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ABSTRACT

In this study; a rational function ig determined by apProw-
Ximating g bandpass response directly and thig rational function ig
synthesized into a2 band pass filter configuration consisting of shunt
Tesonators coupled by capacitors, which“is the common bandpass filter

network,

The transfer impedance and the transmigsion funetion of g

common bandpass filter hetwork consisting of shunt Tesonaters coup-
led by capacitors, have been founad out by analysis. It is observed
that all the transmission zeroces except one are at the origin and the
Tefaining one is at infinity ang the transmissién function containg
single term at the numerator.To pe realizable, the absclute magni-

tude of the transmission functibn should be between 0 and 1,

For the rationsl function approximation of the band pass
reéponse; the independent Variable, w, ig converted into = new varig-
ble 4 such that the aperiodic function of w becones a periodic func-
tion of 4 and the approximation can be done by Fourier method. Such
a transformation of w into 4 has been ocbtained by the ralation A=
2 tan” W, Because of the fact that the transmission function conta.
ins one single term in the numerator, its denomingtor has been app-
roximated for getting the realigable Tational transmission function.
After approximation by Fourier method, the denominator of the trans-
Mmission function has been obtained in the form of a cosine series,
which ig again converted to & polynomial in w2 by using Chebyshev

Polynomials, The Chebyshev polynomial converts cosine of a multiple

previous relation between A and W can pe written as w2 _ 1-Cos 4

. —



and thus we obtain the realizable rational function approximgztion

of the bang Pass regponse,

The approximation has becen done by two methods, one by point
matching technique, assuming the valucss of transmissior function for
different valyes of w and the other by assuming a fixed curve for the

denominstor of the transmission function,

The reflection coefficient and the input impedunce gre then
caleculated from the Tealizable rational transmission function. Since
211l byt one transmission zeroces are at the origin andthe remaining
one at infinity, the realization hag been done by ladder development
of the input impedance realizing a shunt inductance and a seriecs cg-
Pacitance each time. After realizing all the transmission mercecs at

the origin, the one at infinity ig realized by a shunt Capacitance.

Finally the capacitance matrix transformaticn of o-ch sec-
tion of the filter has been used g get the filter realized in the

usual form of shunt Tesonators coupled by capaciters.

Several filters sre designed utilizing thig Procedure. The
T'ésponse curveg for the final networks have been observed to be Sa-

tisfactory collpar=d to Butterworth and Chebyshev filters,

HOA K kK ok ok ok Kk koo
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CHAPTER-1
INTRODUCTION

Filters are selective netwotksmuseﬂ for frequency discri-
nination that nieans for the rejecticn of wnwanted signal frequencies
while permitting good transmission of wanted freguencices.The most
common filters are designed for lowpass, high-pass, band-pass or ba=nd-

stop attenuation characteristics.

The lowpass filter passes the packzge of wave energy frov
zero Ifrequency upto a determined cut~off frequency and rejects ail
erigrgy beybndrthat limits. The highpass filfest prevents the transmi-
ssion of frequenoies below a determined point and appears to be elec-
trically transparent to frequencies beyond that point. The band pass
filter passes the package of waves from certain lower to upper fre-
quency limits and stops all energy outside these two limits. Band paoss
filters are the most 1mportant and most commonly used in elactronic
equipments. The band stop filter is used in electronic equipment whon
a certain unwahted frequency or band of frequencies has to be rejec-
féé; 6ut5lde.thé otOPBond'or rojéction band all ffeouencies will pess

without appreciable attenuation.

From the frequency domain point of view, an ideal filter is
one that passes, without attenuation, all frequencies inside certcin
frequency llmlts (called paSS band) whllc prov1d1ng 1nf1n1tg attenua~

tion for all other frequencles (called stop band).

5

Slnce the“dlscovet& ofrthe oleotrlc wave fllter by Cambell
éné"Wagner‘ v 71n l915, fllter theory has evolved essentlally aleng
two'olfforent polnts of view. These pgve_boen dlstlngulohed by the
ogmggvclassioal filter:theory:and modern filter theory:l;
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The classical filter theory originated in the 19208 mainly
through the €fforts of Eobelld Tﬁis theery is an applieation of imuge
parameter equations to the design of filters and, as such, is comnun-
ly known as the image parameter theory of filter design. When -desig-
ning a filter by this method, it is assumed that the filter's loxzd
impedance is matched to #ts image impedance. But in practice this
condition is difficult to satisfy, because most loade are constant
value resistances and the image impedznce is frequency dependcnt,is
a result, design on this basis involves a cut-and-try procedure and,
often, final adjustments must be made exferimentaily in order to nmect
design requirements. Even 50y the classical theory yields good r.:sul-
ts with speed and a minimum of effort, and there is a wealth of pub-

lished design information available in this field.

The modern fllter theory was developed in 19308 through the
R . ’ >
efforts of a number of 1nd1v1duals ariong whom the nemes of Norton “

(4) (5) (6) (7 (8-%3

féster(B, Cauer A Bod Brune ,-Gulllemln and Darllngton
heed speciei mention; Eseentially this theory involves the epproxlma;
tioes-of giveh sﬁecifieatione ﬁith e ratiohal.transfer function =g
the realization:of.this ftnetieh through'the.use of different syn-
thesie techhiqueetléihee gﬁnthesis precedufee involving appfoxima-
tlon by polynomlal are analytlcal and exact, deslgnlng the filters
from its transfer functlon involves no trial and error. For thls
reason thls method is also called the exact method or the polynorial

method. An impoft'ant'feature‘ of this theory is that the approxima-

tion part and the realization part are separab;e.

