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ABSTRACT

Neural networks (NN) and their applications are creating immense interest

among Electrical Engineers in every fields. Recent researches in this line are

concentrated basically within two areas; implementation of NN and successful

application of NN in various fields. This research work deals with both of these
aspects ofNN.

Trends on implementing NN, nowadays, are dependent on VLSI

technology utilizing the nonlinear operating regions of transistors within very small

signal inputs. This research investigates an alternate way to implement analog NN

with the simplest of electronictools like resistors, diodes, buffers and analog adders

where VLSI technology can be by-passed. Applications of NN in Power System

Engineering has introduced a new dimension. Compared to other electrical fields,

power systemdeals with larger signal sensing and interfacing; also unwanted signal

spikes and harmonics in the power line may be vulnerable to small signal sensitive

VLSI developed NN. Considering this, an analog NN based Reactive Power

Controller (RPC) is designed and implemented in this project In practice the

microprocessor controlled RPC's are widely used The main function of an RPC is

to sense the amount of reactive power required by the system to improve its power

factor. An analog NN based RPC has been locally designed and implemented

having two input, six hidden and one output node capable of performing nonlinear

function mapping; xl.sina in this particular case, where Xl and a are the two

inputs. The sigmoid function is approximated to piece-wise linear (PWL) and off

line training using Back propagation algorithm was used. A unique method has
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been developed to implement the weights together with the PWL function with few

resistance, diodes, buffers and an analog adder. A technic has been introduced to

by-pass the need of amplifiers for constructing the weights. The performance of the

developed RPC has been compared with an equivalent microprocessor based RPC.

And the developed RPC has been found to be superior than the conventional one.

Moreover, the developed RPC based on the implemented NN module

approximately reduces the production cost by ten times in comparison to the

microprocessor controlled RPC.
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Applications of artificial neural network have usheredi new ~ in

the field of engineering; especially in industrial control systems. The neural

networks try to mimic the nerve system in a mammalian brain into a mathematical

model. The brain is a large-scale system connecting many neural cells called

neuron. It has many excellent characteristics: parallel processing of information,

learning function, self organizing capabilities and so forth [1],[2]. The brain can

also provide an associativememory [2] and is good for information processing such

as pattern recognition [3]. In artificial neural network, a model of the brain,

connects many linear or nonlinear neuron models and process information in a

parallel distributed manner [4]. In conventional single processor Von Neumann

computers, the speed of computation is limited by the propagation delay of the

transistors. Because of their massively parallel nature, neural networlccan perform

computation at much higher speed [1]. In addition, the neural network has many

interesting and attractive features. Neural networks have learning and self

organization capabilities. Therefore, neural network can adapt to changes in data,

learning the characteristics of the input signal. That is, neural network can learn a

mapping between an input and output space and synthesize an associative memory

that retrieves the appropriate output when presented with the input and generalizes

when presented with new inputs [5]. Moreover, because of their nonlinear nature,

neural networlc can perform functional approximation and signal filtering

operations that are beyond optimal linear techniques [3]. Recently, many

researchers have developed neural networks as new tools in many fields such as

pattern recognition, information processing, design, planning, diagnosis, and

control. This thesis worlcdevelopsa hybrid system, a neural networlcbased reactive

power controller, as an example of a key technology in the future.
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Most of the works done, so far, in industrial control systems are simulated

by software programs or fabricated using VLSI teclmology [6]. The software

simulation needs a microprocessor and usually takes a long period of time to

execute the huge number of computations involved in the operation of the network.

Several researches have adopted hardware implementations to realize such network

[7]-[ 11]. During the past few years, various researchers have begun addressing

analog and digital hardware implementations [12]-[21] of certain artificial neural

network architecture encompassing a wide variety of applications. Between these

two types, analog implementations of artificial neural networks have a number of

unique advantages and problems when compared to digital realizations. The

primary motivation for implementing a neural network algorithm with analog.

circuitry is its stand alone capability and capacity to operate on a real time fashion.

Countering the above analog advantages is a more extensive list of difficulties and

shortcomings. Typically, analog circuits are more complicated to design and more

limited in application than digital circuitry [22]. On the other hand, the options that

exist for speedy network solutions are digital serial processors known as "neural

network coprocessors" [23]-[25]. Using specialized chips that are optimized for

matrix multiplication and scaling primitives that underlie most neural models, these

digital systems are generally circuit boards that plug onto a host computer bus.

Although such systems are capable of simulating networks one or two orders of

magnitude faster than the host computer, they remain serial simulators, with

network simulation times that grow linearly with interconnection complexity.

Hence, analog implementation of neural network seems to be the ultimate choice

- at least for the time being.
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In the proposed research,. an analog neural network based reactive power

controller will be designed and implemented. Reactive Power Controllers (RPC)

are one of the most essential but costly electrical equipment for any industries or

production factories. RPC is required in distribution system to improve power

factor at a particular bus. It serves as a source of reactive power which is controlled

by an automatic power factor controller (PFC) relay. The PFC's' are

microprocessor [26],[27] based control relay which automatically switches the

capacitors in and out of the circuit. Depending on the switching stages of the RPC,

its cost varies between one lac Taka for three step switching stages to five lac Taka

for twelve step switching stages. This research project implements an RPC based on

a feed forward neural network model.

Modeling biological systems presents many challenges to the analog circuit

designer. Neural computation is often an emergent property of the system, derived

from the way the component elements are organized, and may not be evident in any

single element. It is often difficult to separate a neural structure into functional

units [28]. Major areas are richly interconnected and computation is intertwined, as

a single neural structure subserves a multitude offunctions simultaneously [29]. As

a result, computational strategies for building collective systems require the

development of new architectures and a new design methodology. Mead (30]

presented such methodology for implementing biological inspired architectures.

This thesis work investigates a new design methodology innovated during the

development of the analog neural network for the proposed RPC with the use of

simple electronic tools. The neural architecture introduced in this research can be

implemented with or without the technical support of VLSI.
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1.2 FUNDAMENTALS ON POWER FACTOR
This section will explain some basic tenninology on power factor, reactive

power and other related topics under three articles.

1.2.1 Power Factor

Most frequently, an industrial installation is fed from a high-voltage system

and comprises:

• a transformer station,

• "resistive" loads, such as ovens, radiators, filament lamps, etc.,

• "inductive" loads, such as transformers, motors, etc.

Let it be assumed that the system is single phase. V will be the voltage in

volts at the secondary terminals of the supply transformer that is should to be at full

load, and I will be the total absorbed current in amperes.

It should be noted that the Actual or Active Consumed Power Pw, in

watts, is lower than the product: volts x amperes representing the Apparent Power

of the installation Pa in a ratio that is equal to the Power Factor.

Pw(watts)--- = COSql < 1
P.(VA)

(1.1)

The power factor is graphically represented by the cosines of the angle

obtained by the difference in phase between current and voltage; the angle

represents the lag between I and V. Figure 1.1 gives a graphical example of power

factor.
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The coscp depends only on the characteristics of the load and on their operating

conditions (type of motor, speed, load); it is independent of the efficiency of the

loads. The loads of the "inductive" type absorb:

• an active power Pw =V.I. coscp(watts);

• a reactive power PR =V.I.sincp (VA react.).

The Apparent Power P., equal to the product V x I, represents the geometrical

sum of the active and reactive powers. The Active Power Pw is integrally

converted into work and heat (losses), being measured with a suitable watt-meter.

The active energy W. which corresponds to it is recorded by an active energy

meter; it is charged to the consumer by the power supply company. The Reactive .

Power PR is the power necessary for the magnetic excitation of the said loads. The

reactive energy Wr which corresponds to it can be recorded by a reactive energy

meter. The loads of the "resistive" type absorb active power only; the power factor

is equal to unity and p. = Pw.

The Average Power Factor of an installation, over a long period of time of

operation of the workshops is obtained by means of the angle tangent:

average tg qJ =
w, (VA hoW"- reactive)

W. (watts- hoW")
(1.2)

When the tangent IS known, trigonometric tables gIve the value of the

corresponding coscp.

6



1.2.2 Consumption of Reactive Energy

1. Motors : These are among the loads which consume the greatest amount of

reactive energy.

2. Transformers: By design, all transformers consume reactive energy used for the

magnetization of their cores.

3. Transmission lines : Transmission lines, especially overhead lines, have a

comparatively high reactance (XL = 0.3 to 0.5 Q-km/phase). The reactive

power which they absorb therefore depends upon the load which they carry

according to the following formula:

(1.3)

Since transmission lines have also capacitive characteristic Xc delivering a reactive

power equal to y2.Xc (where y is the service voltage), their consumption of

reactive voltage dependsonly on the load, namely when I2.Xt. becomes higher than
y2.Xc.

1.2.3 Necessity of Better Power Factor

The advantage of good power factor are multifold and all resuh in a

substantial economy in the operation of electrical installations.

1. cutting down penalties for excessiveconsumption of reactive energy

2. reducing line losses : Even when the resistance of conductors is largely

calculated, it always causes watt losses which are added to the active

consumption of the installation. These losses are proportional to the square of

the current carried which for the same active power, decreases as the power

factor is increasing.
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3. increasing line power canying-capacity with equal losses : If it is considered

that an installation which, further to an extension of its activity for instance, has

to carry a higher active power, only the improvement of its power factor will

allow such an increase without augmenting line losses and, most often, if the

initial power factor is small, without modifYing the lines p-~.

4. increasing power available at supply transformers : When the power factor

increases, the apparent power for the same active power decreases.

5. reducing voltage drop: In overloaded low-voltage distribution lines supplying

workshops with a small power factor, voltage drops often occur; these are likely

to impair the satisfactory operation of motors, even if the voltage at the

transformer output is correct. Switching on a capacitor bank at the end of the

lines causes a voltage rise !'..V defmed by the formula:

L'.V% = XL xQ
IOV2

Where:

• XL = line reactance in ohms,

• Q = output of the capacitor bank in KVAR,

• V = rated voltage of capacitor in kV.

(1.4)

Switching on a capacitor bank at the terminals of a transformer causes a

voltage rise :

!'..V%= (Q/P).Vcc •••

8
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Where:

• Q = output of the capacitor bank in KVAR,

• P = power of transformer in KVA,

• Vcc = transformer impedance voltage (in percentage).
,

Such a voltage rise, often necessary at full load, could be disastrous at no load. It is

therefore necessary to switch off capacitor banks during light-load conditions.

1.3 CONVENTIONAL PFI PLANT
The previous section has explained the advantage of high power factor and

the importance of improving power factor in power system. Power Factor.

Improvement (PFI) plants are used for this purpose. This section will describe the

operation and special features of conventionally used PFI plant Now-a-days, the

most widely used PFI plants are microprocessor controlled. The main features of

the microprocessor based PFI controller is described in Appendix-I.

1.4 THESIS OBJECTIVE AND LAYOUT

This research work is a combination of theoretical study and practical

implementation. A neural network based reactive power controller will be designed

and developed, and finally, the performance of the propoeed RPC will be compared

with the conventional microprocessor controlled RPC in this thesis. The objective

of this thesis is classified in two broad view points preserJled below.

1. There are many methodologies presented by researchers on the implementation

of neural networks. One objective of this research work is to introduce a new

technology on implementing analog neural networks using simple electronic tools.

9



It is hoped that the invented methodology will make neural network
implementationeasier and simpler.

2. Conventional microprocessor controlled relays are pretty costly. This research

work will show that neural network based controller relays will perform almost as

same as the conventional relays, but the cost will be reduced drastically. The

second objectiveof this project is to propose a new way of controlling power factor

relays utilizing the emergingtechniques of neural systems.

The thesis layout has been confined within three main chapters. Chapter two

describes neural network theories and procedures of design a neural network

module for the proposed RPC. Chapter three gives an extensive description of the

implementation techniques used in the development of the RPC. The fmal chapter

shows the results of the thesis work and presents the performance of the
implementedanalog neural network based RPC.

10
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DESIGN AND TRAINING OF THE NEURAL
NETWORK



2.1 INTRODUCTION

This chapter explains the back propagation algorithm and utilizes the

algorithm to develop an artificial neural network for the reactive power controller.

It also assists to form a theoretical back ground on artificial intelligence, learning

algorithm and sensitivity of different parameters on convergence of the network. A

neural network module for implementing the proposed RPC is presented in this

chapter.

2.2 BACK PROPAGATION ALGORITHM

Several methodologies of the artificial neural network have been developed

starting from the perceptron idea of Rosenblatt [31]. Among them, the

Backpropagation network is one of the most effective versatile tool that is readily

applied to a number of diverse problem in artificial neural network. To a large

extent, its versatility is due to the general nature of the network learning process.

This algorithm has established its popularity over other neural network algorithms;

specially in the field of power system analysis. In this present project of developing

a reactive power controller based on artificial neural system the BPN algorithm,

therefore, becomes a natural choice. In this section the theory of back propagation

technic is presented.

2.2.1 BPN Operation

A summary description of EPN operation is described to illustrate how the

EPN can be used to solve complex problems. A three layer back propagation

architecture is shown in Figure 2.1. The layers are fully interconnected. When

signal patterns are applied to the input layer of the network it propagates upwards

11
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Figure 2.1 The general back propagation network architecture.
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towards the output layer through the intercolUlections of the middle layer, known as

hidden layer. It is required that the propagated signal will finally produce a

desirable output pattern.

The network learns a predefined set of input-output example pairs by using

a two-phase propagate-adapt cycle. After an input pattern has been applied as a

stimulus to the first layer of the network units, it is propagated through each upper

layer until an output is generated. This output pattern is then compared to the

desired output, and an error signal is computed for each output unit The error

signals are then transmitted backward from the output layer to each node in the

intermediate layer that contributes directly to the output. However, each unit in the

intennediate layer receives only a portion of the total error signal, based roughly on

the relative contribution the unit made to the original output. This process repeats,

layer by layer, until each node in the network has received an error signal that

describes its relative contribution to the total error. Based on the error signal

received, cOlUlectionweights are then updated by each unit to cause the network to

converge toward a set that allows all the training patterns to be encoded.

The significance of this process is that, as the network trains, the nodes in

the intermediate layers organize themselves such that different nodes learn to

recognize different features of the total input space. After training, when presented

with an arbitrary input pattern, the units of the hidden layers of the network will

respond with an active output which is very close to the target value.

