
Optimization of a Production Inventory Model with
Reliability Considerations

MD. ABDULLA AL MASUD

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

DHAKA-1000, BANGLADESH

JANUARY, 2012



ii

Optimization of a Production Inventory Model with 
Reliability Considerations

BY
MD. ABDULLA AL MASUD

A thesis submitted to the Department of Industrial and Production Engineering, 
Bangladesh University of Engineering & Technology, in partial fulfillment of the 

requirements for the degree of Master of Science in Industrial and Production 
Engineering.

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

DHAKA-1000, BANGLADESH

JANUARY, 2012



iii

CERTIFICATION OF APPROVAL

The thesis titled “Optimization of a Production Inventory Model with Reliability 
Considerations” submitted by Md. Abdulla Al Masud, Student no.: 1009082006, has 
been accepted as satisfactory in partial fulfillment of the requirement of the degree of 
Master of Science in Industrial and Production Engineering on January, 2012.

Dr. Abdullahil Azeem
Thesis Supervisor
Professor & Head
Department of Industrial and Production Engineering
Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh



iv

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for 
the award of any degree or diploma

        Md. Abdulla Al Masud



v

To the Almighty

To my parents



vi

ACKNOWLEDGEMENT

The author expresses his sincere gratitude and profound indebtness to Dr. Abdullahil 

Azeem, Professor, Department of Industrial & Production Engineering, BUET, Dhaka-

1000, under whose continuous supervision this thesis was carried out. His affectionate 

guidance, valuable suggestions and inspirations at every stage made this work possible.

I would like to thanks Dr. A. K. M. Masud, Professor, Department of Industrial & 

Production Engineering, BUET, Dhaka-1000, for his inspiration, motivation and kind 

support regarding this thesis.

I would like to extend my gratitude to Mr. Sanjoy Kumar Paul and Mr. Sayed Mithun 

Ali, both are Assistant Professor, Department of Industrial & Production Engineering, 

BUET, Dhaka-1000 for helping me to enrich this work with necessary suggestions.

I would like to express my thanks and gratitude to all the members of Department of 

Industrial & Production Engineering, BUET, Dhaka-1000 for their kind cooperation and 

valuable suggestions to complete the thesis timely.

Finally, I would like to extend my sincere and thanks to my parents for their continuous 

inspiration and support that encouraged me to complete the thesis successfully. 



vii

ABSTRACT

The classical production inventory control models assume that products are produced by 

perfectly reliable production process with no defective items. However, in reality, 

products are not always perfect but are directly affected by the reliability of the 

production process. While the reliability of the production process cannot be increased 

without a price, its rejection and inspection cost can be reduced with investment in 

flexibility and reliability improvement. In this thesis, a production inventory model with 

reliability of production process consideration is developed which considers the 

combined effect of production cost, setup cost, holding cost, inspection cost, depreciation 

cost, rejection cost and backorder cost on total cost minimization. The economic 

production lot size and the reliability of the production process along with the production 

period are the decision variables and total cost per cycle is the objective function which is 

to be minimized. A meta-heuristic Particle Swarm Optimization (PSO) algorithm is used 

to solve the unconstrained non integer non linear form of objective function as it can 

generate accurate result with a shorter computational time with stable convergence. Some 

numerical examples have been presented to explain the model. The results obtained from 

PSO algorithm is compared with the results of Genetic Algorithm (GA) applying on the 

same inventory model and found satisfactory.
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CHAPTER 1

INTRODUCTION

Inventory control is the supervision of supply, storage and accessibility of items in order 

to ensure an adequate supply without excessive oversupply. It can also be referred as the 

process of managing the timing and the quantities of goods to be ordered and stocked, so 

that demands can be met satisfactorily and economically. Inventory control policies are 

decision rules that focus on the trade-off between the costs and benefits of alternative 

solutions to questions of when and how much to order for each different type of item. 

Success of inventory control depends on some important issues i.e. uncertainty about the 

size of future demands, uncertainty of inventory cost, uncertainty of lead time, reliability 

of the production process etc. The organizations and managers are most of the times 

interested in and worried for inventory costs. The control of these costs of the past, 

present and future is part of the job of all the managers in a company. In the companies 

that try to have profits, the control of costs affects directly to them. Knowing the costs of 

inventory is essential for decision making regarding price and mix assignation of 

products and services.

1.1 Rationale of the Study 

Inventories are used to serve a variety of functions in a company such as coordinating 

operations, smoothing production, achieving economies of scale, improving customer 

service etc. But keeping a high level of inventory is a costly exercise and thus no surprise 

to find that many managers generally regard inventories as necessary evils. The economic 

production quantity (EPQ) model is used in manufacturing environments to assist firms 

in determining the optimal production lot size that minimizes the overall production 

inventory costs. For this reason, EPQ model has been widely used for more than three 

decades as an important tool to control the inventory and it is the most powerful tool to 

help practitioners and engineer to make a decision. In this regard, a new generalized EPQ 

model is proposed considering production cost, holding cost, setup cost, inspection cost, 

depreciation and insurance cost, defective units cost and backorder cost along with 

reliability of the production process.
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1.2 Objectives

The objectives of the proposed thesis work are:

i. To develop a production inventory model considering production cost, holding 

cost, setup cost, inspection cost, depreciation and interest cost, defective units 

cost and backorder cost along with reliability or imperfect production process 

consideration.

ii. To optimize the production inventory model by minimizing total cost using 

Particle Swarm Optimization (PSO) algorithm.

iii. To compare the results of PSO algorithm with Genetic Algorithm (GA), 

applying it on the same inventory model.

This thesis, however, will give possible clues in the development of production inventory 

model by providing numerical results to help on understanding, formulation and analysis 

of such inventory model.

1.3 Methodology

The research work is theoretical in nature. A production inventory model is developed 

incorporating cost of quality (depreciation, inspection and rejection costs) and backorder 

cost with traditional EPQ model. The model considers the effect of reliability of the 

production process on all cost items. The production inventory model is formed as 

unconstrained non integer non linear form which is optimized to determine the numerical 

values of different decision variables (lot size per cycle, reliability of the production 

process and duration cycle time). The methodology would be as follows:

i. Equations for production cost, holding cost, setup cost, depreciation & interest 

cost, inspection cost and rejection cost considering reliability has been obtained 

and developed for the new EPQ model.

ii. Two types of backorder cost are considered: administrative backorder cost and 

backorder cost due to loss of goodwill. Mathematical equation for total backorder 

cost is developed.
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iii. A new cost function has been developed considering production cost, setup cost 

and holding cost along with inspection cost, depreciation and insurance cost, 

rejection cost and backorder cost 

iv. Total cost of production, economic lot size, cycle time and process reliability will 

be determined and optimized using PSO algorithm.

v. The model will be explained with a numerical illustration.

vi. The results obtained from PSO will be compared with the results derived from 

GA.
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CHAPTER 2

LITERATURE REVIEW

Lack of synchronization in the production system, along with inherent uncertainty in 

material supply and demand, makes holding inventory a necessity, yet keeping a high 

level of inventory is a costly exercise. It is thus no surprise to find that many managers 

generally regard inventories as necessary evils. Representing a significant portion of a 

company’s assets, inventories are used to serve a variety of functions, chief among which 

are: (1) coordinating operations, (2) smoothing production, (3) achieving economies of 

scale and (4) improving customer service. The determination of the most cost effective 

production quantity under rather stable conditions is commonly known as the classical 

economic production quantity (EPQ). The economic production quantity (EPQ) model is 

used in manufacturing environments to assist firms in determining the optimal production 

lot size that minimizes the overall production – inventory costs. For this reason, EPQ 

model has been widely used for more than three decades as an important tool to control 

the inventory and it is the most powerful tool to help practitioners and engineer to make a 

decision.

Though EPQ model is a powerful tool, it did not represent the real world problems in 

some situations. Regardless of such an acceptance, the analysis for finding an economic 

production quantity has several weaknesses. The obvious is the number of unrealistic 

assumptions which lead many researchers to make extensions in several aspects of the 

original EPQ model. Here, first various previous researches in EPQ model will be 

discussed, the scope of future research will be projected and finally objective of this 

thesis will be outlined.

Salameh et al. (2000) [1] was the first, who hypothesizes a production/inventory 

situation where items received or produced are not of perfect quality. Items of imperfect 

quality could be used in another production/inventory situation such as less restrictive 

process and acceptance control. This paper extends the traditional EPQ/EOQ model by 

accounting for imperfect quality items when using the EPQ/EOQ formulae. Their paper 

also considers the issue that poor-quality items are sold as a single batch by the end of the 
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100% screening process. They consider a case where the lot delivered instantaneously 

with a purchasing price and an ordering cost. It is assumed that each lot received contains 

some percentage defectives with a known probability density function. Unlike the 

assumption of defective items can be reworked instantaneously at a cost, in this paper it is 

assumed that defective items are sold as a single batch at a discounted price. A 100% 

percent screening process of the lot is conducted. Items of poor quality are kept in stock 

and sold prior to receiving the next shipment as a single batch. The optimum operating 

inventory doctrine is obtained by trading of total revenues per unit time, procurement cost 

per unit time, the inventory carrying cost per unit time and item screening cost per unit 

time so that their sum will be a maximum.

Goyal et al. (2002) [2] present a simple approach for determining the economic 

production quantity for an item with imperfect quality developed by Salameh [1]. They 

compare the results based on the simple approach with the optimal method for 

determining the lot size and show that almost optimal results are obtained using the 

simple approach. 

In many cases, large piles of consumer goods are often associated with on sale items to 

induce more sales and profits. Teng and Chang (2005) [3] therefore assumed that the 

demand is a function of the selling price and the stock on display. With perishable goods, 

shoppers usually walk away if they cannot find the product they want. Therefore, to avoid 

lost sales, shortages were not allowed in this paper. As too many goods piled up in 

everyone’s way leaves a negative impression on buyers, they imposed a limited 

maximum number of stock items without leaving a negative impression on buyers. It may 

be desirable to order large quantities, resulting in stock remaining at the end of the cycle, 

due to the potential profits resulting from the increased demand. Consequently, a terminal 

zero-inventory condition was imposed at the end of the replenishment cycle. In summary, 

a single-item deterministic inventory model for deteriorating items with constant 

production rate is presented in their paper. In addition, they impose a ceiling on the 

number of on-display stocks because too much stock leaves a negative impression on the 

buyer and the amount of shelf space is limited. Finally, sensitivity analysis is applied on 

the parameter effects of the optimal price and production run time.
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The EOQ model assumes that the retailer’s capitals are unrestricting and must be paid for 

the items as soon as the items are received. However, this may not be true. In practice, 

the supplier will offer the retailer a delay period, which is the trade credit period, in 

paying for the amount of purchasing cost. Before the end of the trade credit period, the 

retailer can sell the goods and accumulate revenue and earn interest. A higher interest is 

charged if the payment is not settled by the end of the trade credit period. Therefore, it 

makes economic sense for the retailer to delay the settlement of the replenishment 

account up to the last moment of the permissible period allowed by the supplier. In a real 

world, the supplier often makes use of this policy to promote his commodities. Huang et 

al. (2005) [4] investigated the optimal retailer’s replenishment decisions under two levels 

of trade credit policy within the economic production quantity (EPQ) framework to 

reflect this realistic business situations. His Theorems help the retailer in accurately and 

quickly determining the optimal replenishment decisions under minimizing the annual 

total relevant cost. In this paper following inferences are made.

i. When replenishment rate is increasing, the optimal cycle time for the 

retailer will be decreasing. The retailer will order less quantity since the 

replenishment rate is faster enough. 

ii. When the customer’s trade credit period offered by retailer is increasing, 

the optimal cycle time for the retailer will be increasing. It implies that the 

retailer will order more quantity to get more interest earned offered by the 

supplier to compensate the loss of interest earned from longer trade credit 

period offered to his/her customer. 

iii. Optimal cycle time for the retailer will be decreasing when the unit selling 

price s is increasing. This result implies that the retailer will order less 

quantity to take the benefits of the trade credit more frequently.

Freimer et al. (2006) [5] considered the classical economic production quantity model 

with defects produced according to some time-varying function u(x). If repair takes some 

constant time then the analysis either remains the same if units are considered to count in 

inventory when they are first produced, or the inventory expression is slightly modified if 

units are considered to count in inventory when the final, non-defective unit is produced. 
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The results hold for any random yield function as long as units are repaired instantly. 

With a deteriorating process, the optimal run length is shorter than the run length implied 

by the EPQ. Furthermore, the faster the process deteriorates the shorter the optimal run 

length. For the special case of linear deterioration, the cost penalty for using the EPQ 

instead of the optimal quantity is increasing in the setup cost, the defect repair cost and 

the rate of process deterioration, and decreasing in the holding cost. They consider the 

opportunity to invest in reducing setup cost and improving process quality. For a general 

time varying defect rate u(x), the marginal value of setup cost reduction is inversely 

proportional to optimal run length while the marginal value of process improvement (as 

modeled by a constant scaling p of the defect rate) is increasing in the optimal run length. 

Any investment in setup cost reduction will result in a reduction in the number of defects 

produced. Interestingly, the total number of defects can increase or decrease with the 

scaling p (probability of a defective unit). For the logarithmic investment function 

investigated, the number of defects at the optimal run length is unaffected by the holding 

cost and the setup cost. These results provide guidance for manufacturing managers 

regarding the relative value of setup cost reduction and process improvement 

investments.

