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ABSTRACT

In this study, a r~tional function is determined by appro-

ximating a bandpass responso directly and this rational function is

synthesi'"ed L1to a band pass filter configuration consistinG' of shunt

resonators coupled by capacitors, which is the common bandpass filter
network.

The transfer impedance and the transmission function of a
common bandpass filter network consisting of shunt resonators coup-

led by capacitors, have been found out by analysis. It is observed

that all the transmission zeroes except one are at the origin and the

remaining one is at infinity and the transmission function cOntains

single term at the numerator.To be realizable, the absolute magni-

tUde of the transmission function should be between 0 and 1.

For the rational function approximation of the band pass

response; the independent variable, w, is converted into e new varia-

ble A sUch th~t the aperiodic function of w becomes a periodic func-

tion of A and the approximation can be done by Fourier method. Such

a transformation of w into A has been obtained by the r~lation A=

2 tan-1,,;, Because of the fact that the transmission function conta-

ins one single term in the numerator, its denominator has been app-

After aPProximation by Fourier method, the denominator of the trans-

roximated for getting the realizable rational transmission function.

mission function has been obtained in the form of a cosine series,

which is again converted to a polynomial in w2 by using Chebyshov

polynomials. The Chebyshev polynomial converts cosine of a multiple

angle into a polynomial in Bosine of the fundamental angle and the

previous relation between A and w can be written as w2 = 1-Cos A-------
1+Cos A



2so that the cosine series Can be converted to a polynomial in w

and thus we obtain the realizable rational function approximation
of the band pass response.

The approximation has been done by two methods, one by point

matching technique, assuming the value,s of transmission function for

different values of wand the other by assuming a fiXed curve far the

denomin,'tor of the transmission func tion.

The reflection coefficient and the input impedance are then

calculated from the realizable rational transmis.'iionfunction. SinCe

all but one transmission zeroes are at the origin andthe remaining

one at infinity, the realization has been done by ladder development

of the input impedance realizing a shunt inductance and a series ca-
pacitance each time. After realizing all the transmission zeroes at

the origin, the one at infinity is realized by a shunt capacitw1ce.

Finally the capacit3nco matrix trans£orm2tiGn of e-ch sec-

tion of the filter has been used to get the filter realized in the

USUal form of shunt resonators coupled by capacitors.

Several filters are designed utilizing this procedure. The

response curves for the final net~orks have been observed to be 82-

tisfactory compar~d to Butterworth and Chebyshev filters.

*****************
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nination that neans for the rejection of ~nwanted signal frequencies

while pernitting good transmission of wanted frequencies. The mOEt

common filters are designed for lowpass, high-pass, band-pass or b~~i-

stop attenuation characteristics.

The lowpass filter passes the pack&ge of wave energy froc.

zero frequency upto a determined cut-off frequency and rejects a~L

ene;i'gy beybnd that liwits. The highpass filtoi' prevQmts the transmi-

ssion of frequencies below a determined point ~nd appears to be elec-

trically transparent to frequencies beyond that point. The band pass

filter passes the package of waves from certain lower to urper fre-

quency llimits and stops all energy outside these two limits •.Band pnss

filters are the most iillportnntand most commonly used in electronic

equipments. The band stop filter is used in electronic equipment '.;h"n

a certain unwahted frequency or band of frequencies has to be rejec-

ted. Outside tho stopband or rej ection band all frequenc ies VJill pc S:J

without appreciable attenuation.

From the frequency donain point of view, an ideal filter is

one that passes, without attenuation, all frequencies inside certc.in

frequency limits (called pass band) while providing infinite att<,uua-

tion for all ot~er frequencies (called stop band).

Since the discovery of the electric wave filter by Cambel~

and ..Wagner .
'. '

.in 1915, filter theory has evolved essentially ~O~C

two different points of view. These have been distinguished by the

nfllIle,?;classicalfilter .th<;>ory.and modern filt<;>rtheory.
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The classical filter theory originated in the 1920S mainly

through the efforts of Zobell• niis theory is an application of in'''EG

parameter equations to the design of filters and, as such, is COWr,l.,L-

ly known as the image parameter theory of filter design. When dcsiS-

ning a filter by this method, it is assumed that the filter's lon~

impedance is matched to its image impedance. But in practice this

condition is difficult to satisfy, because most loads are constant

value resistances and the image impedance is frequency dependont.1i3

a result, design on this basis involves a cut-and-try procedure a~d,

often, final adjustments must be made experimentally in order to mest

design requirements. Even so, the classical theory yields good r. su~-

ts with speed and a minimum of effort, and there is a wealt~ of pub-

lished design information available in this field.

The modern filter theory was developed in 1930S through ttc
. . (2)

efforts of a number of individuals among whom the names of Norton
Foster(3, Cauer(4~ BOde(5), Brune(6), Guillemin(7) and Darlington(8-9J

need special m~n tion. Essentially this theory involves the apprOX:l.Da-

tions of given specifications with a rational transfer function cell';.

the realization of this function through the use of different syn-

thesis techniques. Since synthesis pr~cedures involving approxima-

tion by polynomial are analytical and exact, designing the filters

from its transfer function involves no trial and error. For this

reason this method is also called the exact method or the polynomial

method. An important feature of this theory is t~qt the approxima-
. . • t

tion part and the realization part are separable •

.It is not always that we are given a realizable r",tiona.l

'function for which we have to design a filter network. SometinGs a
•
;
given characteristic is given graphically as a function of :frequenc~'.
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Sometimes some discrete values are given. It is then necessary to

solve the approximation problem: a system function must be foune c

on the one hand, approxiJ:iates the given curve or the descrete V~l~U,Hi

with the specified tolerances and, on tho other hand, is realiza:':.c

by a network of th e desir cedform. Stated in other terms, Vih",.t,-e

need to do it to fit a realizable rational function to the spcc:-.~'i

data, that is, to determine the eoefficients of two polynomi~ls or

equivalently to determine the zeroes, poles and ccnstant mult:.f".i,c.:

of the rati0nal function. We also desire the function to be of the

lowest possible order SO that a small number of elements wiL. be rc,-

quired for its realizabion.

The problem of approximation may be solved very easily by the

use of Butterworth or Chebyshev functions. From the approximation

transmission function obtained by ButterworthCJ.O)cr Cbebyshev pol~'-

nomial low pass filter can be synthesized by conventional synth~'~0

procedure. High pass, band pass and band stop filters can then be

d. f h' . (7)es1.gned rou t is low pass model by frequency transformatlon •

After the frequency transfor~nation from low pass to bandpat3-:3,

the network configuration for band p,"ss consists of para,llel resen .-

tors and series resonators connected as shunt and series brar,ches

respectively. The direct conventional low pass to band pass trS.:13-

formation, although theoretically correct, is not always attain"blG

practically. The element values may be too small or too large. ~Le

parasitic capacitance to ground can not be t"ken into account and

therefor e may distort the response. The node between a capacitor c,l'd
.',,", 'i"'-:~';-\,: ".• ' .~,':~."! t.' .-". ; •.' "., ! ~:'. ",.1'

a coil in a series 'arm becomes very sensitive to stray capacitanc'.:.,.
at some frequencies and the quality of th'e series arm has to be very

... '" r _ ,", .: ",; ;-:, f:- •.~' ~~" ,

high in order to produce a low level insertion loss in' the passb:'.nd.
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It is therefore desirable to simplify the network realization in
..,•...

order to remove theselectivity frOl~ the series nrfJ and to substiLcb,

added selectivity in the parallel arms.

The impedance and the admittance transformation properties

of J and K inverters which are theoretically valid at a single fre-
(11)

quency are sometimes used to avoid these difficulties. By utilising

the concept of coupling introduc ed by Mil tion Dishal (12). the nor"a-

lised low pass element values, Land C call be converted to new nor-

mali sed values K and Q, the coupling coefficient and the quality foc-

tor respectively. From such a low pass prototype, the band pass filter

can be designed so that the network configuration will consist of

shunt resonator s coupled by capacitances or inductances.

The resulting network obtained by both the above procedures

consisting. of shunt resonators coupled by capacitors does not huve a

low pass equivalent andits response exactly equals the response of

the.lolV pass:prototype after frequency, conversion at the band cent,.c.

The difference of the two responses increnses, when the test frequGncy

moves away froD the band centre.

The objective of this study is to determine a rational func-

tion aPl'roximation directly ..from the given bandpass response sO that

it Can be synthesized into a configuration consisting of shunt reso-

nators .coupled by capacitors. The response of the network thus re"lce-

zed will ex~ctly match the rational function at all frequencies.

A general band pass network configuration consisting of shunt

re'sonatbrs with capacitor coupling between them 'will be'analysed an!l

'l. "
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the transmission function will be determint.:d. rrhe transt:::J.ission func-

tion will be a rational function of polynonial~ is w2•

The specified band Pass transoission characteristics will

then the approximated with the help of Fourier series expansion ane

Chebyshev polynomial so that the approxinate function will be a ra-

tional function of type found for the trnnsnission function of n b~fl~

pass filter consisting of shunt resonator s coupled by capacitor s.

This rational function will then be synthesized in a conven-

tional metnod. The network thus obtained should be potentially equi-

valent to the band pass filter network consisting of shunt resonn-

tors with capacitor coupling between them. A network tr~sformation

procedure will be illustr3ted so as te trnnsform this configur3tL'r

into the general band pass filter configuration with shunt resona-

tors coupled by capacitors.
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CHAPTER-2

THEORETICAL FORMULATION OF BAND PASS FILTER SYNTHESIS

2.1 PRELIMINARIES:

In this chapter, the conventional nethod of Band Pass Filter

Synthesis fron low pass prototype is discussed in brief. The frequ-

ency transfornation is treateli'first. 'rhe reactance transforLGti ;':1

of the frequency variable nakes it possible to get the band p,ws fil-

ters fron low pass prototype. A reactance function; having two poles

one at origin and the other at infinity with a zoro at sone frequency

wo' is assumed to be equal to the low vass frequency range frOl:J-,.,to

,~ • So that low pass frequency zero corresponds to w of the b3ndo
pass, which is the bend centre and the low pass response nay trens-

formed to be a band pass response .•Cutoff frequency for the band P"'S:3

is calcul~ted. The centre frequency is the geometric De~n of two cut-

off frequencies.

In article 2.3, J and K inverters erre explained for the trans-

forontion of the bond poss network so thot the eleoents values beco-

mes approxinotely sinilor.

Bond pass filters nay be designed without net~ork transforn'r

tion fron low pass elenent volues where the eleoents are not capaci-

tances or induct",nces but they ore coupling coefficiemts and quality

factors, of the elements as defined by Milton Dishal. This is olso

discussed in brief.

A different approach of approxio2tion is introduced in this

study. The reason for this is explained in article 2.5.
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2.2.FREQUENCY TRANSFORMATION;(13)
Band pass filters are generelly clisigned from low pass L.lt,r ..'

by reactance transformations of the frequency v[~iable. A rGnctan~Q

tra~sformation is one in \I\rhich the frec_ucncy va.riable is Get equal to

a reactance fune tion in' a new fr equency variable. A r 8actanc G func-

tion has sir.lple poles and zeroes VJhich 3.1terne.te on the jw D.xis.E:i':'TIC'.-.

if 'Ilk and Wk+2 (where 0 < 'Ilk <: Wk+2) are two consecutive paler; 0"
reactance function X(W)i~here is, of course, a zero of It (W) bet'.' ',',1

'Ilk and Wk+2J ' then on the frequency interval 'Ilk < W< Wk+2, the fr'2-

quency -II...= X ('II) aSSUClesall values frorJ-«:to "C (i.e. sweeps the e:l-

tire axis). Thus the entire jJL. axis mel's into each segwent on th2

jw axis containing two consecutive poles of X(W). It is this pheno-

menan that allows a low pass filter chL~acteristics to be transfor-

TIed into other types.

For low pnss to band pass transformation we have to take the

low pass frequency equal to a reactance function having two palos

one at origin and the other at infinity with a zero at sone frequ-

ency W of the transforwed band pass frequency_ This t'1eans that ifo

we take S the low pass independent variable equal to ULc(S) a reac-

where

fiB
S = U (s)

Lc'

tance function of band pass frequency ~,

2 ,lS +'0
= -------~-

Then we get band pass transforGed response aG a function of band-

pass frequency s.

2 '112s + 0= --------'1--
sB

'110== ---~
B

( --_::---
'IIo

w
+ ---_::?_)

s

•.................• (2.1)



::::----"'!"-.-------
j w B

For s = jw 2-w 2
+ Wo

8

= j n ( L =0)

X (VI) = _0-

1 U (.)
= j LC JW.

2 :>
W - ¥III"

:::: ------------
w B

•..•...••....••.....••• (2.2)

In Fig.2.l, transnission function T (~~) is plotted for low

"pass frequency.r •. i. e.¥>iXX(Vi), X(w) is plotted, for band pass frec(uenc:.

VI. The range forn. fron -:<; to M beconcs the range for w froD 0 to "'C

and the transElission function T (w) (a functiC'n of band pass fJfequ-l""'

w) now becones a band pass response havj.ng centre frequency wa "nO. a

band width Vl
U
- wL corresponding to low pass frequency ~~ = + 1

For S = j-'L- = -j 1,

FroD equation (2.2)

-j1 =

2
B -

2 0W L + wL wo =
B ['B

2
_ 2

wL = - -2-- + W-1+ 0

s= j w~
L

WL should be grp.ater then 1.__

B r]32 2
wL = - -2- +~ T + Wo

Vl
U

= B2~J ~ + w
0
2

Sinilarly, ~ - '+

•••.•. _•......• ( 2.3)

."....•.•...... , 2- 4 )

w -w = B = Band width for tIee b&nd pass •
u L

FrOG eqn.(2-3) and (2-4)

B2
wL• Wu = ( 4"" + W 2 )

o = '1/.o VlO ='/WL- Vl
U
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Low.pa.ss. to band pnss transformation
.; !.

•
o
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Phase "hift

o
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o
Image

. Phase shift

J
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Fig.2.2a

Impedance Inverter
Fig.2.2(b)

Admittance Inverter.
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2.3. NETWORKS TRANSFORHilTION BY IHPEDi~;CE liND lID!'lITTilNCE :NVER~'ERS:

Networks for b3nd pass filters obtained by frequency trc.l1S-

foro at ion from low pass prototype have gener211y elenents pr2ctic:lL~y

difficult to construct for high or freqti.encies. Use of ir.:pedunc(~ aIle.

adDitt::lncc inverter tro.:nsforrJ.s these notworks hnving re lSoll::;tors co-

upled by inductances or capaci tl.Ulces wlich can be constructed physj~,-

cally. Sey maul' B. Cohn(~, described the process of trrolsfor':la'cion

of band pass filters obtained from low pass prototype to a direct cc-

upled resonator filters using inpedance and affiJittance inverters U3-

ually known as K and J inverters respectively.

length line of characteristic impedance K at all frequencies. Thcre-

fore if it is terminated in an iopedance 7\ cltone end, the inpedc111c(,
2

looking in at the other end is'Z = -!:--~(Fig. 2. ;'0.)
a 20

An'ideaiised adDit,tance'inverter o:!,Jerntes like a quarter ',':C:',-

l.ength iine' of characteristic adroittiitlce J at all frequencies. Thu,"

i:f an adraittnnce Yb is att&chedat' one end, the adnittance
2

looking in the other' end is y, = -_~___ (Fi g, 2,2.. (1)))
3 -

Yl)

Ya .seen

Figure ;:,:3 ~ shqws a typicn.l low pas<3prototype design !lnd

Fig. 2,1 sh.ows the corresponding band pass fi;J.t,er de<3ign, which 83'"

be obtained directly from ,the prototli'Fe by a low pass to band pews

t,I'ansformation., Fig. 2,5" .shows a ger,eralised circuit for a band, ' . ,

pass filter having inped3nce inverter and series type resonatcr nnei
.' , ;., . ~, .- ..

Fig. 2.,6" shows"" gen~raii~ed' circuit' for' the SElLlefilt er having ad..
1.". - ,- .. ,; " -: '; , ~ ' • ~ •. ~ " ," ,-'!
mittance inverter and shunt type resonators.

"
;, :

..,.



IR =go 0

1.2

Fig.2.3
A 1.ow pass prototyp~ filter.

Ln_1.

-~I
n-1.

LSi

~ r I t"

e
n- =r'm"t-I--"-l

l"L Ie Gn,', >
;;, n-1. T n-1. {-.: ~g ,..,"
I " n+ I

L" _

For Shunt Resonator~;
/.,J/C" "

I..-NC'._L _ I}J
~j - v j - - -- .._-

£,)0 '-i <:;3, v_)

For Series Resonators:
I

&V/ '-'J 1(.

L-0, /= La vJ pt~s: 5- i..(,(,T(.+-r-
-f v,, '1"

f..,V" ",-'2. -::. 13 ~,j r-";:" <:. ,"

cv.J ."H f.""i/.
c:'~)2- - r....) I

Fig.2.4 Band-pass fi1.ters and their rolation to low pass-prototypes.
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1
J'--- ----t--..J--

----1 "'h(l.0) [-'- X,i /0) l-

.

«/1 kDt k!l,
t--

rhe Band-pass filter in Fig.2.4 Converted to Use only.
series resonators and impedance inverters.

- L. - ~ -- / _ l..e,.J 'X,~{~<~)I
X' - Wi'> -, - we' - (.0, 'Jk - '2..- -;;r<~ w "'-';v
J .J () J '. "

0--- d.l;> V 'X;' .J('/+I./, - fA A(' 4"" IE' -- ~ _
"'Of -. I f'< j ']+, c.J/ '3' q,

9. '3, (/)/ j J </J + I

)

1

B..,(w) J;"ht) ?
I i

.

Fig.2.6
The Bandpass filter in fig.2.4 converted to Use only
shunt regon"tors and admittance inverters.
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One of the sinplest forDs of inverters is a quarter wavelength

of transmission line. For an iQpedance inverter it has an inverter

paraoeter K = Z wherp Z is the characteristic lllped8nce of theo. 0

line. For an adnittance inverter it has an inverter paraneter J=Y
0,

where Yo is the characteristic adnittance of the line. Besides tLis,

there are numerous other circuits which operates as inverters. Fi:;;.

