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ABSTRACT

Prediction of a time series data plays an important role in determining the underlying

physical mechanism generating the data. Linear parametric modeling techniques can

be used in data prediction in many diversified fields. In this project linear

autoregressive (AR) model is used to predict two types of data, namely, heart rate

and electric power load. The heart rate is calculated from the measured ECG of 5

adult human subjects. 5 sets of power load data are collected from central load

dispatch center of Bangladesh power development board.

The Burg method is applied to determine the AR model parameters. The model

order is determined by the use of Akaike information criterion statistics. For heart

rate time series data 1000 data points are used as input, while 500 data points are for

prediCting power load data. The prediction of data is performed starting from the

immediate next data point after model order. For heart rate the data is predicted up

to 2000 points and for power load it is up to 1000 points. Analysis of variance

technique is used to determine the difference between original and predicted data.

The results of prediction show that there is no statistically significant difference

between original and predicted data in each data set.
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CHAPTER 1

INTRODUCTION

1.1 Historical Background

Linear prediction is an important topic in digital signal processing with many prac-

tical applications. Two of the most important applications of linear estimation are

power spectral estimation and linear filtering. Many of the phenomena that occur in

nature are best characterized statistically in terms of averages. Most signals in nature

are characterized as random processes. For example, meteorological phenomena such

as the fluctuations in air temperature and pressure are best characterized statistically

as random processes. Thermal noise voltages generated in resistors and electronic

devices are additional examples of physical signals that are well modeled as random

proceses. Due to the random fluctuations in such signals, one must adopt a statistical

viewpoint, which deals with the average characteristics of random signals. In par-

ticular, the autocorrelation function of a random process is the appropriate statistical

. average that is used for characterizing random signals in the time domain, and the

Fourier transform of the autocorrelation function provides the transform from time

domain to frequency domain.
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Given a mathematical description of a physical system, one can analyze its overall

behavior and predict the response of its output to different inputs. The difficulty,

however, lies in determining such a mathematical description. Indeed, although one

can derive a model for some simple systems, such as electrical machines, using New-

ton's laws, there are many systems whose outright complexity makes such a task

impossible. In such cases, one has to resort to the numerical techniques of system

identification [I]. In attempting to determine empirically the mathematical descrip-

tions associated with linear time invariant systems, linear modeling techniques are

used. Linear prediction theory of time series anlysis has a long and rich history of

developmant over the last four decades. The classical theory of time series analysis

has been well developed over the past two decades, and excellent accounts of this

theory are available, for example in [2-6] and in many other books. An important

assumption that is made in the classical theory is that the structure of the series can

be described by a linear model such as an autoregressive (AR), moving average (MA)

or mixed autoregressive moving average (ARMA) model.

The assumption of linearity is often a very dubious one. The theory of Volterra [7]

and Wiener [8] on functional series representation has provided great stimulus to the

development of non-linear models, but unfortunately Wiener's representation is too

general and the statistical estimation of the Wiener kernels is not universal.

In spite of the limitations oflinear techniques, AR and ARMA models have been used

in the prediction of a time series in a wide variety of applications. AR model has a
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highly flexible structure that can be used to parameterize the dynamics of a system [9].

1.2 Linear Modeling Techniques

Two broad categories of methods are used in the modeling of time series data, namely,

parametric and nonparametric methods. Nonparametric methods make no assumption

about how the data are generated, and mainly use Fourier based approach and peri-

odogram. Nonparametric methods are relatively simple, well understood and easy to

compute using the FFT algorithm. However, these methods require the availability

of long data records in order to obtain necessary frequency resolution required in

many applications. Furthermore, these methods suffer from the leakage effects due to

windowing that are inherent in finite-length data records. Often, the leakage masks

weak signals that are present in the data.

On the other hand, parametric methods of data modeling eliminates the need of win-

dow functions. As a consequence, parametric or model based methods avoid the

problem of leakage and provide better resolution than do the FFT based nonpara-

metric methods. This is especially true in applications where short data records are

available due to time-variant of transient phenomena.

AR and ARMA are the mostly used parametric methods for linear prediction. For a

linear time invariant system, the general system function H(z) is given by [10],
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(I)

where bk and o'k are the system coefficients that determine the location of the zeros

and poles of H(z), respectively. The parameters p and q are the system orders. For

the linear system with the rational system function H(z) given by eqn. (I), the output

y(n) is related to the input x(n) by the difference equation,

P q

y(n) +L o'ky(n - k) = L bkx(n - k)
k=! k~O

(2)

The model described by eqn. (2) is known as autoregressive moving average (ARMA)

model. This model has both finite number of poles and zeroes. Depending on the

system parameters, there are two subclasses of ARMA model, namely, autoregressive

(AR) model and moving average (MA) model.

