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ABSTRACT

Neural networks (NN) and their applications are creating immense interest
among Electrical Engineers in every fields. Recent researches in this line' are
concentrated basically within two areas; implementation of NN and successful
application of NN in various fields. This research work deals with both of these
aspects of NN.

Trends .on implementing NN, now a days, are dependent on VLSI
technology utilizing the nonlinear operating regions of transistors within very small
signal inputs. This research investigates an alternate way to implement analog NN
with the simplest of electronic tools like resistors, diodes, buffers and analog adders
where VLSI technology can be by-passed. Applications of NN in Power System
Engineering has lintroduced a new dimension. Compared to other electrical fields,
power system deals with larger signal sensing and interfacing; also unwanted signal
spikes and harmonics in the power line may be vulnerable to small signal sensitive
VLSI developed NN. Considering this, an analog NN based Reactive Power
Controller (RPC) is designed and implemented in this project. In practice the
microprocessor controlled RPC’s are widely used. The main function of an RPC is
to sense the amount of reactive power required by the system to improve its power
factor. An analog NN based RPC has been locally designed and implemented
having two input, six hidden and one output node capable of performing nonlinear
function mapping; X,.sin0 in this particular case, where X; and  are the two
inputs. The sigmoid function is approximated to piece-wise linear (PWL) and off
line training using Back propagation algorithm was used. A unique method has



been developed to implement the weights together with the PWL function with few
resistance, diodes, buffers and an analog adder. A technic has been introduced to
by-pass the need of amplifiers for constructing the weights. The performance of the
developed RPC has been compared with an equivalent microprocessor based RPC.
And the developed RPC has been found to be superior than the conventional one.
Moreover, the developed RPC based on the implemented NN module
approximately reduces the production cost by ten times in comparison to the

microprocessor controlled RPC.
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CHAPTER ONE

INTRODUCTION



1.1 INTRODUCTION

Applications of artificial neural network have ushered a néw dimension in

the field of engineering; especially in industrial control systems. The neural
networks try to mimic the nerve system in a mammalian brain into a mathematical
model. The brain is a large-scale system connecting many neural cells called
neuron. It has many excellent characteristics: parallel processing of information,
learning function, self organizing capabilities and so forth [1],[2]. The brain can
also provide an associative memory [2] and 1s good for information processing such
as pattern recognition [3]. In artificial neural network, a model of the brain,
connects many linear or nonlinear neuron models and process information in a _
parallel distributed manner [4]. In conventional single processor Von Neumann
computers, the speed of computation is limited by the propagation delay of the
transistors. Because of their massively parallel nature, neural network can perform
computation at much higher speed [1]. In addition, the neural network has many
interesting and attractive features. Neural networks have learning and self
organization capabilitics. Therefore, neural network can adapt to changes in data,
learning the characteristics of the input signal. That is, neural network can learn a
mapping between an input and output space and synthesize an associative memory
that retrieves the appropriate output when presented with the input and generalizes
when presented with new inputs [5]. Moreover, because of their nonlinear nature,
neural network can perform functional approximation and signal filtering
operations that are beyond optimal linear techniques [3]. Recently, many
researchers have developed neural networks as new tools in many fields such as
pattern recognition, information processing, design, planning, diagnosis, and
control. This thesis work develops a hybrid system, a neural network based reactive

power controller, as an example of a key technology in the future.



Most of the works done, so far, in industrial control systems are simulated
by software programs or fabricated using VLSI technology [6]. The software
simulation needs a microprocessor and usually takes a long period of time to
execute the huge number of computations involved in the operation of the network.
Several researches have adopted hardware implementations to realize such network
[7]-[11]}. During the past few years, various researchers have begun addressing
analog and digital hardware implementations [12]-[21] of certain artificial neural
network architecture encompassing a wide variety of applications. Between these
two types, analog implementations of artificial neural networks have a number of
unique advantages and problems when compared to digital realizations. The
primary motivation for implementing a neural network algorithm with analog
circuitry is its stand alone capability and capacity to operate on a real time fashion.
Countering the above analog advantages is a more extensive list of difficulties and
shortcomings. Typically, analog circuits are more complicated to design and more
limited in application than digital circuitry [22]. On the other hand, the options that
exist for speedy network solutions are digital serial processors known as “neural
network coprocessors” [23}-[25]. Using specialized chips that are optimized for
matrix multiplication and scaling primitives that underlie most neural models, these
digital systems are generally circuit boards that plug onto a host computer bus.
Although such systems are capable of simulating networks one or two orders of
magnitude faster than the host computer, they remain serial simulators, with
network simulation times that grow linearly with intercommection complexity.
Hence, analog implementation of neural network seems to be the ultimate choice
— at least for the time being,



In the proposed research, an analog neural network based reactive power
controller will be designed and implemented. Reactive Power Controllers (RPC)
are one of the most esseﬁtial but costly electrical equipment for any industries or
production factories. RPC is required in distribution system to improve power
factor at a particular bus. It serves as a source of reactive power which is controlled
by an automatic power factor controller (PFC) relay. The PFC’s are
microprocessor [26],[27) based control relay which automatically switches the
capacitors in and out of the circuit. Depending on the switching stages of the RPC,
its cost varies between one lac Taka for three step switching stages to five lac Taka
for twelve step switching stages. This research project implements an RPC based on
a feed forward neural network model. |

Modeling biological systems presents many challenges to the analog circuit
designer. Neural computation is often an emergent property of the system, derived
from the way the component elements are organized, and may not be evident in any
single element. It is often difficult to separate a neural structure into functional
units [28]. Major areas are richly interconnected and computation is intertwined, as
a single neural structure subserves a multitude of functions simultaneously [29]. As
a result, computational strategies for building collective systems require the
development of new architectures and a new design methodology. Mead [30]
presented such methodology for implementing biological inspired architectures.
This thesis work investigates a new design methodology innovated during the
development of the analog neural network for the proposed RPC with the use of
simple electronic tools. The neural architecture introduced in this research can be
implemented with or without the technical support of VLSI.



1.2 FUNDAMENTALS ON POWER FACTOR

This section will explain some basic terminology on power factor, reactive

power and other related topics under three articles,

1.2.1 Power Factor
Most frequently, an industrial installation is féd from a high-voltage system
and comprises :
¢ atransformer station,
e “resistive” loads, such as ovens, radiators, filament lamps, etc.,

e “inductive” loads, such as transformers, motors, etc.

Let it be assumed that the system is single phase. V will be the voltage in
volts at the secondary terminals of the supply transformer that is should to be at full
load, and I will be the tota! absorbed current in amperes.

It should be noted that the Actual or Active Consumed Power Py, in
watts, is lower than the product: volts x amperes representing the Apparent Power
of the installation P, in a ratio that is equal to the Power Factor.

P, (watts)
W —_—= o LIl L1} 1 -l
PovA) T ! (0

The power factor is graphically represented by the cosines of the angle
obtained by the difference in phase between current and voltage; the angle
represents the lag between I and V. Figure 1.1 gives a graphical example of power
factor.



Magnitude
T

Figure 1.1 A graphical representation of Power Factor.

(P .



The cosgp depends only on the characteristics of the load and on their operating
conditions (type of motor, speed, load), it is independent of the efficiency of the
loads. The loads of the “inductive” type absorb : |
e an active power Py = V.1. cos¢p (watts),

e areactive power Py = V.Lsing (VA react.).

The Apparent Power P, equal to the product V x I, represents the geometrical
sum of the active and reactive powers. The Active Power Py is integrally
converted into work and heat (losses), being measured with a suitable watt-meter.
The active energy W, which corresponds to it is recorded by an active energy
meter; it is charged to the consumer by the power supply company. The Reactive
Power Py 1s the power necessary for the magnetic excitation of the said loads. The
reactive energy W, which corresponds to it can be recorded by a reactive energy
meter. The loads of the “resistive” type absorb active power only; the power factor
is equal to unity and P, = Py,

The Average Power Factor of an installation, over a long period of time of
operation of the workshops is obtained by means of the angle tangent :

W_ (VA hour - reactive)
average t = £ - - oo 1.2
weiee W, (watts— hour) 1.2)

When the tangent is known, trigonometric tables give the value of the
corresponding cos@.



1.2.2 Consumption of Reactive Energy

1. Motors : These are among the loads which consume the greatest amount of
reactive energy.

2. Transformers : By design, all transformers consume reactive energy used for the
magnetization of their cores.

3. Transmission lines : Transmission lines, especially overhead lines, have a
comparatively high reactance (X;, = 0.3 to 0.5 Q-km/phase). The reactive
power which they absorb therefore depends upon the load which they carry

according to the following formula :
Pr=FX,(=linecurrent) .. .. .. (L3)

Since transmission lines have also capacitive characteristic Xc delivering a reactive
power equal to V2X, (where V is the service voltage), their consumption of
reactive voltage depends only on the load, namely when I°.X; becomes higher than

V2Xe.

1.2.3 Necessity of Better Power Factor
The advantage of good power factor are multifold and all result in a

substantial economy in the operation of electrical installations.

1. cutting down penalties for excessive consumption of reactive energy

2. reducing line losses : Even when the resistance of conductors is largely
calculated, it always causes watt losses which are added to the active
consumption of the installation. These losses are proportional to the square of
the current carried which for the same active power, decreases as the power

factor is increasing.



3. increasing line power carrying-capacity with equal losses : If it is considered
that an installation which, further to an extension of its activity for instance, has
to carry a higher active power, only the improvement of its power factor will
allow such an increase without augmenting line losses and, most often, if the
intial power factor is small, without modifying the lines p-ower.

4. increasing power available at supply transformers : When the power factor
increases, the apparent power for the same active power decreases.

5. reducing voltage drop : In overloaded low-voltage distribution lines supplying'
workshops with a small power factor, voltage drops often occur; these are likely
to impair the satisfactory operation of motors, even if the voltage at the
transformer output is correct. Switching on a capacitor bank at the end of the

lines causes a voltage rise AV defined by the formula :

X, xQ
AV% = L aew -ne -k LLT) 1.4
10 V2 149

Where :

¢ X = line reactance in ohms,

¢ Q= output of the capacitor bank in KVAR,
e V= rated voltage of capacitor inkV.

Switching on a capacitor bank at the terminals of a transformer causes a

voltage rise :

AV%=(@QP)Vee w w15



Where :

¢ Q= output of the capacitor bank in KVAR,

e P = power of transformer in KVA,

* Ve = transformer impedance voltage (in percentage).

Such a voltage nisel, often necessary at full load, could be disastrous at no load. It is
therefore necessary to switch off capacitor banks during light-load conditions.

1.3 CONVENTIONAL PFI PLANT

The previous section has explained the advantage of high power factor and
the importance of improving power factor in power system. Power Factor
Improvement (PFI) plants are used for this purpose. This section will describe the
operation and special features of conventionally used PFI plant. Now-a-days, the
most widely used PFI plants are microprocessor controlled. The main features of
the microprocessor based PFI controller is described in Appendix-1.

1.4 THESIS OBJECTIVE AND LAYOUT

This research work is a combination of theoretical study and practical
implementation. A neural network based reactive power controller will be designed
and developed, and finally, the performance of the proposed RPC will be compared
with the conventional microprocessor controlled RPC in this thesis. The objective
of this thesis is classified in two broad view points presented below.

1. There are many methodologies presented by researchers on the implementation
of neural networks. One objective of this research work is to introduce a new
technology on implementing analog neural networks using simple electronic tools.



It is hoped that the invented methodology will make neural network

implementation easier and simpler.

2. Conventional microprocessor controlled relays are pretty costly. This research
work will show that neural network based controller relays will perform almost as
same as the conventional relays, but the cost will be reduced drastically. The
second objective of this project is to propose a new way of controlling power factor
relays utilizing the emerging techniques of neural systems.

The thests layout has been confined within three main chapters. Chapter two
describes neural network theories and procedures of design a neural network
module for the proposed RPC. Chapter three gives an extensive description of the
implementation techniques used in the development of the RPC. The final chapter
shows the results of the thesis work and presents the performance of the
implemented analog neural network based RPC.

10



CHAPTER TWO

DESIGN AND TRAINING OF THE NEURAL
NETWORK



2.1 INTRODUCTION

This chapter explains the back propagation algorithm and utilizes the
algorithm to develop an artificial neural network for the reactive power controller.
It also assists to form a theoretical back ground on artificial intelligence, learning
algorithm and sensitivity of different parameters on convergence of the network. A
neural network module for implementing the proposed RPC is presented in this

chapter.

2.2 BACK PROPAGATION ALGORITHM

Several methodologies of the artificial neural network have been developed
starting from the perceptron idea of Rosenblatt [31]. Among them, the
Backpropagation netwerk is one of the most effective versatile tool that is readily
applied to a number of diverse problem in artificial neural network. To a large
extent, its versatility is due to the general nature of the network learning process.
This algorithm has established its popularity over other neural network algorithms;
specially in the field of power system analysis. In this present project of developing
a reactive power controller based on artificial neural system the BPN algorithm,
therefore, becomes a natural choice. In this section the theory of back propagation

technic is presented.

2.2.1 BPN Operation _

A summary description of BPN operation is described to illustrate how the
BPN can be used to solve complex problems. A three layer back propagation
architecture is shown in Figure 2.1. The layers are fully interconnected. When
signal patterns are applied to the input layer of the network it propagates upwards

11



Qutput read in parallel

Input applied in parallel

Figure 2.1 The general back propagation network architecture.
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towards the output layer through the interconnections of the middle layer, known as
hidden layer. It is required that the propagated signal will finally produce a
desirable output pattern.

The network learns a predefined set of input-output example pairs by using
a two-phase propagate-adapt cycle. After an input pattern has been applied as a
stimulus to the first layer of the network units, it is propagated through each upper
layer until an output is generated. This output pattern is then compared to the
desired output, and an error signal is computed for each output unit. The error
signals are then transmitted backward from the output layer to each node in the
intermediate layer that contributes directly to the output. However, each unit in the
intermediate layer receives only a portion of the total error signal, based roughly on
the relative contribution the unit made to the original output. This process repeats,
layer by layer, until each node in the network has received an error signal that
describes its relative contribution to the total error. Based on the error signal
recetved, connection weights are then updated by each unit to cause the network to
converge toward a set that allows all the training patterns to be encoded.