2.? 0)shows one of then.
2( Z(I 4r---I-' ~I-0 -

_J-c r-c

----------~---
Short Circuit and open circuit input lllpedance of half netwock.

Fig. 2.,=i ( b)

1
=

j wc

Characteristic inpedance

, Zoc =
1

j wc

1
-jwc =['1

f1-2. wc

1=--.wc
Image phase shaft

. Z
tan-l ( - scB = 2 + ------

+ Zoc
-l( 1)= 2 tan +

Thus B is frequency indipendent.

Thus the circuit of Fig, 2.-;;-

)

= + 90".

can be used as an inpedQnce

or admittance inverter. Vmen used as iupedance inverter. The value of

K is 1__ and when used as adnittance inverter the value of J is wc.
wc



Vi = wi •• =.01
D

51-
I-~~-Jr~

I 1
'j. in. 5'1 '1 'h"f

Fig.2.8 (a)
Lowpass Prototype

15

g =1o
g1=1
g2=2

g =13
g4=1

I

W = 1
1

A =100, B = .01, D = 100,
E = .01.

Band pass transformed by frequency transforrJstion.

0- c<..- b~\...-1t • b O'~_.'~' ~c=r=;- -.:J

=> J'2
" I

T2~1Jlt <.. ~r r
"0 ,b 0'---, ,"" ~ !----<J ba 1. CL

Fig.2.9(a) Series resonator tr ansformed by
admittanoe inverter.

L-w'C--L
Ll 1 - . a J - Wo L I

02. .::c= t.
100

.01, ",r:-O(V ."-r-' O. I' I ?".-''v ~'2..

T2~
(.0 0 I.:>z..'b3 • Of I
W' --~ IDOL

I
CJ 2. <j ':> - ~. L...

I-d L= '01 c= 100) --L:172.. = .-I-
\12.. '" :;0+ J2.~ vz.,
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, 7-o~ ''10+

°1'" 1
,--I,

1 "
L 1r~o~ .~ 3 'OJ -

t'1o.;J,,,-' to) r--' __ J too <'-'fo1-

e I
Fig.2.9(b)

Circuit of Fig.2.9(a) with th8 vl1u8S of the inverter

j 51.

Fig.2.9(c)
Equivalent to circuit of Fig,2.8(b).

Fig.2.9(d)
The final circuit

Fig.2.10
Definition of quality factor and coupling coefficient.
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As an eX~lple let us design a band pass filter consistin6
of 3 resonators and transform the circuit by admittance inverter of

Fig. 2.,:;1 (a).The design is shown in FiG.2.8 and 2.9.

Thus \'Ieobt"in a network consistings of resonators coupl0d

by capacitors for the normalised band pass filter having center fre-

quency I radian and a band width 0 f IO~;. Aft er hlpedanc e and freq-

uency scaling this network will be transformed into a practically

constructable netwcrk.

(15)2.4 DESIGN OF BAND PASS FILTER BY NORH;eLISED Kl Q VALUES.

In general the filter designeQ consists of normalised ele-

tlents values and nonlalised flfeqllency.Elenents v"lues are nornalisc<l

so that they are related to a arbitrary terminRting normalizing r0-

sistance Rr, the redUced inpedance level resulted in sinplified cal-

cula tions. Another normalizing PiJ.r 8JIletor is frequency; the frequency

of the 3 db down point is normalised to I rad/sec.

Another forD of normalisation results when the reactive

component of each element is related to the reactive part of the ir:.-

mediately preceding element. The frequency nornalization is Sill18 as.
the above procedure. By this nornalization, the filter is designed

in terms of coefficient of couplingK as defined 'by Milton Dishal

and the norca1ised quality factor q in place of normalised eleocnt

values Land C.

The coeffici.ent of coupling K, .. is defined by Fig. 2. toJ.J
K ::: ....D.- IL

12. ~"--- 3diS
k - -,"- 2. '3>
2..3 -

...f?_ '" ,I"~~r;>
I
j

1

JLI2 -=
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£L = The overall 3dB down frequency of the filter.3dB

The expressions fo~ normali"sed quality factor of the eire:
are

From the low pass model of thie type of normalisation, th8

band pass filter can be designed such thnt network trffi1sforlliation ~

not required as described in the previous article. The losses ir, ':of .. "

reactive components can be taken into account by this procedure.

Moreover the values of the shunt reson3.tor inductances may be tc!cc':.

to be the sallie and the capacitances m[s be corrected including p!_

rasi tic capaci tanc es.
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2.5 RELEVANCE OF THE PRESENT WORK:

Band pnss networks are generally designed by the two proce-

dure<descr_bed in this chapter. Both the procedures are based on tCe

frequency transforoation techniquefroD low pass to band pass. For

such a band pass filter design, the s.PJ!roxirJation probler:.1 is solvec1

for the low pass prototype.

After frequency transfornntion, the band pass response does

not h"ve arithoatic syonetry. The response "t frequencies lower than

the center frequency decreases rapidly than the response at frequen-

cies higher than the centre frequency.

Moreover for the finel network, the transforoation used

exactly corresponds at the centre frequency, so that the differenc"

of the two responses (the responses of networks before and after

transfornation''"llincreases when the test frequency "'oves away from t:"

band centre.

For both the reasons, low pass response will not exactly

corresponds to the band pass response for frequencies other then the

centre frequency.

In oUr study polynomial approxinations have been done direc~-

ly from the band p'ass response. After getting the rational function

approximation we designed the network by exact method. No further

approxination is required for getting the fi!.al network, so that the

response of the final network can be p,'edioted during the tine of

approximation.
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CHAP TER..::2

ANALYSIS OF THE BtND PtSS FILTER
CIRCUIT

3.1. PRELIMINj~IES:

In this chapter the practical band pass filter networj" is

analysed. The network consists of parallel resonators with capacitc,'

coupling between then terminated by a resistive load. The input is

taken as current source with a resistance parallel to the source.

'1At first the transfer impedance, "12(S), is calculated.Tran-
2n-lsfer impedance contain a single term S at the numerator, n being

2n-lthe order of the filter i.e. number 0;' resonators. S term in '"he

numerator indicates that all but one transmission zero (highest or-

der of denominator polynomial is 2n) is at origin and the remaining

one is at infinity.

Then the transmission function lr l j "''! ( 2, defined by the

ratio of power available at the load to the maximum pOTIer delivGr~-

ble by the source, is calculated from this transfer impedance. The

maximumvalue of such a transmission function is unity. Because pO\ll"':r

available can not be greater than power supplied. Moreover the trG-

nsmission function can not be negative i.e. load, which is source

free, can not supply energy to the source.

Input impedance and the reflection coefficient is than cul-

culated. It was shown that the p.r. condition of input impedance is

same as the condition 0< f(":)\"<:lfor \'T (j C.,)) 11.. • Thus the rec,l:,-

zabili ty condition of the transmission function is 0 <ITIil. 1(1..
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3.-2. THE TRANSFER IMPEDANCE:

The bond pass filter networks with shunt resonators cou}Olcd

by capacitors obtained from the low pass prototype by freqyenco' t:C"':_:1-

sformation and impedance conversion is shown in Fig.3.1.

CL, '-.I- (( \-, .-'.L-r H- ---:t-r
~i L !;>Lv1."TcV\. eL- I ...L _

For n =2, i.e. for two resonators the circuit is shown in

Fig.3.2.

I.f I-- I I I-~(\f7
~ 1 [ -+

+

E, ~
g

~...;
Tel C2iR;;, ~-

I L2. 1(2- r~~fL\

We shall first calculate

Fig.;;.2.

From the figur e,

= ----- for the circuit for

~..':-~_L25 + L2C2 I<,--s'-

f<L LZ S

+ L2C2 i~lS'2..

-c S '2--
C1

+ E 2

= E: 2



:::.

22

._K_'L_~_L_. 2_S_-T__ C_I_?_L__L_2_C_2._T__ f<'_L_l_" _2_(._'. (_)_5_ 1..

, -1
+ -- ( + It:' ; ,,', •

"/ I, -) .,.<-+ E t"'- L + L1..S + I._~.lc::: \- L _":>2. __ .."._. . . _

f2...L L 2 S
~

.-- ~ 'l...! l- :,' I-
I"_ F'~ L.. J C (' ,-; C' ,'" C \ c1 . '_"', ,. + L ,Co c. '., '.- ~ 1"" '-- 2 / -+ . ,- L L2. ',2 -l.. I":" i_ i..:.;: .. ,,/.":> ~ ~ ' _ c : , •.---"----------- --- --- ----- .._-- ---- ..__ ._._--- ._.-

r"L+ '--2 S + lZ.(2, f:2.L-S"<-

,
+ ~L LZcC1:l;L-r '-l?_LI(1 r<:;r;' + L, ((<L L2.C2 -+ ;.?Ll2.(c.-:"\j S

/ - - "

+ r 1</C;I2,r.(I</LZC. +F'LI.2 eel)] s4J/tZ."I.2,Cn L. k,;, ~.'.- .

:l 1=-2..

-+ E:2 icc! L, 1<,;.,f!~S'-+CCIr.., R,n L2 S 3-t- ee, L,I<", L"-C2 i'< .';
( t<2 '-2 c,'Ii:, l2iVl S3 J

::: Gez { fi-Li2,,,.,. U'.LLJ-t-Ki"L2)S +[I<LL1C, ~:,',) +-L,L2, + f<;,,(KLI.2 (21"

,'2.'L L<. eel) + eel LJR.;n 1<\ J s'l.1- ~L2 L, C, 1<,'" + L, ("-L L;: (2'~

f2.L L2,C(,J+Cc,L,K,',,] S3-i [L,C,K",(r<2L2C, -+ r<.:i. L2(el) t

C>I L, i':""1 L2.C21<2J 54}/ f< L L 2.C~, I., Qin S'

bJS3
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Thus the filter with two resonators the transfer impeduccc

Z12 have the form

b. S2,
Z12CS) ::: -----------~ -------,---- ••••••••• ~ •••• (3.1:

do+- d,S+"OZ52+d3S3-rdqS4
Analysis in a similar manner will show that for n =3

•••••••••••• ~• (3. 2)::: --------------~-----------
In general

d"+d,s+d,, S'-+d".,3+ d c1 d ''3 -I" ':,'
- - .5--' 4-' 1- 5~ +L.!6';..

for n resonators, the impedance

b S2'" - i

= --------------------------- ••• ~•••••••••• (3.~)
do+diS+-- .....• d c.'H1

2.11 J

For an increasing order, three elements are added in a cir-

cuit as shown figure 3.3.

'----u

------Fj.

0 I I-II
3

ec
, Jc-L ."".'r'

I
0

Fig.3.3.

But '12( S) has two more transmission zeroes at the origir,.

Tn the Fig.3.3 Land C will cause the transmi'ssion zeroes, C G 'nc

not produce any inGspendent transmission zero. The capacitances

C1, Cc and C2 are in 71' form, as ,shovm in fig. 3.5(a) combination of

three capacitances are equivalent to the combination of two capaci-

tances as shown in Fig. 3.5 (b). Again for the next stage, Cc2 C,
• .' » " ~

and C'2 form the rr circuit of Fig.3.6(a) and is equivalent to cir-

cuit of Fig.3.6(b). The network of Fig-3.4 will then be equivalent

to the network of Fig.3.7, wherE1the transmission zero at infinii;:,'

is for C'y The network of 3.4 and -Fig.3.7 are called potentially

equivalent. Obtaining ,one of them, the other can be found out easily

by changing the internal capacitance matrices.



D
"I,

1~'~ • 1(1 •
Cc.~ .

Tel JC~ T(l ,
~ 0 Q •

(a) Fig.3.5 (b)
(C L.-

a 1'1 ,
I~Cc/ /

~ /

6
ICz TC~

6 ()

Ie,
0

Fig. 3.6( a) Fig.3.6(b)

I !
Cc.~ (C'1..

(

I 11
Kl" I., fL2- L~

Fig.3.7

Fig.3.4 & 3.7 are potentially equivalent network.
Knowing one, the other can
of figure 3.5 & 3.6 I

I~ •. r.E.L

F ~?-1 71'1\1\

be obtained by the transfornat;.or::

Definition of Transmission function.
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3.3. THE TRANSMISSIONFUNCTION:

The transmission function is defined as the r ...;l.tio of the pOl ....:::'.

available at the load to the maximum power deliver able by th" se,uc,'o

fLU' w)12 = _p_o_"_,e_r_a_v_a_i_l_a.b__l_0__":_t_h_e_~o~.'_'d .
.J I

Maximum power deliverable by tho source
• ••••• ~~.(3.3:;'

IE21'-/ /'.L
-;: ---.

11 II 2- f<;rJ
4

4 I G' -L \2---_ ..._.
i< 1(1P- L

, I,\

""
4 IZ'2(jW)\2_._-

(3'0i2. ,'n RL
for l"\ ~ :2 1

Z'2(S) :0:

Z.2 (;J Z'2.(-S) I
\ S -=-Jw

----- --- ~---_."--.- '---

Therefore for a filter of order 2

4 12,2 (jW)
1".2 "f) i< •..

1'2-
I

,
(JJ'"

1<0 + A, u.)1-+ Azu)4-t A,3Wb t'A4W8

... " - .

In a similar way it can be shown that for a filter of order ;1

Therefore the

I S2.n-'=>2(1 -,
2 n(0 +C, S + (.7S '2. ~ • . -r (. C""n J ""'I

transmission funct::.on ! t Uw)l-

(-;. :)

have the form
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3.4 REALIZABILITY CONDITION OF THE TRANSMISSION FUNCTION:

The power taken by the load can not be negative or gre"';Ol'

than maximum power deliverable by the source. So that from f~ticlc
23.1, ic caIlbe concluded that the transmission function \t(jw)i

must be between 0 to 1. This condition is necessary and sufficieIlt

for the p.r. property of the input impedance at the driving point.

To explain this, we shall define reflection coeffici"nt,

Let the driving point impedance Z1 be

(3 1\)

1- \ T (j w) ( 2._ - _ (3 I() )

square magnitude of r (s) at S J':;.

E1 as shown in-';",--
lI. 1

') .
fC--, 11

the equation,
\ P Uw)j2

i P (jw)1 2 is the

,fU) , by

Fig.3.8. Then

C 1
~_2. i
"T I '
-I

(3' '3 i
/

of S.

\7 IC'/2 =
(',
X 1+2./

Uh'/fl,)+l
YY1'- lYl2/IYl'l.)+ 1-

and n2 are add fynctions
1''1'1",+ 112-
even and n1where m1 and ~ are

Let us take R, = RL = 1 ohm.~n

:= E 2- >- ~ _ 2, ,,/I" 1.1
E\ ('l) [ .•. r11- ::. -----Let

Then according to the Darlington's Synthesis procedure it can be

shown that

For this

Z12' must have ( b

In, n 2. - (lIlt., m 2-V '
'VI l-

case, ',)12'having ..ll the transmission zero of
n-ls ) in the numerator sO that Z11, z22 and z12

must, contain even function s at the denominator which is m2,

From Fig.3.9, it can be shown that

So that

212/ _ (vn;!i 2. _ r!),m2 ) Im2-
,I -t' r/2- /'1') 2..
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Lrl t ('\2- "'. \ en 2-::
(>1 2_ +n 2.

ZtZ,. E2. /
,

::. Zf2
-,--_.

::: ~
1., i -t- 2,

- 0 (\, (\2.. - fY'1 p') '2.- ---------- )<

(V) 'l. +-()k

= ~()Inz ..• 1Y1, (I, 2

m I + n-i '2. + {l'-tn,:!.

---_ ...__. --

n I fl"2 - ~"'Yl " rYl 2..

( r", , +.1Yl::.) 2- _ (1)! + (, 2) 2.. /s =jw

1-2, \2,-
-;:-2-' s. =j w -=

((», + 1'1z) 1-- _ (n, + /)2) 2

.rYl 1. r r1 2 _ ~Y\ , + n ,)
( (YlZ+ III1)"- - ( () 2- ':n.-) J. I s =jw

1 -
r 1- z I
/
_._L) _
I ..•..z, 's .

, =.J w

4 (1'l\,1Yl 2. - (1,'''2.) I
(,-n2-+m,) 1--_ ("2. +0,)1., :; "jw

(

1--7.,

I + 2.,

1- 2'1 2..

1+2,

(3.1)

~ ~ f 2, 2. (j~) I 2-
1<,,, I' 2.

,q f 2 /2 (~' fA)) 11-

I - I

th e+0

Z11, Z22

t
RL = l

Zl2
Lossless .

Fig.3.9



28
Now we consider the case with scurC8 resistance R. and LoadJ.n

resistanc es RL•

Input impedance to the lossless network can be ,,,,,,ittenE.S

= R11 + j X11 •

Power entering and leaving lossless the network will be

equal so that

11,1 \ '2- f2, I - I E" 2 12- / p. L

F"o' ++,ts Cc,se

I ,...•.) .
I, r:. II'

-- 12,',.., + 2,I,

l J I '2- f2.,on ~/1 n' -, I 2....

