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ABSTRACT 

Classical traffic flow models cannot be readily applied in heterogeneous traffic systems 
owing to the complex nature of their traffic dynamics. This paper develops a stochastic 
macroscopic model for traffic state estimation and short-term prediction in such systems. 
The proposed model takes into account the wide variation in the operating and 
performance characteristics of vehicles in heterogeneous condition through the use of 
variable fundamental diagrams (FDs) for different links. The model also allows for the 
underestimation of flow and speed due to the effect of vehicular influence area in the 
stated traffic condition.  For this, normally distributed stochastic state influencing terms 
are used with the basic state estimation equations. In addition, an empirical parameter is 
introduced in the speed dynamics of the model to capture the sensitivity of traffic speed to 
the speeds of multiple leaders in a heterogeneous mix.  

To confirm the structure of the FD, initially the speed-density plots of the field data for 
different links are fitted with four general structures: namely, the linear, logarithmic, 
exponential and polynomial forms. It is revealed that the 3rd degree polynomial structure 
is best suited for prevailing traffic condition. The optimized link-specific parameters of 
the model comply with those obtained from the regression analysis. Field validation with 
high-resolution traffic data proved that the proposed model can capture traffic dynamics 
quite accurately. To determine the individual contributions of the proposed model 
features, different structural variations of the final model are also investigated. It is 
revealed that the link-specific FD parameters and the stochastic traffic state influencing 
terms improve the model performance the most, followed by the empirical car-following 
parameter. Finally, compatibility analysis is performed on the proposed macroscopic 
model and a microscopic simulation model, VISSIM, to evaluate the performance of the 
macro model under varying traffic demand levels. Based on the performance of the two 
models, it is found that the prediction of traffic states from the macroscopic model is 
generally consistent with that from VISSIM simulation. 
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Chapter 1 

INTRODUCTION 

1.1. Background of the study 

In recent years, rapid increase in travel demand and the number of vehicles on roadways 
has resulted in serious traffic congestion problem for Dhaka city. According to a study 
jointly conducted by the Metropolitan Chamber of Commerce and Industry (MCCI) and 
Chartered Institute of Logistics and Transport Bangladesh in 2010, it was revealed that 
the annual cost of traffic congestion in capital Dhaka was around Tk 1 billion a day. The 
study found that about 3.2 million business hours were lost every day due to the traffic 
jams. A more recent assessment concluded that the estimated loss is now 50% more than 
what it was in 2010, adding up to a staggering amount of about Tk 550 billion annually. 
The traffic jams not only cause tremendous time and monetary losses but also 
compromise road safety and increase air pollution.  

The most widely used strategy to mitigate the congestion problem is to increase roadway 
capacity by constructing new lanes. However, the growing demand issue cannot be 
mitigated by only expanding road infrastructure due to constraints like available right-of-
way, capital investment, implementation time and environmental concern. Rather, more 
efficient use of the existing traffic network through Active Traffic Management (ATM) 
can be a better measure against the congestion problem at the short term. ATM involves 
the use of appropriate traffic flow models to accurately simulate and predict traffic state 
variables in real-time and then apply proper control strategy. In the developed countries, 
ATM has been successfully practiced for decades as a highly effective tool for mitigating 
traffic congestion and improving safety. Given the extent of the traffic jam problem in 
Dhaka, it is high time that the authority starts adopting ATM as a congestion mitigating 
tool. In this context, the development of a suitable macroscopic traffic flow model would 
be the first step in managing and controlling traffic flow and improving the overall 
mobility of the Dhaka city traffic. 

Macroscopic traffic flow models play an irreplaceable role in real-time traffic state 
estimation and short-term prediction. The models consider the traffic flow as a 
compressible fluid and represent the traffic states with the help of aggregated variables: 
flow, speed and density. As such, they include a lower number of parameters compared to 
the microscopic models. This results in low computational effort and relative ease of 
calibration for real-time application. On the contrary, the microscopic models include a 
large number of physical or non-physical parameters that should be appropriately 
specified to reproduce the traffic flow characteristics with the highest possible accuracy. 
The parameter estimation has intensive computational requirements and is difficult to 
validate because human behaviour in real traffic is difficult to observe and model. Thus, 
macroscopic traffic flow models are generally preferred over microscopic models for 
real-time traffic estimation and control. 
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The two most frequently used macroscopic models are the first-order cell transmission 
model (CTM) (Daganzo, 1994) and the second-order METANET model (Messmer & 
Papageorgiou, 1990). Numerous studies like Lin & Ahanotu (1995), Muñoz et al. (2006), 
Papageorgiou et al. (1990) etc. have found that traffic state estimates of these models 
show very close agreement with the field data. Over the years, different extensions and 
modifications of these models have been proposed to adapt for a variety of traffic 
engineering tasks, such as dynamic traffic assignment, estimation and prediction, control 
strategy design and synthesis etc. For example, the CTM has been extended in Li (2010), 
Gomes & Horowitz (2006) and Hadiuzzaman & Qiu (2013) for arterial traffic signal 
control, freeways with ramp metering control and Variable Speed Limit (VSL) control 
respectively. Likewise, many extensions of the METANET model can be found in the 
literature to take into account e.g., weaving effect (Yin, 2014) and lane drops 
(Papageorgiou et al., 1990); and have been adapted to different models of ATM: variable 
speed limits (Islam et at., 2013), ramp meter control (Papamichail et al., 2010) and 
combination of these two (Lu et al., 2011). 

These models were mostly developed and validated for homogeneous traffic. However, in 
Dhaka city, both motorized and non-motorized vehicles of different sizes, shapes and 
speeds ply over the roads making the traffic operating condition highly heterogeneous. 
Although recently, non-motorized traffic has been banned from the major roads of the 
city, the fact remains that here the traffic stream comprises of cars, buses, mini-buses, 
trucks, covered vans, auto-rickshaws and utilities having varying operating 
characteristics. The behaviour of traffic in such heterogeneous operating condition is 
significantly different from that in homogeneous condition. This necessitates the 
development of a new macroscopic model which will be able to successfully estimate and 
predict the heterogeneous traffic conditions of Dhaka city. 

1.2 Statement of the problem and opportunities 

1.2.1 Absence of appropriate high-resolution data collection technique 

Within the vast literature on macroscopic traffic flow modeling, surprisingly few studies 
have addressed the heterogeneous traffic condition prevalent in many developing 
countries like Bangladesh, India etc. Such limited research is primarily attributed to the 
difficulty of high-resolution data collection in the stated traffic condition. Here loop 
detectors are unsuitable due to measurement errors caused by non-lane-based movement 
of vehicles activating either both or neither of two adjacent detectors. Moreover, traffic 
cameras for vehicle detection are often absent along the corridors. But given that accurate 
high-resolution traffic data is the pre-requisite for developing a successful traffic flow 
model, this research attempts to establish a data collection technique based on image 
processing which will be able to measure traffic states in the non-lane-based 
heterogeneous operating condition with reasonable accuracy. Also, the developed 
technique is expected to be robust and easy-to-use. 
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1.2.2 Unobserved nature of fundamental diagram 

Although the conservation equation used in the macroscopic models is an exact equation, 
the description of mean speed is essentially empirical and is derived based on a static 
flow-density or speed-density relationship – the Fundamental Diagram (FD). It is 
generally recognized that FD is dependent on flow conditions and roadway environments. 
Consequently, various structures of the FD have been adopted in different models to 
capture the intrinsic functional relationship for the whole range of traffic situations; from 
free flow to congested equilibrium states including non-equilibrium transitions between 
them. For instance, the FD corresponding to the flow-density relationship in the original 
CTM (Daganzo, 1994) was assumed to be trapezoidal shaped, but it was further adapted 
to accommodate any continuous, piecewise differentiable FDs, such as a triangular FD. 
The METANET assumed an exponential speed-density relationship which was extended 
to explain the impact of the VSL, ramp metering etc. on traffic flow. These structures of 
the FD were found to reproduce the relevant traffic conditions for homogeneous traffic 
scenario with remarkable accuracy. However, due to different microscopic characteristics 
of vehicles in heterogeneous traffic compared to the homogenous condition, the 
aggregated macroscopic behaviour is likely to be different. This necessitates extensive 
investigation of FD structures for understanding flow transition phenomenon under the 
non-lane-based heterogeneous traffic conditions. Unfortunately, very few field studies 
have been undertaken for this investigation and so there remains much scope of research 
in this area. 

1.2.3 Modification of macroscopic model for heterogeneous traffic 

The core of ATM is the macroscopic traffic models for traffic state prediction. The 
accuracy of traffic state estimation and prediction affects the control decisions that will be 
assigned for mitigating the congestion problem. Unfortunately, no such model has been 
developed till date for simulating the non-lane-based heterogeneous traffic conditions of 
Dhaka city.  Hence, as a stepping stone for ATM implementation, an appropriate 
macroscopic model should be developed for the stated traffic condition by proposing 
necessary modifications to state-of-art traffic flow models. The modified model should be 
able to successfully reproduce the wide variation in operating and performance 
characteristics of vehicles in heterogeneous traffic systems. More specifically, it should 
be able to capture the rapid change of traffic states along the roadway in the 
heterogeneous condition. Previous studies (Lu et al., 2011) showed that the speed 
dynamics of macroscopic simulation models like the METANET cannot catch quick and 
significant changes in congested traffic conditions. As a result, considerable prediction 
errors exist between the measured data and the model-predicted traffic states in such 
operating condition. Moreover, there remains some inherent differences between lane-
based and non-lane based operations which affect the overall mobility of the traffic 
stream. Therefore, these problems should be investigated thoroughly to improve the 
sensitivity of the model performance under various traffic conditions. 
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1.2.4 Compatibility between microscopic and macroscopic simulation models 

Now-a-days both microscopic and macroscopic simulations are widely used in 
transportation studies. Microscopic simulations are often used to explicitly capture 
interactions among individual drivers and represent the driver‘s response to traffic control 
devices at the individual vehicle level. However, this type of application is usually off-
line and lacks predictive control functions. On the other hand, the application of 
macroscopic simulation models is aimed at large-scale roadway networks or online (real 
time) traffic control to reduce congestion and improve mobility.  

Due to traffic operation safety and cost constraints, it is not practical, sometimes even 
impossible, to carry out experiments of various control measures on freeways. Traffic 
simulation is often used for experimental investigation purposes. The effects of a control 
strategy are often evaluated prior to the field implementation of online traffic control 
using microscopic simulations to determine whether the control strategy will have the 
expected performance. In this way, the optimal control policy for various traffic 
conditions can be determined based on several experimental settings and then used in 
actual field traffic control. Thus it is required to check whether both macroscopic and 
microscopic models provide similar traffic state results under all traffic conditions, 
including light traffic, moderate traffic, heavy traffic and excessively congested traffic. 
This issue is investigated in the present thesis. 

1.3 Research objectives and scope of work 

The goal of this study is to improve the overall mobility of Dhaka city‘s traffic. With this 
end in view, the research aims at developing a stochastic macroscopic model that will 
address the problems as mentioned in Section 1.2. The main objectives of this research 
work are listed below. 

(1) To introduce a ready-for-practice method using image processing technique that 
can provide accurate high resolution traffic data for non-lane-based heterogeneous 
traffic conditions. 

(2) To investigate the nature of fundamental diagram (FD) for understanding flow 
transition phenomenon under the non-lane-based heterogeneous traffic conditions.  

(3) To establish METANET-based speed dynamics capable of reproducing the 
impacts of variable FDs and presence of multiple leaders in non-lane-based 
heterogeneous operating conditions so that the overall traffic state prediction 
accuracy is increased.  

(4) To explore the compatibility of the developed macroscopic model with 
microscopic model under various traffic conditions so as to determine the traffic 
demand impacts on macroscopic simulation performance. 

The scope of this research is restricted to uninterrupted arterials (including on-ramps and 
off-ramps) having heterogeneous motorized traffic. The test site is the Tongi Diversion 
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Road, a section of the Dhaka-Mymensingh Highway (N3) in Bangladesh (shown in 
Figure 1.1). It is an 8-lane major artery road in Dhaka, which connects the capital city 
with the Shahjalal International Airport. The developed model is expected to accurately 
estimate and predict the complex nature of the prevailing heterogeneous traffic condition 
of the test site through appropriate modifications and extensions of conventional traffic 
models. 

Although arterial roads with signal controls are not included in the study, the 
methodologies and principles used here can be extended and applied to other types of 
roadways. The research is carried out using both simulations and field data obtained from 
the studied roadway section. The main test site is illustrated in Figure 1.1 and the research 
flow chart is shown in Figure 1.2. 

1.4 Organization of the thesis 

This thesis consisting of six chapters is structured as follows:  

Chapter 1 gives an introduction of the relevant research background, statement of 
problems as well as the objectives and scope of this research.  

Chapter 2 comprehensively reviews previous works on traffic flow models with a special 
focus on microscopic car-following models as well as first-order and second-order 
macroscopic models. The traffic models are reviewed with respect to their categories in 
terms of level of detail, scale of independent variables and nature of independent 
variables. 

Chapter 3 presents details of the study site selected and the high-resolution data collection 
and processing techniques adopted for the research. Some justifications regarding the 
choice of methods employed are also provided. 

Chapter 4 proposes a stochastic second-order macroscopic model for the heterogeneous 
traffic condition of Dhaka city. For this, it first investigates the nature of the traffic flow 
and the structures of the FD of different links of the study section utilizing the collected 
field data. Based on the results of this investigation and other empirical observations, the 
dynamics of the proposed model are described. Next, the model‘s global and link-specific 
parameters are determined through a least squares optimization problem using measured 
traffic data. Then the developed model is validated using another set of field data to 
accurately simulate the traffic system. Finally, different structural variations of the model 
are analyzed to determine the individual contributions of the proposed model features. 

Chapter 5 studies the compatibility between the developed macroscopic model and a 
microscopic simulation model, VISSIM, to evaluate how the change in traffic demand 
impacts the macroscopic simulation performance. The predicted flow, density and speed 
from the models are compared for four levels of traffic demands for this purpose. 
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Chapter 6 summarizes the main conclusions of this research and discusses 
recommendations for future research works related to macroscopic traffic flow models 
and simulation for heterogeneous traffic. 

 

 

 

Figure 1.1 The 3.26 km long study site between Armed Forces Medical College and 
CAAB Head Quarters (courtesy: Google maps). Details can be found in Figure 3.1. 
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Chapter 2 

LITERATURE REVIEW 

Research on traffic flow models started from the mid-1950s, when the propagation of 
shock waves was modelled by Lighthill & Whitham (1955) and Richards (1956) based on 
the analogy of vehicles in traffic flow and particles in a fluid. Since then, numerous 
modeling approaches have been studied, from simple one-regime linear speed-density 
relationships to multi-regime, multi-class, nonlinear models. This chapter presents a 
historical overview of a rich variety of modelling approaches developed so far and in use 
today. Here, theoretical issues of model derivation and characteristics and some practical 
issues, such as model calibration and validation, will be discussed. 

