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By using Eqs. (4.30) and (4.31), we can easily obtain the circumferential stress component along the 

crack line of crack Ι ( = 0o, iz re r z   , r= R+x, for horizontal orientation of cracks h=R+s) as 

follows 
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where, 
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Now, crack II is considered and the discrete edge dislocation for this crack is shown in Fig. 4.6. For 

the configuration of the dislocation shown,  = +900 ,  
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So, e i= cos 900 + i sin 900 = +i. 

This crack is also represented by a continuous distribution of edge dislocations. Following the 

similar procedure as crack I, the stresses along the crack line of crack I due to crack II is determined 

by setting  = -1800 and considering b1 as negative in Eq. (4.26). Finally, one obtains,  
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Now, superposition of Eqs. (4.32) and (4.34) gives the resultant circumferential stress component of 

the disturbed stress field along the crack line of crack I as:    
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The boundary condition along the crack line of crack I given by Eq. (4.25) reduce to 
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Where Sf  is the strength factor defined by the ratio of the ultimate strength u   of the base material 

B to the applied internal pressure p. Equation (4.38) is the singular integral equations for the 

unknown density function )(sb , which is normalized over the interval [-1,+1] by using the 

substitutions,  
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The density function B(T) can be expressed as the product of a fundamental function w(T) which 

characterizes the bounded-singular behavior of B(T) and a bounded continuous function )(T  in 

the closed interval –1  T  +1. Thus, we can formulate 

)()()( TTwTB  .  (4.42) 

In the present case, the fundamental function can be given by  

)1(
)1()(

T
TTw




 .      (4.43) 

Using the Gauss-Jacobi integral formula corresponding to the weight function in Eq. (4.42) in the 

manner developed by Erdogan et al. [57] Eq. (4.40) can be converted to a system of algebraic 

equations to determine the unknowns )( jT  as follows 
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The integration and collocation points are given by  
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It can be readily shown that the stress intensity factor can be derived as[58] 

)1(
)1(

22
0

0 


 



lK I , (4.46) 

where )1(  is computed by Krenk’s interpolation formula [59] given by 
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The solution of Eq. (4.43) provides the unknowns )( jT  which are used in Eq. (4.47) to determine 

the value of )1(  and then the stress intensity factor can be computed from Eq. (4.46). 

 

4.4 Approach of Evaluating Apparent Fracture Toughness 

In this section, an approach is introduced to evaluate apparent fracture toughness (AFT) using the 

formulations of SIFs discussed in the article 4.2. Equations (4.44) to (4.47) determine the SIF due to 

combined effect of the eigenstrain and applied internal pressure. Therefore, the critical value of SIF 
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at the crack tip determined from Eqs (4.44) to (4.47) must be equal to the intrinsic fracture 

toughness, determined form the Eq (3.4) of the point of crack tip position. It is noted that the right 

hand side of Eq. (4.44) is the function of eigenstrains and applied internal pressure. It is noted that, 

the eigenstrain is considered to be a function of material composition. Therefore, for a prescribed 

material composition and crack length, this equation can be solved in terms of unknown internal 

pressure p in the form of  

KI = ke + kpp .                                                                                                         (4.48) 

where ke is the SIF associated with the eigenstrain and kp is the factor associated with the coefficient 

of p in Eq. (4.44). Then, Eqs. (3.2) and (4.48) are equated to determine the critical value of internal 

pressure pc corresponding to given crack length. Note that the right hand side of Eq. (3.2) is known 

as the material composition is already prescribed from which E  can be determined by using the 

mixture rule formula given by Nan et al.[56]. The critical value of internal pressure pc is then used 

in Eq. (3.3) to determine the AFT of the point of the crack tip position. Equations (4.44) to (4.47) 

are repeatedly solved by varying the crack length and the AFT is determined at the position of crack 

tip following the above procedure. 

4.5 Direct Problem 

In direct problems, the fracture characteristics of cylinders with an FGM coating are analyzed for 

assumed functions of the material properties. To calculate the stress intensity factors, first, the 

effective properties of the FGM cylinder are determined for an assumed material composition in the 

FGM cylinder by using the mixture rule given by Eqs. (3.5a) to (3.5e). Then, we can calculate the 

equivalent eigenstrain by using Eq. (4.22) and the resultant stress h
  from Eq. (4.23b). From Eqs. 