The significance of this process is that, as the network trains, the nodes in
the intermediate layers organize themselves such that different nodes leamn to
recognize different features of the total input space. After training, when presented
with an arbitrary input pattern, the units of the hidden layers of the network will
respond with an active output which is very close to the target value.

As the signal propagates through the different layers in the network, the
activity pattern present at each upper layer can be thought of as a pattern with

13



features that can be recognized by units in the subsequent layer. The output pattern
generated can be thought of as a feature map that provides an indication of the
presence and absence of many different feature combinations at the input. The total
effect of this behavior is that the BPN provides an effective means of allowing the
total system to examine data patterns that may be untrained and to recognize the
corresponding output.

Several researchers have shown that during training, BPNs tend to develop
internal relationships between nodes so as to organize the training data into classes
 of patterns. This tendency can be extrapolated to the hypothesis that all the hidden
units in the BPN are somehow associated with specific features of the input pattern |
as a result of training. Exactly what association is may or may not be evident to the
human observer. What is important is that the network has found an internal
representation that enables it to generate the desired outputs when given the
training inputs. This same internal representation can be applied to inputs that were
not used during training. The BPN will classify these previously unseen inputs
according to the features they share with the training examples.

2.2.2 Mathematical Analysis on BPN

In this article, a rigorous mathematical description of BPN will be
represented with the detail derivation of generalized delta rule (GDR), which is
the learning algorithm for the network. Figure 2.2 is the repetition of Figure 2.1
where suffix are included to serve as the reference of the discussion. The BPN is a
layered, feedforward network that is fully interconnected by layers. There are no
feedback connections and no connections that bypass one layer to go directly to a
later layer.

14



Figure 2.2 The BPN network with suffix

15



The network will be trained to leam a functional mapping y = ¢(X) : X €

R, y € RM. A set of P vector pairs of the function are (xy, ¥1), (X2, ¥2), - - - (Xps ¥p)-
Considering the mapping to be nonlinear and multidimensional, the iterative
version of the simple least square method, called steepest descent technique, will
be employed.

An input vector, Xp = (Xp1, Xp2, - - - Xpn), IS applied to the input layer of the
network. The input units distribute the values to the hidden layer units. The net
input to the jth hidden unit is ‘

N
netpjh = z W_};l . xlﬁ ase .. aes eae (2.1)

i=1

where w;" is the weight on the connection from the ith input unit. The “h”
superscript refers to quantities on the hidden laiyer. For a defined activation
function of this node, the output of this node will be

ip; = £ '(nety") O 3 )

The equations for the output nodes are

L
Detp’ = D Wijuipy e e e e (23)

i .
Op = i°(etp”) o e e e (24)

16



where “0” superscript refers to quantities on the output layer. The initial set of
weights represents a first guess as to the proper weights for the problem.

The error value at a single output unit “k” is defined as 8py = (Ypx - O,
where the subscript “p” refers to the pth training vector, and ypy is the desired
output value. The error that is minimized by the GDR is the sum of the squares of

the errors of all the output units.

M
Ep=05. D00 w0 e e e (25)
k=1

To determine the direction in which to change the weights, negative of the
gradient of Ep, VEp, with respect to the weights, wy; is calculated. Then, the
weights can be adjusted in such way so that the total error is reduced.

Considering only for the kth output unit, the component of VEp is
calculated separately.

Ep=053 (Y ~Opk)? e o e o (2.6
k

JE oY netH
_: =—(Yp — Opy). ko i 2 oo @D
oWy Onetp) Owy;

17



The last factor in Eq. (2.7) is

t© L -
) 8 S timise  w  w @8)
3ij awkj 1

Combining Eqs. (2.7) and (2.8), the negative gradient is

OEp

P p = (y Pk — O Pk ) fl? ! (net (l:)’k ) 1 Pj . .es soe aen (2.9)
kj

Thus the weights of the output layer are updated according to

ijo(t + 1) = ijo(t) + Ap ijo(t) - cee aee vee (2.10)
A wig® = 1. (¥px - Op)-£i” (netpy”).ip; (2.11)

The factor 1} is called the iearm'ng rate parameter. It is usually less than 1.
The weight update Eq (2.10) can be reformed by defining a quantity

Bx” = (Yek - Op )™ (nete)
=t (net”) e w  (212)

The weight update equation thus becomes

W't + D =W’ + 1.Bpr g e e e (2.13)

18



So far only the weights of the output layer have been modified. The weights
of the hidden layers should need modification as error signal propagates
downwards. Going back to Eq. (2.6) :

Ep=05.3 (ypx —Opx)’
K

=0.5.> (yp ~ £ (net$y))?
k

=0.5. 3 (vpx — £ wh-ipy)’
k ]

Again, iy; depends on the weights on the hidden layer through Eqs. (2.1) and (2.2).
Exploiting this fact to calculate the gradient of Ep with respect to the hidden layer
weights :

OEp 9 2
— =032, ——(ypx —Op)
ow'l %aw?i

OOp, dnetdy) Dipj Oneth)

s 2 . 2.14)
O(netdy) Oipj  H(netp;) ow'

=-2 (ypk ~Opg).
K

= zk:(yp,, ~Op). [ (nety ) wp . f) (nethy).xp ... (2.15)
With the help of Eq. (2.15) the weights of the hidden layer are updated.

o.w;i" = 1.5 (nete")xei. T (Ypx —Opi )£ (net ) wg;  (2.16)
k

19



where 7 is once again the learning rate.

The weight updating Eq. (2.16) for the hidden layer can be rearranged with
the help of 8y° from Eq. (2.12).

Bo.w;i" = . (nety"). xp;. 3 OPk-WE v e e (217)
k

A hidden layer error term similar to 8x° can be defined.,

8y = £™(netp™. 2 0% wi; - e e (2.18)
k

Finally, weight update equation for the hidden layer is reduced to the following

form :
h o h h
Wii (t +1) = wii (1) + 1.8p;" xp; 2.19)

Before leaving this section there is one point yet to be mentioned. So far the
activation function of the nodes were mathematically defined by Egs. (2.2) and
(2.4). These functions require to be differentiable. The simplest of all that can be
thought of is surely the straight line function. But for a nonlinear mapping the
activation function should have to be nonlinear. The most utilized function
prescribed by Hopfield is the sigmoid function. It is said that this function closely
resembles the biological neuron activation. The mathematical equation of sigmoid
function is given below.
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fi (nety®) = 0.5.(1 + tanh().net;”)) .- e e (220)
The derivative of the sigmoid functjon can be arranged in the following way
87(ety’) = £°(16) = On(1-Om) o o . (221)

2.2.3 BPN Features

In the previous article relevant mathematical equations required for BPN
programming were presented. A computer program “LEARN.FOR” (Appendix-2)
has been developed based on those equations. This program will calculate the .
weights of different layers for network convergence within acceptable error limit.
Apart from the mathematical analysis of BPN, certain practical features of its
algorithm require special attention which are discussed in this article.

¢ Training Data : There are no hard and fast rule of selecting the training
paiterns for BPN learning. Experience is often the best teacher. Yet it should be
kept in mind that BPN is very good in generalization but equally bad in
extrapolation. If 2 BPN is inadequately and insufficiently trained on a particular
class of input vectors subsequent identification of members of that class may be
unreliable. So training vectors should be selected in such way that they will cover
the total range of variation the network might experience in practical field. For this
present project 55 input patterns were generated which ultimately converged
satisfactorily for about 896 patterns.

* Network sizing : The size of the input and output layer are usually dictated by
the nature of the application. Determining the number of units to use in the hidden
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layer is not so straight forward. The main idea is to use as few hidden layer umts as
possible. Because this makes the learning process fast and implementation of the
network easy. But in case of too much complex mapping, size of the hidden layer
may be large for network convergence. Usually networks are initially designed big
in size. After learning, the network is pruned by examining the weight values.

+ Inmitial weights : The initial weights are generally selected at random. Values
within 0.5 are chosen frequently. But there is always a possibility that the network
may stuck to a local minimum in weight space Figure 2.3 illustrates this
phenomena. Once a network settles on 2 minimum, whether local or global,
learning ceases. If a local minimum is reached, the error of the network may still be |
unacceptably high. In such a case initial weights need to be changed. Sometime
increase in number of hidden layer or learning rate can fix the problem. But if the
error keeps within acceptable limit, whether the network has stuck into local or

global minimum does not matter.

¢ Leamning rate parameter : Selection of the value of the learning rate
parameter, 1], has a significant effect on network performance. Usually, 1 must be a
smaller number, on the order of 0.05 to 0.25, to ensure that the network will settle
to a solution. A small value of 1 makes the iteration process slow. Too large value
of 1 may make the network bounce around too far from the actual minimum value.
It 1s often éuggested that 1} initially kept high and as the network proceeds close to
convergence, the value of 1 be reduced. Learning rate can also be modified just
like the weights are updated within the computer program. For the present project it
has been found that a constant 1) of 0.2 is good enough for convergence.
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2.3 BPN FOR REACTIVE POWER CONTROLLER
The preceding section has elaborately explamned different aspects of BPN

algorithm. In this section total attention will be focused on the project of developing
a “Reactive Power Controller” based on BPN. s

The mathematical expression for reactive power is

KVAR = (VOLT.CURRENT.SINOY1000 ..  w. .  (222)

where, O is the phase angle difference between voltage and current. Hence, it is

evident from Eq. (2.22) that the network will have three input and one output
variables. The network will converge for a three dimension, nonlinear,
multiplication mapping. If the complexity of the network can be reduced to some
extent, then the leaming procedure of the network as well as its implementation
will be much more easier. The following articles are devoted on the manipulation

of input and output variables to reduce calculation complexity of the network.

2.3.1 Input Variables of the Network

The three input vanables of the network are line voltage (V), load current
(I), and the phase angle difference (8) between V and 1. The objective of a reactive
power controller is to maintain the power factor of the system within an acceptable
range. To perform this, the controller delivers reactive power to the load from a
capacitor bank connected in parallel with the load. In a power system, fluctuation
of voltage range within a small limit. Moreover, because both the load and the
capacitor bank are placed in parallel, any fluctuation of the voltage will equally
effect the amount of KVAR demanded by the load as well as the KVAR supplied
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by the capacitor bank. So, we can eliminate the necessity of voltage sensing in the
input. The phase angle difference, 0, can have a positive or negative value
depending on whether the current is lagging or leading the voltage. To reduce
complexity, 8 is restricted only to its positive value, A simple module has been
designed later to distinguish the lead-lag condition. Generally, in an industry, the
power factor varies within 1.0 to 0.6. This practical consideration will limit the
variation of © within 0° to 52° Again, a power factor above 0.95 is quite
acceptable for the power system. So, sensing KVAR for a power factor above 0.95
is not required. This consideration prohibits the variation of © under 18°.

The maximum current sensing capability of the circuit has been limited up
to 7 amperes for the time being. Of course, this rating can be enhanced several
times with the use of current transformer. Capacitor banks delivers reactive power
in discrete mode. There is always a limitation that the capacitor bank cannot
deliver reactive power under a certain extent. So, training patterns, where KVAR
demand is below unacceptable limit, can be eliminated.

2.3.2 Output Variable of the Network

The only one output variable of the network is the KVAR requirement. The
target pattern of the output is slightly modified in the computer program
LEARN.FOR (Appendix-2) so that the output of the network limits within -0.4 to
0.4. It is focused that if the target pattemn resembles a symmetry with the origin,
then the net inputs in the hidden layers will be concentrated on the part of the
sigmoid function ranging from -0.4 to 0.4. Figure 2.4 shows the graphical mapping
of the two input variables with the output variable.
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Figure 2.4 A 3-D mapping of inputs with the output.
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2.3.3 Hidden Units of the Network
Initially the number of hidden units is arbitranily chosen to be 4. The
activation function of the hidden layers are flat sigmoid (tanh(0.5.net)) function.

Hence, a BPN model has been introduced consisting of two input units, one
output unit and 4 units of hidden layer having sigmoid activation function. For the
conventence of proper convergence, all the mput vectors are made fraction in the
computer program LEARN.FOR (Appendix-2). The current vector is divided by an
arbitrary constant 9.6 as well as the phase angle is divided by another arbitrary
constant 98.7.

2.4 CONVERGENCE OF THE NETWORK

The BPN model was trained by 55 input patterns. The patterns were
generated by within the program “LEARN.FOR” and was stored in a data file
named “OUTPUT.DAT” (Appendix-3). Initial weights were chosen arbitrarily, At
the beginning of training the learning rate was kept at 0.2. As learning proceeded
and became slower, the learning rate parameter was made a function of error (1 =
40.error). The weights of the network after satisfactory convergence are given
below :

e Total iteration cycle : 576440

e Final RMSerror: 0.60033

e Weights fornode 0 : W, =2.028, W;, = 0.01, W, = 1.048, W, = 15.535
e Weights fornodeI: W;;=0.6044, W,; =2.968, W5, =2.791, W,, = 4.81
o Weights at output : W, = 4.220, W, = 5.976, W, = -7.4676, W, = 0.6
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To check the convergence of the learned weight, another computer program
“CHECK.FOR” (Appendix-4) is developed. This program checked the weights for
896 generated test pattern and found 844 of those data had errors less than 0.001.

Figure 2.5 shows the correlation between target and output values.

For a perfect convergence the relation between target values and output
values should have abided a perfect equality relation; i.e. target = output. The
graphical resuit show that the gradient of the best fit line is 1.002 and the line
constant is 0.0008756. This result indicates that output ~ target. So the obtained

converging result is satisfactory.