If, in eqn. (I), bo = 1, bk = 0, k > 0, the linear system has H(z) = IjA(z), and the

system is an all-pole system. In this case, the differnce equation for the input-output

relashionship is,

p

y(n) +L oky(n - k) = x(n)
k~!

This model is known as AR model.

(3)

On the other hand, if in eqn. (I), Ok = 0, k ::::1, the linear system has H(z) = B(z),

and the system is an all-zero system. In this case, the differnce equation for the

input-output relashionship is,
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q

y(n) = L bkx(n - k)
k~O

and the model is known as MA model.

1.3 Aim of the Project

(4)

The objective of this research work is to apply linear modeling techniques in the

prediction of time series data. Out of the different techniques, AR method will be

used. Two types of time series data namely heart rate and electrical power load will

be predicted. The predicted data will be compared with the corresponding original

one by statistical analysis and the validity of the model will be tested for each data

set.

2.4 Organization of the Dissertation

Several different algorithms have been are available in the determination of AR pa-

rameters and model order. Every method has some advantages as well as limitations

over the other. The methods are described in Chapter 2. The application of AR

modeling technique and the results of prediction are provided in Chapter 3. Chapter

4 represents the conclusions of the findings.
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CHAPTER 2

AUTOREGRESSIVE MODEL

2.1 Introduction

The most popular of the time series modeling approaches to prdiction is the autore-

gressive (AR) estimator. This is because accurate estimates of the AR parameters

can be found by solving a set of linear equations. For accurate estimation of the

parameters of moving average (MA) or autoregressive moving average (ARMA) pro-

cess, we need to solve a set of highly nonlinear equations. When the AR modeling

assumption is valid, estimators are obtained which are less biased and have a lower

variability than conventional Fourier based estimators. Other names by which the

AR estimator is known are the maximum entropy estimator and the linear prediction

estimator. Although the theoritical foundations for the latter two estimators differ

from those of the AR estimators, in practice all the approaches are identical. The

difficulty with adopting either the maximum entropy or linear prediction philosophies

is that the all-pole filter assumption implicit in both approaches is not highlighted.

As a consequence, application to non-AR time series usually results in poor quality

estimates with no clues provided as to the reasons why. The AR modeling is the

vehicle used to describe this class of high resolution estimators.
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In the prediction of time series data, we have a single function. Let us assume that

we are provided with N data as x[11,J, 11,= 0,1,2, .... ,N - 1 and we need to predict

x[N]. In that case the AR model can be written as,

p

x[N] = - L ap[iJx[N - i]
i=O

(5)

where a current data is a linear function of P (known as model order) former data

multiplied by the AR parameters april. To design an effective AR model for pre-

diction, we need to calculate model order P and AR parameters ap [iJ , i = 1, 2, .. ,P.

There are various techniques to determine the values of april and P. This chapter

describes the estimation methods of AR parameters and model order which are used

in the prediction of data for this study.

2.2 Determination of AR Parameters

The methods normally used to estimate AR parameters are the Yule-Walker method,

the Burg method, unconstrained least-squares method and sequential estimation method.

In the Yule-Walker and unconstrained least-squares methods, we simply calculate the

autocorrelation from the data and use it to solve for the AR parameters [II]. Sequen-

tial estimation of AR parameters is used in situations where data are available on a

continuous basis and the estimates can be updated as new data points become avail-

able [11]. In contrast to the other three methods which estimate the AR parameters

directly, the Burg method [12] estimates the reflection coefficients from the data and
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uses Levinson recursion [13]. Due to some advantages, the Burg method has been

used in this study for the determination of AR parameters. The major advantages are:

(a) It results in high frequency resolution.

(b) It yields a stable AR model.

(c) It is computionally efficient.

The Burg method for estimating the AR parameters may be viewed as an order recur-

sive least square lattice method based on the minimization of the forward and back-

ward errors in linear predictors, with the constraint that the AR parameters satisfY the

Levinson recursion. The reflection coefficients used in determining AR parameters

are obtained by minimizing prediction error power for different order predictors in a

recursive manner. Specially, based on the Levinson recursion algorithm, if estimates

of the reflection coefficients k1, k2, ... , kp are available, the AR parameters may be

obtained as follows:

The autocorrelation of N data is,

1 N-l
rxx[O] = - I: 1.r,[nW

N n=l

The first AR parameter is,

o[lJ = k1

For k = 2,3, ... , P,

ok[i] = Ok-l[i] + kkOk_l[k - i]' for i=!, 2, ..., k-!