2.1 Categorization of traffic flow models 

Traffic flow models may be categorized according to various criteria, such as the level of 
detail represented in the model, the scale of independent variables, the nature of variables 
used in modelling, operationalization criterion of the models, their scale of application 
etc. These classes are discussed briefly in the following sub-sections. 

2.1.1 Level of detail  

Traffic models are generally classified into four categories according to the level of detail 
with which they represent the traffic systems. These are: 

(a) Sub-microscopic models:  These are highly detailed descriptions of the functioning 
of vehicle motions, where even the behaviour of specific vehicles‘ subunits and the 
interaction with their surroundings are considered. For example, detailed description 
of driving behaviour, vehicle control behaviour (e.g. changing gears, AICC operation, 
etc.) in correspondence to prevailing surrounding conditions are modelled with 
precision here.  

(b) Microscopic models: These models take each individual vehicle as a unit and track 
its motion and interaction with adjacent vehicles in the traffic stream. They operate 
based on the properties of each vehicle and on a set of rules. Typical examples of this 
kind of model are the car-following models for longitudinal movement and the lane-
changing models for lateral movement on multi-lane roadways, on-ramps and off-
ramps.  

(c) Mesoscopic models: These are medium-detailed models where small groups of 
interacting vehicles are traced, instead of individual vehicle units. Behavioural 
information can be incorporated by means of probabilistic terms.  

(d) Macroscopic models: These models are low-detailed representations of traffic states 
using aggregated variables, such as flow, average speed and density. They describe 
the collective effect of many vehicles. Individual vehicle motions and interactions are 
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completely neglected. These models are often derived from the analogy between 
vehicular flow and the flow of continuous media (e.g. fluids or gases).  

Detailed description of sub-microscopic and mesoscopic models are not included 
hereafter, since they are out of the scope of this research. However, a comprehensive 
review on all these types of traffic flow models can be found in Hoogendoorn and Bovy 
(2001).  

2.1.2 Scale of the independent variables 

According to the scale of independent variables, traffic flow models can be classified as 
either continuous models or discrete models. 

(a) Continuous models: The independent variables of these models change continuously 
and instantaneously both in time and space in response to continuous stimuli. These 
models are often formulated as differential equations in which time and space are 
treated as continuous variables over the study domain. Most of the car-following 
models are examples of this approach and so are hydro-dynamic macroscopic models.  

(b) Discrete models: These models assume discontinuous changes in both time and 
space. Accordingly, traffic states are described temporally and spatially at discrete 
steps along the roadway. Examples of such discrete models include the cellular 
automata model (CA), the cell transmission model (CTM) etc.  

2.1.3 Nature of the independent variables 

According to the nature of independent variables used for representing the operation 
processes, traffic flow models can be distinguished as deterministic and stochastic 
models. 

(a) Deterministic models: In these models all the factors are defined by exact 
relationships, i.e. there are no randomized components of these models. As such, if a 
traffic situation is simulated twice using a deterministic model, starting from the same 
initial conditions and with the same inputs and boundary conditions, the outputs of 
both simulations are the same. The METANET model, discussed in Chapter 4, is an 
example of a deterministic traffic model. 

(b) Stochastic models: Stochastic model descriptions use random variables and a 
probabilistic approach to describe traffic states. This implies that two simulations of 
the same model starting from the same initial conditions, the same boundary 
conditions and the same inputs may return different results, depending on the value of 
the stochastic variable during each simulation. A stochastic variable can be 
characterized by its distribution function or by its histogram. For example, in the 
microscopic simulation package Paramics, a distribution of the level of patience over 
different drivers needs to be defined. During simulation, this distribution is sampled 
to determine an individual level of patience for every driver simulated in the network. 
A second simulation, and thus a new sampling of the distribution, will result in 
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drivers with other levels of patience. Therefore, stochastic models need to be 
simulated repeatedly and the results need to be averaged in order to be able to draw 
conclusions. Stochastic variables are used to model stochastic processes present in 
real-life traffic situations. 

2.2 Microscopic traffic flow models 

As mentioned earlier, microscopic traffic models describe the space–time behaviour of 
the systems‘ entities (i.e. vehicles and drivers) as well as their interactions at a high level 
of detail (individually). In other words, these models simulate the longitudinal (car-
following) and lateral (lane-changing) behaviour of individual vehicles in relation to the 
roadway and other vehicles in the traffic flow. From this point of view, the microscopic 
traffic flow models are broadly classified into two categories: (i) the car-following and 
(ii) the lane-changing models. Both of these types are reviewed in detail in the following 
sub-sections. 

2.2.1 Car-following models  

Car-following models are a major part of this microscopic model category. They describe 
the processes by which drivers follow each other in the traffic stream. Research efforts 
were focused on the development of such follow-the-leader models from the 1960s when 
Pipes (1953) proposed an expression for the position of the leader vehicle as a function of 
the position of its follower. Three categories of car-following models will be briefly 
reviewed here, namely safe-distance models, stimulus-response models and psycho-
spacing models. Other types of car-following models include the intelligent driver 
models, optimum velocity models, fuzzy logic-based models etc. Extensive reviews of 
different types of car-following models can be found in established literatures like 
Brackstone and McDonald (1999) and Wilson and Ward (2011). 

2.2.1.1 Safe-distance models  

In safe-distance or collision avoidance models, the driver of the following vehicle is 
assumed to always keep a safe distance from the vehicle in front, so that a collision will 
never happen. The first and the simplest model of this category was given by Pipes 
(1953), where the minimum safe distance between the leader and the following vehicle 
was assumed to be a function of the speed of the following vehicle (in miles per hour 
[mph]) and the length of the vehicle (in feet [ft]) in front, as indicated in Equation (2.1). 

( ) 1
1.47*10n n

vD v L  
  

 
            (2.1) 

Here, ( )nD v  is the gross distance headway of the following vehicle n  driving with 

velocity v  with respect to the leading vehicle 1n  that must be maintained to avoid 
collision between them. nL  denotes the length of vehicle n  and 1.47 is a conversion 
factor to convert from mph to ft/s. Thus Pipes model is a simple linear car-following 
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model which essentially states that that the minimum safe distance between two vehicles 
corresponds to one car length at a minimum, and that it increases by one car length for 
every 10-mile increment in the speed of the following vehicle. Forbes et al. (1958) 
proposed a similar model formulation based on the minimum time headway between two 
vehicles. This model assumed that the minimal time headway was equal to the class-
specific reaction time and the time required for the vehicle to travel a distance equal to its 
length. 

Kometani and Sasaki (1959) derived a car-following model from basic Newtonian 
equations of motion. They sought to specify a safe following distance within which a 
collision would be unavoidable, if the driver of the vehicle in front were to act 
‗unpredictably‘. Effectively, their formulation included a time delay between a change in 
the behavior of a vehicle and the actual reaction of its follower to this change. The full 
original formulation is as follows: 

       2 2
1 0n n nx t v t v t v t b                    (2.2) 

Where   is the time delay;  ,  ,   and 0b  are constants (model parameters) that need 
to be determined in model calibration. Data for calibration were generated by a pair of 
test vehicles driving on a city street, and collected using a cine film camera at the top of a 
roadside building. The observed road section covered almost 200 m with an average 
speeds of <45 kmph. A total of 22 test runs were conducted which deduced about 310 
seconds of data for analysis, with a resolution of 1/8 s. The best fit to the above 
relationship, which was quite sharply peaked at an r2 of 0.75, occurred for the following 
parameter set: 

       2 2
10.5 0.00028 0.5 0.00028 0.585 4.1n n nx t v t v t v t         

Thus the Kometani and Sasaki model is a nonlinear regression model with parameters 
related to the speed of the pair of vehicles. 

Gipps (1981) refined safe-distance car-following models by assuming that ‗the driver 
travels as fast as safety and the limitations of the vehicle permit‘: 

 
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   
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  
    
   

   
  
        

   

(2.3) 

with maxa  maximum acceleration, mina  maximum deceleration (minimum acceleration), 

maxv  the desired (maximum) velocity and jams  jam spacing. jams  is the jam spacing which 

is the front-to-front distance between two vehicles at standstill. Effectively, Gipps‘ 
approach introduced two regimes: one in which the vehicle itself limits its velocity [the 
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top part in Equation (2.3)], and one in which the safe distance to the leader limits velocity 
(the bottom part in the equation). 

Leutzbach (1988) discussed a more refined model describing the spacing of constrained 
vehicles in the traffic flow. He states that the overall reaction time T consists of: 

a) perception time (time needed by the driver to recognize that there is an obstacle), 
b) decision time (time needed to make a decision to decelerate) and 
c) braking time (time needed to apply the brakes). 

The total safety distance model assumes that drivers consider braking distances large 
enough to permit them to brake to a stop without causing a rear-end collision with the 
preceding vehicles if the latter vehicles come to a stop instantaneously. The 
corresponding safe distance headway equals: 

2

( )
2n n
vD v L Tv

g
               (2.4) 

Here,   is the weight of friction of the vehicle with road surface and g  is the 
acceleration due to gravity.  

2.2.1.2 Stimulus-response models  

The second branch of car-following models discussed in this research consists of 
stimulus–response models. The car-following process of these models is based on the 
following basic principle:  

Response (t+τ) = Sensitivity x Stimulus (t) 

A stimulus at time t together with the driver‘s sensitivity causes a driver reaction after a 
reaction time τ. The stimulus is usually represented by the relative velocity (speed 
difference) of the leading and the following vehicle or the spacing between the two 
vehicles. The response is represented by the acceleration or deceleration of the following 
vehicle.  

During the late 1950s and early 1960s there was a rapid development of the stimulus-
response models. The first model of this category was proposed by Chandler et al. (1958). 
They assumed that the sensitivity term was a constant and the response was in the form 
of: 

     1n n na t v t v t  
                (2.5) 

Where, ( )nv t  and ( )na t  denote velocity and acceleration respectively of vehicle n at t and 

  is the sensitivity of the following vehicle that needs to be determined in experiments or 
model calibration. This model is a linear model with speed difference as the stimulus. 
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Subsequent researches on stimulus-response models were aimed at improving the 
description of the sensitivity of the following vehicle. This included using different 
sensitivity factors for acceleration and deceleration (as in Herman and Rothery, 1965 and 
Newell, 1965), introducing the distance between two vehicles (as in the third model 
proposed by the General Motors (GM) research team) and the speed of the following 
vehicle (as in the fourth GM car-following model). 

All these efforts behind improving the stimulus-response models are consolidated in the 
now famous Gazis-Herman-Rothery (GHR) model, named after Gazis et al. (1961). This 
model considers exponents of both speed and distance in the sensitivity term thus 
improving the overall accuracy of the model.  

 
 

   
   

,
1

1
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l m n

n n nl
n n

v t
a t v t v t

x t x t

 
 



       
  

         (2.6) 

Where, 1nx   and 1nv   represent position and speed of the leading vehicle, respectively, 

and nx  , nv  and na  represent position, speed and acceleration of the following vehicle, 

respectively. m is the speed exponent, l is the distance headway exponent and ,l m  is a 

model constant. By assuming different values of m and l, several special cases of car-
following models can be obtained. 

However, the GHR model simulates the behaviour of free-flowing drivers very 
unrealistically. For example, the model assumes that the follower reacts to the actions of 
the leader, even though the distance to the leader is very large, and that the follower‘s 
response disappears as soon as the relative speed is zero. Also, according to the model, 
slow drivers are dragged along when following faster vehicles. This is obviously different 
from real-world traffic. These shortcomings can be corrected by either extending the 
GHR-model with additional regimes, e.g., free driving, emergency deceleration, etc., or 
by using a psycho-physical model or fuzzy logic-based models. 

Some of the most popular more recent stimulus–response models include the optimal 
velocity model with delay by Bando et al. (1998), the two-regime intelligent driver model 
by Treiber et al. (2010), the acceleration delay model by Kerner and Klenov (2006), the 
stochastic car-following model by Kerner and Klenov (2002) etc.  

2.2.1.3 Psycho-spacing models  

This approach to car-following modelling is based on behavioural thresholds referred to 
as action points and was first proposed by Michaels (1963). It remedies the problems of 
stimulus-response models identified in the previous section by using insights from 
perceptual driver psychology. The idea is that drivers are subject to certain limits in their 
perception of the stimuli to which they respond (Todosiev and Barbosa, 1964). It is thus 
possible to identify space-time thresholds that trigger different acceleration profile 
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characterizations of a driver. Drivers will react to changes in speed difference or spacing 
only when these thresholds are reached (Leutzbach, 1988).  

The basic behavioural rules of such so-called psycho-spacing models are: 

1. At large spacings, the following driver is not influenced by velocity differences. 
2. At small spacings, some combinations of relative velocities and distance 

headways do not yield a response of the following driver, because the relative 
motion is too small. 

The most famous psycho-spacing model was developed by Wiedemann (1974). He 
distinguished constrained and unconstrained driving by considering perception 
thresholds. This car-following model utilizes these perception thresholds to describe the 
longitudinal motion of individual vehicles. The main concept of the model is that the 
follower starts to adjust its speed by applying continuous deceleration as it reaches its 
own perception threshold to a slower lead vehicle. However, since it cannot exactly 
determine the speed of the lead vehicle, the follower‘s speed will drop below the lead 
vehicle‘s speed until the follower applies slight acceleration after reaching another 
perception threshold. This results in an iterative process of acceleration and deceleration. 

There are four different stages of following a lead vehicle (PTV 2012):  

1. Free driving: In this mode, there is no influence of the lead vehicle. The follower 
travels at its desired speed.  

2. Approaching: In this mode, the follower tries to adapt to the lead vehicle's speed. 
The follower applies a continuous deceleration so that the speed difference 
between them is zero when it reaches its desired safety distance.  

3. Following: In this mode, two close vehicles maintain a safe distance, and their 
relative speed fluctuates around zero. The follower maintains its speed close to the 
lead vehicle without any conscious acceleration or deceleration.  

4. Braking: In this mode, the relative distance between vehicles falls below a safe 
distance. This could be a result of a sudden deceleration of the lead vehicle; a third 
vehicle merges in front of the follower, etc.  

Other noteworthy psycho-spacing models include the models of Lee & Jones (1967) 
[which uses spacing-based threshold for driver perception], Evans and Rothery (1973) 
[which quantifies Michaels‘ (1963) thresholds through a series of perception-based 
experiments], Krauss et al. (1999) [which addresses transient traffic flow behaviour, like 
the capacity drop, and stability of so-called wide jams] etc. 