1. / I 2-
r

k/n+L-/
- / '-

'-Ez

i<L Kin 1:::,12

f2 /1 12.:, --,f)

I 21/ LI R' +
J

. In

2-
/" ,
'Il'_._~-----

n . 'J
\ /f.~.I.),. 7/-'
r I I p-, n i- /-1



\Rit) - 211'2. __ ( 1.2.' ') '\ 2. "2.-
"- I 1 Y) - 1<-/1 ) + X 11

I" 11-I<'..in +2,' :::: ((2. in -t t2-1I).l.. + ;':'111-

2- . l-. (12;1\ JI') + x"
I - . (Rin + i2./,) 2..+ XH-L-

-~-----~-------_._------- --

( f2.i q +,'2.. 1/) 2- '2-
-tX!I

"i 12 / y) (2 1/

( (2-,'(l + (21\) 1--7 X 1/'l-

4 R.,',., 12,1

,'./f(J'<J)jl-= 4
----
{2.;", I.? L

1- «.t~.\-' ~. c /
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Thus the transmission coefficient i. e. the ratio of the pO' C'

,1-
available at the load to the maximumdeliverable power i tOw) i ic

given by

::. I -,

1-
In' ( '1 ) "I ,_1"-_"\ - Z I " J 'v;e,

I f2-ln+21(.iv5)1

1 I - z, (j "'.')) I ~" (3' 'u. \__ '___ .~ ",-U)

I + -z! (i IV) +," k \\,'" 1.0_

the reflection function is defined by,

1<\ f(S} i 21(» peS) =

21 (~) [I T f (s) J
-0'
1"-1 n _ 2, (s)

, iZ, (t;;

I 0 ( ,
- I »
I -j-f{ S)

I-f(s)

I +f'(s)

The equation (3.24) maps the right half of the Z1(s) plan

upon the interior of the unit circle of the P(!, " plane and vice-

versa. Therefore if Z1(s) in p.r. then r<e r 21 (s)J~rfor I~~,,(-,)~ i

According to the mapping property o'f equation (3.24), it then fol",o';:s

If (s) j S 1.

for I<-e ( ,» ~ 0

for i<e<S)~O ,. Conversely, if If (s) I :: 1:

then Z1(s) must be p.r.,

Thus p.r, property of Z1(s) can be assumed by the relation
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-----------------------(3.25)

I eCjw) 1'2. 1/"1'2-::. I - T ',,)C0)
pUw)I2.. ::::1.

T{Jw)/'- ':;1
'2.-

So that the condition of realizability of ! T(jw) I as a

transmission function is
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CHAPTER-4

THE HETHOD OF APPROXII1ATION
4.1 PRELIMIN,illIES:

This chapter describes in details the method of approximatio~.

In article 4.2 we describe in brief the Butterworth and Cheby'

shev methods of approximation of Low psss filter and the frequency

transformation for band pass circuit. After network transformati.c

Thus the polynomial is obtained. From this polyno-

of series resonator in a par allel reson"tor and a capacitor couplin_,

the transmission zero at infinity is changed to be transmission Z0ro
at origin. Thus the final band pass circuit by this method has all out

one transoissionzero at the origin and one at infinity.

In article 4.3 a general describtion of the oethod is given.

In article 4.4 band pass response curve is approximated by Fou-

rier method. The value of the approximate respunse is exactly saoe at

the chosen points. However it may be distorted at any other point bet-
ween the specific points.

In article 4.5 method of obtaining the polynorJial in w2 is u.es-

cribed • This is done with the help of Chebyshev polynomial. By Cheby-

shev polynomial cosine terns of Fourier series is converted into a p0-

lynomial of fundamental component Cos A, which is assumed to be equal
l_w2to ------- so that all the terms of Fourier expansion becomes poly-
1 + w2

. 1 f" 2norn~a 0 In w

mia1 the network can be synthesized.

4.2 APPROXiMATION BY USE OF BUTTERWORTH AND CHEBYSHEV FUNCTIONS:

The ideal transmission function for filters which has the r;oc;-

nitude units for pa,?s band and zero for stop band is not practically

raclizable. To be realizable It I ()"w) ! '2 is to,be expressed as a
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\~i,J--,
, 'I

I~~ I
I

Fig.4.l

2rational polynomial in w • Such a rational polynomial can not b8

obtained for the ideal transmission function shown in Fir;.4.l for

low pass. Realizable rational functior will be approximately equal

to the ideal function. The difference between the ideal and the

approximate (practically realizable) function ~Qll depend on the

method of approximation. In general better approximation can be

obtained by using higher order rational functions.

As a specific example of the approxim"tion ('roblen, let U:J

consider the magnitude characteristic of the ideal low pass filter

shown in Fig.4.l. There exists two polynomial approximations to it

which are of great importance in,both theory and application.One of

these is named the Butterworth or maximally flat r,esponse and the

other is named the Chebyshev or equal ripple response.
I /1.-1T (;"~>),, is the squar ed nagnitude of th~

. ~ . ,

normalised i.e. units bandwidth and units magnitude ideal low pass
. . ~

fil tor. Then a possible expression for 1
= -------
l+F( w2)

1) 1

Evidently a possible F (w2) is

if 0
'. if w

~w 1

2nw '•• ,.•..•..•........ (4.2)
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Which suggests an approximation for F (w2) as
2nw (n finite) ••..••. (4.3)

Then
IT' (jw)!::;:;
1 I

__1 = \T (jw)\ 2 ..... (4.4)
- . 2n
1 + w

This approximation is nemed Butterworth approximation, and the
V;<k\10f.01'1 ..:.L5 i3u..ff,(.n..t,..0€.."Y~ ~J~_.

ter~ The normalised Butterworth magnitude function is given by

~.,.Ll..L.-

1
:: ----------

-. ----
J 1 + w2n

••.......... ~ ( 4.5)

Another possible expression
1.-

F( w
2
) = tim E- p2 m5w) ............................ (4.6)

where Pn is an nth degree polynomial. If Pn(w) = ' ..T,,( w) = nth

order Chebyshev polynomial, and 0 ~ e I, then similar to equ-
ation 2.3.

•...... (4.7)
I

(jw) i
I

rv 1
"''=--2-'
IiI +t"T (w). n

\ T(j~)1 is the normalised Chebyshev approximation toIT'(jw).'
I

The filter reali:dng !T(jw)\is known as the Chebyshev filter. "'he
I

trigonometric form for the polynomials In(w) is given by

T (w)
n = Cos (n Cos-lw)

= Cosh ( n cosh-lw) w) 1 (4.'i! )
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Plots of eqs.4.c; and 4.1 will show that for the Butter'~Jo:;-,t:

function, pass band characteristic becoDes flatter as n increase
while for the Chel1ysheV functiohthe pass band characteristic has

n number of ripple peaks and valleys. However for both the cases, t'~
cut off beeoDes shapeI' as n increases. For Butterworth filter du~

its maxi~ally flat character, closely approximadtes the ideal fil~,

characteristics for low frequencies, however the error bec0nes 18r~8

as frequency increases. On ~he other hand the deviation between tho

ideal characteristic and the Chebyshev response is spread out fro~

w = a to w =1 as a series of equnl ripples.

Band pass response can be obtrdned by frequency trnnsi'oro[;

tion of the low pass response. The eleroent v!Uues will also be cie.

ged for the transforoed band pass filter. This is explained previ-
ously in Chapter 2.

For the band frequency w,). 1,T(jw)\2 c,:mbe calcul:>tcd for
Butterworth response.

w = low pass frequency

w = Band pass frequency.
1

. 2nl+w
:::; --------

'J.--2 - Woww = ----------
Vi B

IT (jw)\2

IT ( .-) I 2
JW \,

1
= -------=2----2

1 + ( w - w ) 2no
w B

=

- 2n B2nw
=

( W )2n ( - 2 2 )2nB + w - w
0

2nw

Ao + A1 - 2
+ A2n

4nw + ......... w

• ................(4.10)
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Sinilar expression can be obtained for Chebyshev functic~
also~

Equaticn (4.10) is sinilar to ""qn. 3.9 excopt the differ~r.". iji-
, .thetIl\;\l:lerator•.The nuner"tor obtained frOD the circuit analysi.s is

w..:(2n-I).whereas in this case it is w2n• This is due to the filCt

that the trensforoed bond pass filter, being practically difficult

to constru ct, is to be nodified and the sGries resonators are ccnver~

Led GO the parallel resonators with additional capacitors betvwen th"
resonator as shown in Fig.4;2.

~-!f1_:0C''-i E--o
L C

O~--------_.-o

Band pass series branch
:Before Dodific.ction.

Fig.4.2(b)
Band pass parallel resonator
corresponding to series reso-
nator of 4.2(a) after oodi-
fication.

The circuit of Fig.4T2(a) has a tran~,ission zero at origin

due to capacitance and a transnission zero at infinity due to induc-

tl1nce. The circuit of Fig.4.2(b) has a transDission zero at origin

dUe to series capacitance and a transDission zero at origin dUe to

shunt inductance. The shunt capacitance Can not have any independont

transnission zero. All such cnpacitancesof all the branches will con-

tribute one transmission zero at infinity. Because at that tine ti,e

shunt inductances vnll becone op@~ ( infinite icpedance) and the se-

ries capacitances will becooe shorted (zero inpedance). So that all

the shunt Capacitances will contribute one transnission zero at S=x
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For this reason all the transmission zero of the rJodified circuit

will be at the origin except only

. 2(2n-l)reason equat~on 3.;}, has w

Gi.,+
one which is'infinity. For this

tern as numerator indicating all

the transnissiCJn zeroes except one at, the origin while the renaini"

2none at infinity whereas equation 4.l0contains w as the numerator

indicating equal number of tran~Jission zeros at the origin and ~t

infinity.

For this reason, the response of the final network obtai-

ned by Butterworth or Chebyshev function and after being transforme2

for band pass after modification to be easily constructable becone8

smaller at frequencies near origin than that at frequencies near in-

finity, that melalls for freq'lency lower than the centre frequency;;!};

value of IT (jw) \ 2 is smaller than that at the frequency higher Ee."

the centre frequency by the salle anount. Horeover this difference v;.'.:_:.

increase for higher or der fil ter s.

4.3. GENERJ~ DESCRIPTION OF THE FOURIF~ METHOD OF APPROXIHATION, . .
The Fourier ser:iJl3expansion 8nd the Chebyshev polynonial

lOiaybe simultaneously used for a rational function approxirlation of

a'given band pass respon,se so 'that the rational func'tibd, iT (jw)! ,
2

thus' obtained Can be synthesized in a network configuration conai st-

ing of shunt resonators coupled by capacitors. In article 3.2 we have

shown that for such a network configuration !T (jw)!.2, the transui-

ssian function, form
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(where m is the number of resonators).

_ - {cr... /.;'i'.-

Equation (4.11)

!'ljuJ)I:2-

By conversion of the frequency variable, w, in to a new Va-

riable, A, SO that the range of w fro", 0 to ':>C will be changed fecar-,

o to 7\ for A, XX(w2) can be converted into F( A) such that F (A)

can be expl!Ulded in a trigometric series (4.15) by Fourier series ex-,

pansion.

F (A) = A1 + A2 Cos A + A3 Cos 2 Il + •••••••••••••• + I'll cos(n-l) ..

The value of F(A) at SO"'e Il i" same as the value of XX(w2) at

corresponding w. The values of A1, A2 •.. A"., can be found out from n

kncwn values of F( Il) corresp8nding to n valu"s of A. Thus if

f T (jw)i
2

be given for n values w, then XX (w2) and A can be calcu-

lated corresponding to these n values of IT (jw)\2 and w. We thus 00-

tain n values of ,F(A) corresponding to n values of A. Vie then obtc,in

n nunber of equations from (4.15) involving n nuUber of unknown A. 's
l

so that Ai ( i = 1 to n) can be obtained from these n equations.

Knowing the values of A1, A2 ••••••.••••. ~An for equation
(4.15), equation (4.14) can be obtained with the help of Chebyshev

polynomial by converting A into w. which isshown below.
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The Chebyshev polynomial of order n is defined by

T (x) = Cos ( n cos-lx) .A ••••••••••••••••• (4.16).
n

Let us aSSUrle,

x = Cos A,
Then (4.16) becomes

, C -1 •..•............ ( 4.17)A = as x

= cos n A

= A polynoDilll in ees A

= A polynonial in x
)
)
•••••• (4.1o,

)
With the help of equation (4.18) , the trigonometric series

(4.15) can be converted into an equivalent series, G(x), a polyno-
mial in x where

G (x) n-l (4'+ •.•••••••• + Bn x •••••••• 19,~

The coefficients B1, B2 ••••••••• Bn in the polynomial (4.19)

be cooputed by substituting for each cosine term of series (4.15) ~-_-~I-

its equivalent polynooial in x according to (4 .18) and collectinc

the coefficients,of like powers of x.

The transmormation "of Vi into A Can be' "obtained by ,the e'quatio:e

A = 2 tan-1 w, Aw = tan -2- •...........•(4.20)
Plot of w and A is given in figure 4. '3 From the figure, it ','

clear that the change Of the variable w into A transforms w frow _
to 00 into A from - 7\ to '71
Of w"wil1,.e transformed
of A, which can be expanded

so that XX( w2), an aperiodic function
into F(A). a periQ~ic function
in Fourier series.

_:.:..( -'1. 0--,-- r- I
I f
I I
I I I

_L I
-7\ ':'71 ,)

2

Fig 43

:3-
I
I

I

,
"'71

"'2.
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From the equation (4.20)

CD;'"Af) ..

-- 2 " .',/.,.:.::... - ~ (, f.; (, " ..•., .,;.

- !:- (f'~_L\.
\ -J-((I:;'. A

f _ 'J!. (4')')
"

!....-=-.~~-
l + ("C' 2.

Substituting the value of x in equation (4.20)

. (4' /i)

\ t",-'

\ {6, .., .
(i_lv L
1-.-\.. j.,. l,v .

t. &n

,.-/
-'c' &n X

r . )• "7!" _
~- •....•.. -

, .... "AR: .
1 ' AR2 "•....... ~.• AR

n
Call be ob~aJ..ned fron the kEolsn

values of B1, B2 '---~----Bn and the expansion of (4.23)

Equations (4.24) and (4.14) are sane for

n-l = 2m

i.e. n= 2 m+1

Here D is the number of resonators and n is the number of
2required known values of XX(w ) i.e.

a filter with ill resonators, (2m +1) values of Tran~\ission funotion",. , :-

are to be taken to get the polynomial ~pproximation •

. ; (
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4.4 EKrfiliSIONIN FOURIER SERIES OF COSINE TERMS

In equation (4~24), the denomin"tor XX(w2) of tr"nsmisc,ic;;

function jT (;1'; )I'\s expressed as a rational polynomial of ,l. The Ve>-
I

lues of coefficients of expansion. AR/,s can be calculated by ch"n.,:>,'

the w by A and expressing XX as a Fourier series of cOsine teres.

XX(A) •••••••• + R Gos(n-I)
n

F,1; ./ <j

The range of w from 0 to DC ho,s been taken equivalent to

the range of A fron 0 to l80
0
• For the range _l800 to 00

, syr.:t,:let"y

r.:taybe assumed very easily as ,shown in fig. 4.~Then the Fourier

series expansion will involve cosine terms only. The approximGtion
,1-

problem mGYbe sOlved by taking n diEerent value of!T(jw')j corres-

punding to n values of w2 and then ccuculating corresponding n va-
( 2) I ( ,;L ( 2) oj-lues of XX w from T"", ,'I and Y wand n values vA fron w. Put tir'G

these values, equation (4-25) becomes n number of equations for :1

number of unknown values R, so thGt these values of R c~n be calcu-

lated by solving the equations (4-16)

+ ••••••••• + R co s (n-l) . An=XX.,n ,_
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.In matrix form
,-

1 11- r: ~' •••••••••••• cos (n-l)A1 1,~11 lXx,'

I ,," I II ..! i
I" ,_ I

, I ! -I'I, :
II I,, I'
I I !
j i I

•••••••••••••• cos(n-l) A : I' R : II XX
n J_ nJ c. n j

•......... (4.27)

r [1 LXX J •••••••.• ( 4. 28 )~ A J RJ =

[R 1= [ .-1 1 [xx J •................ ( 4- 28 a )it I
.0

R is a colu8n oatrix~
1:,.

Thus fron n known values of IT (iw')I, we ::set R1 ••••••• Rn• TheY;

we get the approxinate continuous function XX(A) according to equa-

tion (4.25). This continuous function xxCf,) will h,we the exactly CoO

ual values for the specified points. The internediate point may h'2i.

values not permitted to the specification if the values of n fixsJ

points are not chosen properly. Out of these n fixed points 3 pain".,

one at centre frequency wo = 1 rad for normalised frequency scelle,' 1.:,1

two at the cu+ off frequencies will be fixed. The value of !T(jw»)

at the center frequency is unity, at the two cut off frequenciGs is

0.5. The cutt off freqUency points will be fixed (values of w) by the

specification of the band width. The stopband attenuation will be

specified. The Value of IT
'.

( J.w) \ 2 ].'s t th f""a any a er requency W,_lC.,.l. is

at stop band range will be lower than the specified. (obtained fr'Jt:'

the specified stopband attenuc,tion). For each point I XX(il) wi:.l l)e

1 \' 2found for iT (j '1J ). and Y (,l) Dnd valUe of A will be found fro'c".
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corresponding value of w. Thus knowing n values 'of XXcorrespoDrLng

to n values of AI we can calculate n values of R by (4.28) and h..,ve

the continuous expression XX(A)from eq.(4.25).

Assuming a fixed curve, XX(w2) can .be approximated by a Foaricr

series expansiort taking n number of terms. The fixed curve should

have symmetry so that the expansion consist of cosine terms only.

One su.ch assumed curve is shown ih 5.1. Fourier series expansior, ''J:f

this curve will consist of cosine terms only assuming the syml0"!';)'. .

described pI'eviously.

-'.",



24.5 EXPRESSING IN POLYNOMIl~ OF w

In the previous article we explain the procedure to trans-

J:lisslon function as a cosine series of n ter:]s • This cosine sori

2c3n be expressed' as a polynoGlial in w by expanding cosn A in Ceo'

of cos A according to the Chebyshev polynoninll

XX(A) =

••.•....• +R T
1\ fl -1

By Use of eq. (4J8) each tero of the T T ••• T, " .
I '2

R2 ....... " I I 1j: •................
< II \

1\ '2 .. I

: I
L T",_, j'

column Datrix , 1
L

in the right side of eq.: "4.2r;) is a polynomial in x, so that t:
can be \~itten as

..
r;, l1 CP11 CP12* •••••• '•• ,.CP1n I'': ",1"1T

1
-, ,x
I

T2. j ,

-I. I
I

! i, ,.. I !,,

ICPN1 1 n-1 rTn-l CPn2 ..~.....:..... OP i X .nn , ~L .J

...... :.. '.. ( .•.•30)

The rows
I :

of OP are the coefficients of the Ohebfsh ..•v
row '1 for T •0' rOW2':;for'l' <lnd so on, the last1- .

row
, ' ..

,

is .-for .'1" •.•n-l
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r IAgDin the column matrix, (X)" Can be express,,'das a funct',.-
- •• J

Each term of the matrix on the right side of

1

( , ", ,I -- L."; - )

- -',<4.31)
cqn. (4,~"rC:,:.'

