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ABSTRACT

The field of quantification of nonlinearity has drawn much attention from researchers

in recent times. However, the scope of research on quantification of nonlinearity, espe-

cially for process plants, remains a vast area to explore. Nonlinearity in process plants

may arise from two factors, namely, instruments and process characteristics. Instru-

ments can induce nonlinearity due to their nonlinear dynamics or faults such as stiction,

hysteresis and saturation. Process may themselves be nonlinear in nature or may show

nonlinear behavior due to violation of some physical limits or constraints. Nonlinearity

quantifications are useful for many purposes such as checking the adequacy of a linear

controller for a nonlinear process and finding the root cause of a fault that arose due to

increase in nonlinearity of the instruments. Model based quantification of nonlinearity

is difficult, expensive and time consuming. On the other hand, data-based nonlinearity

quantification methods are easy to use and becoming popular due to readily available

data from Distributed Control System (DCS) or data historian of the plants.

Four data-based nonlinearity measures, namely, Bicoherence based, Surrogate Data

based, Correlation Dimension and Maximal Lyapunov Exponent are studied and their

performances are compared in this thesis. Both simulations and experimental investiga-

tions have been undertaken to compare and find the suitability of the data-based nonlin-

earity measures for quantification of nonlinearity for chemical processes. Bicoherence-

based measure was found to be the most successful among them and the Surrogate

data-based measure was next to it.
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CHAPTER1
INTRODUCTION

Study of Nonlinear systems have been of foremost interest to researchers because most

physical systems in reality are nonlinear. Nonlinear systems are defined by those, which

do not follow the principle of superposition. Nonlinearities in process variables can be

caused by valve stiction (acronym of ‘static friction’), hysteresis in valves or instruments,

deadzone, etc., which, in turn, sets up oscillations that may propagate throughout the

whole plant. For nonlinear plants, linear controllers such as PID controllers may not

perform well. Therefore, quantification of nonlinearity may help in deciding whether to

implement linear or nonlinear controllers.

Two broad approaches exist for measuring nonlinearity of a process: Model based

measures (also termed ‘parametric’) and Time-series or Data-based measures (also termed

‘non-parametric’). The preference of the Data-based approaches over the Model-based

resides on the fact that Model-based approaches, like Best Linear Approximation and

Curvature-Based methods, require a process model which is often unavailable or diffi-

1



1.1. LINEAR AND NONLINEAR SYSTEMS 2

cult to obtain [3]. Therefore, in recent times, data-based methods are gaining popularity

because they require time series data of the process which are readily available from the

Distributed Control System (DCS) or data historian. Most notable data-based methods

include Bicoherence-Based Measures, [2, 7], Surrogate Data-based Measures [21, 38],

Correlation dimension and maximal Lyapunov Exponent [40, 41].

1.1 Linear and Nonlinear Systems

When a process system is linear, it follows the principle of superposition, which is given

by the following two equations:

Additivity :f(x+ y) = f(x) + f(y) (1.1)

Homogeneity :f(αx) = αf(x), where α is a constant. (1.2)

In a linear process, if the input is reduced by x, the effect on the output will be

exactly opposite but of the same magnitude to an increase in x in the input [26]. For a

nonlinear control system, these conditions do not hold true. The response and behavior

of the system changes with time and load applied to the system. It needs to be retuned

regularly while a linear system may be tuned once and may stay tuned forever if the

process does not change.

Generally linear systems have the following characteristics:

1. All dependent variables are continuous i.e. they give a continuous response over

the range of values exhibited by the system.
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2. All coefficients of the differential equations, which characterize the system, are

constants or functions of time only.

3. When several inputs are applied at the same or different locations at the same or

a different time, the total response is the sum of the individual responses (super-

position).

4. Magnitude of the output is directly proportional to the magnitude of the input.

Nonlinear systems do not have one or more of these characteristics. Typical nonlinear

systems include operation in saturation zones for actuators, piping network (arising due

to dynamic friction losses in the piping network as they vary with respect to square of

the flow rate), Heat Exchanger system and Acid-base titration system.

In general, the linear system theory is more mature, and the development, imple-

mentation, and maintenance costs of linear controller are usually lower than those of

nonlinear controller for the same process [6]. Therefore, linearization is a primary ap-

proach used for most nonlinear processes [8, 9, 36].

1.2 Nonlinearities in Process Industries

Some cases of nonlinearities that are generally observed in the process industry are

discussed in this section.
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1.2.1 Nonlinearity in Flow Sensor

In case of an orifice-type flow-sensor, the actual measurement (Pressure-drop across the

orifice plate) has a square relationship to the desired measurement (flow through the

orifice meter). A square root, which is a nonlinear function, must be extracted of the

directly measured data before the signal becomes usable [23].

1.2.2 Nonlinearities in Petrochemical Industry

Petrochemical processes are invariably described by nonlinear thermodynamics and ki-

netic models. These models are hard to formulate primarily because the feedstocks in

the units are not well characterized and the physical parameters are hard to identify.

Therefore, in addition to the model parameters being uncertain, these models are non-

linear.

Several nonlinear control responses exist in a fractionation process. Examples in-

clude the flow of steam to reboilers being controlled by regulating steam condensate

withdrawal from the reboiler calandria. Steam flow can be reduced only after a signifi-

cant delay to allow condensate to accumulate and partially flood the calandria. Energy

control is sluggish and nonlinear because it is easier to drain condensate from the re-

boiler receiver than it is to condense the steam. Nonlinear reboiler and reflux accumu-

lator level control responses can also be observed in these processes especially when the

reboilers use overflow weir design [11].



1.2. NONLINEARITIES IN PROCESS INDUSTRIES 5

1.2.3 Nonlinearities in pH Process

Control of waste water pH has two characteristics: nonlinearity and a large control

action range. These characteristics distinguish it from most of the other control loops.

By definition, one unit of pH refers to 10-fold change in concentration of hydrogen

cations. Thus for a strong-acid strong-base, a single unit change in pH requires a 10-fold

change in reagent flow. The titration curve in Figure 1.1 shows that the open-loop gain

at pH=7 is much greater than the open-loop gain at ph=12, thus rendering the process

a nonlinear one [11].

Figure 1.1: Strong Acid- Strong Base Titration Curve

1.2.4 Actuator Nonlinearities

Control Valve may exhibit nonlinearity of saturation type when the valve is either fully

opened or fully closed. The valve with linear characteristics may behave in a linear
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fashion as long it does not saturate. Considering Nonlinearity is thus important when

large changes are made in valve position. Nonlinearity should also be taken into account

during start-up and shutdown [1].

Figure 1.2: Control Valve Flow Characteristics

Figure 1.2 shows nonlinear characteristics of some control valves. These include

equal percentage, quick opening, square-root, modified parabolic and hyperbolic char-

acteristics. They are nonlinear because their gain changes for large changes in stem

opening.

Usually the signal sent to the actuator and the process measurement are used as

input-output data pair for parameter estimation. But inherent actuator nonlinearities

may result in a poor model and thus wrong control. For a known nonlinearity (e.g.

Square law relationship) [18], it is advantageous to cascade an inverse nonlinearity to
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make the process as linear as possible. Such compensation will greatly increase the

robustness of the estimator. Other nonlinearities like static friction, hysteresis, and non-

linear gain of the actuator can be reduced by a local feedback such as valve positioner

control or flow control where possible [27].

1.3 Objectives of the Study

This work will evaluate the performance of various data-based measures of nonlinearity

using simulation and experimental study in order to find their suitability in quantifying

nonlinearity of chemical processes. The study will focus mainly on the investigation of

the suitability of various nonlinearity measures in quantifying nonlinearity and compare

their performances.

1.4 Thesis Organization

The first chapter of this thesis briefly introduces ‘Nonlinearity’ and its presence in process

industry. It also describes the motivations for this research and objectives of the study.

Chapter 2 briefly describes the role of ‘Nonlinearity Measures’ and their literature

review.

Chapter 3 discusses four data-based nonlinearity measures, which are used through-

out the thesis for quantification of nonlinearity.

Chapter 4 evaluates the performance of nonlinearity measures on analytical signals

and several nonlinear mathematical functions.
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Chapter 5 discusses two nonlinear processes, which are modeled using MATLAB and

SIMULINK. Then output time series data from these processes are used for nonlinearity

quantification.

Chapter 6 discusses the effect of feedback controller on process nonlinearities.

Chapter 7 discusses an experimental study using a nonlinear tank with a conical

bottom. The water level data is recorded by manipulating the input flow-rate of water.

The output time series data of the water level, obtained from the experiment, is studied

for nonlinearity quantification.

The thesis ends with Chapter 8, which lists conclusions and recommendations for

future work.



CHAPTER2
LITERATURE REVIEW

Process nonlinearity is one of the most relevant factors in characterizing process control

problems. In recent years several approaches have been proposed to assess nonlinearity

of static systems as well as dynamic systems [15]. The nonlinearity, as an inherent

feature of industrial processes, can influence the operating performance significantly.

From the control loop perspective, plants and actuators are two main parts, in which

nonlinear characteristics exist. But the respective nonlinearity of each part cannot be

isolated and measured when the entire system is running together. Thus, the nonlinear

test of the entire system is usually performed.

Research has predominantly treated open-loop input-output (I/O) systems in the

vicinity of some stationary operating point either through nonlinearity tests or through

nonlinearity measures. Nonlinearity tests are well known in the field of system iden-

tification [13]. They evaluate the deviation from a property which is known to hold

for linear systems. Nonlinearity measures are a means of quantifying the ‘degree’ of

9
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nonlinearity in the I/O behavior of nonlinear systems. Such measures allow a direct

comparison of the nonlinearity of different processes or different operating points of

a single process. Although the strict mathematical definition of linearity is a definite

true/false property, it is sometimes interesting to study whether a system is closer to be-

ing ‘linear’ or ‘nonlinear’ [36]. Some of the noticeable researches involving nonlinearity

measures are discussed here.

There are two broad approaches for nonlinearity quantification- namely, model based

methods and data-driven methods.

2.1 Model Based Methods

2.1.1 Minimum Variance Lower Bound Ratio

Generally, the closed loop nonlinearity measures require complicated mathematical knowl-

edge and detailed process information. To improve the practicality in industrial field, a

closed-loop nonlinearity measure, which belongs to the data-driven class and is based

on minimum variance lower bound ratio is proposed in [24]. This measure does not

need the input/output map as prior knowledge and has no effect on the routine opera-

tion. This measure, can be estimated from the routine operating data, and can be used

for Hammerstein structure, Wiener structure and Wiener-Hammerstein structure. The

method assumes that the system output can be expressed as the sum of a disturbance

term and a nonlinear term. However, this measure is prone to modeling errors.

As shown in Figure 2.1a, r is the set-point, ert is the control error, ut is the output
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(a) The Hammerstein structure of the closed loop system

(b) The Weiner structure of the closed loop system

(c) The Weiner-Hammerstein structure of the closed loop system

Figure 2.1: Hammerstein, Weiner and Weiner-Hammerstein structures of closed loop

system [24].

of controller Gcw, νt is the output of the nonlinear function f(·), and αt is a zero-mean

white noise with variance δ2
α. Gwl is the linear dynamic with the time delay, d, A(q1) and

B(q−1) are the polynomials, describing process dynamics. Disturbance, Dt, is defined
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as a linear Autoregressive Integrated Moving Average (ARIMA) where, C(q−1) is the

polynomial in the backshift operator q−1, 5 is (1 − q−1) and yt is the output of the

system.