2.4.1 Hidden Units

To observe the response of the hidden layers of the BPN network the
"CHECK.FOR" program generates output data for each of the four nodes of the
hidden layer. The behaviors of the four nodes for the test patterns are shown in
Figure 2.6.a to 2.6.d. It will be observed that each node is activated only within a
certain portion of the sigmoid function. This observation is very important because
during the implementation of the hidden layers only that portion of the sigmoid
function will be .implemented within which the node activates. A detail analysis
will be forwarded in chapter 3. Moreover, it is seen that, response of node 4 shown
i figure 2.6.d has its output limited within 0.98 to 1.0. So it can be predicted that
node 4 acts as a fixed bias for the network module because its output i1s always
confined within the very small region close to unity of the sigmoid function. The
fixed biasing introduced by this node is W, which equals to -0.6. So the pruned
BPN architecture ultimately reduces to a network consisting of three hidden unit

and one fixed biased unit, which is drawn in Figure 2.7.
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Figure 2.5 The correlation between output and target values of the test patterns.
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Figure 2.7 BPN module for the Reactive Power Controller.
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2.5 BPN WITH PIECE-WISE LINEAR ACTIVATION

In the preceding section, BPN model was developed based on a non-linear
sigmoid activation function. Hopfield [32] introduced an electronic circuit using
nonlinear amplifiers and resistors, which suggests the possibility of building the
sigmoid activation function using VLSI technology. But it is easier to implement
ptece wise linear function with diodes and resistors. In this section, a new BPN
model will be designed with piece-wise linear activation function in the hidden

units.

2.5.1 Segmenting the Sigmoid Function
The sigmoid function will be segmented in a number of sections so that it
can be closely approximated by linear functions. Figure 2.8 shows the resemblence

between these two functions. The equations for PWL are given below :

y = 0.4475.x 12<y<1.2 w e (223a)
y=0.263.x+0.2214 1.2<y<22 w e (223.b)
y=0.12167.x+0.53233 22<y<3.2 - e (2230

y=0.04878x + 0.76555 32<y<42 - e (223.4)
y=0.02955.x +0.864634 4.2<y<52 - e (223

y=1 52<y - e (2239
y=0263x-02214 -12>y>-22 w e (224)b)
y=0.12167.x-0.53233 22>y>-32 e (2.240)
y=0.04878.x-0.76555 -3.2>y2>-42 - e (2.24.4)
y =0.02955:x - 0.864634 42>y >.52 v e (2.24€)

y=-1 52>y - e (2240
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To get proper convergence, it is mentioned in the mathematics of BPN that
the activation function should be differentiable. The PWL activation function
proposed here may not be differentiable as a whole, but it is piece wise
differentiable. So, BPN learning 1s possible. Though Egs. (2.23.f) and (2.24.f) are
of constant values, yet a slope of 0.01 is assumed during learning process. A

computer program, LRNSRT.FOR (Appendix-5) has been developed on this
respect.

2.5.2 Training of the Network -
The BPN model 1s trained with the same 55 leaming patterns used in the

previous section. But this time number of hidden units has been increased to six. |

The learning rate parameter has been unchanged to 0.20 althrough the training

process. Afier satisfactory convergence, the results of the training process are given

below :

e Total iteration cycle : 80800

¢ Final RMS error: 00099

¢ Weights for node 0 : W, =-1.644, W, =-1.69, W; =4.77,
W, =4305, W;,;=-8416, W, =2.38.

e Weights for node 1 : W;,=-12808 W,,=2158 W4,=-5376

W, =3.525 W,=32767, Wg,=-0.11
e Weights for output node: W, =-1.0811, W,=1.241, W;=-0.192
W,=-2.0332, W;=-0.269, W;=188

The BPN architechture for this purpose is shown in Figure 2.9.
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Wn = ‘1644, Wy = -1.69, W;” = 4.77,
W41 = 4305, WSI = -8.416, W51 = 2.38,
Wi, = -1.2808, W,, = 2.155, Wi, = -5.376
Wy =3.525, Wy, =3.2767, We = -0.11
W, =-1.0811, W, = 1.241, W, = -0.192
W,=-2.0332, W;=-0.269, W.=1.88

Figure 2.9 The BPN architechture of the neural network module with piece-wise

finear activation.
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2.5.3 Convergence of the network

A computer program, CHKSRT.FOR (Appendix-6), has been developed to
check the convergence of the network with 896 test patterns. The correlation
between output and target values are given in Figure 2.10. Comparing this
relationship with the previous correlation found in Figure 2.5 it is seen that the
previous one converged better than the present case. This is expected because the
final RMS error for this case is higher than the previous learning case. Yet the
gradient of the best fit straight line is 1.00673 and the line constant is 0.00186
which indicates that output ~ target. So the converging result may be inferior to the
previous leamning case but it is still satisfactory. Moreover, it is realized that 100%

accuracy is not required for power factor sensing, which is our ultimate desire.

The responses for each of the hidden layers are given in Figure 2.11.a to
2.11.f. These graphs show that the response of the nodes are limited within
particular regions. For example, node 1,2 and 6 have response within the first two
straight Imnes of the sigmoid function. There is only one break point for these three
hidden nodes. So, it is only necessary to implement that portion of the piece-wise
linear sigmoid function within which the node operates. This consideration
simplifies the implementation of the hidden layer which will be explained in details
in chapter 3. On the other hand node 4 and 5 have their response spreading through
three break points. So during the implementation of these two nodes special
attention and care has to be observed. The response graphs of figure 2.11.a to
2.11.f will be needed during the implementation of the nodes which is described in
detail in chapter 3.
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2.6 SENSITIVITY ANALYSIS OF THE NETWORK

So far, a neural network model has been designed to perform the functional
mapping Lsin6 for developing a reactive power controller. A theoretical analysis on
the designed neural network will now be examined . Some interesting behaviors of
the network during learning will also be put forward for future analysis in this final

section.

During the period of learning process of the network with sigmoid activated
function in the hidden layer, a faster convergence has occurred in comparison to the
piece-wise linear activation function. This phenomena was expected because the
sigmoid function is smooth and differentiable. Moreover, the number of hidden
nodes required for learning is half of that required with piece-wise linear activated
function. The percentage of error was also greater in the latter case. So, obviously a
smooth and differentiable function is preferable in the hidden nodes. But, the
present study has proven that, convergence with ramp activation may be difficult,

but not impossible.

Learning rate has influenced the speed of convergence. Initially the learning
rate was kept constant. As the convergence of the network became slower, the
learning rate was made a function of root mean square of the error of the network.
This increased the speed of convergence. But interestingly the change in leaming
rate had inverse effect with the network having piece-wise linear activation. Any
change in the initial value of the learning parameter had increased the root mean
square error of the network. So, for the second network a constant learning rate was

observed.



The mapping of the function I.sin® seems simple. But practically it has
proven to be pretty difficult. Because the network has to converge for almost
infinite combinations of I and 6. During the process of learning, the network used
to stuck to a minimal where the change in error halted. To simplify such case, a
condition was imposed on the neural network. It was considered that a minimum
KVAR demand of 0.233 will be neglected by the RPC having maximum capacity
of 1.2 KVAR. This consideration increased the convergence of the network to a
greater extent.

The final network to be implemented by electronic circuit is shown in Figure

2.9. As it is closely observed, the response data of its nodes shows that node |
number 4 of the hidden layer is the most sensitive node among the others. Because,
the response of node 4 ranges within 2 volts to 5 volts, and has the highest
amplification weight of 2.0332 connected with the output node. So it may fairly be
assumed that node 4 is the controlling node of the network and needs special
attention during implementation. Observing the other nodes, it is seen that node 6 is
almost dependent only on input 1. Because input 2 has 2 weak connection of 0.11
compared to the weight 2.38 connected with input 1.

Hence, a neural network module for the Reactive Power Controller has been

designed and its various aspects are analyzed. The next chapter will concentrate on
the implementation technic of the network.
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CHAPTER THREE

IMPLEMENTATION OF THE NEURAL
NETWORK



3.1 INTRODUCTION

This chapter explores the steps involving the development of neural network
based reactive power controller. A hardware implementation of a fully analog three

layer perceptron artificial neural network is presented using simple electronic tools.

A methodology is proposed showing the technology to by-pass the need of

amplifiers for constructing synaptic weights in the hidden layers of the neural
network. Mathematical analysis is forwarded in this respect. The implementation
technology introduced in this chapter is a generalized approach cohsidering the
aspects from a broad point of view. So this chapter is dedicated not only to
implement the neural network based RPC, but it also invents a very unique
technology of implementing neural networks in gencral with the simplest of ‘
electronic tools. Implementation of other'auxilia.ry interfacing circuits for the RPC
is also described in this chapter. Finally, the performance of the network has been

successfully tested.

3.2 CONTROL ALGORITHM

The neural network module designed in chapter 2 consists of two inputs and
one output nodes. It was elaborately explained in chapter 2 that the network will
sense load current and power factor in their equivalent DC voitage and will
produce an output in DC which has a linear relation with the KVAR demand of the
load. The control circuits of the developed RPC will sense the output of the neural
network and initiate proper switching signals to actii'ate capacitor banks connected
with the RPC to supply the KVAR. Based upon the model designed in chapter 2 a
simplified line diagram of the complete NN based RPC is developed in Figure 3.1.
It shows the control algorithm of the proposed analog neural network based

Reactive Power Controller.
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3.3 CIRCUIT IMPLEMENTATION

The hardware development of the RPC is divided in four main stages. The
first stage develops the rectifier-filter circuit block to convert the AC input signals
to equivalent DC inputs. The next stage invents a unique technique to implement
the neural network module. The third stage describes the implementation process of
the KVAR control circuit block. Finally, a brief description of the widely

implemented capacitor switching block is presented.

3.3.1 Input Signal Conditioning Circuit

The neural network module for the proposed RPC has two inputs; current
and power factor angle. Both of these signals should be in DC form. Simple
rectifier-filter blocks is developed to perform this AC/DC conversion. The
following article is presented in two separate sub-articles for the two different input

signal conditioning circuits.

3.3.1.1 Current Sensing Unit

The high ampere AC load current is stepped down to maximum S amperes
small signal AC current by a C.T. as shown in Figure 3.1. The AC current is
converted to equivalent AC voltage signal by a power resistor. Half wave
rectification is used for the AC/DC conversion so that both input and output
signals have identical grounding. The input-output relation of the circuit should
abide Eq. 3.1, which was assumed during leamning of the neural network
(Appendix-5). The circuit diagram of this block is given in Figure 3.2.

DC output signal for current = {(rms current from C.T.)x16}/9.6 @G.1)
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One interesting addition in the above circuit is a constant -1.11x(-3.R/R} =
3.33 volt DC biasing. This biasing is introduced because, during the leaming
process of the neural network module described in chapter 2, the current range was
limited within 2 ampere to 7 ampere for the ease of convergence in the leamning
software routine “LRNSRT.FOR” (Appendix-5). Eq. 3.1 indicates that rms 2
ampere corresponds to 3.33 DC voltage. The current range can be changed to the
conventionally used 0 to 5 ampere range simply by introducing a DC biasing of
3.33 voltage. Hence, an input current of rms 0 to 5 ampere should be linearly
converted into 3.33 to 11.66 DC voltage through this implemented circuit. The
gain control resistance is provided to establish this lincar relationship.

3.3.1.2 Power Factor Sensing Unit.

The phase angle difference between current and voltage is converted in
equivalent DC voltage through the circuit shown in Figure 3.3. The current signal
is taken from the power resistor terminal and the voltage signal is taken from a
simple voltage divider. An equivalent voltage drop across the power resistor will
act as the reference for the sensing of current. On the other hand, a small sample of
the 220 volt power line from the voltage divider will be sufficient to obtain the
phase angle between the voltage and the current. The width of the output pulses
from the comparator shown in Figure 3.3 is directly related with the phase angle of
the power line. Finally, the pulses are rectified and converted to pure DC voltage.
The relation between phase angle and DC signal output is linear from 18° to 52°
and folloWs Eq. 3.2. The variable gain control resistance will help to establish this

relation.

DC output signal for phase shift = {(phase shift in degrees) x16}/98.6 (3.2)
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3.3.2 Simulation of Activation Function

Thus section describes the technique used to implement the neural network
module. The fabrication of the neural module is based on the theoretical
investigation of the converged network described in chapter 2. It has been
mentioned in the conclusion of chapter 2 that piece-wise linear (PWL) activation
function will be implemented for the purpose. This section also gives a broad
description of the methodology forwarded for implementing neural networks in a
generalized way. Before going through the implementation details, a general

mathematical analysis of the neural network is forwarded.

3.3.2.1 Mathematical Analysis

The mathematical analysis forwarded in this section is applicable for any
general neural network having piece-wise linear activation function. So, instead of
constricting the mathematics only within piece-wise linear sigmoid function, a more
general approach has been taken by considering the ramp function as the activation
function of the hidden layers of the neural network having 'n-1' number of break

points with 'n' number of different gradient lines.