•••............• ' •............ ~ ~ .. ; .• ~ .. ,. .. ~ J 4; ,--'- -

(J.- :...)n-i
\ ' ".' J

1

2
1 + VJ

(4.12) i.e.

2
1 - w

r
I

x =

2of w by the relation

again be expressed as a pOlynomial in 2
l.V •

(
'1,... "1 fi-i

. !._ /A.) j

-; (:,

+t-h;l(jW

-,..-i '\ .. i .

. " .~ EHv i.en~,

\ (/~ t\l",

I .
I

\ '~

IiI', j'Ii' 'A' 'v',! (.IJ +
\h~IIT I..::.
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so that the highest order of
2(n-l) .also w • Thus J..t c,;:'.n b-;:

BiV24 •••••••.• BW2n are equal

, ,
order

AW
r, 1

the polynonial of the second coluon is

are equal to zero, SO that the highest
. 2(n-l) .,column ~s W • S~n~larly BW23•

to zero and AW2n is also equal to zero

A.'vV •••••.••• AWare the coefficients of the
f\2 (-Ii ~

( 2) n"'l B"/ ' B,n B\" thbinooial expansion 1+ W I "nll "n2d ••.••• ~. "nn are e

coefficients of binonial expansion (1_w2)n"'l'. BW12, B13 •••••••• Bln
of the polynonial Oil'

1st

explained that the highest order of the polynooial of eClchcolur.m of
2(n-l)oatrix is W' • So that this CCln be written as

C ~J,.' ....•

L.

/ !_~l~u..2-\ n - j

\. I+CO.' )

-'

. ~. ,

Now the equations, nay be written in matrix form

XX( Ii)

C T l
C .\

r X I
t.

,
J

=

=

1
;::: ----

I
- -!R

"
r ~'I

L Cp .J

1- TJ ••.•• (4.34)R is row Datrix
.- I, T is colum Datrix
l,r I -
'_ Xl •••• (4. 35) CP. is square oat~ix.

. _' X ~s colunn 1'latr~x.
I

•..• (4.36) CW is square natrioc.
W is a colunn 2~~r~x.

Fron these equation (4.31),

2XX( VI )

r I"' -, i x"/
L ..1
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~+ r--:1c-) n -!

[I<:j Lee] [0'\1]0 L \'11]
-----

lr:' J LC I] [cvJ] L l'J-]

c:U~] [c piN] [yJJ

l tV J 1 [c P W] T LR J T ~. . . . . .."

colu "(,n !nO i I 'r )( L'i J eqvc.! -i c +ii e I

C\ I".()l' ~ .,
I'r"j(:,i f ,

12 J
, cquo+"o n (-'l.)g) g \i e.quo +/011 (-4"'6f OJ-

1_
,./ , '

[R.] T

fl
-I r x x 'I

I. _I
. " . " . ...

(H (.<),,) 1)- r

'v (n ..1)

A f< \ + A R l W 1--t .••••• , + A Rn b)._----- .. _--
._-(~ w'-) n '::-, 'I

AQ IS Ci. coiUnln O1o./;ix 9' ve 11 by

A' - r AC r (' X)< 1]1'- -• L. ~ L xXn

-=- [ CPlv}T [ A-1 [x x]
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CHAPTER-5

SYNTHESIS OF '-"HE BANDPASS FILTERS

5.1. PRELIMINARIES:

The synthesis of band pass filter by this method essenti,-

lly consists of three ports, the first is the epproximation, the ~:

cond is the r'ealiz'~tionof the network and the third is the trans",

mation of the network.

In this chapter we di,scuss these three parts separately.

Approximation is done by two mdthods, one by approximatin:

denominator:o'f ",j'T {jw)12 assuming n ,number of 'values and, expandi: ~

in Fourier series of cosine term 6 nnd the second by assuriihg a f',

curve • Since nIl but one transmission zerOes are at origin ~ld

the rest is at infinity, the realization can be done by Ladder deve-

lopment of the input imp'e-uQnce iealizing she.unt inductanc'e and so::::".

capacit ance each time. After realizing all the transmission zero c'

or'i'~in,the' one 'a.t infinity is realized by a shunt capacitance.

Capaci't;~ce 'matri';'t~'aJismissionof each section of the

fiiter may be used to get the filter reaiized in the usual form 0_

L :

parallel resonators coupled by capacitances.

5.2 APPROXIMATION PROBLEM:

In the analysis of the bnnd pass filters consisting of
': ,':" . i < ~. :.

resonators coupled by c~pacitors we have shown (art.3.l) that ~he

transmission function of such a filter has the form
,,' '.. '. ')..: , ,',

IT(jw)1 =
;,' , ,,~I-i:'"~. - "

t.A:}~YI- "L)

A2w'-+--- - -
- <.S1 \,

where,aLn-lJ ~
-, I

i.e. n '= 2m +1

4m; :m being the 'order of the filter
•.•••• '••• ,~,••• ~5.2).
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IT (J'w)\ 2 may be abta4ned fram n d4ff r nt val of\ ~ - ~ e e ues.
, 2

IT(jw)1 carrespanding to. n values af VJ the frequency variable,.,

............. , ' (5.3) ..1

In article 3.2 we have shawn thnt to. realize the netHark, t~w

2
value af IT(jw)1 must be such that

o . ~ T (jw) 2 ~

T.his canditian is also sufficic,nt fqr IT(jw)12 to. be reali?,L'

Ther",fare we have' to. abtaint,he expressien 5.1 fer IT(jiv)1 " ,c;c
"

'\:hat it'satisfies 503.]ar getting the.centinuaus funetie"IT(jw)IC

2 .
in palynamial form we have to. take n values af /T(jw)!cerrespen-

ding 11 different. values af frequency. variable, w. Af"lfergetting t'l~

cantinueus expressien af IT(jw)12, it may exceed the range 5.3 :er

ether v~ues af w. This is the main prablem af appraximatian.

The required specificatians, generally given, will fix up 5

such peints, .ane far band centre, two. fer band edges and twa for

required attenuatien at Seme different values af w. Appraximaticn

and netwerk abt:'\ined by these five peints will give a filter af c.c1""

2 which is easily seen fram equatien 5.a (n=5, m=2). Far such a fil-
, ..

t3r af erder 2 has a maximumlimit ef attenuC\tian. Beyond this li'Jit,

the centinuaus functian iT(jw)/2, exc~~d' th~hmit (5:3): So i:h"t it

can nat be realized.
r .~ ,. ". ., r .' :,.': ...t-

Higher attenuatian will be obtnined if we increase ~he ordor
{t : ; -~ " " 1 ; <' • i

ef the filter frem 2. Fer crder 3, (n= 2 m+l = 2.3 +1 = 7) 7 pain::", . ".:

will be required. Five given points and twa assumed paints will th~a
.' ....,. ... '. ..~ -' .
' ....'
be required to salve the preblem cf satisfying equatian 5.3.The t~o
" - ~ . 2 "... :
assumed IT (jw) I values for two. w values is to. be within the spe-

.' : .~',.
cified tolerance. Suppase at w = 2w , attenuatien A, is specified.c

'i '.

Then the assumed paint may be at

. I.'
.,
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may be taken more than A. By changing this value we can have the

approximate function satisfying the rang"e (5.3). If still high"r

attenu"tion is required than two more points will be taken zand 'c:,

specificaj ion can be satisfied along with the conriition 5.3, If:'l('"

becomes greater than 1 by a small value, then by dividing IT(jw)i 2 ::..>

maximumvalue, the range 5.3 may be satisfied. Then the realized n •

work will have response of new IT(jw)! 2 after division and the bmlu-

width will'be changed. But ifIT(jw)12 becomes smaller than zero, i.".

negative then the change of values of iT(jw)) 2 at the chosenN Vli:C~.

be required.

'2.(n -2'
6<-l "

'Ifi-{jl..) - "-" ' - (/+ &Jl)"-I

positive. Moreover when n is fixed, the

From e~uation (4.12)

\T(Jw)I!-=. y(w"l.) whey€.
x x (W') )

Thus Y (w2) is always

2
of yew ) at any w can be easily calculated. The approxinaticr-value

isdoile with the value of XX(v/) vihic') is given by

xx (w2) = _!~~=2~ _
)T(jw)12

For the values of A from 0 to 1800

" . ,
•.....•......... (5.4)

I •

(i.e. for w from 0 to OC),

the value of XX(A) is shown in Figure 1. The values of XX(w2)is c~l-

culated for specific values of IT(jw)!2 at A = 900 and higher .• Then
" .

o
symmetry is assumed for XX(A) "t left and right side of 90 ." So that

the values of XX(A) at lower points :i...s assumed to be some ns corres-
.~ .

ponding higher points. ValUe at 800 equal to the value at 1000, value
o 0

at 75 equal to the value at 105 I and so on. By this assumpti0b odd

harnonics' willbecocle: zero. The v9.1ue of XX(A) is given by

XX(A) = R1 + R
3
Cos 2A +Il5 Cos 4;.:

and t"he solution of the problem will become "asier.
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For the approximation assuming a fixed curve, the curve is

taken to be as shown in fig. 5.1,

The approximate values of the curve obtained by Fourier analy-

sis is
= Ro ------ + R cos riAn

Where R is given by the relationn

Ro has been calculated from the values of R1,R2, R
3

sO that at

A=90o, the value of XX(A) becomes equal to the value Y(A).Because

at =90°, the value of the transmission function T(jw) 2 should be

equal to unity.

By this process, attenUation may be increased by increasing the

value of XX ~ • But at the same time the band width of the filter

will be decreased. Band width can be increased by decreasing the va-

lue of x2, By increasing the values of x1, the attenuation may be

increased, but for this case also the band width of the filter will be

decreased.

Y(A) which is fixed, increases if A increases from 90° for a

specific range. So that in this range, if we can increase XX(A) •.he

response will become uniform. This can be done by decreasing the vc,-

lue of Xy

Assuming X3 to be equal to (1800_ X2) the value of R1,Ry::''''''

from equation 5.5(b) becomes zero. So the odd harmonics will becoucG

zero.Tha solution of the problem will become easier. The values of
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~x"'~

I~-----x- -' /' "

C I__ ~ __ L___' r
O. A "-----. •••...)0.

F l f,.5 5,1

1.,
I,/---""" ,~--'

T' -\-I.~'E,-
•

I
I
I

I
I
i

\~O~

~.

t=:j t2, s, '3
-:;>

K.QrAi'?;':lho)) ef w.l-"~+ l.-~' f-fdOv1<-L,2,p( j:.,,; $-' 2
,- 1>1 uddl?y fCY1-,,!
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. 0XX(A) at stop band range is higher, at 90 it is very small as com-

pared to the values at stop band. So that the odd harmonics effects

XX(A) very much near 900 and it may be negative at frequencies no~r

900
• For this reason this assumption of symmetry about 90°, makes

the approximation problem easier •

•
5. ~ REALIZATION OF THE FILTER NETWOR!:

After getting I T(jw)1 2, we shall synthesize the filter frocj

the input impedance by ladder development.

For the circuit shown in figure, 52
E1Z = ---- =

1 II'
1

IT(jw)!2 is obtained

m2 + n2
by approximation

is given by

13 (. t..) •.)

A (wL.)

-- - (5". 5")

/F(jW)/2

L
l-frOlJ))j = /-
A (t.u~-13 (w2..)

A (w1.)

The reflection function

= f(<:.) -f(-<;) / .
S=.)W

-PfS) = !-2,fS} =(mz._J-n/)*(J1rM,j -- - -(5,(,)
/~21{S) Lr-n,+WJL~-r(n2+nJ ~

.:1'

2 / /- PC'»~ (
1 L So) -= I + oft s.)- - - - - - S =1-)

From the transmission function /T(jw)/2 we can calculate

1~(jw)/~the reflection function.

f (s) will be obtained from ;'P( j w)/2 in 5 •.5 by finding out the

roots of the equations
222A( -S ) = 0, A(- s ) - B (-s ) = O.

and collecting the left half zeros of the denomination and the nu-

meratmr polynomial.
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/r(-L.?) :::::'(.; -:t C'1 ::t) [01) 1(>::£- Cv'2.:t: j (-<,),) - - - - -(C;, ",
-1Lv...- TTu,.-J..e Y1~, y, "-'''y L7('), ,of f'(S) L., 'J" V.( 11 b y

c.U) = (> +C,....., :J:.j W')L>~oJ2 -:tjt.<lz)--- - -Gs-./C)

Similarly numerator of -fI( s) can also be obtained. For nume-

rators selecting left half zeros is not necessary. However if we t:,

the left zeros and calCUlate the numerator polynomial of (s), The re
sultant network synthesised will have gain~band width to be maximum,

Thus we 0btain
.f'(S) :::: (rrol-Yn,j ( .,." - hI)

U"',1 -t ".,,) (n 1.+ ",)
H(~)
6(s) ----(~/I)

G(s) and H(s) calculated in this manner are polynomials of
S.

From equation 5-11.

2 m2 + 2n2 = G( s) + H( s)
(~(5,)+ H (~)

-(r;- -12)IT is. + n2 = - - -2.

Thus we get the expression of Z1

Similarly
= @ (S) - H( sl] I 2

E1= --T---
I

(5-13)

Z
1 = ------ - - - - - - ls-''")

Since all except Olle transmission zeroes are at origin,we

can develop Z1(s) in a ladder form shown in the fio'li.;:transmission
0 t

zero at infinity will be synthesi sed by the last capacitance.

This network is potentially equivalent to the band pass

filter consisting of resonators oouplad by capacitors. So that chan-

ging the internal capacitance matrJ:ces such that inputimpedance re-

main invariant, we can get the required filter configuration.
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5.~4NETWORK TRANSFORMATION:

In the synthesis procedure described in article 5; ~j' we ob-

tained the filter network by ladder development of Z1' the input

impedance. If we change the network, so that Z1 remains constant,

then the changed network will also have the sallietransmission prG'""r..

ty. A real nonsingular transformations of the loop currents in t4e

network, keeping the input loop current i1 to be constant, vall lead

to networks involving a number of variations ih structure and elo-

ment values, while presenting the same input impedance at the dri-
ving point.

By this process we can change the terminating resistance ~

of the syn~esized network to be equatl to 1, the normalised valu8.,

The impedahce level of the output terminal is to be changed.

For this change an additional capacitOOlce C will be requir"il
which is shown belOW.

We want to change R to be 1 so that remains constant. For th:';3

the inductance Ln will have a new value L IR. The capacitance mctrixn '

and ~ for

"Cn~l
-Cn-1

the circuit of Fig.~.if COOlbe written as

-Cn_l,' d"
•••••••••••••••• r .~. (s-.J.t;)

cn+ Cn_i

f
A new capacitance matrix written as-

Cn-1

R (c + C 1)n n-
................ r;.ib'\'- 'J

will keep Z constant and change the output side so as to incluCe

the change in R for the capacitance. For the capacitance matrix (2)
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The circuit can be written as Fig.5.8.
Fig.5.7 and Fig.6.8 will have the same Z at the terminals

aa while the admittance level at terminals bb will be increased by

a factor R, i.e. the impedance level is decreased by the factor E,

so that we can get the output resistance to be equal to 1. The cir-
cuit of the figure 5.5 will then be transformed as that of fig.
5.' having same impedance at the terminal aa while the output ll::J")()-

dance is decreased by a factor R. For this change we require nn

additional capacitance C. The network of Fig. 5~3,

the form of Fig.-514•
will now h:lvc'

After getting the network in the form Fig.5~~:'~, the induc-

tancea excepting the first one (~), can be made equal to the induc-

tance ~ by lowering the impedance level in each case by a fuctor
R

of (!-"'/12) ~(Yt} t L being the inductance of the respective branch.

For this change the capacitance seen at aa is again to be

changed, admittance level increased by a factor l~"t) . So a neVi

set of capacitances will be obtained. Taking C' to be left side of

the inductance and increasing its admittance level, the new circuit
becomes .as'fig.5.13.'

Admittance level of terminal aa of Fig. 5.14 can be incr,oased
by a factor Ln x -!-, keeping the admittance at bb invariant,

R L
involving one more capacitance, C , as shown in fig. 5.15 Thea
complete circuit on the right side now becomes

In a similar manner circuit of Fig. 5.3 can be converted to

a network configuration cisting of shunt resonator coupled by capa-
citances.
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505. COMPUTER PROGRM~rE:

Compute.: programmes have been ,':citten for the complete pro~c-

dure as has been described in proviOU3 sections. The main steps ~'S

shown in the flow chart of figo5.17. Phe values of denominator of

transmission function XX(Il) aro very high Compared to that of th,

numerator y' (w
2
) at frequencies of st 'pband. At centre frequency .~

transmission function is unity so tha; the value of its denomin3tor

and numerator is equal. For this reas'ill, double preoision is used _'.C

the entire programme.

Values of the approximated tran.,mission function with the valu

es of its denominator and numerator ro.d the attenuation of the fil'

are calculated for different frequenc;- ranges for plotting curves

which will be shown in the next chapt,'r.

The programme is a generalised (ne for any order of filters

and is only limited by the storage cal acity of the computer.

The poles and zeroes of the ref} ection coefficient are calcu-

lated with the help of a subroutine written applying Newton-Rapson

method. Major time is required for this subroutine. It was observod

that about 45 minutes time is requirec for a filter of order 4 where

a polynomial of .sixteenth order has tc b,= solved.

R; the coefficients of the Fourier series are calculated by

two method- one by assuming fixed points(point matching technique)

and the other by assuming a regular curve. The flow chart. of Fig.

15.17 shows the 1st methode The flow chart of the second methos is
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shown in figure 5.18. The progra~mo :or fig.5.18 is same as that

of Fig.5.J~ 3xcept in the calculation of R.

Inputs to the progriOj;l[iJeof l'ig'.15.17a;i'ethe order of L",

filter MA. The values of the denomin"tor or transmission functior'"

XX which are assumed depending on th" requirement and the angles

AB in degrees corresponding to the vcuues of XX.

The outputs are the values \,f elements of final netvJOrJ.;::,

and the values of transmission fune t: .on, .its numerator and denolilin.

nator, and the attenuation in dB for different frequencies.

