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ABSTRACT 

This study is to investigate forecasts of Bangladesh’s inflation by the linear 

forecasting method like Autoregressive Integrated Moving Average (ARIMA) and 

Neural Network (NN) model as Nonlinear Autoregressive network with exogenous 

inputs (NARX). Inflation forecast is used as guide in the formulation of the monetary 

policy by the money policy makers worldwide. Monetary policy decisions are based 

on inflation forecast extracted from the information from different models and other 

indicators, which influence the macroeconomics conditions of the economy. 

ARIMA method is an extrapolation method for forecasting, based on probability 

theory and statistical analysis with a certainty of distributions assumed in advance and 

like any other such methods, it requires only the historical time series data for the 

variable under forecasting. Five different plausible ARIMA estimated models are 

selected by various diagnostic and selection & evaluation criteria. On the basis of in 

sample and out of sample forecast and forecast evaluation statistics two candid 

models among the five models which have  sufficient predictive powers and the 

findings are well compared to the other models are proposed. Artificial neural 

network (ANN) models are data-driven self- adaptive methods in that there are few a 

priori assumptions about the models for problems under study. An ANN model is 

developed to forecast the inflation of Bangladesh as a function of its own previous 

value. The model selects a feed-forward back-propagation ANN with the input of 

previous inflation and an exogenous variable of exchange rate, five hidden neurons 

and one output as the optimum network. The model is tested with actual time series 

data of inflation in case of Bangladesh and forecast evaluation criteria. The forecast 

performance of the ANN model is compared with ARIMA based model and observed 

that RMSE of ANN based forecasts is much less than the RMSE of forecasts based on 

ARIMA models. So it can be said that forecasting of inflation with ANN offers better 

performance in comparison with ARIMA methods. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

There are many attributes of the system to be forecast that impinge on the choice of 

method by which to forecast and on the likelihood of obtaining reasonably accurate 

forecast. The main purpose for constructing a time series model is to forecast. Such 

forecasts enable the policy makers to judge whether it is necessary to take any 

measure to influence the relevant economic variables. Broadly speaking there are four 

approaches to economic forecasting based on the time series data: 

1) Single-equation regression model. 

2) Simultaneous equation regression model. 

3) Autoregressive integrated moving average (ARIMA) models. 

4) Vector auto regression (VAR) models. 

Scalar version of the time series models usually take the form proposed by 

Kalman(1960) or Box and Jenkins(1976). There are good reasons why integrated 

autoregressive moving average models (ARIMAs) might be regarded as the dominant 

class of the scalar time series models. The Wold decomposition theorem states that 

any purely indeterministic stationary time series has an infinite moving-average (MA) 

representation. Moreover any infinite MA can be approximated to any required degree 

of accuracy by an ARMA model. Typically the order of the AR and MA polynomials 

(p and q) required to adequately fit the series may be relatively low. Many economic 

time series may be non-stationary, but provided they can be made stationary by 

differencing, after that they are amendable to analysis within the Box-Jenkins 

framework, in which case we obtain ARIMA rather than ARMA models (where the 

order of the integrated component is d, the minimum number of times the series has to 

be differenced to be stationary).  

A univariate autoregression is a single-equation, single-variable linear model in which 

the current value of a variable is explained by its own lagged values whereas a VAR 
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(vector auto regression provided by Christopher Sims (1980)) is a n-equation, n 

variable linear model in which each variable is in turn explained by its own lagged 

values, plus current and past values of the remaining n-1 variables. VARs hold out the 

promise of providing a coherent and credible approach to data description, 

forecasting, structural inference, and policy analysis. 

Around the world keeping a strong control over Inflation has turned out to be one of 

the primary objectives of the regulators as inflation increases uncertainty both in 

consumer’s and producer’s mind. As the economic effect of monetary policy have 

time lag policy makers and financial authorities require frequent updates to the path of 

inflation. Policy makers can get prior indication about possible future inflation 

through Inflation forecasting using univariate time series auto regressing integrated 

moving average (ARIMA) models. The intrinsic nature of a time series is that 

successive observations are dependent or correlated and therefore, statistical methods 

that rely on independent assumptions are not applicable. Time series analysis studies 

the stochastic mechanism of an observed series. The study of time series helps to 

understand and describe the underlying generating mechanisms of an observed series. 

This analysis assists in forecasting future values and to estimate the impact of events 

or policy changes. Results from analysis can give valuable information when 

formulating future policies. 

Traditional models that have been used to inflation forecasting are all based on 

probability theory and statistical analysis with a certainty of distributions assumed in 

advance. In most cases these assumptions are unreasonable and nonrealistic. Also the 

linear structure of these models doesn’t guarantee accuracy of prediction. Recent 

studies have addressed the problem of inflation rate forecasting by using different 

methods including artificial neural network (ANN) and model based approaches due 

to the significant properties of handling non-linear data with self learning capabilities. 

There has been a great interest in studying the artificial neural network (ANN) 

forecasting in economics, financial, business and engineering applications including 

GDP growth, stock returns, currency in circulation, electricity demand, construction 

demand and exchange rates. 

This thesis intends to contribute to a better understanding of the problem related to the 

inflation prediction. To accomplish this goal we will try to compare linear models (for 
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instance, ARIMA models) with non-linear models (for instance, Artificial Neural 

Networks), namely, if the forecast and prediction power improves from one technique 

to other. Therefore, we will compare various ARIMA models and find out the best 

one. Then I will compare that ARIMA model with ANN model (a more conventional 

technique based on seasonal and trends models with a non-linear methodology) and 

check which of the methods is the most effective. 

There has been increasing interest in the application of neural networks to the field of 

finance. Several experiments have been carried out stating the success of neural 

networks for time series prediction. Most of the existing systems recommend single 

neural network architecture to be used for a particular time series. Empirical results 

show that Artificial Neural Networks (ANNs) can be more effectively used to make 

better forecasts than the traditional methods since inflation of Bangladesh have a 

complex structure, nonlinear, dynamic and even chaotic. Due to these reasons, ANNs 

can increase the forecast performance due to a learning process of the underlying 

relationship between the input and output variables and their ability to discover 

nonlinear relationships. Despite of all, ANNs also have some limitations, for instance, 

error functions of ANNs are usually complex, cumulative, and commonly they have 

many local minima, unlike the traditional methods. So, each time the network run 

with different weights and biases it arrives at a different solution.  

Despite of all, the choice between one method and other is not an easy task. A 

literature review point out that the increasing complexity does not necessary increase 

the accuracy. Sometimes, the traditional statistics can be applied and present a higher 

performance. Gooijer and Hyndman (2006) refers that some authors stress the 

importance that future research needs to be done in order to define the frontiers were 

ANNs and the traditional methods can be more effective with a greater accuracy in 

relation to each other. For some tasks, neural networks will never replace traditional 

methods; but for a growing list of applications, the neural architecture will provide 

either an alternative or a complement to these other techniques. 

The question is whether this Neural Networks technique is fundamentally different 

form linear regression analysis. Particular attention is paid in this research to 

similarities and differences between these two approaches. When different, we must 

find out which will be the appropriate to employ. Neural Networks and ordinary 
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regression analysis can sometimes be combined to create a powerful forecasting and 

learning tool. 

1.2 Inflation Behavior  

Inflation has become a well-entrenched phenomenon in many countries. Somehow it 

seems that the general price level can only rise implying that there is an inflationary 

bias in society. Consensus has it that inflation is likely to impose considerable 

economic costs (Fischer and Modigliani, 1978). Types of costs are, for instance, menu 

costs, the decrease in real money balances and decreased efficiency of the price 

system. There is, however, a lack of understanding of the process which 

systematically generates inflation (Davis, 1991). One of the central objectives of 

traditional monetary policy is inflation control since the belief is that, among others; 

low inflation helps to improve resource allocation and fosters rapid and stable 

economic growth. The view also holds that inflation is primarily a monetary 

phenomenon so that low inflation is to be achieved mainly through aggregate demand 

control by pursuing concretionary monetary (and fiscal) policies. It is argued that 

these policies should also be supported by liberalization, privatization, and other 

macroeconomic reforms to create a more open and competitive economy driven by 

the private sector. In short, the argument is that there exists a tradeoff between 

inflation and growth (alternatively between inflation and unemployment) that makes 

inflation targeting as the dominant paradigm in monetary policy. Macroeconomists 

and central bankers pay close attention to inflation behavior, both in their theoretical 

debates and in empirical studies. The importance of inflation behavior results from the 

fact that they influence the behavior of economic agents, i.e., in terms of 

consumption, savings and investment decisions. Moreover, to the extent that they 

provide an unbiased predictor of future inflation, quantitative measures of expected 

inflation may constitute an important information variable taken into account in 

forward-looking considerations and monetary policy decisions (Forsells and Kenny, 

2002). Finally, the inflation behavior of different groups of economic agents indicate 

the degree of confidence enjoyed by the central bank, the credibility of inflation 

targets, and whether these targets seem to be attainable. Depending on their nature, 

inflation behavior may play an important role in price formation. By affecting real 

interest rates, changes in inflation behavior may lead to changes in aggregate demand, 

which may then influence prices. As regards cost-push effects, an increase in the 
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expected rate of inflation may make employees demand higher wage settlements. 

Companies, anticipating higher cost to be faced in the future, may see incentives to 

increase prices and may be more willing to pay higher wages. Even if prices are not 

adjusted immediately, companies may temporarily put off the sale of their products. 

All these interactions, combined with each other, may result in an increase in demand 

and a simultaneous decrease in supply. In this way, a rise in inflation may generate an 

increase in prices. The growing popularity of the strategy of direct inflation targeting 

stems from the conviction that central banks ought to influence inflation behavior. 

Monetary policy transparency and central bank credibility – key elements in direct 

inflation targeting – allow monetary policy to meet its ultimate objective of price 

stability, and by increasing the forward-lookingness of inflation behavior may reduce 

the sacrifice ratio (Gomez, 2002). 

1.3 Why inflation forecasting is so important 

Inflation forecast is used as guide in the formulation of the monetary policy by the 

monetary authorities in the world. Monetary policy decisions are based on inflation 

forecast extracted from the information from different models and other information 

suggested by relevant economic indicators of the economy. Inflation tends to be a 

relatively persistent process, which means that current and past values should be 

helpful in forecasting future inflation. Forecasts of inflation are important because 

they affect many economic decisions. Investors need good inflation forecasts, since 

the returns to stocks and bonds depend on what happens to inflation. Businesses need 

inflation forecasts to price their goods and plan production. Homeowners' decisions 

about refinancing mortgage loans also depend on what they think will happen to 

inflation. 

A high and sustained economic growth in conjunction with low inflation is the central 

objective of macroeconomic policy. Low and stable inflation along with sustainable 

budget deficit, realistic exchange rate, and appropriate real interest rates are among 

the indicators of a stable macroeconomic environment. Thus, as an indicator of stable 

macroeconomic environment, the inflation rate assumes critical importance. It is 

therefore important that inflation rate be kept stable even when it is low. The primary 

focus of monetary policy, both in Bangladesh and elsewhere, has traditionally been 

the maintenance of a low and stable rate of aggregate price inflation as defined by 

commonly accepted measures such as the consumer price index. 
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1.4 Bangladesh’s Inflation: A Brief History 

The experience of high inflation is not new in Bangladesh. Over the last five years, 

Inflation increased several times due to the contractionary monetary policies, 

orthodox exchange rate management, the rise in import bills and internationally price 

hikes in food. The average inflation in 2001 was 1.90% while it is found 9.07 % in 

2007. After the 2007 global financial crisis, Bangladesh Bank decided to ease 

monetary policy in order to limit the impact of the crisis on the domestic economy. As 

a result, in 2009 the average inflation declined to 5.42%. But it went up again 10.68% 

in 2011. Further, to control this hyper inflation Bangladesh Bank took more restrained 

monetary policies in 2011. In the national budget and monetary policy of FY 2011-12, 

the rate of inflation was targeted at 7.5 percent whereas; it stood at 10.6 percent (12- 

month average) and 8.56 percent (point to point inflation). In FY 2012-13, the 

government has targeted the rate of inflation at 7.2 percent while the prior experience 

suggests that it might be hard to maintain inflation below 9% in 2013. Therefore, 

careful revisions are essential to conduct an effective monetary policy which can 

successfully control any hyper inflation in 2013. 