Psycho-spacing models are the foundation of a number of contemporary microscopic 
simulation models. For example, the microscopic simulation package, VISSIM (PTV 
2012) which is described in detail in Chapter 5, uses the psycho-physical driver behaviour 
model proposed by Wiedemann (1974). 
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2.2.2 Lane-changing models  

Lane changing refers to the lateral movements of vehicles from one lane to another. It 
may happen mandatorily at merge and diverge areas, or voluntarily at multi-lane 
roadways. Near on-ramp or lane-drop areas, merging maneuvers are one of the direct 
causes for the overloading of certain lanes and may lead to traffic breakdown (Cassidy 
and Bertini, 1999). In addition, voluntary lane changing can be the origin of perturbations 
that may lead to jams in dense and unstable traffic. As such, most models classify lane 
changes as either mandatory or discretionary lane change. Although lane-changing 
models are not as widely studied as car-following models, it is essential to incorporate 
this mechanism in traffic flow models. Extensive review on lane-changing models can be 
found in Moridpour et al. (2006) and Toledo (2007). 

Moridpour et al. (2006) classified the different approaches taken in lane changing studies 
from the point of view of either driving assistance or driving decision systems. They 
defined driving assistance models as the models which consider the steering wheel angle 
and lateral motions to control the lane changing performance of vehicles. They further 
subdivided this category into collision prevention models and automation models. 
Collision prevention lane changing models are developed to control drivers‘ lane 
changing manoeuvres and assist them to execute a safe lane change. The collision 
prevention models are intended to improve road safety. Automation models are applied to 
perform the driving tasks either partially or entirely. The models of Lygeros et al. (1998), 
Eidehall et al. (2007), Kiefer and Hankey (2008), Li-sheng et al. (2009) etc. include such 
automotive adjustments to the steering wheel angle of vehicles to control their lateral 
motion and reduce dangerous lane changing manoeuvres. 

Moridpour et al.‘s other category of lane changing models focuses on drivers‘ lane 
changing decisions under different traffic conditions and under different situational and 
environmental characteristics. They classified drivers‘ decisions while responding to the 
surrounding environment, as either strategic, tactical or operational (Sukthankar et al. 
1997). This classification is based on the time required for executing the decisions. The 
strategic level is the highest decision level and deals with drivers‘ decisions which require 
over 30 seconds making and executing.  A driver‘s destination choice, mode choice and 
route choice are examples of strategic driving decisions (Alexiadis et al. 2004). While 
executing the strategic level decisions, a series of tactical decisions are made by the 
drivers, such as a decision to pass a slow moving vehicle or maintaining the desired 
speed. At the tactical, or intermediate, decision level, the time required for making and 
executing the decisions is between 5 and 30 seconds (Alexiadis et al. 2004). At the lowest 
decision level or the operational level, drivers decide about the manoeuvres to control 
their vehicles. These take place on a time scale of less than five seconds and include 
decisions such as whether or not to accept a gap (Alexiadis et al. 2004). 

A famous lane-change model is the one by Wiedemann (1974), the principle of which is 
that drivers try to avoid discomfort in their own lane (for example, the vehicle in front is 
too slow compared with their desired speed) and seek the speed advantage of other lanes. 
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This desire for lane change leads to a lane change manoeuvre, if the gap in the target lane 
is sufficient to perform a safe manoeuvre.  

Different from car-following, in the lane-changing model, the drivers‘ behaviour in the 
presence of interacting vehicular flows cannot be described as a function of the state of 
the leading vehicle, but must also take into account the distance and speed of the back and 
front vehicles on the target lane. Considering lane changing in microscopic models allows 
for the realization of necessary (mandatory) lane changes at on-ramps or lane closures as 
well as discretionary lane changes in preparation for passing slower vehicles. 

2.2.3 Commercial microscopic simulation models 

With the increased availability of fast computers in recent years, the application of 
microscopic simulation as a tool to reflect real-world traffic systems is gaining popularity. 
The number of traffic simulation models has increased significantly and by the end of the 
last century, there were more than 70 simulation models available according a study by 
U.C. Berkley (Skabardonis, 1999). Detailed review on such simulation models can be 
found in established literatures like Algers et al. (1997), Gao (2008), Olstam & Tapani 
(2004) etc. Among the large amount of traffic simulation models, five well-known 
models are the CORSIM, the AIMSUN, the VISSIM, the PARAMICS, and the 
INTEGRATION microscopic traffic simulation models. Each traffic simulation model 
has its unique underlying logic. The car-following and lane-changing logics used in each 
of these five models are listed in Table 2.1 below. 

Table 2.1 Car-following and lane-changing logics of different microscopic simulation 

models 

Microscopic Traffic 
Simulation Software 

Car-following logic Lane-changing logic 

AIMSUN  
(Advanced Interactive 
Microscopic Simulator for 
Urban and NonUrban 
Networks) 

Gipps (1981) safety-distance model Gipps (1986) lane-changing 
model 

PARAMICS Psycho-physical model of Fritzche 
(1994) 

Gap-acceptance model 

CORSIM (CORidor 
SIMulation) 

NETSIM for arterials with at-grade 
intersection and FRESIM for 
uninterrupted facilities. 

Gipps (1986) lane-changing 
model which considers both 
mandatory and discretionary lane 
changes 

INTEGRATION Car-following models of Van Aerde 
(1995) and Van Aerde & Rakha 
(1995) 

Considers both mandatory and 
discretionary lane changes 

VISSIM Psycho-physical models of 
Wiedemann (1974) for urban traffic 
and Wiedemann (1999) for motorway 

Lane-changing model of 
Willmann and Sparmann (1978) 
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2.3 Macroscopic traffic flow models 

The macroscopic approach of traffic flow modeling represents the traffic states with the 
help of aggregated variables and yields flow models with a limited number of equations. 
Most of the macroscopic models suggested so far are derived from the microscopic car-
following considerations within a string of identical vehicles. However, the car-following 
models are only empirical and multilane traffic flow includes different types of vehicles 
and driving behaviours. Based on these facts, Papageorgiou (1998) convincingly argues 
that the deduced macroscopic model structures are unlikely to be as accurate as 
Newtonian physics or thermo-dynamics; rather their accuracy must be triggered via 
parameter calibration using real data. 

Two basic equations always hold in all of the macroscopic traffic flow models. One is the 
conservation equation, which states that the change in number of vehicles on the roadway 
segment (x, x + dx) during time interval (t, t+dt) is equal to the number of vehicles 
flowing into that segment minus the number of vehicles flowing out of that segment. That 
is, vehicles are neither automatically generated nor taken away on an enclosed section of 
roadway. This is expressed as a partial differential equation (Gartner el al. 2001): 

 ,q g x t
t x
 
 

 
             (2.7) 

Or as in an integration form: 
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          (2.8) 

Where, q stands for flow, ρ for density and v for space-mean-speed. g is the generation 
rate within the road segment (from on-ramps and off-ramps), x and t stands for space and 
time, respectively.  

Another equation is the basic traffic flow equation, namely, flow equals to the density 
times the space-mean-speed. 

.q v                (2.9)  

Equations (2.7) and (2.9) form a system of two independent equations with three 
unknown variables ρ, v and q. To solve this system, another independent equation is 
required. The different formulations of the third equation resulted in a series of 
macroscopic models. In this section, we discuss the two major types of macroscopic 
traffic models, namely, the first-order traffic models and the second-order traffic models. 

2.3.1 First-order macroscopic traffic models 

The most widely used first-order macroscopic traffic model was developed by Lighthill 
and Whitham (1955), and Richards (1956) independently (LWR model), which is a 
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continuous macroscopic representation of traffic variables. In the LWR model, the speed 
and/or flow rate are considered as a function of density: 

   , ,ev x t V x t               (2.10) 

Hence,  

       , , , . ,e eq x t q x t x t V x t                  (2.11) 

Where, Ve denotes the equilibrium speed. It is a monotonically decreasing function of 
density. The relationship between density ρ(x, t) and flow q(x, t) is called the fundamental 
diagram (FD). The flow function is convex with a downward concavity (LeVeque, 1992). 
Since Equation (2.11) does not specify the functional form of the FD, many specific 
functions have been proposed either from fitting the measured data or from analytical 
deliberations, or a combination of both.  

The solution of the nonlinear Equations (2.7), (2.9) and (2.10) is of the general form as in 
Equation (2.12) (Gazis 1967), which means that all points are on a straight line with slope 
v having the same density: 

   , .x t F x v t              (2.12) 

Where, F is an arbitrary function. Equation (2.17) implies that inhomogeneity, such as 
changes in density of vehicles, propagates along a stream of traffic at a constant speed 
Vw=∂q/∂ρ, which is positive or negative with respect to a stationary observer, depending 
on whether the density is below or above the optimum density corresponding to 
maximum q (Figure 2.2). The shockwave speed is expressed in Equation (2.13) and 
shown in Figure 2.2. 
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          (2.13) 

 

Figure 2.1 Shock wave formations resulting from the solution of the conservation 
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Most of the first-order macroscopic traffic flow models are discretized derivatives or 
extensions of the LWR model. Within this category, the cell transmission model (CTM) 
is the most popular, owing to its analytical simplicity and ability to reproduce congestion 
wave propagation dynamics. In this model, the roadway is discretized into small segments 
(cells) of uniform length. One cell may have at most one on-ramp and one off-ramp. The 
length of cells is set equivalent to the distance vehicles travel in one clock tick (time 
interval or time step) in light traffic (free flow). Under light traffic, all vehicles in a cell 
can be assumed to advance to the next cell in each time interval. The model functions 
based on the law of vehicle conservation: the number of vehicles in cell i at the next time 
step (k+1) equals to the number of vehicles currently in cell i, plus the inflow from the 
upstream cell (i-1) to cell i and minus the outflow to the downstream from cell i to cell 
(i+1) between the time indexes k and (k+1). That is: 

           11i i i i i in k n k y k r k y k s k             (2.14) 

Where, i is the cell index and k is the time index. ni(k) is the number of vehicles in cell i at 
time index k. yi(k) is the number of vehicles flowing out from cell i. ri(k) is the number of 
vehicles flowing into cell i from the on-ramp. si(k) is the number of vehicles flowing out 
from cell i at the off-ramp.  

The number of vehicles from one cell advancing to the next cell is controlled by boundary 
conditions, which guarantee the number of vehicles that can flow to downstream cells. 
CTM has three boundary conditions: at the upstream of the first cell, an adequate number 
of vehicles can flow into the first cell. Downstream of the last cell has sufficient capacity 
to allow vehicles to move away from the last cell. Between any pair of adjacent cells, the 
number of vehicles can flow to the next cell subject to the constraint: 

    1 maxmin . , , .i f c i i cy k v Q w     

Where, vf is the free flow speed, ρc , ρmax are the critical and jam densities, respectively. 
wi+1 is the shockwave speed in the immediate downstream cell.  

The average speed is determined by a steady-state speed-density FD, assuming all traffic 
speeds abide by this relationship at all traffic states. Originally, the FD corresponding to 
the speed-density relationship in CTM was assumed to be of trapezoidal shape, but it was 
further adapted to accommodate any continuous, piecewise differentiable FDs, such as a 
triangular fundamental diagram.  

Dividing Equation (2.14) by the length of the cell, the density of the cells is obtained on 
both sides of the equation. Therefore, CTM is essentially a density dynamics model that 
evolves with boundary conditions. 

Lin & Ahanotu (1995) compared the performance of the CTM under both congested and 
non-congested traffic conditions with data collected from a continuous segment of 
freeway I-880 in California. It was found that in free-flow condition, CTM provides as 
high as a 0.9 correlation value at a sampling interval of 6 seconds and asymptotically 
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tends to a perfect correlation at large sampling intervals. Again, a density-based modified 
version (Muñoz et al., 2006) of the CTM produced density estimates which showed only 
13% mean error (averaged over all the test days) with measured densities on I-210 West 
in Southern California during the morning rush-hour period. Further research by Daganzo 
(1995a), Daganzo et al. (1997) and Feldman & Maher (2002) had expanded on the CTM 
to model junctions, highway links with special lanes and signalised networks 
respectively. 

First-order traffic models can capture most of the important traffic flow characteristics, 
such as formation and dissipation of shock waves. However, as noted by Zhang (1998), 
Gartner et al. (2001) and other related studies, the first-order models are unable to capture 
traffic instability, driver‘s delayed response to traffic conditions and their anticipation 
behaviour. To overcome these shortcomings and to improve the accuracy level provided 
by first-order models, second-order models were developed. 

2.3.2 Second-order macroscopic traffic models 

While the first-order macroscopic traffic models are characterized by a single dynamical 
partial differential equation for flow and density, and the speeds are derived from a static 
speed-density relationship, the second-order models have an independent speed dynamics 
in addition to density dynamics. Such a speed dynamics describes the local acceleration 
as a function of speed and/or density as well as other possible exogenous factors.  

As early as the mid-1950s, Lighthill and Whitham (1955), in their seminal work on 
kinematic waves, suggested that higher order terms be added to account for some traffic 
properties, such as inertia and anticipation, and they proposed a general form of a motion 
equation: 

2 2

2 2 0q q q qc T D
t x t x

   
   

   
         (2.15) 

Where, c is the traffic wave speed, T is the inertia time constant for adjustment of speed, 
D is the coefficient of diffusion. The authors did not provide an independent speed 
dynamics for this model. 

The most popular second-order model was suggested by Payne (1971), which has both 
speed and density dynamics. He showed that the average speed in a section of a roadway 
is influenced by three major mechanisms: relaxation, convection and anticipation. Payne 
approximated individual driver behaviour with the help of the following equation: 

      , , ,ev t x x t V t x t x                    (2.16) 

This equation expresses that the speed of an individual vehicle after a reaction time τ is 
equal to the equilibrium speed corresponding to the density some distance Δx 
downstream. After repeatedly applying linear Taylor approximations to Equation (2.22) 
and using the density at the midway of two vehicles to represent the space headway, the 
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following dynamic equation for the average speed was obtained: 
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Where co is the anticipation factor. Payne defined the three different terms of Equation 
2.17 as: 

 Convection: It accounts for the change in average speed at a location due to 
vehicles leaving or arriving with different speeds 

 Relaxation: It describes the tendency of traffic flow to relax to an equilibrium 
speed, which corresponds to the homogeneous steady state in the flow. It is 
assumed that an equilibrium speed Ve(ρ) exists, but the traffic state can deviate 
from it. When other influences (reflected by the convection and anticipation 
terms) are small, traffic tends to relax to the equilibrium speed.  