This work allows any random yield function as long as all defective units are repaired 

instantly at some per unit cost. If all units are not repaired instantly, then one must allow 

for the possibility of lost sales or backorders, or impose conditions on the random yield 

function such that the effective production rate always exceeds the demand rate. It should 

be noted that while this approach generalizes several prior methods, some recent research 

has addressed other aspects of the EPQ problem such as stochastic demand, coordination 

between buyer and seller and choosing an inspection schedule. They focus on systems in 

which the process deteriorates over time, although they point out where our results may 

be generalized (in the opposite direction) for a process that improves over time. They 

develop properties of the optimal production quantity and optimal cost and consider the 

options of investing in reducing setup cost and improving process quality. Expressions 

for the marginal value of setup cost reduction and process improvement are also 

developed here.
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Lai et al. (2006) [6] assumed that supplier would offer the retailer partially permissible 

delay in payments when the retailer ordered a sufficient quantity. Otherwise, permissible 

delay in payments would not be permitted. Under this condition, they developed the 

retailer’s inventory system and develop three theorems to efficiently determine the 

optimal lot sizing decisions for the retailer. In this paper shortages were not allowed, time 

horizon was taken Infinite and replenishments were instantaneous.

In the paper Leung et al. (2007) [7] established more general results using the arithmetic-

geometric mean inequality in which a general power function is proposed to model the 

relationship between production set-up cost (which implicitly measures the degree of 

process flexibility) and process reliability as independent variables and interest and 

depreciation cost as a dependent variable. Their objective was to minimize the long-run 

expected average annual cost function, i.e. the sum of setup, production, inventory 

holding, and interest and depreciation costs, which was a function of setup cost, 

production quantity, process reliability and the relevant cost parameters in the present 

case.

Due to the general nature of the power function proposed here, closed-form optimal 

solutions to this particular type of EPQ problem were not easy to obtain using the 

calculus-based optimization technique. To solve the EPQ problem presented in this paper 

GP approach was used where a closed-form optimal solution was obtained from GP. This 

was due to the fact that the objective function of the EPQ problem to be minimized was 

consisted of polynomials.

In this paper it was assumed that product quality is not always perfect; it is directly 

affected by the capability of the production process employed to manufacture a product 

and the quality assurance program established to monitor the product quality. Here, 

instead of measuring quality as the probability of the process going out of control with 

the production of the next unit, quality was measured as the expected fraction of a lot that 

is acceptable.
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They took the assumption that 100% inspection is performed for each lot and no rework 

of defective items is possible. This assumption is valid for a process producing finished 

products, which are normally subject to 100% inspection and are irreversible. 

Another assumption was that the total cost of interest and depreciation per production 

cycle is inversely related to the set-up cost and directly related to process reliability 

according to the following general power function. This assumption is based on the fact 

that to reduce the costs of production set-up and scrap and rework on shoddy products, 

substantial investment is required in improving the flexibility and reliability of the 

production process. Consequently the total cost of interest and depreciation per 

production cycle of the flexible production process should be much higher than that of 

conventional inflexible processes. However, though this relationship should be discrete 

but a continuous function was used as an approximation which was needed to simplify 

the subsequent mathematical analysis. 

Liao et al. (2007) [8] derived a production model for the lot-size inventory system with 

finite production rate, taking into consideration the effect of decay and the condition of 

permissible delay in payments. Here, restrictive assumption of permissible delay is 

relaxed to that at the end of the credit period. The retailer will make a partial payment on 

total purchasing cost to the supplier and pay off the remaining balance by loan from the 

bank. At first, this paper shows that there exists a unique optimal cycle time to minimize 

the total variable cost per unit time. Then, a theorem is developed to determine the 

optimal ordering policies and bounds for the optimal cycle time are provided to develop 

an algorithm. Numerical examples reveal that our optimization procedure is very accurate 

and rapid. Finally, it is shown that the model developed by Huang [4] can be treated as a 

special case of this paper.

Here, demand rate and replenishment rate are considered known and constant. No 

shortages were allowed. The constant fraction of on hand inventory gets deteriorated per 

unit time and time period is taken infinite. The results in this study provide a valuable 

reference for decision-makers in planning the production and controlling the inventory. 
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Moreover, it provides a useful model for many organizations that use the decision rule to 

improve their total operation cost in real world. 

Islam et al. (2007) [9] developed an EPQ model with flexibility and reliability 

consideration of production process and demand dependent unit production cost. The 

model has involved one storage space constraint. In real life problems, it is almost 

impossible to predict the restricted resource amount precisely. Decision maker may 

change it within some limits as per the demand of the situation. Hence it may be assumed 

uncertain in non-stochastic sense but fuzzy in nature. In this situation, the inventory 

problem along with constraint can be developed with fuzzy entries. The model is 

formulated in fuzzy environment introducing fuzziness in objective and constraint goals, 

coefficient and indexes of objective function and constraint. Shortages are not permitted 

and time horizon is infinite in this model. The unit production cost is considered as a 

continuous function of demand. Total cost of interest and depreciation per production 

cycle is inversely related to a setup cost and directly related to production process 

reliability. The total average cost of the inventory system consists of the set- up, 

production, inventory carrying and interest and depreciation cost. The problem is 

proposed to solve by Fuzzy Geometric Programming (FGP) method. The FGP method 

provides an alternative approach to this problem. Its advantages lie in its computational 

efficiency and in the primal–dual relationship. The method is efficient and reliable. Here 

decision maker may obtain the optimal results according to his expectation. The method 

presented is quite general and can be applied to the model in other areas like structural 

optimization, etc.

In the paper of Darwish et al. (2008) [10], the classical EPQ model is generalized by 

considering a relationship between the setup cost and the production run length. 

Previously it was considered that setup cost is fixed. However, setup time/cost is usually 

a function of the production run length. Processes with short production runs require less 

setup time/cost than that of long runs. This is because the effort needed to perform a 

setup activity is related to the condition of the production process. That is, for long 

production runs, the production process is more likely to be subjected to higher level of 

deterioration resulting in a higher setup time/cost. Thus, the setup cost and run length are 
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correlated. In this paper, the classical EPQ model is generalized by considering a 

relationship between setup cost and production run length.

Deteriorating processes can be found in many applications, for example, plastic industry, 

and food processing and machine industry. The relationship between setup cost and 

production run length is also influenced by the learning and forgetting effects. Learning 

in setup encourages smaller lots (and consequently shorter runs) to be produced more 

frequently. The effect of forget ting in setup, however, is expected to have an opposite 

impact on the production run length because long production runs increase forgetting, 

which results in higher setup time/cost. Hence, the dependency between the setup cost 

and run length is related to process deterioration and learning and forgetting effects. Two 

models are developed, in one case shortages are not allowed and the other one permits 

shortages. Model 1 proposed EPQ model without backorders. It assumes that all demands 

are satisfied from inventory, so no stock out situation occurs. Model 2 proposed EPQ 

model with backorders. The model 1 presented here never becomes out of stock when a 

demand is occurred. In model 2, it is allowed for the system to be out of stock when a 

demand occurs is demonstrated. In such a case the demands occurring when the system is 

out of stock are backordered.

The model considered a process producing a single item at a rate P to satisfy a constant 

and deterministic demand. For each production cycle of length, the production process 

undergoes a setup at a cost. Other system parameters are assumed to be known with 

certainty and are independent of produced quantity. It is also assumed that the planning 

horizon is infinite and shortages are backlogged.

The cost functions associated with these models are proved to be convex and optimal 

solutions are determined. The results show that the setup shape parameter e, which is a 

property of the system, defines the category of the production system under 

consideration. For example, when e is more than unity, the optimal solution gives the 

least possible lot size, which is one unit. However, for a setup shape parameter 

approaching unity from below, the system falls into the category of producing in smaller 
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lots more frequently. Moreover, values of e close to zero correspond to systems with 

relatively larger lot size and longer production run. Numerical results indicated that the 

loss due to using the classical EPQ model is significant. The results also show that the lot 

size and production run length are inflated when the relationship between setup cost and 

production run length is ignored. Thus, this model’s credit is that it considered the setup 

cost as a function of the production run length which none of the previous EPQ models 

did.

Rau et al. (2008) [11] presented a new integrated production–inventory policy under a 

finite planning horizon and a linear trend in demand. It is assumed that the vendor makes 

a single product and supplies it to a buyer with a non-periodic and just-in-time (JIT) 

replenishment policy in a supply chain environment. The objective is to minimize the 

joint total costs incurred by the vendor and the buyer. In this study, a mathematical model 

is developed and proved that it has the optimal solution. Later, an explicit solution 

procedure for obtaining the optimal solution is described. Finally, two numerical 

examples is provided to illustrate both increasing and decreasing demands in the 

proposed model, and showed that the performance of the integrated consideration is 

better than the performance of any independent decision from either the buyer or the 

vendor.

In a competitive industrial environment, the integration to obtain an optimal production 

or inventory policy in the supply chain has become essential. This paper presents an 

integrated production inventory policy for a linear trend in demand with a non periodic 

replenishment policy in a supply chain under a finite time horizon. Most of the previous 

study considered the situation of constant demand; few have studied other demand 

patterns. But, the demand rate with a time-varying pattern reflects the actual 

environment. This study deals with a production– inventory policy integrating between a 

buyer and a vendor under a supply chain environment, and the contribution of this paper 

is that it proves the solution of an integrated model is the optimal solution.
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Thus, in the proposed model, a single-buyer and a single vendor with a single item are 

considered and the demand is taken as a linear function. The production rate is constant 

for the vendor. It is greater than the demand at the end o f planning horizon for the case 

with increasing demand and less than the demand at the beginning of planning horizon 

for the case with decreasing demand. Due to preparing the first replenishment, it is 

considered that the vendor’s planning horizon starts with a production lead time ahead of 

the buyer’s planning horizon when the first delivery occurs. Delivery time considered

negligible, shortages are not allowed and no stock was held at the beginning and the end 

of the time horizon.

In results, it is found that the joint total cost for the vendor and the buyer is a convex 

function. They proved that the model has the optimal and unique solution for both 

increasing and decreasing demands with several precious properties. In addition to 

illustrating the proposed model, the provided numerical examples suggest that the 

integrated approach is an effective way for partners to cooperate in a supply chain. 

Panda et al. (2008) [12] developed a mathematical model for a single period multi-

product manufacturing system of stochastically imperfect items with continuous 

stochastic demand under budget and shortage constraints. Here, the inventory system is 

an imperfect production system and involves multiple items. Their model is a single 

period inventory model where production rate is considered finite and constant and total 

demand over the period of cycle is considered stochastic and uniform over time. 

Shortages were permitted and fully backlogged and screening costs for all items 

considered same. After calculating expected profit in general form in terms of density 

functions of the demand and percentage of imperfectness, particular expressions for those 

density functions are considered. Here the constraints are of three types: (a) both are 

stochastic, (b) one stochastic and other one imprecise and (c) both imprecise. The 

stochastic constraints have been represented by chance constraints and fuzzy constraints 

in the form of possibility/necessity constraints. Stochastic and fuzzy constraints are 

transformed to equivalent deterministic ones using ‘here and now’ approach and fuzzy 

relations respectively. The deterministic problems are solved using a non-linear 



14

optimization technique-Generalized Reduced Gradient Method. The model is illustrated 

through numerical examples. Sensitivity analyses on profit functions due to different 

permitted aspiration’ and ‘confidence’ levels are presented.

The paper proposed an extension to economic production lot size model for imperfect 

items in which the production rate is assumed to be finite and demand rate is stochastic 

under uncertain budget and shortage constraints. Here it is considered that the percentage 

of defective items is stochastic and the natures of uncertainty in the constraints are 

stochastic and/or fuzzy. Later, the stochastic non-linear programming problem was 

converted into a deterministic problem. It is considered that the density function of the 

demand is linear, which is a general case of uniform distribution. The advantage of the 

model is that it can be formulated and solved considering different types of density 

function.

Hejazi et al. (2008) [13] determine the economic production quantity with reduced 

pricing, rework and reject situations in a single-stage system in which rework takes place 

in each cycle after processing to minimize total system costs. The assumption considered

in this paper is that processing leads to different products classified in the four groups of 

perfect products, imperfect products, defective but reworkable products, and finally non-

reworkable defective products. The percentage of each type is assumed to be constant and 

deterministic. A mathematical model is developed and numerical examples are presented 

to illustrate the usefulness of this model.

This paper extends the work by Jamal et al. [14] and studies the optimal run time problem 

of EPQ model with imperfect products, reworking of the reparable defective products and 

rejecting of non-reworkable defective items. Neglecting the production of imperfect 

products and scraps, Jamal et al. assumed that all defective products could be reworked, 

but in some real situations, it is observed that some non-perfect products cannot be

reworked and they should be either sold at a lower price or rejected altogether. In this 

paper, the different scenarios for imperfect quality products are investigated. While 

previous assumption was that defective items are reworked instantaneously with 

processing at no additional time, their assumption is that these products should be 

reworked at the end of the processing period in a kind of reprocessing stage. In other
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words, reworking an imperfect item takes time and money as does the processing of a 

product. In the paper, it is considered that the lot contains a percentage of defectives, so 

that these defective products can be reprocessed, or reworked, after the processing period 

and kept in stock. These products are assumed to be of good quality after reprocessing.

Thus, the reworked products will need no inspection. Each lot produced also contains a 

percentage of defectives, so that these units are rejected with an associated cost when 

identified. In other words, a defective product that cannot be reworked is rejected 

immediately after its work operation completes with an associated cost. Finally, the 

objective is to minimize the total system cost of the inventory system. 

Chen et al. (2008) [15] introduced a Fuzzy Economic Production Quantity (FEPQ) model 

with defective productions that cannot be repaired. This FEPQ model is applicable when 

inventory continuously flows or builds up over a period of time after an order has been 

placed, when units are produced and sold simultaneously. In this model, a fuzzy 

opportunity cost and trapezoidal fuzzy costs under crisp production quantity or fuzzy 

production quantity is considered in order to extend the traditional production inventory 

model to the fuzzy environment. The authors use Function Principle as arithmetical 

operations of Fuzzy Total Production Inventory Cost (FTPIC), and use the Graded Mean 

Integration Representation method to defuzzify the fuzzy total production and inventory 

cost. Then they use the Kuhn–Tucker method to find the optimal economic production 

quantity of the fuzzy production inventory model.

Throughout this paper, the authors only use normal trapezoidal fuzzy number as the type 

of all fuzzy parameters in our proposed fuzzy production inventory models. In real world, 

defective products cannot be avoided in some production processes. So, the model 

considered defective products. Two cases of imperfect productions that cannot be 

repaired are considered, one case with fuzzy costs but crisp production quantities, the 

other case with fuzzy costs and fuzzy production quantities.