Figure 3.4 shows the j-th node of the hidden layer of neural network having
PWL activation function. The break points of the function are represented by C,,
C and C;, and the slopes are denoted by m,, m,, m; and m,. The number of mputs
to the j-th node of the hidden layer is 'L" Weights connected from the inputs to the
j-th node are W1, Wis, Wis, .... Wj,. The output of the j-th node connected with the

output layer of the neural network is O;.
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For a generalized solution, the sigmoid function is considered having ‘n’ no.

of slopes and ‘n-1" no. of break points. The output to the j-th node O; is related with

the input Xj by
L
X= ) LW, e e e (33)
i=1
O_i = ml.XJ- 5 Xj < C1 see aee .o - (3.4)
)i
and, O;=m,X;+> (m_, -m,).C,_|.Ca1 <X;<C, O X))
r=1 :

Equating Eq.(3.3), (3.4) and (3.5),

L
OJ' =m. Z Ii . W_]l » }{J < C1 .re ere . . (3.6)

i=]

L n
Oj=my Y LW, + ) (m_ —-m)C . C<X<C . 3

i=1 =1

3.3.2.2 Implementation

The above equations govern the relations among inputs and outputs of a
neural network having PWL activation. The equations were developed in a
generalized way. So, the implementation technology developed in this section is
also described in a broad and extensive way; applicable for implementing any
neural networks. Figure 3.5 shows a simple electronic circuit with diodes and
resistances to fabricate the PWL function together with the weights connected with
the hidden nodes.
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In the circuit shown in Figure 3.5, the input signal I; of the NN module is

considered proportional to the voltage V;. Output voltage O, for |0 < [By] is,

L
{Z V.Gj;
i=1
o=t 4 . . . . 69
i=1

le /Gjl = Wj;)_ I’ sz = e = WJ'L I’ GJL P P e (3.9)

Solving Eq. (3.6) and Eq. (3.8)

L .
and, Gy = (1-m. YW, ).Gy / (1. Wj) e e o (3.10)

=1

Assuming a suitable and practical value for one of the resistances the values of the

others can be established. For [B,| =[O} > By,

[iwg.eﬁ}c[fsl.ejw]
O = =1

1

g L+2
i=1

From Eq. (3.7) and Eq. (3.11)

L
GjL+2 - [(l'mz. ZGJI )'Gjl /(mzwﬂ)] - GjL+l e vee (3.12)

1=]

(3.11)

L+2
and, B; = [Cr.(m; - my). D Gii}V/ Gjrsz v e e (3.13)

1=1

52



From Eq. (3.12), the value of Gy, is obtained, while Eq, (3.13) establishes the first
breaking potential. A generalized equation substituting (3.12) and (3.13) are
L n-l
GjL+n = [(l-mﬂ Z G]l )-Gjl / (mnWﬂ)] -Z GjL+i "ee (3.14)
i=] =1

L+n n-2

n
and, Boy = [{ ) (m,_~m,).C,_,. 3G;;}- B;.G i+is1 1/ G (3.15)
=1 i

i=1 1=1
It is evident from Eq. (3.10) that for a non negative value of Gjr+ the condition that
should be imposed is,
L
m;. YWy <1 - (3.16)
i=1
So, there is a fair amount of possibility that all nodes cannot be implemented with a
voltage divider circuit. Yet, this condition can be satisfied with some adjustment to
the input values. Eq. (3.7) shows that the weights can be attenuated by a certain
factor without hampering the output O, provided that the inputs are conversely
amplified by the same factor. So, by choosing a proper attenuating factor Eq. (3.16)
can be satisfied. It is not necessary to implement the whole PWL, function for every
node. Rather, it is essential to implement that portion of the PWL function within
which the node operates. This consideration has simplified the implementation of
the hidden layer. Finally, the output nodes are developed by using analog adders.
Thus, necessity of using amplifier to implement weight for the hidden layer is

eliminated.
Thus, it has been shown that a voltage divider circuit is quite capable to be

used as the nodes of the hidden layer. The neural network developed for the

reactive power controller is described in appendix-7.
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3.3.3 KVAR Contro! Circuit

In the previous section the neural network module was developed to sense
the amount of KVAR required by the power system. A linear relationship between
the output of the neural network and the KVAR demand was obtained. This section
explains the development of the control circuitry required to switch proper

capacitor banks to improve the power factor of the system.

So far it was considered during the training of the neural network that
maximum 7 amperes of current will be sensed by the network. The operation of the
network showed that for this maximum current rating, the output of the neural
network is 2.8 volts and the minimum KVAR sensed by the neural network
corresponds an output of —3.03 volts. Hence, for an N step capacitor switching |
circuit the output range of —3.03 volt to 2.8 volt of the network should be divided
in N linear ranges. The proposed RPC is designed with 3 stages of capacitor
switchings. For such case, a maximum of 2°~1 = 7 steps can be obtained. The
KVAR control circuit of the designed RPC is implemented mainly with two IC’s;
LM3914 and 741.8148. Along them, an invertor IC 7404 and a voltage regulated
IC 7805 were also used for the KVAR control block. The pin and block diagram

of only the main two IC's are described in the following article.

3.3.3.1 Function of the IC’s

LM3914 : This IC is a simple analog level triggering chip consisting of 10 voltage
comparators. This IC is widely uéed in bar displaying and is capable of driving 10
LEDs together. In this case, it is used to separate the linear output range of the
neural network in seven uniformly divided sections. The internal components of

this IC is shown in Figure 3.6.
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Figure 3.6 Internal representation of [C LM3914
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The figure shows that there are 10 voltage level comparators. The number
of those comparators being used for the KVAR control circuit depends on the
number of steps demanded in the capacitor switching stage. The biasing voltage,
Vu and VL, applied to the potential divider circuit of LM3914 will be obtained

from solving the two Eq.s 3.17 and 3.18 given below:

(V- VONI0+ Vi=Vir e e e (B17)
(VH - VL)(I/IO) + VL = VLT e ‘es e (3-18)

Where :

Vy = Biasing voltage applied to Ryg

V. = Biasing voltage applied to Ry o

Vur= Threshold voltage to tngger maximum KVAR demand
Vir = Threshold voltage to trigger minimum KVAR demand
N = No. of capacitor switching steps.

7415148 : This is a Decimal/Binary high priority encoder chip. The pin diagram
of this IC is shown in Figure 3.7.

The N signal outputs from LM 3914 will be the inputs of 741.S148. The
three outputs of the encoder chip will generate binary signals equivalent to its
highest input being activated. The binary signals will activate corrersponding
capacitor switching relays which is explained elabourately in the next section.
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Figure 3.7 The pin diagram of 741.§148
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3.3.3.2 Elimination of Low KVAR Demand

Recalling back to the learning algorithm of the neural network developed in
chapter 2 reminds that the network was not trained for patterns corresponding to
very low KVAR demands. A simple logic function was introduced in the program
“LRNSRT.FOR” (Appendix-5) for this purpose. The logic block divides the output
function 1sin® in two regions by two straight lines defined by Eq. 3.19 and Eq.

3.20.

Input; x 0.25 + Tnputy = 0.2675 v o e e (3.19)
Inpll11 + Inpu12 =(.53 an. wee .. aee (3.20)

It was observed that the two input data combinations falling above both of the lines
gives a KVAR output greater than 0.2 KVAR. So, any input combinations not
satisfying the equations or having outputs less than the right hand side of the
equations will be eliminated through the logic block. In this way the low KVAR

demand of the circuit can be removed.

The block representing this logic function is implemented with three
comparators shown in Figure 3.8. The upper comparator having output X will be
positive; i.e. +15 volts only when the two input combinations lies above the Eq.
3.20. Similarly, the lower comparator having output Y will be positive; i.e. +15
volts only when the two input combinations lies above the Eq. 3.19. Fmally the
three resistance matrix is built to create an analog logic circuit. A brief analysis is
presented in table 3.1. The output of this logic block will be used to activate the
encoder chip by connecting it to the EI pin of 741.S148. The complete connection

diagram of the control circuit is given in Figure 3.9.
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-8.48
volt

L./4

-4.28
volt

+5
volt

3R

3R

To EI pin of
7418148

Figure 3.8 The logic block prohibiting the KVAR control circuit to operate at very

low KVAR demand
Operation of the logic block:

X =-15 volts if I, + I; > 8.48 volts; else X = +15 volts
Y =-15 volts if [,/4 + I, > 4.28 volts; else Y = +15 volts
Output = X/5 +Y/5 + 2.0

X Y Analog output | Logic output | Operation of
7 7415148
+15 +15 8 1 Prohibats
+I5 -15 2 1 Prohibits
15 +15 2 1 Prohibits
-15 -15 -4 0 Inhibits

Table 3.1 Operation of the logic block
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Figure 3.9 The block diagram of KVAR control circuit



3.3.4 Capacitor Switching Circuit

The three controlling signals A0, Al and A2, obtained from the KVAR
control circuit described in the previous article, is used to initiate three individual 5
volt DC normally open relays. These relays are in sertes with the magnetic
contéctors of each capacitor banks. The block diagram of capacitor switching

circuit is shown in Figure 3.10.

The three controlling signals AO, Al and A2 dnves the base of the
transistors to saturation or to cut off region according to the digital signals
generated by the KVAR control circuit. Hence, the transistors acts as switches for
the DC relays. The DC relays are initiated by these signals from the KVAR control
circuit, current flows in the coil of the magnetic contactors from L, 1o L, and the
capacttor banks are thus connected with the three bus bars. The connected capacitor

bank delivers reactive power to improve power factor.

This chapter has described the tmplementation of the NN based RPC. The
next chapter will discuss on the results obtained during the experiments done on the

implemented circuits and highlight on the overall performance of the network.
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CHAPTER FOUR

RESULTS



70728

4.1 INTRODUCTICN

The neural network based reactive power controller was developed
systematically step by step. Design and umplementation technology for developing
the operating modules for the NN were elaborately described in chapter 3. All those
modules were tested part by part and necessary measures were taken for precise
and accurate operations of the modules. These modules were finally joined together
to built the neural network based reactive power controller. At the end rigorous
laboratory tests were performed on the implemented network. This chapter
forwards the experimental setups and test results performed on the process of

developing the neural network.

4.2 PERFORMANCE TESTING ON THE NN MODULES

Chapter 3 has divided the complete network in four sections. They are:
Input signal conditioning umt, Activation function section, KVAR control block
and Capacitor bank switching circuit. These four modules were developed
separately and performance of ail these modules were tested precisely. This section

claborates thosce tests in the following articles.

4.2.1 Testing on Input Signal Conditioning Unit

The neural network has two input nodes. They are: Current sensing unit and
Power factor sensing unit. The circuits implemented for these two units are
described 1n sections 3.3.1.1 and 3.3.1.2. The desired response to be obtained from
these two units are expressed in Eq. 3.1 and Eq. 3.2. To observe the actual response
of both of these units a laboratory test was performed. The experimental setup is
presented in Figure 4.1.
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Figure 4.1 Experimental setup for testing input signal conditioning unit.



Different combinations of loading were presented to the input units. It was
explained in article 2.3.1 and article 3.3.1.1 that the current sensing of the neura'il
network is limited within 2 ampere to 7 ampere and the power factor angle sensing
is confined within 1.0 to 0.6 lagging. So, testing was performed within this extent.
Resuits obtained from the test are placed in table 4.1.a and 4.1.b. The graphical
output of the desired response and the actual response for both of the input signal
conditioning blocks are forwarded in Figure 4.2.a and 4.2.b. Both of the graphs
shows a remarkable resemblance between the obtained result with the expected

values. The test proved the input module to be operating satisfactorily.

4.2.2 Testing on Hidden Nodes

The developed neural network has six hidden layers. Implementation of the
hidden nodes were explained in section 3.3.2.2 and appendix-7. These sections
have elaborately explained modifications done on the weights and the breaking
potentials. Resistance values for each node were also presented in Table A-7.
Response expected from these nodes during learning are shown in Figure 2.11. But
due to the modifications mentioned above, the response curves shown in Figure
2.11 wiil need to be extended 3 times along both axis. To test the actual response of
the developed hidden nodes, a continuous AC wave of 15 volt peak to peak was
applied 1o one of the two inputs keeping the other one grounded. The output of the
nodes were observed in the oscilloscope in X-Y mode. Same test was done for the
input previously grounded; now keeping the alternate input grounded. The test
setup is given in Figure 4.3. A comparison between the expected and actual
response for node 4 is given in Figure 4.4. The graph shows satisfactory results.

Same results were obtained for other nodes also.
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Table 4.1.a Test results for current sensing unit

| No.of | Load Currentin | Corresponding D.C.
obs. r.ms. voltage
1 2.02 3.33
2 2.83 4.45
3 3.71 6
4 4.68 8
5 5.70 9.5
6 6.70 11.5
- 6.96 12

Table 4.1.b Test results for power factor sensing unit

No. of | Power factor angle | Corresponding D.C.
obs. in degrees voltage

| 12.24 2

2 20.16 3.27

3 30 5.2

4 39.6 6.4

5 41.4 6.8

6 54 8.5

7 60 9
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4.2.3 Testing on Neural Network

Afier the satisfactory operation of the mput signal conditioning units and the
hidden layers, the two modules were joined together to form the neural network for
the reactive power coniroller. The expecled response of this joint module was given
in Figure 2.10. It was mentioned in article 3.3.2 and in appendix-7 that an overall
amplification of 6 times was introduced at the output of the neural network for
better operation during convergence of the network. So expected data of Figure
2.10 needs to be multiplied six times to compare them with the actual output of the
network. To verify the performance of the combined modules, an experimental
setup same as Figure 4.1 was chosen and DC voltage output from the neural
network was compared for different loading conditions. These readings are
compared with the expected outputl of the neural network. The comparison is
shown in tabular form in Table 4.2 and in graphical form in Figure 4.5. Close

results are obtained in every case.

4.2.4 Testing on KVAR Control and Capacitor Switching Unit

The two final output modules, KVAR control and capacitor switching
circuits were tested together. The development of these two modules were
explained in article 3.3.3 and 3.3.4. Seven step three stage switching options were
made during implementation of these two units. The imnput signal to the KVAR
control block comes from the neural network output which produced voltage within
the range of -3 volt to 2.8 volt as shown in Figure 4.5. So tesling on the KVAR
control blocks and capacitor switching circuits was done by simply varying the
input voltage within the mentioned range through a variable DC supply. All seven

stage swiiching signals were observed and the triggering voltages for each step was
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Table 4.2 Test results in the neural network output

No. of | Load current | Power factor | DC output ofthe | Expected output of
obs. | in Amperes |angle in degree neu({'aohzl?twork neu(r\%}f fr;egtwork

1 2.00 37 -3.00 -2.84

2 2.78 53 -1.55 -1.51

3 2.87 54 -1.4 -1.376

4 3.53 54 -0.8 -0.678

5 3.38 36 2.0 -1.815

6 - 393 44 -0.9 -0.84

7 4.12 46 -0.7 -0.535

8 4.87 55 0.85 0.8

9 4.21 24.5 -2.00 -2.13

10 4.45 30 -1.5 -1.5

11 5.18 43 0 0.209

12 5.14 16 2.7 -2.56

13 5.55 27 -1.10 -1.11

14 6.41 20 -1.6 -1.545

15 6.8 27 -0.373 0.4
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observed and calculated through an oscilloscope. The trigger voltages for all seven

stages are menttoned in Table 4.3.

4.3 PERFORMANCE TEST ON NN BASED RPC

In the previous articles step by step development and testing of all neural
network modules were done separately. Finally, all the modules are put together to
form the complete NN based RPC. The developed network is put on to physical
operation and rigorous laboratory tests were performed on the umplemented
network. ‘The performance of the NN based RPC is compared with the
conventional microprocessbr based RPC. The following articles will highlight on

this final experiment and the observed test results.

4.3.1 Experimental Setup

The experimental setup for the tests to be done on the neural network is
shown in figure 4.6. The figure shows that the NN controller and P controller are
operating in tandem. The WP controller senses the overall line current through a
2:1 C.T. while the NN controller senses only the load current through its power
resistor. The load is made by paralleling a rheostat bank having nine 200 ohms 1
kW rheostats with two inductance banks. One inductance bank has a rating of 240
volts, 0.6 KVAR, 10x0.25 ampere inductor and the other one has 240 volts, 2.4
KVAR, 10x1.0 ampere inductor. The three stage capacitor banks have stepping in
the order of 1:2:3 and each steps had capacitors of 15f. The supply voltage was 3
phase, 220 volts line to neutral. The load current for both pP and NN controller is
sensed in single phase because the three phase power system is considered to be
balanced. Moreover, there is no decisive definition of power factor for unbalanced

three phase system.