‘It is not always that we are given a realizable rational

‘function for which we have to design a filter network. Sometimes a
i . . .

. L . S ‘
given characteristic is given graphically as a function of frequenc’.
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Sometimes some discrete values are given. It is then necessary tu
solve the approximation problem: a system function must be founs = .=
on the one hand, approximates the given curve or the descrete vaiu:zs
with the specified tolerances and, on the other hand, is realizabl..
by a network of the desirsd form. Stated in other terms, whut .e

need to do ik to fit a realizable rationgl function to the spocilii.?
data, that is, to determine the eoefficients of twe polynemials or
equivalentky to deterinine the zeroes, poles and ccnstant multipliics:

of the rational functicn. We alsc desire the functicn to be of the

lowest possible order sco that a small number of elements will be roe-
quired for its realizabion.
The problerr of approximation may be solved very casily by the

use of Butterworth or Chebyshev functions. From the approximation

transmission:mnction cbtained by Butterworthglo)or Chebyshev »ol) -
nomlal low pass fllter can be synthesized by cOnventional synth iE

procedure. High pass, band pass and band stoP filtcrs can then be

(7,

dosigned frow this low pass model by frequency transformation

After the frequency transformation from low pass to bandpans,
the network configuration for band pass consists of parallel resi-
tors and series resonators connected as shunt end series brmhch_

respectively. The dlrect conventicnal low pass tc band pass er_

ig

formation}_although theoretically correct is notlalways attainzble

practically. The element values may be too snzll or tco large. The

parasitic capacitance to ground can not be taiken inte account and

B

therefore may dlstort the response. The neodez between a capacitor ad

: "‘r'\ vpor- b \r: o " TR i -"-«'—a I Y Sty

E " L N PR . L: Yy o
a coil in a "series arm becomes very sensitive te stray capacitance
at sore frenuencies and the quality of the series arm has to be very

. - Lo “
' - - B su PR

high in order to produce a low level insertion loss in the passb‘no.



L

It is therefore desirable to gimplify the network realization in
R,

o,

order to remove theselectivity from the series arm and to substituts

added selectivity in the parallel arms.

The impesdance and the admittance transformation propertiess

of J and K inverters which are theoretically valid at a single fre-

(11)
quency are somietimes used to avoild these difficulties. By utilising
the concept of coupling introduced by Miltion Dishal(la), the noriza-

lised low pass element values, L and C can be converted to new nor-
nalised values K and ¢, the coupling coefficient and the quality fac-
tor respectively. From such a low pass prototype, the band pass filter
can be designed so that the network configuration will consist of

shunt resonators coupled by capacitances or inductances.

The resulting network obtained by both the above procedurcs

consisting of shunt re¢sonators coupled by capacitors ddes not have =
low pass equivalent andits response exactly equals the reéponse of

the low pass prototype after frequency conversion at the band cente-.
The difference of the two responses increases, when the test freguency

moves aWay'froﬁ the bang centre,

The objective of this study is to determine a rational func-
tion approximation directly from the given bandpass response so that
it can be synthesized into a configuration consisting of shunt reso-

nators coupled by capacitors. The respense of the network thus resli-

zed will exactly match the rational functicn at all freguencies,

-
[

‘A general band pass network configuration consisting of shun

resonators with ‘capacitor coupling betwsen them will be-analysed and
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the transmission function will be determined. The iranswission func-

. . . . - . o 2
tion will be & rational function of molvncmials is W e
ol u

The specified band pass transnission characteristics will
then the approximated with the help of Fourier series expansion and
Chebyshev polynomial so that the approximate function will be o ra-
tional function of type found for the traonsmission function of an brnd

pass filter consisting of shunt resonators couplecd by capacitors.

This rational function will then be synthesized in a conven-
tional mefnod. The network thus obtained should be potentially agul-
valent to the bahd dass filter network consisting of shunt rescnn-
tors with capacitor coupling between them. & network transformaticn
procedurce will be illustrated so as to transform this configurati.n
into the general band pass filter configuration with shunt resona-

tors coupled by capaciters.
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CHAPTER-2
THEORETICAL FORMULATION OF BAND PiSS FILTER SYNTHESIS

2.1 PRELIMINARIES:

In this chapter, the conventiormal nethod of Band Pass Filter
Synthesis fron low pass prototype 1s discussed in brief. The fregu-
ency transformation is treatehlfirst. The reactance transforuzticna
of the frequency variable riakes it possible to get the band puss fil-
ters from low pass prototype. & reactonce functionj; having twe poles
one at origin and the other at infinity with = zero at somne frequency
W is assumed to be equal to the low pass frequency range from---to

o< o S0 that low pass frequency zero corresponds to W of the band
pass, which is the bgond centre and the low pass response may trans-
formed to be a band pass response. Cutoff fregquency for the band pass
is calculsted. The centre frequency is the geometric mean of two cut-

off freguencies.

In article 2.3, J and K inverters are explained for the trans-
fornantion of the band pass network so that the elenents values beco-

nes approxinately similar.

Band pass filters may be designed without network transforma-
tion fron low poss element values where the elements are net capaci-
tances or inductances but they are coupling coefficiemts and gquality
factors, of the elements as defined by Milton Dishal. This is also

discussed in brief.