(4.44) to (4.47), we can then determine the stress intensity factor for the FGM cylinder.  
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Chapter 5 : NUMERICAL RESULTS AND DISCUSSIONS 
 
Numerical results are obtained for a TiC/Al2O3 FGM coating around a hole in an infinite plate in 

which the constituents TiC and Al2O3 correspond to the materials A and B, respectively. The 

characteristic dimensions R and Rf are taken as 10 mm and 11 mm, respectively. In numerical 

calculations, the number of layers of infinitesimal thickness shown in Fig. 4-2 is chosen as 50.The 

mechanical and thermal properties of the constituent as displayed in Table.5.1. 

5.1 Verification of the Method 

The approximation method of calculating stress intensity factors of an infinite plate with two 

diametrically-opposed radial edge cracks emanating from the inner surface of a circular hole with 

an FGM coating is first verified by applying the method for a homogeneous plate. By setting VA = 0 

or uniform distribution of VA throughout the FGM coating, one obtains a homogeneous plate with a 

circular hole. The normalized stress intensity factors / ( )I IF K p cl R   are calculated for such 

a homogeneous plate for R/Rf =1.1 and compared with those available in literatures as shown in Fig. 

5.1. The solid   line represents the results obtained by the present method while the dotted line 

represents the results obtained using Boundary-Collocation Method by Newman [60]. The results 

correspond to nl=10 in Eqs.(4.44).It is observed that the results obtained by the present method 

agree well with those obtained by Newman for the entire range of normalized crack length

( ) /cl R R . This satisfies the validity of the present approximation method of evaluating SIFs. 

5.2 Stress Intensity Factors for Prescribed Material Compositions   

In this study, the stress intensity factors are calculated for an infinite plate with two diametrically-

opposed radial edge cracks emanating from the inner surface of a circular hole with an FGM 

coating for four different prescribed material distributions as shown by the curves in Fig. 5.2. The 

volume fraction of material A varies only in the FGM coating. Although any material distribution 

can be considered, these four distributions are considered here merely for examples. For these 

prescribed material distributions and Rf/R= 1.1, strength factor Sf=1.0, normalized stress intensity 

factor F1 versus normalized crack length (cl+R)/R is plotted in Fig. 5.3. For all the cases with the 

increase of the crack length cl. This reflects the usual characteristic of SIFs of conventional 
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materials. The lowest value of SIF is obtained for the uniform material distribution. However, the 

uniform distribution is not recommended as it has a sharp interface that causes the problem of 

delamination. Further, among three other distributions, the stress intensity factor for parabolic 

upward distribution is the minimum for the lower range of crack length. This is due to the fact that 

this material distribution has the higher gradient near surface of the plate which produces more 

incompatibility in the eigenstrain giving higher magnitude of compressive eigenstress. This 

compressive eigenstress attributes to the reduction in the stress intensity factor. Thus, it can be said 

that the FGM coating having the higher gradient would have the lower stress intensity factor.  

The effect of the FGM coating thickness in the plate are shown in Fig. 5.4 and Fig. 5.5. In Fig. 5.4 

the stress intensity factors are plotted for different values of Rf/R for linear material composition and 

Sf=1.0. Here, the layer thinness has been varied by keeping the number of layers fixed, nl=10. On 

the other hand, in Fig. 5.5 the same plot is done varying the number of layers and keeping the layers 

thickness (Rf-R)/nl fixed at 0.2.In both the cases, it is observed that for higher coating thickness the 

stress intensity factor is less, thus has more toughness against crack propagation. Furthermore, it is 

found that the layer thickness or the number of layers have little effect on the overall pattern or 

value of stress intensity factors.  

The effects of strength factor Sf on the stress intensity factor are also examined and shown in Fig. 

5.6. The results correspond to the linear material distribution and Rf/R=1.1. The stress intensity 

factor decreases as the strength factor increases. This is because the higher value of strength factor 

represents the lower value of applied load p. 

The effect of T , that represents the difference between sintering and application temperatures of 

the plate with FGM coating on the stress intensity factor can also be examined by the present 

method. If the FGM coated plate is used in an application of elevated temperature (higher than the 

room temperature), the value of T  will be smaller. Its effect is shown in Fig. 5.7 which is plotted 

for the linear material distribution shown in Fig. 5.2. It is observed that the stress intensity factor 

rises as the value of T   decreases, i.e. at higher application temperature of the FGM coated plate. 

This conforms to the physical phenomenon that at lower value of ∆T, the eigenstrain developed in 

the plate becomes lower.  