73



Table 4.3 Triggering voltage for different capacitor switching

Step No. | Binary Equivalence | DC Trigger voltage | KVAR
1 001 -3.385 0.173
2 010 -2.35 0.346
3 011 -1.324 0.52
4 100 -0.2928 0.693
5 101 0.738 0.866
6 110 1.769 1.0392
7 111 2.8 1.213
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Figure 4.6 Experimental setup for performance test of the NN based RPC
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The performance of the NN based RPC will be compared with the
~ performance of the conventionally used pP based RPC. The operation of pP
controller has been elaborately described in Appendix-1. The pP controller
operales in digital mode and senses current through C.T. It calculates the KVAR
deﬁland from voltage and overall line current. The pP performs hunting by
swilching capacitors one by one and senses whether the power factor has improved.
It stops hunting when the power factor enter the desired range or the highest
switching step has been reached. So, the operation is a closed loop system and

switching is done through hunting process.

The capacitor switching stage for both of the uP and NN controller are built
identically. A clear description with figure of the capacitor switching stage is given |
- in article 3.3.4. As the DC relays of the capacitor switching stage are activated it
connects one of the power line to the magnetic relays of the PFI plant. These
magnetic relays then make contacts between the 3 phase capacitor banks with the
power line. A toggle switch shown in figure 4.6 is used to toggle the power line
between the uP and NN controller. When the switch connects the power line with
the DC relays of the NN controller then it is the NN controller which activates the
capacitor banks. On the other hand, when the switch connects the power line with
the DC relays of the uP controller then it is the uP controller which activates the
.capacitor banks. This technique is introduced so that both controllers can operate in

tandem and comparison between them can be made.

4.3.2 Experimental Data
Different combmations of loading were presented to the controller circuit by

varying the combination of resistance and inductance. It was kept in consideration
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that the neural network had the capacity to handle currents from 2 amperes to.7
amperes and the power faclor should nol be less than 0.5. The sets of dala taken
during the experiment is given in table 4.4 and a comparative study of capacitor

switching 1s given in figure 4.7.

4.4 RESULTS

Data obtained from the experiments clearly shows a satisfactory

performance of the NN controller as in cach and every case the power factor was
improved towards unity. The switching time of the NN controlier was also
observed to be faster than the pnP controller. The loads were varied at random. No
preset data were prepared to match the capacitor stages. The load KVAR to be
compensated, in each load combinations, was decided by the available inductive
and resistive banks. Of course, the discrete change of inductive and resistive
currents were made by combination of available load switches. The minimum
inductive current to be adjusted was limited 1o 0.25A and the resistive current to
2.2A. Tt is mleresling to note thal the connecled capacilor banks were put in such a
combination that the load power factor is properly compensated. The maximum

deviation was noted to be 0.98 pf which is within permissible range.

Although for discrete control of power factor, increase in number of stages
will make the control smoother, in this particular case it was unneccessary.
Moreover, an increase in number of stages would cause a frequent ON and OFF of
the magnetic contactors for the capacitor banks. This is not desirable. In this setup,

frequent operation of magnetic contactors were not observed.
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Table 4.4 Data obtained from performance testing onn NN based RPC

| T.ine | Uncompensated E lLoad KVAR KVAR Compensated | Compensated
current | power factor i compensated | Power factor | Power factor
i by NNC by uPC
2.00 0.79 0.269 0.228 0.99; (001) | 0.99;(001)
2.78 0.61 0.484 0.456 1.0; (010) 1.0; (010)
2.87 0.58 0.514 0.456 0.99; (010) | 0.99; (010)
3.53 0.5 0.672 0.684 1.0; (011) 1.0; (011)
3.38 0.8 0.446 0.456 0.99; (010) | 0.99; (010)
3.93 0.72 0.6 0.684 0.99; (011) | 0.99;(011)
4.12 0.69 0.656 0.684 1.0; (011) 1.0; (01 i)
487 0.57 0.88 0.912 0.99; (101) | 0.99;(101)
4.21 0.91 0.384 0.456 1.0; (010) 1.0; (010)
4.45 0.86 0.499 - 0.456 1.0; (010) | 1.0;(010)
5.18 0.73 0.779 0.684 0.99; (100) | 0.99; (100)
5.14 0.96 0.316 0.228 1.0; (001) 1.0; (001)
5.55 0.89 0.556 0.684 1.0; (100) 1.0; (100)
6.41 (.94 0.481 0.456 0.98 (019) 0.98 (010)
6.8 0.89 0.682 0.684 0.99‘;.-\(011) 0.99; (011)

* NOTE.: Figures in the brackets of the last two columns indicate the switching

states of the three stages of the capacitor bank.
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It should be noted that the maximum combination of '111' for full
compensation could not be tested with the available load facility. But the controller
for the combination was tested indirectly. The DC voltage corresponding to current
and that to power factor were applied at the input nodes of the NN so that a
situation of '111' output was achieved. The output for the case was found to be
perfectly all right and all of the switches operated. Hence, results decisivety
conctude that the implemented NN based RPC worked satisfactorily.

4.5 COST ANALYSIS

The controller circuit for the NN based RPC developed in the laboratory
costs around Tk. 2000.00 only as the electronic circuit was developed mainly with
resistances, operational amplifiers and some simple relay circuits. Comparing this
cost with the conventionally used microprocessor based RPC it is found that only
the microprocessor used in the controller circuit costs over Tk. 15000.00 in the
local market. It is true that the conventional RPC gives more options like economic
switching facilities and harmonics indications than the developed NN based RPC.
But these options can be included in the NN based RPC which has been suggested
in the future works described in section 5.2. Even if these extra facilities are
included, yet it is expected that the cost required for the NN based RPC will be half
of the cost involved in developing microprocessor based RPC. The two main
reasons for such conclusion is 1. The NN based RPC do not require sophisticated
environment for implementation and 2. The components required for developing
NN based RPC is simple and discrete fundamental electronic tools; i.e. no specially

designed electronic tool is required.
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CHAPTER FIVE

CONCLUSION



5.1 CONCLUSION

A new technology for improving power factor in an industry has been
proposed and the fast emerging control algorithm of neural network (NN)
architecture is used for this purpose. The NN based controller circuit is designed
with the widely available electronic tools, Moreover, in doing so, piece-wise linear
approximation of the smooth sigmoid function has proved quite satisfactory for the

research prospect.

First of all, an off-line training of the neural network was perfbrmed using
calculated data for input and output. When training was complete, theoretical tests
were carried out with set of data which were not used in the training phase.
Contirming the acceptable accuracy of the theoretical test, the weights and the
constants of the sigmoid functions were decided to implement. The implementation
of the NN was, then, followed as described in chapter 3. A series of test, on the
performance of the electronic circuits were performed rigorously and the

performance were found to be satisfactory.

The implemented NN based controller was compared with the
conventionally used microprocessor (uP) based controller in a power factor
improvement plant. Test results showed the superiority of the NN based controller
over the PP based controller in speed. Due to its analog nalure, it was obvious that
a NN based controller would act faster than the uP based controller. Moreover, a
uP based controller hunts for better combination of capacitor switching and a
sequence of switching stages occurs before it finally settles down. But NN based
controller already knows through the training phase the appropriate switching stage

for each KVAR demand and hunting, therefore, is not required.
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NN based reactive power controller (RPC) reduces the implementation cost
compared to the P based RPC. As the NN based RPC ‘was developed with simple
electronic circurtry, its manufacturing process is easier and no special environment

is required compared to the procedure required for (P fabrication.

5.2 FURTHER WORK
As the technology described in designing and implementing the NN based
RPC 1s quite new, there are :)pportunities of further works to be done in this area.

Some of such fields demanding special attentions are described below:

1. The implemented NN used feed-torward training. NN based RPC works on an |
open loop system. That is, it does not sense the overall line current but works only
on sensing the load current of the system. So, the implemented NN does not have
the error correction capability. This limitation may be overcome if closed loop

training is introduced to the NN controller.

2. It was shown in the thesis work that though piece-wise linear sigmoid function is
easy to implement than the smooth sigmoid, yet the time for convergence during
leaming is very long. Smooth sigmoid function is possible to implement with
operational transconductance amplifier (OTA). So, NN based RPC will be less

time consuming in training cycles if OT A based system is developed.

3. RPC works on discrete mode. But in the present thesis work the NN was learnt
with such accuracy  that NN converges for all combinations of 1sin. So, the
present NN had only one output. The NN module can be made more effective by
infroducing the capacitor switching signals to the output of the NN. This future NN
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module will have outputs equal to the capacitor switching stages and there will be a
threshold voltage deciding when which capacitor stage should stay on or ofl. So,
NN convergence for mfinite combinations of L.sin6 will not be required. This will

reduce trainng time and make NN implementation easier.

4. The present NN model was unable to converge for very low KVAR demand.
Learning was ceased in the very low KVAR demand for better accuracy. But by
introducing more than six hidden layers and applying more training cycles this
limitation can be eliminated. This approach will also reduce the clumsy logic block

developed for bypassing low KVAR demand in the present NN module.
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APPENDIX-1

Among the various microprocessor coﬁtroller available, the two widely used
relays type RM 9606 manufactured by FRAKO, Kondensatoren, D-79331,
Teningnen and BLR-MC manufactured by BELUK GMBH, D-8000, Munich 43,
Germany has been taken as an example. Figure A.1.1 shows the attractive features
of this type of controller.

A.1.1 Design and Mode of Operation

The RM 9606 of FRAKO and MC series of BELUK microprocessor
controlled power factor control relays are the latest addition of the long standing
pedigree of the reactive controllers. These relays are the result of many years
experience in this specialized field of power factor measurement and cohtrol
technology. The electronic measuring circuit has been tried and tested over many
years and now. With the introduction of microprocessor technology, additional
features are provided such as digrtal indication of the system power factor and the
number of switching steps in circuit. These two values are given out via separate

outputs, so that a printer or chart recorder may be connected.

The measurement system measures all four quadrant of the wave form and
is consequently independent of systern harmonics. This means that even when
active power is fed back onto the main bus, the control relay ensures compensation
for the reactive power which has been drawn from the main. This current-time
integrated measurement circuit has been proven over many years and is particularly

necessary on installations having thyristor-controlled machines.
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Figare A.1.1 Main features of RM 9606 type microprocessor based RPC
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The analogue signal produced by the measuring device is digitized and
processed in a microprocessor. All switching program known at this time are made
possible by means of this processor. Its output signals control miniature relays via
drive circuits which actuate the capacitor switching contactors to control the power
capacitors. The diverse features of this family of controllers, type BLR-MC, is
given in Table A.1. The only difference within the MC range relates to the number
of output relays. BLR-MC 03 has 3 whilst BLR-MC 14 has 14 output relays. A
total of six different v_ersions are available : MC 03, MC 06, MC 09, MC 12 and
MC 14. The switching programs can be selected by means of small DIP switches
located behind the removable nameplate on the front of the relay. The possible
programming are listed in Table A.1. |

The digital indicator will show the number of steps switched on the ‘S’ or
‘K’ program. The 'S’ program actuates the capacitor sequentially, e.g. from 1 up to
6 and go back from 6 down to 1 or 0. The ‘K’ programs always actuate and
deactivate steps in the same direction of rotation; 1-2-3-4, “down”; 1-2-3, “up”: S-
6-1-2, “down” : 4-5-6-1-2 etc. The ‘K’ programs thus distribute operating hours
evenly over all capacitors and also permit faster regulation. Faster switching is
possible because, once a capacitor stage is deactivated, it has enough time to
discharge before it is reactivated. Even in a limit situation, when all steps of a
capacitor bank are switched in and, because of the load, one stage has just been
deactivated and must be reactivated immediately afierwards, the BLR-MC relay
takes account of this independently and delays the reactivating time accordingly.
The well-proven and problem-free matching to system conditions by means of cose
and C/k adjustable settings remains unaltered in spite of microprocessor

technology.
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Type D I P Switching Number of
BLR- 17213145 |Program| Sequence Capacitors |  Stages
MCO3|1 0 0 0 0183 1:1:1 3 3
MCO3| 1 0 0 0 11835 1:2:2 3 5
MCO3|1 1 1 1 0]S836 1:2:3 3 6
MC03|1 1 0 1 01837 1:2:4 3 7
MCO6 [ 0 1 0 0 0]S6 I:1: 1 6 6
MCO6 |0 1 0 0 1 [S6l11 1:2: 2 6 11
MCO6 | 0 1 1 0 0(KSé6 I:1: 1 6 6
MCO61 0 1 1 0 1 ]|Ks6ll 1:2: 2 6 11
MCO6 |0 0 1 1 0]s415 1:2:4:8 4 15
MCO6 | 1 0 1 1 0/[S515 1:2:4:4:4 5 15
MCO6[ 0 1 1 1 08619 1:2:4: 4 6 19
MC08|1 1 1 0 0]|KS8 1:1: 1 8 8
MCOg8i 1 1 1 0 1 |KS8I5 1:2: 2 8 15
MC09 |1 1 0 0 0]S9 1:1: 1 9 9
MCOS|1 1 0 0 118917 1:2: 2 9 17
MCi1210 0 1 0 o0]Ss12 1:1: 1 12 12
MCI12{0 0 1 0 1{S1223 |1:2: 2 12 23
MCI2|0 0 0 1 0/[K10 1:1: 1 10 10
MCI12/0 0 0 1 1|{K1019 |12: =2 10 19
MCI2|1 0 0 1 0/[K12 1:1: 1 12 12
MC12/1 0 0 1 11|K1223 |12 2 12 23
MCl4/1 0 1 0 o0]S14 1:1: 1 14 14
MCl4;1 0 1 0 181427 |1:2: 2 14 27
MC14/0 1 0 1 0|KI14 1:1: 1 14 14

[MC 1410 1 0 1 1 [K1427 |1:2: 2 14 27

Table A.1 Programming features of BLR-MC.
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A.1.2 Cos¢ Adjustment

Adjustment of the target power factor by rotating the knob (1) results in a
shift of the C/k strip around the zero point of the co-ordinate system of the real
power axis P and power factor control axis Q. The range of shift extends from cos¢
= 0.80 inductive through 1 to 0.98 capacitive.