Chung et al. (2009) [16] proposed an inventory model which has threefold purpose:

i. This paper shows that the total cost function per unit time is convex by a 

rigorous proof.



16

ii. This paper derives the closed forms for the upper and lower bounds on the 

optimal cycle time of the total cost function per unit time, thereby 

enabling straightforward application of the standard bisection algorithm to 

numerically compute the optimal cycle time.

iii. This paper compares optimal solutions obtained by using the bisection 

algorithm and Park’s approach. Numerical examples show that bisection 

algorithm approach is better.

For each raw material, here it is considered that a constant fraction of the on-hand 

inventory decays per unit time and there is no replacement of the decayed inventory. The 

decay of the raw materials is assumed to be a constant fraction of the on-hand inventory. 

The product is produced in batches and the raw materials were obtained from outside 

suppliers. The objective is to minimize the total cost of the system and to study the 

convexity (concavity) of the total annual cost (profit) function of the inventory model to 

locate the optimal solution.

In 2007, Huang et al.[17] proposed the optimal retailer’s replenishment decisions in the 

EPQ model under two levels of trade credit policy, in which the supplier offers the 

retailer a permissible delay period M , and the retailer in turn provides its customer a 

permissible delay period N (with N < M ). Teng and Cheng (2009) [18] extend his EPQ 

model to complement the shortcoming of the model. In addition, they relax the 

dispensable assumptions of N < M and others. They considered two cases. In one case,

the manufacturer buys all parts at time zero and must pay the purchasing cost at time M. 

Based on the time at which the manufacturer must pay the supplier to avoid interest 

charge (M) and the time at which the manufacturer receives the payment from the last 

customer (N), two possible sub-cases are created. In Sub- case 1, the manufacturer pays 

off all units sold by M-N at time M, keep the profits and starts paying for the interest 

charges on the items sold after M - N. In this sub-case 2, the manufacturer receives the 

total revenue, and is able to pay the supplier the total purchase cost at time M. In case 2, 

the customer’s trade credit period N is equal to or larger than the supplier credit period 

M. Consequently, there is no interest earned for the manufacturer. In addition, the 
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manufacturer must finance all items ordered at time M at an interest charged per dollar 

per year, and start to pay off the loan after time N. 

Both Huang and Cheng models are to investigate the optimal replenishment policies in 

the EPQ model under two levels of trade credit financing. Both models assume that the 

manufacturer buys and receives all parts at time zero and must pay the purchasing cost at 

time M, which is the time the manufacturer must pay the supplier in full to avoid interest 

charge. Since the manufacturer offers its customers the permissible delay of N periods, 

the manufacturer starts receiving its revenue at time N. Huang’ s model did not recognize 

that the last customer buys the product at time T, and pays the manufacturer at time T + 

N due to its customer trade credit period N.  In addition, Huang’s model ignored the fact 

that the manufacturer starts getting the revenue at time N, not at time 0. 

Maiti et al. (2009) [19] introduced an EPQ model for a deteriorating item with linearly 

displayed demand in imprecise environment (involving both fuzzy and random 

parameters) under inflation and time value of money. Here, it is assumed that the periods 

of business are random and follow exponential distribution with a known mean. So, the 

resultant effect of inflation and time value of money is assumed as fuzzy in nature. A 

particular case is also analyzed where resultant effect of both inflation and time value is 

crisp in nature. For crisp inflation effect, the total expected profit for the planning horizon 

is maximized using the Genetic Algorithm (GA) to derive optimal inventory decision. On 

the other hand when inflationary effect is fuzzy then the expected profit is fuzzy in nature 

too. For crisp model expected profit is proposed to maximize using a GA with roulette 

wheel selection, arithmetic crossover and random mutation. In the case of fuzzy model, a 

fuzzy simulation process is proposed to maximize the optimistic/pessimistic return of the 

objective function and a fuzzy simulation based genetic algorithm with GA operators is 

developed to solve the model. Model-1 is solved using GA. and model-2 is solved by 

converting the possibility/necessity constraint to its deterministic equivalent. 

Islam et al. (2009) [20] incorporates inflation and time value of money in EPQ model for 

a newly launched product. In the paper, the demand of the item is displayed stock 

dependent and lifetime of the product is random in nature and follows exponential 
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distribution with a known mean. Here learning effect on production and setup cost is 

incorporated. Model is formulated to maximize the expected profit from the whole 

planning horizon. A fuzzy-based lifetime extension of genetic algorithms is considered. 

A genetic algorithm with varying population size is used to solve the model where 

crossover probability is a function of parent’s age type (young, middle-aged, old, etc.). In 

this GA a subset of better children is included with the parent population for next 

generation and size of this subset is a percentage of the size of its parent set. This GA is 

named fuzzy genetic algorithm (FGA) and is used to make decision for above production 

inventory model in different cases. The model is illustrated with some numerical data. 

Sensitivity analysis on expected profit function is also presented. Performance of this GA 

with respect to some other GAs is compared. An EPQ model has been considered under 

inflation and time discounting over a stochastic time horizon incorporating the learning 

effect on both the production and setup cost. 

Panda et al. (2009) [21] developed multi item EPQ models with price dependent demand, 

infinite production rate, stock dependent unit production and holding costs. Here, 

flexibility and reliability consideration are considered also. The models are developed 

under two fuzzy environments. First one is with fuzzy goal and fuzzy bindings on storage 

area and the other one is with unit cost as fuzzy and possibility of necessity restrictions 

on storage space. The objective goal and constraint goal are defined by membership 

functions. The presence of fuzzy parameters in the objective function is dealt with fuzzy 

possibility/necessity measures. The first one-the fuzzy goal programming problem is 

solved using fuzzy additive goal programming (FAGP) and modified geometric 

programming (MGP) methods. The second model with fuzzy possibility/necessity 

measures is solved by geometric programming (GP) method. The models are formed as 

maximization problems. In the paper, they have formulated multi-item profit 

maximization production inventory models with limited storage area in fuzzy/fuzzy 

possibility and necessity sense under process reliability and flexibility. They have 

considered fuzzy possibility and necessity measures of the objective function when its 

some parameters are fuzzy. Moreover, the authors have considered demand as power 
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function of selling price, unit costs dependent on inventory level, holding costs again as 

functions of unit costs.

Hu et al. (2010) [22] investigated the optimal replenishment policy under conditions of 

permissible delay in payments and allowable shortages within the EPQ framework. 

Considering a practical situation, the unit selling price is not lower than the unit 

purchasing price and the infinite replenishment rate is difficult to reach in general, the 

authors extend the work of Chung and Huang [15] to assume that the replenishment rate 

is finite and the unit selling price is not necessarily equal to the unit purchasing price. 

They assume that replenishment rate is finite and the unit selling price is not necessarily 

equal to the unit purchasing price

The necessary assumptions made here are: (1) Demand rate and replenishment rate are 

both known and constant. (2) Time horizon is infinite. (3) The supplier proposes a certain 

credit period M. During the time the account is not settled, the retailer deposits his/her. At 

the end of the trade credit period, the account is settled and the retailer starts paying for 

the interest charges on the items in stock (including negative stock and positive stock). 

(4) Shortages are allowed and are fully backlogged. In the paper, the inventory cycle is 

divided into four major phases: backorder replenishment period, inventory building 

period, inventory depletion period and shortage period. The objective here is to find the 

optimal replenishment time and the corresponding backorder replenishment period, 

which minimize the annual total relevant cost.

In this paper some realistic features are considered. First, the unit selling price and the 

unit purchasing price are not necessarily equal to match the practical situations. Second, 

the replenishment rate is finite to make a broader application scope. Third, since stock out 

is unavoidable due to various uncertainties in many practical situations, it is assume that 

the shortages are allowed. A theorem is developed to determine the optimal 

replenishment policy. Finally, numerical examples are given to illustrate the theorem.

Leung et al. (2010) [23] generalized a number of integrated models with/without lot 

streaming and with/without complete backorders under the integer–multiplier 
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coordination mechanism. They then individually derived the optimal solution to the 

three- and four-stage model, using algebraic methods of complete squares and perfect 

squares. It is subsequently deduced optimal expressions for some well-known models. 

For this model, Leung found that the optimal solution is a global one, which is 

algebraically derived. 

Two extensions of the model augmenting future research endeavors in this field are: First, 

following the evolution of three- and four-stage multi-firm supply chains, can the 

integrated model of a five- or higher-stage multi-firm supply chain is formulated and 

algebraically analyzed. Secondly, using complete and perfect squares, we can solve the 

integrated model of a stage multi-firm supply chain either for an equal cycle time, or an 

integer multiplier at each stage with a fixed ratio partial backordering allowed for 

some/all downstream firms, with or without lot streaming can be solved.

Saadany et al. (2010) [24] developed and analyzed production, remanufacture, and waste 

disposal EPQ type models, where a manufacturer serves a stationary demand by 

producing new items of a product as well as by remanufacturing collected used/returned 

items. In these developed models, the return rate of used items is modeled as a demand-

like function of purchasing price and acceptance quality level of returns. The model 

developed herein is a decision tool that helps managers in determining the optimum 

acceptable acquisition quality level and its corresponding price for used items that are 

collected for recovery purposes and that minimizes the total system cost.

Two mathematical models were developed. The first assumes a single remanufacturing 

cycle and a single production cycle, with the second being a generalized version of the 

first assuming multiple remanufacturing and production cycles. A solution procedure was 

introduced with an enhanced search technique that eliminates solution branches that do 

guarantee an optimal solution. This enhanced solution procedure was supported by a 

theorem, which shows that having even numbers of remanufacturing (m) and production 

(n) cycles in an interval never produces an optimal solution. Numerical results showed 

that when considering the return rate of used items to be dependent on the purchasing 

price and acceptance quality level of these returns, a pure policy of either no waste 

disposal (total repair) or no repair (total waste disposal) is not optimal. Results showed 
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that a mixed (production + remanufacturing) strategy is optimal, when compared to either 

a pure strategy recycling (pure remanufacturing) or a pure strategy production.

An immediate extension of the work presented herein is to integrate the production–

remanufacturing system into a multistage supply chain (say supplier–manufacturer–

retailer), where used items are collected from the market by the manufacturer to be 

disassembled for reuse. In this case, the production–remanufacturing process will be 

supplied by components from the disassembly process and from the manufacturer’s 

supplier as needed. A second extension is to assume that the production and 

remanufacturing processes are imperfect where defective items are either reworked or 

scrapped. A third extension is to assume demand to be stochastic.

Sana et al. (2010) [25] considered a production–inventory model in an imperfect 

production process over a finite planning horizon. The production rate is a dynamic 

variable (i.e., varying with time). Increasing the time-varying demand (like, quadratic, 

linear, exponential and stock-dependent) is considered. And, the unit production cost is 

considered as a function of production rate and product reliability parameter. The 

integrated profit function with the effect of inflation and time value of money is 

maximized by Euler–Lagrange’s method.

The model of Sana provides a guide for a firm/industry in addressing the question- when 

and in what to invest to maintain sustainable competitive advantage? The firm/industry 

produces a single product and operates in an oligopolistic competition. Demand for the 

product in an industry depends on price, time and performance quality with time. The 

effect of this dependency is that the retailers have incentive to keep higher levels of 

inventory in spite of higher holding costs as long as the item is profitable and the demand 

is an increasing function of the inventory-level. Increasing production knowledge 

decreases unit production cost whereas lower values of product reliability factor increases 

development cost. Therefore, productivity and quality knowledge can be developed 

through induced and autonomous learning in order to strengthen company position.

In the paper of Ata Allah et al. (2010) [26] an EPQ model with multiple discrete 

deliveries, capacity and space constraints is presented which solved by using the 
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extended cutting plane method, the particle swarm optimization (PSO) and harmony 

search algorithms. Here the research objective is to determine the optimal period length, 

the optimal number of shipments and the optimal order quantities to minimize the total 

production inventory cost with space and capacity constraints. It is assumed that 

production and demand rates of each product are known and constant. Manufacturer 

sends orders to the customer and bears the transportation cost for each delivery to the 

customer. The customer determines the capacity of each delivery and the quantity of each 

shipment. Shortage is not permitted and the production costs consist of production, setup, 

holding, and transportation costs. Since all products are manufactured by a single 

machine with a limited capacity, a unique cycle length for all items is considered. The 

final model is a mixed integer nonlinear programming (MINLP) problem and extended 

cutting plane method to solve MINLP is used. In addition, in order to evaluate the 

performance of the proposed solution method, two meta-heuristic algorithms are used. 

Two numerical examples with fifteen products are used to illustrate the proposed model. 

Through the numerical examples, it is demonstrated that the extended cutting plane 

method performs better in terms of the objective function and the computation time. The 

examples also show that high holding cost and production cost result in less number of 

shipments in each cycle.  

The proposed PSO algorithm of this paper consists of three main steps: firstly, the 

positions of particle are generated. Secondly, exploration velocity is updated, and finally 

each position is updated. Here, each particle refers to a point in the solution space that 

changes its position from one move (iteration) to another, based on exploration velocity 

updates. The type of particles is associated with the number of variables involved in 

problem.

Wang et al. (2009) [27]  integrates fuzzy simulation and PSO algorithm to solve an EPQ 

model where the fuzzy simulation is employed to estimate the ߙ–level minimal average 

cost, and PSO algorithm is used to find the optimal solution. He consider the EPQ 

problem with backorder in the fuzzy sense, where the setup cost, the holding cost and the 

backorder cost are characterized as fuzzy variables respectively. As general extensions of 
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the classical EPQ model, a fuzzy EVM and a fuzzy CCP model are constructed, 

respectively. The EVM can be solved with generic approaches; however the CCP model 

needs to be solved with the heuristic algorithm owing to the complexity of the problem. 