As the signal propagates through the different layers in the network, the

activity pattern present at each upper layer can be thought of as a pattern with

13



features that can be recognized by units in the subsequent layer. The output pattern

generated can be thought of as a feature map that provides an indication of the

presence and absence of many different feature combinations at the input. The total

effect of this behavior is that the BPN provides an effective means of allowing the

total system to examine data patterns that may be untrained and to recognize the

corresponding output

Several researchers have shown that during training, BPNs tend to develop

internal relationships between nodes so as to organize the training data into classes

. of patterns. This tendency can be extrapolated to the hypothesis that all the hidden

units in the BPN are somehow associated with specific features of the input pattern

as a resuh of training. Exactly what association is mayor may not be evident to the

human observer. What is important is that the network has found an internal

representation that enables it to generate the desired outputs when given the

training inputs. This same internal representation can be applied to inputs that were

not used during training. The BPN will classifY these previously unseen inputs

according to the features they share with the training examples.

2.2.2 Mathematical Analysis on BPN

In this article, a rigorous mathematical description .of BPN will be

represented with the detail derivation of generaUzed delta rnle (GDR), which is

the learning algorithm for the network. Figure 2.2 is the repetition of Figure 2.1

where suffix are included to serve as the reference of the discussion The BPN is a

layered, feedforward network that is fully interconnected by layers. There are no

feedback connections and no connections that bypass one layer to go directly to a

later layer.

14
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The network will be trained to learn a functional mapping y = tp(X) : x e

RN, y e RM. A set ofP vector pairs of the function are (Xl>YI), (xz, yz), •.. (xp, yp).

Considering the mapping to be nonlinear and muhidimensional, the iterative

version of the sintple least square method, called steepest descent technique, will

be employed.

An input vector, Xp= (Xph Xpz,... XPN),is applied to the input layer of the

network. The input units distribute the values to the hidden layer units. The net

input to the jth hidden unit is

N
netpjh= Lwt.Xpi

i=l
(2.1)

where w/ is the weight on the connection from the ith input unit. The "h"

superscript refers to quantities on the hidden layer. For a defined activation

function of this node, the output of this node will be

The equations for the output nodes are

L
et0" o.n PI<= J:...Wkj.lpj

j=l

Opk = fkO(netpkO)

16
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where "0" superscript refers to quantities on the output layer. The initial set of

weights represents a first guess as to the proper weights for the problem.

The error value at a single output unit "k" is defined as ~ = (YPk - OpJ,

where the subscript "p" refers to the pth training vector, and YPk is the desired

output value. The error that is minimized by the GDR is the sum of the squares of

the errors of all the output units.

M
Ep = 0.5. L O~k

k=l
(2.5)

To determine the direction in which to change the weights, negative of the

gradient of Ep, VEp, with respect to the weights, wflj is calculated. Then, the

weights can be adjusted in such way so that the total error is reduced.

Considering only for the kth output unit, the component of VEp IS

calculated separately.

Ep = 0.5.L (YPk - 0Pk)2 •••
k

17
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The last factor in Eq. (2.7) is

Combining Eqs. (2.7) and (2.8), the negative gradient is

Thus the weights of the output layer are updated according to

wlliO(t+ 1) =WkjO(t)+ bop. Wk/(t)

~,wllio =TJ.(yPk- Opk).fkO'(n~O).ipj

The factor TJis called the learning rate parameter. It is usually less than 1.

The weight update Eq. (2.10) can be reformed by defining a quantity

Or-..0 = (YPk- ~.fk O'(n~)

= Opk.1ko'(ne~O)

The weight update equation thus becomes

18

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)



So far only the weights of the output layer have been modified. The weights

of the hidden layers should need modification as error signal propagates

downwards. Going back to Eq. (2.6) :

Ep = 0.5. L; (YPk - 0Pk)2
k

= 0.5. L; (YPk - fr(net~d)2
k

=0.5.L;(YPk -fr(L;w~j.ipj»2
k j

Again, ipj depends on the weights on the hidden layer through Eqs. (2.1) and (2.2).

Exploiting this fact to calculate the gradient of Ep .with respect to the hidden layer

weights :

oEp 0 2
--h =0.5.L;-h-(YPk -Opk)
Ow.. k Ow ..JI JI

OOPk O(net~k) Oipj O(net~j)
=-L;(YPk-Opk)'---' "" . h' h (2.14)

k 8(net~k) UIPj 8(netpj) Owji

= L;(yPk -Opt).f/'(net~).w;.f/'(net~).xp; (2.15)
k

With the help ofEq. (2.15) the weights of the hidden layer are updated.

~.w/ =TJ.fjh'(netp/').Xp;.L; (YPk -Opk ).fr'(net~d. w~ (2.16)
k
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where TJ is once again the learning rate.

The weight updating Eq. (2.16) for the hidden layer can be rearranged with

the help of~o from Eq. (2.12).

~.Wjih = TJ.fjh'(netpj~.Xpi.L o~k.W~j
k

A hidden layer error tenn similar to ~ 0 can be defined.

fJp} = fjh'(netp}). L o~k.w ~j
k

(2.17)

(2.18)

Finally, weight update equation for the hidden layer is reduced to the following
form:

h h( 1': hWji (t +1) =Wji t) +TJ.vpj .Xp; (2.19)

Before leaving this section there is one point yet to be mentioned. So far the

activation function of the nodes were mathematically defined by Eqs. (2.2) and

(2.4). These functions require to be differentiable. The simplest of all that can be

thought of is surely the straight line function. But for a nonlinear mapping the

activation function should have to be nonlinear. The most utilized function

prescribed by Hopfield is the sigmoid function It is said that this function closely

resembles the biological neuron activation. The mathematical equation of sigmoid
function is given below.
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(2.20)

The derivative of the sigmoid function can be arranged in the following way

(2.21)

2.2.3 BPN Features

In the previous article relevant mathematical equations required for BPN

programming were presented. A computer program "LEARN.FOR" (Appendix-2)

has been developed based on those equations. This program will calculate the .

weights of different layers for network convergence within acceptable error limit.

Apart from the mathematical analysis of BPN, certain practical features of its

algorithm require special attention which are discussed in this article.

• Training Data : There are no hard and fast rule of selecting the training

patterns for BPN learning. Experience is often the best teacher. Yet it should be

kept in mind that BPN is very good in generalization but equally bad in

extrapolation If a BPN is inadequately and insufficiently trained on a particular

class of input vectors subsequent identification of members of that class may be

unreliable. So training vectors should be selected in such way that they will cover

the total range of variation the network might experience in practical field For this

present project 55 input patterns were generated which ultimately converged
satisfactorily for about 896 patterns.

• Network sizing : The size of the input and output layer are usually dictated by

the nature of the application. Determining the number of units to use in the hidden
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layer is not so straight forward. The main idea is to use as few hidden layer units as

possible. Because this makes the learning process fast and implementation of the

network easy. But in case of too much complex mapping, size of the hidden layer

may be large for network convergence. Usually networks are initially designed big

in size. After learning, the network is pruned by examining the weight values.

• Initial weights : The initial weights are generally selected at random. Values

within :1:0.5are chosen frequently. But there is always a possibility that the network

may stuck to a local minbnum in weight space. Figure 2.3 illustrates this

phenomena. Once a network settles on a minimum, whether local or global,

learning ceases. If a local minimum is reached, the error of the network may still be

unacceptably high. In such a case initial weights need to be changed. Sometime

increase in number of hidden layer or learning rate caD.fix the problem. But if the

error keeps within acceptable limit, whether the network has stuck into local or

global minimum does not matter.

• Learning rate parameter : Selection of the value of the learning rate

parameter, TJ, has a significant effect on network performance. Usually, TJ must be a

smaller number, on the order of 0.05 to 0.25, to ensure that the network will settle

to a solution. A small value of TJ makes the iteration process slow. Too large value

of TJ may make the network bounce around too far from the actual minimum value.

It is often suggested that TJ initially kept high and as the network proceeds close to

convergence, the value of TJ be reduced. Learning rate can also be modified just

like the weights are updated within the computer program. For the present project it

has been found that a constant TJ of 0.2 is good enough for convergence.
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2.3 BPN FOR REACTIVE POWER CONTROLLER
The preceding section has elaborately explained different aspects of BPN

algorithm. In this section total attention will be focused on the project of developing

a "Reactive Power Controller" based on BPN.

The mathematical expression for reactive power is

KVAR = (VOLT.CURRENT.SIN9)/1000 ... (2.22)

where, 9 is the phase angle difference between voltage and current. Hence, it is

evident from Eq. (2.22) that the network will have three input and one output

variables. The network will converge for a three dimension, nonlinear,

multiplication mapping. If the complexity of the network can be reduced to some

extent, then the learning procedure of the network as well as its implementation

will be much more easier. The following articles are devoted on the manipulation

of input and output variables to reduce calculation complexity of the network.

2.3.1 Input Variables of the Network

The three input variables of the network are line voltage (V), load current

(1), and the phase angle difference (9) between V and I. The objective of a reactive

power controller is to maintain the power factor of the system within an acceptable

range. To perform this, the controller delivers reactive power to the load from a

capacitor bank connected in parallel with the load. In a power system, fluctuation

of voltage range within a small limit. Moreover, because both the load and the

capacitor bank are placed in parallel, any fluctuation of the voltage will equally

effect the amount of KVAR demanded by the load as well as the KVAR supplied
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by the capacitor bank. So, we can eliminate the necessity of voltage sensing in the

input. The phase angle difference, e, can have a positive or negative value

depending on whether the current is lagging or leading the voltage. To reduce

complexity, e is restricted only to its positive value. A simple module has been

designed later to distinguish the lead-lag condition. Generally, in an industry, the

power factor varies within 1.0 to 0.6. This practical consideration will limit the

variation of e within 0° to 52°. Again, a power factor above 0.95 is quite

acceptable for the power system. So, sensing KVAR for a power factor above 0.95

is not required. This considerationprohibits the variation ofe under 18°.

The maximum current sensing capability of the circuit has been limited up

to 7 amperes for the time being. Of course, this rating can be enhanced several

times with the use of current transformer. Capacitor banks delivers reactive power

in discrete mode. There is always a limitation that the capacitor bank cannot

deliver reactive power under a certain extent. So, training patterns, where KVAR

demand is belowunacceptable limit, can be eliminated.

2.3.2 Output Variable of the Network

The only one output variable of the network is the KVAR requirement. The

target pattern of the output is slightly modified in the computer program

LEARN.FOR (Appendix-2) so that the output of the network limits within -0.4 to

0.4. It is focused that if the target pattern resembles a symmetry with the origin,

then the net inputs in the hidden layers will be concentrated on the part of the

sigmoid function ranging from -0.4 to 0.4. Figure 2.4 shows the graphical mapping
of the two input variables with the output variable.
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Figure 2.4 A 3-D mapping of inputs with the output.
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2.3.3 Hidden Units of the Network

Initially the number of hidden units is arbitrarily chosen to be 4. The

activation function of the hidden layers are flat sigmoid (tanh(O.5.net)) function.

Hence, a BPN model has been introduced consisting of two input units, one

output unit and 4 units of hidden layer having sigmoid activation function. For the

convenience of proper convergence, all the input vectors are made fraction in the

computer program LEARN.FOR (Appendix-2). The current vector is divided by an

arbitrary constant 9.6 as well as the phase angle is divided by another arbitrary

constant 98.7.

2.4 CONVERGENCE OF THE NETWORK
The BPN model was trained by 55 input patterns. The patterns were

generated by within the program "LEARN. FOR" and was stored in a data file

named "OUTPUT. DAY' (Appendix-3). Initial weights were chosen arbitrarily. At

the beginning of training the learning rate was kept at 0.2. As learning proceeded

and became slower, the learning rate parameter was made a function of error (1] =

40.error). The weights of the network after satisfactory convergence are given

below:

• Total iteration cycle: 576440

• Final RMS error: 0.00033

• Weights for node e: Wu = 2.028,W21 = 0.01,W31 = 1.048,W41 = 15.535

• Weights for node I: W12 = 0.6044,W22 = 2.968,W32 = 2.791,W42 = 4.81

• Weightsatontput: WI = 4.220,W2=5.976, W3=-7.4676, W4=-O.6
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To check the convergence of the leamed weight, another computer program

"CHECK.FOR" (Appendix-4) is developed. This program checked the weights for

896 generated test pattem and found 844 of those data had errors less than 0.00 I .

Figure 2.5 shows the correlation between target and output values.

For a perfect convergence the relation between target values and output

values should have abided a perfect equality relation; i.e. target = output. The

graphical result show that the gradient of the best fit line is 1.002 and the line

constant is 0.0008756. This result indicates that output"" target. So the obtained

converging result is satisfactory.

2.4.1 Hidden Units

To observe the response of the hidden layers of the BPN network the

"CHECK.FOR" program generates output data for each of the four nodes of the

hidden layer. The behaviors of the four nodes for the test patterns are shown in

Figure 2.6.a to 2.6.d. It will be observed that each node is activated only within a

certain portion of the sigmoid function. This observation is very important because

during the implementation of the hidden layers only that portion of the sigmoid

function will be implemented within which the node activates. A detail analysis

will be forwarded in chapter 3. Moreover, it is seen that, response of node 4 shown

in figure 2.6.d has its output limited within 0.98 to 1.0. So it can be predicted that

node 4 acts as a fixed bias for the network module because its output is always

confined within the very small region close to unity of the sigmoid function. The

fixed biasing introduced by this node is W4 which equals to -0.6. So the pruned

BPN architecture ultimately reduces to a network consisting of three hidden unit

and one fixed biased unit, which is drawn in Figure 2.7.
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Figure 2.5 The correlation between output and target values of the test patterns,

The graph shows a best fit analysis of output = 1.002xtarget + 0.0008756.
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Figure 2.7 BPN module for the Reactive Power Controller.
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2.5 BPN WITH PIECE-WISE LINEAR ACTIVATION
In the preceding section, BPN model was developed based on a non-linear

sigmoid activation function. Hopfield [32] introduced an electronic circuit using

nonlinear amplifiers and resistors, which suggests the possibility of building the

sigmoid activation function using VLSI technology. But it is easier to implement

piece wise linear function with diodes and resistors. In this section, a new BPN

model will be designed with piece-wise linear activation function in the hidden

units.