 Anticipation: It describes driver‘s anticipation on spatially changing traffic 
conditions (reflected by the spatial variation of density) downstream. 

Discretisation and modifications of the Payne model have led to the origin of a family of 
second-order models like the models of Payne (1979), Papageorgiou (1990), Lyrintzis et 
al. (1994) and Liu et al. (1998). Among these, the most widely used is the METANET 
model, which was validated against real traffic data with remarkable accuracy at several 
instances. For example, Papageorgiou et al. (1990) successfully estimated the traffic 
states of a 6-km stretch of the southern part of Boulevard Périphérique in Paris with 
standard deviations of only 10.8 km/h for mean speeds and 714 veh/h for traffic volumes. 
But it was noted that the same parameter values of the exponential FD were used for all 
links in spite of the different shapes appearing from the field data at different sites. 
Sanwal et al. (1996) extended the METANET to model the flow under the influence of 
traffic-obstructing incidents. The extended model, when fitted to a 5.8 mile segment of 
the I-880 freeway between the Marina and Whipple exits in California, indicated quite 
satisfactory performance. Since the METANET contains both speed and density 
dynamics, it was successfully used as a candidate model for traffic control design in many 
studies, some of which are mentioned in the previous section. To avoid difficulty in 
control design and implementation, Lu et al. (2011) suggested a simplified version of the 
METANET, dropping the non-linear parameterization in the speed control variable. The 
simplified model with a modified convection term was able to estimate the field traffic 
dynamics more accurately than the original model.  

 

convection relaxation anticipation 
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Comparative evaluations of first and second-order models based on real data were 
reported by Cremer & Papageorgiou (1981), Michalopoulos et al. (1992), Spiliopoulou et 
al. (2014) etc. These studies provided empirical evidence of better accuracy of second-
order models compared to first-order ones. But it should be noted that the second-order 
models also have weaknesses. Critical review by Daganzo (1995b) found logical flaws in 
the arguments that have been advanced to derive second order continuum models. In 
reaction to this criticism, Aw & Rascle (2000), Zhang (1998, 2002) and Liu et al. (1998) 
proposed variant models or improvements that avoid the identified flaws. 

The second-order model derived by Aw and Rascle (2000) includes a density-dependent 
traffic pressure coefficient, and avoids the negative speed of Payne model, as criticized by 
Daganzo (1995b). The model can be written as: 

 
 . ' .eV vv v vv p

t x x


 


  
  

  
         (2.19) 

Where, p’(ρ) is the density-dependent traffic pressure coefficient. The acceleration 
equation of Zhang‘s (2002) model can be written as: 
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        (2.20) 

Where, [ρV'(ρ)]2 is the traffic sound speed. In this model, the traffic sound speed will 
never be faster than the actual traffic speed and, thus, avoids the back traveling problem, 
as in Payne‘s model, as criticized by Daganzo (1995).  

Prigogine & Herman (1971) and Phillips (1979) proposed traffic models in which the 
continuity equation for the density and the acceleration equation were derived from 
kinetic principles. Since the density equation is based on conservation law, it is the same 
as in the first-order models. The acceleration equation is expressed as (Phillips 1979): 
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         (2.21) 

Where, Pe is the ―traffic pressure.‖ This term was adopted from gas-kinetic considerations 
where the pressure term describes a purely kinematic (statistical) effect of speed variance 
without a single vehicle accelerating or braking. In traffic flow models, the pressure term 
is also referred to as the anticipation, which reflects the driver‘s anticipation to 
downstream traffic conditions and can be expressed as: 
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. . 1 0e eP 
 



 
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 
         (2.22) 

Where, Θe is the density dependent speed variance and Θ0 is a positive constant (model 
parameter) that needs to be estimated. Kerner & Konhauser (1993) and Lee el al. (1998) 
introduced a viscous term into the acceleration equation for the purpose of smoothing 
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discontinuous traffic. The viscosity term is also called diffusion in macroscopic models 
(i.e., the second-order derivatives with respect to space). The intention of using this term 
is to smooth sharp transitions and shocks. 

All above models account for the driver‘s delayed response (relaxation) and convection. 
The difference lies in the functional form of anticipation or traffic pressure and the 
viscous term. The models can be generalized as: 

Vehicle Acceleration = Relaxation + Convection + Anticipation (or Pressure) + Diffusion  
  (or Viscous term) 

2.3.3 Traffic flow models for heterogeneous traffic 

From the above discussions it becomes evident that the macroscopic traffic flow models 
are mostly empirical and they have their own pros and cons. Their performances may be 
very different for different operating conditions; viz. lane-based homogeneous, non-lane-
based heterogeneous etc. Hence, Papageorgiou (1998) suggests that the sufficiency of the 
traffic flow theories be decided depending on the specific utilizations. Within the vast 
literature on macroscopic traffic flow modeling, surprisingly few studies have addressed 
the heterogeneous traffic condition prevalent in many developing countries like 
Bangladesh, India etc. Majority of these researches (e.g. Venkatesan et al. (2008), Arasan 
& Koshy (2005), Jin et al. (2010), Gunay (2007)) mainly focus on the microscopic 
approach of traffic flow modeling. Other works like (Chari & Badarinath, 1983 and Gupta 
& Khanna, 1986) focus on developing speed, flow and density relationships for mixed 
traffic conditions and introduce the concept of ―areal density‖ instead of linear density 
measurements.  

A very limited number of first-order macroscopic models have also been developed for 
heterogeneous traffic.  For instance, (Nair et al. 2011) views the disordered, 
heterogeneous traffic system as granular flow through a porous medium and extends the 
LWR theory using a new equilibrium speed-density relationship. This relationship 
explicitly considers the pore size distribution, enabling the model to successfully capture 
the ‗creeping‘ phenomena of heterogeneous queues. However, a microscopic simulation 
of vehicle configuration is used to determine the pore space distribution and detailed 
trajectory information of the disordered traffic stream is required for model calibration. 
Another extension (Wong & Wong, 2002) of the LWR model takes into account the 
dynamic behavior of heterogeneous users according to their choice of speeds in a traffic 
stream. The model uses an exponential form of speed-density relation and can replicate 
many puzzling traffic flow phenomena such as the two-capacity (or reverse-lambda) 
regimes occurred in the fundamental diagram, hysteresis and platoon dispersion. But 
being extended versions of the first-order LWR model, neither of these models have 
independent speed dynamics and they lack field validation. 
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2.4 Conclusion 

This chapter provided an overview on the state-of-the-art of traffic flow models with a 
special focus on microscopic car-following models and second-order macroscopic 
models. The traffic models were reviewed with respect to their categories in terms of 
level of detail, scale of independent variables, nature of independent variables and model 
representations. Most of these models were developed and validated for lane-based car 
dominated operating condition. Only a very limited number of first-order macroscopic 
models for heterogeneous traffic were revealed from the extensive literature review. 
Hence, this research work aims at introducing a second-order flow model for 
heterogeneous traffic which is expected to show better accuracy in estimation of the 
complex traffic dynamics of Dhaka city. 
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Chapter 3 

DATA COLLECTION AND PROCESSING 

This chapter presents details of the study site selected and the high-resolution data 
collection and processing techniques adopted for the research. The collected data will 
serve as the basis for the development of the macroscopic and microscopic simulation 
models in the later part of this research. Some justification regarding the choice of 
methods employed are also provided here. 

3.1 Study area 

The study site is the Tongi Diversion Road, a section of the Dhaka-Mymensingh 
Highway (N3) in Bangladesh (shown in Figure 1.1). It is an 8-lane major artery road in 
Dhaka, which connects the capital city with the Shahjalal International Airport. The 
selected 3.26 kilometres (km) long uninterrupted section has one off-ramp, closely 
followed by an on-ramp. These form one diverge and one merge sections along the 
corridor. There are exactly 4 through lanes on each direction of the test site totaling up to 
a width of 14.48 metres (m) to 14.94 m in different links. The on and off ramps have two 
lanes each, though lane discipline is absent in the main stream flow and in the ramp 
flows. The test section experiences a directional average annual daily traffic (AADT) of 
about 11451 vehicles. The traffic stream consists of 40% cars, 12% microbuses or jeeps, 
10% motorcycles, 8% buses, 10% utility vehicles and 20% auto-rickshaws. Such 
geometric and traffic characteristics make the test site an ideal study location for non-
lane-based heterogeneous uninterrupted traffic condition. 

3.2 Data collection 

Collection of high-resolution traffic data required for the development of an accurate 
macroscopic model is a very challenging task under the existing traffic condition of the 
study area. This is mainly because loop detectors are unsuitable for the test site due to 
measurement errors caused by non-lane-based movement of vehicles activating either 
both or neither of two adjacent detectors. Moreover, traffic cameras for vehicle detection 
are absent along the corridor. Under these circumstances, video cameras are installed at 
various locations of the study site to provide traffic data for the research through image 
processing technique. 

For macroscopic simulation, the corridor is discretized into five links with the lengths 
varying from 320 m to 920 m as shown in Figure 3.1. The off-ramp is located at the end 
of link 2 and the on-ramp is located at the beginning of link 3. Five video cameras are 
installed along the mainline, one at approximately mid-length of each link. The data 
obtained from each camera is considered representative of the traffic condition of the 
whole link. The ramps are also equipped with video cameras for collecting data of the 
merging and diverging traffic. The approximate locations of the cameras are also 
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indicated in Figure 3.1 whereas the details of each camera location can be found in Figure 
3.2 (a-h). 

 

Figure 3.1 Discretization details of the study area 

Although the non-lane-based heterogeneous behaviour becomes more acute with the 
increase of traffic volume in the roadway, the test site was videoed from 3:00 PM to 6:00 
PM covering both peak and off-peak periods for FD investigation. Two sets of videos 
were collected for the same time period on 15th and 16th April, 2015. These videos were 
processed and the extracted data was filtered for anomalies. Ultimately, 2.5 hours data of 
15th April was used for calibration of the model parameters and the similar data set from 
16th April was used for model validation. To ensure better quality of the collected data, 
the camera height and angle of projection were strictly maintained.  
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Figure 3.2 (a) Camera location on Link 1 

 

Figure 3.2 (b) Camera location on Link 2 

 

Figure 3.2 (c) Camera location on Link 3 

 

Figure 3.2 (d) Camera location on Link 3 
(close-up) 

 

Figure 3.2 (e) Camera location on Link 4 

 

Figure 3.2 (f) Camera location on Link 5 
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Figure 3.2 (g) Camera on off-ramp (above); Field of 
vision of the camera (below) 

 

Figure 3.2 (h) Camera location 
on on-ramp showing details of the 

data collection process 

As shown in Figure 3.2 (h), the mounting heights of the cameras were at least 20ft to 
reduce the object details detected by the image processing algorithm and the camera angle 
was less than 45 degrees to avoid perception problem. However, the angle was not so 
small as to cause restriction in vision. Due to the absence of suitable vantage points 
meeting such requirements in links 1, 2, 4 and the on-ramp location, cranes were used for 
mounting the cameras at the required height for a period of 3 consecutive hours each day. 
The presence of foot over bridges of sufficient height in links 3 and 5 and on the off-ramp 
location allowed the data collection process to be carried out without the use of cranes. 

3.3 Data processing 

For extracting high resolution traffic data from the video footages, an object detection 
algorithm has been used which operates based on the Background Subtraction (BGS) 
technique of image processing. The developed algorithm can successfully detect non-
lane-based movement of vehicles. It can also identify non-motorized traffic, dark car and 
shadow quite accurately. Video data and vehicle geometry are provided as input to the 
algorithm and it gives vehicle count and time mean speed at required intervals as the 
output. For measuring flow, strip based counting method combining successive 
incremental differentiation is used. On the other hand, for measuring speed, the algorithm 
segments the whole field of vision and detects the change in center of area of an object in 
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each segment to find the corresponding pixel speed. Then calibrating the pixel distance 
with the field distance, instantaneous and time mean speeds are obtained, which can 
easily be converted to space mean speed. The density of the traffic stream for the research 
is estimated from the measured flow and speed. 

The developed algorithm has been proved to give highly accurate traffic data with Mean 
Absolute Error (MAE) of only 14.01 and 0.88 in flow and speed measurements 
respectively when compared with actual field measurements. The algorithm addresses 
some of the major problems faced in the BGS technique, like the camouflage effect, 
camera jitter, sudden illumination variation, low camera angle and elevation etc. The 
process of traffic detection by the algorithm is briefly illustrated below. 

3.3.1 Traffic detection technique 

The background modeling algorithm used for traffic detection in this research is quite 
simple, yet accurate. It involves the use of static frames for object extraction from a video 
stream or image. Traffic is detected according to the following basic steps. 

Step 1: Choosing the static background model (B) 

This is the primary step of static background subtraction technique. The background 
model is a frame within the video having no traffic in it. This background is selected up 
careful inspection of the video. Figure 3.3 (a) shows such a background model used for 
traffic detection from the video of the off-ramp location of the study site. 

 

Figure 3.3 (a) The background model (B) 

Step 2: Selecting the frame (I) on which vehicle detection is to be performed  

Using an iteration process, the frame on which the detection should be performed is to be 
selected one by one from the video file. Figure 3.3 (b) shows a typical frame for traffic 
detection.  
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Figure 3.3 (b) A random frame (I) for vehicle detection 

Step 3: Determining the absolute difference (D) between B and I 

The difference between the static background model B and the traffic detection frame I 
gives the differential image where only the traffic exists. For example, Figure 3.3 (c) is 
the differential image of the frame I of Figure 3.3 (b). 

 

Figure 3.3 (c) The differential image (D) of frame I 

Step 4: Converting differential image into binary image 

In order to make the differential image machine readable, it is converted into binary 
image using a ―threshold value‖. The selection of proper threshold value is very important 
for accurate vehicle detection.  In the differential image, the pixels having intensities 
lower than the selected threshold is assigned value ―0‖, whereas those having intensities 
higher than the threshold are assigned ―1‖. Thus the differential image gets converted into 
a binary code as in Figure 3.3 (d). 
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Figure 3.3 (d) The binary image of D 

Step 5: Performing morphological operation 

Next, some morphological operations are required for enhancing the quality of the binary 
image by removing unwanted ―noises‖. For this purpose, binary opening is used. Its 
magnitude depends on the type of opening algorithms used i.e. square, circular, disk type 
opening etc. On the other hand, binary closing is needed to recover an object from the 
binary image. Its magnitude depends on the same factors as opening. The improvement of 
the quality of binary image after applying opening and closing are shown in Figures 3.3 
(e) and (f) respectively. 