4 different approach of approximstion is introduced in this

study. The reason for this 1s explained in article 2.5.
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2.2,FREQUENCY TRANSFORMATION:(13)

Band pass filters are generzlly disigned from low pass £7.1t .
by reactance transformations of the frequency variable. A reactance
traesformation is one in which the frecucney variable is set equal to
a reactance function in a new frequency variable., A reactance funce
tion has simple poles and zeroes which alternzte on the jw axies.Honco

if W and W, (where O < W,_ < W, .) are two consecutive poles of

k k+2
reactance function X(W)i@here is, of course, a zero of X (W) betw:iua
W and wk+2j ’ thén on the frequency interval Wk W Wk+2, the fre-
quency £ = X (W) assumes all values fronm-«to o¢ (i.e. sweeps the el-
tire axis). Thus the entire j.1 axis msps into each segment on th:
jw axis containing two consecutive poles of X(W). It is this pheno-

menon that allows a low pass filter characteristics to be transfor-

med into other types.

For low pass to band pass transformation we have to take the
low pass frequency equal to a resctance function having two poles
one at origin and the other at infinity witﬁ a zero at sorle frequ~
ency Wo of the transformed band pass freguency, This neans that if
we take S the low pass independent variable equai to ULC(B) a reac-

tance function of band pass frequency 3. where

Then we get band pass transforged response auz a function of band-

pass frequency =s.

5 = E;+ j~rL = U (S)

T e v - - ._,.,..........-auo(aol)



2 2
—W kW
ULC (JW) T e o o e e e e
Jw3

....-.-‘.--...-i_-------;(2-2)

- -

In Fig.2.1, transnission function T (=) is plotted for low
pass frequency s i.e.#¥X 4 w), X(w) is plotted for band pass freguency
we The range for & froo — <€ to o becones the range for w from 0 to =«

and the transnission function T (w) (a functicn of band pass ffequon:z -

w) now becomes a band pass response having centre frequency w, «nd a

band width w - wp corresponding to low pass frequency < = + 1
For § = j4r = -j 1, s= j W

From equation (2,2)

2 2 -
-u'JL + Wo
=31 =
k] W B
W+ W B ~-w = 0
B B 2

wL should be greater thzn 1.
. B B2 2 ) . (2.3)
WL--—""é- +QT+W0 sébacspsssvanasg [}

[ 2
. B B 2 . .
Slmllarly, Wu= 'é"‘ T +W0 .o-a-u-o----o-(a"‘h‘}

W =Wy = B = Band width for the band pass .

From eqn.{2-3) and (2-4)
2

B 2 B2 2
Wpe Wy = ( T+ v, ) - —~ = g W, =\J'WL:_Wu
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o
! %
5
Fig.2.1
Low pass.to band pass transformation
o - . +90° In
| +90" Inage _ .”=“' %“W-r g 1age _ i
. ~ - . . N F
Thase ehift : T ’-'_Phase shift
i} o n-—.l
o J o
= Kk,k+1 ;Id-‘ ‘ kyk+1 l ﬂﬂ
pad o ’
Kz J k, k41 T
k] =y e
Z : . b
a . k
Figa 2.2& , ) Fig.a-a(b)
Impedance Inverter o o . . Adnittance Inverter.
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2.3, NETWORKS TRANSFORMATION BY IMPEDANCE AND ADMITTANCE TNVERVERS:

Networks for band pass filters cbtained by freguency trons-
formation frowm low pass prototype have generazlly elemcnts practically
difficult to construct for higher frequencies. Use of impedance and
adnittance inverter transforms these networks having ressonstors co-
upled by inductances or capacitances wiich can be constructed physi-
cal.ly. Sey mour B. Cohn(®#. described the process of transforzaticn
of band pass filters obtained from low pass prototype tc a direct co-
upled resonator filters using impedance and aduittance inverters uso-

ually kaown as K and J inverters respectively.

An idealised impedance inverter operates like a quarter wav.-
length line of characteristic impedance K at all frequencies.There-

fore if it is terminated in an impedancei&dfcne end, the inpedance
2
1;'seéh-lodking in at the other end is 22 = -gd—a(Fig.E.fa)
Z
)

Anidealised adrittance inverter operates like a quarter wovi-
length line of characteristic admittance d at all frequencies. Thus

if an adnittance Yb is attzched at one end, the adnittance Ya seen
. . 2 , .
looking in the other end is'Yi B I CFig. 2.2 ()

B

Figure 2.3 shows a typlcal low pass prototype design and
Fig. 2.4 .. shows the corresponding banq pass filter design, which can
be. obtained directly from the prototyre by a low pass to band pass
.tpansformgtiqn;_Fig.‘2ﬂf§ shows a generalise@ circuit feor o band

pass filter having impedance inverter and series t

¥pe resonatcr anc
Fig. 2.6 shows a generalised circuit for the same filter having ad-
T . P Pe e N Cos . L]

B [P L. .

nittance inverter and shunt type resonators.
o . . . B . o P EFTEES A |‘_

Fr
]

1 - . B . - PR
I S Ty e W B
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L2=32 o
|__,__._ e PO e 9_[
R'=g_ 3 ]-c' +Clag E_ $
0 %0 3 T 1 T 3 °3 Tcn_ 3
L, = . ifn |

Fig.2.3

A low pass prototype filter.