Currently the financial regulatory authorities in Bangladesh are facing the twin 

challenge of maintaining price stability while accommodating higher growth in the 

economy. It is often a tough task to achieve a combination of the two goals. Like 

other developing countries, Bangladesh has three macroeconomic targets: a growth 

target to support higher employment and poverty reduction; an inflation target to 

maintain internal economic stability; and a target for stability of the balance of 

payments. To achieve these three targets, Bangladesh needs some combination of 

three policy instruments: monetary policy, fiscal policy, and policies for managing the 

balance of payments. However, with rising inflation Bangladesh is finding it difficult 

to properly coordinate all three macroeconomic targets in a sustainable manner. 

As the primary objective of monetary policy is to lower inflation and maintain the 

stability of the exchange rate many expert is currently advocating for the use of 

monetary policy to control inflation in Bangladesh. But with the long time lag 

between monetary policy announcement and policy action, it is difficult for 

policymakers to properly coordinate their strategies. Under such situation, forecasting 

future inflation can assist policymakers in formulating their strategies. Along with the 

time lag, in reality inflation is often multi causal and prime cause of inflation can vary 
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from year to year. The possible factors behind excessive inflation can include supply 

side factors including cost push relationship along with exchange rate effects, 

excessive borrowing by local government and demand pull inflation. 

Given the complexity of inflation controlling and time lag of monetary policy affect 

many monetary economists strongly advocated for inflation targeting to maintain 

stable aggregate price inflation. In his writing Svensson (1996) argued for inflation 

forecasting targeting where central bank tries to stabilize only inflation and resource 

utilization. However, before formulating strategy based on inflation forecast it is 

necessary to emphasize the structural soundness of inflation forecasting. This paper is 

one such attempt towards accurate univariate time series inflation forecasting in 

Bangladesh using monthly time series data from July 2001 to March 2013. 

1.5 Overview 

Chapter 2 spells out the details literature of the related work of this thesis.  Chapter 3 

draws a theoretical framework basic of Box-Jenkins methodology of estimating the 

ARIMA models and discusses various plausible ARIMA models.  Chapter 4 spells 

out the details of Neural Networks modeling and here the Neural Network is applied 

in forecasting inflation variables. From this empirical analysis, the forecasting power 

of NN with that of proposed ARIMA (traditional econometric) models is compared 

for out-of-sample time series in Chapter 5. Chapter 6 concludes the thesis with a 

perspective on what has been achieved and identifies some prospective topics for 

further research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Financial Time Series Analysis 

Financial markets are complex dynamic systems with a high volatility and a great 

amount of noise. Due to these and other reasons we might say that forecasting 

financial time series can be a challenging task. In the past decades, strongest 

assumptions on financial time-series (namely the Random Walk Hypothesis) have 

been partially discharged.  

A time series is a sequence of variables whose values represent equally spaced 

observations of a phenomenon over time. We can write a time series as 

}or ,        (2.1) 

Where, we will treat  as a random variable. 

The main objective of time series prediction can be stated as Ho et al. (2002) 

describes: “given a finite sequence  find the continuation 

of ”. The ability to predict time or at least the range within a specific 

confidence interval it is important in many knowledge areas for planning, decision 

making, etc, and time series analysis in financial area isn’t an exception. 

Due to the fact that most of the current modeling techniques are based on linear 

assumptions there are emerging some authors that think that a non linear analysis of 

financial time series needs to be considered. A technique that is emerging in this field 

is the use of neural networks, declared to be a universal approximator for nonlinear 

models. 

2.2 Literature Concerning Linear Time Series analysis of Inflation 

It was the major contribution of Yule (1927) which launched the notion of 

stochasticity in time series by postulating that every time series can be regarded as the 

realization of a stochastic process. Based on this idea, a number of time series 

methods have been proposed. George E.P. Box and Gwilym M. Jenkins (1970) 
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integrated the existing knowledge on time series with their book “Time Series 

Analysis: Forecasting and Control”. First of all, they introduced univariate models for 

time series which simply made systematic use of the information included in the 

observed values of time series. This offered an easy way to predict the future 

development of the variable. Moreover, these authors developed a coherent, versatile 

three-stage iterative cycle for time series identification, estimation, and verification. 

George E.P. Box and Gwilym M. Jenkins (1970) book had an enormous impact on the 

theory and practice of modern time series analysis and forecasting. With the advent of 

the computer, it popularized the use of autoregressive integrated moving average 

(ARIMA) models and their extensions in many areas of science. Since then, the 

development of new statistical procedures and larger, more powerful computers as 

well as the availability of larger data sets has advanced the application of time series 

methods. After the introduction by Yule (1921), the autoregressive and moving 

average models have been greatly favored in time series analysis. Simple expectations 

models or a momentum effect in a random variable can lead to AR models. Similarly, 

a variable in equilibrium but buffeted by a sequence of unpredictable events with a 

delayed or discounted effect will give MA mode. 

Granger and Newbold (1977) provide a survey of early comparisons of forecasting 

performance of univariate and multivariate model, and Zarnowitz and Braun (1993) 

compare forecasts from univariate and VAR models with forecasts constructed by 

professional forecasters for the U.S. over the 1968-1990 period. Aidan Meyler, Geoff 

Kenny and Terry Quinn (1998) outlined ARIMA time series models for forecasting 

Irish inflation. It considered two alternative approaches, which suggests that ARIMA 

forecast has outperformed.  Toshitaka Sekine (2001) estimated an inflation function 

and forecasts one-year ahead inflation for Japan. He found that markup relationships, 

excess money and the output gap are particularly relevant long-run determinants for 

an equilibrium correction model of inflation.  Christiano (1989) used past quarterly 

changes in the short-term nominal T-bill interest rate as an explanatory variable of the 

U.S. inflation. Francisco Nadal-De Simone (2000) estimated two time-varying 

parameter models of Chilean inflation Box-Jenkins models outperform the two 

models for short-term out-of-sample forecasts; their superiority deteriorates in longer 

forecasts. Jae J. Lee(2011) used Bayesian inference to forecast time series under Box 

and Jenkins’ARIMA model. Kanchan Datta(2011) claimed that ARIMA (4, 12, 2, 0) 

model fits the inflation data of Bangladesh satisfactorily.  
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2.3 Literature Concerning Nonlinear Time Series analysis of Inflation 

Nowadays central banks, such as, CZECH National Bank (Marek Hlavacek, Michael 

Konak and Josef Cada, 2005), Bank of Canada (Greg Tkacz and Sarah Hu, 1999), 

Bank of Jamaica (Serju,2002), are currently using their forecasting models based on 

ANN methodology for predicting various macroeconomic indicators. 

Adya and Collopy (1998) review 48 applications of neural networks to business 

forecasting and prediction. The authors attempt to determine whether these studies 

adequately compare the neural network forecasts with alternative techniques 

(effectiveness of validation) and whether the neural network technique is effectively 

implemented (effectiveness of implementation). Gazely and Binner (1998) employ 

neural networks to compare the capabilities of Divisia and simple sum measures of 

broad money as indicators of inflation in United Kingdom. They find Divisia 

monetary measures produce more accurate forecasts of inflation than standard 

monetary aggregates. Binner et al. (2002) further apply neural networks to model 

Taiwan’s inflation rate resulting in particularly accurate forecasts when Divisia 

monetary measures are used. 

More recently, Binner, Bissoondeeal, Elger, Gazely, and Mullineux (2005) compare a 

neural network model to ARIMA and VAR models in predicting the inflation rate of 

the Euro. They find that the VAR model produces superior out-of-sample forecasts 

compared to the univariate ARIMA model, and that in every case examined, the 

neural network model produces superior forecasts relative to the VAR model. Thus, 

they conclude that linear models such as ARIMA and VAR represent a subset of non-

linear models such as neural networks. 

Tkacz (2001) has also investigated Canadian data using neural networks. Comparing 

the forecasts of a neural network model to those of a naive random walk model, an 

exponential smoothing model, an autoregressive model, and a multivariate linear 

model, Tkacz finds that the neural network produces superior year-to-year forecasts of 

real GDP growth relative to all other models. 

Neural networks have also been frequently applied to the prediction of currency 

exchange rates. Shazly and Shazly (1999) develop a genetic neural network model to 

predict the three-month spot rate for the British pound, German mark, Japanese yen, 
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and Swiss franc. Their results show that the neural network forecasts are superior to 

those obtained from both future and forward market rates. Nag and 

Mitra (2002) also use a genetic neural network to predict daily spot exchange rates. 

Using the German mark/US dollar, Japanese yen/US dollar, and US dollar/British 

pound exchange rates as data, they find that their neural network model outperforms 

six different ARCH and GARCH models. 

Taken together, this literature indicates that neural network models can significantly 

outperform linear forecasting models such as ARIMA, VAR, or GARCH in 

predicting long-term economic activity (e.g. inflation or real GDP) or short-term 

financial activity (e.g. exchange rates). The literature also indicates that currently 

there is no standard technique to measure the relative forecasting advantage of a 

neural network model relative to a linear model. Hence, current studies which 

compare the forecasting ability of neural networks and linear models use very 

different methodologies. 
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CHAPTER 3 

FORECASTING INFLATION BY ARIMA MODELS 

 

3.1 Introduction 

The classical linear regression model is the conventional starting point for time series 

and econometric methods. Peter Kennedy, in A Guide to Econometrics (1985), 

provides a convenient statement of the model in terms of five assumptions:  

(1) The dependent variable can be expressed as a linear function of a specific set of 

independent variables plus a disturbance term (error);  

(2) The expected value of the disturbance term is zero; 

 (3) The disturbances have a constant variance and are uncorrelated;  

(4) The observations on the independent variable(s) can be considered fixed in 

repeated samples; and, 

 (5) The number of observations exceeds the number of independent variables and 

there are no exact linear relationships between the independent variables.  

While regression can serve as a point of departure for both time series and 

econometric models, it is incumbent on the analyst to generate the plots and statistics 

which will give some indication of whether the assumptions are being met in a 

particular context. 

A time series model is a tool used to predict future values of a series by analyzing the 

relationship between the values observed in the series and the time of their 

occurrence. Time series models can be developed using a variety of time series 

statistical techniques. If there has been any trend and/or seasonal variation present in 

the data in the past then time series models can detect this variation, use this 

information in order to fit the historical data as closely as possible, and in doing so 

improve the precision of future forecasts. There are many traditional techniques used 

in time series analysis. Some of these include Exponential Smoothing, Linear Time 

Series Regression and Curvefit, Autoregression, ARIMA (Autoregressive Integrated 

Moving Average), Intervention Analysis, Seasonal Decomposition, etc. 



 

13 

 

In this thesis we’ll focus our analysis on ARIMA models. Until the 19th century, the 

study of time series was characterized by the idea of a deterministic world. Here, we 

can find the contribution of Yule (1927) which launched the notion of stochastic 

process in time series analysis by postulating that every time series can be regarded as 

a realization of a stochastic process. Box and Jenkins in the 1970’s developed a 

coherent, versatile three-stage iterative cycle for time series identification, estimation 

and verification. Many of the ideas that have been incorporated into ARIMA models 

were by these authors (see Box et al, 1994), and for this reason ARIMA modelling is 

sometimes called Box-Jenkins modelling. ARIMA stands for AutoRegressive 

Integrated Moving Average, and the assumption of these models is that the variation 

accounted for in the series variable can be divided into three components: 

 Autoregressive (AR) 

 Integrated (I) or Difference 

 Moving Average (MA) 

 An ARIMA model can have any component, or combination of components, at both 

the nonseasonal and seasonal levels. There are many different types of ARIMA 

models and the general form of an ARIMA model is ARIMA (p,d,q)(P,D,Q), where:  

 p refers to the order of the nonseasonal autoregressive process incorporated 

into the ARIMA model (and P the order of the seasonal autoregressive 

process)  

 d refers to the order of nonseasonal integration or differencing (and D the 

order of the seasonal integration or differencing)  

 q refers to the order of the nonseasonal moving average process incorporated 

in the model (and Q the order of the seasonal moving average process). 

So for example an ARIMA (2; 1; 1) would be a nonseasonal ARIMA model where 

the order of the autoregressive component is 2, the order of integration or differencing 

is 1, and the order of the moving average component is also 1. ARIMA models need 

not have all three components. For example, an ARIMA (1; 0; 0) has an 

autoregressive component of order 1 but no difference or moving average component. 

Similarly, an ARIMA (0; 0; 2) has only a moving average component of order 2. 
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3.2 Background and Methodology 

For the current research my first objective was to find out the most accurate out of 

different ARIMA models in forecasting inflation of Bangladesh.  

A modeling and forecasting of various ARIMA time series models based on 

Bngladesh’s monthly 

Inflation data would be carried out. 

 

To realize the objectives of the study, the following steps will be taken in this regard: 

 Collection of monthly inflation data from the Central Bank of Bangladesh, 

Bureau of Statistics (BBS). 