 
Figure 3.3 (e) Binary image after applying 

opening 

 
Figure 3.3 (f) Binary image after applying 

closing 

 

Thus the vehicles from a video stream are extracted according to these steps, analyzing 
one frame at a time. Then applying the counting and speed measurement techniques 
mentioned earlier, the flow and speed data in the field condition are obtained at the 
required time interval (20 seconds for this research). 
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3.4 Conclusion 

This research aims at developing a macroscopic flow model for the non-lane-based 
heterogeneous traffic condition of Dhaka city. For this high-resolution data is the pre-
requisite. The current chapter introduced the test section used in this research along with 
details of the video-based data collection method adopted. It then briefly discussed the 
image processing technique used here for extracting flow and speed data from the video 
footages of the test site. The measured high-resolution data will be used for the 
development and analysis of the model in the subsequent chapters. 
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Chapter 4 

MODEL DEVELOPMENT AND ANALYSIS 

Macroscopic traffic flow models play a very important role in Active Traffic 
Management (ATM). They are used to accurately estimate and predict traffic state 
variables in real-time and then apply proper control strategy for mitigating anticipated 
traffic instabilities. Consequently, the underlying traffic flow model that is used for 
prediction within the ATM framework must capture all the relevant traffic dynamics, 
including free-flow and congestion states, and the transition between them. The present 
chapter focuses on the development of such a macroscopic model for the heterogeneous 
traffic condition of Dhaka city. For this, it first presents the details of the widely accepted 
second-order METANET model which will be used as the base model in this research. 
Then the nature of the traffic flow for heterogeneous operating condition is investigated 
utilizing the collected field data. Based on the results of this investigation and other 
empirical observations, a stochastic second-order traffic flow model is proposed which is 
then calibrated and validated to accurately simulate the traffic system. Finally, different 
structural variations of the final model are analyzed to determine the individual 
contributions of the proposed model features. 

4.1 The METANET model 

4.1.1 The basic METANET model  

The following assumptions are used while describing the basic METANET model: a 
freeway section is divided into i  = (1, 2 … N) links as in Figure 4.1 (the length of each 
link must be longer than the free-flow travel distance i.e., free iv T L  to satisfy the step 

size modeling constraint1); a link contains exactly one on-ramp; a link may have multiple 
off-ramps; and each link contains at least one traffic sensor.  

 

Figure 4.1 Discretization of a roadway section 

 
                                                           
1 The relations of the (maximum) model time step, the maximum traffic speed and the minimum 
link length, in order to ensure that traffic doesn't travel more than one link during one time step.   

 

Link Link Link 
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In METANET, the density of a link is determined according to the flow conservation law; 
i.e., the density evolution of a link i  at time step 1k   equals the previous density, plus, 
the inflow from the upstream link and on-ramp, minus the outflow of the link itself and 
off-ramp (Equation 4.1). 

 1 1( 1) ( ) ( ) ( ) ( ) ( )i i i i i i i i
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Tk k q k q k r k s k
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   
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               (4.1)  

The outflow ( iq ) is equal to the link density multiplied by the space mean speed. 

( ) ( ) ( )i i iq k k v k              (4.2) 

The on-ramp flow ( ir ) takes the value of the minimum of three quantities, as in Equation 
4.3: (1) the available traffic on the ramp; (2) the maximal flow allowed by the ramp; and 
(3) the admissible flow due to the mainline traffic conditions. The similar model is also 
used to compute the inflow ( 0q ) into the first link. 
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In the above equation, max,rampQ (vphpl), i (vpkpl), and ,jam i (vpkpl) represent, 

respectively, the capacity of the ramp, the density on the link i connected to the on-ramp, 
and the jam density of the link i connected to the given on-ramp.  

The exit flow ( is ) from link i to the off-ramp is calculated using Equation (4.5): 
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The speed dynamics in METANET is equal to the summation of the previous speed, a 
relaxation term, a convection term and an anticipation term as in Equation (4.6). A brief 
illustration of these terms is presented below: 
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Relaxation describes that the mean speed v  of the link gets relaxed to the FD with a lag 
time . 

Relaxation Convection Anticipation 



35 
 

Convection describes that vehicles entering from upstream link i-1 to current link i adapt 
their speed gradually rather than instantaneously.  

Anticipation describes that drivers are looking ahead. If a driver sees high traffic density 
in the downstream link i+1, they will slow down, and vice-versa. 

In Equation (4.6), the reaction time parameter –  (hr), the anticipation parameter –   
(km2/hr), and the positive constant –  (vpkpl) are the model‘s global parameters, i.e., all 
the links have the same value. These parameters are to be calibrated using the measured 
field data. In METANET, the above speed dynamics has been derived from Payne‘s 
model (Payne, 1971). However, the 4th term has been modified relative to Payne‘s model. 
Specifically,   is added to avoid the singularity of the term when modeling low traffic 
density and   is added to capture sensitivity of traffic speeds to the downstream traffic 
density. 

The equilibrium speed  ( )iV k  (kph) of the FD in Equation (4.6) is represented by 

Equation (4.7): 
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           (4.7) 

4.1.2 Some extensions of the basic METANET model  

In some research, the speed dynamics i.e. Equation (4.6) was extended by including 
additional terms to directly account for the impacts from on-ramps, lane drops, weaving 
maneuvers or the blocking of lanes due to incidents. These terms may appear in different 
forms. For example, Cremer and May (1986), Papageorgiou et al. (1989) and Bellemans 
(2003) modeled the slow-down of traffic in the vicinity of an on-ramp (due to 
disturbances caused by the lane changing of the merging on-ramp traffic) by introducing 
an additional term having the following form: 
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Where, m  is a tuning parameter for the merging term whose value depends upon the 

layout of the ramp and m  is a model constant. in  is the number of merging lanes and ir  
is the flow from the on-ramp. Yin (2014) proposed a slightly different form of the 
merging term to incorporate the speed of the on-ramps: 
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Where ( )rv k  is vehicle speed on on-ramp. When a lane is dropped ( 1i i   ), the effect 
on speed due to merging of traffic was modeled by Papageorgiou et al. (1990) through the 
addition of the following term to the right-hand side of Equation (4.6): 

 1 2( ) ( )i i i
i

i i cr i

kT v k
L

  

  


  

Here,   is the constant parameter to account for the lane-drop effect. Another extension 
to the basic METANET model was proposed by Sanwal et al. (1996) to account for the 
blocking of one or more lanes of the highway during an incident: 

 1 2( ) ( ) ( ) ( )i ilb i
i

i i cr i

k kT k v k
L

  

  


  

The parameter lb  has been introduced for incident lane blocking. Again, Bellemans 
(2003) formulated an additional term of the speed dynamics to account for the impact of 
weaving, which can be re-written as: 

,
( ) ( )( ) w i i

weaving i
i i cr

T r k v kv k
n L



    

Here, w  is a tuning parameter. Yin (2014) proposed the following weaving term to 
include the volume of both entering and exiting traffic: 

 
,

( ) ( ) ( )
( ) i i iw

weaving i
i i cr

r k s k v kTv k
n L





    

In this term, ir  and is  are the in-flow from an on-ramp and the exit flow to an off-ramp 
respectively at the time step k. However, some research that included the on-ramp or lane-
drop terms concluded that in many cases these extensions do not significantly improve 
the model accuracy. For example, Papageorgious et al. (1989) reported that including the 
on-ramp term in the model ―did not lead to any visible amelioration‖ whereas 
Papageorgiou et al. (1990) found that ―the importance of lane drop coefficient is 
moderate.‖ Yin (2014) investigated different forms of merging and weaving terms and 
reached to similar conclusion. As such, the merge and lane-drop terms are not included in 
the scope of this research. 

4.2 Investigating fundamental diagram for heterogeneous traffic 

The fundamental diagram (describing flow-density, speed-density or speed-flow 
relationship at a given location or section of the roadway) is a basic tool in understanding 
the behavior of traffic stream characteristics in macroscopic flow models. In the 1st order 
models, speed is derived directly from a steady-state speed-density ( v  ) FD; whereas 
in the Payne model and its derivatives, the speed dynamics generates a reference speed 
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based on the FD. Therefore, identifying the nature of this fundamental relationship is a 
prerequisite for the development of any macroscopic model. The current section aims at 
investigating the impact of the non-lane-based heterogeneous traffic condition on FD. 
More specifically, it will highlight on how the existing traffic characteristics of the test 
site influence the structure and parameters of the FD for the internal links L2, L3 and L4 
which will be utilized for modeling purpose. 

Over the years different structures of the FD have been proposed depending on the flow 
conditions and roadway environments. However, it is generally agreed that flow q  is a 
concave function of density   defined in [0, j ] ( j − jam density); and the 

corresponding v -   relationship is monotone decreasing. Since the FD will be used in 
the speed dynamics of the proposed model, only the v -   relationship is investigated in 
detail in this section. A few functional representations of this relation from the literature 
are given below. 

Greenshields (1934) postulated a linear relationship between speed and traffic density 
based on the data obtained from a rural two-lane Ohio highway. The Greenberg model 
(1959) which is obtained by the integration of car-following model, proposed a 
logarithmic structure (Equation 4.8), observing speed-density data sets for tunnels. The 
Underwood model (1961) proposed an exponential v -   relationship (Equation 4.9) 
based on the results of traffic studies on the Merritt Parkway in Connecticut. 

Greenberg model:  lnm
j

v V 



 
   

 

                    (4.8) 

Underwood model:  c
fv V e






                      (4.9) 

Here, c , fV  and mV  represent critical density, free-flow speed and the speed 

corresponding to the maximum flow or c  respectively. Edie (1961) suggested using a 

multi-regime model to represent the traffic breakdown near critical density c . He 
proposed the use of the Underwood model for the free-flow regime and the Greenberg 
model for the congested-flow regime, thereby overcoming the flaws of both of the 
models. Further developments in the field of FD were directed towards generalizing the 
modeling approach. Examples of such developments include the one-parameter 
polynomial model cited by Zhang (1999): 

1
n

f
j

v v 



  
    

    

      (4.10) 

And the exponential model used in Papageorgiou et al. (1990), which is obtained by 
adding parameters for data fitting flexibility to the Underwood model: 
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1( ) expf
c

V v





 

  
    
   

      (4.11) 

To observe the nature of the fundamental relationship for heterogeneous traffic, the 
v  plots of the field data for different links are fitted with four general structures 
evident from the literature: namely, the linear, logarithmic, exponential and polynomial 
forms. Table 4.1 provides a comparative study among these structures, on the basis of 
their goodness-of-fit.  The R-Squared and Root Mean Square Error (RMSE) values reveal 
that the 3rd degree polynomial relationship shows the best fit with the field data for all 
three links. In relation to the findings of Chari & Badarinath (1983), which deduced a 
logarithmic v   relationship with R-Square value of 0.41 utilizing time-lapse 
photographic data of Hyderabad, India, it can be said that the polynomial structure shows 
better fit for the prevailing traffic condition.   

Table 4.1 Comparison of fitness of different structures of the fundamental diagram 

in heterogeneous traffic condition 

Link 
No 

Goodness-of-
fit Parameters 

Structure of the Fundamental Diagram ( v vs.  ) 

1 2v a a    1 2lnv a a    1 2expv a a 

 

2
1 2 3v a a a   

 

3 2
1 2 3 4v a a a a     

 

2 R-Square 0.5800 0.6451 0.6450 0.6364 0.6460 
RMSE 6.1171 5.6233 5.6243 5.6858 5.6254 

3 R-Square 0.4909 0.5951 0.6014 0.5926 0.6036 
RMSE 3.7059 3.3014 3.2791 3.3116 3.2665 

4 R-Square 0.6352 0.6882 0.6969 0.6971 0.7003 
RMSE 4.3238 3.9975 3.9411 3.9442 3.9276 

Note: 1a , 2a , 3a , 4a  represent the estimated coefficients of the structures. 
 
However, the polynomial type FD structure obtained above from the direct fitting of 
measured v   data is not readily used in the speed dynamics. This is because the FD 
parameters are not optimized in stand-alone mode in the model dynamics. Rather, all the 
global and link-specific parameters are optimized simultaneously. Thus to make the FD 
structure more generalized and to allow for data-fitting flexibility, Zhang‘s one-parameter 
polynomial structure (Equation 4.10) is used in the speed dynamics of the proposed 
model. An additional benefit of using this structure is that two important link-specific 
parameters fv  and j are obtained directly during model calibration. Nevertheless, the 

regression analysis provides important guidelines regarding the values of fv  and j  for 

optimization of the whole model. Figure 4.2 (a-c) shows the speed vs density scatter plots 
of the links along with the best-fit regression lines.  
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(a) 

 
(b) 

 
 (c) 

Figure 4.2 Speed vs. density scatter plots of links 2-4 (20 seconds resolution field data 
used in the plots was collected from 3:00 PM to 5:30 PM on 15th April, 2015.) 

An in-depth investigation of the above plots reveals that the values of the FD parameters, 
i.e., fv and j  vary significantly for different links. In general, the links with greater 

roadside friction from pedestrian activities on raised sidewalk (as observed for L3 and 
L4) show lower free-flow speed and greater jam density compared to the link L2 with less 
roadside friction. This is because the presence of roadside friction causes sluggish 
transition from free flow state to congestion state. Thus, to capture the dynamics of 
heterogeneous traffic more accurately, the FD parameters are varied link-wise in the 
proposed model. 

Other forms of FD can be very easily derived from the established v -   relationships. As 

-5 3 2-2.486 10 0.0084 -1.035 55.44v        

-6 3 2-1.921 10  0.001407  -0.3488 34.40v        

-6 3 2-1.029 10 0.0008467 -0.2379 27.69v        
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an example, the flow-density FD of link L2 is derived here. The v -   relationship of link 
L2 is represented by the following equation: 

-5 3 2-2.486 10 0.0084 -1.035 55.44v              (4.12) 

Multiplying both sides of this equation with ρ yields a functional form of the link‘s flow 
q. This is expressed as: 

 -5 4 3 2-2.486 10 0.0084 -1.035 55.44q               (4.13) 

Differentiating both sides of Equation 4.13 with respect to ρ and then equating it with 
zero gives: 

-5 3 2-9.944 10 0.0252 - 2.07 55.44dq
d

  

           (4.14) 

-5 3 2-9.944 10 0.0252 - 2.07 55.44 0             (4.15) 

Solution of Equation 4.15 yields the density values for which the flow function‘s slope is 
zero. The solutions are ρ = 66, 75 and 112. Hence the critical density, ρc of link L2 is 112 
vpmpl. Putting the value of ρc in Equation 4.13 gives the capacity of the link. The 
estimated capacity of the link is 1116 vphpl. Similarly, the FD parameters of the other 
links can also be determined. These are shown in Table 4.2 

Table 4.2 Estimated FD parameters of different links 

Link Free flow speed              
vf (mph) 

Critical density     
ρc (vpmpl) 

Jam density 
ρj (vpmpl) 

Capacity  
qmax (vphpl) 

L2 55.44 112 170 1116 

L3 27.69 325 432 1456 

L4 34.40 288 376 1371 

An interesting observation from the table is that, while the values of ρc are quite large, the 
differences between ρc and ρj are relatively small. This implies that in heterogeneous 
operating condition, the critical density is reached rather slowly; but once the density of 
the roadway reaches this limit, relatively small increase in density causes stagnant 
congestion of the traffic stream, i.e. the operating speed falls to zero and the jam density 
is reached. Hence, for the heterogeneous traffic of the test site, the transition from the 
critical to jam densities is rather abrupt. 