The b-step ahead prediction value of yt is given by:

yt+b =
B(q−1)

A(q−1)
f(ut) +Dt+b|t + et+b|t (2.1)

where Dt+b|t is the b-step ahead prediction value of disturbance and et+b|t is the b-step

ahead prediction error of the output. The nonlinear minimum variance lower bound can

be written as

δ2
mv = var(et+b|t) (2.2)

After linearization, b-step ahead prediction value of yt is changed as:

yt+b =
B(q−1)

A(q−1)
l(ut) +Dt+b|t + et+b|t + µt (2.3)

where µt is the bias of linear approximation error. Therefore, the estimation of the linear

minimum variance lower bound can be calculated as

δ̃2
mv = var(et+b|t + µt) (2.4)

A normal Nonlinearity measure is defined as

η = 1− δ2
mv

δ̃2
mv

(2.5)

With modifications of Gcw, this measure can be applied to the other two structures. η

is bounded in [0,1] where 0 represents no nonlinearity and 1 represents the strongest

nonlinearity.
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2.1.2 Linear Approximation

A model based nonlinearity measure based on best linear approximation for dynamic

systems was proposed in [15]. An approximate computational strategy transferring the

original infinite-dimensional nested optimization problem into a convex finite-dimensional

minimization problem is discussed. The measure provides a unifying framework for non-

linearity assessment of

• Analysis of Steady state operating points of continuously operated processes

• Trajectory-dependent analysis of batch or other transient processes

But application examples have been restricted to operating point dependent analysis

of stationary processes since in such analysis, the initial conditions are known for the

nonlinear and linear system.

The nonlinearity measures φyaN of a nonlinear dynamic system N : Ua × X0,a → Y

with output signals yN ∈ Ya ⊆ Y is defined by the non-negative number:

φyaN (tf ) = inf
G∈G

sup
(u,xN,0)∈S

inf
xG,0∈X0,G

‖G[u,xG,0]−N [u,xN,0]‖
‖N [u,xN,0]‖

(2.6)

with S = {(u,xN,0) : u ∈ Ua,xN,0 ∈ X0,a, N [u,xN,0] ∈ Ya}

where G : Ua × X0,G → Y is a linear dynamic operator belonging to the space of

linear operators G. Ua,X0,a,Ya are the spaces of admissible inputs, initial conditions,

and outputs, respectively, ‖.‖ is a suitable norm in Y. All signals and norms are defined

over a (finite or infinite) time interval [0, tf ]. The existence of y and the boundedness of

all norms in the above definition are assumed for all (u,xN,0) ⊆ S. For analysis during
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stable operating points, the inner inf -operator is left out and xG,0 is set to zero.

φyaOP = inf
G∈G

sup
u∈Ua

‖G[u,0]−N [u,xN,s]‖
‖N [u,xN,s]‖

(2.7)

The above definition of nonlinearity for a dynamic system is defined as the normal-

ized largest difference between the nonlinear process and a linear time-invariant system.

This difference is calculated for the best linear approximation G∗ of N with respect to

the “worst-case” combination of inputs u∗ and initial conditions x∗N,0 keeping the out-

puts of N in Ya, and with respect to the best choice of the initial condition x∗G,0 of the

linear system.

The nonlinearity measure always takes a value between zero and one. φyaN = 1 is

only achieved through a linear system producing a zero output and vice versa.

2.1.3 Using Error from Linear Control of Nonlinear Systems

Several research has been carried out in order to decide if a linear controller design is

suitable for a given control problem [12, 16, 17, 37]. In a recent work [36], Schwe-

ickhardt and Allgower aimed to use a linear model for performance synthesis for the

nominal closed loop, while still guaranteeing stability of the closed loop with the nonlin-

ear process. The problem considered is the design of a linear controller C for a nonlinear

plant N . The setup of the control system is given in Fig 2.2a. Two exogenous signals are

entering the control loop corresponding to what are usually the disturbance signal at the

plant input (u1) and the reference signal (u2). The regulated variables are the controller

output y2 and the plant output y1 or their respective inputs ei. For a controller C for

the nominal model, the closed loop can be redrawn as depicted in Fig.2.2b. Here, ∆ is
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the uncertainty and M the nominal feedback loop, i.e. the interconnection of the linear

model G and the controller C.

(a) Setup for a linear controller C for the nonlinear plant N

(b) Generalized plant and setup for robust control

Figure 2.2: Designing linear controller for a nonlinear plant [36].

To investigate under which conditions a given nonlinear process N can be repre-

sented as the interconnection of G and ∆, Model Quality Indices and Nonlinearity Mea-

sures were defined for 6 different setups as shown in Figure 2.3. The results show that

even though principally any linear model can be used, but the best model, with an error

gain given by the corresponding nonlinearity measure, was shown to be significantly su-

perior to other models. Also, for a locally stable but globally unstable system it is indeed

necessary to do a regional controller design.
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(a) Definition of model quality indices and nonlinearity measures

(b) Different possible representations of a general (nonlinear) system N as the interconnection

of a nominal (linear) model G and an error system ∆. (i) Additive error; (ii) feedback error;

(iii) multiplicative output error; (iv) inverse multiplicative output error; (v) multiplicative input

error; (vi) inverse multiplicative input error

Figure 2.3: Different forms of implementation of linear controllers for nonlinear plants

[36].
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2.2 Data-Based Methods

2.2.1 Linear Cross Correlation

For multiple model bank selection for multi-linear model analysis of a nonlinear pro-

cess, it is essential to deduce if the system is linear or nonlinear as well as the degree of

nonlinearity in the initial stage. A ‘Higher Order Spectral’ (HOS) based method for de-

termining the total operating space which results in several linear and nonlinear modes

was implemented in [19]. ‘Linear Cross Correlation Method’, which needs less data, is

then employed for partitioning a nonlinear mode into a number of linear modes.

For linear time invariant (LTI) systems, the cross-spectral densities associated with

the system input/output data can be shown to be sufficient to characterize the system.

This analysis uses the second-order moment of the input/output time series. It has

been shown that for any LTI system without noise, the squared coherence function (γ2
uy)

between the input and the output is equal to one at all frequencies ω [13]:

γ2
uy(jω) =

|φuy(jω)|2

φuu(jω).φyy(jω)
= 1 (2.8)

Therefore, if the LTI system is driven by a random excitation input signal and there is no

measurement noise, the following index is zero [13]:

NLI1 = 1−max
ω

|φuy(jω)|2

φuu(jω).φyy(jω)
(2.9)

However, NLI1 will be affected by measurement noise.
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2.2.2 Amplitude Adjusted Fourier Transformations (AAFT) Surrogates

‘Amplitude Adjusted Fourier transformations (AAFT) surrogates’ as a statistical method

of detecting nonlinearity in univariate short-term time-series of traffic volume was used

in [39]. The algorithm is based on [35] and creates AAFT surrogates as proposed by

[38], with the alteration that it iteratively refines the amplitudes of the surrogates by

a three-step process to avoid the bias towards a slightly flattened spectrum that was

observed as a result of the routine’s initial form [34].

The underlying concept is: first, a null hypothesis of a linear Gaussian process that

creates the time series is established; then, the surrogate data is constructed and, finally,

given a selected statistic (e.g., prediction error or time reversibility) its performance is

measured upon the real time series in order to reject or accept the primary established

hypothesis. An efficient way of reconstructing surrogates is the Fourier Transformation.

For a series of volume {Vt} of N values taken every t, where t = t0, t1....., tN−1, discrete

Fourier transformation F of the original data is computed as:

V (f) = F{V (t)} =

N−1∑
n=0

V (tn)e2πifnδt = A(f)eiφ(f) (2.10)

where A(f) is the amplitude and φ(f) is the phase. V (f) is calculated in discrete fre-

quency f = −N∆f/2, ......,−∆f, 0,∆f, ....., N∆f/2, where ∆f = 1/(N∆t). Phases are

randomized (rotation of phases in every f by a ω chosen uniformly in the range [0, 2π)

Ṽ = A(f)ei[φ(f)+ϕ(f)] (2.11)

The inverse of the Fourier transformation returns the new series (surrogate) to the time
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domain as:

Ṽ = F−1{Ṽ (f)} = F−1{V (f)eiϕ(f)} (2.12)

The resulting series have the same power spectrum and autocorrelation as the original

data [29].

In order to generate the best surrogate data, the procedure is repeated several times.

The selection of the best surrogate is based on the relative discrepancy to the spectrum

at the ith iteration [35]:

Relative Discrepancy =

∑N−1
k=0 (V̂ i

k − V̂k)2∑N−1
k=0 (V̂k)2

(2.13)

where, V̂ i
k is the smoothed estimate of the spectrum in the i-th iteration. The statis-

tics used in [39] to establish a comparison between the real time series and the con-

structed surrogate data is the symmetry against time reversal [33]. Time reversibility

is a property of stochastic linear processes that presents symmetry in time reversal [5].

Reversibility is calculated by the third-order quantity:

φrev(τ) =

∑N
n=τ+1(V (tn)− V (tn−τ ))3

[
∑N

n=τ+1(V (tn)− V (tn−τ ))3]
3
2

(2.14)

where V (tn) is a series and τ is the time delay, meaning lagged information on volume

[33]. It is found that values of the statistic larger than 3 indicate time irreversibility and,

thus, nonlinearity [5].

For the purpose of the analysis, 20 different surrogates were constructed. The test

of surrogate data gave satisfactory results regarding its capacity of identifying overall

nonlinearity in the traffic volume data.
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2.2.3 Other Data Driven Methods

Among the other data driven methods, ‘Power Spectrum’, ‘Bicoherence-based measure’,

‘Surrogate data-based measure’, ‘Correlation Dimension’ and ‘Maximal Lyapunov Expo-

nent’ are widely used. They are discussed in the next chapter.



CHAPTER3
TOOLS FOR DATA-BASED

QUANTIFICATION OF

NONLINEARITY

The following tools have been employed in this thesis for the purpose of quantification

of nonlinearity and comparison of their respective performances.

3.1 Power Spectrum

The power spectrum is a transform of a time series that reveals its frequency content.

Its usefulness in detection and diagnosis is that it provides a characterization of the

dynamics of a linear or nonlinear time series because each peak in the spectrum indicates

a frequency that is present in the time series. The power spectrum can be determined

21
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from the discrete Fourier transform (X(f)) of the time series x(k)

X(f) = DFT (x(k)) =
N−1∑
k=0

x(k)e−j2πkf/N (3.1)

where N is the number of samples in the time series. The discrete Fourier transform

(DFT) has N frequency channels and is a complex quantity that captures both the am-

plitude and phase of the frequency components within the time series. The power spec-

trum considers only the amplitudes and is given by P (f) = |X(f)|2, where f specifies

the frequency and P (f) is the spectral power at that frequency. Figure 3.1 is included as

Figure 3.1: The Time Trend and Power Spectrum of a single sinusoid signal.

a reference to show the time trend and the power spectrum of a sinusoid of a single fre-

quency. It shows a single peak indicating that for such sinusoid signals, energy content

is at a single frequency only.