A comparison between the stress intensity factors for a single radial edge crack and two 

diametrically opposed edge cracks is depicted in Fig.5.8. The stress intensity factors for a single 
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radial edge crack can be calculated by setting 1 2 3( , ) ( , ) ( , ) 0i j i j i jG H T G H T G H T      in Eq. 

(4.38). The results are obtained for Sf=1.0, Rf/R = 1.1. Note that the stress intensity factor is higher 

in the case of two diametrically-opposed cracks for any of the material distributions especially for a 

larger crack length. The comparison of stress intensity factors for a single and two diametrically-

opposed edge cracks around a circular hole of an infinite plate with FGM coating for linear material 

distribution  are shown in Fig.5.9. The stress intensity factors calculated for Rf/R = 2.5 and Sf=1.0. 

For single and double edge cracks SIF are very close over the inner region of the plate. It shows that 

the stress intensity factors of the plate with two diametrically-opposed edge cracks are much higher 

than those with a single radial edge crack over the outer region. So, the infinite pate with two 

diametrically-opposed edge cracks is more critical than that with a single radial edge crack.  

5.3 Apparent Fracture Toughness for Prescribed Material Distribution 

The apparent fracture toughness for prescribed material distributions of Fig. 5.2 is also evaluated 

numerically. The apparent fracture toughness a
ICK  is normalized by the intrinsic fracture toughness 

B
CK  of Al2O3. This normalized apparent fracture toughness a

ICK / B
CK  is plotted in Fig. 5.10 for 

Rf/R=1.1, ∆T = 1000°C. For all the cases of material distributions, the AFT initially increases over 

certain inner region of the plate. Then it decreases over rest of the region. The incompatible 

eigenstrain induces an eigenstress, which is a self-equilibrated internal stress. The compressive 

eigenstress reduces the crack driving force that eventually increases the apparent fracture toughness. 

On the other hand, the tensile eigenstress has the reverse effects on the apparent fracture toughness. 

The composition profiles shown in Fig. 5.2 induce compressive eigenstress over certain portion at 

the inner side of the plate and a balancing tensile eigenstress over the remaining portion of the outer 

side. That is why the apparent fracture toughness increases from the inner surface up to a certain 

length and then it decreases as seen from Fig. 5.10. This type of fracture characteristic is desirable 

as it ensures the protection of catastrophic failure. Once the crack starts to propagate under a certain 

pressure, it immediately stops propagating as the region ahead of the crack tip has a higher 

toughness. For its further propagation, the internal pressure should be increased. The maximum 

peak value of AFT is obtained for the uniform material distribution. However, the uniform material 

distribution is not recommended as it has sharp interface that causes delimitation. Among other 

three other three material distributions, it is noted that parabolic upward distribution in Fig. 5.2 

gives the maximum peak value of apparent fracture toughness. This is due to the fact that parabolic 
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upward material distribution is steeper near the inner surface that induces compressive eigenstress 

with a higher absolute magnitude than those obtained for the other two profiles. It is also noted that 

apparent fracture toughness for all material distributions has the value, which is significantly higher 

than the intrinsic fracture toughness B
CK of the base material of Al2O3 except those at and near the 

outer region of the plate. 

The effect of the FGM coating thickness around a circular hole of an infinite plate on AFT  are 

shown in Fig. 5.11 and Fig. 5.12. In Fig. 5.11, the AFT are plotted for different values of Rf/R for 

linear material distribution. Here, the layer thinness has been varied by keeping the number of 

layers fixed, nl=10.On the other hand, in Fig. 5.12, the same plot is done varying the number of 

layers and keeping the layers thickness (Rf-R)/nl fixed at 0.2. In both the cases, it is observed that 

for higher coating thickness the AFT is high, thus has more toughness against crack propagation. 

Furthermore, it is found that the layer thickness or the number of layers have little effect on the 

overall pattern or value of apparent fracture toughness. 

Figure 5.13 shows AFT as a function of application temperature. The parameter ∆T refers to the 

difference between the sintering and the application temperature. Thus, a lower value of ∆T 

indicates the higher application temperature. It is evident from Fig. 5.13 that the plate has better 

fracture resistance at low application temperature.  

Shown in Fig. 5.14 is the comparison of AFT for a single and two diametrically-opposed edge 

cracks. The results correspond to the linear material distribution of Fig. 5.2, Rf/R=1.1, ∆T = 1000°C. 

For both the cases of single and double cracks, the AFT is same over the inner region of the plate. 