4.3 Traffic Dynamics 

This section derives a stochastic METANET-based traffic flow model for the estimation 
and prediction of heterogeneous traffic states. The second-order macroscopic model is 
expected to depict the traffic dynamics more realistically than commonly used first-order 
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models, owing to its independent speed dynamics in addition to the density dynamics. 
Similar to the basic METANET model, the proposed model assumes discontinuous 
changes in both time and space. Thus, traffic states are described temporally and spatially 
at discrete steps along the roadway. The following assumptions are made in this respect: 
the roadway is divided into i (1, 2 ….N) links such that the length iL of each link satisfies 

the step size modeling constraint i.e. f iv T L ; each link is a homogeneous unit 

containing exactly one on-ramp; a link may have multiple off-ramps; each link contains at 
least one traffic sensor (e.g. loop detector or video camera); and each link satisfies the 
equilibrium traffic state assumption individually. On the basis of these assumptions, the 
traffic dynamics of the proposed model are developed in the following sub-sections. 

4.3.1 Density Dynamics  

The density dynamics of the model is essentially the flow conservation law. Accordingly, 
the density evolution of the link i  at time step 1k  equals the previous density, plus, the 
inflow from the upstream link and on-ramp, minus the outflow of the link itself and off-
ramp (Equation 4.12). 

 1 1( 1) ( ) ( ) ( ) ( ) ( )i i i i i i i i
i i

Tk k q k q k r k s k
L

   


 
             (4.12) 

As in the base model, i is the number of lanes of the link i . ( )ir k and ( )is k  are the on-
ramp and off-ramp flows respectively. It is noted that Equation 4.12 is an exact equation 
and does not include any parameter to be calibrated. 

4.3.2 Flow Estimation Equation 

In most of the existing macroscopic models, the flow dynamics is expressed by the basic 
traffic flow equation, namely, flow equals density times space-mean-speed ( *q v ). 
This holds true for roadways with homogeneous traffic and strict lane discipline, where 
the movement of vehicles is essentially one-dimensional. Thus the dynamic 
characteristics of a vehicle in a lane affect the motion of its followers in that lane only 
(Figure 4.3 (left)). But in heterogeneous non-lane-based traffic movement, as Khan and 
Maini (1999) mentions, traffic does not move in single file. Rather, there is a significant 
amount of lateral movement. Since different classes of vehicles traverse in both the 
longitudinal and the lateral directions, they develop a critical ―influence area‖ around 
themselves as shown in Figure 4.3 (right). The nature of this influence area depends on a 
number of factors like, the speed of the vehicles, their sizes, acceleration and deceleration 
rates, maneuvering capacities and the behaviour of the drivers.  
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Figure 4.3 Lane-based homogeneous traffic (left) and non-lane-based heterogeneous 
traffic (right) 

In general, traffic flow under heterogeneous condition is greater than the corresponding 
flow under homogeneous condition. This is because in the heterogeneous composition, 
the smaller vehicles occupy the gaps among the larger vehicles resulting in maximum 
space utilization. This space utilization is however constrained by the effect of influence 
area. If the available lateral clearance (denoted by ‗b‘ in Figure 4.3 (right)) among the 
influence areas of the leaders is greater than the minimum lateral clearance required for a 
particular class of vehicles to move,  the vehicles will move forward in the traffic stream 
and vice-versa. In the lane-based operating condition, this available space remains 
constant for all classes of vehicles and is equal to the lane width of the roadway. As such, 
the flow computed by the basic traffic flow equation is accurate. However, in non-lane-
based operating condition, the available lateral clearance varies according to the influence 
areas of the leaders, which again depends on a variety of static and dynamic properties of 
vehicles mentioned earlier. Thus, fundamental relation *q v  might underestimate the 
actual flow. The combined effect of optimum space utilization and vehicular influence 
area in non-lane-based heterogeneous traffic operation could vary significantly. However, 
it is hard to determine such effect accurately during real-time traffic state estimation. 
Thus, a stochastic flow influencing term ( , )q

i N    is added to the flow equation to 
account for this underestimation. It is expected that the stochastic term could improve 
flow estimation significantly. The flow estimation equation of the proposed model is 
expressed as follows. 

( ) ( ) ( ) ( )q
i i i iq k k v k k                                   (4.13) 

4.3.3 Speed Dynamics 

The speed dynamics of the original Payne model was derived from a linear car-following 
model that describes the behavior and interaction of the vehicles as they follow a leading 
vehicle on the road. It was shown that the speed of vehicles in a link is affected by (1) the 
density of vehicles in that link since the speed tends to relax to the equilibrium speed on 
FD, (2) the speed of (slower or faster) vehicles coming from the link upstream and (3) the 
perception of a relatively lower or higher density in the link downstream. In the speed 
dynamics, these three phenomena are expressed respectively by a relaxation term, a 
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convection term, and an anticipation term. The speed dynamics of the METANET model 
has been derived from Payne‘s model. However, the anticipation term has been modified 
relative to Payne‘s model. Specifically,  , a positive constant is added to avoid the 
singularity of the term when modeling low traffic density and a global anticipation 
parameter,   is added to capture sensitivity of traffic speeds to the downstream traffic 
density. It is worthwhile to mention here that,   is added based on the heuristic 
microscopic considerations of Payne‘s model. Thus in lane-based homogeneous traffic, 
where a vehicle has only one leader,   essentially captures the sensitivity of a driver‘s 
speed to the immediate downstream density in the same lane. However, in non-lane-based 
heterogeneous mix, a vehicle does not have one leader, but several, perhaps on the front-
left, the front-straight, and the front-right (Figure 3b). Hence the speed of a vehicle is 
influenced by the speed of a number of surrounding leaders. To account for this, a 
dimensionless Car-Following (CF) parameter has been added to the anticipation term of 
the speed dynamics in the proposed model. This CF parameter, denoted by   in Equation 
4.14 is expected to capture the sensitivity of traffic speed to the speeds of the near-by 
vehicles. Similar to the flow dynamics, a stochastic speed influencing term ( , )v

i N    
is added to the empirical speed equation to reflect the impact of influence area on speed. 
Finally, the speed dynamics of the proposed model is expressed as in Equation 4.14 
below. 

                        (4.14) 

Here,  is the reaction time parameter as in the Payne‘s model. According to the findings 
of the previous section, the FD –  ( )iV k  in Equation 4.14 is represented by Equation 

4.15: 

  ,
,

( )( ) 1
in

i
i f i

j i

kV k v 




  
   

  
  

         (4.15)            

where, fv , j  and in   are respectively the free-flow speed, jam-density and shape 

parameter of the fundamental diagram for link i .The set of equations (4.12), (4.13), 
(4.14) and (4.15) constitutes the complete stochastic second-order model for 
heterogeneous traffic condition proposed in this study. 

4.4 Model Calibration 

The model parameters which need to be estimated are the global parameters , , and 
 ; the link-specific FD parameters fv , j  and n ; the mean i  and standard deviation i  

of the zero-mean Gaussian flow and speed influencing terms q
i  and v

i  introduced in the 
flow and speed dynamics respectively. During the calibration process, these parameters 
are chosen such that the objective function given in Equation 4.16 is minimized. 

    1
1

( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

vi i
i i i i i i i i

i i i

k kT T Tv k v k V k v k v k v k v k k
L L k

  
 

   




 
            
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      2 2 2

1 1

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
N K

i i i i i i
i k

f q k q k v k v k k k   
 

            (4.16) 

 
Here, i  is over all the links and k is the time step in the calibration time period. 
ˆ ( )iq k , ˆ ( )iv k , ˆ ( )i k are the flow, speed, density collected from the field on 15th April, 2015, 

whereas ( )iq k , ( )iv k , ( )i k are the model estimated flow, speed, density. The weight 

factors   and   are chosen so that the contributions of flow, speed and density errors are 
comparable. From the field data, it is found that the typical speeds, flows and densities are 
around 30 miles/hour (mph), 1250 vehicles/hour/lane (vphpl) and 40 vehicles/mile/lane 
(vpmpl). Accordingly,  = (40/1250)2 = 0.001 and  = (40/30)2 = 1.78 are used in the 

optimization. Since the model is non-linear, f  can have multiple local minima for a 
given convergence threshold. This research uses the gradient-based optimization method 
―Sequential Quadratic Programming‖ (SQP) to minimize the objective function over a 
constrained parameter space. The algorithm starts with ten different initial estimates 
which satisfy a specified set of bounds for the acceptable values of the parameters. These 
points are then moved in the parameter space until the improvement in objective function 
reaches the predefined termination tolerance of 1x10-5. The maximum number of 
iterations allowed for the evaluation of the function is set to be 3000. 

During the parameter optimization, the sampling time T  is taken to be 20 seconds which 
implies that the measured traffic data be aggregated into 20 seconds interval. Then, the 
total number of time steps, K = (2.5 hours*3600 second /20 second) = 450 is assigned in 
Equation 4.16. The optimized parameter set is given in Table 4.3. 

TABLE 4.3 Optimized parameter set of the proposed model 

 

Link-specific Parameters  Global Parameters 

Link fv  
mph 

j  
vpmpl 

n  
v  

mph 
v  

mph 
q  

vph 
q  

vph 
   

h 
    

m2/h 
  

L2 50.35 200 3.504 0.387 1.532 281 7.992      

L3 24.5 291 3.275 0.675 2.297 992 8.845  0.0112 843021 584.553 53.0024 

L4 31.8 241 3.136 1.871 12.73 448 2.639      

 
All the model parameters given in Table 4.3 are well optimized since none of these passes 
its assigned lower boundary or upper boundary values. Moreover, the trend and values of 

fv  and j of different links obtained from model optimization and direct regression 

analysis of the FD plots are in good agreement with each other. However, the values of 

j  are slightly larger than the typical value of 200 vpmpl found in lane-based 

homogeneous traffic operation. This is representative of the existing heterogeneous traffic 
condition where space optimization by different classes of vehicles results in greater jam 
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densities than in the lane-based homogenous condition. The value of the CF parameter   
for this study is 53. If a driver in a traffic stream adjusts his speed following the speeds of 
a greater number of leaders, the value of   will increase and vice versa. 

4.5 Model Validation Results 

In the words of Papageorgiou (1998), empirical validation remains the final criterion 
measuring the degree of accuracy, and hence the usefulness, of any macroscopic traffic 
flow model. Accordingly, in this section, the developed model is applied with the 
optimized parameter values to estimate traffic states and the results are compared with the 
set of measured traffic data collected on the 16th of April, 2015. Since the proposed model 
is supposed to describe traffic dynamics for the whole density range, the flow, speed and 
density at the boundary links, L1 and L5 are always assumed to be the measured field 
values. So, the traffic states of only the intermediate links L2, L3 and L4 are estimated by 
the model. Also, the ramp flows ( )ir k  and ( )is k  of Equation 4.12 always take the 
measured values. The traffic states at the initial time step are assumed to be the measured 
field values for all the links. But after the first step, they are estimated by the model 
dynamics. The resulting speed, flow and density profiles for the intermediate links over 
the full simulation period are shown in Figures 4.4 (a-c). 

 

Figure 4.4 (a) Comparison between model estimated and field measured speed data for 
different links 
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Figure 4.4 (b) Comparison between model estimated and field measured flow data for 
different links 

 

Figure 4.4 (c) Comparison between model estimated and field measured density data for 
different links 

From qualitative analysis of these figures, it is seen that in general the proposed model 
can estimate the field traffic states quite accurately. However, the speed, flow and density 
of link 2 are estimated with greater accuracy than those of the other two links. Higher 
prediction error of links 3 and 4 may be attributed to their chaotic real-world traffic 
condition (which is also manifested in the form of reduced free flow speeds of these 
links) owing to greater roadside pedestrian activities. 

As performance measure of the model, MAE is considered which quantifies the error 
between estimated and measured traffic states for the individual links. MAE is defined as: 

 
450

1
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1
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TABLE 4.4 Sensitivity of the proposed model with respect to structural changes 

 

Change in Model 
Structure 

Link MAE f  v  q    

Proposed Model L2 0.106 0.109 0.133 1374 (n/a) 
L3 0.139 0.248 0.139 
L4 0.165 0.200 0.154 

Fixed FD considering 
parameters of Link 2 

L2 0.213 0.109 0.164 1846 (-34.3%) 
L3 0.333 0.251 0.149 
L4 0.314 0.219 0.129 

Fixed FD considering 
parameters of Link 3 

L2 0.107 0.107 0.150 1723 (-25.4%) 
L3 0.099 0.248 0.202 
L4 0.179 0.290 0.242 

Fixed FD considering 
parameters of Link 4 

L2 0.101 0.107 0.135 1578 (-14.8%) 
L3 0.104 0.248 0.146 
L4 0.172 0.262 0.195 

Without   L2 0.212 0.108 0.164 1537 (-11.9%) 
L3 0.109 0.249 0.140 
L4 0.160 0.239 0.148 

Without FD L2 0.142 0.162 0.225 2386 (-73.6%) 
L3 0.134 0.300 0.284 
L4 0.211 0.360 0.330 

 
(Note 1: In the table, the numbers in the first bracket denote the percentage change in overall model 
performance compared to the proposed model. Negative sign indicates that the overall performance of the 
model degrades due to the specific structural change.) 
(Note 2: The italic number refers to a model structure that performs better compared to the proposed model 
structure in simulating the specific traffic parameter for the specific link. However, in those cases, the MAE 
values for proposed model and the specific case are found to be almost same.) 