Inputs to the programme of :'ig.15.18 are the angles AB X,

sym in degrees, AFMX, the maximum vaue of XX, in number and, I0~~,

the order of the filter. Outputs are same as in the previous ccse,
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I
Input

AB,XX, MA

,,
I

Form :
MATRIX

A
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Flow Chart

CalcuL,te:
Coefficients of
Binomial expan-
sion o

Calculate:
Coefficients of
Chebyshev Poly-
nomial

Reduce :
MATRIXA

By Symmetry

Form: MATRIXCR

For Conversion of
Fourier ex~ansion
polynomial in w2

I
Iin'
i

Sol ve : R
Coefficients of

Fourier series Contd •••••••
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Flow Chart

I
Calculate: I

T (jw) 2, XX(w2), Y(w2) and~
Attenuation as a fumrtion 0
w. output.

-'

Calculate:
Polls and zeroes of
Reflection coefficients

1
Sort:

Left half poles and zeroes

Calculate
Input
Irnped?nce

Fig.5.!7 '"1,1

"\(Contd ••••.•• )
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Flow chart

Calculate: Element values
Realization of the net-
work in Ladder form

I
Obtain: final network
transformation of the net
work,
Output.

Calculate:
Transmission function from
final network for check

stop
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Flow chart

Synthesize
output

..:-1

AB '" AB +NN x X

L~__

stop

Fig. 5.l8
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CHAPTER-:6

RESULTS AND DISCUSSION

6.1 PRELIMINARIES

In this chapter the results of filters synthesi!!:edfordi-

fferent orders are discussed compared with those of Butterworth snd
Chebyshev filters.

In article 6.2 Butterworth and Chebyshev band pass filt2rs

are designed for band width of .07 for different orders.

In article 6.3 second order filters are discussed. The ole-

ment values are tabulated for Fourier, Chebyshev and Butterwcrth

filters. The attenuation curves are plotted for different types of
filters

In article 6.4 third and fourth order filters are discussed.

In article 6.5 discussions have been made in the results

obtained using IBM Model 360/30 computer.

6.2. BUTTERWORTH AND CHEBYSHEV FILTER DESIGN

Tabulated Butterworth and Chebyshev low pass, values are
(15)taken from Hand Book of Filter Synthesis, by Anatol, I.Zverev •

These values are converted for the band pass response. For Fourier

approximation by point matching technique we have taken cutoff fre-
Bl!.0

quency points corresponding to ~ and 920, because, for the nOrG3-
alised case, centre frequency 1 rad/sec corresponds to 90 when coo-

verted to angle according to the equation (4.20) and by the S~le
a .equation 92 degree corresponds to a frequency 1.035 rad/sec.Assu-

ming these values as cut off frequencies, we may obtain a band w~dth
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of (.0355' x 2) = .070 rad/sec. Normalised low pass Butterworth "nil

Chebyshev, filters are transformed to band pass filters for this

band width. The element values of the Butterworth and Chebyshev

filters are then calculated for second third and fourth order fi:-

ters. These values are tabulated. Calculations are shown in ApY"3n-

dix A-l. A computer programme is prep'ared for calculation of rGS-

ponse curves which are then shown graphicall~.

6.3 SECOND ORDER FILTERS (FILTERS WITH RESONATOR 2)

For Fourier method of approximation, the value of thG rolg1e

is taken to be 90° corresponding to w = 1 rad/sec as center point

and the cuttoff points are taken to be 92° and 88°. The frequency
corresponding to 92° in 1.035, so that band width becomes equal to

2x(1.035 -1.0) = 0.070 radians/sec. approximately. The value of
T(jw) 2 at points 88°, 90° and 92° are respectively 0.5, 1.0 and

0.5 approxim"tely corresponding values of y( w2).; the numerator of

T (jw) 2 is 0.05814, 0.0625, 0.0668, we have considered XX (w2),

the denominator of T (jw) 2 to be symmetrical so that the valuc of
2 0 y( Ii) 2XX(w ) at 92 comes --r-(3w) 2 = 0.1337. The value of XX(w ) at

88° comes to be the s~1e i.e. 0.1337. So that the values of XX(w2)

at 88°, 90° and 92° become 0.1337, .0625 and 0.1337 respectively.

The remaining two points required for m =2, are assumed in such ~

way that the attenuation at stop band becomes very high while at

the same time T(jw) 2remains pOsitive. Preliminary testing v~lue cf

3,4,5 and 6 have been taken satisfying the foregoing conditions ,,'or

angles 85° and 95~ For XX (85°) = xx (95°) = 3. It is found th,~

there is no ripple. But for XX (85°) = xx (95°) = 5, there is ~

.7 db ripple in the pass band. Increasing the values of XX (8]0)
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and XX (95°), so as to obtain sharp attenuation it is observed that

the ripple becomes larger and at some point with XX(85°) = XX(95°)

= 7.5, XX (w2) and T (jw) 2 becomes negative for which the networ:,
realization is not possible.

For Fourier approximation assuming the specific curve for

XX( w2), the value x2 is taken to be 60° and 'the value of X1 is:,C&':811
3 4to be O. The maximum values of XX(A) have been taken 10 , 10 • For

ofig.5.1, for X2 to be 60 , the value'of XX (A) is assumed to be ~crL

for obtaining a reasonable band width. After approximcition, the bQnd
width becomes 0.18. The results are shown in table-l.

Computntions h~ve been made for different X2 values also.
For X2 greater than 6eo, though the attenuation increased the b"l1c1-

width becomes smaller and the attenuation is very poor compared tc
" ,',.,'the Chebyshev and Butterworth filter and ghe value of the capaoitanco,

C2 becomes nega~ive, after network transformation, which is cOhGi-
derable.

6.4. THI~D ORDER AND FOURTH ORDER FILTERS:

For the design of third order filter, the values XX(A) :,C

assumed at 7 points, the valUe of A at these points are 80°, 85°,22°

90°, 92°, 95°, 100°. The band width is assumed to be .07 as in the

case of 2nd order. The values of XX(A) at the cut off points 8So

92° are calcu~ated to be .0358. Symmetry is assumed in this o&~~

so that the value of XX(A) at 85° is equal to that at 95° and tho

lue at 80° is equal to thnt at 1000• Different sets of v:l1u"s :..e
v::..

token for these points. On the basis of previous discussion W8 te":,,

th" valUe of XX at 85° and 95°to be 14 and that at 80° and 100" t, :).,

103.' The response curve for these valUes is approximately simil:r tc

the Chebyshev, and Butterworth response curve. If we wQnt to inc,.:,3~
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the attenu:oticn. the vnlue at 850 and 950 is to be increased ','n". t:.8

the v:olue at 8ci°and 1000 has to be increased also. If .we chemi:e :.T::':'

one of these values, ripple occurs at passband. Whenthe chnng~~'i3

sufficiently large, ripple becomes so large that the value of XZ(A)

is negative for which T(jw) 2 is nlso negative and the network r,o:o.-

lization is not possible.

For fourth order filter the

880 0 0 0 0• 90 • 92 , 100 and 105 •
values of A nre taken to 75v

, 80c,

aymm••try is assumed in this c.:se

also, so that we can assume thr ee value s of XX(A) one at 750
ttDc1 ::':5(:,

one at 800 and 1000 and the rest at 850 and 950
• The values of L:( .!'.~

is assumed to be 105, 5 x 103and 3.4 at 750, 800 and 850 respcccivc::'y.

The filter has been synthesized with three values. The pass b"Del ':'Ci3-

ponse of this filter has been found to be quite satisfactory, thc~6h

consider,3ble attenuation has been obtained at the stop band.

The results are shown in table 2 & 3.
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BW
1. Butterwidth .07
2.Chebyshbv .07(,5 dB)
3,Fourior(,) .07

4.Fourier (4.) .07

5.Fourier(5; .07

70
'l'ABLB-1

ORDER OF THE FILTER =2
L1 C1 Cc1 L2 C2
,0495 19.2 1.00 ,0495 19.2
,0359 26.44 1.41 .0359 26.44
,0336 28.55 1.10899 .0585 16.06
.03007 31.82 1.2871 ,O/162C 20.47
,02608 36.67 1.485 .03889 24.40

(3) XX(850)
(4) xx (85°)
(5) XX(850)

6. E'ourier
(Assuned curve) .18 ,07932

= XX(950)
= xx (5°)
= XX(95°)

11.28

=3,
=4

= 5

1.138 .179 4.635
Ccl

I I Il I , I
I.fl. ~ ~ - 1 ~ ~!JL

)~\ T ~\ TCL rlL I
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TABL~:..S.-_
ORDER OF THE FILTER =3

BW L1 C Cc1 L2 C2 C L3 C31 .c2
I.Butterwidth .07 .07 13.48 .7071 .07 12.77 .7071 .•07 13.48

:e.Chebysllev .07 .0376 25.396 1.204 .0376 24.192 1.204 .0376 25.396

.3.Fourier(1) .07 .02559 37.82 1.0504 .05590 15.94 .9634 .0590 17.03

ij _ -'" "
' j .•OJ:/))!l 1.:...:.~;~ 1 . '/ ./~ .(j ___~I ',~. :,';i.~1 -' ~ ,_:) OJ ,f):;l .:.,\.}'/ 1fl "C):)

(l) XX(85°) = XX (95°) = 14 , xx(800) = XX (100°) = 1000
t 1 I (~2

LeI

t-n :2 \ill T(, fl, T(~ .,;: I.n_, '1L1.. 1(2.
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ORDilli J2.F 'rHE FIL'l'EP;= 1+

JABL~-3

)
I

BW = .07,

L1

1.Butterworth .0913,

2.Chebyshev .0384
(.5 dB) .

3.Fouriu (1) .008312

VI = 1 rad/sec.m

C1 Cc1 L2 C2 Cc2 L3 C' Cc3 L4 C43
9.305 0.645 .0913 8.882 0.421 .0913 8.882 .645 .0913 9.305.
24,885 1,185 .0384 23.893 .992 .0384 23.893 1,185 .0384 24.885

119.14 .733 .2942 2.475 .19 .2942 2.97 .265 .2942 3.154

IAt ~
. L,

(1) xx(85°)
:x( 80°)
XX(75°)

= xx (95°) = 34
= xx (100°) = 5000
= xx (105°) = 100,000rC~1 I rIC;~

~c 3 T
f r~i. I Ci.

~~3'-1]
L~ TC3 ~L4 I'.q fA



73

6.5 DISCUSSIONOF THERESULTS:

Graphs are plotted for Butterworth Chebyshev and Fouri'or :~iJ.-

ters to show the different attenuation characteristics. In Fig.b.l

and 6.2 Attenuation Characteristic of Fourier filters of Second C]'-

der exe shown. Attenuation in dB is plotted, as a function o:c norr,,,,,-

lised frequency in radian/sec. It is observed that the attenu',:ti,',l1

at the stop band of filter can be increased by increasing the v'':;,u'"

of XX(85°) , where XXis the value of the denominator of trans'.i-

ssion function.

In fig.6.3 and 6.4 comparison is shown with Butterwor":;" ,nd

Chebyshev 5 dB' filters. In fig. 6.3 the characteristic of Fourier

filter for XX(85
0
) = xx (950) = 5.0 is plotted with those Bucte",

worth and Chebyshev filters. The stop band attenuation is highest

for the Fourier filter. But at the same time the pass band ripple

also becomes highest (approximately 1 dB). In fig. 6.4, Fourier :il-

ter characteristics are plotted for XX(95°) o= XX (95 ) = 3. In Lis

case there is no ripple and the attenuation at stop band is ie b"t-

ween Butterworth and Che byshev .5 dB ripple filters.

In Fig.6.5 the pass band response is plotted. The response of

the Fourier filter for XX(85°) = 3 in the pass band is observed to

be similar to the Butterworth filter.

In Fig.6.6 the numerator of the transmission function l,S ..:,~c-

tted as a function of normalised frequency. For the filters ":,f V:2o'-

6.1 and 6.2, symmetry has been taken for the denominator, XX. T"e

transmission fUnction can not be symmetrical about centre frequonc:;.

But at ithe frequency lower than the centre frequency the Vall") C f 'o,:c,

transmission function ",ill be smaller and at the frequency high2r
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than the centre the value will be greater than that at the centre

frequency. This is observed in fig.6.5.For symmetrical response the

value of XX may be taken sO that IT (jw)! 2 is same at both sides of

centre frequency at equal distance. For this XX at lower frequency

should be smaller than that at higher frequency than the centre fre-

quency. The difference is values of XX at equal distance apart fron

the centre frequency, will Cause the odd harmonics in the Fourier

expansion. Fig.6.7 explains the numerator polynomial as a function of

angle A of Fourier series expansion.

In Fig.6.8, the effect of increasing the value of XX at 850

and 950 is explained. It is observed that if the values are increased

the ripple occurs at the pass band. Further continUation of this pro-

cedure which resulted in negative values for XX (w2) in the pass b'wG,

the realization was not possible.

Fig.6.9 and 6.10 explain the response curve for second order

filter designed for the assumed curve shown in fig.6.9.

Fig.6.11, 612 and 6.13 are characteristic curves for the

third order filter. It is observed from Fig.6.11 that the response 'T

Fourier filter is satisfactory compared with the Butterworth and Cheby-

shev filter,In tha eagse,that the Fourier filter has got almost tho

same sharp cutoff as 'the Chevyshev filter but without the ripplG ef,:oct

of the latter in the passband. The Butterworth Fil ter has got ii ccL,-

parable passband response but with a less sharp cut off characteri:::tic;'"

These remarks will be evident from a comparison of curves (a) (b) sni

(el of Fig.6.11. Systematic synthesis procedure for Fourier filt,T G:,::'

be obtained via the assumed cUrve shown in Fig.6.9, but the point -
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matchinp technique does not yield good high order filters as SW;",l1

in Fi,g.6.14 where a fourth ord_cr filter :cesponse has been obtai:},-;:

using point-matching technioue. Irhe passband ripple ma3nitude b->*

comes unacceptably large though a s"tisf"ct"ry stopb'llld respoilc;<O'0 "

be obtained without much difficulty.
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Chapter-?
CONCLUSIONS

In this stUdy a procedure has been developed for the synthe-

sis of band pass filters. The realizable rational function has been
obtained by approximating ~he bandpass response so that conven~

tional lowpass to band pass transformation is no~ required for ob-

taining the band pass filter network. The filter network thus ob-

tained has been transformed to a common band pass network consis-
ting of shunt resonators coupled by capacitors.

Solutiom of the approximation problem by point matching tech-

nique is a laborious task though the results obtained has been ob-

served to be satisfactory for the second and the third order fil-

ters compared to Butterworth and Chebyshev filters. For the fil-

ters of order higher than 3.the solution of the approximation pro-
blem by this technique becomes much labourious •

• For the calculation of input impedance,solution of a polyno-

mial of order 4 times the order of the filter is required. It has

been observed that for some cases of higher order filters, the sub-

routine used to solve the polynomial is not suffic~ently efficient.

A more efficient subroutine is to be developed for such cases.

An alternate procedure for approximation assuming a fixed
curve has also been developed which is observed to be better than

the point matching technique. A second order filter has been desi-

gned by this procedure. Further improvement of this procedure may
be a better procedure for the approximation.

The remaining part of the synthesis procedure developed in

this study such as the realization of the network by ladder deve-

lopment of the input impedance and the transformation of the net-
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work into a practically attainable network is quite satisfactory.

The procedure of the synthesis of band pass filter may bo

further developed to design a filter having symmetrical bandpass

response. The response of the conventional bandpass filters desi-

gned by lowpass to band pass transformation is not symmetrical

because of the transformations required after the approximation of

the low pass response, change the symmetry of the bandpass respon-

se. For this method of apprOximation, the band pass response may be

assumed symmetrical and then the approximation problem can be sol-

ved so that the symmetry will not be changed for the final network.
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APPENDIX A-l

BUTTERWORTH AND CHEBYSHEV FILTER DESIGN

BANDWIDTH = 0.07, CETRE FREQUENCY = 1 rad/sec.

q1 = 1.4142

q2 = 1.4142

K12= 0.7071

L = .!2Z __
= 0.0495

1.4142

C = 20.2

N= 2
Butterworth
Low pass values

C = K ,,<\w,C,= 0.7071 x .07 x 20.2 = 1.01212'--'= CCCI

l,:O l,2.= '0495"

C,:: <::2.. = 20.'2.- 1,0 :::19. L

ChebYshev 0.5 db ripple

q1 = 1.9497

q2 = 1. 9497

K12= 0.7225

L = ,07
= 0.0359-.-------

1.9497

I. 41 = 2..b .44

C = 27.85

C12 = 0.7225 x .07 x 27.85 = 1.41 = CL I

L -=. L2.::: '0"35"9,
C,:=' <0;2.. -::.. '2 '1 g C;-

c.<.t

OJ-I 1--( ~1-1
1",- ~-: (. I r L'2. TeoL
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N=3
Butterworth

q1 = 1.00

q3 = 1.00
K12= .7071
K23 = .7071

L = _=2Z_ = .07
1 -1- = .07

C = 14.29
C12 = .07x.7071 x 14.29 =

N=3
Chebyshev 0.5 dB ripple

q1 = 1.8636
q3 = 1.8636
K12= 0.6474
K23= 0.6474

L = =27__ = 0.0376
1.8637

C = 26.6

L) = L2 = L;-= 0'0"4

(1::: 1.1.2...'7 - O.:{O+I

13. "1 g = C3
( 2. -=- I "'1. 2. 9 - (0. '1t)~ 1 +

-= 1'1.1+

l-,::. L2 == L:;, = c.03>-.:rG

C1 == 2.6,~ - 1.2.0"'1
::: '2 S-' 39 { '= C 3-

(2- -::.2. (0' G -(1.204 + I.2CC\)
- ') A }0 ~- ~.." j::::-

C12 = 0.6474 x .07 x 26.6 = 1.204 = C13

\1'e
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Butterworth
q1 = 0.7654
q4 = 0.7654
K12= 0.8409
K23= 0.5512
K34 = 0.8409

L = __~9Z____ = .0913
0.7654

C = 10.95
C12= 0.8409 x .07 x 10.95 = 0.645
C23= 0.5512 x .07 x 10.95 = 0.421
L,= L2= Lj,-=.LLj='0'313

L,:: 10,9£- O,bLJ<;;" = '),:,oS"= L«j

c2:: 1()')~-(~,bCIS+u42!J::. ') SS"'1 C3
~c.l ~ O'~A,> I Cc.2-:: o,Cj2...1

N-4
Chebyshev 0.5 dB ripple

•

q1 = 1.8258
q4 = 1.8258
K12 = 0.6482
K23 = 0.5446
K34 = 0.6482

L = .07 84---i~8258---------- = 0.03
c = 26.07

"C12 = 0.6482 x .'97x 26.07 - 1.185
C23 = 0.5446 x .07 x 26.07 = 0.992
(..,::::::L2::' l~ = L~:: (l,O:?,'3'1

L.. =2b,O+-I,I£S:-
I = 2-488<:> = c.<l

C2,::: 2.b.o=l-~"l2~-t6
=.23.'8,95 =C?,

<:C \::' I, I 8 s;-
ec;>,= 0' 5':7 2...