“ odd

For Shunt Resonators;

’
N gy
A= h%(a':'—L" =

J “%‘j’ P
For Series Resonators:
rd
é/‘) L
xk:MGLk:“L.. - v
NOCK‘ L)

or

L c
n n

-_——J_C Gn-i-"i

20

2 nel n-1 _

[" T - gn +1
W 2

3= Low pess cuTefs

e, . Lc?_:
) =

tJ, =

-,‘ v.@ ‘?r ‘-
2 gian ot frore e -

Cond e fof fotfpr -
s g - tad,

Fig.2.4 Band-pass filters and their rclation to low pass-protofypes.

—~m| ('__'-:’;?_‘l



13

X ’( t.()) |

y K

h"m!

Fig.2.5

The Band-pass filter in Fig.2.4 Converted to use only.

serles resonators and impedance inverters,

- - — / —
x; = LUOLJ *Z‘i—c_‘i Zwlg, =

; 3
[fih Z!4c~

2 =, ﬁfj' f+; =
P 3; Loy /

r,‘.\_f- v C‘// XJ { (L:)

3T T AL
A0 f zy' }('-,"-i-f

nY
/ ?J 3J+!

K . y AWy, e Ty T e
hone h
s “‘J", 9,, 13»\.-}) g

T~
_‘b‘..
W

g

/DC-‘:(»\._J_:

G4 Joa | B2 1

. B.w)

Ty b

.
N

Fig.2-6

The Bandpass filter in fig.2.4 converted to use cnly
shunt regonators and adsittance inverters.

L. = fiL A EE(WJ

— 'f"‘:)ot;‘j =
J 2 F oo [ = )

Ly = \!]GF-*-—_—A frdw T
gﬂﬁ! ac ! J_. 7‘1‘/
_ Jan b, PR

- ; . A (0, =
h, nt A Ty G4

!
‘——v“*‘ ‘_,f','\,
P
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25 = Ly o= -
One of the simplest forns of inverters is a gquarter wavelength
of transpission line. For an impedance inverter it has an inverter
paraneter K = Z_  where Z, is the characteristic impedance of the
line. For an admittance inverter it has an inverter parameter J:"IO
where YO is the characteristic admittance of the line. Besides tiis,
there are nunerous other circuits which cperates aslinverters. i,

2.V (@) shows one of them.

< 2 2¢
. 1 — . 1¢ 1o -
] i
T-C ke -:r:_-c T -
b 2.3 @ F{g 2.3 (L)

Short Circuit and open circuit input impedance of half networlk

Fig, 2. 3(b)

Characteristic impedance

it
]
—~

=stc ch -_— X =V 1 1

Image phase ehaft
B=2tan~l 4+ ( ---==- )
=2 tan P 4+ 1) 0
- = 4+ 907,

Thus B is frequency indipendent.

Thus the circuit of Fig., 2. F can be used as an impedance

or admittance inverter. When used as impedance inverter, The value of

K is 1 and when used as admittance inverter the value of J is we.

wce
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[

i

e s
2 _
; ’ g,=1
1o = A P g. =1
WG TH 4,7 9,3 =
g_=
Fig.2.8 (a) 3“1
Lowpass Prototype gy~

- 200y, ‘cosf % W, = 1 rad./sec., f:.Ollrad‘/:;c

| 0 — : R, =1 ., R_=1, w= ww=.01
' 1 2 i}

59 Y L2 l‘:" oo %
2 ) g | D '

T L_*_.__T 5 9,7 T % =1

| . . ! A =100, B = ,01, D = 100,

a’ b E = .Ol.

Fig.2.8(b)

Band pass transformed by frequency transformation,

”_"_m\"—Tt—-—-ﬂ b o= ?I:‘ S
: o g T, 2 cl T
. i ' g f T {_5
= s - —aw—_m |
a i o ' — b

Flg.2 9(a) Series resonator transformed by
adiittance inverter.

b% 1 (""JOL-|
Z — 1 v
by 2=
'j}l - ,,_.(ﬁ..;.. bq 539_ - -0 r‘",-—‘"’ooc =4 i\"}—‘i_/‘—
. “f TG g, , 2z 3 =
2% w,’ C) o - :!.—V -2- - ‘_\@
2 U3 :
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FO7 Fo R
o tE : } o T3
I& = r_Hﬂ_——:L _é -
~'303 - %57 { o Tteo —'303 T=3e3
Fig.2.9(b)
Circuit of Fig.2.9(a) with the values of the inverter
o :’16} -?c:.‘,L
s L] 3, o]
A = - T T, -~ o .
! ?-a; oo (Pt | ~%a3 i . ]-403 =703 2o, ] le
; ! |
Fig.239(c)
Equivalent to circuit of Fig,2.8(b).
‘Fod g
l 1 e ' 1&"““£“““—1—~——~
da$ T ™ 3 7 1o
‘ : ’Pg ‘ESE ’ 04 ‘{99'2,3

Fig.2.9(4}

The final circuit

Definition of quality factor and coupling coefficilent.

Fig.2.10
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As an exanple let us design a band pass filter congisting
- of 3 resonators and transform the circuit by admittance inverter of

Fige 2.4 (a).The design is shown in Fi;.2.8 and 2.9.