(6)

(7)

(8)

and o'k[i] = kk for i = k. The AR filter parameters are op[l]' a.p[2], ... , oAP]. It

remains only to calculate the reflection coefficients. In deriving the kth reflection
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coefficient, Burg assumed that the (k - 1)st order prediction error filter coefficients

had already been calculated as o,k_l[l], o,k_l[2], ... , a.k_l[k - 1], having been obtained

by minimizing (k - 1)st order prediction error power. Burg proposed to calculate

kk by minimizing average of the estimates of the forward and backward prediction

error powers. Defining forward and backward prediction error powers as p{ and pi,

respectively, we need to minimize the average error power Pk, where Pk is,

1( f b)Pk ="2 Pic+ Pk (9)

Let us assume that we have an AR model with model order k and i[nJ and i[n-kJ be

the forward and backward predicted values of the data :);[n] and x[n-k], respectively.

Then we may write,

and,

k

i[nJ = - L a.di].r,[n - iJ
i=l

k

i[n - k] = - L a.diJ:r;[n - k + iJ
i=l

(10)

(11)

Defining forward and backward errors of prediction as e{ and ei, respectively, we

can write,

k

e{[n] = x[nJ - i[n] = .r,[n.]+ L o,k[i]x[n - i] (12)
i=l

k

ei = x[n - kJ - i[n - k] =r,[n - k] +L o,k[iJ.r,[n - k + i] (13)
i=l

The forward and backward prediction error powers p{ and pi then become,
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1 N-]

pi = __ " e.f[nJI2
k N-kL- k

n=k

1 N-]

p%= -- L e%[nW
N - k n~k

(14)

(15)

The lattice filter relations which describe the model order update of the forward

and backward prediction error time series can be obtained from Levinson recursion

algorithm [13]. These are,

(16)

and,

(17)

where, e6[n] = eg[nJ = x[nj.

When the relations of eqns. (16) and (17) are substituted into eqns. (14) and (15)

and then into (9), we obtain,

Differentiating Pk with respect to kk and solving for kk, we obtain,

N-] N-]

kk = -2 L eLl [n]eL [n -1]/(L leL[nW + leL[n -lW) (19)
n=k n=k

Equation (19) is used for calculating reflection coefficients kk and the AR parameters

o,k [iJ are determined by eqn. (8).
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2.3 Determination of AR Model Order

One of the most important aspects of the use of the AR model is the selection of

the order P. As a general rule, if we select a model order with too Iowan order,

we obtain a highly smoothed data fit. On the other hand, if p is selected too high,

we run the risk of introducing spurious low-level peaks in the data variation. One

indication of the performance of the AR model is the mean square value of the resid-

ual error, which, in general, is different for each of the estimators described above.

The characteristics of this residual error is that it decreases as the order of the AR

model is increased. We can monitor the rate of decrease and decide to terminate the

process when the rate of decrease becomes relatively slow. It is apparent, however,

that this approach may be imprecise and ill-defined, and other methods should be

investigatd. Much work has been done by various researchers on this problem and

many experimental results have been given in the literature.

Two of the better known criterion for selecting the model order have been proposed

by Akaike [14-15]. With the first, called the final prediction error (FPE) criterion

[14], the order is selected to minimize the performance index,

(20)

where (]'2 is the estimated variance of the linear prediction error. This performance

index is based in minimizing the mean-square error for a one-step predictor.

The second criterion proposed by Akaike [15] is called the Akaike Information Cri-
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terion (AlC) statistics which is based on selecting the order that minimizes,

2P
AIC(P) = In0-2 + N (21)

Note that the term 0-
2 decreases and therefore ln0-2 also decreases as the order of the

AR model is increased. However, 2P/N increases with an increase in P. Hence a

minimum value is obtained for some P.

2.4 Discussion

The Burg has been extensively used in calculating AR parameters due to its high

frequency resolution, stability and computational efficiency. However, it has several

disadvantages as well. First, it exhibits line spilliting at high signal-to-noise ratios.