 Specification and estimation of various possible types of ARIMA models. 

 Obtaining of ex-post forecast after empirically estimating the various types of 

ARIMA models. 

 Comparison of forecasting performance of various types of ARIMA models 

by using certain statistical measures. 

 At last there is an attempt to find out the best model for forecasting purpose. 

The following questions allow the research to meet the objectives proposed: 

 Which ARIMA models are plausible to predict the inflation of Bangladesh and 

why?  

 What are the similarities and the differences between the ARIMA models? 

In the first phase, the statistical properties/summary statistics as well as distribution of 

all time series will be tested by means of coefficient of skewness and kurtosis, normal 

probability plots etc. to check presence of typical stylized facts. 

3.3 Autoregressive Models 

In a similar way to regression, ARIMA models use independent variables to predict a 

dependent variable (the series variable). The name autoregressive implies that the 

series values from the past are used to predict the current series value. In other words, 

an autoregressive process is a function of lagged dependent variables and a moving 

average process a function of lagged error terms. The integrated in ARIMA takes into 

account that a time series may be non-stationary before an AR and MA process can be 
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combined into one equation and used for forecasting purposes, the dependent variable 

must be stationary or made stationary. Otherwise, the underlying trend would falsely 

be attributed to serial correlation. If a series needs to be differenced d times before it 

is stationary, the series is said to be integrated of degree d. There are a large variety of 

ARIMA models. The general non-seasonal model is known as ARIMA (p, d, q) where 

p is the number of autoregressive terms, d is the number of differences, q is the 

number of moving average terms. 

A pth-order AR model is defined as 

tptpttt eyyyCy    2211       (3.1) 

C is the constant term; j is the jth auto regression parameter; et is the error term at 

time t. The explanatory variables in this equation are time-lagged values of the 

variable y. 

 For example, it might be the case that a good predictor of current monthly sales is the 

sales value from the previous month.  

3.4 Moving Average Models 

The autoregressive component of an ARIMA model uses lagged values of the series 

values as predictors. In contrast to this, the moving average component of the model 

uses lagged values of the model error as predictors. Some analysts interpret moving 

average components as outside events or shocks to the system. That is, an unpredicted 

change in the environment occurs, which influences the current value in the series as 

well as future values. Thus the error component for the current time period relates to 

the series’ values in the future. The order of the moving average component refers to 

the lag length between the error and the series variable. For example, if the series 

variable is influenced by the model’s error lagged one period, then this is a moving 

average process of order one and is sometimes called an MA(1) process. 

The general MA model of order q can be written as 

qtqtttt eeeeCy    2211      (3.2) 

C is the constant term; j is the jth moving average parameter; e t-k  is the error term at 

time t-k. This model is defined as a moving average of the error series. 
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3.5 Integration 

The Integration (or Differencing) component of an ARIMA model provides a mean of 

accounting for trend within a time series model. Creating a differenced series involves 

subtracting the values of adjacent series values in order to evaluate the remaining 

component of the model. The trend removed by differencing is later built back into 

the forecasts by Integration (reversing the differencing operation). Differencing can 

be applied at the nonseasonal or seasonal level. If ty  is non-stationary, we take a first-

difference of ty  so that ty becomes stationary. 

1 ttt yyy          (3.3) 

Again if ty  is non-stationary, we use a second difference (d = 2), implying a first 

difference of the first differenced series 

1
2

 ttt yyy         (3.4) 

3.6 Stationarity 

In time series analysis the term stationarity is often used to describe how a particular 

time series variable changes over time. Stationarity has three components. First, the 

series has a constant mean, which implies that there is no tendency for the mean of the 

series to increase or decrease over time. Second, the variance of the series is assumed 

constant over time. Finally, any autocorrelation pattern is assumed constant 

throughout the series. For example, if there is an AR (2) pattern in the series; it is 

assumed to be present throughout the entire series. Any violation of stationarity 

creates estimation problems for ARIMA models. It is difficult to detect the true 

variations in the dependent variable if it is non-stationary. Because the mean of the 

series is changing over time, correlations and relationships between the variables in 

the ARIMA model will be exaggerated or distorted. Only if the mean of the 

dependent variable is stationary will true relationships and correlations be identified. 

The Integration component of ARIMA is typically associated with removing trend 

from the series, which would violate the constant mean component of stationarity. It 

is often the case in time series analysis that the mean of a variable increases or 

decreases over time. In order to make a series containing trend stationary, we can 

create a new series that is the difference of the original series. A first order difference 
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creates a value for the new series which is the difference between the series value in 

the current period minus the series value in the previous period. Often the differenced 

series will have a stationary mean. If the differenced series does not have a stationary 

mean then it might be necessary to take first differences of the differenced series. This 

transformation is known as second order differencing as the original series has now 

been differenced twice. The number of times a series needs to be differenced is 

known as the order of integration. Differencing can be performed at the seasonal 

(current time period value minus the value from one season ago) or non-seasonal 

(current time period minus the value from the previous time period) component. 

In short,  

 If a series is stationary then there is no need to difference the series and the 

order of integration is zero. In all ARIMA models the dependent variable 

should be left in its original values. ARIMA models will be of the form 

ARIMA (p; 0; q) where p is the order of the autoregressive process and q is 

the order of the moving average process in the model. 

 If a series is non-stationary then usually first differencing the series will make 

it stationary. If first differencing makes the series stationary then the order of 

integration is one. ARIMA models will be in the form of ARIMA (p; 1; q).  

 However if it might be necessary to difference a series twice to make it 

stationary the form become ARIMA (p; 2; q). In practice, you barely would 

difference a series more than twice. Most common is a d of one or two. 

There are several tests to check the stationarity of a time series model namely Dicky 

Fuller test, ACF and PACF function examination etc. 

3.7 ARIMA models 

If a process ty has an ARIMA (p; d; q) representation, then it has an ARMA (p; q) 

representation as presented by the equation below: 

t
q

p
p

pt
d uLLLLLLy )...1()...1( 2

21
2

21     (3.5) 
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SARIMA: 

The ARIMA models can be extended to handle seasonal components of a data series. 

The general shorthand notation is ARIMA (p; d; q)(P; D; Q)s where s is the number 

of periods per season. In the seasonal component, P represents the Seasonal 

Autoregressive (SAR) term, D is the number of seasonal difference(s) performed and 

Q denotes the Seasonal Moving Average (SMA) term.  

3.8 The Box-Jenkins Methodology of ARIMA Estimation 

The Autoregressive Integrated Moving Average (ARIMA) models, or Box-Jenkins 

methodology, are a class of linear models that is capable of representing stationary as 

well as nonstationary time series. 
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3.8.1 The Box-Jenkins methodology uses an iterative approach 

 An initial model is selected, from a general class of ARIMA models, based on 

an examination of the TS and an examination of its autocorrelations for 

several time lags 

 The chosen model is then checked against the historical data to see whether it 

accurately describes the series: the model fits well if the residuals are 

generally small, randomly distributed, and contain no useful information.  

 If the specified model is not satisfactory, the process is repeated using a new 

model designed to improve on the original one.  

 Once a satisfactory model is found, it can be used for forecasting. 

 Autoregressive models are appropriate for stationary time series, and the 

coefficient Ф0 is related to the constant level of the series. Theoretical 

behavior of the ACF and PACF for AR(1) and AR(2) models:  

 

 

Figure 3.2 behavior of auto correlation and partia autocorrelation of AR(1) 
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Figure 3.3 behavior of auto correlation and partia autocorrelation of MA(1) 

 

Overall the Box-Jenkins Methodology can be illustrated as the following major steps: 
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Figure 3.4 Major Steps of Box-Jenkins Methodology 
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that slowly fade out (or tail off), that is an indicator of data is not random. As a rule of 

thumb, as long as ACF plots reveal a pattern of fading out autocorrelation 

coefficients, one needs to keep on differencing. In practice, it would be barely 

differenced a series more than twice. Most common is a d of one or two.  

Another method is unit-root test (if d=1). 

3.8.2.2 Identification of AR and MA Lag Orders 

Identification of degrees of lag orders is often done by “reading” the autocorrelation 

and partial autocorrelation plot. Both autocorrelation and partial autocorrelation 

functions are correlations of a series with itself, successively shifted by lags. The 

partial autocorrelation function (PACF), however, controls for the correlation between 

the lags and ACF is essentially obtained from bivariate regressions between all 

variables separated by a certain number of lags. The PACF is essentially obtained 

from multivariate regressions that also add the previous lagged values. The following 

decision-making matrix has been developed to assess univariate time series: 

Table 3.1 Patterns for identifying ARMA Processes 

 Model 

AR(p) MA(q) ARMA(p,q) 

ACF Tails off Cuts off after q tails off 

PACF Cuts off after p Tails off tails off 

 

3.8.2.3 Seasonal parameters 

 Whenever you see a cyclical pattern, ARIMA also allows for seasonal parameters of 

p, d, and q. 

The Box-Jenkins method is nothing more but a rough guide on how to identify an 

ARIMA model, in practice it remains a trial and error process.  In this trial and errors 

process, it is a good strategy to move from the most parsimonious model up to more 

complex specifications. 
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3.8.3 Estimation of Model 

Once a tentative model has been selected, the parameters for the model must be 

estimated. The method of least squares can be used for ARIMA model. However, for 

models with MA components, there is no simple formula that can be used to estimate 

the parameters. Instead, an iterative method is used. This involves starting with a 

preliminary estimate, and refining the estimate iteratively until the sum of the squared 

errors is minimized. 

 Another method of estimating the parameters is the maximum likelihood procedure. 

Like least squares methods, these estimates must be found iteratively. Maximum 

likelihood estimation is usually favored because it has some desirable statistical 

properties. 

After the estimates and their standard errors are determined, t values can be 

constructed and interpreted in the usual way.  Parameters that are judged significantly 

different from zero are retained in the fitted model; parameters that are not 

significantly different from zero are dropped from the model. 

3.8.4 Diagnostic Check of Residuals 

Before using the model for forecasting, it must be checked for adequacy. A model is 

adequate if the residuals left over after fitting the model are simply white noise. The 

pattern of ACF and PACF of the residuals may suggest how the model can be 

improved. A portmanteau test can also be applied to the residuals as an additional test 

of fit. If the portmanteau test is significant, then the model is inadequate. In this case 

we need to go back and consider other ARIMA models. So the purpose of the residual 

test is to check whether the error terms are white noise (uncorrelated). Portmanteau 

test, also known as Box- Pierce Q statistic defined as: 





m

k
knQ

1
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 (3.6)
 

k is the k-th order sample autocorrelation of the residuals and T the sample size.  Q 

has a Chi-square distribution with (K-p-q) degrees of freedom. The Q statistic 

essentially sums up various correlation coefficients. The null hypothesis is that there 
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is no serial correlation in the residuals. The Portmanteau test is mostly meaningful for 

12<lags <25. 

Any new model will need their parameters estimated and their AIC values computed 

and compared with other models. Usually, the model with the smallest AIC will have 

residuals which resemble white noise. Occasionally, it might be necessary to adopt a 

model with not quite the smallest AIC value, but with better behaved residuals. 

3.8.5 Forecast Evaluation Statistics for ARIMA Models 

To evaluate forecast accuracy of the models statistics such as mean error (ME), mean 

absolute error (MAE), root mean squared error (RMSE) and Theil’s U are used. 

The mean absolute error (MAE) 

Measures forecast accuracy by averaging the magnitudes of the forecast errors. 
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The Mean Percentage Error (MPE) 

Can be used to determine if a forecasting method is biased (consistently forecasting 

low or high) Large positive MPE implies that the method consistently under 

estimates. Large negative MPE implies that the method consistently over estimates. 

The forecasting method is unbiased if MPE is close to zero. 
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The Mean Absolute Percentage Error (MAPE)  

Provides an indication of how large the forecast errors are in comparison to actual 

values of the series. Especially useful when the yt values are large can be used to 

compare the accuracy of the same or different methods on two different time series 

data. 
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Mean Squared Error 

This approach penalizes large forecasting errors. 
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Root Mean Squared Error 

The RMSE is easy for most people to interpret because of its similarity to the basic 

statistical concept of a standard deviation, and it is one of the most commonly used 

measures of forecast accuracy. 
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Theil’s U-statistic 

This statistic allows a relative comparison of formal forecasting methods with naïve 

approaches and also squares the errors involved so that large errors are given much 

more weight than smaller errors. The advantage of the Theil statistic is that it is ‘unit 

less’ as it compares the RMSE of the chosen model to that of the ‘naive’ forecast 

model. Mathematically, Theil’s U-statistic is defined as 
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U = 1, the naive method is as good as the forecasting technique being evaluated. 