It is also possible to have an adjustment range of 0.80 inductive through 1 to
0.95 capacitive as a special model. In this case, however, the voltage supply
changes to L1-N (model “¢” = single phase, Appendix-D5).

A.1.3 C/k Threshold Settings

The function of the capacitor control relay is to switch capacitor switch in or
out according to the reactive load. Capacitor steps value ‘C’ is therefore an
important variable which must be known, along with the current transformer ratio
‘k’. The most common values of C/k at 400 V are given on the ﬁble which is
adhered to the relay. The calculated value of C/k is set by rotating knob (2).

In case of capacitor banks which has different values of ‘C’ (e.g.
1:2:2:2...2), the setting is always calculated by taking the smallest step : value ‘1’
for ‘C’.

The power factor control relays have stepless adjustment of the C/k range
between 0.05 A, and 0.80 A,. These values are the reactive threshold activating
currents on the relay. If the reactive current content of the load exceeds the set C/k
value, LED (3) extinguishes. The control relay either begins to activate (+) or

it
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deactivate (-) steps. For different supply voltages, the C/k settings can be calculated

from the following formula :

Pe

BVk (A.1)

C/k = 0.66x

Where :
P¢ = capacitor step power (kvar)
V = supply voltage in kV (phase-phase voltage on three phase system)
k = transformer ratio of the current transformer, e.g. 1000 A/ 5 A = 200.
The factor 0.66 or 66% is fixed so that e.g. a 10 kvar capacitor will only be

actuated when 6.6 kvar inductive reactive power is exceeded. The range can be

varied between 60 and 90% if necessary.

A.1.4 No-volt Release

If the power supply is briefly interrupted for more than approx. 35 msec. the
MC relay immediately switches out all capacitors. When the main supply voltages
is restored, the comtrol procedures starts after a lock-out time of approx. 90 sec.
during which time LED (3) flashes. This lock-out time also applies to initial
operation i.e. whenever the mains supply voltage is reapplied to the control relay.

A.1.5 Display of Activated Capacitors

When DIP swiich 6, behind the removable nameplate lid, is switched off, the
number of activated capacitor stages and the power factor are digitally displayed
alternately. The additional expense of the supplementary LED’s (4) was considered
essential, so as to show which exit relays are closed. This is particularly important
with the economy switching program.
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A.1.6 Digital cosg Display

A standard feature of the microprocessor controlled relay is a constant
digital display of the power factor cosgp when DIP switch 6 is in the “on” position.
This display is independent of the wave-form of current and voltage. In this way,
particularly for thyristor controlled systems, so-called “distorted reactive power” is
incorporated into the power factor display. When DIP switch 6 is switched off, the
digital display alternates between system power factor and number of switching
steps accomplished, and, at the same time, digital indicator LED (6) comes on to
indicate that switching step 6 has been reached.
Display cycle : 15 sec. cos@,

3 sec. stage indication.

A.1.7 Hand/Auto Change Over Switch
Rotary switch (7) enables the relay to operate in the Hand, Auto or Hold
mode. The switch is rotated with a screw driver and provides the following options.
e AUT = Relay operates automatically.
® 0 = Relay holds the switch stage it has reached. LED (3) flashes. Fault signal
may be triggered.
e + = Relay switches capacitors in, according to the selected switching program.
LED (3) flashes.
® —=Relay switches capacitors out, according to the selected switching program.
LED (3) flashes.
The selected switching program is retained in any position of switch (7). In position
0 switching up or down is terminated. In position AUT, the relay switches again

automatically according to the measured reactive load.



A.1.8 Switching Times

Switching time is adjusted by means of a stepless potentiometer, located
behind the removable name-plate. Step switching time can be reduced down to §
sé;:. per step, when commissioning or testing. The longest switching time is 70 sec.

per step.

A.1.9 Fauit Signaling Device

A fault signaling device has been incorporated in the BLR-MC relay. LED
(8) will come on if the target power factor has not been reached, if insufficient
capacitance has been installed for example. DIP switch 7 will deactivate the fault |
signaling device if it is not required. A triggered fault signal indicated by the LED
(8) can be acknowledged or canceled by briefly tumning the rotary switch (7) to
“0”.

A.1.10 Fault Signaling Contact (m) for External Signaling

A built in signaling relay (m) can provide a valuable extra check of the
systemn by monitoring the function of the compensation equipment and the control
relay. Over or under compensation related to the selected target power factor closes
a relay contact afler 50 times the switching time between steps. An audible or
visual alarm can be activated. If an external power supply is available, failure of
the measuring voltage will also be signaling by this contact. This feature makes it
possible to localize and rectify faults such as insufficient installed capacitance or
contactor or fuse failure as soon as they occur, rather than waiting until excessive
reactive current costs appear on the electricity bill. Figure AJishows the circuit
diagram of the relay connection with the power line.



To load circuit AC MAINS Current Transformer Main side

¢ - — L,

<
&4 _'
L

' ' L,

j Sy
— 1,
)
| S—
)
«

H —| )

A\\g O NN

400 V 230V N/L S, S,
——

Capacitor 7 y \ — oo
ba.nk Cl ] 3 H B :

Figure A.14 Circuit diagram of RM 9606 connected with the bus line

A-9



APPENDIX-2

W

LEARN.FOR

PROGRAM FOR NEURAL NET SOLUTION WITH SIGMOID FUNCTION
DATA NP,NT,NLNJ,NK /64,500,2,4,1/

PRINT *, ' DO YOU WANT TO START FROM PREVIOUS VALUES ? (1/0)
READ (*,*) NOYES

PRINT *, 'NO OF ITERATION ?°

READ(* *) NT

CALL ALRN(NP,NT,NLNJ,NK,NOYES)

STOP
END

SUBROUTINE ALRN(NP,NT,NILNJ,NK,NOYES)
REAL NNW,NNW0

INTEGER ITER

REAL OI(2,600),03(4), 0K (1), WI(4,2), WK(1,4)

REAL DWK(1,4),DELJ(4), DELK(1), THJ(4), THK(1)
REAL DTHI(4),DTHK(1),NETJ(4), NETK(1),DWI(4,2)
REAL TK(1,600)

DATA ALP,NNW,THO1,THO2,EPS/0.0,0.5,1.0,1.0,1E-10/
OPEN(UNIT=1,FILE='"C\AFORTRAN\WNEURAIL\VAR.DAT)
OPEN(UNIT=2,FILE='"CAFORTRAN\WNEURAL\WT.DAT")
OPEN(UNIT=3,FILE='C\FORTRAN\NEURAL\QUT.DAT")

IP=1

DO 190 CUR=2.0,7,1.0

DO 190 TH=0,52,4.0
OI(2,IP)=CUR/9.6
OI(1,IP)=TH/98.7

ke afc s s e 3 afe o ol ool ale o ol sk o o 3o o ool 3 o oo e s e o e o e o e o ok o e o e o 6o o o 0 o e S S o

X=(OI(2,IP)*.25)+0K1,IP)-.2675
Y=(OI(2,IP)*1)+OKL,IP)-.53
IF((X.GT.0).AND.(Y.GT.0))THEN

b o o o o s af e o o o e 3 e o e oo e e o ol 36 oo s ol o e o o e o e o o o ook o oo e o e e o e e o e e ok

TK(1,IP)=(CUR*SIN(TH/57.3)-2.4)/5.0
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VAR=220*CUR*SIN(TH/57.3)
WRITE(1,*)VAR

P=IP+1
ENDIF
190 CONTINUE
NP=IP-1
DO 333 IP=1,NP
333 TK(1,IP)=TK(1,IP)-.2
WRITE(*,*) NUMBER OF PATTERN ="' NP
IF(NOYES.EQ.1) THEN
READ(2,*) ITP
READ(2,*) (WJ(J,),I=1,ND),J=1,NJ)
READ(2,*) (THI(J),J=1,NJ)
READ(2,*) ((WK(K,J),J=1,NJ),K=1,NK)
READ(2,*) (THK(K),K=1,NK)
READ(2,*) NNW
ENDIF
IF (NOYES.EQ.0) THEN
ITP=0
DO 232 I=1,NJ
232 THI1)=0.0
DO 233 I=1,NK
233 THK(T)=0.0
WI1,1)=.1
WI(1,2)=-.1
WI1(2,1)=-.234
WI(2,2)-0.34
WI3,1)=.21
WJ(3,2)=-0.3314
WI(4,1)=.1
WI(4,2)=-.091
WK(1,1)=.132
WK(1,2)=.11
WK(1,3)=.23
WK(1,4)=-0.5
ENDIF
DO 21=1,NJ
DTHY1)=0.0
DO 2 J=1,N1
DWI(IL1=0.0
2 CONTINUE
DO 3 I=1,NK
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11

50

40

70

60

90

80

DTHK(D)=0.0
DO 3 J=1,NJ

DWK(LJ)=0.0
CONTINUE

ITER=0

IF(NOYES.EQ.1) THEN

ITER=ITP

NT=NT-+ITP

ENDIF

NNW=NNW
DO 210 L=1,NT
ERR=0.0
DO 10 IP=1 NP
DO 40 IJ=1,N7J
NETX(1J)=0.0
DO 50 I=1,NI
NETJ(U)=NETJ(U)+ WL, I)*OI(LIP)
IF (NETJ(IJ).GT.10292) PRINT * NETX(L)
CONTINUE .

SS=EXP(-(NETJ(W)-THJ(U)y'THO1)
OJ(UI)=(1.0-SS)(1.0+SS)

CONTINUE
DO 60 IK=1,NK
NETK(IK)=0.0
DO 70 J=1,NJ
NETK(IK)=NETK (IK)+ WK(IK, I)*OJ(IJ)
IF (NETK(IK).GT.10292) PRINT *, NETK(IK)
CONTINUE
OK(TK)=(NETK(IK)-THK.(IK)y THO?
CONTINUE
DO 80 IK=1,NK
DELKIK)~TK(K,IP)-OK(IK))*(1./THO2)
DO 90 [J=1,NJ
DWK(IK, IJ)=NNW*DELK(IK)*OJ(I7)+ ALP*DWK(IK, L)
WKIK,D)=WK(K, [T+ DWK(IK,LJ)
CONTINUE
THK(IK)=THK(IK )+ DTHK(IK)
CONTINUE
DO 100 I7=1,NJ
SUM=0.0
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200

110

100

777
10

210
250

DO 200 IK=1,NK
SUM=SUM-+DELK(IK * WK(IK, IJ)

CONTINUE
DELJAT)=0J(W)*(1.0-0X(I))*SUM

DO 110 I=1,NI
DWI,I)=NNW*DELJIJ)*OI(L, IP)+ ALP*DWJ(IJ,I)
WIU,I)=WIAL, I+ DWI(1, 1)
CONTINUE
THXU)=THXD)+DTHIJ)
CONTINUE

DO 777 IK=1,NK
ERR=ERR-+0.5*(TK(IK, IP)-OK(IK))**2
CONTINUE

CONTINUE

ITER=ITER+1
WRITE(*,'(16,2X,3(F12.7,2X))) ITER, NNW,ERR
IF(ERR.LE.EPS.OR.ITER.EQ.NT) THEN
CLOSE(2)
WRITE(*,*) 'STORE THE WTS AND THITAS IN FILE ? (1/0)
READ(**) NY
IF(NY.EQ.1) THEN
OPEN(UNIT=2,FILE='CAFORTRAN\NEURAL\WT.DAT’)
WRITE(2,*) ITER
WRITE(2,*) (WI(J,1),I=1,NI),J=1,NJ)
WRITE(2,*) (THI(J),J=1,NJ)
WRITE(2,*) (WK(K,J),J=1,NJ),K=1,NK)
WRITE(2,*) (THK(K).K=1,NK)
WRITE(2,*) NNW
ENDIF
GOTO 250
ENDIF
NNW=.2

CONTINUE
IF(ERR.LE.EPS) THEN

PRINT *'CONVERGED'
ELSE

PRINT * NONCONVERGENT'
ENDIF
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950

940

970

960

290

DO 290 IP=1,NP
DO 940 I=1,NJ
NETJ(11)=0.0
DO 950 II=1,NI
NETJ()=NETI(W)+WJ(L,I)*OI(L IP)
CONTINUE
SS=EXP(-(NETI(I)-THIW))'THO1)
OJAN)=(1.0-SS)K1.0+SS)

CONTINUE

DO 960 IK=1,NK

NETK(IK)=0.0
DO 970 '=1,NJ

NETK (K)=NETK(IK )+ WK(IK, Iy *OJ(IJ)
CONTINUE

OK(IK)=(NETK(IK)-THK(IK))/THO2
CONTINUE

OI1=0I(1,IP)

OI2=0I(2,IP)

TK1=TK(1,IP)

ERROR=TK1-OK(1)

WRITE(3,'(5(E14.7,2X)))OI1,012, TK1,0K(1),ERROR
CONTINUE

CLOSE(2)

CLOSE(3)

RETURN
END
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APPENDIX-3 |
DATA FILE OUT.DAT SHOWING LEARNING PATTERNS WITH FINAL OUTPUT

INPUT#1
0.3242148E+00
0.3647417E+00
0.4052685E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00
0.2431611E+00
0.2836879E+00
0.3242148E+00
0.3647417E+00
0.4052685E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00
0.2026342E+00
0.2431611E+00
0.2836879E+00
0.3242148E+00
0.3647417E+00
0.4052685E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00
0.1621074E+00
0.2026342E+00
0.2431611E+00
0.2836879E+00
0.3242148E+00
0.3647417E+00
0.4052685E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00
0.1215805E+00
0.1621074E+00
0.2026342E+00
0.2431611E+00
0.2836879E+00
0.3242148E+00

INPUT#2
0.2083333E+00
0.2083333E+00
0.2083333E+00
0.2083333E+00
0.2083333E+00
0.2083333E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.3125000E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.4166667E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.5208333E+00
0.6250000E+00
0.6250000E+00
0.62506000E+00
0.6250000E+00
0.6250000E+00
0.6250000E+00