There are several heuristic algorithms inspired from the evolution of nature, such as 

Evolutionary Computation (EC) technique, GA and PSO algorithm. To solve the CCP 

model, PSO algorithm is selected as the foundation to design an algorithm which 

integrates fuzzy simulation and PSO algorithm. In this paper, only production cost, 

holding cost, backorder cost and setup cost are considered.

In EPQ model when objective function becomes complex and sophisticated in nature like 

nonlinear non-integer-programming model, reaching an analytical solution (if any) is 

difficult and time consuming. As a result, meta-heuristic search algorithms were 

successfully used by many researchers to solve such type model. Many researchers have 

successfully used meta-heuristic methods to solve complicated optimization problems in 

different fields of scientific and engineering disciplines. Some of these meta-heuristic 

algorithms are simulating annealing, threshold accepting, Tabu search, GA, neural 

networks, ant colony optimization, fuzzy simulation, evolutionary algorithm and 

harmony search. Seyed et al. (2009) [28] developed a multi-product EPQ model in which 

there are some imperfect items of different product types being produced such that 

reworks are allowed and that there is a warehouses pace limitation. Under these 

conditions, they formulate the problem as a nonlinear integer-programming model and 

propose a genetic algorithm to solve it. Three main specifications of the proposed model 

of this research that have led to its novelty are (1) the allowance of several products, (2) 

rework and imperfect product are allowed, and (3) the warehouse space to store raw 

materials and finished goods is limited. By allowing these conditions simultaneously, 

their model has demonstrated its difference from the other models in the EPQ literature. 

At the end, a numerical example is also presented to identify the optimal values of the 

genetic algorithm parameters and to illustrate the applications of the proposed 

methodology to more realistic real- world problems.

One major assumption in previous studies is that item quality is perfect. However, in 

reality, product quality is not always perfect, and often depends on the reliability of the 
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production process used to produce the product. An important managerial decision 

therefore concerns investment to improve process reliability and quality. Investment 

decisions to improve process reliability and quality have been investigated by several 

researchers in the cost-minimization context. Tripathy et al. (2011) [29] consider this 

reliability/quality issue in the context of linking production (lot sizing and inventory) and 

marketing (pricing) decisions. Authors address some modeling issues of a related 

previous study. They develop a profit-maximization model, which is investigated under 

two different decision-making approaches to linking production and marketing 

(sequential and joint decisions). Calculus and geometric programming are used to solve 

the model, to compare the decisions from the two approaches analytically, and to develop 

a practical heuristic approach. The comparative results show that decision patterns can be 

the opposite of the optimal decisions for the perfect-quality case reported in the literature. 

The main purposes of this study are twofold. First, Authors address issues related to the 

model of Cheng (1991) [30] and improve the model. Secondly they investigate the 

economic relationship between price, demand rate, lot size, and reliability level in a 

broader decision-making context that links production and marketing functions. The 

objective is profit maximization rather than cost minimization. This is because 

optimization is trivial when production costs are minimized and demand rate is a decision 

variable. The authors develop profit-maximization models that treat the product price as a 

decision variable and the demand rate as an intervening variable to be determined by the 

price. 

Sadjadi et al. (2010) [31] proposes a new method where the reliability of the production 

is incorporated into pricing, marketing and production planning. The integrated model of 

this paper simultaneously determines price of products, marketing expenditure, lot size, 

setup cost, inventory holding cost and reliability of the production process. The objective 

is to minimize total costs including marketing, production, setup, holding, and interest 

and depreciation costs. This model is formulated in GP form and the optimal solution in

closed form is determined using the art of GP technique. This model is formulated as a 

nonlinear optimization problem and the optimal solution in closed form is derived using 
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geometric programming. In order to examine the behavior of the proposed method, the 

study tests the modeling formulation using a numerical example.  

The process reliability depends on a great variety of factors such as production 

technology, machine capability, jigs and fixtures, work methods, use of on-line 

monitoring devices, skill level of the operating personnel and inspection, maintenance 

and replacement policies. Higher reliability means products with acceptable quality are 

more consistently produced by the process; thereby reducing the costs of scrap and 

rework of substandard products, wasted materials and labor hours. However, high 

reliability can be achieved with substantial capital investment, which increases the cost of 

interest and of the depreciation of the production process. The total cost of interest and 

depreciation per production cycle is inversely related to the set-up cost and directly 

related to process reliability according to the following general power function. This 

assumption is based on the fact that to reduce the costs of production set-up and scrap and 

rework on shoddy products, substantial investment is required in improving the flexibility 

and reliability of the production process. In reality, this relationship should be discrete 

but a continuous function is used as an approximation which is needed to simplify the 

subsequent mathematical analysis.

So far depreciation and insurance cost was considered with production cost, setup cost 

and holding cost. Some paper considers cost of quality such as inspection and rejection 

cost along with basic inventory costs (setup cost, holding cost and production cost). A 

very few paper considers backorder cost with traditional EPQ model. Some paper 

considers process reliability but only for basic inventory cost terms. Thus, these papers 

do not consider the combined effect of production cost, setup cost, holding cost, 

inspection cost, depreciation cost, rejection cost and backorder cost on total cost 

minimization. This thesis work intends to consider all these costs with reliability of the 

production process. A meta-heuristic PSO algorithm will be used to solve the 

unconstrained non integer non linear programming model as it can generate accurate 

result with a shorter computational time. Finally, the results obtained from PSO algorithm 

will be compared with GA applying on the same inventory model.



26

CHAPTER 3

MODEL FORMULATION

3.1 Problem Identification

A basic assumption in the inventory management system is that set-up cost for 

production is fixed. In addition, the models also implicitly assume that items produced 

are of perfect quality. However, in reality, products are not always perfect but are directly 

affected by the reliability of the production process employed to manufacture the product. 

The process reliability depends on a great variety of factors such as production 

technology, machine capability, jigs and fixtures, work methods, use of on-line 

monitoring devices, skill level of the operating personnel and inspection, maintenance 

and replacement policies. Process reliability thus related with production cost, holding 

cost, inspection cost, depreciation and interest cost, rejection cost and even with 

backorder cost. Backorder cost plays an important part in increasing the cost of 

production which was ignored so far or only linear backorder cost was considered. 

Actually, traditional inventory model with cost of quality (inspection and rejection cost), 

backorder cost, setup cost, depreciation cost with context of reliability is a most realistic 

phenomena for a production process.

3.2 Problem Definition

The purpose of this research is to extend the previous research in the EPQ model by 

employing the knowledge of cost of quality, backorder cost and reliability of production 

process. In this thesis work, demand rate, production capacity  and inventory holding cost 

of the product are known parameter and the production process is assumed to be not 

100% perfect, i.e. a fraction of the produced items are defective. It is assumed that the 

defective items are sold at a reduced price and the selling price of fresh units is taken as a 

mark-up over the unit production cost. The model is formulated to determine the optimal 

reliability, lot size and cycle time in order to minimize the total cost of production.

Mathematical equations are obtained and derived for production cost, holding cost, setup 

cost, inspection cost, depreciation cost, interest cost, rejection cost, backorder cost, etc. 

with reliability of the production process which is very important in real life production 
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inventory problem. This paper also incorporated both administrative backorder cost and 

backorder cost due to goodwill loss. As a result, the inventory model in this paper is more 

practical than the traditional EPQ model. A new meta- heuristic particle swarm 

optimization (PSO) algorithm is used to solve the unconstrained non integer non linear 

programming model as it can generate more accurate result with a shorter computational 

time than any other meta-heuristic algorithms. 

3.3 Assumption of the Study

Some assumptions are considered in this thesis works. Assumptions are as follows:

i. Preparation time is negligible.

ii. Production starts immediately after receiving the order.

iii. The demand for the imperfect product with reduced price always exits.

iv. The demand rate for the good product is deterministic and constant.

v. Production and demand rates (with the former greater than the latter) are 

independent of production or order quantity, and are constant.

vi. The replenishment lead time is zero.

vii. Backorders and lost sales are allowed

Figure 3.1: Instantaneous production in EPQ model
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viii. Here, cycle time (T), production process reliability (r), lot size (Q) are decision 

variables.

ix. Defective items are sold immediately with a lower price than fresh items.

x. The production rate is greater than the demand rate, i.e. ܲ > .ܦ

Where P is production rate per day and D is demand per day which in 

deterministic in nature.

xi. Total cost of interest and depreciation per production cycle (ܻ ,ܵ (ݎ is inversely 

related to set-up cost S and directly related to process reliability (r) according to 

following general power function [29]:

                  (ܻ ,ܵ (ݎ = ݈ܵି௠ݎ௡ (1)

Where l, m and n are positive constants chosen to provide best fit of the estimated cost 

function

3.4 Mathematical Modeling

In this study, a new model is being proposed which incorporates the reliability as part of 

an integrated model. The model simultaneously determines lot size (Q), production 

reliability (R), and cycle time (T). The total cost incurred in a production cycle is sum of 

set-up, production, inventory holding, rejection, inspection, backorder and interest and 

depreciation costs. The objective function is to minimize the total cost of per production 

cycle as follows:  

Minimize Total cost = (Production cost) + (Setup cost) + (holding cost) + (Inspection 

cost) +  (Depreciation and Interest cost) + (Cost of defective items) 

+  (Administrative backorder cost) + (Backorder cost due to loss of  

                                       goodwill) (2)

As with the classical EPQ model, we assume that the production cycle is repeated 

indefinitely with an infinite planning horizon and so can base our analysis on one typical 

production cycle. A level of process reliability r means that, of all the items produced in a 

production cycle, only r % are of a quality acceptable enough to meet demand. It means 

that 
஽
௥products must be produced to satisfy the whole demand. It is thus evident that the 
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length of a production cycle is 
ொ௥
஽ and the number of cycles per year is

஽
ொ௥, where Q is the 

lot size in each cycle and D is the demand rate. Also, the average amount of inventory 

held each year is
ொ௥
ଶ. Therefore, the model can be formulated as follows:

3.4.1 Production cost

According to Tripathy, Wee and Majhi (2003), [32] the unit cost of production is directly 

related to reliability and inversely related to the demand where demand exceeds supply. 

Later, Tripathy and Pattnaik (2009) [33] studied that unit cost of production is inversely 

related to both process reliability and demand. Generally, total production cost is denoted 

as CD, where C is the unit production cost. But if reliability is considered, this equation 

will be changed. Due to increase of reliability production cost will increase because now 

manufacturer has to be produced 
஽
௥amount of products instead of regular demand D. So, 

it is clear that total production cost is inversely related with reliability of the production 

process. 

Total production cost =  
஼஽
௥ (3)

3.4.2 Setup Cost

Setup costs refer to expenses incurred each time a batch is produced. It consists of 

engineering cost of setting up the production runs or machines, paperwork cost of 

processing the work order, and ordering cost to provide raw materials for the batch. In 

most of the previous study, setup cost is considered as,

Setup cost =  
ௌ
 ் (4)

Where S is the setup cost per cycle and T is the cycle time or production period in each 

cycle. In traditional EPQ and EOQ model cycle time T is represented as, 

Cycle time, T =
ொ
஽ (5)

Thus setup cost =
஽ௌ
ொ (6)
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3.4.3 Holding Cost

Holding cost associated with keeping inventory, including warehousing, spoilage, 

obsolescence, interest and taxes; also called Inventory Carrying Costs. The inventory 

holding cost per cycle is obtained as the average inventory times holding cost per product 

per cycle. In traditional EPQ/EOQ model inventory carrying cost is considered as,

Holding cost =
௛ொ
ଶ   (7)

In the study of Sakaguchi et al. (2009), [34] the holding cost is considered with reliability 

with a concept that holding cost will decrease with the increase of reliability. They 

derived the following equation:

Holding cost = 
୦ୈ୘మ

ଶ [1 − ஽
୰୔] (8)

Here, P is the production rate of the process.

3.4.4 Depreciation and Interest cost

To reduce the costs of production setup, scrap and rework on shoddy products, 

substantial investment is necessary in improving the flexibility and reliability of the 

production process. Consequently, the total cost of interest and depreciation per 

production cycle of the modern flexible production process is much higher than that of 

the conventional inflexible process. An increase in the reliability of the production thus 

process leads to growth in total interest and depreciation cost. This relationship can be 

realized easily, regarding the fact that high reliability can only be achieved with 

additional cost in practice. So, the total cost of interest and depreciation per production 

cycle is assumed as a function of reliability and setup cost [7]:

Depreciation and interest cost = ݈ܵି௠ݎ௡ (9)

and depreciation and interest cost per cycle = ݈ܵି௠ݎ௡/ܶ (10)

Here l, m and n are positive constants chosen to provide best fit of the estimated cost 

function and S is the setup cost per cycle. Equation (10) also implies that when the setup 

cost is decreased the total costs of interest and depreciation also increase. This 
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relationship is apparent and is based on the fact that manufacturers must invest heavily in 

order to reduce the setup cost per production. For instance, it may cost much more to 

decrease the unit setup cost, since the study needs to acquire expensive facilities. 

3.4.5 Inspection Cost

Previous studies had considered that imperfect quality and defective items are either to be 

reworked instantaneously and kept in stock or rejected at a cost. In this study lower 

pricing, rework and reject situations are integrated into cost of defective items. A 100% 

inspection is performed in order to identify the amount of good quality items, imperfect 

or defective items in each lot. It is assumed that, inspection only takes place during the 

processing time. If I is the per unit inspection cost then,

Inspection cost = ܫܦ (11)

or, Inspection cost = 
ொ ூ
் (12)

But if production process reliability is improved then less defective items will be 

produced and amount of product to be inspected will be reduced. With the increases of 

reliability, inspection cost will decrease. It can be further explained that with the decrease 

of reliability producer have to produce 
஽
௥items per year instead of ܦ.