.. .:
"'



APPENDIX A2
COMPUTER PROGRAMMES

•



--~~~~~~~~~~~~--9S~'-' -~~

IV 36 C~,--FQ- 479 3., 6' .MAI NPG M OAT E 15/J!177 T 1"1 E

-~~~ -~~~-----

DIME NS j[J N I A.WIll, III ,I 8 W(ll ,Ill ,[ OJ tl 1 tIl ) , I CP I 11, 11 I, 1Pw Ill, 11) ,
lIC T( lltlll ,I TWI II ,Ill •
DOUBLE PRE CIS ION AJ II ,1 1) ,C R (11 ,11 J, AI Ill, ABJ II ) , XX (l 1 ) , YY I lll_' _

!TT( III ,ARIII I ,E M{III ,G I II I ,H Ill) ,GG (II I, ZI R III I ,ZI 1 I II It THIS III I,
2ZLlIIJ.,XR{ 121 ,R( 121 ,XCOF{2?1 ,COFI??) ,ROCTRl221, ROOT !(22), lAAI51,-~~~3ZA3(5),:C:12I,PP(5) ,00(5) ,DGIll,21 ,Z CI41,zSCI4I,P(6J,ARR(6,6I,
4A T( 6, 6) ,B I 6,6) ,C ( 6 ,61 ,A F 1 16 ,6) ,A I I 16 ,61 ,A FF I (6,6 I , AFX I (6, 6 1,
511XI( 6, 6) ,:) , S ,B R ,A BR , XXA,X XW,A F MX,Y I I ,'( I R, CNXW, f MAX

~~~_6_'._WLI50),AWI 150) ,TW(150) ,TTW1l501 ,XW1l50I,YWIl5D),AOBI150),PHIIII 150
7J, WWI 11)

~~ __ ad LL ( 2) ,ZC 1_3_1~~~ __ ~~~~ __ ~ __
10C REIIDII, 101MII
lC FORMAT( 1 101

IFIMII-I0) 104,102,102
10;; GO TO _').00---~
10~ CONTINUE

___ ~ N=IMII*2H-1. ~~~~_
READl 1, 1211ABI I) ,1=1 ,NI

1;; H'RMII II 7F 10.51
READ 11,13)( XXII ),1 =1 ,NI

1 ~ FORe'1AJI 7E ll. 41
"18=1 MA*2-1) *2

~~~_f>'C=MA*2
WRI TE ( 3, 20)

2C FORMAll9X,'I',8X,'AB' ,13X,'WW',13X,'YY',13X,'XX',13X,'TT')
DO 110 I=I,N

~ AliI 1 I=ABI 11*1.57079633/90._
WWII J=) SIN I All I I ) 12.1 IDC0 S (AA~I~t~)1~2~.~1
YY( t )=( WWII 1**MBI II 11.+WWII) **21 **MC)
TT(Il=YYIII/XXIII -~---
WRITEI3,221I,AB(I),WWII) ,,(YII) ,XXII) ,TTIII
XXII= O. 00

~ __ DD 110 J=I,N.~~ __
Al I,JI=DCOSI XXA)
XXII=XXA+AAI II

IlC CONTINUE
22 FOR-MAll I 10,5FI5.8)

BW=WWIMA+2)- WWIMilI
~WR!TEI3,14~1 _

14 FORMATl5X,'ORfJER OF THE FILTER',5X,'BANDWIDTH OF-THE FILTER'-)
_~~_vJR I TE(.l..!l6J ~,1A,B W

It FORr~AT( I 15,F 40.51
WRI TE( 3,28)

2E FORMATlI5X,'MATRIX A FOR FOURIER SERIES EXPANSION')
WR!TEl 3,261 I (AU ..!_JI ,J=1 ,NI ,I =1 ,N)

2t FOR"lA T{ 7E 17. 71
MD=MA+ 1----- ---~~-- -~---
DO 106 I = 1, M)
DO 106 KJ=I,MD
J= 2*KJ- 1

lOt ARR ( I ,KJ I=A! I .Jl ----
DO 318 I=l,N

~ __ 6b 318 J=I,N ~~~~
3lE lAW! J,J)=O

A2.1 GENERALISED PROGRAMMEFOR BANDPASS FILTER DESIGN BY
_E.OJ1RIERME'tHOJLUSIlilU'O_INTMAT_CHIN_G_TECHNIQUECCll.ntd.l_ ~
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IV 36C~-FO-4 __7_9__3_-_6 M_A_INPGM O.AT E 15/11/77 T 114E

------- -~--

•

•

DO 319 J = 1,N
31<; II\WlJ,l)=l

IAWl 2,21=1
-------- -------------------------------------------- --------DO 320 I=3,N

DO 320 J=2,N
K=J- 1

32C IAW( I,JI=IAW(',Kl*II-KI IK
00 321 I=l,N
00321 J=l,N

-3-;;-J~I-B-WlI, J I= I AWl~N~--J~f-~I-,~J~l~*~(.---~1~1-~~'*~I~J~f-TI
DO 322 1= 1, N

-------I-C we I, 11 = I A-W-(-l-,-I-I-*~I-BWI1 ,1)
00 322 J=2,N
IC WI I, J )= 0

__ ~_ DO 322 K=l,J
32;; Icwe l,J I=I:--W-I-I-,-J-)-+-l--A-W-(-I--,-K-I-*lBWII ,J-K+-ll
__ ~W_R_ITE( 3, 313) ___ _ ~ ~ _
31:: FORMAT(J5X,'MATRIX ICW')

HRITE 13,3541IlICWlT,J) ,J=I ,N) ,1=I,NI
3~ ~ FORMATt 7I 151

______ 0_0 325 I=I,N
DO 325 J=l,N

32~ ICPI I ,n =0
DO 326 I = t-,~M-A---------------------------------

K.= 2* 1 - 1
KK= 2*1

____ ICPIK,lJ:_=l*(-U**IIHI
32t ICPIKK,l)=O

ICPI 2,2)=1~~~
ICP( N, 1l=(-I) **MA
DO 328 K=3,N
LL=K-l
LLL=K-2~ --

DO 328 1=2,N
J=I- J

3-2-E--I-C-P1-K-,-'-)-=-1-[;P ( LL ,J) *2 - I CP ILL L , 1)
WRITE (3,354l(IICP(1 ,J) ,J=I,N) ,I=I,NI
DO 327 1=1, N
DQ....32J J=l,N

327 ITWI I,J I=ICWIN-I+l ,.J)
DO 329 I=l,N
00 329 J=i-,-N-~
ICH( I ,Jl=l TW(J,I I

32<; ICTlI,J)=ICP(J,ll
DO 330 I =1 ,N
00 330 J=l,N
IPW(l,JI=O
00 330 K=I,N

33C IPW( I,J)=IPWII ,J)+ICWlI ,KI *ICTl K,Jl
WRlTEI3,3101

3IC FOR"'AT( I5X,'MATRI X IAW'l
WRlTE (3,354H IIAWI I,-J-)-,_-J---l-;Nl ,r =1 ,Nl

~ __ HR 1 TE ( 3,.'3,.,1_17)~==-~~c=-c~c-------------------311 FOR 1"'1 A T{ 15X,' MA TRl X I B Vt' ) ----------------------

------ -- .~--~- ------------------------ ----~-- -------



---------~--- 9_1, _

IV 36CN-FO-479 3-6 MAl NPGM DATE 15/11177 TIM E 13.3

WR!TE 13,3541(118W(1 ,J) ,J=1 ,N) ,[=1 ,NJ
WR!TEl 3,3121

31;; FORMATlI5X,'11ATRIX lCW'1
WRITE (3,354)(1 ICHI I,JJ ,J=1 ,NJ ,1 =1,1\1
WR!TEl 3, 3141

314 FORMATl15X,'MATRIX ICP')
WRI TE I 3, 3 54 Jl l I C P I I , J J, J = 1 , NJ , I = 1 , N)
\.R !TEl 3, 3151

3 1 ~ FORr1ATI 15 X, 'Mil TRI X 1 P W'I
WRITE 13,354)(IIPWll ,Jl ,J=1 ,NI ,1=1 ,N)
00 332 .I=I,N
00 332 1=I,N

33;; CRI I,J 1=IPW( 1,.11
WR I TE ( 3, 241

24 FORMATlI5X,'MATRIX CR FOR CONVERSION OF II INTO W')
WR!TEl 3, 26) IICRI I ,JI ,J=1 ,NI tI =1 ,N)
N=~W
DO 113 1=I,N
DO 113 J=I,N

112 AI I,J I=ARR( 1,.11
P(1)=O.O
00 114 1 =1 ,N

114 PI 1)=P( ll+A(J,1 I
DO 116 1=I,N
00 116 .I = 1, N

lIt Cl I,J )-AII ,JI
DO 128 K=2,N
DO 118 I=I,N
DO 118 J=I,N

lIE B( I, ,I I =( ( 1 ,.I I
00 120 1=1 ,N

12C BII,II-BII,l)-PIK-1)
DO 122 1=I,N
DO 122J=l,N
Cll,J)=O.OO
DO 122 L-l,N

12;; Cl 1,.1 1=(1 I ,J)+AI I,Ll *B( L ,.II
Q= 0.00
DO 1241=I,N

124 Q=Q+( I, r)
S=K

12 E PI K J -Q / S
DO 136 1=I,N
DO 136 J=I,N

13 tA l( I , .I J = B I I , .I J If> I N)
WRITEI 3,321

32 FORMATlI0X,' THE MATRI X Al 'J
WRITEI 3,26) (AI( I ,.1) ,.1-1 ,Nl ,I =1 ,NJ
DO 340 1=1 ,N
DO 340 J=l,N
AFI( 1,.1)=0.
DO 340 K=I,N

34C AFIlI,Jl=AFI(I,J)+AII ,KJ*AIIK,J)
DO 345 1=1 ,N

•

--------------------------------------------



TV 36CN-FO-47<J 3-6

98
MAl NPGM OAT E 15/11/77 TIM E 13.3:

DO 345 J=l,N
AIl( I,JJ=O.
II'I I-J) 345,342 .345

34;; AII(T.J)=1.
34~ CONTINUE

WR!TEl 3,26)( (AI I( [,JJ ,J=l ,N) ,1=1 ,N)
DO 346 I=I,N
DO 346 J=l,N
AFFI{ 1.J)=0.

34t AI' I'll I,JI=AIlII ,J)-AFIII ,JI
WR!TEl 3, 26J ({AFFI (I oJI ,J=l ,N) ,I=I.NI
A I'M X= 1.
DO 348 I =1,N
DO 348 J=l,N
11'1AI'MX- AFF T( I , J) 1 350 ,348 ,3" 8

35C AFMX=AFF J{ I,JI
34f CONTINUE

WR!TEl 3, 40JAFMX
II'I AFMX- 1.1364.364,362

36;; WR!TE{ 3,331
3~ FORMATl5X, 'CORREC nON DOES NOT CONVERGE' 1

GO TO 990
364 CON TIN UE

DO 360 [K=1 ,N
DO 352 [=l,N
DO 352 J=I,N

35;; AF X[( [ ,J 1=A [ I( I ,J 1+AI' I' [ II ,J I
DO 351 [=l,N
DO 351 J=l,N
AXII[,JJ=O.
DO 351 K=l,N

35 1 AXIl I, J 1=A XI ( I • J I + A.I .( I ,KJ*A I' XT I K, J I
WRITE I 3, 261 I I AI' I II, J 1 ,J=l ,NI ,1=1, Nl
WRITE13,3531

352 FORMAT( 5X, 'CORREO TED AI =AXI 'I
WR!TEI3,261 IIAXIlI ,Jl ,J=I,Nl ,1=l,Nl
DO 356 I=l,N
DO 356 J=l,N
AF II I, J J = O.
DO 356 K=l,N

35t A.FIl I,J1=AFIII,JI+AII ,KI*AXIIK,JI
DO 358 [=I,N
DO :358 J= 1,N
A [( I, J .1=A XI I I ,J I
AFF It [,J 1=0.

35£ AFFIlI,J)=AIIII ,Jl-AF[([ ,J)
36C CONTINUE

DO 138 K=I,N
RIK 1=0.0
DO 138 J=l,N
BR=A II KoJ.l *XXI Jl

13£ RIKl=RIKI+BR
DO 139 [=I,N
IK=2*I-l

•



------- 9..9 _

IV 36CN-FO-479 3-6 MAl NPGM DATF. 15/11/77 TIM E 13.3

•

('" .

IJ=2*1
XRIIJI=O.O

__ 13<; XRI IKI=R I I I
N= 2*MA + 1
00 141 1=1, N

141 RIII=)R1 I)
WRITEI 3, 34)

34 FORMATI5X,'R,COEFFICIENT OF FOURIER SERIES 'I
WRITEI 3, 261lRI II ,I =1 ,N)
~JRITEI3,38)

3 E FO R~' ATI 6 X, ' W' ,1 7 X, 'A W' ,16 X , ' PH AI"' ,1 5 X , 'YW' ,15 X, ' X AW' , 1 5X, t TW' )
Wlll=0.ge
DO 142 J=l ,150
AWl J)- 2. *DA TANI \oil JJ)
YW! J 1= ( WI J I **MB) 1111. + WI JJ **2 I **~CI
XXW=C.OOO
XW( J )=0. 00
. K= 1
00 140I=I,N
XW( J )= XWIJ) +R I K) *OC OS( XXWI
XXW= XXW+A W( Jl

14C K-I+ 1
TWI J )= YWI J) IXWI Jl
P HA I I J ) - I 180. /3. 1416 J *A W.IJJ
WRITE(3,39)W(JI.AWIJ),PHAIIJI ,YWIJI, XWIJI,TWIJI

3 C; FORMA 11 6E 1 8. 5)
L=J + 1 '

142 WILI-WIJI+0.0005
1MA X=1W( 11
DO 148 K-2.ISO
I F 11 WIK )- mA X) 148,146 ,146

14 c TMA X= T WI K I
14E CONTINUE

TlJ,AX- 1M.A.x+ 0.001
WRI TEl 3, 40) TMA X

4C FORMA11F30.161
DO 154 J=l.,N
AR ( J 1= O. 0
DO 154 K=J ,N
ABR =CR I J ,K~I-*-cR~(~K~I--------- ---------------------

154 ARIJI=A~IJI+ABR
WRITEI3,481

4E FORMATl5X,'AR ,COEFFICIENT OF POLYNOMI AL OF W'l
WRI TEl 3,261 {ARI Jl ,J-l ,N)
CN XW= 1 • I I ARI N) * TMA XI

--_w_R-I TE I 3, 4""0")--;:C""N;-';Xc:W.,-----------------------------

WRITEI3,501
5 C FORM ATI 6 X, t W' , I 6 X, ' XW' ,15 X , 'AD 8' ,14 X , 'HJ " lSX ,'T T W" 14X, ' P HA !' , 13

lX,'YW')
WIl)=O.IO
DO 162 J=10150
AWIJ 1=2.*oATAN( W( J) I
WI J )=0 SIN I A WI Jl 12. J IDC 0 S ( A WI J) /2. I
XWI J )-AR ( lJ

'.



--------~~----~--~l.O.O _

IV 360N-FO-479 3-6 MilI NPGM OATE 15/11177 T 1'-1E

------

DO 1.58 I=2,N
15£ XW(J 1=( XW(Jl+ARI I) *WI J) **(2 *11-111)

XW(J I=X~J( JI/( I.+WI JJ **21 **MC-~-
Yl~IJ 1=1 WI Jl**MB 1 I( 11.HJl JI **21 **MCI
TWIJI=YW(JI/XWI Jl
TTWIJ1=TWIJI/TMAX
ADB I J I =- 10. G*D lOG 1 O( THH Jl )
PHAIIJ)=( 180./3.1416) *AI\I Jl
L=J + 1
W(l .1= WIJ 1+ O. 0250

162 WRITEI3,601W(JI ,XW(JI ,ADB(JI ,TW(J) ,TTW(JI ,PHAIIJI .YWIJ r
60 FORMAT( 7E 17.51

KM=2*N- I
00 its J=I,N
JJ= 2*J- I
JK=2*J
Jl=J+l
XCOF(JJI= IARIJ)/ARINII*I-I.I**Jl

16£ XCOFIJK)=O.OO
M=2*( N-ll

_ 0_0 264 J=1,2 ~ _
CAll OPOlR Tl XCOF ,COF ,M,ROOTR,ROOTI.I ER)

_____ cWRITE 13,56) I XCOF I Kl ,K=1 , KM)
------------------5t FORMATl9EI3.5)

DO 160 1=1 ,M
160 WRITE( 3, 54)ROOTR( I I,ROOTI II)

_~5_4 FDRMATl2( 15X,E25._6_1_1_______________ _
K= 0
l= 0
CCCI 1l=0. 000
DO 240 I=I,t~
IF(RODTRI I I) 246.242 ,240

24;; IF( ~OO TI (I) )244,240,240
244 K=K+ 1

CCCI K )=ROOTI( I _) _
24t IF(ROOTII I I )248,248,240 -----------------
24£ l=l+1

ZAA( L)=ROOTR( I)
ZABIlI=ROO TJ (I)

-- - --- - ---------- ---~ ---24C CONTINUE
IFICCCI 111250,252,250

252 on 254 1=1 ,MA
PPI I )=-2.*ZAA( I)

254 QOI II=ZAAI I) **2+ZABI I I **2
GO TO 255

25C r~AA=MII-1
flO 259 I=_I_,~M_A_A _
PP( I 1=-2.*ZAIII I I

25~ OO( I}=ZIIII( I 1**2+ZABII 1**2
PPIMII 1=0.
QQ(MAI=:CClll

---- -~-------------~---- -~---~------ -- -255 OG( 1,JI=1.0
flO 256 I =2_,_N _

25t DGI I,J}=O.O



---------------~1-0_1-- _

IV 36(\1- FO- 479 3":(; MAl NPGM [) AT E 15/11/77 TIM E 13.3

DO 262 1=1 ,MA
EMI l)=DGI I,JI*QQIII
EM( 21=OGI2.Jl *QQI I )+DGI 1 ,Jl *PP(j)
NNN=N-l
DO 260 K=2,NNN

26 ( EMI K+ II =DG I I K+ I ) ,J) *QQ I I ) +OG I K.J I * P P I I I + OG(I K- I I , J I
DO 2(;2 K=I,N

26~ DGIK,Jl=EMIKl
XC0 F { 2. *N- 31 = XCOF { 2 *N- 31 + I. I I AR I NI *T MAXI

26" CONTINUE
WRITE (3,261I (OGI I ,JI ,r =1 ,NI ,J=I ,21
NK=N+2
00 2 6 5 J = I , NK
GIJ)=O.O

2 6 ~ HI J )= o. 0
DO 266 I-I,N
G (f 1= lOG I I ,r 1+0 G ( I ,21 1 12.