U < 1, the forecasting technique being used is better than the naïve method. 

U > 1, there is no point in using a formal forecasting method since using a naïve 

method will produce better results. 
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3.9 Data and Estimation 

Monthly Inflation rates of Bangladesh measured by CPI, with the base being 1995-

1996 are taken from the Central Bank of Bangladesh, Bureau of Statistics (BBS) 

cover from July 2001 to April  2013, we use the data from July 2001 to December 

2012, and the remaining data is used as out of sample period to check the strength of 

our prediction. 

Time series plot of the inflation rate shows that it had been increasing from the 

starting point to 2006 than it decreased for a very short period of time and increased 

abruptly and touched the double digit level during July, August and September of 

2008. After that there was a sharp decline throughout the year (up to October 2009). 

Again it increased sharply and touched the double digit level and reached at the 

highest point at February 2012, after that it started decreasing.   

Summary statistics, using the observations 2001:07 - 2013:01 for the variable 

'BD_INFLATION' (139 valid observations) given in the next page. 

Table 3.2 Summery statistics of Inflation data 

Mean 6.7804 
Median 6.9400 
Minimum 1.4700 
Maximum 10.960 
Standard deviation 2.4563 
Skewness -0.38764 
Ex. Kurtosis -0.41060 

 

Time series plot, using the observations 2001:07 - 2013:01 for the variable 

'BD_INFLATION' (139 valid observations) given in the next page. 
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Figure 3.5 Time series plot of inflation 

Another way to examine the properties of a time series is to plot its autocorrelogram. 

The autocorrelogram plots the autocorrelation between differing lag lengths of the 

time series. Plotting the autocorrelogram is a useful aid for determining the 

stationarity of a time series, and is also an important input into Box-Jenkins model 

identification. 

3.10 Testing for Stationarity 

3.10.1 Stationarity Test for Inflation Data  

ACF and PACF Test for Stationarity for Inflation Data 

In Figure 3.6 the Correlogram and partial Correlogram are shown where two facts 

stand out- First, the ACF declines very slowly, almost all lags are individually 

statistically significantly different from zero. Second, after the first lag, the PACF 

drops dramatically. And all ACF are statistically insignificant. These phenomena 

indicate that the data are non stationary. Table 3.3 indicates the numeric values of 

autocorrelation function.   
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Table 3.3 Autocorrelation function of inflation of Bangladesh 

 

  LAG       ACF           PACF          Q-stat. [p-value] 

 

    1     0.9771  ***    0.9771 ***     134.6379    [0.000] 

    2     0.9464  ***   -0.1837 **      261.8797    [0.000] 

    3     0.9089  ***   -0.1424 *       380.1027    [0.000] 

    4     0.8657  ***   -0.1078         488.1582    [0.000] 

    5     0.8177  ***   -0.0881         585.2880    [0.000] 

    6     0.7663  ***  -0.0586         671.2381    [0.000] 

    7     0.7134  ***   -0.0234         746.2954    [0.000] 

    8     0.6592  ***   -0.0322        810.8750    [0.000] 

    9     0.6046  ***   -0.0233         865.6135    [0.000] 

   10     0.5506  ***   -0.0060         911.3792    [0.000] 

   11     0.4983  ***    0.0024         949.1571    [0.000] 

   12     0.4488  ***    0.0198         980.0441    [0.000] 

   13     0.4060  ***    0.1010        1005.5224  [0.000] 

   14     0.3670  ***    0.0050        1026.5070  [0.000] 

   15    0.3316  ***   -0.0014        1043.7829  [0.000] 

   16     0.2999  ***   -0.0004        1058.0295  [0.000] 

   17    0.2712  ***   -0.0147        1069.7756  [0.000] 

   18     0.2454  ***   -0.0085        1079.4718  [0.000] 

   19     0.2220  ***   -0.0099        1087.4719  [0.000] 

   20     0.2010  **    -0.0048        1094.0867  [0.000] 

   21     0.1826  **     0.0059        1099.5950  [0.000] 

   22     0.1665  *      0.0026        1104.2128  [0.000] 

   23     0.1524  *      0.0042        1108.1168  [0.000] 

   24     0.1399         0.0003        1111.4358  [0.000] 
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Figure 3.6 ACF and PACF of inflation of Bangladesh 

Another way of stationarity test is augmented Dicky-Fular test that is described 

below. 

Unit root test for inflation data: 

A Dickey-Fuller test of the variable could not reject the hypothesis that the series has 

a unit root which is shown below: 

Augmented Dickey-Fuller test for BD_INFLATION including 11 lags of (1-

L)BD_INFLATION (max was 12) 

Sample size= 126, Unit-root null hypothesis: a = 1 

Table 3.4 Unit root test for inflation data 

Test with constant Test with constant and trend 

Model: (1-L)y = b0 + (a-1)*y(-1) + ... + e 

1st-order autocorrelation coefficient for e: 
0.015 

Lagged differences: F (11, 113) = 33.562 
[0.0000] 

Estimated value of (a - 1): -0.0114448 

Test statistic: tau_c(1) = -2.17659 

Asymptotic p-value 0.2151 

Model: (1-L)y = b0 + b1*t + (a-1)*y(-1) 
+ ... + e 

1st-order autocorrelation coefficient for e: 
0.022 

Lagged differences: F(11, 112) = 33.893 
[0.0000] 

Estimated value of (a - 1): -0.0236624 

Test statistic: tau_ct(1) = -2.19773 

Asymptotic p-value 0.4903 
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All the statistical analysis, time series plot, ACF and PACF plot, unit root test 

indicates that  the CPI inflation of Bangladesh is not stationary, it has to be made 

stationary before applying the Box-Jenkins methodology. 

3.10.2 Stationarity Test for First difference of Inflation Data 

ACF and PACF Test for Stationarity for the First Difference of Inflation Data 

In Table 3.3, the autocorrelation function values for all the lags from 1 to 7 and from 

10 to 22 are statistically significant. The partial autocorrelation function of the first, 

9th , 11th and 13th are statistically significant. All the test statistics and p value reject 

the null hypothesis of stationarity.  

The ACF plot shows the cyclical pattern in Figure 5.7 and PACF drops dramatically 

which is an indication of non stationarity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

Table 3.5 Autocorrelation function for d_BD_INFLATION 

         LAG                        ACF           PACF          Q-stat. [p-value] 

    1     0.8417  ***    0.8417 ***      99.1882    [0.000] 

    2     0.6873  ***   -0.0723         165.8199  [0.000] 

    3     0.5635  ***    0.0140         210.9431  [0.000] 

    4     0.4234  ***   -0.1348         236.6136  [0.000] 

    5     0.3330  ***    0.0846         252.6125  [0.000] 

    6     0.2500  ***   -0.0589         261.6969  [0.000] 

    7     0.1443  *     -0.1191         264.7481  [0.000] 

    8     0.0408        -0.0994         264.9939  [0.000] 

    9    -0.0908        -0.1921 **      266.2212  [0.000] 

   10    -0.2053  **    -0.0617         272.5435  [0.000] 

   11    -0.3329  ***   -0.2294 ***     289.2931  [0.000] 

   12    -0.4111  ***    0.0284         315.0374  [0.000] 

   13    -0.3492  ***    0.3482 ***     333.7632  [0.000] 

   14    -0.2889  ***    0.0352         346.6854  [0.000] 

   15    -0.2560  ***   -0.0669         356.9184  [0.000] 

   16    -0.2257  ***   -0.0771         364.9389  [0.000] 

   17    -0.2374  ***   -0.0793         373.8797  [0.000] 

   18    -0.2483  ***   -0.0862         383.7429  [0.000] 

   19    -0.2343  ***   -0.0763         392.6043  [0.000] 

   20    -0.2154  **    -0.0735         400.1572  [0.000] 

   21    -0.1793  **    -0.0512         405.4355  [0.000] 

   22    -0.1563  *     -0.1009         409.4817  [0.000] 

   23    -0.1251        -0.0249         412.0964  [0.000] 

   24    -0.1211        -0.0167         414.5664  [0.000] 



 

32 

 

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

lag

ACF for d_BD_INFLATION

+- 1.96/T^0.5

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25

lag

PACF for d_BD_INFLATION

+- 1.96/T^0.5

 

Figure 3.7 ACF and PACF plot for the first difference of inflation 

Unit root test for the first difference of inflation: 

The unit root test cannot reject the null hypothesis of non stationarity which indicates 

that the data are still non stationary. Augmented Dickey-Fuller test for first difference 

of inflation: including 12 lags of (1-L)d_BD_INFLATION (max was 12), Sample size 

124,Unit-root null hypothesis: a = 1. 

Table 3.6 Unit root test for the first difference of inflation 

Test with constant Test with constant and trend 

Model: (1-L)y = b0 + (a-1)*y(-1) + ... + e 

1st-order autocorrelation coefficient for e: 
0.032 

Lagged differences: F(12, 110) = 5.247 
[0.0000] 

Estimated value of (a - 1): -0.182156 

Test statistic: tau_c(1) = -2.47022 

Asymptotic p-value 0.1229 

Model: (1-L)y = b0 + b1*t + (a-1)*y(-1) 
+ ... + e 

1st-order autocorrelation coefficient for e: 
0.032 

Lagged differences: F(12, 109) = 5.236 
[0.0000] 

Estimated value of (a - 1): -0.195085 

Test statistic: tau_ct(1) = -2.5856 

Asymptotic p-value 0.287 

 

So, to make the data stationary we need to take another difference which is stated 

below. 
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3.10..3 Second difference of Inflation Data 

ACF and PACF Test for Stationarity for the Second Difference of Inflation Data 

Table 3.4 indicates that almost all the ACF and PACF are within the range except lag 

4, 11, 12 and 24. So it can be said that the data are stationay now. 

Figure 5.7 shows the second difference of inflation of Bangladesh with most 

significant spike at lag 12. ACF, PACF plot and unit root test indicate that the second 

\ difference of inflation data is stationary. 
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Figure 3.8 Autocorrelation function for the second difference of inflation 

 

Table 3.7 Autocorrelation function for second difference of inflation 
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  LAG       ACF           PACF          Q-stat. [p-value] 

   1    -0.0296        -0.0296           0.1220    [0.727] 

   2    -0.1011        -0.1021           1.5531    [0.460] 

   3     0.0481         0.0422           1.8791    [0.598] 

   4    -0.1458  *    -0.1554 *         4.9002    [0.298] 

   5    -0.0102        -0.0088           4.9149    [0.426] 

   6     0.0852         0.0522           5.9625    [0.427] 

   7    -0.0017         0.0127           5.9630    [0.544] 

   8     0.0995         0.0970           7.4151    [0.493] 

   9    -0.0543        -0.0596           7.8504    [0.549] 

  10     0.0568         0.1006           8.3307    [0.597] 

  11    -0.1191        -0.1433 *        10.4621  [0.489] 

  12    -0.4825  ***   -0.4774 ***     45.7045  [0.000] 

  13     0.0251        -0.0801          45.8005  [0.000] 

  14     0.1005         0.0161          47.3550  [0.000] 

  15     0.0012         0.0304          47.3552  [0.000] 

  16     0.1319         0.0225          50.0772  [0.000] 

  17    -0.0080         0.0316          50.0872  [0.000] 

  18    -0.1052         0.0035          51.8475  [0.000] 

  19    -0.0141       -0.0022          51.8794  [0.000] 

  20    -0.0513       -0.0157          52.3049  [0.000] 

  21     0.0394         0.0014          52.5576  [0.000] 

  22    -0.0398        -0.0655          52.8189  [0.000] 

  23     0.0812        -0.0644          53.9150  [0.000] 

  24     0.1435  *     -0.1462 *        57.3646  [0.000] 
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Unit root test for the second difference of inflation: 

Augmented Dickey-Fuller test for second difference of inflation including 11 lags of 

(1-L)d_d_BD_INFLATION (max was 12)Sample size 124, Unit-root null hypothesis: 

a = 1. 