So Inspection cost will be= 
ொ ூ
்௥ (13)

3.4.6 Cost of Defective Items

Jamal et al. [14] considered reworking of the reparable defective products and rejecting 

of non-reworkable defective items. Neglecting the production of imperfect products and 

scraps, Jamal et al. assumed that all defective products could be reworked, but in some 

real situations, it is observed that some non-perfect products cannot be reworked and they 

should be either sold at a lower price or rejected altogether [13]. In this paper, the 

defective items are sold in a reduced price. If the process reliability is r, then (1-r) % 

product is defective.  If the cost of defective product is j then rejection cost per unit time 

will be 
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Rejection Cost= 
௃ொ(ଵି௥)

் (14)

From the equation, it is clear that rejection cost decreases with the increase of production 

process reliability that is proportionally related. This comes from the fact that, a flexible 

and reliable production process produces less defective product.

3.4.7 Backorder Cost 

When a customer seeks the product and finds the inventory empty, the demand can either 

go unfulfilled or be satisfied later when the product becomes available. The former case 

is called a lost sale, and the latter is called a backorder. Backorder cost includes freight 

cost, packaging material cost, warehouse processing cost, backorder notification cost, 

cancellation cost, lost demand, lost cost of initial customer acquisition, loss of future sells 

and goodwill, etc. We will consider all these backorder costs in two categories-

administrative backorder cost and backorder cost due to loss of goodwill

3.4.7.1 Administrative backorder cost

Backorder administrative cost per unit reflects additional work needed to take care of the 

backorder. The number of backordered customers per year can be determined by 

recognizing that during each inventory cycle there are Y backorders and there are D/Q

inventory cycles per year. Hence,

Number of Backorders per Year = 
஽௒
ொ (15)

If backorder administrative cost per unit is ߙ, then

Administrative backorder cost= (Number of backorders during the year) ×  

                                                                             (Administrative backorder cost per unit)

Administrative backorder cost = 
஽௒ఈ

ொ (16)

If reliability of the production process increases then there will be less chance of 

remaining unfulfilled customer demand and less backorder amount will come to the 
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producer. So, it is assumed that reliability is inversely related with backorder 

administrative cost. 

Backorder administrative cost considering reliability = 
஽௒ఈ
௥ொ (17)

3.4.7.2 Backorder cost due to loss of goodwill

Backorder cost per unit per year or loss of goodwill cost reflects future reduction in 

profitability. It can be estimated from market surveys and focus groups. The annual 

backorder cost is dependent on the average backorder level [35] and the number of 

backordered customers per year.

Average backorder level = 
௒మ
ଶொ (18)

If annual backorder cost per unit is ߚ, then

Backorder cost due to loss of goodwill = 
ఉ௒మ
ଶொ (19)

Optimal backorder [35] is derived for general EOQ model as, Y= 
ொ௛ି஽ఈ

௛ାఉ (20)

Putting the value of Y in equation (17) and (19) and solving the equation,

     Total backorder cost becomes = 
ொఉ௛మ
ଶ௭మ+ 

ఉ஽మఈమ
ଶொ௭మ + 

஽ொ௛ఈ
௥ொ௭-

஽మఈమ
௥ொ௭–

஽௛ఈఉ
௭మ (21)

Here, z = h+β. For convenience, we repeat the equation of total cost,

Total cost per cycle = (Production cost) + (Setup cost) + (holding cost) + (Inspection 

          cost) + (Depreciation and Interest cost) + (Cost of defective items) 

+ (Administrative backorder cost) + (Backorder cost due to loss of

                                    goodwill)

Combining the equations of different cost items we get, 
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Total cost per cycle = 
஼஽
௥+ 

஽ௌ
௥ொ+ 

୦୕
ଶ [1 − ஽

୰୔] + ݈ܵି௠ݎ௡/ +ܶ 
ொ ூ
்௥+ 

ொ ௃ (ଵି௥)
் + 

ொఉ௛మ
ଶ௭మ+ 

ఉ஽మఈమ
ଶொ௭మ + 

஽ொ௛ఈ
௥ொ௭-

஽మఈమ
௥ொ௭–

஽௛ఈఉ
௭మ (22)

The objective is to minimize the total cost per cycle subject to the constraint that process 

reliability cannot exceed 100%. In the developed inventory model, too much constraints 

such as that defective items, back orders, reliability etc. has been considered. The model 

is in unconstrained non integer nonlinear in nature, reaching an analytical solution (if 

any) to the problem is difficult. In addition, efficient treatment of integer nonlinear 

optimization is one of the most difficult problems in practical optimization. Many 

researchers have successfully used meta-heuristic methods to solve complicated 

optimization problems in different fields of scientific and engineering disciplines; among 

them, the PSO algorithm is one of the most efficient methods. Here, the optimal solution 

is determined using the art of PSO technique. Later, the study analyzes the behavior of 

the model using some realistic example when different parameters are changed. Finally, 

the results obtained from PSO algorithm will be compared with GA applying on the same 

inventory model.
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CHAPTER 4

INVENTORY MODELING WITH PARTICLE SWARM OPTIMIZATION (PSO) 

In EPQ model when objective function becomes complex and sophisticated in nature like 

nonlinear non-integer-programming model, reaching an analytical solution becomes

difficult and time consuming [10]. As a result, meta-heuristic search algorithms were 

successfully used by many researchers to solve such type model. Reja et al. (2009) [36] 

used genetic algorithm to solve multi-product economic production quantity model with 

defective items, rework, and constrained space. Maiti et al. (2008) [37] solved an EPQ 

model via Genetic Algorithm which deals with price discounted promotional demand in 

an imprecise planning horizon. A relatively new technique is particle swarm optimization 

(PSO) which has been successfully applied to a wide range of applications, but so far gets 

less attention as a meta-heuristic algorithm to solve such type of complex problem though 

it can generate high-quality solutions with shorter calculation time and stable 

convergence. As the model is unconstrained non integer non linear form which is 

complex in nature it requires a meta-heuristic search algorithm to optimize. In this thesis, 

PSO has been used to optimize the model. In the following section basic optimization 

procedures, core ideas of PSO and our developed PSO code will be discussed.

4.1 Optimization

The task of optimization is that of determining the values of a set of parameters so that 

some measure of optimality is satisfied, subject to certain constraints. This task is of great 

importance to many professions, for example, physicists, chemists and engineers are 

interested in design optimization when designing a chemical plant to maximize

production, subject to certain constraints, e.g. cost and pollution. Scientists require 

optimization techniques when performing non- linear curve or model fitting. Economists 

and operation researchers have to consider the optimal allocation of resources in 

industrial and social settings. Some of these problems involve only linear models, 

resulting in linear optimization problems, for which an efficient technique known as 

linear programming exists. The other problems are known as non-linear optimization

problems, which are generally very difficult to solve. This problem has been considered 
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in this thesis. The term optimization refers to both minimization and maximization tasks. 

A task involving the maximization of the function ƒ is equivalent to the task of 

minimizing -ƒ, therefore the terms minimization, maximization and optimization are used 

interchangeably.

Figure 4.1: Local and Global optimization

Some problems require that some of the parameters satisfy certain constraints, e.g. all the 

parameters must be non-negative. These types of problems are known as constrained 

minimization tasks. They are typically harder to solve than their equivalent unconstrained 

versions, and are not dealt with explicitly here. The thesis deals with a unconstrained 

minimization tasks. Techniques used to solve the minimization problems defined above 

can be placed into two categories: Local and Global optimization algorithms. The figure

(4.1) illustrates the concept of local optimization and global optimization. The 

deterministic local optimization algorithms include simple Newton-Raphs on algorithms, 

through Steepest Descent [38] and its many variants, including the Scaled Conjugate 

Gradient algorithm and the quasi- Newton family of algorithms. Some of the better 

known algorithms include Fletcher Reeves (FR), Polar-Ribiere (PR), Davidon-Fletcher-

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [38]. 

Global      
Optimization

Local     
Optimization
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4.2 Particle Swarm Optimization (PSO)

Let we consider two swarms flying in the sky, trying to reach the particular destination. 

The swarms generally based on their individual experience choose the proper path to 

reach the particular destination. Apart from their individual decisions, they take decisions 

about the optimal path based on their neighbor’s decision and hence they are able to 

reach their destination faster. The mathematical model for the above mentioned behavior 

of the swarm is being used in the optimization technique named as the Particle Swarm 

Optimization Algorithm (PSO).

PSO is a computational method that optimizes a problem by iteratively trying to improve 

a candidate solution with regard to a given measure of quality. PSO optimizes a problem

by having a population of candidate solutions and moving these particles around in the 

search-space according to simple mathematical formulae over the particle's position and 

velocity. Each particle's movement is influenced by its local best known position and it's 

also guided toward the best known positions in the search-space, which are updated as 

better positions are found by other particles. This is expected to move the swarm toward 

the best solutions. 

Particle Swarm Optimization is a population- based optimization method which was first 

proposed by Kennedy and Eberhart [39]. Some attractive features of the PSO include the 

ease of implementation and the fact that no gradient information is required. It can be 

used to solve a wide array of different optimization problems, including most of the 

problems that can be solved using Genetic Algorithms (GA).

Many popular optimization algorithms are deterministic, such as gradient-based 

algorithms The PSO, similarly to the algorithms belonging to the Evolutionary Algorithm 

family, is a stochastic algorithm that does not need gradient information derived from the 

error function. This allows the PSO to be used on functions where the gradient is either 

unavailable or computationally expensive to obtain.

The origins of the PSO are best described as sociologically inspired since the original 

algorithm was based on the sociological behavior associated with bird flocking This topic 

will be discussed in more detail below after the basic algorithm has been described.
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4.3 Optimizing Model with PSO Algorithm

PSO algorithm maintains a population of particles, where each particle represents a 

potential solution to an optimization problem. Let, s be the size of the swarm. Each 

particle i can be represented as an object with several characteristics. These 

characteristics are assigned the following symbols:

xi: The current position of the particle

vi: The current velocity of the particle

yi: The personal best position of the particle

The personal best position associated with particle i is the best position that the particle

has visited (a previous value of x), yielding the highest fitness value for that particle. For 

a minimization task, a position yielding a smaller function value is regarded as having a 

higher fitness. The symbol ƒ is used to denote the objective function that is being 

minimized. The update equation for the personal best position is presented in equation 

(23), with the dependence on the time step t made explicit.

y (t+1)=                                          (23)

Two versions of the PSO exist, called the Gbest and Lbest models. The difference 

between the two algorithms is based on the set of particles with which a given particle 

will interact with directly, where the symbol ŷ is used to represent this interaction. The 

details of the two models will be discussed in full below. The definition of ŷ, as used in 

the Gbest model, is presented in equation (24)

ŷ(t) ∈ {y0(t), y1(t),....., ys(t)}│ ƒ(yi (t)) = min { ƒ(y0 (t)), ƒ(y1 (t)),......., ƒ(ys (t))}    (24)

This definition states that ŷ is the best position discovered by any of the particles so far.

The algorithm makes use of two independent random sequences, r1 ~ U (0, 1) and r2~ U 

(0, 1). These sequences are used to affect the stochastic nature of the algorithm, as shown 

below in equation (25). The values of r1 and r2 are scaled by constants 0 <c1,c2 ≤ 2. These 

yi(t)          if ƒ (xi(t+1))≥ ƒ(yi (t))

yi(t+1)      if ƒ (xi(t+1) < ƒ(yi (t))
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constants are called the acceleration coefficients, and they influence the maximum size of 

the step that a particle can take in a single iteration. The velocity update step is specified 

separately for each dimension j∈1.....n, so that vi,j denotes the jth dimension of the velocity 

vector associated with the ith particle . The velocity up date equation is then

vi,j(t+1) = vi,j(t) + c1 r1,j(t) [yi,j(t)- xi,j(t)]+ c2 r2,j(t)[ŷj(t)- xi,j(t)]    (25)

From the definition of the velocity update equation it is clear that c2 regulates the 

maximum step size in the direction of the global best particle, and c1 regulates the step

size in the direction of the personal best position of that particle. The value of vi,j is 

clamped to the range [-vmax,vmax] to reduce the likelihood that the particle might leave the 

search space. If the search space is defined by the bounds [-xmax, xmax], then the value of 

vmax is typically set so that vmax = k × xmax, where 0.1 ≤ k ≤ 1.0. The position of each 

particle is updated using the new velocity vector for that particle, so that

xi(t+1) = xi(t) + vi(t+1) (26)

The algorithm consists of repeated application of the update equations presented above

Figure 4.2 lists the pseudo- code for the basic PSO algorithm.

Figure 4.2: Pseudo code for the original PSO algorithm

Create and initialize an n-dimensional PSO : S
Repeat:
    for each particle i ∈[1..s]:
  if ƒ (S.xi) < ƒ (S.yi)

  then S.yi = S.xi

if  ƒ (S.yi) < ƒ (S.ŷ)
   then S.ŷ= S.yi

endfor

Perform PSO updates on S using equations (5-9)
until stopping condition is true
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Here if statements are the equivalent of applying equations (23) and (24), respectively. 

The initialization mentioned in the first step of the algorithm consists the following:

1. Initialization of each coordinate of xi,j to a value drawn from the uniform random 

distribution on the interval [-xmax, xmax], for all i ∈1....s and j∈1.....n. This 

distributes the initial positions of the particles throughout the search space. Many 

of the pseudorandom number generators available have flaws leading to low-order 

correlations when used to generate random vectors this way, so care must be 

exercised in choosing a good pseudo-random algorithm. Alternatively, the initial 

positions can be distributed uniformly through the search space using sub-random 

sequences.

2. Initialization of each vi,j to a value drawn from the uniform random distribution 

on the interval [-vmax, vmax], for all i ∈1....s and j∈1.....n. Alternatively, the 

velocities of the particles could be initialized to 0, since the starting positions are 

already randomized.

3. Setting yi = xi, ∀ ∈1....s. Alternatively, two random vectors can be generated for 

each particle, assigning the more fit vector to yi and the less fit one to xi. This 

would require additional function evaluations, so the simpler method described 

first is usually used.