2.5.1 Segmenting the Sigmoid Function

The sigmoid function will be segmented in a number of sections so that it

can be closely approximated by linear functions. Figure 2.8 shows the resemblence

between these two functions. The equations for PWL are given below:

y = 0.4475.x -1.2~y<1.2 (2.23.a)

y = 0.263.x + 0.2214 1.2 ~ Y< 2.2 (2.23.b)

Y= 0.12167.x + 0.53233 2.2~y<3.2 (2.23.c)

y = 0.04878.x + 0.76555 3.2 ~y< 4.2 (2.23.d)

y = O.02955.x+ 0.864634 4.2 ~y< 5.2 (2.23.e)

y=1 5.2<y (2.23.1)

y = 0.263.x - 0.2214 -1.2> y ~ -2.2

y = 0.12167.x - 0.53233 -2.2> y ~ -3.2

y = 0.04878.x - 0.76555 -3.2> Y~ -4.2

y = 0.02955,x - 0.864634 -4.2 > y ~ -5.2

y=-1 -5.2>y
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Figure 2.8 Approximating sigmoid to piece wise linear function.
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To get proper convergence, it is mentioned in the mathematics ofBPN that

the activation function should be differentiable. The PWL activation function

proposed here may not be differentiable as a whole, but it is piece wise

differentiable. So, BPN learning is possible. Though Eqs. (2.23.f) and (2.24.f) are

of constant values, yet a slope of 0.01 is assumed during learning process. A

computer program, LRNSRT.FOR (Appendix-5) has been developed on this

respect.

2.5.2 Training of the Network

The BPN model is trained with the same 55 learning patterns used in the

previous section. But this time number of hidden units has been increased to six.

The learning rate parameter has been unchanged to 0.20 althrough the training

process. After satisfactory convergence,the results of the training process are given

below:

• Total iteration cycle: 80800

• Final RMS error: .00099

• Weights for node e : Wn = -1.644, W21= -1.69, W31= 4.77,

W41= 4.305, WSI= -8.416, W'I =2.38.

• Weights for node I: W12= -1.2808 W22= 2.155 W32=-5.376

We =3.525, WS2= 3.2767, W'2=-0.11

• Weights for output node: WI = -1.0811, W2= 1.241, W3=-O.192

W4= -2.0332, Ws=-O.269, W,= 1.88

The BPN architechture for this purpose is shown in Figure 2.9.
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Figure 2.9 The BPN architechture of the neural network module with piece-wise

linear activation.
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2.5.3 Convergence of the network

A computer program, CHKSRT.FOR (Appendix-6), has been developed to

check the convergence of the network with 896 test patterns. The correlation

between output and target values are given in Figure 2.10. Comparing this

relationship with the previous correlation found in Figure 2.5 it is seen that the

previous one converged better than the present case. This is expected because the

final RMS error for this case is higher than the previous learning case. Yet the

gradient of the best fit straight line is 1.00673 and the line constant is 0.00186

which indicates that output"" target. So the converging result may be inferior to the

previous learning case but it is still satisfactory. Moreover, it is realized that 100%

accuracy is not required for power factor sensing, which is our ultimate desire.

The responses for each of the hidden layers are given in Figure 2.11.a to

2.11.£ These graphs show that the response of the nodes are limited within

particular regions. For example, node 1,2 and 6 have response within the first two

straight lines of the sigmoid function. There is only one break point for these three

hidden nodes. So, it is only necessary to implement that portion of the piece-wise

linear sigmoid function within which the node operates. This consideration

simplifies the implementation of the hidden layer which will be explained in details

in chapter 3. On the other hand node 4 and 5 have their response spreading through

three break points. So during the implementation of these two nodes special

attention and care has to be observed. The response graphs of figure 2.11.a to

2.11.f will be needed during the implementation of the nodes which is described in

detail in chapter 3.
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2.6 SENSITIVITY ANALYSIS OF THE NETWORK
So far, a neural network model has been designed to perform the functional

mapping I.sinB for developing a reactive power controller. A theoretical analysis on

the designed neural network will now be examined. Some interesting behaviors of

the network during learning will also be put forward for future analysis in this final

section.

During the period oflearning process of the network with sigmoid activated

function in the hidden layer, a faster convergence has occurred in comparison to the

piece-wise linear activation function. This phenomena was. expected because the .

sigmoid function is smooth and differentiable. Moreover, the number of hidden

nodes required for learning is half of that required with piece-wise linear activated

function. The percentage of error was also greater in the latter case. So, obviously a

smooth and differentiable function is preferable in the hidden nodes. But, the

present study has proven that, convergence with ramp activation may be difficult,

but not impossible.

Learning rate has influenced the speed of convergence. Initially the learning

rate was kept constant As the convergence of the network became slower, the

learning rate was made a function of root mean square of the error of the network.

This increased the speed of convergence. But interestingly the change in learning

rate had inverse effect with the network having piece-wise linear activation. Any

change in the initial value of the learning parameter had increased the root mean

square error of the network. So, for the second network a constant learning rate was

observed.
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The mapping of the function I.sin9 seems simple. But practically it has

proven to be pretty difficult. Because the network has to converge for almost

infinite combinations of I and 9. During the process of learning, the network used

to stuck to a minimal where.the change in error halted. To simplifY such case, a

condition was imposed on the neural network. It was considered that a minimum

KVAR demand of 0.233 will be neglected by the RPC having maximum capacity

of 1.2 KVAR. This consideration increased the convergence of the network to a

greater extent.

The fmal network to be implemented by electronic circuit is shown in Figure

2.9. As it is closely observed, the response data of its nodes shows that node

number 4 of the hidden layer is the most sensitive node among the others. Because,

the response of node 4 ranges within 2 volts to 5 volts, and has the highest

amplification weight of2.0332 connected with the output node. So it may fairly be

assumed that node 4 is the controlling node of the network and needs special

attention during implementation. Observing the other nodes, it is seen that node 6 is

almost dependent only on input I. Because input 2 has a weak connection of 0.1I

compared to the weight 2.38 connected with input I.

Hence, a neural network module for the Reactive Power Controller has been

designed and its various aspects are analyzed. The next chapter will concentrate on

the implementation technic of the network.
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CHAPTER THREE

IMPLEMENTATION OF THE NEURAL
NETWORK



3.1 INTRODUCTION

This chapter explores the steps involving the development of neural network

based reactive power controller. A hardware implementation of a fully analog three

layer perceptron artificial neural network is presented using simple electronic tools.
".- ..•..

A methodology is proposed showing the technology to by-pass the need of

amplifiers for constructing synaptic weights in the hidden layers of the neural

network. Mathematical analysis is forwarded in this respect. The implementation

technology introduced in this chapter is a generalized approach considering the

aspects from a broad point of view. So this chapter is dedicated not only to

implement the neural network based RPC, but it also invents a very unique

technology of implementing neural networks in general with the simplest of .

electronic tools. Implementation of other auxiliary interfacing circuits for the RPC

is also described in this chapter. Finally, the performance of the network has been

successfully tested.

3.2 CONTROL ALGORITHM

The neum] network module designed in chapter 2 consists of two inputs and

one output nodes. It was elaborately explained in chapter 2 that the network wiII

sense load current and power factor in their equivalent DC voltage and wiII

produce an output in DC which has a linear relation with the KVAR demand of the

load. The control circuits of the developed RPC will sense the output of the neural

network and initiate proper switching signals to activate capacitor banks connected

with the RPC to supply the KVAR. Based upon the model designed in chapter 2 a

simplified line diagram of the complete NN based RPC is developed in Figure 3.1.

It shows the control algorithm of the proposed analog neural network based

Reactive Power Controller.
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Figure 3.1 Line diagram of the neural network based RPC.
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3.3 CIRCUIT IMPLEMENTATION

The hardware development of the RPC is divided in four main stages. The

fIrst stage develops the rectifIer-fIltercircuit block to convert the AC input signals

to equivalent DC inputs. The next stage invents a unique technique to implement

the neural network module. The third stage describes the implementation process of

the KVAR control circuit block. Finally, a brief description of the widely

implementedcapacitor switching block is presented.

3.3.1 Input Signal Conditioning Circuit

The neural network module for the proposed RPC has two inputs; current

and power factor angle. Both of these signals should be in DC form. Simple

rectifIer-fIlter blocks is developed to perform this ACIDC conversion. The

following article is presented in two separate sub-articles for the two different input

signal conditioningcircuits.

3.3.1.1 Current Sensing Unit

The high ampere AC load current is stepped down to maximum 5 amperes

small signal AC current by a C.T. as shown in Figure 3.1. The AC current is

converted to equivalent AC voltage signal by a power resistor. Half wave

rectifIcation is used for the ACIDC conversion so that both input and output

signals have identical grounding. The input-output relation of the circuit should

abide Eq. 3.1, which was assumed during learning of the neural network

(Appendix-5).The circuit diagram of this block is given in Figure 3.2.

DC output signal for current = {(nus current from C.T.)xI6}/9.6 (3.1)
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One interesting addition in the above circuit is a constant -1.11 x(-3.R/R) =

3.33 volt DC biasing. This biasing is introduced because, during the learning

process of the neural network module described in chapter 2, the current range was

limited within 2 ampere to 7 ampere for the ease of convergence in the learning

software routine "LRNSRT.FOR" (Appendix-5). Eq. 3.1 indicates that rrns 2

ampere corresponds to 3.33 DC voltage. The current range can be changed to the

conventionally used 0 to 5 ampere range simply by introducing a DC biasing of

3.33 voltage. Hence, an input current of rms 0 to 5 ampere should be linearly

converted into 3.33 to 11.66 DC voltage through this implemented circuit. The

gain control resistance is provided to establish this linear relationship,

3.3.1.2 Power Factor Sensing Unit

The phase angle difference between current and voltage is converted in

equivalent DC voltage through the circuit shown in Figure 3.3. The current signal

is taken from the power resistor terminal and the voltage signal is taken from a

simple voltage divider. An equivalent voltage drop across the power resistor will

act as the reference for the sensing of current. On the other hand, a small sample of

the 220 volt power line from the voltage divider will be sufficient to obtain the

phase angle between the voltage and the current. TIle width of the output pulses

from the comparator shown in Figure 3.3 is directly related with the phase angle of

the power line. Finally, the pulses are rectified and converted to pure DC voltage.

The relation between phase angle and DC signal output is linear from 18° to 520

and follows Eq. 3.2. The variable gain control resistance will help to establish this

relation.

DC output signal for phase shift = {(phase shift in degrees) x 16}/98.6 (3.2)
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3.3.2 Simulation of Activation Function

This section describes the technique used to implement the neural network

module. The fabrication of the neural module is based on the theoretical

investigation of the converged network described in chapter 2. It has been

mentioned in the conclusion of chapter 2 that piece-wise linear (PWL) activation

function will be implemented for the purpose. This section also gives a broad

description of the methodology forwarded for implementing neural networks in a

generalized way. Before going through the implementation details, a general

mathematical analysis of the neural network is forwarded.

3.3.2.1 Mathematical Analysis

The mathematical analysis forwarded in this section is applicable for any

general neural netWork having piece.wise linear activation function. So, instead of

constricting the mathematics only within piece-wise linear sigmoid function, a more

general approach has been taken by considering the ramp function as the activation

function of the hidden layers of the neural network having 'n-l' number of break

points with 'n' number of different gradient lines.

Figure 3.4 shows the j-th node of the hidden layer of neural network having

PWL activation function. The break points of the function are represented by Cb
Cz and C3, and the slopes are denoted by mb m2, m3 and 114. The number of inputs

to the j-th node of the hidden layer is 'L'. Weights connected from the inputs to the

j-th node are Wjl, Wj2, Wj3, .... Wjn.The output of the j-th node connected with the

output layer of the neural network is OJ.
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Figure 3.4.3 j-th node of the hidden layer

OJ

J

Figure 3.4.b PWL function of the hidden layer
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For a generalized solution, the sigmoid function is considered having 'n' no.

of slopes and 'n-l ' no. of break points. The output to the j-th node OJ is related with

the input Xj by

L

Xj= ~)i,Wji
i=l

n

and, OJ=m"Xj +L(nlr-l-nlr),Cr-!' Cn_1<Xj ::;Cn
r=l

Equating Eq.(3.3), (3.4) and (3.5),

L
OJ= mI' L Ii' Wji , Xj ::;CI

i=J

L n

OJ= m". ~)i,Wji +L(mr-I - mr).Cr_l, Cn_1< Xj::; Cn
i~1 r~I

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

3.3.2.2 Implementation

The above equations govern the relations among inputs and outputs of a

neural network having PWL activation. TIle equations were developed in a

generalized way. So, the implementation technology developed in this section is

also described in a broad and extensive way; applicable for. implementing any

neural networks. Figure 3.5 shows a simple electronic circuit with diodes and

resistances to fabricate the PWL function together with the weights connected with

the hidden nodes.
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Figure 3.5 A simple voltage divider circuit
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In the circuit shown in Figure 3.5, the input signal Ii of the NN lllodule is

considered proportional to the voltage Vi. Output voltage OJfor !Ojl:SIBil is,

Solving Eq. (3.6) and Eq. (3.8)

L

and, GjL+i= (I-llli. L:wp ).Gji / (lll].Wj]) •••
j=l

(3.8)

(3.9)

(3.10)

Assuming a suitable and practical value for one of the resistances the values of the

From Eq. (3.7) and Eq. (3.11)

L
GjL+2= [(l-m2. L: G ji ).Gji / (lll2.Wji)J- GjL+i

i=]

L+2
and, B1 = [Ci.(llli - m2). L:Gji J/ GjL+2

i~]
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From Eq. (3.12), the value ofGjL+2 is obtained, while Eq. (3.13) establishes the first

breaking potential. A generalized equation substituting (3.12) and (3.13) are

L n-l
GjL+n= [(l-Illn. L: G ji ).Gjl / (nIn.Wjl)] -L: G jL+i (3.14)

i=1 i=1

n L+n n-2
and, Bn_1= [{L(Il\-I-mr).Cr_l• L;Gji}- L:BiGjL+i+l] /GjL+n (3.15)

r~1 i=1 i=]

It is evident from Eq. (3.10) that for a non negative value ofGjL+1 the condition that

should be imposed is,

L
ml.L;Wji < 1

i=1
(3.16)

So, there is a fair amount of possibility that all nodes calmo! be implemented with a

voltage divider circuit. Yet, tIlls condition can be satistied with some adjustment to

the input values. Eq. (3.7) shows that the weights can be attenuated by a certain

factor without hampering the output OJ, provided that the inputs are conversely

amplified by the same factor. So, by choosing a proper attenuating factor Eq. (3.16)

can be satisfied. It is not necessary to implementthe whole PWL function for every

node. Rather, it is essential to implement that portion of tIle PWL function witllln

which the node operates. 1bis consideration has simplified the implementation of

the hidden layer. Finally, the output nodes are developed by using analog adders.