Table 3.8 Unit root test for the second difference of inflation 

Test with constant Test with constant and trend 

Model: (1-L)y = b0 + (a-1)*y(-1) + ... + e 

1st-order autocorrelation coefficient for e: 
0.005 

Lagged differences: F(11, 111) = 5.760 
[0.0000] 

Estimated value of (a - 1): -1.64844 

Test statistic: tau_c(1) = -5.9453 

Asymptotic p-value 1.62e-007 

Model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + 
... + e 

1st-order autocorrelation coefficient for e: 
0.004 

Lagged differences: F(11, 110) = 5.714 
[0.0000] 

Estimated value of (a - 1): -1.654 

Test statistic: tau_ct(1) = -5.92798 

Asymptotic p-value 1.733e-006 

 

 

3.11 Identification and Estimation for the Five Models 

Having determined the correct order of differencing required to make the series 

stationary, the next step is to find an appropriate ARMA form to model the stationary 

series. There are number of alternative identification methods proposed in the 

literature. Here the the Box-Jenkins procedure is used which follows an iterative 

process for model identification, model estimation and model valuation. Various 

ARIMA models are established among which the three suitable models which were 

satisfying all the properties of residual. Further the parameters were significantly 

impacting the inflation. 

 

 

For an ARIMA model if the terms of AR process and MA process are statistically 

significant then it seems to be plausible. 
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Table 3.9 Estimation of different ARIMA model 

Model:1 
ARIMA
(12,24;2
;1,11) 

 Coefficient Std. Error z p-value 
const -0.000312581 0.00275965 -0.1133 0.90982 
phi_12 -0.719766 0.10906 -6.5997 <0.00001*** 
phi_24 -0.280269 0.0998767 -2.8061 0.00501*** 
theta_1 -0.220937 0.0972159 -2.2726 0.02305** 
theta_11 -0.209717 0.10416 -2.0134 0.04407** 

Model:2  
SARIM
A(0;2;1, 
11)(0;0;
1) 

  const       -0.00103306    0.0014559 -0.7096    0.4780    
 theta_1     -0.227297      0.0892144     -2.548     0.0108    ** 
theta_11    -0.220390      0.0964650     -2.285     0.0223    ** 
Theta_1     -0.802930      0.107834      -7.446     9.62e-014 *** 

Model:3 
SARIM
A(24;2;
1,11)(1;
0;0) 

  const       -0.000928457    0.00219458    -0.4231    0.6722    
  phi_24      -0.360366       0.0995118     -3.621     0.0003    *** 
  Phi_1       -0.698170       0.0727884     -9.592     8.66e-022 *** 
 theta_1     -0.209299       0.0943697     -2.218     0.0266    ** 
theta_11    -0.228959       0.0974791     -2.349     0.0188    ** 

Model:4 
ARIMA 
(1;2;11,
12) 
 

  const      -0.00100620 0.00169653 -0.5931 0.5531    
  phi_1        -0.195526 0.0890834 -2.195 0.0282    ** 
theta_11      -0.154678 0.0738746 -2.094 0.0363    ** 
theta_12     -0.845322 0.112436 -7.518 5.55e-014 *** 

Model:5 
SARIM
A 
(11;2;1)(
0;0;1) 

const -0.00104429 0.00163163 -0.6400 0.5222    
  phi_11 -0.172749 0.0921209 -1.875 0.0408    ** 
  theta_1 -0.204409 0.0927563 -2.204 0.0275    ** 
 Theta_1 -0.833610 0.110316 -7.557 4.14e-014 *** 

But whether the specification of ARIMA model is really a good one, depends on the 

residual analysis which requires look at the diagnostic checking. 

3.12 Diagnostics for the Five Models  

The ARIMA models will be reliable if the residual of the regression is white noise. To 

test this, we use the correlogram structure of the residual. This is shown in Figures 

and tables in the next pages which show at any lag the there is no correlation among 

the residuals. Therefore the estimated regression models are reliable. 

 

 

Model-1: ARIMA (12,24;2;1,11) 

Here for the Auto regressive term 12th and 24th lags are selected. For the moving 
average term first and 11th lags are selected.  
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The residual autocorrelation function for this model is given below.  

Table 3.10 Residual autocorrelation function for model-1 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

The residual ACF and PACF function shows that at all the lags the p-values are not 
statistically significant which indicates that the model is reasonable. ACF and PACF 
plot can also show it clearly. 

 
 LAG       ACF           PACF          Q-stat. [p-value] 
 
   1    -0.0326        -0.0326           0.1479    [0.701] 
   2    -0.0672        -0.0684           0.7809    [0.677] 
   3     0.0411         0.0367           1.0191    [0.797] 
   4    -0.0999        -0.1026           2.4380    [0.656] 
   5    -0.0351        -0.0367           2.6150    [0.759] 
   6     0.0991         0.0829           4.0334    [0.672] 
   7    -0.0378        -0.0307           4.2410    [0.752] 
   8     0.0201         0.0234           4.3002    [0.829] 
   9    -0.0560        -0.0742           4.7631    [0.854] 
  10    -0.0746        -0.0582           5.5923    [0.848] 
  11    -0.0593        -0.0757           6.1207    [0.865] 
  12     0.0963         0.0842           7.5237    [0.821] 
  13    -0.0888        -0.0978           8.7270    [0.793] 
  14     0.0394         0.0315           8.9653    [0.833] 
  15     0.0380         0.0162           9.1894    [0.867] 
  16     0.0077         0.0409           9.1986    [0.905] 
  17    -0.0360        -0.0380           9.4034    [0.927] 
  18    -0.0536        -0.0789           9.8611    [0.936] 
  19    -0.0455        -0.0347          10.1931  [0.948] 
  20    -0.0177        -0.0524          10.2437  [0.964] 
  21    -0.0267        -0.0299          10.3597  [0.974] 
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Figure 3.9 ACF and PACF plot of residual for model-1 

Figure 3.8 indicates that the residual correlogram does not cross the limit of 5% level 
of significance.  

Model-2: SARIMA (0;2;1, 11)(0;0;1)12 

Here for the Auto regressive term no lag is selected. For the moving average term first 
and 11th lags are selected. For the seasonal term only the first lag of moving average 
is taken with no differences.  

The residual autocorrelation function for this model is given in the next page. 
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Table 3.11 Residual autocorrelation function for model-2 
 

 
 LAG       ACF           PACF          Q-stat. [p-value] 
 
   1    -0.0310        -0.0310           0.1335    [0.715] 
   2    -0.0858        -0.0869           1.1651    [0.558] 
   3     0.0215         0.0161           1.2304    [0.746] 
   4    -0.0986        -0.1058           2.6134    [0.624] 
   5    -0.0320        -0.0359           2.7604    [0.737] 
   6     0.0968         0.0775           4.1123    [0.661] 
   7    -0.0588        -0.0576           4.6157    [0.707] 
   8     0.0154         0.0188           4.6507    [0.794] 
   9    -0.0503        -0.0705           5.0242    [0.832] 
  10    -0.0634        -0.0478           5.6220    [0.846] 
  11    -0.0582        -0.0806           6.1302    [0.865] 
  12     0.1070         0.0895           7.8615    [0.796] 
  13    -0.0951        -0.1072           9.2412    [0.754] 
  14    0.0154         0.0105           9.2777    [0.813] 
  15     0.0190        -0.0078           9.3338    [0.859] 
  16     0.0175         0.0405           9.3817    [0.897] 
  17    -0.0409        -0.0494           9.6460    [0.918] 
  18    -0.0466        -0.0766           9.9907    [0.932] 
  19    -0.0532        -0.0440          10.4451  [0.941] 
  20    -0.0259        -0.0660          10.5534  [0.957] 
  21    -0.0175        -0.0265          10.6035  [0.970] 
 

                       

The residual ACF and PACF function shows that at all the lags the p-values are not 
statistically significant which indicates that the model is reasonable. ACF and PACF 
plot can also show it clearly. 
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Figure 3.10 ACF and PACF plot of residual for model-2 

Figure 3.10 indicates that the residual correlogram does not cross the limit of 5% level 
of significance.  

Model-3: SARIMA(24;2;1,11)(1;0;0)12 

Here for the Auto regressive term 24th  lag is selected. For the moving average term 
first and 11th lags are selected. For the seasonal term only the first lag of auto 
regression is taken with no differences.  

The residual autocorrelation function for this model is given in the next page. 

 

 

 

 

 

 

 



 

41 

 

Table-3.12 Residual autocorrelation function for model-3 

 
LAG       ACF           PACF          Q-stat. [p-value] 
  1    -0.0199        -0.0199           0.0550  [0.815] 
  2    -0.0923        -0.0928           1.2488  [0.536] 
  3     0.0171         0.0134           1.2903  [0.731] 
  4    -0.0854        -0.0942           2.3270  [0.676] 
  5    -0.0243        -0.0255           2.4114  [0.790] 
  6     0.0946         0.0775           3.7044  [0.717] 
  7    -0.0705        -0.0711           4.4276  [0.729] 
  8    -0.0004         0.0067           4.4276  [0.817] 
  9    -0.0318        -0.0527           4.5770  [0.870] 
 10    -0.0462        -0.0325           4.8953  [0.898] 
 11    -0.0457        -0.0645           5.2084  [0.921] 
 12     0.0662         0.0485           5.8722  [0.922] 
 13    -0.0878        -0.0948           7.0485  [0.900] 
 14     0.0321         0.0288           7.2073  [0.926] 
 15     0.0384         0.0167           7.4365  [0.944] 
 16     0.0108         0.0266           7.4547  [0.963] 
 17    -0.0485        -0.0546           7.8259  [0.970] 
 18    -0.0828        -0.1036           8.9166  [0.962] 
 19    -0.0402        -0.0296          9.1761  [0.970] 
 20    -0.0095        -0.0516           9.1907  [0.981] 
 21    -0.0086        -0.0223           9.2029  [0.988] 

   

The residual ACF and PACF function shows that at all the lags the p-values are not 

statistically significant which indicates that the model is reasonable. ACF and PACF 

plot can also show it clearly. 
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Figure 3.11 ACF and PACF plot of residual for model-3 

Figure 3.11 indicates that the residual correlogram does not cross the limit of 5% level 
of significance.  

Model-4: ARIMA (1;2;11,12) 
 

Here for the Auto regressive term only the first lag is selected. For the moving 
average term 11th and 12th lags are selected.  

The residual autocorrelation function for this model is given on the next page.  
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Table 3.13 Residual autocorrelation function for model-4 

 

LAG       ACF           PACF          Q-stat. [p-value] 

 1    -0.0634        -0.0634           0.5590    [0.455] 

 2    -0.1036        -0.1081           2.0633    [0.356] 

 3     0.0298         0.0159           2.1886    [0.534] 

 4    -0.1019        -0.1117           3.6652    [0.453] 

 5    -0.0381        -0.0490           3.8733    [0.568] 

 6     0.1114         0.0840           5.6653    [0.462] 

 7    -0.0347        -0.0280           5.8400    [0.559] 

 8     0.0265         0.0352           5.9431    [0.654] 

 9    -0.0226        -0.0379           6.0184    [0.738] 

10    -0.0434        -0.0223           6.2984    [0.790] 

11    -0.1373        -0.1531 *         9.1294    [0.610] 

12     0.0594         0.0301           9.6636    [0.645]     

13    -0.1273        -0.1611 *        12.1364  [0.516] 

14     0.0316         0.0143          12.2902  [0.583] 

15     0.0408        -0.0180          12.5482  [0.637] 

16     0.0207         0.0374          12.6155  [0.701] 

17    -0.0307        -0.0273          12.7638  [0.752] 

18    -0.0386        -0.0605          13.0013  [0.791] 

19    -0.0557        -0.0355          13.4993  [0.812] 

20    -0.0091        -0.0556          13.5128  [0.854] 

21    -0.0034        -0.0223          13.5147  [0.890] 

                                       

                            

The residual ACF and PACF function shows that at all the lags the p-values are not 

statistically significant which indicates that the model is reasonable. ACF and PACF 

plot can also show it clearly. 
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Figure 3.12 ACF and PACF plot of residual for model-4 

Figure 3.12 indicates that the residual correlogram does not cross the limit of 5% level 
of significance.  

Model-5 SARIMA (11;2;1)(0;0;1)12  
 
Here for the Auto regressive term 11th lag is selected. For the moving average term 
first lag is selected. For the seasonal term only the first lag of moving average is taken 
with no differences.  