3.2 Bicoherence based Method

The bispectrum is the simplest of the various frequency domain Higher Order Statistical

(HOS) measures. It is the frequency domain counterpart of the third-order moment and
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is defined as

B(f1, f2) , E [X(f1)X(f2)X∗ (f1 + f2)] (3.2)

where X(f) is the Fourier transform of the continuous time data series x(t). The bispec-

trum, B(f1, f2), at point (f1, f2) measures the nonlinear interaction between frequencies

f1 and f2, [28]. This interaction between frequencies can be related to the nonlinearities

present in the signal-generating systems. The bispectrum is normalized in the following

way to give a measure called bicoherence whose magnitude is bounded between 0 and

1:

bic(f1, f2)2 ,
|E [X(f1)X(f2)X∗ (f1 + f2)] |2

E [|X(f1)X(f2)|2]E [|X(f1 + f2)|2]
(3.3)

where X(f) is the Fourier transform of the data series x(t). Significance of bicoherence

magnitude at each individual bifrequency is given by

P{bic(f1, f2)2 >
cχ

2

α

2K
} = α (3.4)

where K is the number of data segments used in bicoherence estimation and cχ
2

α is the

critical value calculated from the central χ2 distribution table for a significance level

of α with two degrees of freedom. Those bicoherence values which satisfy the above

condition are called bic2
significant. The Non-Gaussianity Index (NGI) is given by:

NGI ,

∑
bic2

significant

L
− cχ

2

α

2KL
(3.5)

where L is the number of bic2
significant. Then,

• if NGI≤0, the signal is GAUSSIAN
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• if NGI >0, the signal is NON-GAUSSIAN

The nonlinearity index, defined in [2, 4] is

NLI , ˆbic2
max −

(
ˆbic2
robust + 2σ ˆbic2,robust

)
(3.6)

where, ˆbic2
robust and σ ˆbic2,robust

are, respectively, the robust mean and the robust standard

deviation of the estimated squared bicoherence. Then,

• if NLI≤0, the signal is Linear.

• if NLI >0, the signal is Nonlinear.

NLI gives a ‘yes’ or ‘no’ answer for the existence of nonlinearity. This index actually

measures the flatness of the bicoherence function; it is a useful index when there is

no operating point variation (constant steady-state) in the measurement signal. Some

researchers such as [19] modified the Bicoherence-based method from [3] and formed

the following formulation:

NLI2 = max
f1,f2

bic2
y(f1, f2)− (E[bic2

y(f1, f2)] + 2σ[bic2
y(f1, f2)]) ≥ T (3.7)

where bic2
y(f1, f2) is the bicoherence of y(t) and σ2 = E[|U(f)|2] and E represents the

‘expected value’. The index is further modified as NLI3 index that can detect both

nonlinearity degree and steady-state changes in input/output data:

NLI3 = max
f1,f2

bic2
y(f1, f−2) ≥ T (3.8)

where T is a given threshold value that should be determined by the practitioner.
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Since, NLI gives a qualitatitive ‘yes’ or ‘no’ answer for the presence of nonlinearity,

it is not very useful for quantification of nonlinearity. Therefore, the ‘Total Nonlinearity

Index’, TNLI, as defined in [3], is used for nonlinearity quantification. The TNLI is

defined by:

TNLI ,
∑

bic2
significant (3.9)

3.3 Surrogate Data-based Method

Surrogate data is a synthetic data set called surrogate time series, having the same power

spectrum but with the phase coupling removed by randomization. A key property of the

test time series is then compared to that of its surrogates, and nonlinearity is diagnosed

if the property is significantly different in the test time series [21, 38]. For a time-series,

the surrogate data is calculated by:

z=FFT (test time series) ,

where, FFT=Forward Discrete Fourier Transform; then,

zsurr =

z [i] i = 1

z [i] ejφi−1 i = 2, ......, N/2

z [i] i = N/2 + 1

z [i] e−jφN−i+1 i = (N/2 + 2) , .....N

(3.10)

N = number of samples in the time-series. The quantity φk, k = 1, ..., (N/2 − 1), is a

random phase in the range [0, 2π].

Then, surrogate data = IFFT(zsurr) , where IFFT=Inverse Discrete Fourier Transform.
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Steps for calculating Surrogate Data based Nonlinearity Nsurr are enumerated be-

low:

Step 1 An Embedded matrix is formed for the test data y(1)......y(l)

Y =



y(1) y(2) ... y(E)

y(2) y(3) ... y(E + 1)

y(3) y(4) ... y(E + 2)

... ... ... ...

y(l − E + 1) y(l − E + 2) ... y(l)



(3.11)

Step 2 For each row yi of Y indexes are found such that jp (p = 1.....k) of k nearest

neighbors rows yjp having the k smallest values of
∣∣∣∣∣∣yjp − yi

∣∣∣∣∣∣ subject to a near-

in-time neighbour exclusion constraint |jp − i| > E/2

Step 3 Sum of squared prediction errors for the test data is calculated by:

Γtest =

l−H∑
i=1

y(i+H)− 1

k

k∑
p=1

y(jp +H)

2

(3.12)

where H is Prediction Horizon, k is number of near neighbors.

Step 4 M surrogate prediction errors Γsurr by applying Steps 1 through 3 to M surrogate

data sets.

Step 5 An embedded matrix is created of both test and surrogate data. Squared Predic-

tion errors of both test data, Γtest and of surrogate data, Γsurr are calculated as

described in [3]. Surrogate Nonlinearity Index, Nsurr is then calculated from :

Nsurr =
¯Γsurr − Γtest
3σΓsurr

(3.13)
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where ¯Γsurr and σΓsurr are mean and variances of M sets of Γsurr , respectively.

The recommended default values for the parameters of the nonlinearity detection algo-

rithm are taken from [3].

3.4 Maximal Lyapunov Exponent Method

‘Maximal Lyapunov Exponent Method’ quantifies nonlinearity of a time series by mea-

suring the extent of ‘chaos’ in the nonlinear time series. In a nonlinear chaotic time

series, several segments of the time series, which are initially very close, gets separated

over the course of time and finally become uncorrelated. Difference between ‘Stochastic’

and ‘Chaotic series’ is that ‘stochastic series’ is random at all times and distances whereas

‘chaotic series’ is predictable in the very short term, but appears random for longer pe-

riods. Thus, in a chaotic nonlinear time series, it is impossible to predict the position of

the trajectory more than, x time steps ahead, by knowing the position of another trajec-

tory at the current time, which was very close initially. For a dynamical system to display

chaotic behavior, it has to be either nonlinear or infinite-dimensional (i.e. ‘distributed

parameter system’(s) or systems described by partial differential equations). Since all

the simulation models used in this thesis are modeled by ordinary differential equations,

presence of chaos means that the system is nonlinear.

If the increase in separation of trajectories is exponentially fast, the properly aver-

aged exponent of this increase is characteristic for the system underlying the data and

quantifies the strength of chaos. It is called the Lyapunov exponent. In brief, it is a
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quantity that characterizes the rate of separation of infinitesimally close trajectories.

Quantitatively, two trajectories in phase space with initial separation δZ0 and final

separation of δZ after a certain time, diverge at a rate given by

|δZ(t)| = eλt|δZ0| (3.14)

where λ is the Lyapunov exponent.

Let sn1 and sn2 be two points in state space with distance ||sn1 − sn2|| = δ0 << 1.

Let δ∆n be the distance after time ∆n between the two trajectories emerging from these

points, δ∆n = ||sn1+∆n − sn2+∆n||. Then, λ is calculated by

δ∆n ' δ0e
λ∆n, δ0 � 1, ∆n� 1 (3.15)

It determines a notion of predictability for a dynamical system. For the chaotic system

it has to be between 0 and 1. To be chaotic, the largest Lyapunov exponent must be be-

tween zero and one. If Lyapunov exponent is greater than one, the system is stochastic.

In order to obtain the average exponential growth of distances, the following has to

be done [20, 32]:

A point, sn0 is chosen of the time series in embedding space and all neighbors with

distance smaller than ε are selected. Then, the average over the distances of all neigh-

bors to the reference part of the trajectory is computed as a function of the relative

time. The logarithm of the average distance at time 4n is some effective expansion rate

over the time span, 4n, (plus the logarithm of the initial distance) containing all the

deterministic fluctuations due to projection and dynamics. Repeating this for very many

values of n0, the fluctuations of the effective expansion rates will average out. Thus, the
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formula is:

S(4n) =
1

N

N∑
n0=1

 1

|ϑ(sn0)|
∑

sn∈ϑ(sn0 )

|sn0+4n − sn+4n|

 (3.16)

The reference points sn0 are embedding vectors. ϑ(sn0) is the neighborhood of sn0

with diameter ε. Since it might not be possible to know the minimal embedding dimen-

sion, m or the optimal distance ε, it is advisable to compute S(4n) for a variety of both

values.

The program lyap_k in the TISEAN package is used to perform the necessary cal-

culations to create the curves S(4n). TISEAN is a software project for the analysis of

time series with methods based on the theory of nonlinear deterministic dynamical sys-

tems, or chaos theory. Its distribution is in source form (in C and FORTRAN) including

full documentation [14]. The executables used in this thesis has been downloaded from

http://www.mpipks-dresden.mpg.de/̃tisean/Tisean_3.0.1/index.html.

If for some range of 4n, the function S(4n) exhibits a robust linear increase, its

slope is an estimate of the maximal Lyapunov exponent, λ.

Figure 3.2 shows a sample plot for calculating Maximal Lyapunov Exponent of a

data set. The exponential form of the entity on the left hand side of eq 3.16 (i.e. exp(S))

is plotted against time ∆n. The encircled portion of the plot shows a robust linear

increase of exp(∆S) for multiple vales in ∆n. The linear region is encircled. The bold

green line shows the approximate slope of the linear region of the curves. Each curve

corresponds to each value of the embedding dimension. The slope of the linear portion
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Figure 3.2: Sample plot of exp(S) against ∆n for a range of values for embedding

dimension.

is approximately 0.015. Thus, Maximal Lyapunov Exponent of the data set is taken to

be 0.015, indicating a chaotic nonlinear time series.

3.5 Correlation Dimension Method

Correlation Dimension gives the dimensionality of the space occupied by a set of ran-

dom points. It is a measure of the extent to which the presence of a data point affects

the position of the other point lying on the attractor. An attractor is a set of numerical

properties toward which a system tends to evolve, for a wide variety of starting condi-

tions of the system. If correlation dimensions value is finite low and non-integer, the

system is chaotic. If correlation exponent increases without bound with increase in the

embedding dimensions, the system is stochastic.
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The correlation sum for a collection of points xn in some vector space is the fraction

of all possible pairs of points which are closer than a given distance ε in a particular

norm and is given by:

C(m, ε) =
2

(N − nmin)(N − nmin − 1)

N∑
i=1

N∑
j=i+nmin

Θ(ε− ‖ xi − xj ‖) (3.17)

where Θ is the Heaviside step function, Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 for x > 0.

The sum just counts the pairs (xi, xj) whose distance is smaller than ε. In the limit of an

infinite amount of data (N → inf) and for small ε , it is expected that C will vary like a

power law, C(ε) ∝ εD, and the local slopes of the correlation sum d(ε) and correlation

dimension D are defined by:

d(ε) =
δlnC(ε,N)

δlnε
(3.18)

D = lim
ε→0

lim
N→∞

d(ε) (3.19)

To find the Correlation Dimension, local slopes of the correlation sum are plotted

against ε for a range of values of embedding dimension and the value on the y-axis

corresponding to the region of the plot where the contour lines become flat is taken as

the measure for Correlation Dimension.

For example, Figure 3.3 shows an ideal plot of the local slopes of Correlation Integral

against ε for calculating Correlation Dimension of a sample data set, provided in the

Webpage of TISEAN . The flat region is marked with the green line. Again, each curve

corresponds to each value of the embedding dimension. The onset of the plateau is at

d(ε) = 2.05 (marked with a green line). Thus, the value of Correlation Dimension is

chosen to be 2.05.
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Figure 3.3: Sample plot of local slopes of Correlation Integral against ε.

3.5.1 Temporal Correlations

Pairs of points which are measured within a short time span tend to be close in phase

space as well and thus introduce a bias when estimating correlation sum. By knowing

the typical time over which the data items are correlated, pairs close in that time are

rejected.

This problem has been solved by [31] by introducing the space time separation plot.

The idea is that in the presence of temporal correlations the probability that a given pair

of points has a distance smaller than ε does not only depend on ε but also on the time

that has elapsed between the two measurements. This dependence can be detected by

plotting the number of pairs as a function of two variables, the time separation ∆t and

the spatial distance ε. Temporal correlations are present as long as the contour curves
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do not saturate and the point of saturation is taken to be the size of the Theiler window.