Thus, necessity of using amplifier to implement weight for the hidden layer is

eliminated.

Thus, it has been shown that a voltage divider circuit is quite capable to be

used as the nodes of the hidden layer. The neural network developed for the

reactive power controller is described in appendix-7.
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3.3.3 KVAR Control Circuit

In the previous section the neural network module was developed to sense

the amount of KVAR required by the power system. A linear relationship between

the output of the neural network and the KVAR demand was obtained. 1bis section

explains the development of the control circuitry required to switch proper

capacitor banks to improve the power factor of the system.

So far it was considered during the training of the neural network that

maximum 7 amperes of current will be sensed by the network. The operation of the

network showed that for this maximum current rating, the output of the neural

network is 2.8 volts and the minimum KVAR sensed by the neural network

corresponds an output of -3.03 volts. Hence, for an N step capacitor switching

circuit the output range of -3.03 volt to 2.8 volt of the network should be divided

in N linear ranges. The proposed RPC is designed with 3 stages of capacitor

switchings. For such case, a maximum of 23_1 = 7 steps can be obtained. The

KVAR control circuit of the designed RPC is implemented mainly with two IC's;

LM3914 and 74LS148. Along them, an invertor IC 7404 and a voltage regulated

IC 7805 were also used for the KVAR control block. The pin and block diagram

of only the main two IC's are described in the following article.

3.3.3.1 Function of the IC's

LM3914 : 1bis IC is a simple analog level triggering chip consisting of 10 voltage

comparators. This IC is widely used in bar displaying and is capable of driving 10

LEDs together. In this case, it is used to separate the linear output range of the

neural network in seven uniformly divided sections. The internal components of

this IC is shown in Figure 3.6.
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Figure 3.6 Internal representation ofIe LM3914
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The figure shows that there are 10 voltage level comparators. The number

of those comparators being used for the KVAR control circuit depends on the

number of steps demanded in the capacitor switching stage. The biasing voltage,

VH and VL, applied to the potential divider circuit of LM3914 will be obtained

from solving the two Eq.s 3.17 and 3.18 given below:

(VH - VL).(N/IO) +VL=VIIT

(VH - Vd.(l/1O) +VL= VLT

Where:

VH = Biasing voltage applied to RHI

. VL= Biasing voltage applied to Rw

VIIT= Threshold voltage to trigger maximum KVAR demand

VLT = Threshold voltage to trigger minimum KVAR demand

N =No. of capacitor switching steps.

(3.17)

(3.18)

74LS148: This is a Decimal/Binary high priority encoder chip. The pin diagram

of this Ie is shown in Figure 3.7.

The N signal outputs from LM 3914 will be the inputs of 74LS148. The

three outputs of the encoder chip will generate binary signals equivalent to its

highest input being activated. The binary signals will activate corrersponding

capacitor switching relays which is explained elabourately in the next section.
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IN4 EO
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IN6 IN2
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AO A2

GND Al

Figure3.7Thepin diagram of74LSI48
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3.3.3.2 Elimination of Low KVAR Demand

Recalling back to the learning algorithm of the neural network developed in

chapter 2 reminds that the network was not trained for patterns corresponding to

very low KVAR demands. A simple logic nmction was introduced in the program

"LRNSRT.FOR" (Appendix-5) for this purpose. The logic block divides the output

function I.sinG in two regions by two straight lines defmed by Eq. 3.19 and Eq.

3.20.

Inputl x 0.25 + Input2 = 0.2675

Inputl + Input2 = 0.53

(3.19)

(3.20)

It was observed that the two input data combinations falling above both of the lines

gives a KVAR output greater than 0.2 KVAR. So, any input combinations not

satisfYing the equations or having outputs less than the right hand side of the

equations will be elinlinated through the logic block. In this way the low KVAR

demand of the circuit can be removed.

The block representing this logic function is implemented with three

comparators shown in Figure 3.8. The upper comparator having output X will be

positive; i.e. +15 volts only when the two input combinations lies above the Eq.

3.20. Sinlilarly, the lower comparator having output Y will be positive; i.e. +15

volts only when the two input combinations lies above the Eq. 3.19. Finally the

three resistance matrix is built to create an analog logic circuit. A brief analysis is

presented in table 3.1. The output of this logic block will be used to activate the

encoder chip by connecting it to the EI pin of 74LS148. The complete connection

diagram of the control circuit is given in Figure 3.9.
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II X 3R

h

-8.48 R
volt +5 To EI pin of

volt 74LS148

-4.28
volt

Figure 3.8 The logic block prohibiting the KVAR control circuit to operate at very

low KVAR demand

Operation ofthe logic block:

X = -15 volts ifIz + II> 8.48 volts; else X = +15 volts

Y = -15 volts ifIz/4 + II> 4.28 volts; else Y = + 15 volts

Output =Xl5 + Y/5 + 2.0

X Y Analog output Logic output Operation of

74LS148
.

+15 +15 8 1 Prohibits

+15 -15 2 1 Prohibits

-15 +15 2 1 Prohibits

-15 -15 -4 0 Inhibits

Table 3.1 Operation of the logic block
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Figure 3.9 The block diagram ofKV AR control circuit
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3.3.4 Capacitor Switching Circuit

The three controlling signals AO, Al and A2, obtained from the KVAR

control circuit described in the previous article, is used to initiate three individual 5

volt DC normally open relays. These relays are in series with the magnetic

contactors of each capacitor banks. TIle block diagram of capacitor switching

circuit is shown in Figure 3.10.

The three controlling signals AO, Al and A2 drives the base of the

transistors to saturation or to cut off region according to the digital signals

generated by the KVAR control circuit. Hence, the transistors acts as switches for

the DC relays. The DC relays are initiated by these signals from the KVAR control

circuit, current flows in the coil of the magnetic contactors from LJ to L:2 and the

capacitor banks are thus connected with the three bus bars. The connected capacitor

bank delivers reactive power to improve power factor.

This chapter has described the implementation of the NN based RPC. The

next chapter will discuss on the results obtained during the experiments done on the

inlplemented circuits and highlight on the overall performance ofthe network.
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Figure 3.10 Capacitor switching circuit
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CHAPTER FOUR

RESULTS



4.1 INTRODUCTION
The neural network based reactive power controller was developed

systematically step by step. Design and implementation technology for developing

the operating modules for the NN were elaborately described in chapter 3. All those

modules were tested part by part and necessary measures were taken for precise

and accurate operations of the modules. These modules were fmally joined together

to built the neural network based reactive power controller. At the end rigorous

laboratory tests were performed on the implemented network. This chapter

forwards the experimental setups and test results performed on the process of

developing the neural network.

4.2 PERFORMANCE TESTING ON THE NN MODULES
Chapter 3 has divided the complete network in four sections. They are:

Input signal conditioning unit, Activation function section, KVAR control block

and Capacitor bank switching circuit. These four modules were developed

separately and performance of all these modules were tested precisely. This section

elaborates those tests in the following articlcs.

4.2.1 Testing on Input Signal Conditioning Unit

The neural network has two input nodes. They are: Current sensing unit and

Power factor sensing unit. The circuits implemented for these two units are

described in sections 3.3.1.1 and 3.3.1.2. The desired response to be obtained from

these two units are expressed in Eq. 3.1 and Eq. 3.2. To observe the actual response

of both of these units a laboratory test was performed. The experimental setup is

presented in Figure 4.1.
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Inductance bank-I
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lOxO.25Ampere
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Digital Power
Factor Meter

220 volt (L-N)
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Figure 4.1 Experimental setup for testing input signal conditioning unit.
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Different combinations of loading were presented to the input units. It was

e:xplaine:din arlide: 2.3.1 and arlide: 3.3 .1.1 lhat the: (;urrenl se:nsing of lhe: neural

network is limited within 2 ampere to 7 ampere and the power factor angle sensing

is confined within 1.0 to 0.6 lagging. So, testing was performed within this extent.

Results obtained from the test are placed in table 4.1.a and 4. Lb. The graphical

output of the desired response and the actual response for both of the input signal

conditioning blocks are forwarded in Figure 4.2.a and 4.2.b. Both of the graphs

shows a remarkable resemblance between the obtained result with the expected

values. The test proved the input module to be operating satisfactorily.

4.2.2 Testing on Hidden Nodes

TIle developed neural network has six hidden layers. Implementation of the

hidden nodes were explained in section 3.3.2.2 and appendix-7. These sections

have elaborately explained modifications done on the weights and the breaking

potentials. Resistance values for each node were also presented in Table A-7.

Response expected from these nodes during learning are shown in Figure 2.11. But

due to the modifications mentioned above, the response curves shown in Figure

2.11 will need to be extended 3 times along both axis. To test the actual response of

the developed hidden nodes, a continuous AC wave of 15 volt peak to peak was

applied to one of the two inputs keeping the olher one grounded. The outpul of the

nodes were observed in the oscilloscope in X-Y mode. Same test was done for the

input previously grounded; now keeping the alternate input grounded. The test

setup is given in Figure 4.3. A comparison between the expected and actual

response for node 4 is given in Figure 4.4. The graph shows satisfactory results.

Same results were obtained for other nodes also.
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Table 4.1.a Test results for current sensing unit

No. of Load Current ill Corresponding D.C. I
obs. r.m.s. voltage

I 2.02 3.33

2 2.83 4.45

3 3.71 6

4 4.68 8

5 5.70 9.5

6 6.70 11.5

7".- 6.96 12

Table 4.1.b Test results for power factor sensing unit

I No. of I Power factor angle Corresponding D.C.

lObS. I in degrees voltage

1 12.24 2

2 20.16 3.27

3 30 5.2

4 39.6 6.4

5 41.4 6.8

6 54 8.5

7 60 9
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Figure 4.3 Test setup for hidden nodes
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4.2.3 Testing on Neural Network

After the satisfactory operation of the input signal conditioning units and the

hidden layers, the two modules were joined together to form the neural network for

the reactive power controller. The expected response of this joint module was given

in Figure 2.10. It was mentioned in article 3.3.2 and in appendix-7 that an overall

amplification of 6 times was introduced at the output of the neural network for

better operation during convergence of the network. So expected data of Figure

2.10 needs to be multiplied six times to compare them with the actual output of the

network. To verifY the performance of the combined modules, an experimental

setup same as Figure 4.1 was chosen and DC voltage output from the neural

network was compared for different loading conditions. These readings are

compared with the expected output of the neural network. The comparison is

shown in tabular torm in Tahle 4.2 and in graphical form in Figure 4.5. Close

results are obtained in every case.

4.2.4 Testing on KVAR Control and Capacitor Switching Unit

The two fmal output modules, KVAR control and capacitor switching

circuits were tested together. The development of these two modules were

explained in article 3.3.3 and 3.3.4. Seven step three stage switching options were

made during implementation of these two units. The input signal to the KVAR

control block comes from the neural network output which produced voltage within

the range of -3 volt to 2.8 volt as shown in Figure 4.5. So testing on the KVAR

control blocks and capacitor switching circuits was done by simply varying the

input voltage within the mentioned range through a variable DC supply. All seven

stage switching signals were observed and the triggering voltages for each step was
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Table 4.2 Test results in the neural network output

No. of Load current Power factor DC output of the Expected output of

obs. in Amperes angle in degree neural network neural network
(VOlb) <.voll-.)

1 2.00 37 -3.00 -2.84

2 2.78 53 -1.55 -1.51
_.

3 2.87 54 -1.4 -1.376

4 3.53 54 -0.8 -0.678

5 3.38 36 -2.0 -1.815

6
- .

3.93 44 -0.9 -0.84

7 4.12 46 -0.7 -0.535

!
8 ! 4.87 I 55 0.85 0.8

9 I 4.21 24.5 -2.00 -2.13

I 10 4.45 30 -1.5 -1.5

11 5.18 43 0 0.209

12 I 5.14 16 -2.7 -2.56 II
13 5.55 27 -1.10 -1.11

14 6.41 20 -1.6 -1.545

15 6.8 27 -0.373 -0.4
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observed and calculated through an oscilloscope. The trigger voltages for all seven

stages are mentioned in Table 4.3.

4.3 PERFORMANCE TEST ON NN BASED RPC
In the previous articles step by step devclopment and testing of all neural

network modules were done separately. Finally, all the modules are put together to

form the complete NN based RPC. The developed network is put on to physical

operation and rigorous laboratory tests were perfonned on the implemented

network. 'lbe pertormance of the NN based RPC is compared with the

conventional microprocessor based RPC. The following articles will highlight on

tlus final experiment and the observed test results.

4.3.1 Experimental Setup

The eJl.'Perimental setup for the tests to be done on the neural network is

shown in figure 4.6. The figure shows that tlle NN controller and /iP controller are

operating in tandem. The J.!.I' controller senses the overall line current through a

2:1 C.T. while the NN controller senses only the load current through its power

resistor. The load is made by paralleling a rheostat bank having nine 200 ohms I

kW rheostats with two inductance banks. One inductance bank has a rating of 240

volts, 0.6 KVAR, IOxO.25 ampere inductor and the other one has 240 volts, 2.4

KVAR, lOx 1.0 ampere inductor. The three stage capacitor banks have stepping in

the order of 1:2:3 and each steps had capacitors of 15/if The supply voltage was 3

phase, 220 volts line to neutral. The load current for both J.!.I' and NN controller is

sensed in single phase becanse the three phase power system is considered to be

balanced, Moreover, there is no decisive defmition of power factor for unbalanced

three phase system.
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Table 4.3 TriggeIing voltage for different capacitor switching

Step No. Binary Equivalence DC Trigger voltage KVAR
1 001 -3.385 0.173

2 010 -2.35 0.346

3 011 -1.324 0.52

4 100 -0.2928 0.693

5 101 0.738 0.866

6 110 1.769 1.0392

7 111 2.8 1.213

74

r



LOAD

Inductance bank-1 Inductance bank-2
Rheostat bank240 volts, 240 volts,

9-steps, 200 Q each,10xO.25Ampere lOxl Ampere
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Figure 4.6 Experimental setup for performance test of the NN based RPC
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The performance of the NN based RPC will be compared with the

performance of the conventionally used flP based RPC. The operation of flP

controller has been elaborately described in Appendix-I. The flP controller

operates in digital mode and senses current through C.T. It calculates the KVAR

demand from voltage and overall line current. The flP performs hunting by

swiwhing capacitors one by one and senses whether the power factor has improved.