Thus we obtain a network consistings of resonators coupled
by capacitors for the normalised band pass filter having center fre-
guency 1 radian and a vand width of 30%. After impedance and freg-
uency scaling this network will be transformed intc a practically
consiructable network,

(15)
2.4 DESIGN OF BAND PASS FILTER BY NORM/LISED Kjq VALUES,5

In general the filter designecd consists of normalised ele-
nents values and normalised ffeguency. Elements values are nornaliseil
go that they are related to a arbitrary terminsting normalizing re-
sistance R.» the reduced impedance level resulted in simplified cal-
culations. Another normalizing parametcr is frequency; the frequency

of the 3 db down point is normalised tc 1 rad/sec,

Another form of normalisation resgults when the reactive

component of each elcment lsrrelated to the reactive part of the in-
nediately preceding element. The frequency normalization is émﬂe és
the above procedure. By this normalization, the filter is designeé
in terms of coefficieﬁf of coupling ¥ as defined "by Milton Dishal -
and the normalised quality facto% g in place of normalised elerient

values L and C.

The coefficient of coupling ij,is defined by Fig. 2 (&

= HeNry
LT g
kz%: {123

22 4p

1

ﬂl’)_l (\’ =i ) ( Lz (3)
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;DBdB = The overall 34dB down freguency of the filter .

The expressions for normalised quality factor of the cire=’ =

are
_‘_ — Gi/ci
4, = 3dR
_ 24z b2
Ql

Cvz —
'
i
i

From the low pass model of this type of norrialisation, theo

band pass filter can be desighed such that network transforration i

not required as described in the previous article. The losses in iz

reactive components can be taken into account by this procedure.

Moreover the values of the shunt resonaztor inductances muy be talel

to be the same and the capacitances nzY be corrcected including oo~

rasitic capacitances.
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2.5 RELEVANCE OF THE PRESENT WORK:

Band pass networks are generally designed by the two proce-
duresdescr .bed in this chapter..Both the procedures are based on o
frequency transformation technique. from low pass to band rass. Foer

such a band pass filter design, the spproxinstion probler is solved

for the low pass prototype.

After frequency transformation, the hand pPass response does
not have arithmatic symwetry. The response at freguencies lower thaon
the center frequency decreases rapidly than the response at frequen~

cies higher than the centre frequency.

Moreover for the finsl network, the transformation used
exactly corresponds at the centre frequency, so that the difference
of the two responses (the responses of networks before and after
transfornation) increases when the test frequency woves away from -
band centre.

For both the_reasons, low pass response will not exactly
corresponds to the baznd pass response for freguencies other then thsz
centre frequency.

In our study polynomial approximations have been done dircei-
ly from the band Pass response. After gefting the rational function
approximation we designed the network by exact method. No further
approximation is required.for getting the final network, so that the
response of the final network can be predicted during the tive of

approximation.
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CHAPTER-3

ANALYSIS OF THE BLND P4iSS FILTER
CIRCUIT

3e¢1e PRELIMINARIES:

In this chapter the practical band pass filter networit is
analysed. The network consists of parallel rescnators with capacitor
coupling between then terminated by a resistive load. The input is
taken as current source with a registance parallel to the source.

: A
At first the transfer impedance, ‘HE(S)' is calculated.Tran-

Z2n-1

sfer impedance contain a single term 3 at the numerator, n beilng

g2 Licrm in the

the order of the filter i,e. number of resonators,
numerator indicates that all but one transmission zero (highest or-
der of denominater polynomial is 2n) is at origin and the remaining

one is at infinity.

Then the transmission function 17“(}&3% 2, defined by the

!

ratio of power available at the load to the maximum power delivers~
ble by the source, is calculated from this transfer impedance. The
maximum value of such a transmission function is unity. Because pouer
avallable can not be greater than power supplied. Moreover the tro-
nesmission function can not be negative i.e. load, which is source

free, can not supply energy to the source.

Input impedance and the reflestion coefficient is than cal-
culated. It was shown that the p.r. condition of input impedance iz
same as the condition c< | T/, )" qfor \7_(jtd)ll'- Thus the reali-

'

zability condition of the transmission function is © <4‘r(jbx[<$
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3e-2e THE TRANSFER IMPEDANCE:

The bahd pass filter networks with shunt resonators coupls:
by capacitors obtained from the low pass prototype by freqyency tr-n-

sformation and impedance conversion i1s shown in Fig.3.1l.

i S Covmt
_F_‘ - Mgl‘_ S e R 'ff _
? J Cea | b J
w-\ . .
5 = - 2t o~ -
Kin ?Ll ] Cy Ly 'Tcl ?Lh ng i<y
Fig.3.1.
For n =2, i,e. for two resonators the circuit is shown in
Fig.3.2.
L L
e | = —+
] 2 |
E £, 38 o :
& % = < e z E
, <R B - 5
f " rL\ C Ly Cz_ {KL -
Flg.3.2
E2 .
We shall first calculate Zqp = =m==- for the circuit for
I.
Fig.3.2. -
From the figure,
- _
I E2 | T , : ‘ 4
¢ L2 S +C25*“PL—%=E'2 R+ Las+l,05R 8
~L J

E+= L. = + E 2
CC15

Res+ Las % L2C2?2L52'
RLLy, C., %

:."7E'2. ""EZ

it
N

R+ L 53 Lo 2 .
= - “___ml_‘_mz___?‘ Q_C_p_ 'QLS -+ QLQ-C’LZS'L
Ry () C)Gis’..).‘ :
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_— Ri+blos + (Rolae Co+ R Ly (;__\)S*"'
= :2 L'.-_._,.._
T
™ L_:,; (_G i C‘sl