If the signal is periodic from the very start, then half of one period is taken as the size of

the Theiler window.

Figure 3.4: Example of a sample stp plot.

Figure 3.4 shows an example of an stp plot of a time series ‘amplitude.dat’, available

in the webpage of TISEAN (The green dashed line marks the onset of the graph for

purpose of reference). Since the signal is periodic, half of the period of oscillation can be

taken as the Theiler window. Thus, Theiler window can be taken w 20 but it is suitably

chosen much larger, since typically not much statistics is lost, as long as it remains

smaller than about 10% of the data set size [14].
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3.6 Reconstruction of Phase Space

Calculation of Maximal Lyapunov Exponent and Correlation Dimension are motivated

and based on the theory of dynamical systems, which implies that the time evolution is

defined in some phase space. Since nonlinear systems can exhibit deterministic chaos,

reconstructing phase space is a natural starting point when irregularity is present in

the signal. A further assumption made is that the stochastic component is small and

essentially does not change the nonlinear properties.

For a purely deterministic system whose present state is fixed, the states at all future

times are determined as well. Thus establishing a vector space (called a state space

or phase space) is imperative for the system such that specifying a point in this space

specifies the state of the system, and vice versa. Then the dynamics of the system can be

studied by studying the dynamics of the corresponding phase space points. The concept

of the state of a system is powerful even for chaotic systems too.

Phase space is an abstract mathematical space spanned by the dynamical variables

of the system. The state of the dynamical system at a given instant in time can be

represented by a point in this phase space. If there are n dynamical variables, then

the state at a given time can be represented by a point in the Euclidean space <n. As

the dynamical variables change their values in time, the representative point traces out

a path in the phase space: a continuous curve in the case of a continuous dynamical

system and a sequence of points in the case of a discrete dynamical system.

For reconstructing phase space, two quantities are required: the embedding dimen-
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sion, m and the delay, τ such that the time series Yt can be expressed as:

Yt = {xt, xt+τ , xt+2τ,.....xt+(m−1)τ
} (3.20)

3.6.1 Time Delay

As seen from Eq 3.20, Time Delay, τ , is defined as the time difference between adjacent

components of the delay vectors. It can be calculated by two methods.

The first method involves finding autocorrelation function of the data and selecting τ as

its first zero crossing. The second method of determining τ is plotting the time delayed

mutual information as described in [10] and determining the first minimum. The second

method possesses the advantage of taking the nonlinear dynamical correlations into

account whereas the first method is based on linear statistics.

For all the data-series generated and tested for nonlinearity in this thesis, both meth-

ods for calculating τ have been applied and similar results were observed. So only the

results from the ‘Autocorrelation Function’ have been documented.

3.6.2 Embedding Dimension

The embedding dimension, m, is an important parameter for the analysis of time series

from the dynamical system approach, and determines the dimension of the Euclidean

pseudo-space in which supposedly the attractor is reconstructed from the time series. m

should be minimum but sufficiently large to unfold the attractor and is usually estimated

by calculating the "false nearest neighbors". This method increases the embedding di-

mension by one at each step and counts the percentage of points for which its nearest
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neighbor falls apart with the addition of a new component (from embedding dimension

m to m+1), and therefore these points are called false nearest neighbors. The estimated

minimum embedding dimension is the one that first gives an insignificant percentage of

false nearest neighbors.

Calculation of False Nearest Neighbors is carried out using the false_nearest exe-

cutable in the TISEAN package. The method searches for points in the data set which

are neighbors in embedding space, but which should not be neighbors since their future

temporal evolution is too different. For each point of the time series, its closest neighbor

in m dimensions is taken into account, and the ratio of the distances between these two

points is computed in both m+ 1 and m dimensions. If this ratio is larger than a thresh-

old, the neighbor was false. This threshold, however, has to be large enough to allow for

exponential divergence due to deterministic chaos.

A typical example from the output file the flase_nearest executable is given in Table

3.1. In this example, it is seen that for embedding dimensions, greater than 4, the

fraction of false nearest neighbors becomes zero. Thus ‘m’=4 is chosen as embedding

dimension for the concerned data set.

3.7 Auto-Correlation Plot

The ‘Autocorrelation Function’ (ACF) measures the linear predictability of the series at

time t, say xt using only the value xs. ACF is bounded between −1 and +1 where the

upper and lower limit represents perfectly positive correlation and perfectly negative

correlation respectively; a value of ACF close to 0 depicts minimal if not zero correlation.
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Embedding Dimension Fraction of False

Nearest Neighbors

1 0.974

2 0.207

3 0.00279

4 0.00405

5 0

6 0

Table 3.1: Example of output from the file generated by false_nearest

It is calculated by:

C(τ) =
1

N − τ

∑N
s=1(xs − x̄)(x(s+τ) − x̄)

σ2(x)
(3.21)

where τ is the time delay, σ is the standard deviation and x̄ is the average of the data.



CHAPTER4
NONLINEARITY ANALYSIS OF

ANALYTICAL TIME SERIES

Often process contains nonlinearities that can be presented by nonlinear functions such

as exponential, logarithmic and square functions. White noise and/or similar distur-

bances always enter processes and may propagate through the interconnected equip-

ment by measurements, feedback and other control actions. This chapter consists of

two sections. The first section attempts to quantify nonlinearity of such nonlinear func-

tions from the output time series data. The second section discusses an example of a

time series of varying nonlinearity, which has been used for evaluation of nonlinearity

measures.

38
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4.1 Analysis of Output Time Series Data of Nonlinear Func-

tions

Figure 4.1: Simulink Model for generating Time Series data from Mathematical Func-

tions

Figure 4.1 shows a Simulink block diagram for generating nonlinear time series sig-

nals. White noise is passed through respective functions of Exponential (exp), natural

logarithmic (ln), square (referred to as ‘power 2’) and sinusoids (sin). The generated

data are tested for nonlinearity quantification.

4.1.1 Time Series Data

Figure 4.2 shows the time series trend and the power spectrum of the output data from

these nonlinear functions. The figure also contains the time trend and the power spec-

trum of the input data (tagged 1). Every output time series from the nonlinear functions
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Figure 4.2: Time trends and Power Spectrum of exponential (exp), logarithmic (ln),

squared (power2), sinusoidal (sin) functions driven by white noise

shows peaks in additional frequencies than those in the power spectrum of the ‘input

data’. This portrays the nonlinearity of each the output time series.

4.1.2 Nonlinearity Analysis

4.1.2.1 Results with Bicoherence-based measure

The Total Nonlinearity Index described in Section 3.2 has been computed for all time

series data obtained by driving the nonlinear functions with white noise. The results

are tabulated in Table 4.1. Table 4.1 indicates that Bicoherence-based measure failed

to capture nonlinearity of exponential and sinusoidal functions when driven by white
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Function TNLI

Exponential 0.00

Logarithmic 0.10

Squared (Power of 2) 32.60

Sinusoidal 0.00

Table 4.1: TNLI results for Nonlinear functions driven by white noise

noise. The highest nonlinearity is obtained for ‘Squared’ function. The output series

from logarithmic function is also shown to contain nonlinearity but not as high as that

from the square function.

4.1.2.2 Results with Surrogate-Data Method

The ‘Surrogate Nonlinearity Index’, described in Section 3.3, has been computed for

all time series data obtained by driving the nonlinear functions with white noise. The

results are tabulated in Table 4.2. It is seen that Surrogate data-based measure was not

able to capture nonlinearity of logarithmic and squared functions when driven by white

noise. The exponential and sinusoidal functions exhibit moderate nonlinearity.

4.1.2.3 Calculation of Maximal Lyapunov Exponent

Before Calculating Maximal Lyapunov Exponent and Correlation Dimension, evaluation

of a few parameters such as ‘Time Delay’, ‘Embedding Dimension’ and ‘Theiler Window’

are required. These parameters are evaluated first in the following subsections.
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Function Nsurr

Exponential 0.34

Logarithmic -0.013

Squared (Power of 2) -0.32

Sinusoidal 0.37

Table 4.2: Nsurr results on mathematical functions driven by white noise

4.1.2.3.1 Calculation of Time-Delay (τ)

Figure 4.3 shows the Auto-correlation plots of the output time series data from the

functions. It is observed that the first zero-crossing of almost all the functions is approx-

imately equal to 1. Thus, the value of time-delay, τ is chosen to be 1 for all the functions.

4.1.2.3.2 Calculation of Embedding Dimension (m)

The method for finding embedding dimension employs calculation of false nearest neigh-

bors. The ‘False_nearest’ code from TISEAN package is used for this purpose. The out-

put from the codes are recorded in a ‘.text’ file by default. The results from the output

text file for the ‘Squared’ function is given below:

Referring to the tutorial example of Table 3.1 in Chapter 3, the embedding dimen-

sion is chosen to be the dimension at which ‘the fraction of false nearest neighbors’

becomes insignificant and continues to stay as such for dimensions larger than that.
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Figure 4.3: Time trends and Autocorrelation Plots of exponential (exp), logarithmic (ln),

squared (power2), sinusoidal (sin) functions driven by white noise.

The results from the ‘Squared Function’ are presented in Table 4.3. As observed,

for the squared function, all embedding dimensions higher than 11 gives null value for

fraction of false nearest neighborhood. Thus m = 11 is chosen for this particular time

series data.

The embedding dimensions for the other functions are calculated using the same

method. The results are summarized in Table 4.4

4.1.2.3.3 Determination of Theiler Window

To remove temporal correlations from our calculations, determination of Theiler win-

dow is required. The feat is accomplished by plotting pairs of data points against both
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dimension fraction of false

nearest neighbors

1 0.996

2 0.991

3 0.861

4 0.667

5 0.533

6 0.464

7 0.407

8 0.366

9 0.301

10 0.250

11 0.344

12 0.00

13 0.00

Table 4.3: Results for Squared function driven by white noise

spatial separation, ε, and time of separation, ∆t. The resulting plot is called Space-time

Separation (stp) plot of the data. Figure 4.4 shows the space-time separation (stp) plots

of the output time series from the four nonlinear functions. Each of the multiple curves

in each plot refer to a different value of embedding dimension. All the plots show a
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Function Embedding Dimension

Exponential 7

Logarithmic 7

Power of 2 11

Sinusoidal 8

Table 4.4: Embedding Dimensions chosen for nonlinear mathematical Functions

stop in steady increasing after 4t of 20. Thus, as per conditions stated in Section 3.5.1,

∆t = 20 is a logical choice for Theiler window for the time series data, involved.
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Figure 4.4: Space-time Separation plots of exponential (top left), Logarithmic (Top

right), Sinusoidal (bottom right) and Squared (bottom left) functions, driven by white

noise
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4.1.2.3.4 Results with Maximal Lyapunov Exponent
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Figure 4.5: Estimation of Maximal Lyapunov Exponenets of exponential (top left), Log-

arithmic (Top right), Sinusoidal (bottom right) and Squared (bottom left) functions

driven by white noise

As shown in the bottom left panel of Figure 4.5, for the ‘square’ function, driven by white

noise, the linear region has an approximate slope of 0.38/6 or 0.0633. Thus Maximal

Lyapunov Exponent for the squared function is λsquared = 0.38/6 = 0.0633. Similarly,

the Maximal Lyapunov Exponent for the logarithmic and exponential functions are

calculated and summarized in Table 4.5. The graph of exponential form of ∆S against
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∆n of equation 3.16 are plotted for multiple embedding dimensions (hence the multiple

curves in each plot) in Figure 4.5.