However, it only differs significantly over the outer region. 
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Chapter 6 : CONCLUSION 

6.1 Concluding Remarks 
An approach is developed to analyze brittle fracture characteristics of an infinite plate having an 

FGM coating around a circular hole. The analysis is done considering the arbitrary variation of 

material properties instead of some presumed functional forms of material properties. The effect of 

eigenstrain developed in the plate as a result of cooling from sintering temperature due to 

nonuniform coefficient of thermal expansion is taken into account. The method is formulated to 

calculate the stress intensity factor for two diametrically-opposed edge cracks emanating from a 

circular hole of an infinite plate. This method is equally suitable for a single edge crack. Further, it 

can also be applied to a homogenous cylinder with a single as well as two diametrically opposed 

edge cracks. To demonstrate the method, some numerical results are obtained for an infinite plate 

with TiC/Al2O3 FGM coating around a circular hole. From the numerical results the following 

salient points can be noted: 

 

i. The stress intensity factors of an infinite plate with FGM coating depend on the material 
distribution. The SIF is less for material distribution with higher gradient. 
 

ii. The coating thickness around the circular hole has also significant influence on the SIF and 
AFT. 

 
iii. The strength factor Sf has reverse effect on the SIF, i.e. the SIF decreases as Sf increases. 

 
iv. Like a homogeneous cylinder, two diametrically-opposed edge cracks are more critical than 

a single edge crack in an infinite plate with FGM coating. 
 

v. Infinite plate with FGM coating has better fracture resistance at low application temperature. 
 

vi. The apparent fracture toughness of an Infinite plate with FGM coating is a function of 
material distribution. Thus the desired apparent fracture toughness can be introduced in an  
infinite plate with FGM coating by choosing the material distribution appropriately. 
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6.2 Recommendations for Future Work 
 
Some recommendations for further work are given below: 
 

i. Investigation of the effect of unequal crack size of two diametrically opposed edge 
cracks can be carried out. 

 
ii. Investigation of the effect of relative crack position of two radial edge cracks on the 

fracture characteristics of infinite plates with FGM coating around a circular hole can 
be carried out. 

 
iii. Investigation of the effect of multiple radial edge cracks (more than two cracks) on 

the fracture characteristics of infinite plates with FGM coating around a circular hole 
can be carried out. 
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Figure 1.1  Concept of FGM: (a) an FGM plate, (b) material distribution in the FGM plate. 
 
 
 
 
 
 
 
 

 
 
Figure 3.1 The three basic fracture modes. 
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Figure 4.1 Analytical model of an infinite FGM plate with a circular hole. 
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Figure 4.2 Layering of the FGM region around the circular hole in an infinite plate. 
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Figure 4.3 Infinite homogenized plate containing a circular hole with distributed incompatible 

and equivalent eigenstrains under a uniformly applied internal pressure. 
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Figure 4.4 Two diametrically-opposed edge cracks emanating from a circular hole in an infinite 

homogenized plate with distributed incompatible and equivalent eigenstrains under a 
uniformly applied internal pressure. 
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Figure 4.5 A discrete edge dislocation at z=h. 
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Figure 4.6 Two discrete edge dislocations at z = ±h  measured from the center of a circular hole 

in a homogenized infinite plate. 
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Figure 5.1 Comparison of normalized stress intensity factors for two diametrically opposed 

edge cracks at a circular hole in a homogeneous infinite plate obtained by the present 
method and by Boundary-Collocation method [60]. 
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Figure 5.2 Prescribed material distributions of TiC in TiC/Al2O3 FGM coating. 
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Figure 5.3 Effect of material distribution on normalized stress intensity factors. 
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Figure 5.4 Normalized stress intensity factors as a function of FGM coating thickness around a 

circular hole of an infinite plate for same number of layers. 
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Figure 5.5 Normalized stress intensity factors as a function of FGM coating thickness around a 

circular hole of an infinite plate for same layer thickness. 
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Figure 5.6 Normalized stress intensity factors as a function of strength factor. 
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Figure 5.7 Normalized stress intensity factors as function of difference in sintering and 

application temperature. 
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Figure 5.8 Comparison of normalize stress intensity factors for a single and two diametrically 

opposed cracks considering different prescribed material distributions. 
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Figure 5.9 Comparison of normalized stress intensity factors for a single and two diametrically-

opposed edge cracks. 
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Figure 5.10 Effect of material distribution on apparent fracture toughness. 
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Figure 5.11 Effect of FGM coating thickness around a circular hole of an infinite plate on the 

apparent fracture toughness for same number of layers. 
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Figure 5.12 Effect of FGM coating thickness around a circular hole of an infinite plate on the 

apparent fracture toughness for same layer thickness. 
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Figure 5.13 Effect of application temperature on the apparent fracture toughness. 
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Figure 5.14 Comparison of apparent fracture toughness for a single and two diametrically-

opposed edge cracks. 
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Table 5.1 Material properties of TiC and Al2O3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Material 
Young’s  
Modulus 