The residual autocorrelation function for this model is given in the next page. 
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Table 3.14 Residual autocorrelation function for Model-5 

 
 LAG       ACF           PACF          Q-stat. [p-value] 
 
   1    -0.0406        -0.0406           0.2297    [0.632] 
   2    -0.0817        -0.0835           1.1644    [0.559] 
   3     0.0188         0.0119           1.2140    [0.750] 
   4    -0.0942        -0.1006           2.4760    [0.649] 
   5    -0.0270        -0.0333           2.5805    [0.764] 
   6     0.1064         0.0886           4.2157    [0.648] 
   7    -0.0504        -0.0460           4.5848    [0.710] 
   8     0.0195         0.0241           4.6405    [0.795] 
   9    -0.0479        -0.0634           4.9794    [0.836] 
  10    -0.0468        -0.0300           5.3052    [0.870] 
  11    -0.0910        -0.1105           6.5483    [0.834] 
  12     0.0845         0.0658           7.6302    [0.813] 
  13    -0.1004        -0.1175           9.1684    [0.760] 
  14     0.0202         0.0134           9.2310    [0.816] 
  15     0.0166        -0.0136           9.2737    [0.863] 
  16     0.0244         0.0421           9.3668    [0.898] 
  17    -0.0361        -0.0371           9.5719    [0.921] 
  18    -0.0409        -0.0678           9.8385    [0.937] 
  19    -0.0524        -0.0392          10.2785  [0.946] 
  20    -0.0214        -0.0628          10.3524  [0.961] 
  21    -0.0127        -0.0218          10.3787  [0.974] 

                       

The residual ACF and PACF function shows that at all the lags the p-values are not 
statistically significant which indicates that the model is reasonable. ACF and PACF 
plot can also show it clearly. Figure 3.13 indicates that the residual correlogram does 
not cross the limit of 5% level of significance.  
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Figure 3.13 ACF and PACF plot of residual for model-5 
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CHAPTER 4 

FORECASTING INFLATION BY ANN MODEL 

 

4.1 Introduction  

Detecting trends and patterns in economic and financial data are of great interest to 

the business world to support the decision-making process. A new generation of 

methodologies, including neural networks, knowledge-based systems and genetic 

algorithms, has attracted attention for analysis of trends and patterns. 

In particular, neural networks are being used extensively for economic and financial 

forecasting with stock markets, foreign exchange rate, commodity price, inflation, 

future trading and bond yields. The application of neural networks in time series 

forecasting is based on the ability of neural networks to approximate nonlinear 

functions. In fact, neural networks offer a novel technique that doesn’t require a pre-

specification during the modeling process because they independently learn the 

relationship inherent in the variables. 

4.2 Background and Methodology 

Neural network theory grew out of Artificial Intelligence research, or the research in 

designing machines with cognitive ability. An artificial neural network is an 

information processing paradigm that is inspired by the way biological nervous 

systems, such as the brain, process information. The key element of this paradigm is 

the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements, called neurons, working in 

unison to solve specific problems. ANN learns by experience like people. An ANN is 

configured for a specific application, such as pattern recognition and time series 

forecasting, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. The basic 

building block of a brain and the neural network is the neuron. The human neuron is 

shown in Figure 4.1. 



 

48 

 

 

Figure 4.1 Biological Model of Human Neuron (Beale and Jackson (1990))  

A neural network is a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It 

resembles the brain in two respects: Knowledge is acquired by the network through a 

learning process and interneuron connection strengths known as synaptic weights are 

used to store the knowledge (see, for instance, Hykin, 1994). 

As described by Beal and Jackson (1990), all inputs to the cell body of the neuron 

arrive along dendrites. Dendrites can also act as outputs interconnecting inter-neurons. 

Mathematically, the dendrite’s function can be approximated as a summation. Axons, 

on the other hand, are found only on output cells. It has an electrical potential. If 

excited, past a threshold, it will transmit an electrical signal. Axons terminate at 

synapses that connect it to the dendrite of another neuron. The neuron sends out 

spikes of electrical activity through a long axon, which splits into thousands of 

branches, see, Figure 4.2. At the end of each branch, a structure called a synapse 

converts the activity from the axon into electrical effects that inhibit or excite activity 

from the axon into electrical effects that inhibit or excite activity in the connected 

neurons. When a neuron receives excitatory input that is sufficiently large compared 

with its inhibitory input, it sends a spike of electrical activity down its axon. Learning 

occurs by changing the effectiveness of the synapses so that the influence of one 

neuron on another changes. The human brain contains approximately 10 billion 

interconnected neurons creating its massively parallel computational capability. 
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Figure  4.2 Neural Signal Transmission ( Kartalopoulos (1996) and Haykin (1994)) 

4.3 Artificial Neuron 

The artificial neuron was developed in an effort to model the human neuron. The 

artificial neuron depicted in Figure 4.3. Inputs enter the neuron and are multiplied by 

their respective weights. For analytical purposes, a neuron may be broken down into 

three parts: 

 input connections 

 summing and activation functions 

 output connections 
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Figure 4.3 Artificial Neuron Model 

4.2.1 Input Connections 

 In artificial neural network, a neuron is connected to other neurons and depends on 

them to receive the information that it processes. There is no limit to the amount of 

connections a neuron may receive information from. The information that a neuron 

receives from others is regulated through the use of weights. When a neuron receives 

information from other neurons, each piece of information is multiplied by a weight 

with a value between –1 and +1, which allows the neuron to judge how important the 

information it receives from its input neurons is. These weights are integral to the way 

a network works and is trained: specifically, training a network means modifying all 

the weights regulating information flow to ensure output follows the given criteria, 

e.g., minimization of RMSE or MAE. 

4.2.2 Summing and Activation Functions 

 The second portion of a neuron is the summing and activation functions. The 

information sent to the neuron and multiplied by corresponding weights is added 

together and used as a parameter within an activation function. (In a biological 

context, a neuron becomes activated when it detects electrical signals from the 

neurons it is connected (see, Beale and Jackson, 1990). If these signals are sufficient, 

the neuron will become “activated” – it will send electrical signals to the neurons 

connected to it.) 
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 Numerous activation functions exist in ANN literature, but we will discuss below the 

one which we used and that is hyperbolic tangent function: a continuous function with 

a domain of (–∞, ∞) and a range of (–1, 1):  

1
1)(tanh 2

2




 x

x

e
ex

        …….(4.1)
 

By providing a function with a limitless domain and a range of (–1, 1), it is perfect for 

predicting whether or not inflation will rise (tanh (x) = 1) or fall (tanh (x) = –1). 

4.3.3 Output Connections 

Finally, once the activation function returns a corresponding value for the summed 

inputs, these values are sent to the neurons that treat the current neuron as an input. 

The process repeats again, with the current neuron’s output being summed with 

others, and more activation functions accepting the sum of these inputs. The only time 

this may be ignored is if the current neuron is an output neuron. In this case, the 

summed inputs and normalized sum is sent as an output and not processed again. 

4.4 Neural Network Architecture 

While each neuron is, in and of itself, a computational unit, neurons may be combined 

into layers to create complex but efficient groups that can learn to distinguish between 

patterns within a set of given inputs. Indeed, by combining multiple layers of such 

groups, it is theoretically possible to learn any pattern. There are many combinations 

of neurons that allow one to create different types of neural networks, but the simplest 

type is a single-layer feedforward network. In this case, a network is composed of 

three parts: a layer of input nodes, a layer of hidden neurons, and a layer of output 

nodes, as is shown in the Figure 4.4. 

A multilayer feedforward network is similar to a single-layer one. The main 

difference is that instead of having a hidden layer pass its calculated values to an 

output layer, it passes them on to another hidden layer. Both types of networks are 

typically implemented by fully connecting each layer’s neurons with the preceding 

layer’s neurons. Thus, if Layer A has k neurons and sends its information to Layer B, 

with n neurons, each neuron in Layer A has n connections for its calculated output, 

while each neuron in Layer B has k input connections.  
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Figure 4.4 Layers of Artificial Neural Networks 

Interestingly, such a network can be represented mathematically in a simple manner. 

Supposing there are k neurons in Layer A, let a represent a vector, where ai is the ith 

neuron’s activation function output. Let b represent the input values to neurons in 

Layer B, with bj be the jth neuron. Let W  be a n by k matrix where wji represents the 

weight affecting the connection from ai to bj. Keeping this in mind, we can see that 

for a single-layer feedforward network, we can mathematically represent the flow of 

information by, 

bWa           …….(4.2) 

and the learning thus becomes a modification of each wji in W . A similar 

mathematical analogy applies to multilayer feedforward networks, but in this case, 

there is a W for every layer and ‘b’ is used as the value for ‘a’ when moving to 

subsequent layers. The most popular type of learning within a single-layer 

feedforward network is the Delta Rule, while multilayer feedforward networks 

implement the Backpropagation algorithm, which is a generalization of the Delta Rule 

(see, Beale and Jackson, 1990). 

The Delta Rule may be summarized with the following equation: 

ijij xw          …….(4.3) 
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In this case, Δwij represents the change of the weight connecting the ith neuron with 

the jth output neuron, xi is the output value of the ith neuron, ε is the learning rate, and 

δj is the error term in the output layer, defined as: 

)( kkk ot          ……..(4.4) 

where kt  is the expected output, while ko  is the actual output. While this rule works 

well when there is only one hidden layer In case of multiple layers we use generalized 

delta rule described below. 

  jj
k

jkkj hhw 







  1

      …….(4.5)
 

In this case, one uses the same equation for Δwij but uses the term above instead, with 

k representing the neurons receiving information from the current neuron being 

modified. δkwjk is the error term of the kth neuron in the receiving layer, with wjk being 

the connecting weight. The activation functions of all the neurons in a network 

implementing backpropagation must be differentiable, because: 

)( jj zh           ……..(4.5) 

with zj being the net input for the neuron. 

Finally, if biases are present, they are treated like regular neurons, but with their 

output (x) values equal to 1: 

jjB          ……..(4.6) 

When implemented, this algorithm has two phases. The first deals with having the 

network evaluate the inputs with its current weights. Once this is done, and all the 

neuron and output values are recorded, phase two begins. The algorithm begins this 

phase by applying the original Delta Rule to the output neurons, modifying weights as 

necessary. Then the generalized Delta Rule is implemented, with the previous δ 

values sent to hidden neurons, and their weights changing as required. 

The neuron receives inputs from one or more inputs. The output of this neuron 

depends upon the ‘activation function’ or ‘transfer function’ of the neuron. The basic 

transfer functions that we will be talking about in the coming chapters are the sigmoid 
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(or the log-sigmoid transfer function) and the tan based (tan- sigmoid) transfer 

function. They are described as follows: 

4.5 Transfer Functions 

4.5.1 Linear Transfer Function 

The linear transfer function calculates the neuron’s output by simply returning the 

value passed to it.  

The linear transfer function is shown  below. 

 

Figure 4.5 Linear Transfer Function 

4.5.2 Log sigmoid transfer function 

This network can receive inputs from negative infinity to positive infinity and always 

generates an output between 0 and 1. 

The log sigmoid transfer function is shown in the next page. 

 

 

Figure 4.6 Log sigmoid transfer function. 
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4.5.3Tan sigmoid transfer function 

This transfer function receives inputs from negative infinity to positive infinity and 

gives an output between -1 and 1. 

 

 

Figure 4.7 Tan sigmoid transfer function. 

 

The arrangement of these neurons leads to different types of neural networks. 

Broadly they can be classified as static and dynamic. Static networks do not have any 

feedback loops (outputs of a neuron fed back to some previous neuron) or taps (delay 

lines that feed the network with past values of inputs). Dynamic networks may have 

one of these two. Dynamic networks are preferable for time series as they have 

memory in the form of loops or delay lines. 

 

 

 

 

 

4.6 The tapped delay line (TDL) 

The taps or the delay line is used to feed the network with the past values of inputs. In 

figure 4.7 we see that input enters from the left and goes through N-1 delay elements 

to generate a vector of N outputs 
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Figure 4.8 Tapped delay line. 

Here The Levenberg–Marquardt algorithm is used to train the network which is 

described below. 

4.7  Levenberg-Marquardt backpropagation 

The Levenberg–Marquardt algorithm [L44,M63], which was independently 

developed by Kenneth  Levenberg and Donald Marquardt, provides a numerical 

solution to the problem of minimizing a nonlinear function. It is fast and has stable 

convergence. In the artificial neural-networks field, this algorithm is suitable for 

training small- and medium-sized problems. 

trainlm is a network training function that updates weight and bias values according to 

Levenberg-Marquardt optimization. 

trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly 

recommended as a first-choice supervised algorithm, although it does require more 

memory than other algorithms. 

The backpropagation and feedforward algorithms are often used together. Just like 

many other types of neural networks, the feedforward neural network begins with an 

input layer. The input layer may be connected to a hidden layer or directly to the 

output layer. If it is connected to a hidden layer, the hidden layer can then be 

connected to another hidden layer or directly to the output layer. 
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4.8 Selection of neural network type 

A very simple neural network is estimated for inflation based on‘feedforward with 

backpropagation’ architecture. “feedforward” term describes how this neural network 

processes and recalls patterns. In a feedforward neural network, neurons are only 

connected foreword. Each layer of the neural network contains connections to the 

next layer (for example, from the input to the hidden layer), but there are no 

connections back. The term “backpropagation” describes how this type of neural 

network is trained. Backpropagation is a form of supervised training. When using a 

supervised training method, the network must be provided with both sample inputs 

and anticipated outputs. The anticipated outputs are compared against the actual 

outputs for given input. Using the anticipated outputs, the backpropagation training 

algorithm then takes a calculated error and adjusts the weights of the various layers 

backwards from the output layer to the input layer.  