It stops hunting when the power factor enter the desired range or the highest

switching step has been reached. So, the operation is a closed loop system and

switching is done through hunting process.

The capacitor switching stage for both of the flP and NN controller are built

identically. A clear description with figure of the capacitor switching stage is given

in article 3.3.4. As the DC relays of the capacitor switching stage are activated it

connects one of the power line to the magnetic relays of the PFI plant. These

magnetic relays then make contacts between the 3 phase capacitor banks with the

power line. A toggle switch shown in figure 4.6 is used to toggle the power line

between the flP and NN controller. When the switch connects the power line with

the DC relays of the NN controller then it is the NN controller which activates the

capacitor banks. On the other hand, when the switch cOlmects the power line with

the DC relays of the flP controller then it is the flP controller which activates the

capacitor banks. This technique is introduced so that both controllers can operate in

tandem and comparison between them can be made.

4.3.2 Experimental Data

Different combinations of loading were presented to the controller circuit by

varying the combination of resistance and inductance. It was kept in consideration
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that the neural network had the capacity to handle currents from 2 amperes to. 7

amperes and the power factor should nol be less lhan 0.5. The sets of data taken

during the experiment is given in table 4.4 and a comparative study of capacitor

switching is given in figure 4.7.

4.4 RESULTS
Data obtained from the experiments clearly shows a satisfactory

~
performance of the NN controller as in each and every case the power factor was

improved towards unity. The switching time of the NN controller was also

observed to be faster than the f.!P controller. The loads were varied at random. No

preset data were prepared to match the capacitor stages. The load KVAR to be

compensated, in each load combinations, was decided by the available inductive

and resistive banks. Of course, the discrete change of inductive and resistive

currents were made by combination of available load switches. The minimum

inductive current to be adjusted was limited to 0.25A and the resistive current to

2.2A 11is interesting to nole lhat lhe connected capacitor banks were pul in such a

combination that the load power factor is properly compensated. The maximum

deviation was noted to be 0.98 pfwhich is within permissible range.

Although for discrete control of power factor, increase in number of stages

will make the control smoother, in tins particular case it was unneccessary.

Moreover, an increase in number of stages would cause a frequent ON and OFF of

the magnetic contactors for the capacitor banks. This is not desirable. In this setup,

frequent operation of magnetic contactors were not observed.
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Table 4.4 Data obtabled from perfomlance testing on NN based RPC

I T-ine Uncompensated i Load KVAR I KVAR Compensated Compensated
! !
I powcr factor I I compensated Power factor Powcr factorI currcnt I
I I

I byNNC by I-LPCI I
I II 2.00 0.79 0.269 0.228 0.99; (001) 0.99; (001)

2.78 0.61 0.484 0.456 1.0; (010) 1.0; (010)

2.87 I 0.58 I 0.514 0.456 0.99; (010) 0.99; (010)

3.53 0.5 0.672 0.684 1.0; (011) 1.0;(011)

338 0.8 0.446 0.456 0.99; (010) 0.99; (010)

3.93 0.72 0.6 0.684 0.99; (011) 0.99; (011)

4.12 0.69 I 0.656 0.684 1.0; (011) 1.0; (011)
~~--- -- ~- .__ .

4.87 0.57 I 0.88 0.912 0.99; (101) 0.99; (101)

I 4.21 i 0.91 I 0.384 0.456 1.0; (010) 1.0; (010)iI

I 4.45 I 0.86 I 0.499 0.456
I

1.0; (010) 1.0; (010) II I
i 5.18 I 0.73 I 0.779 I 0.684 0.99; (l00) 0.99; (100) !I I I
5.14 0.96 0.316 0.228 1.0; (001) 1.0; (001)

I 5.55 0.89 I 0.556 0.684 1.0; (100) 1.0; (l00)I i
i 6.41 0.94 i 0.481 0.456 0.~8 (01,0) 0.98 (010)
i ! . . ':- I

I 6.8 I 0.89 i 0.682 0.684 0.99; (011) 0.99; (011) iI i

* NOTE: Figures in the brackets of the last two columns indicate the switching

states of the three stages of the capacitor bank.
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It should be noted that the maxImum combination of '111' for full

compensation could not be tested with the available load facility. But the controller

for the combination was tested indirectly. The DC voltage corresponding to current

and that to power factor were applied at the input nodes of the NN so that a

situation of' 111' output was achieved. The output for the case was found to be

perfectly all right and all of the switches operated. Hence, results decisively

conclude that the implemented NN based RPC worked satisfactorily.

4.5 COST ANALYSIS
The controller circuit for the NN based RPC developed in the laboratory

costs around Tk. 2000.00 only as the electronic circuit was developed mainly with

resistances, operational amplifiers and some simple relay circuits. Comparing this

cost with the conventionally used microprocessor based RPC it is found tlmt only

the microprocessor used in the controller circuit costs over Tk. 15000.00 in the

local market. It is true t!lat the conventional RPC gives more options like economic

switching facilities and harmonics indications than the developed NN based RPC.

But these options can be included in the NN based RPC which has been suggested

in the future works described in section 5.2. Even if these extra facilities are

included, yet it is expected that the cost required for the NN based RPC will be half

of the cost involved in developing microprocessor based RPC. The two main

reasons for such conclusion is 1. The NN based RPC do not require sophisticated

environment for implementation and 2. The components required for developing

NN based RPC is simple and discrete fundamental electronic tools; i.e. no specially

designed electronic tool is required.
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5.1 CONCLUSION

A new technology for improving power factor in an industry has been

proposed and the fast emerging control algorithm of neural network (NN)

architecture is used for this purpose. The NN based controller circuit is designed

with the widely available electronic tools, Moreover, in doing so, piece-wise linear

approximation of the smooth sigmoid function has proved quite satisfactory for the

research prospect.

First of all, an off-line training of the neural network was performed using

calculated data for input and output. When training was complete, theoretical tests

were calTied out with set of data which were not used in the training phase.

Contirming the acceptable accuracy of the theoretical test, the weights and the

constants of the sigmoid functions were decided to implement. The implementation

of the l'I'N was, then, followed as described in chapter 3. A series of test, on the

performance of the electronic circuits were performed rigorously and the

performance were found to be satisfactory.

The implemented NN based controller was compared with the

conventionally used microprocessor (IJ.P) based controller in a power factor

improvement plant. Test results showed the superiority of the NN based controller

over the IJ.P based controller in speed. Due to its analog nature, it was obvious that

a NN based controller would act faster than the IJ.P based controller. Moreover, a

IJ.P based controller hunts for better combination of capacitor switching and a

sequence of switching stages occurs before it finally settles down. But NN based

controller already knows through the training phase the appropriate switching stage

for each KVAR demand and hunting, therefore, is not required.
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NN based reactive power controller (RPC) reduces the implementation cost

compared to the Il-P based RPC. As the NN based RPC was developed with simple

electronic circuitry, its manufacturing process is easier and no special environment

is required compared to the procedure required for Il-P fabrication.

5.2 FURTHER WORK
As tllc tcchnology describcd in designing and implementing thc NN based

)

RPC is quite new, there are opportunities of furtller works to be done in this area.

Some of such fields demanding special attentions are described below:

1. The implemented NN used teed-torward training. NN based Rl'C works on an

open loop system. That is, it does not sense the overall line current but works only

on sensing the load current of the system. So, the implemented NN does not have

the error correction capability. This limitation may be overcome if closed loop

training is introduced to tlle NN controller.

2. It was shown in the thesis work that though piece-wise linear sigmoid function is

easy to implement tllllll the smootll sigmoid, yet tlle time for convergence during

learning is very long. Smooth sigmoid function is possible to implement with

operational transconductance amplifier (OT A). So, NN based RPC will be less

time consuming in training cycles ifOT A based system is developed.

3. RPC works on discrete mode. But in tlle present tllesis work tllc NN was learnt

with such accuracy that NN converges tor all combinations of l.sin8. So, tlle

present NN had only one output. The NN module can be made more effective by

introducing the capacitor switching signals to the output of the NN. This future NN
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module will have outputs equal to the capacitor switching stages and there will be a

tirreshold \;ollage deciding when which capacitor stage should slay on or orr. So,

NN convergence for infInite combinations of I.sin8 will not be required. This will

reduce training time and make NN implementation easier.

4. The present NN model was unable to converge for very low KVAR demand.

Leaming was ceased in the very low KVAR demand for better accuracy. But by

introducing more than six hidden layers and applying more training cycles this

limitation can be eliminated. 111isapproach will also reduce the clumsy logic block

developed for bypassing low KVAR demand in the present NN module.
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APPENDIX-1
Among the various microprocessor controller available, the two widely used

relays type RM 9606 manufactured by FRAKO, Kondensatoren, D-79331,

Teningnen and BLR-MC manufactured by BELUK GMBH, D-8000, Munich 45,

Germany has been taken as an example. Figure A.l.l shows the attractive features

of this type of controller.

A.1.1 Design and Mode of Operation
The RM 9606 of FRAKO and MC senes of BELUK microprocessor

controlled power factor control relays are the latest addition of the long standing .

pedigree of the reactive controllers. These relays are the result of many years

experience in this specialized field of power factor measurement and control

technology. The electronic measuring circuit has been tried and tested over many

years and now. With the introduction of microprocessor technology, additional

features are provided such as digital indication of the system power factor and the

number of switching steps in circuit. These two values are given out via separate

outputs, so that a printer or chart recorder may be connected.

The measurement system measures all four quadrant of the wave form and

is consequently independent of system harmonics. This means that even when

active power is fed back onto the main bus, the control relay ensures compensation

for the reactive power which has been drawn from the main. This current-time

integrated measurement circuit has been proven over many years and is particularly

necessary on installations having thyristor-controlled machines.
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Figure A.t.t Main features of RM 9606 type microprocessor based RPC

controller.
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The analogue signal produced by the measuring device is digitized and

processed in a microprocessor.All switching program known at this time are made

possible by means of this processor. Its output signals control miniature relays via

drive circuits which actuate the capacitor switching contactors to control the power

capacitors. The diverse features of this family of controllers, type BLR-MC, is

given in Table AI. The only differencewithin the MC range relates to the number

of output relays. BLR-MC 03 has 3 whilst BLR-MC 14 has 14 output relays. A

total of six different versions are available: MC 03, MC 06, MC 09, MC 12 and

MC 14. The switching programs can be selected by means of small DIP switches

located behind the removable nameplate on the front of the relay. The possible

programming are listed in Table AI.

The digital indicator will show the number of steps switched on the '8' or

'K' program. The '8' program actuates the capacitor sequentially, e.g. from I up to

6 and go back from 6 down to I or O. The 'K' programs always actuate and

deactivate steps in the same direction of rotation; 1-2-3-4, "down": I-2-3, "up": 5-

6-1-2, "down" : 4-5-6-1-2 etc. The 'K' programs thus distribute operating hours

evenly over all capacitors and also permit faster regulation. Faster switching is

possible because, once a capacitor stage is deactivated, it has enough time to

discharge before it is reactivated. Even in a limit situation, when all steps of a

capacitor bank are switched in and, because of the load, one stage has just been

deactivated and must be reactivated immediately afterwards, the BLR-MC relay

takes account of this independently and delays the reactivating time accordingly.

The well-provenand problem-freematching to system conditions by means of cos<p

and CIk adjustable settings remains unaltered in spite of microprocessor

technology.
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Table A.l Programming features ofBLR-MC.

Type D 1 P Switching Number of
BLR- 112/31

4/5 Program Sequence Capacitors Stages
MCa3 1 a a a a S3 1:1:1 3 3
Mca3 1 a a a 1 S 35 1:2:2 3 5
Mca3 1 1 1 1 a S 36 1:2:3 3 6
Mca3 1 1 a 1 a S 37 1:2:4 3 7
Mca6 a 1 a a a S6 1:1: :1 6 6
Mca6 a 1 a a 1 S 611 1:2: :2 6 11
Mca6 a 1 1 a a K6 1:1: :1 6 6
Mca6 a 1 1 a 1 K611 1:2: :2 6 11
Mca6 a a 1 1 a S 415 1:2:4:8 4 15
Mca6 1 a 1 1 a S 515 1:2:4:4:4 5 15
Mca6 a 1 1 1 a S 619 1:2:4: :4 6 19
Mca8 1 1 1 a a K8 1:1: :1 8 8
Mca8 1 1 1 a 1 K 815 1:2: :2 8 15
Mca9 1 1 a a a S9 1:1: :1 9 9
Mca9 1 1 a a 1 S 917 1:2: :2 9 17
MC12 a a 1 a a S 12 1:1: :1 12 12
MC12 a a 1 a 1 S 1223 1:2: :2 12 23
MC12 a a a 1 a KIO 1:1: :1 10 10
MC12 a a a 1 1 K 1019 1:2: :2 10 19
MC12 1 a a 1 a K 12 1:1: :1 12 12
MC12 1 a a 1 1 K 1223 1:2: :2 12 23
MC14 1 a 1 a a S 14 1:1: :1 14 14
MC 14 1 a 1 a 1 S 1427 1:2: :2 14 27
MC 14 a 1 a 1 a K 14 1:1: :1 14 14
MC14 a 1 a 1 1 K 1427 1:2: :2 14 27
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A.1.2 CoscpAdjustment

Adjustment of the target power factor by rotating the knob (I) results in a

shift of the CIk strip around the zero point of the co-ordinate system of the real

power axis P and power factor control axis Q. The range of shift extends from coscp

= 0.80 inductive through I to 0.98 capacitive.

It is also possible to have an adjustment range of 0.80 inductive through I to

0.95 capacitive as a special model. In this case, however, the voltage supply

changes to LI-N (model "e" = single phase, Appendix-D5).