TARGET FINAL OUTPUT ERROR

-0.4680463E+00
-0.4449009E+00
-0.4229007E+00
-0.4021530E+00
-0.3827586E+00
-0.3648122E+00
-0.4359750E+00
-0.3983362E+00
-0.3620694E+00
-0.3273513E+00
-0.2943511E+00
-0.2632294E+00
-0.2341379E+00
-0.2072183E+00
-0.4064033E+00
-0.3546332E+00
-0.3044482E+00
-0.2560925E+00
-0.2098018E+00
-0.1658014E+00
-0.1243059E+00

-0.4394734E+00
-0.4204441E+00
-0.4032469E+00
-0.3883523E+00
-0.3760533E+00
-0.3665258E+00
-0.4258411E+00
-0.3908576E+00
-0.3565120E+00
-0.3236881E+00
-0.2929412E+00
-0.2646264E+00
-0.2389749E+00
-0.2161308E+00
-0.4052601E+00
-0.3547563E+00
-0.3046199E+00
-0.2558575E+00
-0.2091045E+00
-0.1647785E+00
-0.1231546E+00

-0.2857292E-01
-0.2445683E-01
-0.1965380E-01
-0.1380065E-01
-0.6705344E-02

0.1713634E-02
-0.1013386E-01
-0.7478595E-02
-0.5557358E-02
-0.3663182E-02
-0.1409948E-02

0.1396954E-02

0.4836991E-02
0.8912519E-02
-0.1143187E-02

0.1230538E-03
0.1716912E-03
-0.2350509E-03
-0.6972402E-03
-0.1022965E-02
-0.1151234E-02

-0.8551717E-01 -0.8441812E-01 -0.1099050E-02
-0.4962435E-01 -0.4868531E-01 -0.9390414E-03
-0.4043824E+00 -0.4052510E+00 0.8685291E-03
-0.3380041E+00 -0.3395542E+00 0.1550108E-02
-0.2732916E+00 -0.2740688E+00 0.7772148E-03
-0.2105602E+00 -0.2099238E+00 -0.6364286E-03
-0.1501156E+00 -0.1478369E+00 -0.2278715E-02
-0.9225221E-01 -0.8827776E-01 -0.3974453E-02
-0.3725176E-01 -0.3156322E-01 -0.5688533E-02
0.1461768E-01 0.2208853E-01 -0.7470846E-02
0.6310356E-01 0.7253772E-01 -0.9434164E-02
0.1079696E+00 0.1196955E+00 -0.1172596E-01
-0.4305241E+00 -0.4271561E+00 -0.3368020E-02
-0.3492589E+00 -0.3472945E+00 -0.1964390E-02
-0.2696048E+00 -0.2675483E+00 -0.2056509E-02
-0.1919499E+00 -0.1891763E+00 -0.2773598E-02
-0.1166723E+00 -0.1129739E+00 -0.3698349E-02
-0.4413871E-01 -0.3946322E-01 -0.4675493E-02
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0.3647417E+00
0.405268 5E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00
0.1215805E+00
0.1621074E+00
0.2026342E+00
0.2431611E+00
0.2836879E+00
0.3242148E+00
0.3647417E+00
0.4052685E+00
0.4457954E+00
0.4863222E+00
0.5268490E+00

0.6250000E+00
0.6250000E+00
0.6250000E+00
0.6250000E+00
0.6250000E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00
0.7291666E+00

0.2529736E-01 0.3100234E-01 -0.5704984E-02
0.9129786E-01 0.9818274E-01 -0.6884873E-02

0.1535412E+00
0.2117243E+00
0.2655635E+00

-0.3889448E+00 -0.3756517E+00 -0.1329306E-01
-0.2941354E+00 -0.2831166E+00 -0.1101881E-01
-0.2012056E+00 -0.1920120E+00 -0.9193629E-02
-0.1106082E+00 -0.1032116E+00 -0.7396579E-02

0.1619141E+00 -0.8372903E-02
0.2220944E+00 -0.1037014E-01
0.2786674E+00 -0.1310396E-01

-0.2278434E-01 -0.1729017E-01 -0.5494162E-02
0.6183815E-01 0.6536883E-01 -0.3530681E-02

0.1428470E+00
0.2198475E+00
0.2924647E+00
0.3603450E+00
0.4231574E+00
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0.2199318E+00 -0.8434057E-04
0.2915410E+00 0.9237528E-03
0.3592681E+00 0.1076877E-02
0.4230896E+00 0.6777048E-04



APPENDIX-4

o

CHECK.FOR

PROGRAM FOR CHECKING NEURAL NET SOLUTION
DATA NP,NLNJ,NK /64,2 4,1/

CALL ALRN(NP,NLNJ,NK}
STOP
END

SUBROUTINE ALRN(NP,NLNJ,NK)
REAL NNW,NNW0

INTEGER ITER

REAL OI(2,5000),0)(4),0K(1), WJ(4,2), WK(1,4)
REAL DWK(1,4), DELJ(4),DELK (1), THJ(4), THK(1)
REAL DTHJ(4),DTHK(1),NETJ(4),NETK(1),DWJ(4,2)
REAL TK(1,5000),KVAR(1,5000)

DATA ALP,NNW,THO1,THO2,EPS/0.0,0.4,1.0,1.0,1E-1G/
DATA VOLT/220/

OPEN(UNIT=8, FILE="C:\FORTRAN\NEURAL\WT.DAT)
OPEN(UNIT=1,FILE='CAFORTRAN\NEURAL\OJ1.DAT')
OPEN(UNIT=2,FILE='C:AFORTRAN\NEURAL\OJ2.DAT’)
OPEN(UNIT=3, FILE="C:\FORTRAN\NEURAL\OJ3.DAT")
OPEN(UNIT=4,FILE='C:FORTRAN'NEURAL\OJ4.DAT")
OPEN(UNIT=7,FILE='C:\FORTRAN\NEURAL\TST.DAT)

IP=1

DO 190 CUR=2.0,7,0.2
DO 190 TH=0,52,1

OI(2,IP)=CUR/9.6
OK(1,IP)=TH/98.7

obe akcabe b b s b s s o e o afe o e 3 3o o 6 o 3 s o e e s s o oo s s o e o o a0 oo oo e o o o o ok o

X=(OI(2,IP)*.25)+OI(1,IP)-.2675
Y=(0O1(2,IP)*1)+OI(1,IP)-.53
IF((X.GT.0).AND.(Y.GT.0))THEN

b e ok oo e g o o abe ke b ok o b o e b o ol ok a8 B s o o ok o o o 9o o 3 ok o e ok o e 2 ool B o o e e o

TK(1,IP)=(CUR*SIN(TH/57.3)-2.4)/5.0
KVAR(1,IP)=VOLT*CUR*SIN(TH/57.3/1000
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190

333

950

940

970

960

290

IP=IP+1
ENDIF
CONTINUE
NP=IP-1
DO 333 IP=1,NP
TK(1,IP)=TK(1,IP)-0.2

READ(8,*) [TP
READ(8,*) (WIJ(J,1),I=1,NI),J=1,NJ)
READ(8,*) (THI(J),J=1,NJ)

READ(8,*) (WK(K,J),J=1,NJ),K=1,NK)
READX(8,*) (THK(K),K=1,NK)

ITER=ITP

DO 290 IP=1,NP

DO 940 IJ=1,NJ
NETI(1J)=0.0

DO 950 TI=1,NI
NETXL)=NETIQI)+ WL, ) *OL(ILP)

CONTINUE
SS=EXP(-(NETJ(W)-THI(LJ))' THO1)
OJ()=(1.0-88)/(1.0+SS)

CONTINUE

DO 960 IK=1,NK
NETK(IK)=0.0

DO 970 J=1,NJ
NETK(IK)=NETK(IK)+ WK({IK,LI)*OJ1J)

CONTINUE .
OK(IK)=(NETK (IK)-THK.(IK)) THO2

CONTINUE
ERROR=TK(1,IP)-OK(1)
WRITE(],'((E14.7,2X)))NETX(1),0X1)
WRITE(2,'(2(E14.7,2X)))NETJ(2),03(2)
WRITE(7,'(4(E14.7,2X))TK(1,IP),0K(1), ERROR, KV AR(1IP)
WRITE(3,(2(E14.7,2X)))NETX(3),0J(3)
WRITE(4,'(2(E14.7,2X)))NETI(4),0J(4)

CONTINUE

CLOSE(2)

CLOSE(3)

RETURN

END
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APPENDIX-5

">

LRNSRT.FOR

PROGRAM FOR NEURAL NET SOLUTION MAKING SIGMOID
FUNCTION PIECE-WISE LINEAR

DATA NP,NT,NLNJ,NK /64,500,2,6,1/

PRINT *, ' DO YOU WANT TO START FROM PREVIOUS VALUES ? (1/0)
READ (*,*) NOYES

PRINT *, 'NO OF ITERATION ?*

READ(* *) NT

CALL ALRN(NP,NT,NLNJ,NK,NOYES)

STOP
END

SUBROUTINE ALRN(NP,NT,NLNJ,NK,NOYES)
REAL NNW,NNWO

INTEGER ITER

REAL OI(2,600),0J(6),0K(1), WI(6,2), WK(1,6)

REAL DWK(1,6),DELJ(6), DELK(1), THJ(6), THK(1)
REAL DTHJ(6), DTHK(1),NETI(6),NETK(1),DWJ(6,2)
REAL TK(1,600)

DATA ALP,NNW,THOI,THO2,EPS/0.0,0.5,1.0,1.0,1E-10/
OPEN(UNIT=1,FILE="VAR.DAT")
OPEN(UNIT=2,FILE=LINWT.DAT")
OPEN(UNIT=3,FILE='OUTLIN.DAT")

IP=1

DO 190 CUR=2.0,7,1.0

DO 190 TH=0,52,4.0
OI(2,IP)=CUR/9.6
OI(1,IP)=TH/98.7

ke e o e e e o b o o o b o o e e o ok ok o ok o o oK e s e o o ook o o e b e o o 3o ol s o sk ok sk sk o o ool o ok ook

X=(OI(2,IPY* 25)+OI(1,IP)-.2675
Y=(OI(2,IP)*1)+OI(1,IP)-.53
IF((X.GT.0).AND.(Y.GT.0)) THEN

i b o o o o oo b ok sl e o o ok b o o oo oo 8 o 8 o o o o o o o R e o ok e o o 8 o 3o ok s oK b ok ok o o ok o Rk ol ok

TK(1,IP)=(CUR*SIN(TH/57.3)-2.4)/5.0
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VAR=220*CUR*SIN(TH/57.3)
WRITE(1,*)VAR

IP=IP+1
ENDIF
190 CONTINUE
NP=IP-1
DO 333 [P=1,NP
333 TK(1,IP)=TK(1IP)-.2
WRITE(*,*) 'NUMBER OF PATTERN = ' NP
IF(NOYES.EQ.1) THEN
READ(2,*) ITP
READ(2,*) (WI(J,I),1=1,NI),J=1,NJ)
READ(2,*) (THI(J),J=1,NJ)
READ(2,*) (WK(X,J),J=1,NJ),K=1,NK)
READ(2,*) (THK(K),K=1,NK)
READ(2,*) NNW
ENDIF

IF (NOYES.EQ.0) THEN
ITP=0

THI(1)=0.1

THI(2)=-0.2

THI(3)=0.3

THX(4)=0.1

THI(5)=-0.2

THI(6)=-0.1

THK(1)=0.3

DO 232 [=1,NJ
232 THI([D=0.0
DO 233 I=1,NK
233 THK(D)=0.0
Wi(1,1)=1
WI(1,2)=-.1
WI(2,1)=-.234
WI1(2,2)=0.34
WI(3,1)=.21
WI(3,2)=-0.3314
WI(4,1)=.1
WI(4,2)=-.091
WI(5,1)=-.234
WI(5,2)=0.34
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WJ(6,1)=.053
WI(6,2)=-0.09314
WEK(1,1)=.132
W( 152)=" 11
WEK(1,3)=.23
WK(1,4)=-0.5
WK(1,5)=0.2
WK(1,6)=-0. 1
ENDIF

DO 21=1,NJ
DTHXD)=0.0

DO 2 J=1,NI
DWI(LJ)=0.0

2 CONTINUE

DO 3 I=1,NK
DTHK(T)=0.0

DO 3 J=1,NJ
DWK(L,J)=0.0

3 CONTINUE

ITER=0
IF(NOYES.EQ.1) THEN
ITER=ITP
NT=NT+ITP

ENDIF

NNW=NNW
DO 210 L=1,NT
ERR=0.0
DO 10 IP=1 NP
11 DO 40U=1,NJ
NETJ(1})=0.0
DO 50 II=1,NI
NETJ()=NETI(U)+WJU,I)*OKTL, IP)
IF (NETJ()).GT.10292) PRINT * NETJ(J)
50 CONTINUE

*******#**l'l***************#******1!*1'1!*****#*****#*****#*****#
=NETXIJ)
IF ((TLLE.1.2). AND.(TLGT.-1.2)) STRT=.4475%T]

IF ((TLLE.2.2). AND.(TLGT.1.2)) STRT=.263*TI+.2214
IF ((TLLE.3.2). AND.(TLGT.2.2)) STRT=.121668*TI+ 532329
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IF ((LLE.4.2).AND.(TLGT.3.2)) STRT=.048784*TI-+.765557
IF ((TLLE.5.2). AND.(TLGT.4.2)) STRT=.02955*T1+ 84634
IF (TLGT.5.2) STRT=1

IF ((TL.GT.-2.2). AND.(TLLE.~1.2)) STRT=.263*TI-.2214
IF ((TLGT.-3.2).AND.(TLLE.-2.2)) STRT=.121668*TI-.532329
IF ((TLGT.-4.2). AND.(TLLE.-3.2)) STRT=.048784*TI-.765557
IF ((TL.GT.-5.2). AND.(TLLE.~4.2)) STRT=.02955*TI-.84634
IF (TLLE.-5.2) STRT=-1