266 H (1)-IOG(I,II-DGlI,zl)/2.
WRITEI3,26l(G (II,I=I,Nl
WRITEI 3, 261I H I I I ,1=1 ,NI
NB=N-3
NG=N-2
DO 28C I=I,NB
lLl I l--HI I,+ 1) IGI I 1
IFII-"l+5l268,268,272

26e 00 270 K-I,NG
__ 2_7C GI K+ l-ll=GI K+I -ll-H I K+I I IlL( I J

GO TO 276
27, 00 274 K=I,3
27~ GIK+I Il-GIK+I II H(K+II/lLlIl
216 00 218 K=I,N

GGI K I-GI KJ
GIKI=HIKI

278 HIK )-GGI KI
WRITEI 3,2611 GI KI ,K=l, Nl
WRI TE I 3. 2611 HI KI ,K-l ,Nl

28C CONTINUE
lLl N- 2) -HI N-Il IG I N-21

____ lLl N- ll=GI N ) /H IN-II
lL{ N I=HI N-ll IG I N-ll
WRlTEI.3,2611lL (I),I=I,NI
MAA-MA- I
l SL=lL{ N-2) Ill( NI
ZLlI 21=lLl NI
leI 31=lLl N-ll
DO 610 l-l,MAA
IFIMAA-II614,612,614

61< lLLlIl-l.O
GO TO 616

61~ lLLl ll-lLI N-2*I-2.1 /Z SL
6It CONTINUE

lCI1l-lLlN-2*I-Il
ZCI21=-lClII
lCI31-lCI3.I+lCI II

•



, ,
102- _

IV 360\1-1'0-479 3-6 MA IN PG M OAT E 15/11177 T 1'1 E 1~.3.

lCI 1 )=lC I U *ZLU t J
l C I 2 J =D SQR T( Z LLl 1) J *0 SQR T I Z LLi2) ) * ZC 121
ICI 3J=llLl 2J *ZC I 31
ICCI Il=-ICI21
I SC I I I =l C I 31 + lC I 2 J
ZllI2J=ZlLlll

6lC lC(3)=IZCI1l+lCI211IZlUll
Z SCI MA l=lCI 3)
WRI TEl 3, 2881

281: FORMATI5X,'COUPlING CAPACITANCE,lCC' I
I IRI I I=YIR II YIR**2+YI I **2J
WR I TE I 3, 13 J ( Z SC I I J , 1=1 ,MA J
WRI TE I 3,13){ l CC (I I ,I = 1 ,MA AI
WRITEI 3, 13lZ Sl
WRI TEl 3,26) I lCC (I 1,1 =1 ,MAAI
WRITEI3,26)(ZSCII) ,I=I,MAI
WR1 TEl 3, 26) Z l( 11 ,z S1
DO 292 I=I,N
Z IR I I J= 1 • 0
ZIIlII=O.O
DO 290K=1,MAA
Y IR=l I R I I I II ZI R I I I **2+ l II 1I 1 * *21
Y I 1=- l I I I I I II Z I R I I 1 **2 + Z I I II I **2 I -11 • - I WWI I ) * * 2 1* ZS 1 * ZS C IK J ) I

l(WWIII*ZSll
Z IR ( II=YIR II YIR **2+YI I **2)
WRITEI3,26IYIR,YII ,zIRIII ,zII (I)

2<)C I III 11=- YI I II YIR**2+ YI I **2 J -1./llCCI K) *WW I III
YI R= l I R ( I ) II Z I R I I ) * *2+ ZT I (I I * *2.l
Y I 1= -Z I II I ) II Z I R ( I 1 * *2 + 1I I III **2 ) -11 .- IW14 (I J * * 2 ) * l 1 I lJ * ZSCI '1 A J II

HWW( U*Zl{ UI
ZIRIII=YIR/IYIR**2+Yll**21
l 1I1 11=- YII It YIR**2+YI I **2J
WRITEI3,26IYIR,YII ,ZlRlIl ,ZII (II

2 <)2 TTW SI I J= 1. - ( I 1. - Z I R I I ) I **2 + ZI I t I I **2 J I t 11. + 1I R ( I J 1** 2 + 1I III 1"* 2 I
WRITEI 3, 26H THiSI II ,1=1 ,NI

'l'lC GO TO 100
'l0C CALL E XI T

END

•

- -~~---._---- ----._-------------------------- ----



-------- ~1.0..3~ __ ~ _

IV 360N-FO~479 3-6 OPOLRT DATE 011 11/77 TIME

SUBP 0 UT HI E . OPO LR T( XCOF ,C OF ,1'4, ROO TR ,R GOT I ,I E R)
o 1MEN SID N XCOF ( 1) ,C 0 F I I) ,R 0 l1TR ( 1), R GOT! II )

•DOUBLE PRECISION XO,YO,X,Y,XPR.YPR,UX,UY,V,YT.XT,U,XT2,YT2,SUMSQ,
1 DX,DY,TE~P,ALPHA
DOUBLE PRECISION XCOF .COF ,ROOTR,ROOTl
JFn~O POL6

N=,"1
J ER = C
IF{XCDFlN+ll.1 10,25,10 POLIO

10 rFIN) 15,15,32
15 I ER= 1
20 RETURN
25 I ER= 4

GO TO 20
30 JER= 2

GO TO 20
32 1FIN-36135,35,30
35 N X=N

N XX~N+l
N 2= 1
KJ 1=N+1
00 40 L=l,KJl Pl1L2
MT=KJ1-L+I

40 COF{MT)=XCOF{U
45 XO~.C05001Cl

YO- 0.01000101
IN= C "

50 X~ XO
XO=- 10. O*YC
Y0=- 1C, 0* X
X~ XO
¥=YO
IN= IN+l
GO TO 59

55 IF IT= 1
XPR = X
YPR= Y

59 ICT= C
60 UX= 0.0

UY= 0.0
V= C. C
YT= C. 0
XT=l.O
U=CO F (N + II
IFI U.1 65,13C, (;5

,5 DO 7C 1= 1,N
L=N-I+l
TEr~P=COF {L 1
XT2=X*XT-Y*Yl
YT2- X';YT+Y*XT
lJ= U+ TEMP * Xl 2
V=V+TEMP*YT2
F 1= r
UX=UX+F I*XT*TEMP



-------------- __ --...],D4, _

IN [V 360N-FO-479 3- 6 o POLR T DATE 01111/77 T[ME 07

70

75

78
80

85
90
95

100

105

110
115

120
122
125

130

135

140
145
150
155

160

ItS

UY=UY-F I*YT*TEMP
XI= XT 2
yT=YT2
SUMSQ=UX*UX+UY*GY
[F( SUMSQ I 75,110,75
OX=! V*UY-U*UX) ISGMSQ
X= X+O X
DY=-{U*UY+V*UX)/SUMSQ
'1= Y+D 'I
[F(OABS{ OYl+OA,B S( DX)-I. 00-10) 100,80,80
[CT=ICT+1
IF{ ICT-500) 60,85,85
IF ( I F IT I 100,9 0,' 1 00
1F( 1N- 5) 50, S5, S5
I ER = 3
GO TO 20
ODIC 5 L = 1 , N XX
MT=KJ 1-L+l
TEMP= XCOF 1M 1)
XCDFIMT)=COFIL)
COFIL I=TEMP
ITEr~p=N

N=N X
NX=ITH1P
IF( IFITI 120,55,120
IF( IFIT) 115,50.115
X= XPR
'1= YPR
IFIT=O
IF(DA8S( Y/XI-l.CD-081 135,125,125
ALPHA=X+X
SUMSQ= X* X+ Yt, Y

N=N- 2
GO TO 140
X=O.O
N X=f" X- 1
N XX=N XX-1
'1=0.0
SUMSQ= 0.0
ALPHA=X
N=N- 1
CO FI 2 )-COF( 2 I+A LPHA *C OF n)
DO 150 L= 2, N
CO F I L + 1 ) -C 0 F I L + 1) +A L PHA ~'COF ( U - SUMS G:*C OF ( L 1)
ROOTlIN2l=Y
ROO TR ( N 2 ) = X
N 2=N 2+1
1Ft SUf~SQ) 160,165,160
'1=-'1
sur~ SQ= O. 0
GO TO 155
IF(N) 20,20.45
END

•



~ IV 3CO~- FD- 479 3- 6

105

MilI NPGM o liT E 12/12/77 TIM E 14,

C BANPPA SS F IL TFR JE SI,N.IIPPROXI MATED BY ASSUMED RES PONS E CURVES.
DIM ENS IJ "'I I AW( 1I • 111 ,r BWIll ,1 1) ,r ClH 11 ,1 11 ,I C P III ,11 ) , I P.I( 11, 1.1 ),
1 IC T( 11, III ,r TWI 11 ,Ill .
DOUBLE ~RECISION AIll,IlJ ,CRlll.,ll),AAlll),ABllI),XXllll,YY(llJ,
lTT( 1l),AR( 1l1,EM(11l,;;lll) dIll) ,GGlll1,ZlRlill,ZIIlll)'fTWSfll1,
2Z L( 11), XRI 12) ,R I 12 1 ,XC OF (22) ,C OF (22 ) , ROOTR (22 ) , ROOT I (22 J , ZAAI 5 ) ,
3ZA8( Sl,:C:l 21 ,PPI 5) ,00(5) ,0;;.(11 ,Z) .zOCI") ,ZSC(4), ARR(6,61,
4 ZBB(2), RNIl2),AI,P,XI401,AK,RABS,
5AXl( 6. 6) ,Q , 5, BR ,A BR , XXA,X XW,AF MX, VI I, YI R ,0 NXW, TMAX
6,W( lSO),AWII50) ,TWI150) ,THd150) ,XW(150) ,Y\~U501,AOB(I501,PHAII150
7l,WWI III ,zLL121 ,zCC3) ,5YM,Y(20)
8, Z SR ,Z SL ,B W, X2
NN= I
lORO= 2

2C FORMATI7EI7.7)
P=4.0*OA TAN( 0.100 OIl
00 I 1= 1,1 0

I RN ( I 1= O. 0
X2= 80. 0*( P /l80. 0)

20 AB! 11= 00. 00
00 900 I JK=l ,"'IN
Bw= 2.0*1 0 SI NIP 14. 0) /) C0 S( PI". 0) -0 S I N( X212 • J ) I OOOS IX 21 2 .0 ) )
WRITE ( 3, 970) lORD ,B "

970 FORMATIIHI,/1140X,'ORDER OF l"HE FILTER=',/2,' ASSJMED BANOrJIDTH=',
IEII.4/l
MA= lORD
MB=(MA*2-ll*2
"IC=MA*2
MO=MA+I
N=2*IOR)+1
SYM=O. C
AFMX= 10. C* I • CD 02

21 I=IJK
X( 1)=1 P /l80. 00) *AB I I)
'1'( I 1=( PI 180. GO) *1180. OO-AB (I l-SYMJ
DO 2 K=I,MC
A I=K
RNI K ) =1 2 .0 IP 1 * ( ( I • 0 II AI *A I *1 X II ) -X 2 I ) ) * WO OS I A1* X2 )-0 COS (A 1* X ( I ) ) )
I +( 1.0 I( AI *A 1*( '1'( I ) - P+ X2) I J *( 000 S ( AI *'1' II ) I -DO OS I AI * I P-X 2 ) 1 II

2 OONTl'JUE
3 FORMATlI0E12.51

RAB S= O. 0
DO 5 1= 1.N
IM= 1+1

5 R ( 1M1=R'I I I ) *AFMX
00 6 l=l,MA
K= 2* I + I
L=I+l

eRA BS=<II 3 S+R I K J *1 - 1 • 0:1 * *L
R I ll= RA3 S+ 1 • O/( 2. 0**1 2 *1 ORO) )
DO 318 1 = 1, N
00 318 J=l,N

318 IAW( !.J 1=0
DO 319J=1,N

A2.2. GENERALISED PROGRAMMEFOR BANDPASS FILTER DESIGN BY FOURIER
______ =METHOD AI'PROX.U!ATBD----ASSUMINGJ_RESJ'ONSE_CIlRY:E.-'.6ontd.J__.



---- .106__- _

-~ III 360~-EO-479 3-6 MAl NPGM DATE 12112177 I 1ME 14

•

31G

321

320

32~

322
354

32t

32<;

332

328

327

330

I h Wi "", ] I .= 1
[AW( 2,2)=1
DO 320 I=3,N
DO 320 J=2,N
K=J- 1
,1AWl I,JI=IAW( I,KJ*(I-Kl/K
DO 32 J 1= J .N
DO 321 J = 1 ,N
I BW( I. J ) = I A I'll N- I + 1 ._J-_~I~*~(~-~I~)_**~l~J+~I~) ~
00322 I=I,N
ICWII. ll=IAWI I.ll *IBW( I,ll
00 322 J = 2,N
ICW(I.,II=O

DO 322 K= 1 oJ
I CW( /, J )= I C I'll I ,J) +I AWl I ,K) * I B W1I ,__J_-_K_+_I~) _
FORMATl 71151

____ ~0_D_3_25 [= 1 • N
00 325 J = I.N
ICPl[.J)=O
DO 326 1=I,~1A
K=2*I -I
KK= 2* [
[CPlK,ll=I*(-I)**(1+11
ICPI KK ,I )=0
ICP(2,2)=1
[CP l N, 1)=1-1.1 **MA
DO 328 K=3,N
lL=K-1
LLl=K- 2
DO 328 1=2,N
J= 1- 1
ICPI K, I I = I CP ( l L ,J) *2 - I CP I l LL ,I I
DO 327 1= 1 ,N
OJ 327 J=I,N
IHII [,J )=IC WIN-l+1 ,J)
OJ 329 I=1,N
DO 329 J=1,N
IClil I. J )=1 T\\l J ,I)
IC TI I, J ) = I C P l J ,I )
00330 J = 1 ,N
DO 330 J=I,N
IP W( I, J 1=0
DO 330 K = I.N
IP WI I, J ) = I P WII ,J) + lew I I ,K 1 *1 C Tl K,J}
DO 332 J = 1 ,N
00332 I=l,N
CR ( I, J )= I P WI I ,J)
WRHEI3,24)

24 EORI~AT( 15X,'MATRIX CR FOR CONVERSION OF A 11\10 W'l
WRHEl 3, 26){ (CRl I ,J) ,J=1 ,N) ,1=1 ,Nl
WRITE 13,34)

34 FORMAT( 5X, 'R ,CDEFFICI ENT OF FOURIER SERI ES')
\~RITEI 3, 26)(R( I) ,I =1 ,N)
WRITF. I 3, 38)



---- 107

~ IV 360'4- Eo- 479 3- 6 MA I NP:; M OAT E 12/12177 TIME 14,

38 EOR,"lA I! 6 X, • IS' , 17 X, "A W' ,16 X, I PH AI • ,15 X, 'Y W• , 15 X , I X AW• , 15X , I TW' I
WR1 TEl 3, 401 TMAX

40 FOR,"1AT(E30,16)
P HA1 I 11 = 90, 0
DO 142 J= 1 ,101
A WI J )= P HA 1 ( J ) *(P 11 80, 0 I
W( J 1=0 SIN ( A W( J I 12, ) IJ COS ( A \oJ( J I 12 , )
YW( J 1=1 W( J I *~'MBJ II 11,+ W( Jl **2) **MC)
XXW= a, COC
XWIJl=O.OO
K= 1
DO 140 1=I,N
XWIJ l= XWI J )+RI KI *JCOS( XXW)
XXW= XXW+A WI J I

140K.=I+l
TWI J 1= YW( J I/XWI J}
K=J+l
WR !TEl 3, 391W( J) ,AW( J) ,PHAI( Jl ,YWI JI , XW{JI ,TW (J)

3S EORMATl6E18.5)
142 PHAI(K I=PHAIIJI+O, C5

TMA X= TW.( 1)
DO 148 K=2tlOC
IFI TWI K)- TMA Xl148 ,146 .146

146 TMA X= TWI K)
148 CONTINUE

TMA X= TMA X+ 0,001
DO 154 J=l ,N
AR (J )= C, 0
DO 154 K=l,N
ABR=CBIJ,K l*R( KI

154 ARIJ)=ARIJI+ABR
WRITEI3,50l

50 EOR,"1A Tl 6 X" W' , 1 6 X " XW' ,1 5 X , • AD B' , lit X " T W', 15 X , • T T W• , 14 X, • P HAI ., 13
1 X, , YW' I
W(Il=0.85
00 162 J=I,l50
AWIJ )=2,*OATAN( WI J)l
W(J 1=0 SINI AWl J) 12.) IJCOSIAW( JII2, I
XWI,JI=AR(l)
DO 158 1=2 ,N