A.1.3 C/k Threshold Settings

The function of the capacitor control relay is to switch capacitor switch in or

out according to the reactive load. Capacitor steps value 'C' is therefore an

important variable which must be known, along with the current transformer ratio

'k'. The most common values ofCIk at 400 V are given on the table which is

adhered to the relay. The calculated value ofCIk is set by rotating knob (2).

In case of capacitor banks which has different values of 'C' (e.g.

I :2:2:2 ...2), the setting is always calculated by taking the smallest step : value' I '

for 'C'.

The power factor control relays have stepless adjustment of the CIk range

between 0.05 A,. and 0.80 A,.. These values are the reactive threshold activating

currents on the relay. lfthe reactive current content of the load exceeds the set CIk

value, LED (3) extinguishes. The control relay either begins to activate (+) or

A-5



deactivate (-) steps. For different supply voltages, the CIk settings can be calculated

from the following formula:

p
elk = O.66x c

J3.V.k (A.t)

Where:

Pc = capacitor step power (kvar)

V = supply voltage in kV (phase-phase voltage on three phase system)

k = transformer ratio of the current transformer, e.g. 1000 AI 5 A = 200.

The factor 0.66 or 66% is fixed so that e.g. a 10 kvar capacitor will only be

actuated when 6.6 kvar inductive reactive power is exceeded. The range can be

varied between 60 and 90% if necessary.

A.1.4 No-volt Release

lfthe power supply is briefly interrupted for more than approx. 35 msec. the

MC relay immediately switches out all capacitors. When the main supply voltages

is restored, the control procedures starts after a lock-out time of approx. 90 sec.

during which time LED (3) flashes. This lock-out time also applies to initial

operation i.e. whenever the mains supply voltage is reapplied to the control relay.

A.1.5 Display of Activated Capacitors

When DIP switch 6, behind the removable nameplate lid, is switched oft; the

number of activated capacitor stages and the power factor are digitally displayed

alternately. The additional expense of the supplementary LED's (4) was considered

essential, so as to show which exit relays are closed. This is particularly important

with the economy switching program.

A-6



A.1.6 Digital cos<pDisplay

A standard feature of the microprocessor controlled relay is a constant

digital display of the power factor cos<pwhen DIP switch 6 is in the "on" position.

This display is independent of the wave-form of current and voltage. In this way,

particularly for thyristor controlled systems, so-called "distorted reactive power" is

incorporated into the power factor display. When DIP switch 6 is switched off, the

digital display alternates between system power factor and number of switching

steps accomplished, and, at the same time, digital indicator LED (6) comes on to

indicate that switching step 6 has been reached.

Display cycle: 15 sec. coscp,

3 sec. stage indication.

A.1.7 Hand/Auto Change Over Switch

Rotary switch (7) enables the relay to operate in the Hand, Auto or Hold

mode. The switch is rotated with a screw driver and provides the following options.

• AUT = Relay operates automatically.

• 0 = Relay holds the switch stage it has reached. LED (3) flashes. Fault signal

may be triggered.

• + = Relay switches capacitors in, according to the selected switching program.

LED (3) flashes.

• - = Relay switches capacitors out, according to the selected switching program.

LED (3) flashes.

The selected switching program is retained in any position of switch (7). In position

o switching up or down is tenninated. In position AUT, the relay switches again

automatically according to the measured reactive load.
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A.1.8 Switching Times

Switching time is adjusted by means of a stepless potentiometer, located

behind the removable name-plate. Step switching time can be reduced down to 5

sec. per step, when commissioning or testing. The longest switching time is 70 sec.

per step.

A.1.9 Fault Signaling Device

A fault signaling device has been incorporated in the BLR-MC relay. LED

(8) will come on if the target power factor has not been reached, if insufficient

capacitance has been installed for example. DIP switch 7 will deactivate the fault

signaling device if it is not required. A triggered fauh signal indicated by the LED

(8) can be acknowledged or canceled by briefly turning the rotary switch (7) to

"0".

A.1.10 Fault Signaling Contact (m) for External Signaling

A built in signaling relay (m) can provide a valuable extra check of the

system by monitoring the function of the compensation equipment and the control

relay. Over or under compensation related to the selected target power factor closes

a relay contact after 50 times the switching time between steps. An audible or

visual alarm can be activated. If an external power supply is available, failure of

the measuring voltage will also be signaling by this contact. This feature makes it

possible to localize and rectifY fauhs such as insufficient installed capacitance or

contactor or fuse failure as soon as they occur, rather than waiting until excessive

reactive current costs appear on the electricity bill. Figure A.1l shows the circuit

diagram of the relay connection with the power line.
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APPENDIX-2

•• LEARN. FOR

•• PROGRAM FOR NEURAL NET SOLUTION WITH SIGMOID FUNCTION

DATA NP,NT,NI,NJ,NK /64,500,2,4, II

PRINT", 'DO YOU WANT TO START FROM PREVIOUS VALUES? (IIO)'
READ (",") NOYES
PRINT", 'NO OF ITERATION?'
READ(",") NT

CALL ALRN(NP,NT,NI,NJ,NK,NOYES)

STOP
END

SUBROUTINE ALRN(NP,NT,NI,NJ,NK,NOYES)
REAL NNW,NNWO
INTEGER ITER
REAL OI(2,6OO),OJ(4),OK(I), WJ(4,2), WK(I,4)
REAL DWK(I,4),DEU( 4),DELK(I), TIU( 4),THK(I)
REAL DTIU( 4),DTHK(1 ),NETJ( 4),NETK(1 ),DWJ( 4,2)
REAL TK(I,600)

DATA ALP,NNW, THOl, TH02,EPS/0.0,0.5, 1.0, 1.0,IE-I0/
OPEN(UNIT=I,FILE='C:\FORTRAN\NEURAL\V AR.DAT')
OPEN(UNIT=2,FILE='C:\FORTRAN\NEURAL\ WT.DAT')
OPEN(UNIT=3,FILE='C:\FORTRAN\NEURAL\OUT.DAT')

IP=1

DO 190 CUR=2.0,7, 1.0
DO 190 TH=0,52,4.0

OI(2,IP)=CUR/9.6
OI(I,IP)=TII/98.7

••***************.****** •••••••••••••••••••••••••••••••
X=(OI(2,IP)" .25)+OI( I,IP)- .267 5
Y=(OI(2,IP)"1 )+OI( 1,IP)-. 53

IF«X.GT.O).AND.(Y.GT.O»lHEN
•••••••• ****.**** ••••••••••••••••••••••••••••••••••••••

TK(1 ,IP)=(CUR "SIN(TII/57.3)- 2.4 )/5.0
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VAR=220"'CUR"'SIN(TH/57.3)
WRI1E(1, "')VAR

IP=IP+l
ENDIF

190 CONTINUE
NP=IP-l

DO 333 IP=l,NP
333 TK(1,IP)=TK(l,IP)-.2

WRITE("', "') 'NUMBER OF PATIERN = ' ,NP
IF(NOYES.EQ.l) THEN
READ(2, "') ITP
READ(2, "') «WJ(J,I),I=l,Nl),J=l,NJ)
READ(2, "') (THJ(J),J=l,NJ)
READ(2, "') «WK(K,J),J=l,NJ),K=l,NK)
READ(2, "') (TIIK(K),K=l,NK)
READ(2, "') NNW
ENDIF
IF (NOYES.EQ.O) TIffiN
ITP=O

DO 232 I=l,NJ
232 THJ(I)=O.O

DO 233 I=l,NK
233 ~=O.O

WJ(l,l)=.l
WJ(1,2)=-.1
WJ(2,1)=-.234
WJ(2,2)=O.34
WJ(3,1)=.21
WJ(3,2)=-o.3314
WJ(4,1)=.1
WJ(4,2)=-.091
WK(l, 1)=. 132
WK(1,2)=-.1l
WK(l,3)=.23
WK(1,4)=-o.5
ENDIF

D02I=1,NJ
DTHJ(I)=O.O

DO 2 J=l,NI
DWJ(I,J)=O.O

2 CONTINUE
DO 3 I=l,NK
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DTHK(I)=O.O
D03 J=l,NJ

DWK(I,J)=O.O
3 CONTINUE

ITER=O
IF(NOYES.EQ.l) THEN
ITER=ITP
NT=NT+ITP
ENDIF

NNW=NNW
DO 210 L=I,NT

ERR=O.O
DO 10 IP=1 ,NP

11 DO 40 1J=l,NJ
NETJ(U)=O.O

DO 50 lI=l,Nl
NETJ(U)=NETJ(U)+ WJ(1J,lI)"'OI(ll,IP)
IF (NETJ(U).GT.10292) PRINT "', NETJ(U)

50 CONTINUE

SS=EXP( -(NETJ(U)- THJ(U))fIHO 1)
OJ(1J)=(1.o-SS)/( 1.0+SS)

40 CONTINUE
DO 60 IK=l,NK

NETK(IK)=O.O
DO 70 1J=l,NJ

NETK(IK)=NETK(IK)+ WK(IK,lJ)"'OJ(U)
IF (NETK(IK).GT.10292) PRINT "', NETK(IK)

70 CONTINUE
OK(IK)=(NETK(IK)- THK(IK»)fIH02

60 CONTINUE
DO 80 IK=I,NK

DELK(IK)=(TK(IK,IP)-OK(IK»"'(l.fIH02)
DO 90 1J=l,NJ

DWK(IK,lJ)=NNW"'DELK(IK)"'OJ(1J)+ ALP"'DWK(IK,lJ)
WK(IK,lJ)=WK(IK,lJ)+ DWK(IK,lJ)

90 CONTINUE
THK(IK)=THK(IK)+DTHK(IK)

80 CONTINUE
DO 1001J=I,NJ

SUM=O.O

A-12



DO 200 IK=l,NK
SUM=SUM+DELK(1K)"WK(IK,U)

200 CONTINUE
DEU(IJ)=QJ(IJ)"(1.0-0J(IJ)"SUM

DO no II=l,NI
DWJ(lJ,II)=NNW"DEU(IJ)"OI(II,IP)+ ALP"DWJ(lJ,II)

WJ(lJ,II)=WJ(lJ,II)+ DWJ(lJ,II)
no CONTINUE

THJ(lJ)=THJ(IJ)+DTHJ(IJ)
100 CONTINUE

DO 777 IK=l,NK
ERR=ERR+O. S•.(TK(IK,IP)-OK(IK» •••.2

777 CONTINUE
10 CONTINUE

ITER=ITER+1
WRITE(", '(I6,2X,3(F12. 7,2X))') ITER,NNW,ERR

IF(ERR.LE.EPS.ORITER.EQ.NT) TIIEN
CLOSE(2)

WRITE(",") 'STORE TIIE WTS AND THITAS IN FILE? (110)'
READ(", ") NY

IF(NY.EQ.1) TIIEN
OPEN(UNIT=2,FILE='C:\FORTRAN\NEURAL\ WT.DAT')
WRlTE(2, ") ITER
WRlTE(2,") «WJ(J,I),I=l,Nl),J=l,NJ)
WRITE(2,") (lHJ(J),J=l,NJ)
WRlTE(2,") «WK(K,J),J=l,NJ),K=l,NK)
WRITE(2,") (THK(K),K=l,NK)
WRlTE(2, ") NNW

ENDIF
GOT02S0
ENDIF

NNW=.2

210 CONTINUE
2S0 IF(ERR.LE.EPS) TIIEN

PRINT ",'CONVERGED'
ELSE

PRINT •.,'NONCONVERGENT'
ENDIF
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DO 290 IP=l,NP
DO 940 D=l,NJ

NETJ(IJ)=O.O
DO 950 lI=l,Nl

NETJ(IJ)= NETJ(IJ)+WJ(IJ,II)"OI(II,IP)
950 CONTINUE

SS=EXP( -(NETJ(IJ)-1HJ(IJ)fIHO 1)
OJ(IJ)=(l.O-SS)/(l.O+SS)

940 CONTINUE

DO 960 IK=l,NK
NETK(IK)=O.O

DO 970 D=l,NJ
NETK(IK)=NETK(IK)+ WK(IK,IJ)"OJ(IJ)

970 CONTINUE
OK(IK)=(NETK(IK)- THK(IK»fIH02

%0 CONTINUE
011=OI(l,IP)
0I2=OI(2,IP)
TKl =TK(l,IP)
ERROR=TKI-OK(l)
WRITE(3, '(5(E14. 7,2X»')OI1,OI2, TKI,OK(l),ERROR

290 CONTINUE

CLOSE(2)
CLOSE(3)
RETURN

END
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INPUT#l
0.3242148£+00
0.3647417£+00
0.4052685£+00
0.4457954£+00
0.4863222£+00
0.5268490£+00
0.2431611£+00
0.2836879£+00
0.3242148£+00
0.3647417£+00
0.4052685£+00
0.4457954£+00
0.4863222£+00
0.5268490£+00
0.2026342£+00
0.2431611£+00
0.2836879£+00
0.3242148£+00
0.3647417£+00
0.4052685£+00
0.4457954£+00
0.4863222£+00
0.5268490£+00
0.1621074£+00
0.2026342£+00
0.2431611£+00
0.2836879£+00
0.3242148£+00
0.3647417£+00
0.4052685£+00
0.4457954£+00
0.4863222£+00
0.5268490£+00
0.1215805£+00
0.1621074£+00
0.2026342£+00
0.2431611£+00
0.2836879£+00
0.3242148£+00