OJ)=STRT

**********m**************************************************

40 CONTINUE
DO 60 IK=1,NK
NETK(IK)=0.0
DO 70 U=1,NJ
NETK (IK)=NETK(IK)+ WK (IK, 'y*OX(IJ)
IF (NETK(IK).GT.10292) PRINT *, NETK(IK)
70 CONTINUE
OK(IK)=(NETK(IK)-THK(IK)y' THO2
60 CONTINUE
DO 80 IK=1,NK
DELK(IK)=(TK(IK, IP)-OK(IK))*(1./THO2)
DO 90 1J=1,NJ
DWK(IK, IN)=NNW*DELKIK)*OXIJ)+ ALP*DWK(IK, IJ)
' WK(IK, L y=WK(IK, 1)+ DWK(IK,IJ)
90 CONTINUE
THK(IK)=THK(IK )+ DTHK(IK)
80 CONTINUE
DO 100 1J=1,NJ
SUM=0.0
DO 200 IK=1,NK
SUM=SUM-+DELK(IK )*WK(IK, IJ)
200 CONTINUE

*******************m*****************************m**m********

TI=NETJ(L)

[F ((TLLE.1.2).AND.(TLGT.-1.2)) DELI(I))=.4475
IF ((TLLE.2.2). AND.(TLGT.1.2)) DELI(IJ)=.263

IF ((TLLE.3.2). AND.(TLGT.2.2)) DELXIJ)=.121668
IF ((LLE.4.2). AND(TLGT.3.2)) DELJ(IJ)=.048784
IF ((TLLE.5.2). AND.(TLGT.4.2)) DELX(IJ)=.02955
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IF (TL.GT.5.2) DELK1J)=0.01

IF ((TLGT.-2.2). AND.(TLLE.-1.2)) DELI(IT)=.263
IF ((TLGT.-3.2).AND.(TLLE.-2.2)) DELJ(IJ)=.121668
IF ((TL.GT.~4.2). AND.(TLLE.-3.2)) DELJ(IJ)=.048784
IF ((TLGT.-5.2). AND.(TLLE.4.2)) DELJ(IJ)=.02955
IF (TL.LE.-5.2) DELJ(1J)=0.01

DELJAN=DELYIN)*SUM

**4!*lll***llll.l*ll"ll**************t***#*****#********#*#***#********

110

100

777
10

DELIAT)=OJAN)*(1.0-0JAT))*SUM

DO 110 TI=1,NI
DWI, I=NNW*DELI(U)*OKIL IP)+ ALP*DWJ(1J, II)
WIL,IN=WI1I,I)+ DWIJ, 1)

CONTINUE
DTHI(IT)=NNW*DELY1J)+ALP*DTHI(IJ)
THI(L)=THJI(U)+DTHI(IJ)

CONTINUE

DO 777 IK=1,NK ,
ERR=ERR+0.5 *(TKJIK,IP)-OK(IK))**2

CONTINUE

CONTINUE

ITER=ITER+1
WRITE(*,'16,2X,3(F12. 7,2X))) ITER,NNW,ERR

IF(ERR.LE.EPS.OR.ITER.EQ.NT) THEN
CLOSE(2)

WRITE(*,*) 'STORE THE WTS AND THITAS INFILE ? (1/0)
READ(* *)NY -

IF(NY.EQ.1) THEN
OPEN(UNIT=2,FILE——~'LII\IWT.DAT)
WRITE(2,*) ITER
WRITE(2,*) (WI(J,]),I=1,NI),J=1,NJ)
WRITE(2,*) (THI(J),J=1,NJ)

WRITE(2,*) ((WK(K,J),J=1,NJ),K=1,NK)
WRITE(2,*) (THK(K),K=1,NK)
WRITE(2,*) NNW

ENDIF

GOTO 250

ENDIF
NNW=.2
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210
250

950

CONTINUE
IF(ERR.LE.EPS) THEN
PRINT *'CONVERGED'
ELSE
PRINT * 'NONCONVERGENT
ENDIF

DO 290 IP=1,NP
DO 940 I=1,NJ
NETJ(1)=0.0
DO 950 H=1,NI
NETJ(U)=NETI(U)+WJ(U,I)*O(IL IP)
CONTINUE

liull***ll“ll**ll(liﬂit*ll'*llul(lit********llﬂt******#**#**#******#**********#**

TI=NETXL))

IF ((TLLE.1.2). AND.(TLGT.-1.2)) STRT=.4475*T}
IF (TLLE.2.2). AND.(TL.GT.1.2)) STRT=.263*TI+.2214

IF ((TLLE.3.2). AND.(TLGT.2.2)) STRT=.121668*TT+.532329
IF ((LLE.4.2). AND(TLGT.3.2)) STRT=.048784*TI+.765557
IF ((TLLE.5.2). AND.(TLGT.4.2)) STRT=.02955%TT+.84634
IF (TLGT.5.2) STRT=1

IF ((TL.GT.-2.2). AND.(TLLE.-1.2)) STRT=.263*TI-.2214
IF ((TLGT.-3.2). AND.(TLLE.-2.2)) STRT=.121668*TI-. 532329
IF ((TLGT.~4.2). AND.(TLLE.-3.2)) STRT=.048784%TL-. 765557
IF ((TLGT.-5.2). AND.(TLLE.-4.2)) STRT=.02955*TI-. 84634
IF (TLLE.-5.2) STRT=-1

OJAT)=STRT

******m*******#************************#******#**************

940

970

CONTINUE

DO 960 IK=1,NK
NETK(IK)=0.0
DO 970 i=1,NJ
NETK (IK)=NETK(IK )+ WK (IK, J)*OJ(1J)
CONTINUE
OK(IK)=(NETK(IK)-THK (IK))'THO2
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960 CONTINUE
OI1=0K1,IP)
OR=0I(2,IP)
TK1=TK(L,IP}
ERROR=TK1-OK(1)
WRITE(3,'(5(E14.7,2X)))OI1,012, TK1,0K(1),ERROR
290 CONTINUE

CLOSE(2)
CLOSE(@3)
RETURN
END
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APPENDIX-6
*  CHKSRT.FOR

PROGRAM FOR CHECKING NEURAL NET SOLUTION WITH STRAIGHT
LINES

DATA NP,NLNJ,NK /64,2,6,1/

CALL ALRN(NP,NILNJ,NK)

STOP
END

SUBROUTINE ALRN(NP,NLNJ,NK)
REAL NNW,NNWO0

INTEGER ITER

REAL OI(2,5000),0J(6),0K(1), WI(6,2), WK(1,6)
REAL OAJ(6),0AK(1),NETAK(1)

REAL DWK(1,6),DELI(6), DELK(1), THJ(6), THK(1)
REAL DTHIJ(6),DTHK(1),NETJ(6),NETK(1),DWJ(6,2)
REAL TK(1,5000),K'VAR(1,5000)

DATA ALP,NNW,THO1,THO2,EPS/0.0,0.4,1.0,1.0,1E-10/
DATA VOLT/220/

OPEN(UNIT=8 FILE='C:\F ORTRAN\NEURAL\LINWT.DAT")
OPEN(UNIT=1,FILE="C:\FORTRAN\NEURAL\OAJ1 DAT)
OPEN(UNIT=2,FILE='"C:\FORTRAN\NEURAL\OAJ 2.DAT")
OPEN(UNIT=3,FILE='C:\FORTRAN\NEURAL\OAJ 3.DAT)
OPEN(UNIT=4,FILE="C:\FORTRAN\NEUR AL \O AJ4 DAT)
OPEN(UNIT=5,FlIl E="C\FORTRAN\NEURAL\OAJ 3.DAT")
OPEN(UNIT=6,FILE='C:\FORTRAN\WNEURAL\OAJ 6.DAT")
OPEN(UNIT =7,FILE='"C:\FORTRAN\NEURAL\TEST.DAT")

IP=1

DO 190 CUR=2.0,7,0.2
DO 190 TH=0,52,1

OI(2,IP)=CUR/9.6
OK(1,IP)=TH/98.7
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i e sje o s ok ok o ol ol ok ok ok ak ok ok ok ok ak ol ok s e o o ok akc ol alk afe e ok ok afe oo e e oo e e o o s o ok afe e ok e o ok s o ok e 3 ok o

X=(OL(2,IP)*.25)+0OK1,IP)-.2675
Y=(OI(2,IP)*1)+OK1,IP)-.53
IF((X.GT.0).AND.(Y.GT.0)) THEN

o e 2o ook o e o o e ol ool e ool e o e o o ol oo e ol o o e o s o afe st ke ook o e o ok e ofeafe o o o e ol afe o o el ol e aeoge

TK(1,IP)=(CUR*SIN(TH/57.3)-2.4)/5.0

KVAR(1,IP)=VOLT*CUR*SIN(TH/57.3)/1000
IP=IP+1
ENDIF
190 CONTINUE
NP=IP-1
DO 333 IP=1,NP
333 TK(1,IP)=TK(1,IP)-0.2

READ(8,*) [TP
READ(8,*) (WJ(J,1),I=1,NI),J=1,NJ)
REAIX8,*) (THI(J),J=1,NJ)

READ(8,*) (WK(K,J),J=1,NJ),K=1,NK)
READ(8,*) (THK(K),K=1,NK)

ITER=TTP

DO 290 IP=1,NP
DO 940 II=1,NJ
NETJ(15)=0.0
DO 950 II=1,NI
NETJ(I)=NETJIN+WIU,I)*OK1LIP)
950 CONTINUE

sie s e o o o oo o oo ke o o s af o e o o 0 o o o b o o e o e ok e o s s s sk ool o e ok o ek

TI=NETJ{J)

IF ((TL.LE.1.2).AND.(TLGT.-1.2)) STRT=.4475*TT

IF ((TLLE.2.2).AND.(TLGT.1.2)) STRT=.263*TI+.2214
IF ((TLLE.3.2).AND.(TLGT.2.2)) STRT=.121668*TI+.532329
IF ((I.LE.4.2).AND.(TLGT.3.2)) STRT=.048784*T1+.765557
IF ((TLLE.5.2). AND.(TLGT.4.2)) STRT=.02955*TT+.84634
IF (TLGT.5.2) STRT=1

IF ((TLGT.-2.2).AND.(TLLE.-1.2)) STRT=.263*TI-.2214

IF ((TLGT.-3.2).AND.(TLLE.-2.2)) STRT=.121668*TI-.532329
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e ok sl o s ok e ol s o ook

940

970

960

290

IF ((T1.GT.-4.2).AND.(TLLE.-3.2)) STRT=.048784*TI-.765557
IF ((TLGT.-5.2).AND.(TLLE.-4.2)) STRT=.02955*Ti-.84634
IF (TLLE.-5.2) STRT=-1

OAJ(IJ)=STRT

b o o o 8 o o o o 0 o o o o oo b o o oo e o o o b oo b e o sk e b e o

CONTINUE

DO 960 IK=1,NK

NETAK(IK)=0.0
DO 970 II=1,NJ
NET AK(IK)=NET AK(IK )+ WK(IK, L)) *O AJ(IJ)

CONTINUE

OAK(IK )=(NETAK(IK)-THK(IK ) THO2

CONTINUE

ERROR=TK(1,IP)-OAK(1)
WRITE(1,'(2(E14.7,2X)))NETI(1),0AX(1)
WRITE(2,'(2(E14.7,2X)))NETJ(2),0A1(2)
WRITE(7,'(4(E14.7,2X)))TK(1,IP),0AK(1), ERROR, KV AR(1,IP)
WRITE(3,'(2(E14.7,2X)))NETJ(3),0A)(3)
WRITE(4,'(2(E14.7,2X)))NETI(4),0AJ(4)
WRITE(S,' (2(E14.7,2X)))NETI(5),0AJ(5)
WRITE(6, (2(E14.7,2X)))NETJ(6),OAJ(6)

CONTINUE

CLOSE(2)
CLOSE(3)
RETURN

END
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APPENDIX-7

The neural network for the reactive power controller has two inputs, six
hidden and one output nodes performing a conitinuous mapping of X = Lsin0.
Range of input ‘I’ varied from 2 to 7 and input ‘0’ from 0° to 55°. I’ and ‘0’ were
normalized by dividing the corresponding inputs by 9.6 and 98.7 respectively.

Gradients chosen for the PWL function were given through Eq. 2.23a to 2.23f

m; = 0.4475 X] <1.2

m; = 0.263 1.2< X2 <2.2

m; =0.12167 22<X;<3.2

my = 0.04878 32<X,<4.2

ms = 0.02955 42<Xs<5.2

mg=1 5.2<X,

After learmng, the weights settled as,

I. Total iteration cycle:
2. Final RMS error:

3. Weights for node 6:

4. Weights for node I:

5. Weights for output node:

80800
00099

Wi =-1.644, Wy, = -1.69, W3, =4.77,
W, = 4.305, W5, =-8.416, W, = 2.38.
Wi, =-1.2808, W, = 2.155, W, = -5.376,
Wy = 3.525, Wi, =3.2767, Wg, = -0.11
W, =-1.0811, W, = 1.241, W; = -0.192,
W, =-2.0332, W5 = -0.269, Ws=1.88
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To make the implementation of the break points easier and more precise, the break
points are increased to 3 times than the training values. This modification requires
the inputs or the weights to be amplified 3 times to achieve the same target output.
The slopes of the equations are kept unaltered. To impose the condition of Eq.

(3.16) it 1s observed that 5th node of the hidden layer has the greatest value of
W3, [+ |Ws; |. Hence Eq. (15) for node no. 5 will be

0.4475x(8.416 +3.2767)=5.23

So, as explained earlier, the inputs should be increased more than 5.23 times to

satisfy the condition. Therefore, the overall amplifying factor for the input stands |
5.23x3 = 16. The values of resistances obtained through Eq. (3.9) to Eq. (3.15) are
given in Table A.7. Node 1, 2 and 6 have responses limited within the first two
sections of the PWL function. The only one output node is implemented by an

analog adder circuit.
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BREAKING POTENTIALS  : 1.611, 2.4,2.765,2.911, and 3.
RESISTANCE VALUES
Node R[ Rz R3 R.4 R5 R6 R7
Number

1 5.085 | 6.527 | 0929 1.00

2 4.947 3.88 1.035 1.00

3 13.728 | 12.182 | 36.963 | 7.833 2.78 1.00

4 16.529 | 20.187 | 17.406 | 8.511 3.02 1.086 1.00

5 7.781 19.98 | 291.60 | 7.833 2.78 1.00

6 3.512 | 76.157 | 0.886 1.00

Table A.7 The resistance values for different nodes
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