158 XW(J 1=1 XWI Jl+ARI I ,) *W( J) **12*1 I-ill)
XWI J 1= XWI J l/( 1,+ WI Jl**2) **MC
YWIJ l={ WI J 1**MB III (1. + WI J) **21 **MCI
nil J 1= YW( J I I X W( J)
TTW( J)= TV/I J I lIMA X
ADSI J 1=- 10,0*) LO:; 1 C( TTWI Jll
P HA II J 1= ( 1 80, IP ) *A W( J I
l=J+l
W( LI=WI J 1+ 0.002

162 WRITE(3,60IW(JI,XWIJI ,ADBIJl ,TISIJI ,TTWIJ) ,PHAIIJI ,YWIJI
6 C EOR''1A T( 7E 1 7, 5)

KM=2*N-l
00 168 J = 1 , N'
JJ=2*J-l



.-------- 108 _

\1 IV 36Q\I-EO-4]S 3-6 MAI NI?GM OAT E 12/12/77 T 1'1 E 14

IK= 2* I

J L=J + I
_____ X~C~O~F~I....J..JJ= (A R ( J 1 /A R IN) 1 * I - 1.1 * * J L

168 XCOEIJK1=0.00
WRI TEL 3,48.1

48 FORMAT(5X,'AR,COEFFICIENT OF POLYNOMIAL CF W'I
WRlIE! 3. 26l! AR I,ll, J=l ,N)
CN XW=l./IARIN 1 *TMA Xl
WRlIE I 3, 401 ~ N )(W
M= 2*(.',1-11

_____ 00 264 J=1,2
WRlIEI 3, 56)( X~OF I KI ,K=l ,KM)

56 FORMAT( 9E 13.5)
CAll OPOlR TI XCOF,~OE ,M,ROOTR,ROOTI ,IERI
IF I IERII 70 , 1_7~2~,~1_7_0~ _

nc GO TO 10C
l?2 CONTINUE

WRlIE I 3, 521 IE R
52 EORMAT( 5)(,' IER =' ,I 21

00 160 1= 1,'1
160 we lIE13, 541ROOTRI I) ,ROOTlll)

54 EOR,'1AT( 21 1 5 X, E 25. 61 I
K.=O
L= 0
JJ= 0
ZBBI 11= 0.0
CCCl1l=0.000

241 00 240 1=1,'1
IHRDa Tf(! I ) 1 246,242,240

242 IE(ROOTII I 1)244,24C,240
244 K=K+l

eec( K I=ROO II I II
GO TO 240

246 IE(RODTI! 111248,247,240
248l=L+l

ZAA( II =R 00 TR! I 1
ZABlll=ROO II ( [ I
GO TJ 240

247 JJ=JJ+ 1
ZBBI JJ I=ROOTRI I)

240 CONTIN UE
IFIZBBI 111249,251 ,249

249 MAA=MA-l
00 253 l=l,'1AA
P P [ I 1= - 2. o*z AA I I )

253 ;JQ( I I=ZAA( I 1**Z<-ZAB(11 **2
QQ IMA )=ZBB III *ZBB! 2)
PP 1'1A l=-ZBB [ ll-ZBB (21
GO TO 255

251 IE ( CCC ! III 250, 252,250
252 00 254 1= 1 ,MA

P P I I 1=- 2. *z AA I I I
254 QQ ( I I=ZAAI I 1**2+ZABI I) **2

GO TO 255



~---------- 10_9. _

~ IV 360~-FO-475 3-6 MAINP[;M OATE 12112/77 TIM E 14.

2~O MAA=MA- I
00 259 I=I,MAA
PP( 11=- 2.*lAA 1 I)

259 QQ I I )=lAAI I) **2+lABI I 1**2
PP(MA)=O.
GO (MA I=C CC I 1.1**2

2;5 DG{ 1,J )=1. 0
00 256 1=2,N

256 0 GI I, J )= O. 0
00 262 1= I,MA
EMII)=DGI I,JI*OQ(1 I
EMI21=DGI 2,JI*QOII I+JGII ,J) *PPIII
NNN=N- 1
DO 260 K=2,mm

260 EMI K+ 1 ) =OGI ( K" 1) , Jl *0 Q ( I ) + DG ( K, J) * P P( I I •. OG( I K-1 ) , JJ
DO 262 K= I,N

2620GIK,JI=EMIKI
XCOFI 2.*N-3)=XCOFI2*N-3J+l. IIARIN) *TMAXI

264 CONTINUE
NK=N+2
DO 265 J=I,NK
GIJI=O.O

265HIJI=0.0
00266 1= I,N
G I I I= lOG I I , 1 I +::JG ( I ,2) I /2.

266 H I 11=1 OG( I ,I)-DS II ,2)) 12.
NB=N- 3
NG=N- 2
DO 280 I=l,NB
lL I I )= HI 1+ 1) IG I I )
IFI !-N+5J268,268,272

268 DO 270 K=I,NG
270 GIK+I-1)=GIK+I-l)-HIK+I)IlUI)

GO TO 276
272 DO 274 K= 1 , 3
274 GIK+I-1)=GI K+I-ll-H( K+IlIl U I I
276 DO 278 K=I,N

GGIK )=GI K)
GIKJ=HIK)

278 HIKI=GGIKJ
280 CONTINUE

lLl N- 2 )=HI N-ll IG 1N-2.J
lLlN- I)=GI Nl 1.'1 I N-ll
lllN )=Hl N-lJ IGI N-ll
l SR= 0.100 01
IR X= 0
IR "\'= 0
WRITEI 3, 97UAFMX,lllNI

971 FORMATl9X,'A=',EI4.6,'R=' ,E14.6)
WRITEI 3, 97211lU I) ,I =1 ,MCI

972 FOR "I ATl 1 X, , L I II =' ,E 14. 7,' C 11) =' , E 1 '< • 7 " L (2 ) =' , E14 .7 , • C 12 )= " E 14.7,
I' 1 ( 31= I , E 14. 7, 'C I 3 I =' , E 14. 7 , , L14 I .=' , E 14.7 , , C 14 )=, , E14 .7)
WRIrEI 3,9731

973 FORMATl6X,'RL',9X,'U' ,9X,'Cl.' ,9X,'CCl',SX,'L2',9X,'C2',9X,'CC2',



---------- .HO _

\I IV 360\l-fO-479 3- 6 MA I NPG M OAT E 12U2177 TIM E 1"-.,

•
lax, t! 3_, SX.I[ 3" .9x,'''''C3' ,ax,- 14' ,9X,1 f.4')
MAA=MA-l
lSl=lLl\J-2) III IN)
lLLl 2l=lL( N I

281 leI 31=11 I N-]J
DO 610 I=I,MAA
IEP1AA-1 )6]4.612.614

612 ZLLll1=I.0
GO TO 61t

614 ZlLI ll=l U N- 2*1-2) Il Sl
6le CONTI\JUE

lCI1l=ZLIN-2*I-1l
lei 21=-zr:1 II
lCI 3!=lCI31+1C( I)
lC I lJ=lC I U_*~l~l~l~I~I~) ~----- __ ~
lCI 21=0 SQ~ T( 1 UIIlI *) SQR Tl Zll(2)) *lC (2)
ZCI 3 )=ZL Ll 2) *lC (3)
lCCI I l=-ZC I 2J
1 sct I )=ZC( 31+ZC121
III ( 21=ZLll 1l

6Ie lC(3)={lCI 1l+ZC(2»)IZlL(1l----------~----------------ZSCIMA I=ZCI 3)
XR 1 ll=Z'-< 1l
XR12.1=1 SCl MAI
XRI 3)=lCC( MAA)
DO 618 I = I ,MAA .
KIl= 3* I+ I
K IC=3*I+2
KCC=3*I+3
KI= MAA-1+1
KC=K 1- I
XRI K IL 1=Z SL
XR( K IC 1=Z SCl KI 1

618 XRIKCC l=lCC1KC I
VIR!TEl 3,288)

288 FORMATI5X,'COUPLING CAPACITANCE,zCC'l
VIR[TEl 3,26) I lCCI I I .1 =1 ,MAA!
VIRI TE{ 3, 26! ( 1SCI I I ,I = 1 ,MA)
WR!TEl 3, 2611LllJ,Z 5l) ~-,«(.. I ~'1M /. 2..-
WRITEI 3. 974)1 SR,I XRII 1,1 =1 ,KIC) ••)~-~-------~--------

974 fORMATI IX, 12E 11.4)
IR X- n X+ 1
IFI IR X-2J282,282 ,2 83

282 ZlLl21=ZUN)*LGOO 01**IRX
Z SR=l SR 11. COD 01
1 SL=l Slll. GOD 01
GO TO 281

283 IR y- P. V+l
IFIIRY-1l285,284,285

284 ZllI21=llIN-2JIlLlll
1SL= ZL I II
ZSR=lLlN I IllLl 2)
GO TO 281

285 CONTIN UE



-J IV 360N-EO-479 3-6

111

MAI Npr; M OAT E 12/12/77 TIM E 14,

AEMX=AfMX*J.OOQ OJ
IFIAFM X- 0.100 04121.21,790

79C CONTIN UE
5 YM= 5 YM + 1. 0
IFl SY'1-0. 00121 ,21! 800

800 IK=IJK+l
900 ABl IK I=AB! IJKl+I0. 0

X2= X2- 5. C*l P /l80. 0)
IF( X2-60.*( PIl8D. 0)1990,20 ,20

990 CON TIN UE
IORD=IORD+l
IF ( 10"( D- 41 20, 2 0 ,I 0 a

100 CALL E XI T
END

•



3tO"J-FO-47S 3- 6 ) POLR T DATE 14/12/77 TIM E 17.59~2

SUBRJUTI"JE DPOLRTI XCOF ,COF ,M,ROOTR,ROOTI ,IER)
D IMEN S ION XCOF (I) ,COF ( l) ,RO(]TR( I) ,ROOTI (1)
OOUBLF PRECISION XC,YO,X,y,XPR,YPR,UX,UY,v,YT,XT,U,XTZ,YT2,SUMSQ, •

lOX, DY, TE"'P .ALPHA
DOUBLE PREC I SIaN XCOF ,COF ,R001R ,Roon
IF IT= 0 POL 6
"J=M
IER.= 0
IFIXCOFIN+lJ) 10,25'[0 POLIO
IF(N] 15.15,32
I ER= 1
RETURN
I ER= 4
GO TO 20
I ER= 2
GO TO 20
IF (N'-36)35,J5,30
N X="J
N XX=N + 1
N 2= 1
KJ I=N+ 1
DO 40 l=I,KJI POL2
'~T=KJ l-l + 1
COF!Ml)= XCOF( l)
xo= .C050C1CI
Y C= 0 • 010 0 a 1 01
IN= 0

-l X= XO
xo=- 10. 0*"'0
Y0=- 10.0* X
X= XO
Y= YO
IN= IN + 1
GO TO 59
IF IT= 1
XPP.= X
YPR = Y
Ie T= C
UX= 0.0
U Y= C. 0
. V.= C. 0
YI= 0.0
X T= 1. a
U=([IF{N+ll
IF! U) 65, 1.3C, t5
DO 7C 1= I,N
L=N-I+1
TEMP=COF (l)
XT2=X*XT-v*n
YT2=x*n+V*Xl
U=U+TEMP*XT2
V=V+TEMP*YT2
F 1= I
UX=UX+Fl*XT*TEMP

A2.3. SUBROUTINE FOR SOLUTION OF POLYNOMIALS.

•



------------ __ U3~ ~ _

RAN IV 360N-FO-479 3- 6 ) PO LP 1 OATF 14112/77 TIM E

70

75

78
80

85
90
95

100

105

110
lIS

120
122
125

1.30

135

140
145
150
15.5

160

165

UY=UY-F I*YT*1EMP
XT= XT 2
YT= Y12
SUMSQ=UX*UX+UY*UY
IFl SUMS;) l 75.1IC,75
OX={ V*UY-U*UX) ISLJMSQ
X= X+O X
OY=-( U*UY+V*UX)/SU,MSQ
Y= Y+OY
IF(OABS{ OY1+0ABS!OX)-1, 00-10) 100,80,80
IC1=IOl+1
IF! IC T- 5CO) 60,85,85
IF( IFITI ICC,90,l00
IFIIN-51 50,<;5,95
IER= 3
GO TO 20
DO 105 L = 1 , N XX
MT=KJ l-L + I
TEMP= XCDFI MTl
XCOFI'1T)=COFILl
OOFILl=TE'1P
ITEMP=N
N=N X
N X= ITEMP
1Ft IFIT) 120,55,120
IF( IFIll 115,50,115
X= XPR
Y= YPP
IF IT= 0
IF ( OAB SI Y1X 1- I. CD- (8) 13 5 ,125 ,12 5
ALP HA= X+X
SUM SQ= X* x+ y* Y
N=N- 2
GO TO 140
X=O.O
N X-NX- 1
N XX=N XX- I
Y= C. 0
SUM SQ= O. 0
ALPHA=X
N=N- I
COFt 21-COF( 2l+ALPHA*COF( 11
DO 150 L=2,N
COF1L+11=COF{ L+ll+ALPHA*COF( Ll-SUMSC*CCF (L-ll
ROOTIlN21='1
ROOTRIN2)=X
N2=1\l2+1
IF! SUM SQ) 160,165,160
y=-y
SUMSQ=O.C
GO TO 155
IF(Nl20,20,45
END

•

•



~~~~~~~~~~~~~~_:U4

UB AN TV 360N-FO-479 3= 6 !HLNV DAIF 2B/10 /77 T IMF

,

-- -----_ .._--------------

SllRROllTINE MIlNVIA ,XX,N,AI ,Bl
DOUBLE PRECISION A( 11,111,BI6,6) ,C16,6J ,AII6,6I,XXllll,R112I,r{6

______~~ __ Jih_S~,_S~R ~~ _~ ~ ' _
PIll=O.O
DO 106 I=J,N

106 P { 11= P ( 1 )+A CI .I I
00 I (7 1=), N

DO 107 J=l,N
~~~~~.l12LLLhn~ALLt-JJ ~ __ ~_~_

DO 108 K=2, N
DO 109 1= l,N
DO 109 ,1= I,N

109 S{ It,! 1=(11,,11
DO 110 I=l,N

___ U 0 B( LLlI= lLLL_I_I_-_P_l_K_-_1_1 _
DO 111 1= I,N

_____ ~DJLJJJ-"_=l-'N~~~ ~.~ _
C( 1,,1 )=0.0
OOIJlI=I,N

111 C(J,Jl=CII,JI+ACI,Ll*BIL,JJ
Jl=Q .D~ _~~._~~~~ ~~__._
DO 112 1= I,N

__ ~ 1_12 Q=Q +CI~_I ~_~ __ ~~ _
S=K

lOB PIK I=Q /S
IFIP f',J» 114, 115,114

_____ JJ5_ILR.LIE ~L3. 'HU. ~ _
':)8 FORMAT( 'THE MATRIX IS SINGULAR')

~~_~~_~ __._G-~O~T_0_1~0_4~ ~ ~ ~
114 CONTINUE

00 I ) 6 I = I ,N
DO 116 ,1.= 1,N

_____ LL6-.l\.LLL •.JJ =BLL..JJ..L£ lID_
DO 117 K=l,N

~ B_l~IU= ..cL•.O ~~~ _
DO 117 J=loN
BR=AIlK"l)*XXl,l)

117 BIK I=BB+RlKl
~_.--.lD.!l_J3.EJURN

END
-----------~-~~~-------------------~~--

A2.4, SUBROUTINE FOR MATRIX INVERSION AND SOLUTION
OF; SIMULTANEOUS, LINEAR EQUATIONS.

-- --- ------------------

--- -----------------------------------~

-------------------------- -~-~------



______________ .U~5 _

"RAN IV 3tON-fO-479 3- 6 :FCBPl DATE 02/12177 TIME

SUBROUTINE CfCBPl! MA,N,ICPI
C SUBROUTINE CFCBPl FOR CHEB YSHE V PClYNCMI Al

DIMENSION ICPllI,IlI
DO 325 1= I,N
DO 325 J=l,N

325 [CP I ItJ J= 0
DO 326 1= I,M~
K=2*I -I
KK= 2* I
ICPIK, 11= I*I-ll **1 I+ll

321: ICPIKK,lJ=O
lep( 2, 2)= l-~~~~-
ICPIN, ll=l-lI**MA
DO 328 K=3,N
ll=K- 1
lll=K-2
DO 328 I=2,N

------- Jz 1- f ---
328 ICPIK, Il=[CPIll,Jl *2-ICP( lLl,ll

RETURN
END

A2.5. SUBROUTINE FOR CHEBYSHEV POLYNOMIALS.

,
•

--_._--~--~~-------------------~~~~~~~~~~-

~-------- - - - ---- --- -------------~---------



____________ ~ __11~ _

-RAN IV 360N-FO-479 3-6 CFBNPL DATE 02112/77 TIM E

SUBRO UTINE CFBNP L( K,IA \I ,1 B \;1
C SUBROUTINE CFBNPL FOR BINOMIAL EXPANSION

DIMENSION IAW( 11,111 ,IBW( 11 ,Ill
00 2 J= 1, K

2 IAW(J,lI=l
IF(K-213,4,4

3 GO TO 10
4 lAW( 2, 21= 1

IflK-315,6,6
5 GO TO 10
t CONTINUE

00 7 1= 3, K
DO 7 J=2,K
L=J- 1

7 IAW( I,J 1= lAWl I ,l.l *( 1- L1/L
--00-8 r~T;K

DO 8 J= 1, K
8 IBW( I,J 1= IA W( I ,Jl *(-lJ **( J+lJ

10 RETURN
END

,
•

~~--- -~~~---~--~~~~~~---~~--~~~~~-~~~~~~~~~~~~~

A2.6. iubroutine For Binomial Expansion.

-~----- --- ---------~--~~~~~--~~~~~~~~~~~~~~~~~

-- - - ~-----~-----~~~~~~~~~~~--~~~~~~~~~~~

•
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