It is to be noted that the plots for ‘sin’ function (bottom right plot in Figure 4.5) shows

a steep increase while moving from ∆n = 0 to ∆n = 1. No robust linear increasing

region is found on this plot. So Maximal Lyapunov Exponent does not exist for this

function.

Function Maximal Lyapunov

Exponent

Exponential 0.258

Logarithmic 0.329

Squared (Power of 2) 0.063

Sinusoidal n/a

Table 4.5: Maximal Lyapunov Exponents for the four Nonlinear Functions

As shown in Table 4.5, Exponential, Logarithmic and Squared (Power 2) all exhib-

ited a Maximal Lyapunov Exponent between 0 and 1. Thus, Maximal Lyapunov Expo-

nent identifies these time series data to be chaotic and hence, nonlinear (according to

the condition, discussed in Section 3.4). The exponential and the logarithmic functions

contain more nonlinearity than squared (power of 2) function.
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No plateau can bedetermined in the graphs. So, no correlation dimension can be read from the data. 
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Figure 4.6: Plots of Local Slopes of Correlation Sums against spatial separation for ex-

ponential (top left), Logarithmic (Top right), Sinusoidal (bottom right) and Squared

(bottom left) functions driven by white noise

4.1.2.4 Results with Correlation Dimension

Figure 4.6 shows the plot of local slopes of Correlation Integrals, d(ε) plotted against

spatial distance, ε, (Equation 3.18); the plots are made for multiple values of embedding

dimensions as portrayed by multiple curves in each plot. The procedure to get the

Correlation Dimension from such plots is illustrated in Figure 3.3.

From the three plots except the bottom-right one in Figure 4.6, it is observed that the

contours flatten at y = 0. Thus Correlation Dimension is 0 for these 3 functions.
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From the bottom-right plot in Figure 4.6, it is observed that the sinusoidal function

has no flat region (or Plateau) where all the contours converge. So, it does not have any

quantifiable Correlation Dimension.

4.1.3 Overall Comparison of the Nonlinearity Measures

Function TNLI Nsurr Correlation Maximal Lyapunov

Dimension Exponent

Exponential 0.00 0.34 0 0.258

Logarithmic 0.10 -0.013 0 0.329

Squared (Power of 2) 32.60 -0.32 0 0.0633

Sinusoidal 0 0.37 n/a n/a

Table 4.6: Summary of results of the four Nonlinearity Measures on the Nonlinear Func-

tions

The nonlinearity analysis results have been summarized in Table 4.6. On basis of

these results, it can be concluded that Maximal Lyapunov Exponent is a favorable choice

for quantification of nonlinearity arising from logarithmic, exponential and squared

functions. Bicoherence-based measure is a good method for quantification of nonlin-

earity arising due to ‘squared’ functions. Surrogate Nonlinearity Index can be used to

quantify nonlinearity arising from exponential and sinusoidal functions. More tests with

varying parameters are required for concluding about Correlation Dimension.
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4.2 Analysis of Time Series Data of Nonlinear Sinusoidal Sig-

nals with Noise

An analytical signal is generated by adding two sinusoids, each having a different fre-

quency and phase. The Simulink model block diagram is shown in Figure 4.7. The

Figure 4.7: Simulink model for Signal Generation

analytical equations for generating this signal, y(k), are as follows:

x′(k) = sin(2πf1k + φ1) + sin(2πf2k + φ2) (4.1)

x(k) = x′(k) + d(k) (4.2)

y(k) = x′(k) + nl ∗ x′(k)2 + d(k) (4.3)
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where f1 = 0.12, f2 = 0.30, φ1 = π/3, φ2 = π/8, nl is a multiplication factor for

for nonlinearity contribution and d(k) is white noise sequence with a variance of 0.04.

Values of nl chosen for the experiment are 0(linear), 0.05, 0.25, 0.50, 0.75 and 1.00.

4.2.1 Time Series Data
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Figure 4.8: Time Trends and Power Spectrum of nonlinear sinusoid signals with increas-

ingly nonlinearity from bottom to top.

Figure 4.8 shows the time series trend and the power spectrum of each generated

signal. when nl = 0, there are only two sinusoids and thus the power spectrum shows

only two peaks (Tag 1). As value of nl increases, the number of peaks in the power
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spectrum also increases, showing the presence of additional frequencies.

4.2.2 Nonlinearity Analysis

4.2.2.1 Bicoherence Based Results

The Total Nonlinearity Index described in Section 3.2 has been computed for all time

series data obtained by combination of sinusoids. The results are tabulated in Table 4.7.

As shown in the Table, Bicoherence-based measure gives increasing values of TNLI for

Value of nl TNLI

0 0

0.05 5.67

0.25 17.74

0.50 22.95

0.75 25.81

1.00 26.11

Table 4.7: TNLI results for Nonlinear combination of sinusoids

increasing values of nl. This shows that Bicoherence-based measure, Total Nonlinearity

Index (TNLI), is sensitive to the changes in degree of nonlinearity of time series signal.
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4.2.2.2 Surrogate Data Based Results

The ‘Surrogate Nonlinearity Index’, described in Section 3.3 has been computed for all

time series data. The results are tabulated in Table 4.8. Surrogate Nonlinearity Index

Value of nl Nsurr

0 0.025

0.05 0.51

0.25 0.64

0.50 0.88

0.75 0.30

1.00 0.35

Table 4.8: Nsurr results for Nonlinear combination of sinusoids

showed different sequence in rising of nonlinearity in different runs of the algorithm

but overall there was an increasing trend in nonlinearity from nl = 0 to nl = 1.0. The

tabulated results are from one such run which shows that Nsurr increases for nl = 0 to

nl = 0.50 and then experiences a sudden drop and then increases again. However, in

different runs, the drop occurred at different values of nl. From the behavior of Nsurr, it

can be stated that Nsurr provides consistent results upto a certain degree of nonlinearity.

It may produce erroneous results for very high degree of nonlinearity.
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4.2.2.3 Calculation of Maximal Lyapunov Exponent

As stated previously, before Correlation Dimension and Maximal Lyapunov Exponent can

be calculated, some additional parameters are to be calculated. They are‘ Time Delay’,

‘Embedding Dimension’ and ‘Theiler Window’.

4.2.2.3.1 Calculation of Time-Delay

Figure 4.9: Time Trends and Auto-correlation Plots of increasingly nonlinear sinusoid

signals.
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Figure 4.9 shows that the autocorrelation curves of all four data-sets cross x-axis

close to 1. Thus, τ is selected as 1.

4.2.2.3.2 Calculation of Embedding Dimension

A sample calculation of False neighborhoods for nl = 0.25 is shown in Table 4.9 : In

dimension fraction of false

nearest neighbors

1 0.996

2 0.995

3 0.694

4 0.249

5 0.700

6 0.136

7 0.00611

8 0.0212

9 0

10 0

11 0

Table 4.9: Calculation of False neighbourhood for nl = 0.25

accordance to the explanation offered previously, the embedding dimension is chosen
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as 8 for nl = 0.25. The values of embedding dimensions for other values of nl are

summarized in Table 4.10.

Value of nl Embedding

Dimension

0 6

0.05 7

0.25 8

0.50 9

0.75 8

1.00 7

Table 4.10: Embedding Dimensions for values of nl based on false Nearest Neighbors

4.2.2.3.3 Determination of Theiler Window

The space time separation plots are shown below: In Figure 4.10, all the plots reach

a steady oscillatory state fairly early. For the sake of safety, a Theiler window of size

∆t = 10 is used calculating Correlation Dimension.

4.2.2.3.4 Results with Maximal Lyapunov Exponent

The plots of exp(S) against ∆n of Equation 3.16 for the all the generated analytical

signals are shown in Figure 4.11: None of the plots in Figure 4.11, show any portion
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Figure 4.10: Space Time Plots of Nonlinear Sinusoidal Signals

where they are of constant gradient (as compared to the linear portion of the plot in

Figure 3.2). Thus, Maximal Lyapunov Exponents cannot be determined for these time

series.
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Figure 4.11: Plots of exp(s) against ∆n for increasingly nonlinear sinusoids.

4.2.2.4 Correlation Dimension Based Results

The plots of the local slopes of correlation integrals, d(ε), for multiple values of embed-

ding dimension, against spatial separation, ε, are shown in the Figure 4.12
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Figure 4.12: Local Slopes of Correlation Integrals against spatial separation for Nonlin-

ear Sinusoidal Signals

All the plots in Figure 4.12 show onset of plateau comparable to the one in exam-

ple Figure 3.3. Correlation Dimension, Cd shows a decreasing trend with increasing

nonlinearity. However, the decrease in Cd is not pronounced as compared to the de-

gree of increase in nonlinearity. The values of Cd are almost the same (Cd ≈ 2.5) for
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nl = 0, 0.05, 0.25. Cd decreased from ≈ 2.5 to ≈ 1.5 when nl increased from 0.25 to

0.50. Increasing nl farther to 0.75 renders Cd a positive value very close to 0. When

nl = 1.00, Cd is 0. Since Correlation Dimension shows opposite behavior to increase in

nonlinearity, it cannot be used to quantify nonlinearity for these data sets.

4.2.3 Overall Comparison

Value TNLI Nsurr Correlation Maximal Lyapunov

of nl Dimension Exponent

0 0 0.025 ≈ 2.6 n/a

0.05 5.67 0.51 ≈ 2.5 n/a

0.25 17.74 0.64 ≈ 2.15 n/a

0.50 22.95 0.88 ≈ 1.5 n/a

0.75 25.81 0.30 ≈ 0.2 n/a

1.00 26.11 0.35 0 n/a

Table 4.11: Summary of results of the four measures on various degree of Nonlinear

combination of sinusoids

Even though Bicoherence-based measure did not register any result when applied

to a sinusoid of a single frequency (from Table 4.6), it yielded results when applied to a

combination of sinusoids. Table 4.11 shows that TNLI increases with increasing values

for nl and thus shows the highest sensitivity to nonlinearity for the concerned time series
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data sets.

Even though Nsurr shows an overall increasing trend with increase in nl upto a

certain degree. However, for very high nonlinearity, it may produce erroneous results as

seen for nl ≥ 0.75.

Correlation Dimension showed a decreasing trend with increasing values of nl. Also,

the deviation in Correlation Dimension with respect to each change in nl is small. Since

Correlation Dimension shows opposite behavior to increase in nonlinearity, it cannot be

quantitatively used to quantify nonlinearity for processes in which, nonlinearity evolves

due to combination of sinusoidal signals. However, it can be used qualitatively.

Maximal Lyapunov Exponent could not detect nonlinearity in this kind of signals.

Thus, it can be stated that for a data-set consisting of a combination of sinusoidal

signals, Bicoherence-based measure showed the best promise for reliable quantification

of nonlinearity.



CHAPTER5
SIMULATION STUDY FOR

NONLINEARITY ANALYSIS

In reality, most processes are nonlinear in nature but they can be operated in a ‘locally

linear’ fashion. The nonlinearity which are locally linear in the presence of small excita-

tions are called soft nonlinearities. On the other hand, some nonlinearities are strong and

discontinuous in nature; they are called hard nonlinearities, for examples, valve stiction,

hysterisis and deadband.

This chapter describes some of the nonlinear process systems in the real world. These

processes are simulated using MATLAB and SIMULINK and each process is excited sinu-

soidally. The reason for using a sinusoid signal is because linear systems exhibit si-

nusoidal fidelity, i.e. a sinusoidal input will produce a sinusoidal output of the same

frequency but nonlinear systems will produce additional frequencies as well. The output

time-series data are then studied for the quantification of nonlinearity.