APPENDIX-3
DATA FIL£ OUT.DAT SHOWING LEARNING PATTERNS WITH FINAL OUTPUT

INPUT#2 TARG£T FlNALOUTPUT ERROR
0.2083333£+00 -0.4680463£+00 -0.4394734£+00 -0.2857292£-01
0.2083333£+00 -0.4449009£+00 -0.4204441£+00 -0.2445683£-01
0.2083333£+00 -0.4229007£+00 -0.4032469£+00 -0.1965380£-01
0.2083333£+00 -0.4021530£+00 -0.3883523£+00 -0.1380065£-01
0.2083333£+00 -0.3827586£+00 -0.3760533£+00 -0.6705344£-02
0.2083333£+00 -0.3648122£+00 -0.3665258£+00 0.1713634£-02
0.3125000£+00 -0.4359750£+00 -0.4258411£+00 -0.1013386£-01
0.3125000£+00 -0.3983362£+00 -0.3908576£+00 -0.7478595£-02
0.3125000£+00 -0.3620694£+00 -0.3565120£+00 -0.5557358£-02
0.3125000£+00 -0.3273513£+00 -0.3236881£+00 -0.3663182£-02
0.3125000£+00 -0.2943511£+00 -0.2929412£+00 -0.1409948£-02
0.3125000£+00 -0.2632294£+00 -0.2646264£+00 0.1396954£-02
0.3125000£+00 -0.2341379£+00 -0.2389749£+00 0.4836991£-02
0.3125000£+00 -0.2072183£+00 -0.2161308£+00 0.8912519£-02
0.4166667£+00 -0.4064033£+00 -0.4052601£+00 -0.1143187£-02
0.4166667£+00 -0.3546332£+00 -0.3547563£+00 0.1230538£-03
0.4166667£+00 -0.3044482£+00 -0.3046199£+00 0.1716912£-03
0.4166667£+00 -0.2560925£+00 -0.2558575£+00 -0.2350509£-03
0.4166667£+00 -0.2098018£+00 -0.2091045£+00 -0.6972402£-03
0.4166667£+00 -0.1658014£+00 -0.1647785£+00 -0.1022965£-02
0.4166667£+00 -0.1243059£+00 -0.1231546£+00 -0.1151234£-02
0.4166667£+00 -0.8551717£-01 -0.8441812£-01 -0.1099050£-02
0.4166667£+00 -0.4962435£-01 -0.4868531£-01 -0.9390414£-03
0.5208333£+00 -0.4043824£+00 -0.4052510£+00 0.8685291£-03
0.5208333£+00 -0.3380041£+00 -0.3395542£+00 0.1550108£-02.
0.5208333£+00 -0.2732916£+00 -0.2740688£+00 0.7772148£-03
0.5208333£+00 -0.2105602£+00 -0.2099238£+00 -0.6364286£-03
0.5208333£+00 -0.1501156£+00 -0.1478369£+00 -0.2278715£-02
0.5208333£+00 -0.9225221£-01 -0.8827776£-01 -0.3974453£-02
0.5208333£+00 -0.3725176£-01 -0.3156322£-01 -0.5688533£-02
0.5208333£+00 0.1461768£-01 0.2208853£-01 -0.7470846£-02
0.5208333£+00 0.6310356£-01 0.7253772£-01 -0.9434164£-02
0.5208333£+00 0.1079696£+00 0.1196955£+00 -0.1172596£-01
0.6250000£+00 -0.4305241£+00 -0.4271561£+00 -0.3368020£-02
0.6250000£+00 -0.3492589£+00 -0.3472945£+00 -0.1964390£-02
0.6250000£+00 -0.2696048£+00 -0.2675483£+00 -0.2056509£-02
0.6250000£+00 -0.1919499£+00 -0.1891763£+00 -0.2773598£-02
0.6250000£+00 -0.1166723£+00 -0.1129739£+00 -0.3698349£-02
0.6250000£+00 -0.4413871£-01 -0.3946322£-01 -0.4675493£-02
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0.3647417E+00 0.6250000E+00 0.2529736E-Q1 0.3100234E-01 -0.5704984E-02
0.4052685E+00 0.6250000E+OO 0.9129786E-Q1 0.9818274E-Q1 -0.6884873E-Q2
0.4457954E+OO 0.6250000E+00 0.1535412E+OO 0.1619141E+OO -0.8372903E-02
0.4863222E+00 0.6250000E+OO 0.2117243E+OO 0.2220944E+00 -0.1037014E-Q1
0.5268490E+OO 0.6250000E+OO 0.2655635E+00 0.2786674E+OO -Q.1310396E-Q1
0.1215805E+00 0.7291666E+00 -Q.3889448E+OO -Q.3756517E+00 -Q.1329306E-Q1
0.1621074E+00 0.7291666E+OO -Q.2941354E+OO -Q.2831166E+OO -Q.ll01881E-01
0.2026342E+OO 0.7291666E+00 -Q.2012056E+OO -Q.1920120E+OO -Q.9193629E-Q2
0.2431611E +00 0.7291666E+OO -0. 1106082E +00 -0.1 032116E +00 -Q.7396579E-02
0.2836879E+00 O.7291666E+OO -Q.2278434E-Q1 -Q.1729017E-0l -Q.5494162E-Q2
0.3242148E+00 0.7291666E+OO 0.6183815E-Q1 0.6536883E-01 -0.3530681E-02
0.3647417E+OO O.7291666E+OO 0.1428470E+OO 0.1445021E+OO -Q.1655132E-Q2
0.4052685E +00 O.7291666E +00 0.21984 75E+00 0.2199318E +00 -Q.8434057E-Q4
0.4457954E+OO 0.7291666E+00 0.2924647E+OO 0.291541OE+OO 0.9237528E-03
0.4863222E+OO 0.7291666E+OO 0.3603450E+OO 0.3592681E+00 0.1076877E-02
0.5268490E+00 O.7291666E+OO 0.4231574E+OO 0.4230896E+OO 0.6777048E-04
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APPENDIX-4
.• CHECK.FOR

.• PROGRAM FOR CHECKING NEURAL NET SOLUTION

DATA NP,NI,NJ,NK 164,2,4,1/

CALL ALRN(NP,NI,NJ,NK)
STOP
END

SUBROUTINE ALRN(NP,NI,NJ,NK)
REAL NNW,NNWO
INTEGER ITER
REAL OI(2,5000),OJ( 4),OK(I), WJ(4,2), WK(l,4)
REAL DWK(l,4),DELJ( 4),DELK(I), THJ( 4),THK(I)
REAL DTHJ( 4),DTHK(l ),NETJ( 4),NETK(1 ),DWJ( 4,2)
REAL TK(I,5000),KV AR(l,5000)

DATA ALP, NNW, TIIOl, TII02,EPS/O.0,0.4, 1.0, 1.0, IE-lOl
DATA VOLT/2201

OPEN(UNIT=8,FILE='C:\FORTRAN\NEURAL\ WT.DAT)
OPEN(UNIT=I,FILE='C:\FORTRAN\NEURAL\OJl.DAT)
OPEN(UNIT=2,FILE='C:\FORTRAN\NEURAL\OJ2.DAT)
OPEN(UNIT=3,FILE='C:\FORTRAN\NEURAL\OB.DAT)
OPEN(UNIT=4,FILE='C:\FORTRAN\NEURAL\OJ4.DAT')
OPEN(UNIT=7,FILE='C:\FORTRAN\NEURAL\TST.DAT')

IP=1

DO 190 CUR=2.0,7,0.2
DO 190 TII=0,52,1

OI(2,IP)=CUR/9.6
OI(I,IP)=JRl98.7

.****** ••**** •••••••••••••• *** ••••••• **••••••••••••••
X=(OI(2,IP)"'. 25)+0I(I,IP)-. 2675
Y=(OI(2,IP)'" 1)+OI(I,IP)-. 53

IF«X.GT.O).AND.(Y.GT.O»THEN
** •••••••••••••••••••••••••••••••••••••••••••••••••••

TK( I,IP)=(CUR "'SIN(JRl57.3)-2.4 )/5.0
KV AR(I,IP)=VOL T"'CUR "SIN(JRl57.3)/1000
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IP=IP+l
ENDIF

190 CONTINUE
NP=IP-l
DO 333 IP=l,NP

333 TK(1,IP)=TK(1,IP)-o.2

READ(8, *) ITP
READ(8, *) «WJ(J,I),I=l,NI),J=l,NJ)
READ(8, *) (1HJ(J),J=l,NJ)
READ(8, *) «WK(K,J),J=l,NJ),K=l,NK)
READ(8, *) (TIfK(K),K=l,NK)

ITER=ITP
DO 290 IP=l,NP
DO 940 U=l,NJ

NETJ(U)=O.O
DO 950 II=l,NI

NETJ(IJ)=NETJ(IJ)+ WJ(IJ,II)*OI(II,IP)
950 CONTINUE

SS=EXP( -(NETJ(U)-1HJ(U)ffHOl)
OJ(U)=(l.O-SS)/(l.O+SS)

940 CONTINUE

DO 960 IK=l,NK
NETK(IK)=O.O

DO 970 IJ=l,NJ
NETK(IK)=NETK(IK)+ WK(IK,IJ)*OJ(U)

970 CONTINUE
OK(IK)=(NETK(IK)- TIfK(IK»ffH02

960 CONTINUE
ERROR =TK(l,IP)-0K(l)
WRITE(1, '(2(E14. 7,2X))')NETJ(1), OJ(l)
WRITE(2, '(2(E14. 7,2X»)')NETJ(2),OJ(2)
WRITE(7, '(4(E14. 7,2X»')TK(1,IP), OK(l ),ERROR,KV AR(l,IP)
WRITE(3, '(2(E14. 7,2X»')NETJ(3), OJ(3)
WRITE(4, '(2(E14. 7,2X))')NETJ(4),OJ(4)

290 CONTINUE
CLOSE(2)
CLOSE(3)
RETIJRN
END
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APPENDIX-5
'" LRNSRT.FOR

'" PROGRAM FOR NEURAL NET SOLUTION MAKING SIGMOID
'" FUNCTION PIECE-WISE LINEAR

DATA NP,NT,NI,NJ,NK 164,500,2,6,1/

PRINT "', 'DO YOU WANT TO START FROM PREVIOUS VALUES? (1/0)'
READ ("',"') NOYES
PRINT "', 'NO OF ITERATION? '
READ("', "') NT

CALL ALRN(NP,NT,NI,NJ,NK,NOYES)

STOP
END

SUBROUTINE ALRN(NP,NT,NI,NJ,NK,NOYES)
REAL NNW,NNWO
INTEGER ITER
REAL 0I(2,600),OJ(6),OK(l), WJ(6,2), WK(l,6)
REAL DWK(l,6),DEU(6),DELK(l), THJ(6), THK(I)
REAL DTHJ( 6),DTHK( 1),NETJ( 6),NETK(1 ),DWJ( 6,2)
REAL TK(l,600)

DATA ALP,NNW, THOl, TH02,EPS/0.0,0.5, l.0, l.0, IE-IOI
OPEN(UNIT=I,FILE='V ARDA1")
OPEN(UNIT=2,FILE='LINWT.DA 1")
OPEN(UNIT=3,FILE='OUTLIN.DAT)

IP=I

DO 190 CUR=2.0,7,l.0
DO 190 TH=0,52,4.0

0I(2,IP)=CUR/9.6
OI(I,IP)=TH/98.7

*****.**************.** •••• **••• **.**************************
X=( 0I(2,IP)"'. 25)+OI( 1,IP)-. 267 5
Y=(OI(2,IP)"'1 )+OI( 1,IP)-. 53

IF((X. GT. 0).AND. (Y. GT.O»TIIEN
*************************************************************

TK(I,IP)=(CUR "SIN(TH/57 .3)-2.4 )/5. 0
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VAR=220*CUR *SIN(TIJ/57.3)
WRITE(l, *)VAR

IP=IP+1
ENDIF

190 CONITNUE
NP=IP-l

DO 333 IP=l,NP
333 TK(1,IP)=TK(l,IP)-.2

WRITE(*, *) 'NUMBER OF PATTERN = •,NP
IF(NOYES.EQ.l) THEN
READ(2, *) ITP
READ(2, *) «WJ(J,I),I=l,Nl),J=l,NJ)
READ(2, *) (THJ(J),J=l,NJ)
READ(2, *) «WK(K,J),J=l,NJ),K=l,NK)
READ(2, *) (THK(K),K =l,NK)
READ(2, *) NNW
ENDIF

IF (NOYES.EQ.O) THEN
ITP=O
THJ(l)=O.l
THJ(2)=-0.2
THJ(3)=0.3
THJ(4)=0.1
THJ(5)=-0.2
THJ(6)=-0.1
THK(l)=0.3

DO 232 I=l,NJ
232 THJ(I)=O.O

DO 233 I=l,NK
233 THK(I)=O.O

WJ(l,l)=.l
WJ(1,2)=-.1
WJ(2,1)=-.234
WJ(2,2)=O.34
WJ(3,1)=.21
WJ(3,2)=-0.3314
WJ(4,1)=.1
WJ(4,2)=-.091
WJ(5,1)=-.234
WJ(5,2)=0.34
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WJ(6,1)=.OS3
WJ(6,2)=-0.09314
WK(l,I)=.132
WK(1,2)=-.1l
WK(1,3)=.23
WK(I,4)=-0.S
WK(I,S)=0.2
WK(I,6)=-0. 1
ENDIF

D02I=I,NJ
DTHJ(I)=O.O

DO 2 J=l,NI
DWJ(I,J)=O.0

2 CONTINUE
D03I=1,NK

DTHK(I)=O.O
D03 J=I,NJ

DWK(I,J)=D.O
3 CONTINUE

ITER=O
IF(NOYES.EQ.l) TIffiN
ITER=ITP
NT=NT+ITP

ENDIF

NNW=NNW
DO 210 L=l,NT

ERR=O.O
DO 10 IP=I,NP

11 DO 40 IJ=l,NJ
NETJ(IJ)=O.O

DO SOII=I,NI
NET J(IJ)= NETJ(IJ)+ WJ(IJ,II)"OI(II,IP)

IF (NETJ(IJ).GT.I0292) PRINT", NETJ(IJ)
SO CONTINUE

********** •••••••••••••••••••••••••••••••••••••••••••••••••••

TI=NETJ(IJ)

IF «TI.LE.1.2).AND.(TI.GT.-1.2» STRT=.447S"TI
IF «TI.LE.2.2).AND.(TI.GT.1.2» STRT=.263"TI+.2214
IF «TI.LE.3.2).AND.(TI.GT.2.2» STRT=.12166S"TI+.S32329
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IF «(I.LE.4.2).AND.(TI.GT.3.2» SlRT=.048784"TI+.765557
IF «TI.LE.5.2).AND.(TI.GT.4.2» SlRT=.02955"TI+.84634
IF (TI.GT.5.2) SlRT=l

IF «TI.GT.-2.2).AND.(TI.LE.-1.2» SlRT=.263"TI-.2214
IF «TI.GT.-3.2).AND.(TI.LE.-2.2» SlRT=.121668"TI-.532329
IF «TI.GT.-4.2).AND.(TI.LE.-3.2» SlRT=.048784"TI-.765557
IF «TI.GT.-5.2).AND.(TI.LE.-4.2» SlRT=.02955"TI-.84634
IF (TI.LE.-5.2) SlRT=-l