By line splitting, we mean that the of x(n) may have a single sharp peak, but the

Burg method many result in two or more closely spaced peaks in specially the power

spectrum of the signal. For high order models, the method also introduces spuri-

ous peaks. Furthermore, for sinusoidal signal in noise, The Burg method exhibits a

sensitivity to the initial phase of a sinusoid, especially in short data records. This

sensitivity is manifested as a frequency shift from the true frequency resulting in an

frequency bias that is phase dependent frequency bias.

Several modifications have been proposed to overcome some of the more important

limitations of the Burg method namely the line splitting, spurious peaks, and fre-

quency bias. Basically, the modifications involve the introduction of a weighting

(window) sequence of the squared forward and backward errors.

12



Despite all the limitations, Burg method is widely used in AR parameter determi-

.nation. Despite its bias to the data length, AIC statistics is the mostly used method

for model order selection. The applications of the Burg method in determining AR

parameters and AIC statistics in selecting AR model order and hence to predict time

series data are presented in the next chapter.
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CHAPTER 3

PREDICTION OF DATA

3.1 Introduction

This chapter describes the application of AR model to predict two types of data,

namely instantaneous heart rate (IHR) and power load (PL). Together with the electro-

cardiogram (ECG), mean heart rate (MHR) is oftenly used to assess cardiac activities.

The heart rate can vary widely even in a short period of time due to natural variabil-

ity. MHR can not explain the issues of arrhythmias which are the major causes of

sudden cardiac death. A parameter other than MHR may illuminate more light on the

better understanding of the cardiac functions and other phenomena associated with it.

The beat to beat analysis of cardiogenic signals, i.e., (IHR) is such a parameter. It

has long been recognized that the heart rate (HR), arterial blood pressure, and other

hemodynamic parameters fluctuate on a beat-to-beat basis [16]. The beat-to-beat

fluctuations in hemodynamic parameters reflect the dynamic response of the cardio-

vascular control systems to a host of naturally occurring physiological perturbations.

The sympathetic and parasympathetic nervous systems are usually considered to be

the principal systems involved in short-term cardiovascular control on the time scale

of seconds to minutes. Heart rate fluctuations reflect the regulatory activity of the

14



autonomic nervous system (ANS), which modulates the intrinsic sinus node firing

rate. In fact, the IHR can be thought of as the output of a feedback control loop that

is continuously regulated by the ANS. Lack of beat-to-beat heart rate variability is an

important predictor of impending death.

In recent years, linear modeling techniques such as AR and ARMA models have

been used to study HR dynamics [17]. AR model has the ability to correlate patho-

physiological mechanisms to HR dynamics. Much works have been devoted to the

modeling of HR with AR models.

The time to time variation of electrical power is necessary to predict future load in

any power system. Load forcasting is an important branch in power engineering.

The following sections depict the data used in this study and the results found in

predicting HR and PL.

3.2 Data Description

Two types of data were predicted, HR and PL. The calculation of IHR and PL is

described below.

Heart Rate Calculation

ECG was measured from 5 healthy human subjects aged 22-30 years. The ECG was

stored in a microcomputer through a l2-bit AID converter. The digitized signals were

temporarily saved on the hard-disk driver and then transferred to a file server. The
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frequency at which the signals are to be sampled may cause errors in the calculation

of IHR [18]. Due to the limited capacity of the computer memory, the signals were

sampled at a low frequency of 50 Hz. On the other hand, in order to calculate the

IHR with an inaccuracy of less than one beat/min (bpm), the sampling frequency (f)

which satisfies the following relation is needed,

(22)

where b.t = 60/IHR. For example, for a maximum IHR value of 120 bpm, the

minimum sampling frequency is 476 Hz. The signals sampled at 50 Hz were restored

by the sine function,

() __ ~ (T)sin[211"1M(t-nT)]x t L x n -------
n=-oo 211" 1M(t - nT) (23)

where T is sampling interval (i. e., 20 msec) and 1M is Nyquist's reflection frequency

(25 Hz). In order to minimize time of calculation, the signal restoration was made

only for the period of 40 msec when three points sampled were found to constitute

a peak of ECG (R wave) corresponding to each heartbeat. After restoration of the R

wave, the time interval between two successive peaks was determined and the IHR

was then calculated from the time interval. The number of sampled points used for

restoration by eqn.(23) was determined to be 40 I (i.e., n = 200) in a preliminary

experiment. In the preliminary experiment, the ECGs were sampled at a frequency

of 500 Hz and the IHR was calculated from the time intervals of two successive

peaks (referred to as HR50o). Then, single values of every 80 sampling points (which

correspond to the signals sampled at 50 Hz) were extracted and the ECG waves were

restored by eqn.(23) changing n.value from 100 with a step of 5. The IHR was

calculated for each wave restored with different values of n. It was found that the

16



IHR so calculated was consistent with HRtioowhen n was more than 200 in all data

sets. IHR of a person was stored for more than I hour and in this way 5 data sets

were constructed. The calculated IHR of the 5 persons are depicted in Figs. I(a) to

I (e) where, the HR is presented for 30 minutes in each case.