!
~ C| f:-_ .+ [

= =g -
L —— ':-_!»'_n
2L, o, oa T
e e -
R - ‘-<|"\L-;S
+E2 2;5;_ - L‘.?. +L'_’_C"1-3-,_5-M
t'l_ 2 5
= P e T BN
= =, = oo g Lz2Ss+ (R L, Cr s RLheCo s iMm+ & i
Kf— Li(-c.!"‘"-‘— L’w\,—)}_[ <
-+ E‘?;m. {(l—*f 2.5""‘ LZC ' Hs_
<L L2 %
— -y R ; f e i . -
= t:-z{@._l‘{wt + (‘!2.'_ L;-!-F-ln L.:__}j?-’- P KoLy & Min + L, basmaf,
LL“-“"‘-"\;‘\%

a2 ~ ~ - N |
+RLL?_LC",::-{"S‘*'{-[_L?_LJCIK}y;,+ L"({<LL2C2“+
54‘}//f<‘_ L :’_C'-C_i L,v El:ri E -?:z
4 (.' - .o R . . ) | -
T Bz (Cei Ly RinRes™ i LRyt - :3.'_ Gyl R boca ), 1

t g_ RiG R, L2¢ +FoLs Ccr)]

(koW Kin SBJ
‘E RoRy, = (R L;.‘.E{,\L?‘.)S +‘['2LLJC| Ry Ltz + Ren (Kot 7oy

> . : 2> - .
R by o) + & LyKin {ZLj(;S 1—5‘«2 Ly iRy 4 Ly (R, Lzcaw

2 - . . =3 . - .
- L‘LC(")"'C"L‘Q”‘ s Ly Kfv(‘?z;Lz Cot+ Ry LaCer} g

Ce l:'-..'r' 7 [ .
\-f.eL;\HLzCIRz_;g‘I}/ o Gy Ly Rim 23

R

s £ bag?
I, - do-g-d;&#d:»_,"ij'—i-d S3ad, 54
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Thus the filter with two resonators the transfer impedern::

212 have Fhe form

an(s) TR s e e o s e e ————— a---oneco-oo-.(}.1:
dot d15+Tz shdys2 +dg 54

Analysis in a2 similar manner ﬁlll ohOW that for n =3

B e e e e - ———— am [ P {7 =
Z12(S) ] --cuo.ll-ncnlf\)o_;

4 54‘1'dr_;35+ Clé.‘.

In general for n resonators, the impedance

bt

Do+di g+ - - +d2n52”
For an increasing order, three clements are added in & cir-

. ) (7 VY
e s s oo b rs e ot

cuit as shown figure 3,3.

o ‘ \L =
l J_ e
é ——
& ‘ C :
o= , 3
Fig.}.}.

But 2. .(8) has two more transmission zeroes at the origin,
1z — - - =
Tn the Fig.3.3 L and CC will cause the transmission zeroes, C = =n
not produce any independent transmission zero. The capa01tances

PR [}

Cqs C, and 02 are in » form.as.shown in fig. 3. 5(&) combination of
three capacitances are equivalent to the combination of two capaci-
tances as shown in Fig',3'5 (b). Again for the nef? stage, QCE,C
and C', form the 7v circuit of Flg.}.ﬁ(a) and is equivalent to cir-
cuit of Fig.3.6(b). The network of Fig.}.h will then be equiQalent
to the network of Fig.s.?, where the trgnsmission zero st infinity
is for 0'3. The network of.3.4 and Fig.3.,7 are called potentizlly

equivalent, Obtaining -one of them, the other can be found out ezsily

by changing the internal capacitance matrices.,
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' i — ik !
g _[ Cey L Cog 'L
o = = e g
7L, IC‘ FLl Cq ng ¢y | R
Fig.3?4
I -+ & ) ¢ )
<

g
1F
B
(]
1\.\
Lv]
P
&

5
(a) Fig-305 (b)
Coo
o & a & | ©
1 l &
- / -:: o /
< i - 3
L ) o - -
Fig.3.6(a) Flg-306(b)
7 /
Cen Cen
Ky G
2 / 3/ = R
T l‘j g}_l L'kb C; L
Fig.3.7

Fig.3.4 & 3.7 are potentially equivalent network.
Knowing one, the other can be obtained by the transformation

of figure 3.5 & 3.6 p
I I

__|_,,_..._~':t~_._~ -

+ +

E, ¥R

=
- >

Fig.3.8

Definition of Transmission function.
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3.3, THE TRANSMISSION FUNCTION:

The transmission function is defined as the ratio of the povus

avallable at the load to the maximum power deliverable by the

BOUT T ..

f_/ ) Power available at the load
L"‘_‘]Ldj = -

.o.oo'no-(i-ﬁ-“
Maximum power deliverable by the scurce :

o

TE2|™/ R0

i |1 1|2 Rin
S N S
<in kL 15 i

C‘g 53
Zy2(s) = - -
do+dis+dz5%4dsS7 +d 07
4 hY
l-y i . Z‘Z(‘))'zl?_fh"s.) )
.412<)w)] o= S =W

Ca w @

1t

[
[¥N

Therefore for

b=

2 filter of order 2
. 2

eGuy 122 122 () |

|2l-n KL

e

(3-8}

Ao+ Arwt+ Azwdy A‘3w6+,¢t4uﬁ38

In a similar way it can be shown that for a filter of order
> zn-t
Z12{¢) = 20 2

o e G
(o +C) 5 +(251+‘ : +C2n5&

al

-

Therefore the transmission function zt{jwﬂ have the fornm

k;z(znug
feGwy =

(3
Ag + Avw + Azwd e oo + A, wAn v
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3.4 REALIZABILITY CONDITION OF THE TRANSMISSION FUNCTION:

The power taken by the load can not be negative or grenzar

than maximum power deliverable by the source., So that from Article

Z.1l, i: can be concluded that the transmission function lt(jw){C
must be between O to 1, This condition is nzcessary and sufficient
for the p.r. property of the input impedance at the driving point.