Neural networks can in general be divided into two categories – static and dynamic. 

Static networks have no feedback elements and no delays. The output is calculated 

directly from the current inputs. Such networks assume that the data is concurrent and 

no sense of time can be encoded. These networks can thus lead to instantaneous 

behavior.  

Dynamic networks may be difficult to train but are more powerful than static 

networks. As they have memory in form of delays or recurrent loops, they can be 

trained to learn sequential or time varying patterns. This makes them networks of 

choice for various applications like financial predictions, channel equalization, 

sorting, speech recognition, fault detection etc. 

Since we are dealing with a time series it is necessary to use dynamic networks. 

Dynamic networks can be of two types ones with feed forward connections and taps 

and those with feedback or recurrent networks. 

At this stage the NARX (Nonlinear Autoregressive Neural Network) was considered. 

NARX networks use taps to set up delays across the inputs and also incorporates the 

past values of the output. The networks have been employed in dynamic applications.  
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4.9 NARX network 

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent 

dynamic network, with feedback connections enclosing several layers of the network. 

The NARX model is based on the linear ARX model, which is commonly used in 

time-series model.  All the specific dynamic networks have either been focused 

networks, with the dynamics only at the input layer, or feedforward networks.  

The defining equation for the NARX model is 

  

 (4.7) 

It can also be used for nonlinear filtering, in which the target output is a noise-free 

version of the input signal. The use of the NARX network is shown in another 

important application, the modeling of nonlinear dynamic systems. 

The defining equation for the NARX model is where the next value of the dependent 

output signal y(t) is regressed on previous values of the output signal and previous 

values of an independent (exogenous) input signal. One can implement the NARX 

model by using a feedforward neural network to approximate the function f. A 

diagram of the resulting network is shown below, where a two-layer feedforward 

network is used for the approximation. This implementation also allows for a vector 

ARX model, where the input and output can be multidimensional. 
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Figure 4.9 NARX network 

There are many applications for the NARX network. It can be used as a predictor, to 

predict the next value of the input signal. It can also be used for nonlinear filtering, in 

which the target output is a noise-free version of the input signal. 

Before showing the training of the NARX network, an important configuration that is 

useful in training needs explanation. One can consider the output of the NARX 

network to be an estimate of the output of some nonlinear dynamic system that one is 

trying to model. The output is fed back to the input of the feedforward neural network 

as part of the standard NARX architecture, as shown in the left figure below. Because 

the true output is available during the training of the network, you could create a 

series-parallel architecture [NaPa91], in which the true output is used instead of 

feeding back the estimated output, as shown in the right figure below. This has two 

advantages. The first is that the input to the feedforward network is more accurate. 

The second is that the resulting network has a purely feedforward architecture, and 

static backpropagation can be used for training.  

The NARX network uses the past values of the actual time series to be predicted and 

past values of other inputs (like currencies of other nations and technical indicators in 

our case) to make predictions about the future value of the target series. These 

networks are again classified as series and parallel architecture 

 

Figure 4.10 Parallel and Series architectures of NARX networks 

 

In Figure 4.10 u(t) represents the past exogenous values (currencies of other nations 

and technical indicators in our case) y(t) represents the past values of the actual series 

to be predicted. ŷ(t) indicates the predicted values. If past values of actual series are 

http://www.mathworks.com/help/nnet/ug/bibliography.html
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not being recorded, they will not be available to the system. In such situations the 

networks uses its past predicted values. In our case we will have the actual past 

values; hence we prefer to use them instead of our predictions. 

Thus it was able to base the model on actual values which are more reliable than the 

predictions. 

The basic NARX network is used for multi step predictions. It is assumed that actual 

past values of target are not available and the predictions themselves are fed back to 

the network. Since there will have access to the actual past values it will provide those 

values instead of our past predictions. This helps the system train on actual values 

rather than predictions. This is achieved by using the series-parallel version of the 

NARX network which is described above. Thus a series parallel NARX dynamic 

network will be used as a basis of system here. 
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Figure 4.11 NARX network approach 

4.11 Training and data preprocessing 

Different researchers have different take about the method of preprocessing the data 

and training a neural network for such application.  Here it will assume that it can 

feeded the inflation rate time series and then tried to predict the inflation rate of the 

next several months. So there is to just map the targets within the neuron range and 

train the network using an algorithm that is suited for such an application. The 

Identification pretesting 

 Nonlinear study 
 Interaction study 

Selection of input signal 

Selection of NARX order for NARX 
model 

Model validation 

Done 

Is the model 
adequate? 

Design new test data 
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MATLAB® Neural Network Toolbox provides a detailed survey of algorithms 

appropriate for various applications. The results therein state that Levenberg-

Marquardt (LM) is a good algorithm for this case. 

 

4.12 Network architectures to be considered 

The NARX networks will have a Tansig input layer of neurons (default by 

MATLAB®) for the hidden and the output layers we will use the linear neurons. 

Tansig neurons and sigmoid neurons have been extensively used in most of the neural 

network applications. Both of them are similar in behavior and have a similar looking 

transfer function except for the range of outputs that they can generate. A sigmoid 

layer has a range from 0 to 1 whereas the range for Tansig transfer function ranges 

from -1 to 1. Klimasauskas(1993) suggests that sigmoid neurons be preferred to 

determine average behavior and Tan based layers to find deviations from normal. The 

application at hand also prompts us to use the Tansig layer. Additionally our 

development environment the MATLAB® Neural Network Toolbox also 

recommends Tansig layers for pattern recognition problems and provides it as the 

default layer. The Tansig activation function has been described previously. 

4.13 Number of layers 

We have a linear layer of linear neurons at the input; the number of neurons in this 

layer will be equal to the number of inputs that we have provided to the networks. 

Using linear neurons at the input is a standard practice and is used merely as an 

interface between the inputs and the hidden layers. In fact MATLAB® Neural 

Network Toolbox does not count it as an independent layer. There is no certain figure 

for the number of hidden layers to be used. Cybenko  Hornik et al. (1989), (1991) 

show how a single layer of hidden neurons is capable of adapting to complex 

functions. Survey papers on this field, L. Chen-Hua (2001), also reveal how a single 

hidden layer of neurons is the most preferred option. Using additional layers adds up 

complexities to the model and increases the time required for training and simulation. 

The framework described earlier has capabilities to generate, simulate networks with 

multiple hidden layers. It can be seen from the code that the framework can generate 

the number of layers specified by the user, and use user specified number of layers for 

each layer. However the limited processing resources available did not permit us to 
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perform tests with several layers, hence it is decided to use single layer of hidden 

neurons for this research. 

4.14 Number of Taps and Hidden Neurons 

The tapped delay line of the NARX network allows passing of past values to the 

network. They make the data sequential unlike the original concurrent dataset. Thus 

these taps set up a sense of time and correlation of past values. The numbers of 

neurons are supposed to be related to the complexity of the application at hand as 

each neuron in the hidden layer contributes weights and flexibility to the network. 

There is no standard method to determine the number of neurons to be used and 

several thumb rules are used. Mehta (1995) has stated how the architecture depends 

on these thumb rules and it is not necessary that they work well. 

4.15 Policies for network selection 

Here the proposed system is an adaptive system where the system will first train the 

NARX networks on the training set, then evaluate performance on the evaluation set. 

Then the results is used to obtained on the evaluation set to identify networks that are 

likely to predict the inflation on the test set. 

It is believed that a network that behaves satisfactorily on this evaluation data will be 

a good candidate to make predictions for the test set (future). Now we need to decide 

which performance parameter of the evaluation set will be actually use to select a 

network. Popular performance parameters like mean square error, hit rate or realized 

value can be used. A network is selected that has minimum error on the evaluation set 

to make predictions on the test set (future). 

4.16 Model evaluation performance 

The evaluation of performance is essential with the purpose of finding the best neural 

network architecture, which gives the most reliable and accurate predictions. Based 

on previous researches, there are some performance function can be used to control 

the performance of network. Some might prefer the performance tool of the back-

propagation algorithm is Mean Square Error (MSE) of training and testing. Moreover, 

the selection of MSE is supported by MATLAB software, which also the default 

indicator in training the network. The neural network model with the smallest MSE 

value is considered to be the best neural network model. Another performance tool is 
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the regression R values. Regression R values show the correlation between outputs 

and targets value. An R value of 1 means close relationship, 0 means random 

relationship.  

4.17 Implementation 

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent 

dynamic network, with feedback connections enclosing several layers of the network. 

The NARX model is based on the linear ARX model, which is commonly used in 

time-series modeling. Figure 5.1 illustrates the NARX network that is used in this 

thesis.  

 

Hidden layer     Output layer 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 NARX network(used in this thesis) 

 

The standard NARX network used here is a two-layer feedforward network, with a 

sigmoid transfer function in the hidden layer and a linear transfer function in the 

output layer. This network also uses tapped delay lines (d) to store previous values of 

the input, x(t) and output, y(t) sequences. First, the training data is loaded and use 

tapped delay lines with two delays, so training begins with the third data point. There 

are two inputs to the series-parallel network, the x (t) sequence and the y(t) sequence. 

For the x (t) sequence the exchange rate is used and for y(t) sequence inflation rate is 

used. Input and target series are divided in two groups of data. 1st group: used to train 

the network, 2nd group: this is the new data used for simulation. Input Series is used 

for predicting new targets. Target Series is used for network validation after 
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prediction. The application randomly divides input vectors and target vectors into 

three sets as follows: 

 70% are used for training. 

 15% are used to validate that the network is generalizing and to stop training 

before overfitting.  

 The last 15% are used as a completely independent test of network 

generalization. 

y(t) is the output of the NARX network and also feedback to the input of the network 

and tapped delay lines (d) that store the previous values of x(t) and y(t) sequences. It 

also has been reported that gradient descent learning can be more effective in NARX 

networks than in other recurrent architecture. The standard Lavenberg-marquardt 

backpropagation algorithm is used to train the network with learning rate equal to 

0.001. The method regularization has been used which consist of 1000 epoch and 

regularization parameter used is 1.00e-05. Training automatically stops when 

generalization stops improving, as indicated by an increase in the Mean Square Error 

(MSE) of the validation samples. The numbers of neurons in the hidden layer were 

found by trial and error method and finally 5 hidden neurons were chosen for the 

suggested network. The proposed network can be represented as 2-5-1, i.e. the 

proposed ANN model consists of 2 inputs, 5 hidden neurons and 1 hidden layer. 

4.18 Summary of ANN model 

Object model :     forecasting inflation rate 

Input neuron :     Inflation, Exchange rate 

Output neuron :     Inflation Rate 

Network structure 

Network type :     Feed-forward back propagation 

Transfer function :    Tansig/ Purelin 

Training function :     Trainlm 

Learning function :        Learngdm 

Learning conditions 

Learning scheme :     Supervised learning 

Learning rule :     Gradient descent rule 
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Input neuron :      Two  

Output neuron :     One 

Sample pattern vector :    96(for training), 40 (for testing) 

Number of hidden layer :    1 (one) 

Neurons in hidden layer :    5 

Learning rate :     0.001 

Performance goal/Error goal :   0.0001 

Maximum epochs (cycles) set :   10,000 

MSE at the end of training :    0.0036 
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CHAPTER 5 

RESULT ANALYSIS 

5.1 Forecast Evaluation and Forecast Accuracy Criteria of ARIMA Models 

Evaluation criteria supported by different statistics shows the forecasting ability or 

predicting power of the models. There was an effort to forecast within the sample and 

out of sample inflation data. The purpose of forecasting within the sample is to test for 

the predictability power of the model. If the magnitude of the difference between the 

forecasted and actual values is low then the model has a good forecasting power. Due 

to this objectivity in computation, five models have been proposed which are highly 

supported by ARIMA model evaluation and selection criteria.  

5.2 Performance Comparison of ARIMA Models Based on Evaluation statistics 

The accuracy of each model can be checked to determine how the model performed in 

terms of in-sample forecast. For this purpose different forecast evaluation statistics 

such as Mean Absolute Error, Root Mean Squared Error and Theil's U statistics have 

been used. 