(GPa) 

Shear  
Modulus 

(GPa) 

Poisson’s  
Ratio 

CTE  
(/C) 

Ultimate 
Tensile 
Strength  

(GPa) 

Intrinsic 
Apparent 
Fracture 

Toughness
KIC 

(MPa 
m1/2) 

TiC 462 194.12 0.19 7.410-6 - 4.1 
Al2O3 380 150.79 0.26 8.010-6 0.28 3.5 



63 
 

APPENDIX 
 
Deriving simultaneous algebraic equations from singular integral 
equations 
 
The complex potential functions for an edge dislocation making an angle β with the positive x axis 
and passing through a point z = h in an infinite medium with a circular hole of radius R  
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where h = R+s,b1  and b2 are the components of Burgers vector, and 0  is Kolosov’s constant which 

is equal to (3- 0 )/(1+ 0 ) for plane stress condition and iz x iy re      
 
Now for k=0, 1 and integrating Eqs. 1(a, b) we get 
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The increment in displacement due to moving around a closed curve is given by 

0[2 ( )] [ ( ) ( ) Ψ(z)] 0;for single valuednessc cu iv z z z           
 
Putting the values we get, 
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Stress components are related by, 
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Eq(1 ) can be rewritten as 
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Substituting Eqs 5(a-d) into equation (4b), we obtain 
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                  (6) 
Along the boundary of the circle, 0d d

r ri      ; * iz x iy R e    and * iz R e   ; Thus equation 
(6) reduces to, 
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Now,
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Now, Equation (7) can be written as, 
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For, k=0; 
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Equating constant terms ,we obtain(terms without ie   ) 
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Equating co efficient of ie  ,we get 
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Now ,Equating co efficient of 2ie   for k=2,we get 
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Thus, co efficient of kie   with 3k    
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Co efficient of kie   with 1k   will be, 
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Solving Eqs.(3) and (10),we get 

1 pa B                    (14) 

So, 1 pa B                     (15) 
 
The co efficient 0a  and 0a   represent the stress distribution at infinity. For present case(dislocation 
only), they are zero. 
 
Thus the coefficient 2a  and 2a   reduce to 
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Now we can write the potential functions for edge dislocation in a plane with hole or radius R as 
follows 
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Now, we consider that the dislocation is located on the x axis and at a distance h=R+s. Here 

Realh h   .For this dislocation we set b2  =0 and β=-90o. So b1=b 
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Equation (17) reduces to 
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Thus we obtain, 
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For continuous distribution of edge dislocations, the potential functions are written as 
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Substitution of Eq. (19)into Eq. (4a)provides 
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Along the x axis,θ=0, iz re r z     
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Assume, r=R+x ; h=R+s, dh=ds .applying in Eq. (20) we get, 
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where, 
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If we now consider another dislocation located on the x axis just diametrically opposing the 
previous dislocation at a distance h=-h=-(R+s).For this dislocation we set β=90o and b1=-b 
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Equation (17) reduces to 

0 0
2 2

30 0

( |) ( )1 1 1( )
( 1) ( 1)

k
k

k

i b i i b iz a a z
z h z z

 

   






    
  

   

2 2
30

1 1 1[ ]
( 1)

k
k

k

b a a z
z h z z



 






    
 

   

2
0 0 0

22 2
30 0 0

( ) ( ) ( )1 1 1( )
( 1) ( 1) ( ) ( 1)

k
k

k

i b i i b i i b ih Rz a a z
z h z h z h z

  

     






  
      

    
   

2
0 0 0

22 2
30 0 0

1 1 1
( 1) ( 1) ( ) ( 1)

k
k

k

b b bh Ra a z
z h z h z h z

  

     






      
    

   

Again, 
0

1 2
0

( )
( 1)

i
m

bB Pi b ib e Pb 

 

   


  

0
1 2

0

( )
( 1)

i
p

bB Pi b ib e Pb 

 
     


  

24 2

2 3 2
m

p p
B RR hRa B B

h h h
      

4 2 2
0 0 0

3
0 0 0( 1) ( ) ( 1) ( 1)
b b bR R R

h h h
  

     
  

   
  

4
0

3
0( 1)
b R

h


 
 


 ; 

22

2
m

p
B RRa B

h h
      

2 2
0 0

0 0( 1) ( ) ( 1) ( )
b bR R

h h
 

   
 

   
  

2
0

0

2
( 1)

b R
h



 
 


 . 