From Table 4.4, it is seen that the proposed model can simulate measured traffic states 
with an accuracy of 83.5-89.4% for speed estimation, 75.8-89.1% for flow estimation and 
84.6-86.7% for density estimation. Such accuracy can be considered quite satisfactory 
given the wide variations in operating and performance characteristics of heterogeneous 
traffic. To investigate the improvement in traffic flow simulation accuracy achieved 
through each of the individual factors considered in developing the final model, different 
changed structures of the model are validated against real traffic data. These changes 
include: (1) dropping the stochastic flow and speed influencing terms ( q

i  and v
i ); (2) 

using identical FD parameters for all the links instead of variable; (3) dropping the CF 
parameter ; and (4) dropping the FD from the speed dynamics altogether. The function 
value f  for each case is used for overall comparison of model performance. As expected, 

q
i  and v

i  play a very important role in the model, which fails to converge in their 
absence. After that, the use of variable FD for different links contributes a higher 
accuracy in simulating the flow by the model. The performance of the model degrades by 
34.3%, 25.4% and 14.8% if fixed FD is considered with the parameters of links L2, L3 
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and L4 respectively. Dropping the CF parameter   from the model results in an 11.9% 
increase in function value as compared to the full model. Interestingly, the simulation 
results show that the model performance degrades the most without the FD in the speed 
dynamics. Without FD, the error for traffic state estimation increases by 73.6% compared 
to the proposed model. Hence, in relation to the findings of Lu et al. (2011) (which 
concluded that model matching with FD and without FD does not make a significant 
difference on average for homogeneous traffic), it is seen that FD plays the most 
important role in the model for heterogeneous operating condition. 

4.6 Conclusion 

The current chapter focused on the development of a METANET-based stochastic model 
for simulating the heterogeneous traffic condition of Dhaka city. For this, at first the 
nature of the fundamental traffic relationships was systematically investigated based on 
the traffic data collected earlier. From regression analysis it was concluded that 3rd degree 
polynomial structure shows the best fit with the measured traffic data. Moreover, careful 
observation of the operating and performance characteristics of heterogeneous traffic 
revealed that classical traffic flow models tend to underestimate flow and speed due to the 
effect of vehicular influence area in the stated traffic condition. The model proposed in 
this research was developed taking these findings into account. Next, based on the field 
data, all relevant model parameters were estimated in model calibration, using an 
optimization technique. Then the calibrated model was used to successfully simulate 
traffic operations on the studied freeway in the model validation stage. Finally, 
investigation of different structural variations of the final model revealed that the 
stochastic state influencing terms and the FD (more specifically, link-specific FD) play 
the most important role in accurately estimating the traffic states in heterogeneous 
operating condition. 
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Chapter 5 

Compatibility analysis of macroscopic and microscopic traffic 

simulation modeling 

The evolution of advanced technologies and their application to modern traffic 
management systems require, in most cases, a combination of microscopic and 
macroscopic simulations. This necessitates the compatibility check between these two 
modeling approaches. The present chapter aims at comparing the performances of a 
microscopic simulation model, VISSIM (PTV 2010), and the macroscopic traffic flow 
model developed in the previous chapter, to evaluate how the change in traffic demand 
impacts the macroscopic simulation performance. For this, at first the need for such 
compatibility analysis is pointed out followed by earlier endeavours undertaken in this 
respect and the methodology adopted in the current research. Then details of the 
development, calibration and validation processes of the micro simulation model used in 
this study are provided. An experimental design is discussed, according to which data is 
compared and analyzed. Conclusions are presented after detailed discussions on the 
results of the analysis. 

5.1 Significance of compatibility analysis  

Due to model mechanisms, microscopic simulation models are often used in evaluating 
detailed local operations, such as congested intersections (Messer 1998), freeway 
bottlenecks (Halkias et al. 2007), weaving sections (Stewart et al. 1996), merging and 
lane changing (Hidas 2002), transportation corridor operations (Gomes et al. 2004), etc. 
They can also be used to analyze control scenarios, such as ramp control (Hasan et al. 
2002, Beegala et al. 2005) and intelligent transportation strategies (Chu et al. 2004). 
However, this type of application is mainly off-line and lacks the predictive control 
functions. Instead, microscopic simulation is an effective tool to evaluate the performance 
of control measures before their implementation.  

On the other hand, the application of macroscopic simulation models is aimed at large-
scale roadway networks (Kotsialos et al. 2002, Carlson et al. 2010) or online (real-time) 
traffic control to reduce congestion and improve mobility (Lu et al. 2010, Hegyi et al. 
2005a, Hegyi et al. 2005b). In Hegyi et al.‘s (2005b) study, the authors used a 
macroscopic traffic flow model, METANET, as the state prediction model for optimal 
coordination of variable speed limits and ramp metering in a freeway network and found 
that the coordinated control can result in a higher outflow and a significantly lower total 
travel time in the road network.  

Thus, the microscopic and macroscopic model outputs are used in different stages of the 
same model predictive control strategy. This calls for the compatibility analysis between 
these two modeling approaches, i.e. it is required to check whether both macroscopic and 
microscopic models provide similar traffic state results under all traffic conditions, 
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including light traffic, moderate traffic, heavy traffic and excessively congested traffic. If 
it does, the macroscopic model can be successfully used for on-line traffic state prediction 
under different demand scenarios. 

An added advantage of a compatible macroscopic model is that the measured speed-flow 
relationship can be used directly as input parameters of the model, while the system 
parameters of the microscopic model (for e.g. VISSIM) do not directly correspond to the 
measured speed and flow values. Therefore, it is very difficult to calibrate the 
microscopic model for every geometric and traffic conditions. Moreover, being 
computationally less demanding, the macroscopic models consume much less 
computation time than the microscopic models, so that they are more suitable for short-
time predictions. For all these reasons, compatibility analysis of macroscopic and 
microscopic traffic simulation modeling is gaining more importance day by day. 

5.2 Previous studies on compatibility analysis of micro and macro traffic 

models  

There are only limited studies on the comparison of macroscopic and microscopic model 
performances. Cluitmans et al. (2006) compared a macroscopic and a microscopic 
simulation model on a freeway in The Netherlands and concluded that both models used 
in their study were not able to simulate well when traffic demand was very high. Lamon 
(2008) used METANET and PARAMICS simulation on a freeway network of the Dutch 
city of Eindhoven for a short peak period. Both good agreement and wide discrepancies 
were observed between the outputs from the two models. Wu (2002) applied a 
macroscopic model NETCELL and VISSIM simulation for a congested freeway and 
found that NETCELL can reproduce the congested traffic condition much better than 
VISSIM, whereas the later can represent the real world traffic conditions better in free-
flow. Ishak et al. (2006) evaluated the performance of the macroscopic model, CTM and 
the microscopic simulation model, CORSIM, on a congested freeway and showed that 
comparable performances of both simulation models (in terms of link density and total 
network travel time) can be obtained. Recently, Yin (2014) compared the performance of 
METANET with VISSIM simulation under different traffic levels and simulation time 
steps. Based on the performance of the two models it was concluded that consistent traffic 
states are obtained when traffic demand is at moderate to heavy level. However, under 
excessive traffic demand (stop-and-go conditions), significant differences exist between 
the simulated speed and density from the two models evaluated.  

Literature review showed mixed results as to whether microscopic and macroscopic 
simulations have similar performances. As such, the current chapter focuses on the 
compatibility analysis of the METANET-based model for heterogeneous traffic 
developed in the previous chapter with the microscopic simulation model VISSIM. For 
application of the developed model for ATM purposes, systematic comparative study 
under varied traffic demand is required to calibrate and adjust the proposed macroscopic 
model for accurate traffic state estimation and prediction. 
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5.3 Methodology 

In this portion of the study, the compatibility between the developed macroscopic model 
for heterogeneous traffic and the microscopic simulation model, VISSIM is analyzed on 
the test section of Figure 3.1. For this, the microscopic model, VISSIM, is calibrated and 
validated using field measured traffic volume and speed data. The METANET-based 
stochastic macroscopic simulation model is also calibrated and validated for the same 
section of urban arterial and for the same field data. This study considers the effect of 
various traffic demands on the compatibility of the macroscopic and microscopic 
simulation models. The macroscopic simulation model was run with four different levels 
of traffic demands and compared with the outputs from the microscopic simulation with 
the same initial traffic states. The prediction errors from the macroscopic model are used 
as measures of effectiveness (MOE) and are evaluated with respect to traffic demand. The 
conclusions are obtained from the comparative analysis. Figure 5.1 is the flowchart 
showing the methodology of this compatibility study. 

 

 

 

 

 

 

Figure 5.1 Flow chart showing methodology of compatibility analysis 

5.4 Microscopic simulation model 

In this study, a very popular microscopic simulation package, VISSIM, was used. 
VISSIM is a time step and behavior-based simulation model developed to represent urban 
traffic and public transport operations and flows of pedestrians. The following sub-
sections present the details of the development of a candidate microscopic model of the 
test site. 

5.4.1 Building base model of the test site 

At first, detailed network geometry data (following a detailed corridor survey conducted 
by the researcher and the roadway map obtained by the courtesy of Google maps), 
including the exact location of on-ramps and off-ramps was coded through the VISSIM 
graphical user interface (GUI). This microscopic simulation package uses a link-and-
connector approach to represent roadway sections and merge/diverge points. Links were 
used to build the test section. A number of attributes were assigned to the links, including 
number of lanes, lane widths, road gradient, as well as car-following and lane-changing 
behaviours. Connectors were used to connect the links to build the entire test section. All 
of the turning movements at roadway merging/diverging points were joined by 
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connectors. After the network coding, the base model was run with certain mainline and 
on-ramp demand and default driver behavior parameters; and traffic operation was 
observed at on-ramps, merge sections and diverge sections. Second, this research adjusted 
several operational parameters (as follows), so that the model replicates real-world traffic 
operations of the test site. During simulation, virtual loop detectors were placed on each 
lane of each segment as well as at the on- and off-ramps (at approximately the same 
location as the video cameras) to measure flow and speed.  

5.4.2 Base model calibration 

Calibration is the process by which individual components of a simulation model are 
refined and adjusted, so that the model accurately represents field measured or observed 
traffic conditions. In micro simulation model calibration is conducted from the following 
two points of view. 

5.4.2.1 System calibration 

In the VISSIM model, vehicles were loaded into the roadway according to a predefined 
distribution based on total traffic demand. The traffic data for the mainline as well as for 
the on and off-ramps was extracted from video footages of 15th April, 2015. Six vehicle 
types were created to replicate traffic composition in the test site: (1) Car (40.0%); (2) 
Microbus/jeep (12.0%); (3) Motorcycle (10.0%); (4) Bus (8.0%); (5) Utility/Leguna 
(10.0%); and (6) Auto-rickshaws/CNG (20.0%). Local vehicles like CNG and Leguna 
were modeled in 3D Studio-Max first and then converted into recognizable vehicle 
element of the micro simulator (Figure 5.2). The simulation warm-up period was set to 15 
minutes.  

 

Figure 5.2 Customized 3-D models of CNG and Leguna 

Vehicles were calibrated for the desired speed distribution, acceleration, deceleration as 
well as for the physical dimensions. Here it can be mentioned that VISSIM does not use a 
single acceleration and deceleration value but uses functions to represent the differences 
in a driver‘s behavior. For each vehicle type two acceleration functions (maximum and 
desired) and two deceleration functions (graphs) need to be assigned. The calibrated 
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values of these functions are given in Table 5.1 below. As an example, the acceleration 
and deceleration graphs for car as used in the base model are shown in Figure 5.3. 

Table 5.1 Distribution of kinematic parameters of different vehicle types 

Vehicle Type 
Desired 
Speed 
(km/h) 

Acceleration (m/s2) Deceleration (m/s2) 

Max. Desired Max. Desired 
Car 60 3.5 3.5 7.5 2.8 

Microbus/Jeep 45 6.8 4.0 5.5 1.3 
Motorcycle 40 3.5 3.5 7.5 2.8 

Bus 45 1.2 1.2 7.5 0.9 
Utility/Leguna 40 3.5 2.3 6.5 2.5 

Auto-rickshaw/CNG 40 3.3 2.0 7.6 2.5 
 

  

  

Figure 5.3 Maximum and desired acceleration and deceleration functions for car 
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5.4.2.2 Operational calibration 

To precisely replicate the actual traffic behaviour of the test corridor, five customized link 
behavior types were defined: one for each of the five discretized segments (links). In 
addition, two other link behaviours were defined for the merge and diverge sections 
respectively. In VISSIM, the driving behaviour parameter sets for the customized freeway 
links were adjusted to alter the aggressiveness of the drivers to match the field condition. 
The calibrated parameters related to lane-changing and lateral movement of vehicles are 
shown in Table 5.2.  

Table 5.2 Calibrated driving behaviour parameters 

Parameters 
 Calibrated  

Values 

Default 

Values 
 

Car Following  
  

Observed Vehicles  8 2 

Standstill Distance (m) Link 2  0.7 1.5 

 
Link 3  0.7 1.5 

 
Link 4  0.7 1.5 

Headway Time (s) Link 2  2.5 0.9 

 
Link 3  2.5 0.9 

 
Link 4  2.7 0.9 

Lane Changing  
  

Waiting Time before Diffusion (sec)  40 60 

Overtake Reduced Speed Area  Allowed Not Allowed 

Lateral 
 

 
  

Desired Position at free flow 
 

 Any Middle of lane 

Observe vehicles on next lane(s) 
 

 Allowed Not Allowed 

Diamond shaped queuing 
 

 Allowed Not Allowed 

Consider next turning direction 
 

 Allowed Not Allowed 

Minimum Lateral Distance (m) 
Distance at 0 km/h 0.4 1.0 

Distance at 50 km/h 0.5 1.0 

Overtake on Same Lane 
On Left Allowed Not Allowed 

On Right Allowed Not Allowed 

Specifically, the standstill distance CC0 was changed from the default value of 1.5 m to 
0.7 m for all the intermediate links to replicate the tendency of the drivers of the study site 
to keep minimum possible distance between stopped vehicles. Moreover, the headway 
time (CC1) was set to 2.50, 2.50, and 2.70 for links L2, L3 and L4 respectively, from the 
default value of 0.9 seconds. These parameters were adjusted with trial-and-error method 
and numerous iterations, until the simulated flow and speed were within 10% of the field 
traffic data. Note that, CC1, which controls the safety distance in the car-following logic 
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of VISSIM (Wiedemann, 1999), has the strongest influence on freeway capacity 
adjustment. As a guideline, when all other operational parameters in VISSIM are kept in 
their default values, increasing CC1 results in consistent reduction of freeway capacity. 
Using this knowledge, the default value of CC1 was increased for each of the test links to 
simulate their reduced capacities under non-lane-based heterogeneous operation. Default 
values of the remaining eight parameters of Wiedemann‘s 1999 car following model were 
not altered, since their effect on overall model performance improvement is rather 
limited. Figure 5.4 shows the calibrated base model of the study corridor in VISSIM 
interphase. 