4.4 PSO Flowchart

A brief description of how the algorithm works is shown in flowchart (Figure 4.3) and 

described as follows: Initially, some particle is identified as the best particle in a 

neighborhood of particles, based on its fitness. All the particles are then accelerated in the 

direction of this particle, but also in the direction of their own best solutions that they 

have discovered previously. Occasionally the particles will overshoot their target, 

exploring the search space beyond the current best particles. All particles also have the 

opportunity to discover better particles en route, in which case the other particles will 

change direction and head towards the new ‘best’ particle. Since most functions have 



41

some continuity, chances are that a good solution will be surrounded by equally good, or 

better, solutions. By approaching the current best solution from different directions in 

search space, the chances are good that these neighboring solutions will be discovered by 

some of the particles.

Figure 4.3: Basic PSO algorithm flowchart

The stopping criterion mentioned in Figure 4.3 depends on the type of problem being 

solved. Usually the algorithm is run for a fixed number of function evaluations (thus a 

fixed number of iterations) or until a specified error bound is reached. It is important to 

realize that the velocity term models the rate of change in the position of the particle. The 
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changes induced by the velocity update equation (24) therefore represent acceleration, 

which explains why the constants c1 and c2 are called acceleration coefficients.

4.5 The Gbest model 

The Gbest model offers a faster rate of convergence [39] at the expense of robustness. 

This model maintains only a single “best solution,” called the global best particle, across 

all the particles in the swarm. This particle acts as an attractor, pulling all the particles 

towards it. Eventually all particles will converge to this position, so if it is not up dated 

regularly, the swarm may converge prematurely. The update equations for ŷi and vi are 

the ones presented above, repeated here for completeness.

ŷ(t) ∈ {y0(t), y1(t),....., ys(t)}│ ƒ(yi (t)) = min { ƒ(y0 (t)), ƒ(y1 (t)),......., ƒ(ys (t))} (27)

vi,j(t+1) = vi,j(t) + c1 r1,j(t) [yi,j(t)- xi,j(t)]+ c2 r2,j(t)[ŷj(t)- xi,j(t)] (28)

Here ŷ is called the global best position, and belongs to the particle referred to as the 

global best particle.

4.6 The Lbest model 

The Lbest model tries to prevent premature convergence by maintaining multiple 

attractors. A subset of particles is defined for each particle from which the local best 

particle, ŷi is then selected. The symbol ŷi is called the local best position or the 

neighborhood best. Assuming that the particle indices wrap around at s, the Lbest update 

equations for a neighborhood of size l are as follows 

Ni = {yi-l (t), yi-l+1(t),......,yi-l (t), yi (t), yi+1 (t),........., yi-l (t), yi+l (t)} (29)

ŷj(t+1) ∈ Ni │ ƒ(yi (t+1)) = min { ƒ (a)}, ∀a ∈ Ni (30)

vi,j(t+1) = vi,j(t) + c1 r1,j(t) [yi,j(t)- xi,j(t)]+ c2 r2,j(t)[ŷj(t)- xi,j(t)] (31)

Here it is noticeable that the particles selected to be in subset Ni have no relationship to 

each other in the search space domain; selection is based purely on the particle’s index 

number. This is done for two main reasons: it is computationally inexpensive, since no 
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clustering has to be performed, and it helps promote the spread of information regarding 

good solutions to all particles, regardless of their current location in search space.

Lastly, it is important to note that the gbest model is actually a special case of the lbest 

model with l = s. Experiments with l = 1 have shown the lbest algorithm to converge 

somewhat more slowly than the gbest version, but it is less likely to become trapped in an 

inferior local minimum [39].

4.7 Social Behavior of PSO

Many interpretations of the operation of the PSO have been suggested. Kennedy 

strengthened the socio-psychological view by performing experiments to investigate the 

function of the different components in the velocity update equation (24) [40]. Kennedy 

made use of the Lbest model rather than the Gbest model outlined above.

Consider the velocity update equation (24), repeated here for convenience.

vi,j(t+1) = vi,j(t) + c1 r1,j(t) [yi,j(t)- xi,j(t)]+ c2 r2,j(t)[ŷj(t)- xi,j(t)]

The term c1 r1,j(t) [yi,j(t)- xi,j(t)] is associated with cognition since it only takes into

account the particle’s own experiences. If a PSO is constructed making use of the 

cognitive term only, the velocity update equation will become

vi,j(t+1) = vi,j(t) + c1 r1,j(t) [yi,j(t)- xi,j(t)] (32)

Kennedy [40] found that the performance of this ‘cognition only’ model was inferior to 

that of the original swarm, failing to train the network within the maximum allowed 

number of iterations for some parameter settings. One of the reasons for the poor 

behavior of this version of the PSO is that there is no interaction between the different 

particles.

The third term in the velocity update equation, c2r2,j(t)[ŷj(t)- xi,j(t)] represents the social 

interaction between the particles. A ‘social only’ version of the PSO can be constructed 

by using the following velocity update equation.

vi,j(t+1) = vi,j(t) + c2 r2,j(t)[ŷj(t)- xi,j(t)]                                        (33)
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The performance of this model was superior to that of the original PSO on the specific 

problem that Kennedy investigated.

In summary, the PSO velocity update term consists of both a cognition component and a 

social component. Little is currently known about the relative importance of these two 

terms, although initial results seem to indicate that the social component may be more 

significant on some problems.

4.8 Comparison with other Evolutionary Algorithms

The PSO is clearly related to some of the evolutionary algorithms. For one, the PSO 

maintains a population of individuals representing potential solutions, a property 

common to all Evolutionary Algorithms (EA). If the personal best positions (yi) are 

treated as part of the population, then there is clearly a weak form of selection. In a (µ+ λ) 

Evolutionary Search (ES) algorithm [41], the offspring compete with the parents, 

replacing them if they are more fit. The update equation (24) resembles this mechanism, 

with the difference that each personal best position (parent) can only be replaced by its 

own current position (offspring), should the current position be more fit than the old 

personal best position. To summarize, there appears to be some weak form of selection 

present in the PSO.

The velocity update equation resembles the arithmetic crossover operator found in real 

valued GAs. Normally, the arithmetic crossover produces two offspring that are linear 

blends of the two parents involved. The PSO velocity update equation, without the vi,j (t) 

term (equation 25), can be interpreted as a form of arithmetic crossover involving two 

parents , returning a single offspring. Alternatively, the velocity update equation, without 

the vi,j(t) term, can be seen as a mutation operator, with the strength of the mutation 

governed by the distance that the particle from its two ‘parents’. This still leaves the vi,j(t)

term uncounted for, which can be interpreted as a form of mutation dependent on the 

position of the individual in the previous iteration.

A better way of modeling the vi,j(t) terms to think of each iteration not as a process of 

replacing the previous population with a new one (death and birth), but rather as a 

process of adaption [42]. This way the xi,j values are not replaced, but rather adapted 



45

using the velocity vectors vi. This makes the difference between the other EAs and the 

PSO more conspicuous: the PSO maintains information regarding position and velocity 

(changes in position); in contrast, traditional EAs only keep track of positions. Therefore

it appears that there is some degree of overlap between the PSO and most other EAs, but 

the PSO has some characteristics that are currently not present in other EAs, especially 

the fact that the PSO models the velocity of the particles as well as the positions.

4.9 PSO Origins and Terminology

The movement of the particles has been described as “flying” through n-dimensional 

space [39]. This terminology is in part due to experiments with bird flocking simulations 

which led to the development of the original PSO algorithm [40]. Several reasons have 

been found for the flocking behavior observed in nature. Some evolutionary advantages 

include: protection from predators, improved survival of the gene pool, and profiting 

from a larger effective search area with respect to food. This last property is invaluable 

when the food is unevenly distributed over a large region.

Reynolds [39] proceeded to model his flocks using three simple rules: collision 

avoidance, velocity matching and flock centering. The flock centering drive will prompt a 

bird to fly closer to its neighbors (so that the velocity matching is not jeopardized) but 

still maintaining a safe distance, as governed by the collision avoidance rule. Reynolds 

decided to use a flock centering drive calculated by considering only the nearest 

neighbors of a bird, instead of using the centre of the whole swarm, which he called the 

“central force model”. This corresponds roughly to the lbest model of the PSO.

Even though the particle movement visually looks like flocking, it does not strictly 

comply with certain definitions of flocking behavior. Mataric defines the following 

concepts flock behavior [43]:

i. Safe-Wandering: The ability of a group of agents to move about while 

avoiding collisions with obstacles and each other.

ii. Dispersion: The ability of a group of agents to spread out in order to 

establish and maintain some minimum inter-agent distance.
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iii. Aggregation: The ability of a group of agents to gather in order to 

establish and maintain some maximum inter- agent distance.

iv. Homing: The ability to find a particular region or location

The PSO only implements homing and aggregation, lacking safe wandering and 

dispersion. Safe-wandering is not important to the PSO, since it only applies to entities 

that can collide physically. Dispersion means that the particles will fan out when they get 

too close to one another, something which is not currently in the PSO model - the PSO 

encourages the particles to cluster. The terms “swarm” and “swarming” are much more 

appropriate. This term was used by Millonas to describe artificial life models [44]. 

Millonas suggested that swarm intelligence is characterized by the following properties:

i. Proximity: Carrying out simple space and time computations.

ii. Quality: Responding to quality factors in the environment.

iii. Diverse Response: Not falling into a restricted subset of solutions.

iv. Stability: Being able to maintain mo des of behavior w hen the 

environment   changes.

v. Adaptability: Being able to change behavioral modes when deemed 

profitable.

Particles in the PSO possess these properties. The term “particle” has some justification. 

The members of the population lack mass and volume, thus calling them “points” would 

be more accurate. The concepts of velocity and acceleration, however, are more 

compatible with the term particle (alluding to a small piece of matter) than they are with 

the term point. Some other research fields, notably computer graphics, also use the term 

“particle systems” to describe the models used for rendering effects like smoke or fire

4.10 Application of PSO

The PSO has been applied to a vast number of problems, though not all of these 

applications have been described in published material yet. This section will briefly 

describe some of the applications of PSO.
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Neural network training was one of the first applications of the PSO. Kennedy and 

Eberhart [36] reported that the PSO was successful in training a network to correctly 

classify the XOR problem, a process involving the minimization of function in a 13-

dimensional search space. They also reported that the PSO could train a neural network 

to classify Fisher’s Iris Data set although few details were provided. Salerno also applied 

the PSO to the task of training a neural network to learn the XOR problem, reporting 

significantly better performance than that obtained with a Gradient Descent algorithm 

[45]. He also showed that the PSO was able to train a simple recurrent neural network.

In fact, most PSO applications reported in the literature involve neural network training. 

Earlier versions of the PSO, before the introduction of the inertia weight or constriction 

factor, did not have the ability to perform a fine-grained search of the error surface. This 

leads to experiments involving a hybrid between PSO and traditional gradient techniques. 

Van den Bergh used the PSO to find a suitable starting position for the Scaled Conjugate 

Gradient algorithm [46]. Results showed that the hybrid method resulted in significantly 

better performance on both classification problems, using the UCI Ionosphere problem 

[45] as example, and function approximation problems, using the he non-curve time 

series as example.

Eberhart et al. [42] used the PSO to train a network to correctly classify a patient as 

exhibiting essential tremor, or suffering from Parkinson’s disease. Their PSO 

implementation used an inertia weight that decreased linearly from 0.9 to 0.4 over 2000 

iterations. An interesting feature of the neural network the y used was that they trained 

the slop e of the sigmoidal activation functions along with the weights of the network. 

The PSO has also been used to evolve the architecture of a neural network in tandem with 

the training of the weights of the network. Zhang and Shao report that their PSONN 

algorithm [47] was able to successfully evolve a network for estimating the quality of jet 

fuel. Part of the P SONN system involve s the optimization of the number of hidden units 

used in the network — a task that is handled by a PSO. Whenever a new hidden node is 

added to the network, only the newly added nodes are trained (again using a PSO) in an 

attempt to reduce the error, greatly improving the speed of the algorithm.
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Eberhart et al. describe several other applications of the PSO [40], including some more 

neural network training applications. Tandon used the PSO to train a neural network used 

to simulate and control an end milling process [48]. End milling involves the removal of 

metal in a manufacturing process using computer numerically controlled (CNC) machine 

tools. Another neural network training application described by Eberhart et al. is that of 

training a network to estimate the state -of-charge of a battery pack.

Yet another neural network training application, this time using a Fuzzy Neural Network, 

was studied by He et al. [49]. One of the more interesting points regarding their research 

was the fact that they modified the velocity update equation so that it is no longer 

accumulative, i.e.

vi,j(t+1) = c1 r1,j(t) [yi,j(t)- xi,j(t)]+ c2 r2,j(t)[ŷj(t)- xi,j(t)] (34)

Results are presented showing that this modified velocity up date equation gave rise to 

improved performance on some benchmark functions. Note that this modification makes 

their version of the PSO very similar to an Evolution Strategies algorithm. They also 

showed that their fuzzy neural network was able to produce a set of 15 rules with a 

classification accuracy of 97% on the Iris data set. This is a rather large number of rules 

for such a simple classification task, compared to other efficient algorithms.

The PSO was used to optimize the ingredient mix of chemicals used to facilitate the 

growth of strains of micro organisms, resulting in a significant improvement over the 

solutions found by previous optimization methods. One of the strengths of the PSO is the 

ability to explore a large area of search space relatively efficiently; this property led the 

PSO to discover a better solution in a location in search space very different from the 

solutions discovered by other existing techniques.

Another application unrelated to neural network training was published by Fukuyama and 

Yoshida [50]. They have shown that the PSO is very effective at optimizing both 

continuous and discrete variables simultaneously. The PSO velocity update equation can 

be adapted for use with discrete variables by simply discretising the values before using 

them in the velocity update step (using for example equation 25). The position of the 

particle is also discretised after equation (26) has been used to update it. These discrete 
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variables can be mixed freely with the continuous variables, as long as the appropriate 

(discretised or continuous) update equations are applied to them. The application on 

which Fukuyama and Yoshida demonstrated their modified PSO was that of calculating 

the correct response to changes in the load on an electric power grid. This problem 

requires the simultaneous optimization of numerous discrete and continuous variables, 

and was traditionally solved using the Reactive Tabu Search (RTS) algorithm. The RTS

algorithm scales very poorly with problem dimensionality, since the number of 

candidates for evaluation increases exponentially with the dimension of the problem. To 

illustrate, the RTS algorithm required 7.6 hours to solve a problem consisting of 1217 

busses. The same problem was solved in only 230 seconds using a PSO with a linearly 

decreasing inertia weight in the range [0.9, 0.4].