OJ(D)=SlRT
***************** ••********** ••••• ********** •••**************
40 CONTINUE

DO 60 IK=l,NK
NETK(IK)=O.O

DO 70D=1,NJ
NETK(IK)= NETK(IK)+ WK(IK,D)"OJ(D)
IF (NETK(IK).GT.10292) PRINT ", NETK(IK)

70 CONTINUE
OK(IK)=(NETK(IK)- THK(IK) )fIH02

60 CONTINUE
DO 80 IK=l,NK

DELK(IK)=(TK(IK,lP)-OK(IK»"(l.fIH02)
DO 90 D=l,NJ

DWK(IK,D)=NNW"DELK(IK)"OJ(D)+ ALP"DWK(IK,D)
WK(IK,D)=WK(IK,D)+ DWK(IK,IJ)

90 CONTINUE
THK(IK)=THK(IK)+DTHK(IK)

80 CONTINUE
DO 100 D=l,NJ

SUM=O.O
DO 200 IK=l,NK

SUM=SUM+DELK(IK)"WK(IK,D)
200 CONTINUE
••********.**** ••••••••••••••• ********* ••••• *** •• **.*********

TI=NETJ(D)

IF «(TI.LE.1.2).AND.(TI.GT.-1.2» DEU(D)=.4475
IF «TI.LE.2.2).AND.(TI.GT.1.2» DEU(D)=.263
IF «(TI.LE.3.2).AND.(TI.GT.2.2» DEU(D)=.121668
IF «(I.LE.4.2).AND.(TI.GT.3.2» DEU(D)=.048784
IF «TI.LE.5.2).AND.(TI.GT.4.2» DEU(D)=.02955
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IF (TI.GT.5.2) DELJ(IJ)=0.01

IF «(TI.GT.-2.2).AND.(TI.LE.-1.2» DELJ(IJ)=.263
IF «TlGT.-3.Z).AND.(TI.LE.-Z.Z» DELJ(IJ)=.1Z1668
IF «TI.GT.-4.Z).AND.(TI.LE.-3.Z» DELJ(IJ)=.048784
IF «TI.GT.-5.Z).AND.(TI.LE.-4.Z» DELJ(IJ)=.OZ955
IF (TlLE.-5.Z) DELJ(IJ)=Q.Ql

DELJ(IJ)=DELJ(IJ)*SUM
********************************** ••**** •••••••••••••• *******

DEU(IJ)=OJ(IJ)"( 1.O-OJ(IJ))"SUM

DO 110 n=1,NI
DWJ(IJ,ll)=NNW"DELJ(IJ)"01(Il,IP)+ ALP"DWJ(IJ,ll)
WJ(IJ,ll)=WJ(IJ,ll)+ DWJ(IJ,ll)

110 CONTINUE
DTIIJ(IJ)=NNW"DEU(IJ)+ ALP"DTIIJ(IJ)
TIIJ(IJ)=TIIJ(IJ)+DTIIJ(IJ)

100 CONTINUE

DO 777IK=1,NK
ERR =ERR+0.5 ••(TK(1K,IP)-0K(lK» ••••Z

777 CONTINUE
10 CONTINUE

ITER=ITER+1
WRlTE(", '(I6,ZX,3(F12. 7,2X))') ITER,NNW,ERR

IF(ERR.LE.EPS.OR.ITER.EQ.NT) THEN
CLOSE(2)
WRlTE(",") 'STORE THE wrs AND THlTAS IN FILE? (110)'
READ(",") NY

IF(NY.EQ.1) THEN
OPEN(UNIT=Z,FILE='LlNWT.DAT')
WRITE(2, ") ITER
WRITE(2, ") «WJ(J,l),I=1,NI),J=1,NJ)
WRlTE(Z,") (TIIJ(J),J=1,NJ)
WRITE(Z,") «WK(K,J),J=1,NJ),K=1,NK)
WRITE(Z,") (THK(K),K =1,NK)
WRITE(Z, ") NNW

ENDIF
GOTOZ50
ENDIF

NNW=.Z
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210 CONTINUE
250 IF(ERR.LE.EPS) THEN

PRINT "','CONVERGED'
ELSE
PRINT "','NONCONVERGENT'
ENDIF

DO 290 IP=l,NP
DO 940 IJ=l,NJ

NETJ(IJ)=O.O
DO 950 l1=l,Nl

NETJ(IJ)=NETJ(IJ)+ WJ(IJ,ll)"'OI(l1,IP)
950 CONTINUE
********* •••************************** ••*** •• ****************

TI=NETJ(IJ)

IF «TI.LE.1.2).AND.(TI.GT.-1.2» STRT=.4475"'TI
IF «TI.LE.2.2).AND.(TI.GT.1.2» STRT=.263"'TI+.2214
IF «TI.LE.3.2).AND.(TI.GT.2.2» STRT=.121668"'TI+.532329
IF «(I.LE.4.2).AND.(TI.GT.3.2» STRT=.048784"'TI+.765557
IF «TI.LE.5.2).AND.(TI.GT.4.2» STRT=.02955"'TI+.84634
IF (TI.GT.5.2) STRT=l

IF «(TI.GT.-2.2).AND.(TI.LE.-1.2» STRT=.263"'TI-.2214
IF «TI.GT.-3.2).AND.(TI.LE.-2.2» STRT=.121668"'TI-.532329
IF «(TI.GT.-4.2).AND.(TI.LE.-3.2» STRT=.048784"'TI-.765557
IF «TI.GT.-5.2).AND.(TI.LE.-4.2» STRT=.02955"'TI-.84634
IF (TI.LE.-5.2) STRT=-l

OJ(IJ)=STRT
******************************** ••***************************
940 CONTINUE

DO 960 IK=l,NK
NETK(IK)=O.O

DO 970 IJ=l,NJ
NETK(IK)=NETK(IK)+ WK(IK,IJ)"'OJ(IJ)

970 CONTINUE
OK(IK)=(NETK(IK)- THK(IK»rIH02
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960 CONTINUE
011 =OI(I,W)
OI2=0I(2,W)
TKI =TK(I,W)
ERROR=TKI-0K(I)
WRITE(3, '(5(E14. 7,2X))')OIl, OU,TKl, OK(l ),ERROR

290 CONTINUE

CLOSE(2)
CLOSE(3)
RETURN
END
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APPENDIX-6
•• CHKSRT.FOR

•• PROGRAM FOR CHECKING NEURAL NET SOLUTION WITII STRAIGHT
•• LINES

DATA NP,NI,NJ,NK 164,2,6,1/

CALL ALRN(NP,NI,NJ,NK)

STOP
END

SUBROUTINE ALRN(NP,NI,NJ,NK)
REAL NNW,NNWO
INTEGER ITER
REAL OI(2,5000),OJ(6),OK(1), WJ(6,2), WK(1,6)
REAL OAJ(6),OAK(1),NETAK(1)
REAL DWK(1,6),DEU(6),DELK(l), TID(6), THK(l)
REAL DTID( 6),DTHK( 1),NETJ(6),NETK(l ),DWJ( 6,2)
REAL TK(1,5000),KV AR(l,5000)

DATA ALP,NNW, THOl, TH02,EPS/O.O,OA, 1.0, 1.0, IE-lOl
DATA VOLT/2201

OPEN(UNIT=8,FllE='C:\FORTRAN\NEURAL\LINWT.DAT')
OPEN(UNIT=l,FllE='C:\FORTRAN\NEURAL\OAJl.DAT')
OPEN(UNIT=2,FllE='C:\FORTRAN\NEURAL\OAJ2.DA T')
OPEN(UNIT=3,FllE='C:\FORTRAN\NEURAL\OAJ3.DAT')
OPEN(UNIT=4,FllE='C:\FORTRAN\NEURAL\OAJ4.DAT')
OPEN(UNIT=5,FllE='C:\FORTRAN\NEURAL\OAJ5.DAT')
OPEN(UNIT=6,FllE='C:\FORTRAN\NEURAL\OAJ6.DAT')
OPEN(UNIT=7,FaE='C:\FORTRAN\NEURAL\TEST.DAT')

IP=l

DO 190 CUR=2.0,7,0.2
DO 190 TH=0,52,1

OI(2,IP)=CUR/9.6
OI(1,IP)=THI98.7
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*************************************************************
x =(OI(2,IP)*. 25)+0I( 1,IP)- .267 5
Y=(0I(2,IP)*1 )+OI( 1,IP)-. 53
IF((X.GT.O).AND.(Y.GT .O»THEN

*************************************************************
TK(I,IP)=(CUR *SIN(lH/57.3)-2.4 )/5.0

KVAR(I,IP)=VOL T*CUR *SIN(lH/57 .3)/1000
IP=IP+l

ENDIF
190 CONTINUE

NP=IP-l
DO 333 IP=I,NP

333 TK(l,IP)=TK(l,IP)-o.2

READ(S, *) ITP
READ(S, *) ((WJ(J,I),I=I,Nl),J=I,NJ)
READ(S, *) (TIU(J),J=I,NJ)
READ(S,*) ((WK(K,J),J=I,NJ),K=I,NK)
READ(S, *) (THK(K),K =1,NK)

ITER=ITP

DO 290 IP=1,NP
DO 940 U=I,NJ

NETJ(IJ)=O.O
DO 950 II=I,NI

NETJ (IJ)=NETJ(IJ)+ WJ(IJ,II)*OI(II,IP)
950 CONTINUE

***************************************************
TI=NETJ(IJ)

IF ((TI.LE.l.2).AND.(TI.GT.-1.2» STRT=.4475*TI
IF ((TI.LE.2.2).AND.(TI.GT.1.2» STRT=.263*TI+.2214
IF ((TI.LE.3.2).AND.(TI.GT.2.2» STRT=.12166S*TI+.532329
IF ((I.LE.4.2).AND.(TI.GT.3.2» STRT=.04S7S4*TI+.765557
IF ((Tl.LE.5.2).AND.(TI.GT.4.2» STRT=.02955*Tl+.S4634
IF (TI.GT.5.2) STRT=1

IF ((TI.GT.-2.2).AND.(Tl.LE.-1.2» STRT=.263*Tl-.2214
IF ((TI.GT.-3.2).AND.(TI.LE.-2.2» STRT=.12166S"'Tl-.532329
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IF «TI.GT.-4.2).AND.(TI.LE.-3.2» SlRT=.048784"'TI-.765557
IF «TI.GT.-5.2).AND.(TI.LE.-4.2» SlRT=.02955"'TI-.84634
IF (TI.LE.-5.2) SlRT=-l
OAJ(lJ)=SlRT

***************************************************
940 CONTINUE

DO 960 IK=l,NK
NETAK(IK)=O.O
DO 970 IJ=l,NJ
NET AK(IK)=NET AK(IK)+ WK(lK,IJ)"'OAJ(lJ)

970 CONTINUE
OAK(IK)=(NET AK(IK)- THK(IK»fTH02

960 CONTINUE
ERROR =TK(l,IP)-OAK(l)
WRlTE(1, '(2(E14. 7,2X) )')NETJ(l), OAJ(l)
WRITE(2, '(2(E14. 7,2X))')NETJ(2), OAJ(2)
WRITE(7, '(4(E14. 7,2X) )')TK(l,IP), OAK(l ),ERROR,KV AR(l,IP)
WRITE(3, '(2(E14. 7,2X))')NETJ(3), OAJ(3)
WRITE( 4, '(2(E14. 7,2X))')NETJ( 4),OAJ( 4)
WRITE(5, '(2(E14. 7,2X))')NETJ( 5),OAJ(5)
WRITE( 6,'(2(E14. 7,2X»')NETJ( 6),OAJ( 6)

290 CONTINUE

CLOSE(2)
CLOSE(3)
RETURN
END
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APPENDIX-7
The neural network for the reactive power controller has two inputs, six

hidden and one output nodes performing a continuous mapping of X = I.sinB.

Range of input 'I' varied from 2 to 7 and input 'B' from 0° to 55°. '1' and 'B' were

normalized by dividing the corresponding inputs by 9.6 and 98.7 respectively.

Gradients chosen for the PWL function were given through Eq. 2.23a to 2.23f

ml = 0.4475 XI < 1.2

m2 = 0.263 1.2 ::;X2 < 2.2

m3=0.12167 2.2 ::;X3 < 3.2

Il4 = 0.04878 3.2::;)4 < 4.2

ms = 0.02955 4.2::; Xs < 5.2

Il1<;= 1 5.2 < X<;

After learning, the weights settled as,

1. Total iteration cycle: 80800

2. Final RMS error: .00099

3. Weights for node B: WII = -1.644, W2I = -1.69, W31= 4.77,

W41= 4.305, WSI = -8.416, W61= 2.38.

4. Weights for node I: W12= -1.2808, W22= 2.155, W32= -5.376,

W42= 3.525, WS2= 3.2767, W62= -0.11

5. Weights for output node: WI = -1.0811, W2 = 1.241, W3 = -0.192,

W4 = -2.0332, Ws = -0.269, W6 = 1.88
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To make the implementation of the break points easier and more precise, the break

points are increased to 3 times than the training values. This modification requires

the inputs or the weights to be amplified 3 times to achieve the same target output.

The slopes of the equations are kept unaltered. To impose the condition of Eq.

(3.16) it is observed that 5th node of the hidden layer has the greatest value of

Iw51 1+ Iw521. Hence Eq. (15) for node no. 5 will be

0.4475x(8.416 + 3.2767) = 5.23

So, as explained earlier, the inputs should be increased more than 5.23 times to

satisfY the condition. Therefore, the overall amplifYing factor for the input stands

5.23x3"" 16. The values of resistances obtained through Eq. (3.9) to Eq. (3.15) are

given in Table A 7. Node 1, 2 and 6 have responses limited within the ftrst two

sections of the PWL function. The only one output node is implemented by an

analog adder circuit.
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BREAKING POTENTIALS : 1.611,2.4,2.765,2.911, and 3.

RESISTANCE VALUES

Node R( R2 R3 ~ R5 14 R7
Number

1 5.085 6.527 0.929 1.00
2 4.947 3.88 1.035 1.00
3 13.728 12.182 36.963 7.833 2.78 1.00
4 16.529 20.187 17.406 8.511 3.02 1.086 1.00
5 7.781 19.98 291.60 7.833 2.78 1.00
6 3.512 76.157 0.886 1.00

Table A.7 The resistance values for different nodes
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