Empirically taking, there have been examined that Table 5.1 reports the various 

measures of forecasting errors, namely the root mean squared error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error (MAPE) and Theil’s U and 

other selection criteria for different models. The first two forecast error statistics 

depend on the scale of the dependent variable. These are used as relative measures to 

compare forecasts for the same series across different models, the smaller the error, 

the better the forecasting ability of that model accordingly. The remaining two 

statistics are scale invariant. The Theil inequality coefficient always lies between zero 

and one, where zero indicates a perfect fit. To measure forecasting ability we have 

estimated within sample and out of sample forecasts. The estimated model is then 

used to obtain the future forecasts. According to the forecast evaluation criteria Model 

1 has least mean error and mean percentage error, model 3 has smallest mean absolute 

error and mean absolute percentage error, model 4 has the smallest mean squared 

error and root mean squared error and model 5 has the smallest theil’s U statistics.   
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Table 5.1 Values of different forecast evaluation statistics of the models 

Forecast evaluation 
statistics 

Model-1 Model-2 Model-3 Model-4 Model-5 

Mean Error 0.0020017 0.0023038 0.002045 0.0024631 0.0023524 

Mean Squared Error 0.0099611 0.0096298 0.009767 0.0095889 0.0096709 

Root Mean Squared 
Error 

0.099805   0.098131  0.098832 0.097923   0.098341 

Mean Absolute Error 0.067985 0.069696  0.067839 0.068184 0.069228 

Mean Percentage Error 0.15441  0.15985 0.1559 0.16613 0.16486 

Mean Absolute 
Percentage Error 

1.2595 1.2811      1.2573  1.2616  1.2708 

Theil's U 0.65021 0.6417 0.64754 0.64258   0.64052 

 

5.3 Performance Comparison of the ARIMA Models based on forecasting 

accuracy  

Here both the in sample an out of sample prediction was done. The purpose of 

forecasting within the sample is to test for the predictability power of the model which 

depends on the difference between the actual and forecasted value. If the magnitude 

of the difference between the forecasted and actual values is low then it can be said 

that the model has a good forecasting power. In this case Model-2 and Model-5 has 

shown best results as evident from the Table 5.2. One can observe from the figures 

that the forecast series of model 2 and model 5 are much closer to the actual series. As 

the predicted value closely follow/capture both past and future inflation trend, so it 

can be concluded from the findings that the prediction power of the two models are 

better and suitable for even twelve periods ahead forecasting. Five models have been 

proposed which are highly supported by ARIMA model selection criteria. As the 

predicted value closely follow/capture both past and future inflation trend, it can be 

concluded from the findings that the prediction power of the model 2 and model 5 is 

better and suitable for forecasting even upto twelve periods ahead.   
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Table 5.2 Inflation forecast by various ARIMA models 

 

5.4 The Best ARIMA Model 

As the predicted value closely capture both past and future inflation trend, it can be 

concluded from the findings that the prediction power of the model 2 and model 5 is 

better and suitable for forecasting even upto twelve periods ahead. The best model is 

proposed among the five estimated models on the basis of model diagnostic checking, 

forecast evaluation and forecast accuracy as presented in Table 5.1 and Table 5.2. On 

the basis of in sample and out of sample forecast and forecast evaluation statistics two 

candid models which have  sufficient predictive powers and the findings are well 

Months Actua
l 
value 

Forecasted 
byModel 
1:ARIMA
(12,24;2;1,
11)12 

Forecasted by  
Model2:SAR
IMA(0;2;1,11
)(0;0;1)12 

Forecasted 
by  Model3: 
SARIMA 
(24;2;1,11) 
(1;0;0)12 

Forecasted 
by Model 
4:ARIMA 
(1;2;11,12
) 

Forecasted by 
Model5: 
SARIMA 
(11;2;1) 
(0;0;1)12 

2011:12 10.71 10.81 10.76 10.81 10.76 10.76 

2012:06 10.62 10.59 10.65 10.69 10.65 10.66 

2012:12 8.74 8.73 8.68 8.69 8.67 8.68 

2013:01 8.40 8.50 8.45 8.48 8.46 8.45         

2013:02 8.19 8.36 8.26 8.31 8.27 8.26         

2013:03 8.00 8.27 8.09 8.15 8.11 8.09         

2013:04 7.85 8.19       7.96         8.02        7.96         7.94         

2013:05 N/A  8.15       7.87          7.95         7.86         7.85         

2013:06 N/A  8.14     7.82          7.85         7.78         7.79         

2013:07 N/A 8.17          7.79          7.82         7.75         7.75         

2013:08 N/A 8.24       7.82          7.84         7.75         7.76         

2013:09 N/A  8.38     7.89         7.91         7.81         7.82         

2013:10 N/A   8.49   7.97           8.00         7.87         7.88         

2013:11 N/A   8.61  8.03          8.10         7.89         7.93         

2013:12 N/A   8.68  8.05         8.16         7.85         7.92   
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compared to the other models is proposed. In this case Seasonal ARIMA (0; 2; 1, 11) 

(0; 0; 1)12 and ARIMA (11; 2; 1) (0; 0; 1)12 outperforms the other ARIMA models.  
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Figure 5.1 Actual Vs forecasted inflation by proposed SARIMA (0; 2; 1, 11) (0; 0; 

1)12 model. 
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Figure 5.2 Actual Vs forecasted inflation by proposed SARIMA (11; 2;1) (0;0;1)12  

model. 
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5.5 Performance evaluation of NARX Network 

The coefficient of determination (R2) represents the precision of data which is 

significantly close to the fitted line. The value of R2 varies between 0 and 1. If 

correlation coefficient, R=0.99951 then R2=0.99, which means that 99% of the total 

variation in network prediction can be explained by the linear relationship between 

experimental values and network predicted values. The other 1% of the total variation 

in network prediction remains unexplained. The R2 for different network topography 

is reported in Table 5.3. From Table 5.3, it is shown that the value of R2 does not 

change significantly by increasing the number of neurons from 5 to 10. The network 

architecture consisting of 1 hidden layer and 5 hidden neurons, shows the best values 

of R2 for both training and testing stages of the network. 

Table 5.3 Performance evaluation of NARX Network 

 Hidden layer Hidden Neuron R2 

Training performance 1 5 0.99922 

Testing performance 0.99951 

Training performance 1 8 0.99901 

Testing performance 0.99878 

Training performance 1 10 0.98901 

Testing performance 0.97681 

Training performance 1 10 0.9886 

Testing performance 0.9865 

 

Therefore, the network consisting of 5 hidden neurons was selected as the optimum 

one in this research work. The summary of the proposed network architecture has 

been presented here. 
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5.6 Performance Comparison Between ANN and ARIMA Based Models  

In order to compare the out-of-sample forecast performance of ANN with ARIMA 

based models we find the out-of-sample forecast for November 2012 to May 2013 

from both of these models based on data for July 2001 to October 2012. Results based 

on ANN methodology as well as ARIMA methodologies are presented in Table 5.4. 

Forecasting performance is evaluated on the basis of RMSE criteria. It is observed 

that RMSE of ANN based forecasts is less than the RMSE of forecasts based on 

ARIMA model. At least by this criterion forecast based on ANN are more precise. 

Table 5.4 Performance Comparison Based on RMSE 

Months Actual Forecast by 
ANN 

Forecast by 
SARIMA 

(0;2;1,11)(0;0;1)12 

Forecasted by  
SARIMA 

(11;2;1)(0;0;1)12 

2012:11 8.98 8.97 10.76 10.76 

2012:12 8.74 8.74 10.65 10.66 

2013:01 8.40 8.38 8.68 8.68 

2013:02 8.19 8.17 8.45 8.45 

2013:03 8.00 8.00 8.26 8.26 

2013:04 7.85 7.96 8.09 8.09 

2013:05 N/A 7.79 7.96 7.94 

RMSE  0.06 0.098131 0.098341 

 

Now it is necessary to discuss why the ANN based model shows the better 

performance than ARIMA estimated models. The possible reasons are stated in the 

next page. 

First, as opposed to the ARIMA, the traditional model-based methods, ANNs are 

data-driven self- adaptive methods in that there are few a priori assumptions about the 

models for problems under study. They learn from examples and capture subtle 

functional relationships among the data even if the underlying relationships are 

unknown or hard to describe. Thus ANNs are well suited for problems whose 

solutions require knowledge that is difficult to specify but for which there are enough 

data or observations. This modeling approach with the ability to learn from 
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experience is very useful for the problem of solving the Bangladesh’s inflation since it 

is often easier to have data than to have good theoretical guesses about the underlying 

laws governing the systems from which data are generated.  

Second, ANNs can generalize. After learning the data presented to them (a sample), 

ANNs can often correctly infer the unseen part of a population even if the sample data 

contain noisy information. As forecasting is performed via prediction of future 

behavior (the unseen part) from examples of past behavior, it is an ideal application 

area for neural networks, at least in principle. 

Third, ANNs are universal functional approximators. It has been shown that a 

network can approximate any continuous function to any desired accuracy. ANNs 

have more general and flexible  functional forms which can effectively deal with than 

the traditional statistical methods like ARIMA. Any forecasting model assumes that 

there exists an underlying (known or unknown) relationship between the inputs (the 

past values of the time series and / or other relevant variables) and the outputs (the 

future values). Frequently, traditional statistical forecasting models have limitations in 

estimating this underlying function due to the complexity of the real system. ANNs 

can be a good alternative method to identify this function. 

Finally, ANNs are nonlinear. Forecasting has long been the domain of linear statistics. 

The traditional approaches to time series prediction, such as the Box-Jenkins or 

ARIMA method, assume that the time series under study are generated from linear 

processes. Linear models have advantages in that they can be understood and 

analyzed in great detail, and they are easy to explain and implement. However, they 

may be totally inappropriate if the underlying mechanism is nonlinear. It is 

unreasonable to assume a priori that a particular realization of a given time series is 

generated by a linear process. In fact, real world systems are often nonlinear.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this study, the most appropriate method for obtaining out-of-sample forecast for 

Bangladesh’s monthly inflation series, using the different ARIMA forecasting models 

were found out. The out-of-sample forecast accuracies of five ARIMA models were 

assessed using accuracy measure statistics: MAE, RMSE, MAPE, MASE and Theil’s 

U. Modeling and forecasting inflation using ARIMA models assumes a linear 

relationship between the inputs and the output. This approach has the disadvantage 

that the data analyzed often exhibit some nonlinearity that cannot be captured. This 

work employs neural networks to forecast the inflation. Using root mean square error 

(RMSE) as a measure of forecasting performance for the case Monthly inflation of 

Bangladesh, it is proven that neural networks are superior to ARIMA models.  An 

ANN model has been developed for the multistep ahead forecasting of inflation as a 

function of previous inflation and exchange rate (which was considered as exogenous 

variable). The model was proved to be successful in terms of agreement with actual 

values for the inflation. The back-propagation learning algorithm was used for the 

development of feed-forward single hidden layer network. Tansigmoid function and 

purelin function were used as the transfer function in the hidden and output layer, 

respectively. Gradient descent learning was used and there was tapped delay line of 

two. Training of the network was performed using Lavenberg-marquardt 

backpropagation algorithm. The single layer feed forward network consisting of one 

input variable with an exogenous variable, 5 hidden neurons (tangent sigmoid 

neurons) and one output was found to be the optimum network for the model 

developed in this study. A good performance of the neural network was achieved with 

coefficient of determination (R2) between the model prediction and actual values were 

0.99. It can be concluded that ANN model performs accurately to forecast the 

inflation of Bangladesh.  
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6.2 Recommendations for Future Work 

In this research the best forecasting method for Bangladesh’s inflation was driven by 

the ANN which can have some limitations. ANNs are black-box methods. There is no 

explicit form to explain and analyze the relationship between inputs and outputs. Also 

no formal statistical testing methods can be used for ANNs. This causes difficulty in 

interpreting results from the networks. For overcoming this disadvantage, in future the 

researcher can combine the rule based modeling with the ANN.    

ANNs are prone to have over fitting problems due to their typical, large parameter set 

to be estimated. There are no structured methods today to identify what network 

structure can best approximate the function, mapping the inputs to outputs. Hence, the 

tedious experiments and trial-and-error procedures are often used. Since they are data-

driven and model-free, ANNs are quite general but can suffer high variance in the 

estimation, that is, they may be too dependent on the particular samples observed. 

Because of this the prediction of the long term future inflation was not possible. 

 In future, the researchers can also study as to how the anticipated or unanticipated 

inflation is affecting the other macroeconomic variables (like interest rate, exchange 

rate, money supply, GDP, unemployment rate etc.) in Bangladesh where the 

importance of the present study lies. 
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