62
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5.1 Study of a Nonlinear Continuous Stirred Tank Reactor (CSTR)

5.1.1 Process Description

The widely used nonlinear process for simulation study is a nonlinear Continuous Stirred

Tank Reactor (CSTR) as shown in Figure 5.1. It is assumed that a single irreversible,

exothermic, first-order reaction is taking place in the CSTR. The reaction is A → B. A

perfect mixing in the reactor is assumed i.e. the spatial concentration and temperature

differences are ignored.

Figure 5.1: Schematics of a CSTR

The dynamic behavior of the system is represented by a set of differential equations,

portraying the rate of change of concentration of reactants and temperature of the reac-

tor respectively. The model equations are given by [30]:
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dcA
dt

=
F

V
(cAi − cA)− k0cAe

−E
RT (5.1)

dT

dt
=
F

V
(Tf − T )− (−∆H)k0cA

ρCp
e

−E
RT +

ρcCpc
ρCpV

qc

[
1− e( −hA

qcρcCpc
)

]
(Tc − T ) (5.2)

The values of the respective parameters along with their notations are taken from [25]

and listed in Table 5.1. Steady-state values of 0.2645 kmol/m3 and 393.9K for cA0 and

Tfi are used respectively. The SIMULINK model of the process is shown in Figure 5.2.

The inlet concentration, CAi, was excited by adding sinusoidal signals of varying fre-

quencies and amplitudes to the steady-state feed concentration, CA0. The outlet con-

centration data, cA, were collected and subsequently used for nonlinearity quantification

of the process.

(a) External view of the SIMULINK Model of the CSTR Process
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(b) Interior of the SIMULINK model of the CSTR block

Figure 5.2: SIMULINK model of the CSTR

5.1.2 Simulated Time Series Data of CA

The input reactant concentration was varied using a sinusoidal signal. Figure 5.3 shows

20 of the output concentration time series data from the same CSTR for varying input

concentrations. Multiple peaks in the power spectra of the output concentration data

shows the presence of additional frequencies in addition to the one, used to excite the

process, indicating the presence of nonlinearity in the CSTR. Therefore, the CSTR does

not exhibit sinusoidal fidelity and the nonlinearity of the process is confirmed.
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Parameter Notation Value

Inlet Feed Temperature Tfi, Ti 323K

Inlet Coolant Temperature Tc 365

Concentration of reactant CA0 2 kmol/m3

Feed Flow-rate F 1 m3/min

Volume of the reactor V 1 m3

coolant flow-rate Fc 15 m3/min

density of coolant ρc 106g/m3

Specific heat of cooling water Cpc 1 cal/(g K)

density of the reactant and product ρ 106g/m3

overall heat transfer co-efficient*Area UA a ∗ F (b+1)
c /(Fc + a∗Fcb

2∗Rhoc∗Cpc )

a=1.678 ∗ 106, b=0.5

Specific Heat of the product Cp 1 cal/(g0C)

activation energy/gas constant E
R 8330.1 K−1

reaction rate constant ko 1.0 ∗ 1010min−1

Heat of reaction ∆H −130 ∗ 106cal/kmol

Table 5.1: Initializing parameters for CSTR model
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Figure 5.3: Output Concentration Data when Amplitude is set at 0.1 and frequency is

increased (in order from bottom to top)

5.1.3 Nonlinearity Analysis Results

5.1.3.1 Bicoherence Based Results

Figure 5.4a shows that for small changes in amplitude, i.e., small changes in reactant

concentration, the values of TNLI are close to zero (the lower left portion of the plot).

This is expected, because for small excitations, the nonlinear processes can be assumed

to be ‘locally linear’. Thus TNLI is close to zero. As the amplitude increases, the nonlin-

earity goes up and so does the TNLI. The nonlinearity has increased monotonically with

changes in frequencies and amplitudes. Thus, Total Nonlinearity Index increases with

increasing frequency and amplitude.

When the range of oscillation for both amplitudes and frequencies are increased,
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Figure 5.4: Nonlinearity Analysis Results of CSTR with Bicoherence-based measure.
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it is seen that TNLI stops increasing after exceeding a certain frequency irrespective of

increasing amplitude. This is shown in the left portion of Figure 5.4b. Further increase

of frequency shows a decrease in TNLI in the low amplitude region. This phenomenon

may be attributed to the fact that above a certain threshold frequency, the CSTR acts as

a low-pass filter and thus, the high frequency sinusoids are absorbed as high frequency

disturbances as long as their amplitudes are small.

5.1.3.2 Surrogate Data based Results

Figure 5.5 shows the variation in Nsurr, when Surrogate data-based measure is applied

to the same data-set. As seen from the figure,Nsurr does not monotonically increase with

amplitudes and frequencies; rather, it generates an irregular pattern. The plot in Figure

5.5a shows that in the vicinity of lower amplitudes, the nonlinearity mostly increases

with increasing frequency. Nsurr does not increase much with the increase of amplitudes

from 0.01 to 0.1, showing that Nsurr is less sensitive for small incremental changes in

amplitude. When the ranges of both amplitudes and frequencies are increased, it is

seen that after the amplitude has crossed a threshold value, Nsurr shows large peak in

the high amplitude but low frequency areas. This is visible in the right portion of the

Figure 5.5b.

In order to investigate the effect of noise on Nsurr, gaussian white noise was added

to the data and Surrogate Nonlinearity Index was recalculated. As shown in Figure 5.6,

when some noise was added to the data, the pattern of Nsurr changed. The change

in Nsurr for change in amplitude is now more prominent than for change in frequency,
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Figure 5.5: Surrogate Data based Nonlinearity results for CSTR in absence of noise.

Figure 5.6a. When the range of variation of the variables is increased, as in Figure 5.6b,

the pattern remains almost the same as before. However, in the latter case, the peaks



5.1. STUDY OF A NONLINEAR CONTINUOUS STIRRED TANK REACTOR (CSTR) 71

(a) Surrogate Nonlinearity Index (Nsurr) pattern of a CSTR (with added noise)

(b) Surrogate Nonlinearity Index (Nsurr) pattern of a CSTR (with added noise) with increased

range of Frequency and Amplitude

Figure 5.6: Surrogate Data based Nonlinearity results for CSTR in presence of noise.
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are smaller than those for noise-free data.

While the plots of Total Nonlinearity Index appeared to be bounded between 0 and

1, plots of Nsurr showed higher sensitivity to nonlinearity for small excitation signals

and did not seem to be bounded.

5.1.3.3 Maximal Lyapunov Exponent Based Results

Results reported for TNLI and Nsurr in the previous sections involve analysis of data for

1600 cases for an amplitude-frequency grid of 40× 40. It is difficult to apply method of

Maximal Lyapunov Exponent for such large data sets because the calculations involve vi-

sual identifications from plots. Evaluating a handful of points is not sufficient to generate

a comprehensible pattern for Maximal Lyapunov Exponent . For the sake of compari-

son, the method is applied on two output time series, chosen randomly. The time series

are chosen as such that they each registered high value for TNLI when quantified with

Bicoherence-based measure.

Two output time series data are tested for nonlinearity using the method of Maximal

Lyapunov Exponent. The ‘Time Delay’, ‘Embedding Dimension’ and ‘Theiler Window’

have been calculated as discussed in Section 4.1.2.3. For the sake of brevity, the details

of the calculations are not shown here.

Figure 5.7 shows the plots of exp(s) against ∆n (Equation 3.16) for multiple embed-

ding dimensions for the two time series. In Figure 5.7, both plots show regions of robust

linear increase, hence showing that a positive value of Maximal Lyapunov Exponent ex-

ists for each of these curves.
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(a)

(b)

Figure 5.7: Analysis of Maximal Lyapunov Exponent for two output time series data

from the nonlinear CSTR
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Time Series Time Delay Embedding Dimension Maximal Lyapunov

Exponent

Figure 5.7a 9 3 0.00377

Figure 5.7b 2 10 0.0367

Table 5.2: Results of Maximal Lyapunov Exponent for two output time series from the

nonlinear CSTR.

Table 5.2 summarizes the results of maximal Lyapunov method. It is seen that for

highly nonlinear time series data from the CSTR, Maximal Lyapunov Exponent takes a

positive value. The distinct linear regions in the curves, indicating a nonlinear system,

may be attributed to the presence of exponential functions in the model of the CSTR. As

seen from Table 4.6, Maximal Lyapunov Exponent is particularly sensitive to exponential

function in addition to logarithmic and squared functions. More simulations are needed

to carry out to discern the overall trend of Maximal Lyapunov Exponent with variation

in amplitude and frequency.

5.1.3.4 Correlation Dimension Based Results

The same time series data of Section 5.1.3.3 are tested for nonlinearity using the method

of Correlation Dimension.
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(a)

(b)

Figure 5.8: Analysis of Correlation Dimension for two output time series from the non-

linear CSTR
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Figure 5.8 shows the plots of local slopes of the correlation integral, d(ε), against

spatial separation, ε, (Equation 3.18), for multiple embedding dimensions for the two

chosen time series. Both plots show onsets of plateau, hence showing that a positive

value of Correlation Dimension exists for each of these curves.

Time Delay Embedding Dimension Theiler Correlation

Window Dimension

Figure 5.8a 9 3 400 0.427

Figure 5.8b 2 10 400 1.20

Table 5.3: Results of Correlation Dimension for two output time series from the nonlin-

ear CSTR.

Table 5.3 summarizes the results from the plots. It is seen that for highly nonlinear

time series data from the CSTR, Correlation Dimension takes a positive value, indicat-

ing the presence of nonlinearity in the CSTR system. More simulations are needed to

carry out to discern the overall trend of Correlation Dimension with variation in ampli-

tude and frequency. It is to be noted that when exponential functions were driven by

white noise in Chapter 4, Correlation Dimension yielded a value of 0. However, when

the same function was included in the model equations of a chemical process and ex-

cited by sinusoidal variations, Correlation Dimension was able to detect nonlinearity in

the system.



5.1. STUDY OF A NONLINEAR CONTINUOUS STIRRED TANK REACTOR (CSTR) 77

5.1.4 Summary of Nonlinearity Analysis

The following conclusions can be drawn from the simulation results:

(a) Bicoherence-based measure was able to show an increase in nonlinearity with

increase in amplitude. It was also able to show that TNLI decreases after certain

frequencies, indicating absorption of high frequency disturbances.

(b) Surrogate data-based measure appeared to be less sensitive for small changes in

magnitude of excitation signals. In a noise-free data, Surrogate Nonlinearity Index

showed a pronounced increase with respect to frequency rather than with respect

to amplitude. It did show large peaks in the regimes with highest magnitude of

amplitude when the range of amplitude is increased above a threshold value.

(c) Correlation Dimension could not be applied to all output time series because of its

analysis involving visual observations. It had been used to quantify nonlinearity

for two output time series data which also happened to register high values for

TNLI. In both cases, Correlation Dimension gave positive results, indicating the

presence of nonlinearity.

(d) Maximal Lyapunov Exponent also could not be applied to all output time series

due to normal nature of analysis. It was used to quantify nonlinearity for the

same two output time series data as Correlation Dimension. Maximal Lyapunov

Exponent showed positive values, indicating the presence of nonlinearity in the

concerned time series.
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5.2 Nonlinearity Study of a Spherical Tank

5.2.1 Process Description

The second model is that of a spherical tank. Fig 5.9 represents a spherical tank of

radius, R, where water enters from the top and leaves through a pipe at the bottom at a

height of ho from the base of the tank.

Figure 5.9: Schematics of a Spherical Tank

The model equation is as follows:

πR2

[
1− (R− h)2

R2

]
dh

dt
= Fi(t− d)− F0(t) (5.3)

Where Fo(t) is the outlet flow rate at time t, h the height of the water level from the
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bottom of the tank, and d corresponds to the delay in the input flow rate. The outlet

flow rate, Fo, can be expressed as Fo(t) =
√

2g(h− ho), where g is the gravitational

constant. For the open-loop simulation of the system, R = 0.5 m, ho = 0.01 m have been

used. The control of water level in the tank is accomplished by manipulating the inlet

volumetric flow rate, Fi. Sinusoids of varying amplitudes and frequencies are added to

the inlet volumetric flow and the water level is quantified for nonlinearity in each case.