 

Figure 5.4 Calibrated base model of the test site with background map 
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5.4.3 Base model validation 

The calibrated base model was further validated against field data of 16th April, 2015. 
This research adopts the Geoffrey E. Heavers (GEH) statistic to compare field measured 
volumes with those obtained from the VISSIM base model. GEH value is defined as: 

 

 

2

0.5
simulated observed

GEH
simulated observed





 

As a general guideline for model validation, GEH values less than 5 indicate good fit; 
values between 5-10 require further investigation, while values above 10 indicate a poor 
fit (Holm et al. 2007). However, this guideline is for homogeneous traffic following strict 
lane discipline. For non-lane-based heterogeneous mix, owing to the wide variation in the 
operating and performance characteristics of vehicles, the thresholds of the GEH values 
are likely to be more lenient.  From this consideration, GEH values below 10 can be taken 
to indicate good fit for heterogeneous traffic. This research obtained average GEH values 
of 7.50, 7.37 and 9.02 for links L2, L3 and L4 respectively (Figure 5.5 (a-c)). Thus the 
microscopic model of the test site is well calibrated and validated and can represent the 
field traffic condition with remarkable accuracy. 

 
(a) 

 
(b) 
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(c) 

Figure 5.5 Comparison between field and micro simulation data for VISSIM model 
validation (5 minutes resolution field data used in the plots was collected from 3:00 PM 

to 5:30 PM on 16th April, 2015.)   

5.5 Macroscopic simulation model 

The macroscopic simulation model used for the compatibility analysis is the stochastic 
second-order model developed for heterogeneous traffic in the previous chapter. The 
proposed macro model was calibrated and validated using the same data sets as the 
microscopic model. So here details of these processes are not provided again. The 
VISSIM outputs (flow and speed) were aggregated for 20 seconds and used as initial 
inputs for the macroscopic simulation model. 

5.6 Experimental design 

To evaluate the compatibility of microscopic and macroscopic simulation models, a range 
of traffic demand should be tested to compare model performance under varied traffic 
conditions. The traffic demands should cover the practical range of operations in typical 
traffic flow control applications. In very light traffic demands, traffic management and 
control measures are not required. In this study, four traffic demand levels were used to 
run the microscopic and macroscopic simulations. Considering the measured traffic flow 
of 16th April, 2015 as moderate demand, it was artificially increased in two steps of 10% 
and then reduced by 20% to generate the four different levels of traffic demands: light 
demand (approximately 850 veh/h/lane at the mainline origin), moderate demand (1000 
veh/h/lane), heavy demand (1200 veh/h/lane) and excessive demand (1300 veh/h/lane). 
Here, the traffic demand was increased step by step because it is more crucial to 
accurately identify the nature of model performance in over-saturated condition as 
compared to relatively non-congested condition of the roadway. However, for the various 
traffic demand levels, demand at on-ramps and the proportion of vehicles that exit from 
off-ramps were kept the same as in the field traffic demand level, since the centre of 
attention here is the compatibility check of model performance for the main line. 
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5.7 Data analysis and discussion 

For each traffic demand level, VISSIM was run for 2 hours and 45 minutes. Excluding 
the warm-up time of 15 minutes, a maximum of 2 hours and 30 minutes of usable data 
was obtained for the study. The output from VISSIM was aggregated to data sets having 
20 seconds time step length to run the developed macroscopic model.  

For the data analysis, the outputs from VISSIM were taken as the ground truth and the 
outputs from the macroscopic model were compared with those from the VISSIM model. 
Based on this comparison, the effect of different levels of traffic demand on the 
developed macroscopic model is evaluated. The following figures (Figures 5.6-5.8) show 
the qualitative differences between the individual link traffic states coming from VISSIM, 
and the corresponding data coming from the calibrated macro model for the four different 
levels of traffic demand considered.  

 

Moderate Demand Level 

 
(a) (b) 

  
(c) (d) 

Figure 5.6 (a-d) Comparison between VISSIM (         ) and macro models' (         ) speed 
outputs at four different traffic demand levels 
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(a) (b) 

  
(c) (d) 

Figure 5.7 (a-d) Comparison between VISSIM (         ) and macro models' (         ) flow 
outputs at four different traffic demand levels 

  
(a) (b) 

  
(c) (d) 

Figure 5.8 (a-d) Comparison between VISSIM (         ) and macro models' (         ) 
density outputs at four different traffic demand levels 
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From qualitative analysis, it is seen that the outputs from the macroscopic and the 
VISSIM models have the same trends over the whole range of traffic demand levels 
tested. The outputs from the models are also spatially consistent with each other. Thus, in 
general, the developed macroscopic model is compatible with the VISSIM model. 

Closer look at the figures reveals that the macroscopic model tends to slightly over-
estimate the flow of link 3 for the light and moderate traffic demand levels (Figures 5.7a 
and 5.7b). This may be partially attributed to the inflow from on-ramp, and partially to the 
combined stochastic natures of the macroscopic and microscopic simulations  

For quantitative analysis, the MAE between the macroscopic and microscopic model 
outputs for the individual links is used as the measure of performance of the developed 
macro model. The link-wise MAEs of speed, flow and density estimation under varying 
traffic demand are given in Table 5.3. 

Table 5.3 Comparison of prediction accuracy of the macroscopic model under 

varying traffic demands 

Traffic Demand Levels Link 
MAE 

v  q    

Light L2 0.04989 0.06575 0.07958 
L3 0.07362 0.11853 0.08816 
L4 0.10981 0.09244 0.09358 

Moderate L2 0.07192 0.06998 0.06427 
L3 0.07288 0.11176 0.07860 
L4 0.06315 0.07764 0.12929 

Heavy  L2 0.10655 0.05302 0.06835 
L3 0.11049 0.09238 0.06677 
L4 0.20140 0.06916 0.14254 

Excessive L2 0.10444 0.05836 0.06342 
L3 0.13496 0.09241 0.07634 
L4 0.11792 0.08731 0.13981 

The traffic demand effects on simulation performance are shown in Figures 5.9, 5.10 and 
5.11 as well. It is seen that, over the whole range of traffic demand, the macroscopic 
model estimates the outflow of the test section with greater accuracy than speed or 
density. Also the MAE in traffic state estimation of the links does not increase or decrease 
in cumulative rate with the change in demand levels. Thus, no distinct trend is found in 
the MAEs of all the three traffic states estimated i.e. speed, flow and density. This is good 
from modeling point of view, since it indicates that the model performs quite 
satisfactorily over the whole range of traffic demand levels. 
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Figure 5.9 Link-wise MAEs in simulating speed by the developed macroscopic model for 
different demand levels 

 

Figure 5.10 Link-wise MAEs in simulating flow by the developed macroscopic model 
for different demand levels 
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Figure 5.11 Link-wise MAEs in simulating density by the developed macroscopic model 
for different demand levels 

While comparing the VISSIM and macroscopic models‘ speed and density outputs in 
different links, it was found that link 4 tends to generate greater prediction error than the 
other links over the whole range of traffic demand levels. This may be attributed to the 
chaotic real-world traffic condition of this link owing to greater roadside pedestrian 
activities.  

5.8 Conclusion 

This chapter compared the performance of the proposed macroscopic simulation model 
with a microscopic simulation model, VISSIM, under different traffic levels. Based on 
the performance of the two models and the comparison analysis presented above, it was 
concluded that the prediction of traffic states from the macroscopic model is generally 
consistent with that from VISSIM simulation. Also, the MAEs in traffic state estimation 
of various links do not show any distinct trend with the change of traffic demand levels, 
thus indicating that the developed macroscopic model performs quite satisfactorily over 
the whole range of traffic demand levels used in this research. 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Conclusions 

This research developed a stochastic METANET-based model for heterogeneous traffic 
operations. For this, it investigated several important issues in traffic flow modeling and 
simulation of freeways with heterogeneous traffic composition. These include the nature 
of the fundamental relationships among speed, flow and density for the stated operating 
condition, the compatibility of microscopic and proposed macroscopic traffic simulation 
on freeways, the effect of different levels of traffic demand on the simulation 
performance of the proposed model etc. Main conclusions from this research are 
summarized chapter-wise below. 

Chapter 2 provided an overview on the state-of-the-art of traffic flow models with a 
special focus on microscopic car-following models and second-order macroscopic 
models. The traffic models were reviewed with respect to their categories in terms of 
level of detail, scale of independent variables, nature of independent variables and model 
representations. Various microscopic car-following model formulations, ideologies and 
properties were discussed. On the macroscopic level, both first and second-order models 
and their respective advantages and disadvantages were presented. The comprehensive 
review of the vast literature on macroscopic traffic flow modeling revealed very limited 
studies on the understanding of traffic flow for non-lane-based heterogeneous traffic in 
developing countries. Difficulty of high-resolution data collection and the complex nature 
of the traffic dynamics have been pointed out as the main reasons behind such limited 
research in this sector. As such, this study mainly focused on introducing a practical 
method of high-resolution data collection and proposing a macroscopic flow model 
having both speed and density dynamics for the stated traffic condition. 

Chapter 3 mainly focused on the data collection and processing techniques adopted in 
this research. It presented the geometric and traffic characteristics of the study site along 
with the details of the discretization process and the high-resolution traffic data collection 
method. It then briefly discussed the image processing technique used here for extracting 
flow and speed data from the video footages of the test site. The measured high-resolution 
data was used for the development and analysis of the macro and micro models in the 
subsequent chapters. Some justifications regarding the choice of methods employed were 
also provided. 

Chapter 4 is the most important part of this study. Here, an in-depth investigation was 
done for understanding the macroscopic speed-flow-density relationships in the 
heterogeneous-flow condition of the test site. The main findings of this investigation are 
listed below: 

(1) Differences in microscopic non-lane-based heterogeneous traffic characteristics 



64 
 

result in different macroscopic behaviour of the traffic stream in comparison to the 
lane-based homogeneous operating condition. 

(2) According to the regression analysis of the field data, the FD (speed-density) has a 
3rd degree polynomial structure for all the links investigated, which differs from 
the findings of Chari & Badarinath (1983). However, comparison of the R-Square 
values obtained in the previous studies reveals better fitness of the polynomial 
structure for the current traffic condition. 

(3) Although the structure of the FD remains the same over the links, the parameters 
( fv and j ) obtained from the regression analysis of measured v   plots, appear 

to be affected by roadside friction. In particular, increment of pedestrian activities 
on raised sidewalk along the study section increases the associated link jam 
density and reduces free-flow speed. 

(4) State-of-art state estimation equations tend to underestimate the actual traffic 
states in non-lane-based heterogeneous condition due to the effect of vehicular 
influence area. 

(5) Moreover, the anticipation behaviour of drivers in such traffic condition is 
dependent on the speed of multiple leaders instead of just the immediate 
downstream density. 

Based on the above findings, this research proposed a new METANET-based traffic flow 
model having the following special features: (1) both the flow and speed dynamics have a 
normally distributed stochastic terms with particular mean and standard deviation 
parameters; (2) the FD in the speed dynamics follows Zhang‘s (1999) one-parameter 
polynomial structure to allow for generalization and data-fitting flexibility; and (3) the 
parameters of the FD are variable over the links.  

In the model calibration stage, simultaneous optimization of FD parameters and driver-
related parameters were conducted. Interestingly, the optimized values of fv and j  

obtained here follow similar trend to the values obtained when FD was calibrated in 
stand-alone mode (Figure 4.2 (a-c)). Thus, the optimized parameters capture the existing 
traffic conditions of the respective links quite well. Finally, to determine the individual 
contributions of the proposed model features, different structural variations of the final 
model were investigated. It was estimated that the link-specific FD parameters and the 
stochastic traffic state influencing terms q

i  and v
i  improve the model performance the 

most, followed by the CF parameter . Another interesting finding is that the proposed 
model performs most poorly in the absence of FD in the speed dynamics, which is in 
contrast to the findings of Lu et al. (2011) for lane-based homogeneous traffic. Thus it can 
be concluded that FD affects the traffic states very seriously for heterogeneous 
composition and cannot be dropped off from the speed dynamics for simplicity in control 
design.  
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Chapter 5 systematically investigated the compatibility between microscopic and 
macroscopic simulation models. The focus of this analysis was to find out the effect of 
traffic demand on model performance. The predicted speed, flow and density from the 
developed macroscopic model were compared with those from a microscopic simulation 
model, VISSIM, on the test section of Figure 3.1. Four levels of traffic demands viz. light, 
moderate, heavy and excessive demand levels were applied to evaluate the compatibility 
of the two models. Based on the performance of the models and comparative analysis, the 
following main conclusions were found: 

(1) The prediction of traffic states from the proposed stochastic METANET-based 
model is generally consistent with that from VISSIM simulation over the whole 
range of traffic demand levels used in this research. 

(2) The MAEs in traffic state estimation of various links do not show any distinct 
trend with the change of traffic demand levels, thus indicating that the developed 
macroscopic model performs quite satisfactorily for different traffic demand 
levels. 

6.2 Recommendations for future research 

Although traffic flow models have been studied for more than half a century in the 
developed world, research on this topic in Bangladesh as well as in other south-east Asian 
countries is extremely scarce and challenging. This is mainly due to the complexity of 
data collection and processing and the wide variations of driver population, vehicle 
components and traffic environment. Even though the current study tried to focus some 
effort in this sector, it cannot be viewed as a complete understanding of the highly 
complex heterogeneous traffic operation. In fact, it should be kept in mind that there is 
not a single traffic model that applies to all traffic situations. Further research to explore 
other forms of the traffic flow models for better representation of the heterogeneous 
traffic state evolution and traffic control is desirable in both theoretical analysis and field 
applications. In this section some recommendations are provided for future research 
following the studies carried out in this dissertation. These are listed below. 

 Several features of the proposed model could be the subject of more extensive 
research, including the nature of the stochastic state influencing terms which are 
assumed to be normally distributed in this study. 

 Sensitivity investigations of the calibrated model parameters should be done for 
checking the transferability of the model for changed application conditions. 

 Also, in the compatibility analysis of microscopic and macroscopic simulation 
models, the effect of various time-step lengths on macroscopic model 
performance should be evaluated. Thus the most appropriate time-step length 
could be determined that will be used for on-line traffic control purpose on the 
studied urban freeway. 
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 Moreover, the impact of merging and diverging sections (at ramp locations) on 
macroscopic model performance should be investigated to provide experimental 
evidence as to whether explicit merging or diverging terms should be included in 
the speed dynamics of the proposed stochastic METANET-based traffic 
simulation model.  

 In future studies it is recommended that different objective functions be used for 
calibration of the model parameters to investigate if the result is robust. Also, 
other optimization algorithms can used to investigate how the optimal set of 
parameters depends on the choice of the algorithm.  

 Finally, if field traffic states change dramatically over a very short time period, 
application of online calibration is recommended to adjust the model for such 
traffic conditions. 
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