Power Load Data

Hourly power supply by the Bangladesh Power Development Board (BPDB) was

collected from the Central Load Dispatch Center (CLDC), Siddhirganj. The data

collected is of 3 years. The data were grouped into 5 categories. The daily load at

I PM is the group I data, that of 2 PM is the group 2 data, and similary group 3,

group 4 and group 5 data belong to 3 PM, 4 PM and 6 PM, respectively. In this way

5 data sets were constructed. The 5 sets of data are presented in Figs. 2(a) to 2(e).

3.3 Results

The AR model as described in chapter 2 was applied to predict the IHR and PL.

The AR parameters were determined by Burg method and the model order by AIC

statistics, the detail descriptions of both are provided in chapter 2.

In case of !HR, for each data set, first 1000 !HR was provided as the input of the AR

model. All the parameters of the model were then determined and from the model

order the next data were predicted. If the model order is P, the predicted data will

be of the data point from p + 1 to 2000. The AR parameters for !HR data set I are

provided in Table I. The original data and the error of prediction (differnce between

original and corresponding predicted data) are presented in Figs. 3(a) to 3(e), where

17



in each figure, the upper plot shows the original data and the lower one depicts the

error of prediction.

In the prediction of PL, 500 data was provided as the input of the AR model and

upto 1000 data starting from model order was predicted in a similar manner as in

IHR prediction. The original data (upper graph) and the error of prediction (lower

graph) are presented in Figs. 4(a) to 4(e).

The mean and standard deviation (SD) (mean:!: SD) of original as well as predicted

IHR with the model order (MO) are presented in Table 2, while those for PL in

Table 3. The F-values provided in both the tables were calculated applying one-way

analysis of variance technique [19] between the predicted and original data in each

case. The statistically significant difference is taken when F 2 3.84. It is seen that

statistically there is no significant difference between original and predited data in all

data sets of IHR as well as of PL.

18
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Fig. I (a) Instantaneous heart rate for data set 1.
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Fig. I (b) Instantaneous heart rate for data set 2.
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Fig. I (d) Instantaneous heart rate for data set 4.
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Fig. 1(e) Instantaneous heart rate for data set 5.
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Fig. 2(d) Power load data at 4 PM.
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Fig. 2(e) Power load data at 6 PM.
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Fig. 3(a) Original IHR and error of prediction for data set I.
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Fig. 3(b) Original IHR and error of prediction for data set 2.
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Fig. 3(c) OriginallHR and error of prediction for data set 3.
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Fig. 3(d) Original IHR and error of prediction for data set 4.
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Fig. 3(e) OriginallHR and error of prediction for data set 5.
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Fig. 4(a) Original power load and error of prediction at 1 PM.
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Fig. 4(b) Original power load and error of prediction at 2 PM.
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Fig. 4(c) Original power load and error of prediction at 3 PM.
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Fig. 4(d) Original power load and error of prediction at 4 PM.
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Fig. 4(e) Original power load and error of prediction at 6 PM.
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Table 1: AR Parameters for data set 1 of IHR

(Model order = 78)

0.046232 -0.308710 -0.075185 -0.022001
0.007029 0.003834 -0.044492 0.004149
-0.080111 -0.644061 -0.001883 -0.054954
0.035720 0.019131 0.030095 0.066723
-0.028360 0.565168 -0.054121 -0.012262
-0.054510 0.000240 -0.035268 -0.084471
0.086283 -0.171771 -0.015284 0.033969
-0.024768 -0.002702 -0.091644 0.037702
-0.127906 -0.069023 0.022131 0.066812
-0.017354 -0.052009 0.098620 -0.060623
-0.043691 -0.051829 0.015746 -0.016378
0.071111 0.004062 -0.079379 0.014479
-0.021949 -0.076321 -0.011260 -0.039168
O.oI0978 -0.002375 -0.079185 -0.054031
0.164843 -0.048528 -0.018229 -0.023459
-0.006480 0.064510 -0.000734 0.027080
-0.115573 -0.054405 0.034729 0.029313
-0.001782 -0.029753 0.008955 0.065278
-0.549071 -0.033647 0.019079
-0.000681 -0.007762 0.001375
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Table 2 Comparison of AR predicted IHR