4.11 Reasons to Choose PSO  

PSO is a derivative-free algorithm unlike many conventional techniques. It has the 

flexibility to be integrated with other optimization techniques to form a hybrid tool.  It is 

less sensitive to the nature of the objective function, i.e. convexity or continuity. It has 

less parameter to adjust unlike many other competing evolutionary techniques. It has the 

ability to escape local minima. Another point is that, PSO is easy to implement and 

program with basic mathematical and logic operations. It can handle objective functions 

with stochastic nature. Moreover, it does not require a good initial solution to start its

iteration process. All these reasons make PSO a strong candidate to use as meta-heuristic 

algorithm to search the optimal solution.

Though a lot of applications have been done in PSO within a short time, so far PSO has 

not directly applied in solving EPQ model.  The PSO code developed for the proposed 

model is given in Appendix Ι.
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CHAPTER 5

INVENTORY MODELING WITH GENETIC ALGORITHM (GA)

In order to show that the proposed PSO algorithm is an effective means of solving the 

complicated inventory model of this research, the Genetic Algorithm (GA) is also

employed to optimize the model. GA is well known as a search algorithm and has been 

widely used in different field of study. GA has been also used for inventory optimization 

problem by many researchers. In the literature section it has been discussed.  In this 

section definition, basic idea and components of GA will be provided.

GA is an iterative procedure maintaining a population of structures that are candidate 

solutions to specific domain challenges. During each temporal increment (called a 

generation), the  structures  in the  current  population are rated for their effectiveness as  

domain  solutions,  and on the basis of these evaluations, a new population  of  candidate  

solutions is formed using specific genetic operators such as  reproduction, crossover, and 

mutation.

GA was developed by John Holland in 1975. It is a search algorithm based on the 

mechanics of the natural selection process (biological evolution).  The most basic concept 

is that the strong tend to adapt and survive while the weak tend to die out.  That is, 

optimization is based on evolution, and the "Survival of the fittest" concept. GAs has the 

ability to create an initial population of feasible solutions, and then recombine them in a 

way to guide their search to only the most promising areas of the state space. Each 

feasible solution is encoded as a chromosome (string) also called a genotype, and each 

chromosome is given a measure of fitness via a fitness (evaluation or objective) function.  

The fitness of a chromosome determines its ability to survive and produce offspring. A 

finite population of chromosomes is maintained. GAs use probabilistic rules to evolve a 

population from one generation to the next.  It is a robust search technique and produce 

"close" to optimal results in a "reasonable" amount of time. 
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5.1 General Scheme of GAs

The general scheme of a GA is shown in figure 5.1.

Figure 5.1: The general scheme of Genetic Algorithm 

The GA can be represented in form of a diagram also:

Figure 5.2: Genetic Algorithm Diagram

Parents

Children

Population

Initialization

Termination

Recombination

Parent selection

Survivor selection

begin

    INITIALIZE population with random candidate solutions;
    EVALUATE each candidate;
    repeat
        SELECT parents;
        RECOMBINE pairs of parents;
        MUTATE the resulting children;
        EVALUATE children;
        SELECT individuals for the next generation

    until TERMINATION-CONDITION is satisfied
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GA has a number of features:

i. GA is population-based

ii. GA uses recombination to mix information of candidate solutions into a new one.

iii. GA is stochastic.

It’s clear that this scheme falls in the category of generate-and-test algorithms. The 

evaluation function represents a heuristic estimation of solution quality and the search 

process is driven by the variation and the selection operator. 

5.2 Components of GAs

The most important components in a GA consist of:

i. Representation (definition of individuals)

ii. Evaluation function (or fitness function)

iii. Population

iv. Parent selection mechanism

v. Variation operators (crossover and mutation)

vi. Survivor selection mechanism (replacement)

5.2.1 Representation

Objects forming possible solution within original problem context are called phenotypes, 

their encoding, the individuals within the GA, are called genotypes. Candidate solution, 

phenotype and individual are used to denote points of the space of possible solutions. 

This space is called phenotype space. Chromosome and individual can be used for points 

in the genotype space. Elements of a chromosome are called genes. 

5.2.2 Mutation Operator

A unary variation operator is called mutation. It is applied to one genotype and delivers a 

modified mutant, the child or offspring of it. In general, mutation is supposed to cause a 

random unbiased change. Mutation has a theoretical role: it can guarantee that the space 

is connected.
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Example: Assume that we have already used crossover to get a new string: 7 3 4 5 1 3. 

Assume the mutation rate is 0.001 (usually a small value). Next, for the first bit 7, we 

generate randomly a number between 0 and 1. If the number is less than the mutation rate 

(0.001), then the first bit 7 needs to mutate. We generate another number between 1 and 

the maximum value 8, and get a number (for example 2). Now the first bit mutates to 2. 

We repeat the same procedure for the other bits. In our example, if only the first bit 

mutates, and the rest of the bits don’t mutate, then we will get a new chromosome as 

below:

2 3 4 5 1 3

5.2.3 Crossover Operator

A binary variation operator is called recombination or crossover. This operator merges 

information from two parent genotypes into one or two offspring genotypes. Similarly to 

mutation, crossover is a stochastic operator: the choice of what parts of each parent are 

combined and the way these parts are combined depend on random drawings. The 

principle behind crossover is simple: by mating two individuals with different but 

desirable features, an offspring can be produce which combines both of those features. 

There are many kinds of crossover.

5.2.3.1 One-point crossover

The procedure of one-point crossover is to randomly generate a number (less than or 

equal to the chromosome length) as the crossover position. Then, keep the bits before the 

number unchanged and swap the bits after the crossover position between the two 

parents.

Example: With the two parents selected above, randomly a number 2 as the crossover 

position is generated:

Parent1: 7 3 7 6 1 3

Parent2: 1 7 4 5 2 2

Then we get two children:
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Child 1: 7 3| 4 5 2 2

Child 2: 1 7| 7 6 1 3

5.2.3.2 Two-point cross Over

The procedure of two-point crossover is similar to that of one-point crossover except that 

we must select two positions and only the bits between the two positions are swapped. 

This crossover method can preserve the first and the last parts of a chromosome and just 

swap the middle part.

Example: With the two parents selected above, randomly two numbers 2 and 4 as the 

crossover positions is generated:

Parent1: 7 3 7 6 1 3

Parent2: 1 7 4 5 2 2

Then we get two children: Child 1 : 7 3| 4 5| 1 3

Child 2 : 1 7| 7 6| 2 2 

5.2.3.3 Uniform Crossover

The procedure of uniform crossover, each gene of the first parent has a 0.5 probability of 

swapping with the corresponding gene of the second parent.

Example: For each position, we randomly generate a number between 0 and 1, for 

example, 0.2, 0.7, 0.9, 0.4, 0.6, 0.1. If the number generated for a given position is less 

than 0.5, then child1 gets the gene from parent1, and child2 gets the gene from parent2. 

Otherwise, vice versa.

Parent1: 7 *3 *7 6 *1 3

Parent2: 1 *7 *4 5 *2 2

Then we get two children:

Child 1 : 7 7* 4* 6 2* 3

Child 2 : 1 3* 7* 5 1* 2
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5.3 Inversion

Inversion operates as a kind of reordering technique. It operates on a single chromosome 

and inverts the order of the elements between two randomly chosen points on the 

chromosome. While this operator was inspired by a biological process, it requires 

additional overhead. 

Example: Given a chromosome 3 8 4 8 6 7. If randomly two positions 2, 5 are chosen and 

apply the inversion operator, then the new string:  3 6 8 4 8 7.

5.4 Parent Selection Mechanism

The role of parent selection (mating selection) is to distinguish among individuals based 

on their quality to allow the better individuals to become parents of the next generation. 

Parent selection is probabilistic. Thus, high quality individuals get a higher chance to 

become parents than those with low quality. Nevertheless, low quality individuals are 

often given a small but positive chance; otherwise the whole search could become too 

greedy and get stuck in a local optimum.

The standard, original method for parent selection is Roulette Wheel selection or fitness-

based selection. In this kind of parent selection, each chromosome has a chance of 

selection that is directly proportional to its fitness. The effect of this depends on the range 

of fitness values in the current population.

Example: if fitness range from 5 to 10, then the fittest chromosome is twice as likely to 

be selected as a parent than the least fit. If we apply fitness-based selection on the 

population given in example 3.1, we select the second chromosome 7 3 7 6 1 3 as our 

first parent and 1 7 4 5 2 2 as our second parent.

There are also other types of selection mechanisms. In the rank-based selection method, 

selection probabilities are based on a chromosome’s relative rank or position in the 

population, rather than absolute fitness. The original tournament selection is to choose K 

parents at random and returns the fittest one of these.  
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5.5 Survivor Selection Mechanism

The role of survivor selection is to distinguish among individuals based on their quality. 

In GA, the population size is (almost always) constant, thus a choice has to be made on 

which individuals will be allowed in the next generation. This decision is based on their 

fitness values, favoring those with higher quality. As opposed to parent selection which is 

stochastic, survivor selection is often deterministic, for instance, ranking the unified 

multiset of parents and offspring and selecting the top segment (fitness biased), or 

selection only from the offspring (age-biased).

5.6 Initialization and Termination Condition

Initialization is kept simple in most GA applications. Whether this step is worth the extra 

computational effort or not is very much depending on the application at hand. GA is 

stochastic and mostly there are no guarantees to reach an optimum. Commonly used 

conditions for terminations are the following:

i. The maximally allowed CPU times elapses

ii. The total number of fitness evaluations reaches a given limit

iii. For a given period of time, the fitness improvement remains under a threshold 

value

iv. The population diversity drops under a given threshold.

5.7 Constraint Handling in GAs

There are many ways to handle constraints in a GA. At the high conceptual level we can 

distinguish two cases: indirect constraint handling and direct constraint handling. Indirect 

constraint handling means that we circumvent the problem of satisfying constraints by 

incorporating them in the fitness function f such that f optimal implies that the constraints 

are satisfied, and use the power of GA to find a solution. Direct constraint handling 

means that we leave the constraints as they are and ‘adapt’ the GA to enforce them. 

Direct and indirect constraint handling can be applied in combination, i.e., in one 

application we can handle some constraints directly and others indirectly. Formally, 

indirect constraint handling means transforming constraints into optimization objectives.
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5.7.1 Direct constraint handling 

Treating constraints directly implies that violating them is not reflected in the fitness 

function, thus there is no bias towards chromosomes satisfying them. Therefore, the 

population will not become less and less infeasible with respect to these constraints. This 

means that we have to create and maintains feasible chromosomes in the population. The 

basic problem in this case is that the regular operators are blind to constraints, mutating 

one or crossing over two feasible chromosomes can result in infeasible offspring. Typical 

approaches to handle constraints directly are the following:

i. Eliminating infeasible candidates

ii. Repairing infeasible candidates

iii. Preserving feasibility by special operators

iv. Decoding, i.e. transforming the search space.

Eliminating infeasible candidates is very inefficient, and therefore hardly applicable. 

Repairing infeasible candidates requires a repair procedure that modifies a given 

chromosome such that it will not violate constraints. This technique is thus problem 

dependent. The preserving approach amounts to designing and applying problem-specific 

operators that do preserve the feasibility of parent chromosomes. Note that the preserving 

approach requires the creation of a feasible initial population, which can be NP-complete. 

Decoding can simplify the problem search space and allow an efficient genetic algorithm. 

Formally, decoding can be seen as shifting to a search space that is different from the 

Cartesian product of the domains of the variables in the original problem formulation.

5.7.2 Indirect constraint handling

In the case of indirect constraint handling the optimization objectives replacing the 

constraints are viewed penalties for constraint violation hence to be minimized. In 

general penalties are given for violated constraints although some GAs allocates penalties 

for wrongly instantiated variables or as the distance to a feasible solution. Advantages of 

indirect constraint handling are:

i. Generality
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ii. Reduction of the problem to ‘simple’ optimization

iii. Possibility of embedding user preferences by means of weights.

Disadvantages of indirect constraint handling are:

i. Loss of information by packing everything in a single number

ii. Does not work well with sparse problems.

5.8 When to Use GAs?

GA is generally used in following cases-

i. When an acceptable solution representation is available

ii. When a good fitness function is available

iii. When it is feasible to evaluate each potential solution 

iv. When a near-optimal, but not optimal solution is acceptable.

v. When the state-space is too large for other methods

5.9 Applications of GAs

i. Scheduling: Facility, Production, Job, and Transportation Scheduling

ii. Design: Circuit board layout, Communication Network design, keyboard layout, 

Parametric design in aircraft

iii. Control: Missile evasion, Gas pipeline control, Pole balancing

iv. Machine Learning: Designing Neural Networks, Classifier Systems, Learning 

rules

v. Robotics: Trajectory Planning, Path planning

vi. Combinatorial Optimization: TSP, Bin Packing, Set Covering, Graph Bisection, 

Routing,

vii. Signal Processing: Filter Design

viii. Image Processing: Pattern recognition

ix. Business: Economic Forecasting; Evaluating credit risks, Detecting stolen credit 

cards before customer reports it is stolen

x. Medical: Studying health risks for a population exposed to toxins
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CHAPTER 6
RESULTS AND DISCUSSIONS

In this thesis an economic production inventory model is developed considering some 

practical situations such as 100% inspection, defective products and reliability of the 

production process. The production inventory model is composed of production cost, 

holding cost, setup cost, inspection cost, depreciation cost, interest cost, rejection cost

and backorder cost. The unconstrained non integer non linear model is used to determine 

the optimal values of different decision variables i.e. lot size per cycle, reliability of the 

production process and duration of time until the production is being held. The model is 

discussed by illustrating a numerical example.