To explain this, we shall define reflection coefficisnt,
43(5 s+ by the equation i | 2. )
/ o (e - THWIE- L L3 o)
, .
where | © (jw)l2 is the square magnitude of fb(s) at S = juw.
E1 .
Let the driving point impedance 21 be ———- @5 shown in
ik
Fig.3.8. Then / !
I\ ﬁln
— T - = = = (3.1n)
\ 2*"1"2t
Let us take R. = R = 1 ohm.
in L - 7
€ = / s } ) (3 2) > /o 1:_2_'5
...,...:: ,.:_)-.E_!,-:__th X_-l . .'7" “‘IZ"lf‘
AT VAR + 2 ‘
Let 2,(s) = EL . oo+ 0 (Mi/nl+d Cqaia
! I/ w4 g Tomz Ln'L/M'L'}+1 ( '3}3
wher e T, and m, are even and n, and n, are add fynctions of 3,

Then according to the Darlington's Synthesis procedure it can te

shown that

P

Ny - Nz I'Ning - m
Ty = 321 = — %rl = V Mmina P
~ m< ~ o 17, ¥
YY'\L
For this Case, % |51 having L1l the transmission zero of
n-l ¥: |
241 must havg (b s } in the numerator so that 511' Zss and Zq 5
must contain even function 5 at the denomingtor which is m2.
From Fig.3.9, it can be shown that
. / A
Zig = _é?
I+ B2z
SO that =
’} I
Z;p_ = (Vﬂ,;ﬂ',?_%;m,mz ) /mz

«j'f' ﬂ.’:’. '//f/}') .
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Now we consider the case with scurce resglstance Rin znd Losd
resistances RL'

Input impedance to the lossless network can bz written cs

E1
— = % . - .
T, ,4'(JW) Ryqp +3 Xy

Power entering and leaving lossless the network will be
equal so that

1

2
” Q ] .2. i
1 \ =g = {E 1 7 Ky
For this Case

Y

I,f Kin
1, Rin +2i
- °L S R
-~ R ] o P Z
RN e
1 > 2

E2 ' _} J—r,} 14 /2_,}

RL k;‘!f\l l”?-l !2' ) e ‘ >; ‘:—-—_m‘-ﬁ_;)w I

] Kin T f'i&,"nwiz/)




‘Rilq-—z,}-?—: C‘an—lzujl'* XnTo

H(in +Zr1'1 - (g;n + pl,,>-z,_ll_ x.rz..
=

“

] 2_ 4
e | (e
i (7 + E1) T X

IZ';r\ + 2

L "L . - - L ) v
ilmbﬁ—lz?} + 28 By Xt = iy ) 12K 86

([2, n +r’:‘-;;/) = +x“":_

4 K in 2y :
(fZ,'n +f211) R U
4 E'n Y

i}

C o leltt o Rin Fr
R f Tl R+

- 1L (; / Ein -2
4 Ein + 24

i -
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Thus the transmission coefficient i.e. the ratio of the power

available at the losd to the maximum deliverable power ; {:(j:,q) iz

given by /
o ! [Z'( — 2 J.{U\ 4
‘ é(jku) ‘Z:: [ { ﬁll ’\_, i
i ! Fim + Zl(} el
R T Sl (5 020)
1 b4 20 () ) tow Ry 10
“g() w)f the reflection function is defined by,
1. - Lol
A N L )
| o 7y () .
i!.p(.)“”jlp: Ein ’(-’-—"““ """ <3 21)
o ! in + 2 (.) wj
,D(S) the reflection coefficient can be written as
P(ﬁ‘) - Eztﬁ —21(5‘)
Rin + 21 (5)
Ry P(s) + Zi(sD)PL5) = Kin —2,(5)
2 - , ST
10 ]L H‘f’(?)] = 2/, LL - fr)(g)]
| . Cr) .
Z;(é) - .2;,') l() "_-__‘_(5.23)
F 4P ) .
2, (%) P
ST P ()

Kin b+ ()

The equation (3.24) maps the right half of the Z,](s) plan

upon the interior of the unit circle of the #(. ' plane and vice-

versa. Therefore if Z,}(s) in p.r. then Ke rZ; (s)_;racfor 524:(-:,)_"/‘/._-.-

According to the mapping property of equation (3.24), it then foliows

4 for Re(S))O . Conversely, if /f (s)? _j’_:' 1.