The experiment is operated at a steady-state height of 0.35 m of water in the tank so

that the water in the tank neither dries out nor overflows. Also the water level behaves

in a more nonlinear fashion at this height than while operating at the center of the tank.

The model of the spherical tank is created in SIMULINK.

Figure 5.10: Simulink Model of the Spherical Tank
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Figure 5.11: Data Samples when Frequency is set at 0.0738 rad/s and Amplitude is

varied from 0.01 to 0.02

5.2.2 Simulated Data

The input signal is the same as that in Figure 3.1. Thus, the input signal has only a

single frequency. The High Density Plot for a series of data with a fixed frequency but

varying amplitude are given in Figure 5.11. The Figure shows that for small amplitudes

of oscillation, the system can be considered as ‘locally linear’. This is shown by the

absence of peaks in the power spectrum when the amplitude is very small (Tags 1 and

2). The corresponding time trend is mostly noise. As the amplitude of oscillation is

steadily increased, peak starts to appear in the power spectrum and the size of the peak

increases with increasing amplitude of oscillation showing the sensitivity of the system

to changes in amplitude.
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5.2.3 Nonlinearity Analysis

5.2.3.1 Bicoherence Based Results

Figure 5.12: Total Nonlinearity Index (TNLI) Pattern for Spherical Tank

Figure 5.12 shows that for small magnitudes of input signals, the spherical tank

system can also be assumed locally linear as portrayed by the flat regions on the lower

left portion of the plot of TNLI. As the amplitude of excitation signal increases beyond

a certain value, nonlinearity suddenly jumps as visualized from the several peaks at the

right portion of the plot. The reason for this can be attributed to the fact that nonlinearity

increases at a point where the total surge volume of the tank drops below a certain level.

With the decrease in liquid volume, the tank loses its ability to attenuate disturbances,

and thus it contributes to an increase in TNLI. Another fact is that the curvature of the

spherical tank increases when moved away from the center along the top or bottom
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direction of the tank. Thus the height of the same volume of water will behave in a

more nonlinear fashion when operating closer to the top or bottom portion of the tank

than it would while operating near the centre. It is also observed that the nonlinearity of

this particular system is not very sensitive to changes in frequency. Therefore, it can be

concluded that nonlinearity of the process depends on the size of the excitation signal.

Figure 5.13: Surrogate Nonlinearity Index Pattern for Spherical Tank

5.2.3.2 Surrogate Data Based Results

The Surrogate data-based measure is applied to the same data-set. Figure 5.13 shows

that nonlinearity is increasing with both frequency and amplitude. However, the rise in

Nsurr is roughly uniform. There is no presence of peaks similar to that in the plot of Total

Nonlinearity Index. The absence of flat regions in the plot of Surrogate Nonlinearity

Index shows its inability to find ‘locally linear’ regions. The dependency of Nsurr on
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amplitude can be attributed to the fact as discussed previously.

5.2.3.3 Maximal Lyapunov Exponent Based Results

Two output data sets with high values for TNLI are chosen in random. No robust linear

region has been found on the plots of exp(s) against ∆n (Equation 3.16) for multiple

embedding dimensions for these time series. This shows that Maximal Lyapunov Ex-

ponent is not applicable for the spherical tank system. The reason can be attributed

to the lack of exponential, logarithmic and squared functions in the model equation,

to which Maximal Lyapunov Exponent is sensitive. By referring to Table 4.6, it is also

evident that Maximal Lyapunov Exponent was not suitable for quantifying nonlinearity

of purely sinusoidal functions.

5.2.3.4 Correlation Dimension Based Results

The same two output time series data were used to quantify nonlinearity using Corre-

lation Dimension. The ‘Time Delay’, ‘Embedding Dimension’ and ‘Theiler Window’ have

been calculated as discussed in Section 4.1.2.3.

Figure 5.14 shows the plots of local slopes of the correlation integral, d(ε), against

spatial separation, ε (3.18) for multiple embedding dimensions for the two chosen time

series. Both the plots show onsets of plateau (marked by circled regions), hence, show-

ing that a positive value of Correlation Dimension exists for each of these curves.
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Time Series Time Delay Embedding Dimension Theiler Correlation

Window Dimension

Figure 5.14a 16 8 450 1.65

Figure 5.14b 12 6 400 1.63

Table 5.4: Correlation Dimension results for spherical tank system.

Table 5.4 summarizes the results from the plots. It is seen that for highly nonlinear

time series data from the Spherical Tank, Correlation Dimension takes a positive value,

indicating the presence of nonlinearity in the system. More simulations are needed

to carry out to discern the overall trend of Correlation Dimension with variation in

amplitude and frequency.

5.2.4 Summary of Nonlinearity Analysis

The following conclusions can be drawn from the results in this section.

(a) For a spherical tank system, Bicoherence-based measure is more sensitive to varia-

tion in amplitude of excitation signals. Unlike the uniform trend of increase in the

case of CSTR, TNLI showed large peaks, portraying sudden increase in nonlinearity

in case of the spherical tank system.

(b) Surrogate data-based measure shows an uneven increase in Surrogate Nonlinear-

ity Index with respect to both frequency and amplitude. Unlike TNLI, which was

more sensitive to amplitude, Nsurr seemed to be more sensitive to both amplitude
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and frequency.

(c) Maximal Lyapunov Exponent could not be calculated for the time series generated

for this system. This may be attributed to the lack of logarithmic and exponential

functions in the model equation of the spherical tank system.

(d) For time series with high values for TNLI, Correlation Dimension gave positive

values. Further tests with different time series are required to identify the trend of

Correlation Dimension with respect to amplitude and frequency.
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(a)

(b)

Figure 5.14: Correlation Dimension analysis of two output time series data from Spher-

ical Tank.



CHAPTER6
EFFECT OF CONTROLLER ON

NONLINEARITY

To study the effect of controller on the nonlinearity of a system, the spherical tank system

was simulated in closed loop condition. A PI controller was implemented to control the

water-level of the spherical tank by manipulating input flow-rate. The PI controller

settings, used in the simulation is:

C(z−1) =
0.3− 0.1z−1

1− z−1
(6.1)

For experimentation in closed-loop, a new steady-state height of 0.3 m was chosen to

incorporate more nonlinearity. The closed-loop model of the Spherical tank was created

using MATLAB and SIMULINK and it is shown in Figure 6.1.
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Figure 6.1: Closed-Loop Simulink model of the Spherical Tank

6.1 Simulated Data

The High Density Plot of the output dataset for the same input excitation signals is

compared in both open loop and closed loop conditions in Figure 6.2. Unlike the case

in open loop condition, in closed loop, there are peaks in Power Spectrum even when

the amplitudes of oscillation are small. In addition to this, magnitudes of the peaks in

the closed loop case appear to be smaller than those in open loop case. However, this

fact is only moderately visible in the regions of high amplitudes and cannot be taken as

a decrease in nonlinearity in closed loop condition.
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(a) Time Trend and Power Spectrum of Water Level Data in Open Loop

(b) Time Trend and Power Spectrum of Water Level Data in Closed Loop

Figure 6.2: High Density Plots comparing Output time series in both open loop and

closed loop conditions.
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6.1.1 Results with Bicoherence-based measure

Figure 6.3 shows the comparison of TNLI for the same output time series data from the

spherical tank, operated in both open loop and closed loop Conditions.

Figure 6.3: Comparison of Surface-plots of TNLI in Open Loop (Left) and Closed-Loop

Conditions (Right)

TNLI plot for closed loop case shows less number of large peaks as compared to

the open loop case, indicating some attenuation of nonlinearity. The absence of large

peaks in the left portion of the plot indicates that for the same amplitude and frequency,

the TNLI is smaller in closed-loop feedback configuration than in open loop case. Also,

at high frequency, the nonlinearity does not increase with the increase of amplitude

because the tank operates as a low-pass filter. Thus, it can be stated that PI controllers

attenuate process nonlinearity to some extent.
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6.1.2 Results with Surrogate Nonlinearity Index

The comparison of Surrogate Nonlinearity Index in both open loop and closed loop

conditions are shown in Figure 6.4. The figure indicates that in case of closed loop,

values of Nsurr are lower than those in the former plot. This fact is more prominent in

the upper left regions of the respective plots. In the upper left region of the open loop

plot, maximum values of Nsurr are equal to or greater than 1.5. In the same region of

the closed loop plot, maximum values of Nsurr are less than 1.5. However, the difference

is not as clear as it is in case of Bicoherence-based measure.

Figure 6.4: Comparison of Surface-plots for Nsurr in Open Loop (Left) and Closed-Loop

(Right) conditions

Since it is difficult to compare the above plots, the mean, variance and range of Nsurr

are calculated and compared in both open loop and closed loop conditions in Table 6.1:
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’

Mean Range Variance

Open Loop 0.848 3.46 0.245

Closed Loop 0.575 3.39 0.186

Table 6.1: Comparison of Mean, Range and Variance of Nsurr for open loop and closed

loop case of the spherical tank.

Table 6.1 shows that the values of mean, range and variance of Nsurr are smaller in

the case of closed loop than in open loop. So Surrogate data-based measure has also

indicated a decrease in closed loop configuration.

6.1.3 Results with Correlation Dimension

The output time series data for the same input excitation is again studied in closed loop

condition. The results are compared in Table 6.2:

Time Embedding Theiler Correlation

Delay Dimension Window Dimension

Open Loop 16 8 450 1.65

Closed Loop 6 4 300 0

Table 6.2: Comparison of Correlation Dimension in open loop and closed loop

The same excitation signal that had registered a Correlation Dimension of 1.65 in

open loop condition, registered a Correlation Dimension of 0 in closed loop condition.

Thus method of Correlation Dimension also indicates a drop in nonlinearity in closed
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loop configuration for the time series, generated from the given excitation signal. How-

ever, such might not hold true for other time series generated from different excitation

signals in closed loop condition. A zero value indicates linearity which is not true. More

output time series data, generated from different excitation signals, need to be quanti-

fied with the method of Correlation Dimension to be more conclusive.

6.2 Summary

From the simulations carried out in this chapter, it can be concluded that nonlinearity

measures based on bicoherence, surrogate data, and Correlation Dimension have indi-

cated that closed loop feedback controllers can attenuate process nonlinearity to some

extent.



CHAPTER7
EXPERIMENTAL EVALUATION OF

NONLINEARITY MEASURES

In the previous chapters, nonlinearity measures were evaluated using simulated pro-

cess data. This chapter evaluates nonlinearity measures using experimental data from a

nonlinear conical tank system.

7.1 Nonlinear Water Level System

An experimental setup of a water tank level system is available in the Department of

Chemical Engineering, BUET. The experimental data from this setup has been used to

examine the efficacy or sensitivity of nonlinearity measures for such systems. A photo-

graph of the water tank system is shown in Figure 7.1. As shown in the right panel of the

same figure, a conical section has been inserted inside the tank to introduce nonlinear

effect in the water level. The nonlinearity effect is due to the changes in gain of the
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system as water level varies.

Figure 7.1: Physical Appearance of the Conical Tank

 

Water 
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Water 

Outlet 

Water 

Level 

FT 

LT 

Figure 7.2: Schematics of the Conical Tank.

The water level in the tank is varied by manipulating the inlet volumetric flow rate.

The schematics of the setup is shown in The water level is measured through a differen-

tial pressure transducer.

In this experiment, the input flow-rate is sinusoidally excited through application of
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signals of various frequencies to the control valve and the water level data is recorded

and used for nonlinearity quantification.