6.1 Numerical Illustration

Three EPQ problems have been considered to illustrate the model. For the three different 

EPQ problems following different dataset are considered:

Table 6.1: Data for three EPQ problem

Parameters EPQ 
Problem 1

EPQ 
Problem 2

EPQ 
Problem 3

C 50 100 10

D 20 10 100

P 30 20 120

h 1.5 1 2

S 250 300 500

l 800 1200 1600

m 0.5 0.4 0.6

n 0.9 0.8 0.6

I 0.1 0.1 0.01

j 0.1 0.1 0.01

α 0.4 0.05 0.1

β 0.8 0.05 0.1
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6.1.1 Optimization of the models using PSO 

In this study, the problem is solved by particle swarm optimization algorithm. The PSO 

code is developed in MATLAB. The code is attached in appendix. An important issue in 

PSO algorithm is to select its parameters. From the study of Kennedy [40] it is found that 

PSO works well if number of population varies from 30 to 50, inertia weight (k) ranges 

from 0.2 to 0.9, acceleration constants (c1, c2 ) vary from 1 to 4. Table 6.2 shows the

different values of the PSO parameters used to obtain the solution.

Table 6.2: PSO Parameters for EPQ problems

Parameters
EPQ Problem 

1
EPQ Problem 

2
EPQ Problem 

3
Inertia weight (k) 0.2 0.4 0.4

Acceleration constant (c1) 2.8 2 3.2

Acceleration constant (c2) 1.6 1.8 2.0

Swarm size (n) 50 40 30

Maximum iteration (i) 500 500 500

In any optimization another important issue is the upper and lower bound of decision 

variables. In our case, reliability (r) can vary from to 0 to 100%. Cycle time (T) and Lot 

size (Q) can’t be negative. Table 6.3 shows the optimum results obtained from PSO.

Table 6.3: Results of PSO algorithm

EPQ Problems
Production 

process 
reliability (r)

Cycle Time 
(T)

Lot size 
(Q)

Total Cost 
per cycle

EPQ Problem 1 0.987 1.6957 49.814 1137.526

EPQ Problem 2 0.978 2.3808 40.249 1111.521

EPQ Problem 3 0.994 1.66 150.336 1492.922

From the results, it is found that reliability never reaches to 1.00. With the increase of 

reliability, holding cost increases but all other cost decreases. As a result reliability 
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reaches to an optimum value then decreases in order to minimize the cost. All other 

results found are also reasonable.  Convergence path of the objective function by PSO is 

shown in Figure 6.1 to Figure 6.3 for EPQ problems 1 to 3.

Figure 6.1: Convergence path of the objective function by PSO (Problem 1)

Figure 6.2: Convergence path of the objective function by PSO (Problem 2)
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Figure 6.3: Convergence path of the objective function by PSO (Problem 3)

6.1.2 Optimization of the model using GA

So far developed, PSO has been used to solve numerous problems, but this is the first 

application where PSO is used directly to solve an EPQ model. GA has been widely used 
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order to validate the result obtained from PSO we run Genetic Algorithm (GA) 
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Migration =forward

Maximum generation = 200/500 (stopping criteria)

Function tolerance = 1 × 10-6

Results obtained from GA are shown in Table 6.4. Convergence path of the objective 

function by PSO is shown in Figure 6.4 to Figure 6.6 for EPQ problems 1 to 3.

Table 6.4: Results of GA

EPQ Problems
Production 

process 
reliability (r)

Cycle Time 
(T)

Lot size 
(Q)

Total Cost 
per cycle

EPQ Problem 1 0.984 1.3422 32.9179 1247.559

EPQ Problem 2 0.993 2.1612 36.3662 1193.0534

EPQ Problem 3 0.987 1.7029 158.4336 1546.4525

Figure 6.4: Convergence path of the objective function by GA (Problem 1)
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Figure 6.5: Convergence path of the objective function by GA (Problem 2)

Figure 6.6: Convergence path of the objective function by GA (Problem 3)
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6.2 Comparison of the Results of PSO and GA

From the Table 6.5 it is found that the results obtained from PSO is in good agreement 

with GA. In all three cases PSO outperforms GA in minimizing total cost per cycle. This 

is because PSO does not get stacked in local minima, has less parameter to GA, does not 

require a good initial solution and is less sensitive to the nature of the objective function 

than GA. 

Table 6.5: PSO and GA comparative results

EPQ
Proble

ms

r T Q TC

PSO GA PSO GA PSO GA PSO GA

1 0.987 0.984 1.69 1.34 49.814 32.9179 1137.526 1247.559

2 0.978 0.993 2.38 2.16 40.249 36.3662 1111.521 1193.053

3 0.994 0.989 1.66 1.7 150.336 158.433 1492.922 1546.452

Table 6.6 gives the required number of generations, which are required to get the 

minimum total cost per cycle. From the table 6.6 we found that PSO requires less number 

of generations than GA to rich the optimum solution. Its means PSO requires less 

computational time than GA.

Table 6.6: No of generations required to reach minimum total cost for PSO and GA

EPQ Problems
PSO(number of

iterations)
GA (number of 

generations)
1 30 110

2 35 120

3 15 50

The code has been developed in MATLAB 7.60 version with core-2-duo a 3.2 GHz

processor and 2 GB ram personal computer. It has been found that, in PSO, for the 

increases of population size 30 to 1000, objective function improvement was negligible.

It means PSO is relatively less sensitive to population size.
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6.3 Relationship Analysis

Three decision variables- cycle time (T), Lot size (Q) and reliability of the production 

process (r) are related to each other. Figure 6.7 shows the relationship between 

production period/Cycle time (T) and reliability (r). With improvement of reliability of 

the system, Cycle time is decreased.  In the study of Tripathy (2011), it is shown that 

production period and reliability are inversely related. Similar result also found in our 

case.

Figure 6.7: Relationship between cycle time and reliability

Production lot size (Q) and Production cycle time (T) are also related to each other. It is 

known for the traditional EPQ model that Q is proportional to cycle time (T) and demand. 

That is, with the increase of cycle time (T) lot size (Q) also increases. The relationship 

between set-up cost and reliability is shown in Figure 6.8
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Figure 6.8: Relationship between lot size and reliability

Total cost is effected by three decision variables namely reliability of the production 

process, production period and economic lot size. Figure 6.9 shows the relationship 

between total cost and reliability. Total cost decreases with improvement of reliability up 

to 0.987. Total cost goes upward when reliability is greater than 0.987. 

Figure 6.9: Relationship between total cost and reliability
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From figure 6.10 it is found that total cost is also affected by cycle time (T). That is, with 

the increases of cycle time total cost decreases. This is because, when cycle time 

increases, we require less number of cycle and less setup cost. 

Figure 6.10: Relationship between total cost and cycle time
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In Figure 6.11 and 6.12, the optimal lot size (Q), Cycle time (T) and total cost (TC) is 

potted as a function of unit setup cost (S). What is interesting about Figure 6.11 and 6.12

is that the optimal lot sizes increase as the values of setup costs increase, and the optimal 

costs per cycle increase as the values of unit setup costs increase. This suggests that if the 

setup costs increases, the manufacturer should produce bigger lot size in order to keep the 

less number of cycles.
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Figure 6.11: Relationship between setup cost and lot size

Figure 6.12: Relationship between setup cost and total cost

Cycle time and Setup Cost is also related. With the increase of setup cost, cycle time 

increases and with the decrease of setup cost cycle time also decreases. The relation is 

shown in Figure 6.13
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Figure 6.13: Relationship between setup cost and cycle time

6.5 Effect of Holding Cost

In Figure 6.14 and 6.15, we plot the optimal lot size (Q) and total cost (TC) as a function 

of unit holding cost (h). What is interesting about Figure 6.14 and 6.15 is that the optimal 

lot sizes decrease as the values of unit holding costs increase, and the optimal costs per 

cycle increase as the values of unit holding costs increase. This suggests that the holding 

cost increases, the manufacturer should produce less to avoid a big storage cost in the 

total cost.

Figure 6.14: Relationship between total lot size and holding cost
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Figure 6.15: Relationship between total cost and per unit holding cost

Cycle time (T) and unit holding Cost (h) is also related. With the increase of holding cost, 

cycle time decreases and with the decrease of holding cost cycle time increases. The 

relation is shown in Figure 6.16

Figure 6.16: Relationship between Cycle time and unit holding cost
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions 

Profit of an organization largely depends on its production inventory. Optimization of 

production inventory model becomes very critical if complex relationship exists between 

decision variables and objective function. Uncertainty, imprecision and reliability of the 

production process have significant impact on the production system. It is also important 

to incorporate uncertainty, imperfection and reliability of the system to optimize the 

production inventory model.

The objective of this thesis work is to develop a mathematical model of production 

inventory to investigate the combined effect of production cost, holding cost, setup cost, 

inspection cost, depreciation and interest cost, defective units cost and backorder cost on 

cost minimization. Lot size per cycle, reliability of the production process and Cycle time 

are decision variables. The model is in formulated in unconstrained, non integer non 

linear form which is complicated in nature and to optimize the model meta-heuristic 

search algorithm is required. A relatively new technique is PSO which can generate high-

quality solutions with shorter calculation time and stable convergence. PSO has been 

successfully applied to a wide range of applications, but so far gets less attention as a 

meta-heuristic algorithm to solve such type of complex problem. The evolutionary PSO 

algorithm is used here to optimize the developed model and the result is compared with 

GA which is a widely used algorithm. It is found that PSO outperforms GA for the 

developed model and results less total cost and shorter computational time than GA. 

Imprecision and uncertainty in imperfect production process are incorporated in the 

production inventory problem. Reliability is an important factor for a production process 

which is incorporated in this model. The model is applicable in an imperfect production 

process where reliability is an important factor. 
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7.2 Recommendations 

In this thesis reliability is considered as a decision variable which is deterministic in 

nature and has non integer values. Reliability of the production process depends on a lot 

of other factors such as production technology, machine capability, work methods, use of 

on-line monitoring devices, skill level of the operating personnel and inspection, 

maintenance and replacement policies. In future research, considering reliability 

probabilistic in nature new EPQ model can be developed. Moreover, demand and chance 

of defective items can be considered also probabilistic in nature. In this thesis PSO has 

been used to optimize the model. There are other search algorithms such as ant colony 

optimization, harmony search algorithm and fuzzy algorithm which can be applied to 

optimize such type of models. From this thesis it is also found that PSO algorithm has 

immense potential to be applied in other field of inventory related problem.
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APPENDIX

PSO Code

clear all; 

close all;

clc;

tic

part_no = 50;

coeff =3;

% tol=10^-25;

a=0.2; 

b=1.6; 

c=2.8;

n_iter=500;

p_init=rand(part_no,coeff);

v=(rand(part_no,coeff)-0.5)*2;

p_lb=p_init;

p = p_lb;  %correct

y_new=zeros(1,part_no);

y_lb=zeros(1,part_no);

for i =1:part_no

    y_new(i)=shaon(p(i,:));

end
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y_lb=y_new;

z = y_lb';

[val,ind]= min(z, [ ],1);

p_gb = p_lb(ind,:);

%while n_iter < 1000

for n=1:n_iter

    for i=1:part_no

        for j=1:coeff

           v(i,j)=a*v(i,j)+rand(1,1)*b*(p_lb(i,j)-p(i,j))+ rand(1,1)*c*(p_gb(j)-p(i,j)); 

            p(i,j)=p(i,j)+v(i,j);

            if j==1

                if p(i,j)>=1.0

               v(i,j)=-v(i,j); 

                p(i,j)=1.0;

                elseif p(i,j)<=0 

                v(i,j)=-v(i,j); 

                p(i,j)=0;

                end

            elseif j==2

                if p(i,j)>=10000

                v(i,j)=-v(i,j); 

                p(i,j)=10000;

                elseif p(i,j)<=0



83

                v(i,j)=-v(i,j); 

                p(i,j)=0;

                end

            elseif j==3

                if p(i,j)>=10000

                v(i,j)=-v(i,j); 

               p(i,j)=10000;

                elseif p(i,j)<=0 

                v(i,j)=-v(i,j); 

                p(i,j)=0;

                end

            end

        end

        

        y_new(i) = shaon(p(i,:));

    end

    

    for k=1:part_no

        if y_new(k)<y_lb(k)

            p_lb(k,:)=p(k,:);

        end

    end

    for m=1:part_no
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    y_lb(m)=shaon(p_lb(m,:));

    end

    z = y_lb';

    [val,ind]= min(z, [ ],1);

    p_gb = p_lb(ind,:);

    resultn(n)=y_lb(ind);

end

[p_gb y_lb(ind)]    

plot(resultn)

function ynew = shaon(p)

C=1;    % (1-2500) unit production cost

D=1000; % (50-100,) unit per day

P=1500; % unit per day (must be greater than demand)

h=.01; % (0.5-0.01) per unit per day

s=100; % (100-1500, 50-5000) per cycle

l=1500; % constant (800-1600) constant 

m=0.5; % constant (0.2-0.8)

n=0.75; % constant (0.5-0.9)

I=0.05; % (1%-20%) 

J=0.05; %(1%-20%)

A=0.1; % (backorder administrative cost)

V=0.1;  % (backorder cost due to loss of goodwill)
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t=h+V;

R=A*D*h*t^(-1)-A*D*h*V*(1/2)*t^(-2);

ynew = R+C*D*p(1)^(-1)+(h/2)*p(3)-(D/2)*(h/P)*p(3)*p(1)^(-1)+ s/p(2)+l*s^(-

m)*p(1)^n*p(2)^(-1)+I*D*p(1)^(-1)+J*p(2)^(-1)*p(3)-J*p(2)^(-

1)*p(3)*p(1)+p(3)*h^(2)*V*(1/2)*t^2+D^2*A^2*p(3)^(-1)*V*(1/2)*t^(-2)-

D^2*A^2*p(3)^(-1)*t^(-1);
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