2( 1) 2 2( 1)

1 1( 1) [ ] ; 3
k k k

k p mk k k

hR R Ra k B B k
h h h

 

 
       

2( 1) 2 2( 1)
0 0

1 1 1
0 0

( 1) [ ]
( 1) ( ) ( ) ( 1) ( )

k k k

k k k

b bR R Rk
h h h

 

   

 

  
    

    
  

2( 1) 2( 1) 2 2 2( 1)
0

1 1 1 1 1
0

[ ]
( 1)

k k k k k

k k k k k

b R R R R Rk k
h h h h h



 

  

    
     


  

2( 1) 2
0

1 1 1 1
0

[( 2) ( 1) ]
( 1) ( 1) ( 1)

k k

k k k k

b R Rk k
h h



 



   
    

  
  

2( 1) 2
0

1 1 1 1
0

; [( 2) ( 1) ]
( 1) ( 1) ( 1)

k k

k k k k k k

b R RA A k k
h h



 



   
     

  
  



72 
 

 
2( 1)

20 0 0
2 2 21

0 0 0

( 1) ;
( 1) ( 1) ( 1)

k

k k k kk

b b bRa k R A a A
h

  

     



  
     

  
  

2( 2) 2( 1)
20

3 3 1 1
0

; ( 1)( 4) ( 2)
( 1) ( 1) ( 1)

k k

k k k k k k

b R RA A k k k
h h



 

 

   
      

  
  

 
Thus we obtain, 

4
0 0 0

3 2
30 0 0

1 1 1( ) [ ]
( 1) ( 1) ( 1)

k
k

k

b b bRz A z
z h z h z

  

     






     
   

   

4
0

3 2
30

1 1 1[ ]
( 1)

k
k

k

b R A z
z h z h z



 






    
 

            (23a) 

2
0 0 0 0 0

2 2
30 0 0 0 0

1 1 2 1( )
( 1) ( 1) ( ) ( 1) ( 1) ( 1)

k
k

k

b b b b bh Rz A z
z h z h z h z

    

         






      
      

   

2
0

2 2
30

1 1 2 1[ ]
( 1) ( )

k
k

k

b h R A z
z h z h z h z



 






     
  

          (23b) 

 
Again, 
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For continuous distribution of edge dislocations, the potential functions are written as 
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Substitution of Eq. (24)into Eq. (4a)provides 
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Along the x axis,θ=0, iz re r z     
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So, 
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Assume, r=R+x ; h=R+s, dh=ds .applying in Eq. (24) we get, 
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               (26) 
where, 
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Now, combining  Eqs. (21) and (25) gives the resultant circumferential stress component of the disturbed 
stress field along the crack line of crack I as:    
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where 
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The boundary condition along the crack line of crack I given by Eq. (4.24) reduce to 
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      (30) 

Equation (30) is the singular integral equations for the unknown density function )(sb , which is normalized 
over the interval [-1,+1] by using the substitutions  
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12


l
sT , (31b) 

l
RD 2

 . (31c) 

From Eqs. (29) we can get, 
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Substituting above values in Eqs (22) we get,  
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From Eqs (27) we get, 
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Applying these values in equation (28) we get, 
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Finally, we obtain 
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              (32) 

The density function B(T) can be expressed as the product of a fundamental function w(T) which 
characterizes the bounded-singular behavior of B(T) and a bounded continuous function )(T  in the closed 
interval –1  T  +1. Thus we can formulate 

)()()( TTwTB  . (33) 

In the present case, the fundamental function can be given by  
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Using the Gauss-Jacobi integral formula corresponding to the weight function in Eq. (34) in the manner 
developed by Erdogan et al. [57] Eq. (32) can be converted to a system of algebraic equations to determine 
the unknowns )( jT  as follows 
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(36) 

The integration and collocation points are given by  
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It can be readily shown that the stress intensity factor can be derived as[58] 
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where )1(  is computed by Krenk’s interpolation formula [59] given by 
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The solution of Eq. (36) provides the unknowns )( jT  which are used in Eq. (39) to determine the value of 

)1(  and then the stress intensity factor can be computed from Eq. (38). 
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