Data Model Original Predicted F
set order IHR (bpm) IHR (bpm) 0.01
# 1 78 69.8:1: 3.1 69.8:1:3.1 0.00
#2 88 80.4:1: 6.4 80.4:1:6.0 0.00
# 3 86 75.2:1: 6.3 75.2:1:5.6 0.00
#4 77 86.6:1: 6.1 86.6:1:5.3 0.00
# 5 89 82.2:1: 4.6 82.2:1:3.4 0.00

Table 3 Comparison of AR predicted power load

Data Model Original Predicted F
set order PL (MW) PL (MW)
# 1 65 1635.95:1: 313.43 1726.97:1:305.69 0.000
#2 5 1748.55:1: 136.50 1764.51 :1:132.39 0.000
# 3 6 1417.30:1: 219.67 1447.16:1:216.01 0.000
#4 56 1712.67:1: 146.37 1715.00:1:141.68 0.000
# 5 5 1447.27:1: 27.62 1486.45:1:20.73 0.001
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3.4 Discussion

The present study was performed with an interest to know the applicability of AR

model in predicting HR and PL. AR model is widely used for linear prediction of time

series data. It is also a very useful tool in the spectral analysis of time series data.

The optimal selection of model order is necessary to avoid the over-flatening and

spurious peaks in the power spectra of the data and hence to have an optimum model

fit. Although, various techniques can be used for model order selection depending

upon the data length, AIC performs similarly or better irrespective of data length

[II). A large value of model order has been obtained in most of the data sets. The

results of prediction show that AR model can precisely predict time series data of

the kind provided here. The two types of data analyzed in this study have different

characteristics. HR is a biological phenomenon while PL is man made. The prediction

results show that AR model can be applied to a variety of fields for data prediction.
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CHAPTER 4

CONCLUSIONS

4.1 Conclusions

This work describes the prediction of time series data with a linear technique. Out

of the many linear methods of prediction, AR model is the most widely used one.

Although ARMA model can provide superior prediction in comparison to AR model,

the computational complexity of finding ARMA parameters makes it time consuming

and less suitable for on-line prediction of data.

There many methods to determine the AR parameters. Out of them the Burg method

is widely used due to its computational simplicity, since it is based on the recurrence

of autocorrelation function. The Burg method uses the minimization technique of

average error due to forward and backward prediction, and involves the solution of

a set of linear difference equations. The major advantages of the Burg Method for

estimating the parameters of the AR model are:

(i) It results in high frequency resolution.

(ii) It yields a stable AR model.

(iii) It is computionally efficient.
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Out of the many methods of AR model order determination, AIC statistics is widely

used due to its superior performance over other ones. All the other methods have the

drawback that they are very much sensitive to data length. On the other hand, AIC

statistics performs better or at least similarly irrespective of data length.

Two different types of time series data were predicted. Heart rate is a bilogical phe-

nomenon. Although linear models are widely used for the prediction of HR, presently

there is indication that heart rate may be nonlinear or even chaotic. But still, linear

models provide a comprehensive view of the mechanism generating and controlling

ECG and subsequently HR. On the other hand, the variation of electrical power can

also be forcasted by linear models. Since all the input parameters for generating

power such as intake of fuels, etc., are known, power generation can be predicted

in a straight way by a deterministic procedure. But, the consumption of electricity

is based on time, weather condition, human nature of the locality, etc. All these

parameters make the power consumption forcasting a not so easy task as do in the

case of generation. The power load collected from the Load Dispatch Centre is the

hourly load consumed across Bangladesh.

The results in this work show that AR model can precisely predict HR as well as

power load. Although the number of data sets are very few in both cases, and only

normal conditions specially in case of HR have been taken into consideration, the

results suggest that AR model can be applied in such cases.
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4.2 Future Perspectives

The HR can very widely even for a short period of time, and even for the case of

healthy subjects. The applicability of AR model can be tested for the HR with certain

cardiac abnormality. The power load can be modeled based on the factors influenc-

ing the power consumtion, that is, the influences can be taken as input and power

consumption as output and model the load to see how any of the influences alter the

pattern of power load.
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