7.2 Time Series Data

The inlet flow-rate of water was excited with sinusoidal signal of periods of 400s, 300s,

200s, 100s and 50s respectively. The left panel of Figure 7.3 shows the water level data

for five experimental runs. The lower data corresponds to sinusoidal excitation of a

period of 400 s while the topmost for 50 s. The signal with a sinusoidal excitation of

period of 50 s is of high frequency signal and it contains mainly noise. The right panel of

Figure 7.3 shows the power spectra of the experimental data. The power spectra show

the power or energy of the signal at various frequency of the signal. For example, the

lowermost plot shows a peak at a frequency of 0.0025 Hz corresponding to a period of

400 s. Since the process was excited using a sinusoid with a period of 400 s, the power

spectrum clearly shows the energy content of the water level data for this experiment is

mainly at this period of 400 s or at a frequency of 1/400 or 0.0025 Hz. Similarly, the

other power spectra show peaks at the frequencies of maximum energy content.

7.3 Nonlinearity Analysis Results

7.3.1 Bicoherence Based Results

Bicoherence-based measure was quantified for all data sets and the results are shown in

Table 7.1. Ideally it would be expected that a particular system should have a constant
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Figure 7.3: Time trends and Power Spectra of Water Level Data for conical tank system.

nonlinearity. However, in reality, it is not true. As shown in Table 7.1, Bicoherence-based

measure depicts an increase in nonlinearity with decreasing frequency (or increasing

period) of oscillation. The decrease in TNLI with increasing frequency can be attributed

to the fact that the large volume of water in the tank absorbs the high frequency signals

or noise and passes the low frequency signals.

From this, two conclusions can be drawn:

1. The nonlinearity of the system depends on the amplitude of the excitation signals.
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Period (s) Frequency (Hz) TNLI

400 0.0025 18.1

300 0.0033 14.36

200 0.005 4.34

100 0.01 3.73

50 0.02 0.95

Table 7.1: TNLI results for experimental data from Nonlinear Conical Tank system

2. The tank process can act as a low pass filter and can absorb high frequency noise

or disturbance.

7.3.2 Surrogate Data Based Results

Surrogate Nonlinearity Index was calculated using the same data. The results are tabu-

lated in Table 7.2.

From Table 7.2, it is observed that Surrogate Nonlinearity Index shows consistent

results for level data corresponding to periods of 200 s, 100 s and 50 s. The index was

decreasing from 0.85 to 0.28 for increasing frequency as expected. However, for long

oscillatory signals such as data corresponding to periods of 300 s and 400 s, the surrogate

based nonlinearity index shows erroneous results. From this observation, it may be said

that surrogate data method is not very suitable for nonlineairty quantification for very

long oscillatory signals.
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Period (s) Frequency (Hz) Nsurr

400 0.0025 0.39

300 0.0033 -0.37

200 0.005 0.85

100 0.01 0.63

50 0.02 0.28

Table 7.2: Nsurr results for the Nonlinear tank system.

7.3.3 Maximal Lyapunov Exponent Based Results

The graph of exponential form of ∆S against ∆n (Equation 3.16) is plotted for mul-

tiple embedding dimensions in Figure 7.4. None of the plot shows the presence of a

region with a constant positive gradient. Thus Maximal Lyapunov Exponent does not

exist for these data-sets. To be considered as ‘robust linear increase’, a slope of con-

stant gradient should exist for multiple data points. However, all the plots in Figure 7.4

showed a linear increase up to the first data point only. This cannot be regarded as

a robust linear increase [22]. Thus, Maximal Lyapunov Exponent is not suitable for

quantifying nonlinearity for these data sets. This result further corroborates the fact that

Maximal Lyapunov Exponent is not suitable for processes with no logarithmic, expo-

nential or squared terms, (also shown in Section 5.2). Therefore, Maximal Lyapunov

Exponent method is unable to quantify nonlinearity of the water level data.
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Figure 7.4: Plots for computing Maximal Lyapunov Exponent for nonlinear tank system

7.3.4 Plots for Calculation of Correlation Dimension

For the five data sets, plots of local slopes of Correlation Integrals, d(ε), (Equation 3.18),

are plotted against spatial distance, (ε), and each curve corresponds to one of the multi-
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ple values of embedding dimensions for which the curves are plotted. The procedure to

get the Correlation Dimension from such plots is shown with an example in Figure 3.3

in Section 3.5.

Figure 7.5: Plots of Local slopes of Correlation integrals against spatial separation dis-

tance for nonlinear tank system. (Period of signal increases from top to bottom)
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Period Frequency Correlation

(s) (Hz) Dimension

400 0.0025 1.8

300 0.0033 1.5

200 0.005 0

100 0.01 0

50 0.02 0

Table 7.3: Results of Correlation Dimension for experimental water level data

Taking Figure 3.3 as a reference, it is observed that in Figure 7.5, the plots corre-

sponding to frequencies of 0.0025 Hz and 0.00333 Hz (periods of 400 s and 300 s

respectively) are the ones that show flat regions in the positive y-axis (on the right side

of the curves). The numerical values of Correlation Dimension estimated for these two

data sets are 1.80 and 1.50, respectively. The flat regions for the other three plots are ob-

served to be coinciding with the x-axis and thus are taken to be zero. Thus it can be said

that in the case of the given data set on water level, Correlation Dimension decreases

with increasing frequency or decreasing period. The results have been summarized in

Table 7.3.

7.3.5 Overall Comparison

Nonlinearity measures based on Bicoherence, Surrogate Data, Correlation Dimension and

Maximal Lyapunov Exponent are compared in Table 7.4.
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Window Period Frequency TNLI Nsurr Correlation Maximal Lyapunov

(s) (Hz) Dimension Exponent

1 400 0.0025 18.10 0.39 ≈ 1.8 not suitable

2 300 0.0033 14.36 -0.37 ≈ 1.5 not suitable

3 200 0.005 4.34 0.85 0 not suitable

4 100 0.01 3.73 0.63 0 not suitable

5 50 0.02 0.95 0.28 0 not suitable

Table 7.4: Summary of results of four Nonlinearity Measures on experimental output

data from Conical Tank

From Table 7.4, it can be concluded that the Bicoherence based method shows a

constant increase in nonlinearity with increase in period which also translates as a de-

creasing trend in TNLI with increase in frequency of the excitation signal. The decrease

in nonlinearity with higher frequencies can be attributed to the tank being behaving as

a low-pass filter thus absorbing high frequency disturbances. Thus, Bicoherence-based

measure is deemed to be the best choice for quantification of nonlinearity for the conical

tank system.

For frequencies higher than 0.05 Hz or periods lower than 200 s, Nsurr shows similar

trend in results as compared to Bicoherence-based measure. However, suitability of

Nsurr for quantifying nonlinearity of data with long period of oscillation is debatable.

More data sets for varying frequency is required to conclude on this aspect.

Maximal Lyapunov Exponent is not a suitable method for quantifying nonlinearity
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for these data sets. This experiment further corroborates the fact that Maximal Lyapunov

Exponent might not be a suitable measure of nonlinearity for chemical and/or physical

processes in which no logarithmic, exponential or squared terms appear in the model

equations.

Correlation Dimension shows an increasing trend with increasing period of oscilla-

tion; so it can be said that it also increases with increasing nonlinearity. But the degree of

variation of Correlation Dimension appeared to be very small with respect to variation

of frequency or period of oscillation.



CHAPTER8
CONCLUSIONS AND

RECOMMENDATIONS

This chapter lists the contributions of the thesis and recommendations for future work.

8.1 Conclusions

For most process plants, it is arduous to apply model based method for quantifying

nonlinearity. Most plants have sophisticated process structure and consist of numerous

control loops. Thus, it becomes difficult to use model based methods for identification or

diagnosis purpose. Therefore, data driven methods are becoming increasingly popular

because of its cost-effective nature. This thesis attempted to study and evaluate the

performance of data-based methods for quantifying nonlinearity.

The major contributions of this thesis can be summarized as follows:
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• Four data-based methods for quantification of nonlinearity, namely, Bicoherence-

based measure, Surrogate Nonlinearity Index, Correlation Dimension, and Maxi-

mal Lyapunov Exponent have been discussed and illustrated with examples.

• The performance of various data-based nonlinearity measures have been evalu-

ated for commonly used nonlinear mathematical functions, such as exponential,

logarithmic, square and sinusoid, driven by white noise. It is found that the

Bicoherence-based measure is suitable for quantifying nonlinearity of logarithmic

and square functions. Maximal Lyapunov Exponent could quantify nonlinearity

for all functions except sinusoids. Surrogate data-based measure is suitable for

quantifying nonlinearity of sinusoidal and exponential functions. Correlation Di-

mension was not suitable for any of these functions when driven by white noise.

• The sensitivity of nonlinearity measures were examined using synthetic data gen-

erated by additive sinusoids and square type nonlinearity operator. It has been

observed that Bicoherence-based measure was the most sensitive to the variation

of degree of nonlinearity incorporated by the square operator. Surrogate data-

based measure was partially successful in capturing the degree of nonlinearity.

However, for highly nonlinear regions, it showed erroneous results. Maximal Lya-

punov Exponent was not successful in quantifying nonlinearity of such sinusoidal

signals. Correlation Dimension also failed to capture the true trend of the degree

of nonlinearity.

• The data from the output of two simulated nonlinear processes namely, ‘Contin-
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uous Stirred Tank Reactor (CSTR)’ and ‘Spherical Tank’ were used to find the

suitability of the four data-based nonlinearity measures. Bicoherence-based mea-

sure was the most successful among them to capture the nonlinearity of the sys-

tem. Surrogate data-based measure was next to the Bicoherence-based measure.

Correlation Dimension and Maximal Lyapunov Exponent could qualitatively de-

tect nonlinearity in the CSTR system. Maximal Lyapunov Exponent was not suit-

able for measuring nonlinearity in the Spherical Tank system because the model

equation of the Spherical tank system does not contain any logarithmic or expo-

nential terms.

• Effect of a controller on the nonlinearity of a process is studied. Three methods

namely, Bicoherence-based measure, Surrogate data-based measure, and Correla-

tion Dimension showed that feedback controllers can attenuate system nonlinear-

ity to some extent.

• Finally, the performance of the four data based nonlinearity measures were eval-

uated by performing experiments in a pilot scale nonlinear conical tank system.

Bicoherence-based measure could detect and quantify nonlinearity for all five

experimental runs. The Surrogate data-based measure was successful for high

frequency oscillations but failed for oscillations with long periods. On the other

hand, Correlation Dimension was successful only for oscillations with long peri-

ods. Maximal Lyapunov Exponent was not suitable at all for these data sets.

It can be concluded that Bicoherence based Nonlinearity measure is the most suitable
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method for nonlinearity quantification using process data.

8.2 Recommendations for Future Work

There are many things that could not be performed due to lack of time. The following

are some of the issues that can be pursued further.

• Perform a comprehensive comparison of all nonlinearity measures.

• Perform simulation of various nonlinear processes such as pH process and other

complex nonlinear processes and use the simulated data for evaluation of the per-

formances of various nonlinearity measures.

• Develop a procedure for applying the nonlinear measures online in industrial pro-

cesses to monitor system faults that may appear in the form of nonlinearity in

data.

• The methods based on Correlation Dimension and Maximal Lyapunov Exponent cur-

rently requires visual determination of ‘Time Delay’, ‘Embedding Dimension’ and

‘Theiler Window’, which limits the application of these methods on large data sets.

Both methods should be fully automated for making them suitable for large data

sets.

• Extensive evaluation of nonlinear measures using experimental data from nonlin-

ear pilot plants and industrial plants can be carried out.
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