P (o]

S
for [Qels)2 0 , then Z,](s) must be p.r.-

Thus p.¥. property of 7,(s) can be assumed by the relation
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\F(S)[ é i ——————————————————————— (3.25)
TP T Y i S T
i) 1 . 2
By ¥ \ 7 (..)"”) ] - - ( T {/ij I
S0 et if | PGt <

2 .
TG T S (2Y)
. - pa
So that the condition of realizability of | T )'“3)/ as &

transmission function is

iT(J‘*)D[léi __H_,__,a--~(3-2t7>
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CHAFTER-4

THE METHOD OF APPROXIMATION

4,1 PRELIMINARIES:

This chapter describes in details the method of approximation,

In article 4.2 we describe in brief the Butterworth aznd Cheby -
shev methods of approximation of Low pass filter and the frequency
transformation for band pass circuit , After network transformatis.
of series resonator in a parallel resonator and a capacitor couplin.,
the transmission zero at infinity is changed to be transmission zero
at origin. Thus the final band pass circuit by this method has =211 but

one transmission zero at the origin and one at infinity.

In article 4.3 a general describtion of the method is given.

In article 4.4 band pass response curve is approxirated by Fou-
rier method. The value of the approximate respuonse is exactly samc ot
the chosen points. However i£"may be distorted at any other point bet-
ween the specific pointé.

In article 4,5 method of obtaining the polynomial in w° ig des-
cribed . Tﬁis is done with the help of Ghebyshev polynomizl. By Cheby-
shev polynomial cosine terms of Fourierlseries is converted into a po-

lynomial of fundamental component Cos A, which is assumed to be equal

lww2

to 80 that all the terms of Fourier expansion becones poly-

1l + w -
nomial of in w . Thus the polynomisl is obtained. From this polyno-

mial the network can be synthesized.

k.2 APPROXIMATION BY USE OF BUTTERWORTE AND CHEBYSHEV FUNCTICNS:
The ideal transmission function for filters which has the rag-
nitude units for pass band and zero for stop band is not practicaily

1

’ F ..
realizable. To be realizable li ({w]E is to be expressed as a
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Fig.h4.1

rationzl polynomial in wa. Such a rational polynomizl can not be
obtained for the ideal transmission function shown in Fig.lh.1l for
low pass. Realizable rational functior will be approximately equal
to the ideal function. The difference between the ideal and the
approximate (practically realizable) function will depend on the
nethod of approximation. In general better approximation can be

obtained by using higher order rational functions.

As a specific example of the approximstion Problem, let ug
consider the magnitude éharacteristic of the ideal low pass filter
shown in Fig.4.1. Thére.éxists two polynonial approxinations toc it
which are of great importance in both theory and application.Ome cf
these is named the Butterworth or maximally flat response and the

other is named the Chebyshev or equal ripple response.

/., f?_
Assune that IT'(NQ>K is the squared magnitude of the

normalised i.e. units bandwidth and units magnitude ideal low pass

filter. Then a possible expression for ‘T' (jW)\ SR T B
A . ‘ o : - 14F(we)
where F(w?) = (0 ifo0 (w (1
%_ocv Cifw 131
' .Evidently a possible F (w2) is
P GR 2 el v ()
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Which suggests an approximation for F (WE) as

F (wz) = w2n ( n finite) P D)
Then : : >
Ve Gw b eemlocel o 1T GGl 2 e
} i - - 2n .
1 4+ w

Thus {T (3w} 2 approxinates the ideal funétiénET’(jw)'L.
} 1 :

This approxication is namied Butterworth approximation, and the fil-

vitlgwnm e (FubferienTE g0l
tert The normalised Butterworth magnitude function is given by

e Gw | S S N -

! -
J 1+ w2n

Another possible expression for F(w2) of Eg 4.1 is

. T
F(o) =gy, € P2 (w) N € N
n > =0
wher e Pn is an nth degree polynomial. If pn(w) =';j}(w ) = nth
order Chebyshev polynomial, and 0 £ 6': é 1, then sinilar to egu-
ation 2.3. -
/ f 1
|1 () | % e AT Gwl e

J1 +6?T2(w)
n

i i ' t o

1 T(jw)l is the normalised Chebyshev approximation to{7T (jw) .

: , . ,
The filter realizing éT(jw)Eis known as the Chebyshev filter. The
} 3

trigonometric form for the polynonials 3n(w) is given by

Cos (n Cos-lw) R W S'l

it

Tn(w)

Cosh ( n cosh“lw) w> 1 (4a2)
A recursive relation develops from (4,8) and yields polyno-

rials
2
T-'| = W T =2w=1 ___ (4.9)

=

1
=

=
‘N
]

‘N

e

Tn+1 2w ‘'n ¥
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Plots of egs.4.f and 4.% will show that for the Butterwoni:
function, pass ban& chafacteristic Becomes flatter as n increase
while for the ChebysheV function the pass band characteristic has
n number of ripple peaks and valleys. However for both the cases, ti.
cut off beesomes shaper as n increases. For Butterworth filter due - -
its maximally flat character, closely approximadtes the ideal fil-* .
characteristics for low frequencies, however the error beecnes larse
ag Irequency increases. On the other hand the deviation between +he
ideal characteristic and the Chebyshev response is spread out froo

w=0 tow=1 as a series of equal ripples.

Band pnass response can be obtsined hy freguency transforuc
tion of the low pass response. The element values will alsc be chz.
ged for the transformed hand pass filter. This is explained previ-

ously in Chapter 2.

For the band frequency w.,. {Tfjﬁ)ia can be calculated for
Butterworth response.
S
;2 - W, w = low pass frequency
w S
w B w = Band pass frequency.
7 Gwl® = -t
1+Wan
It Gw) 2 o el
' 1 +(w =-w ) 2n
- w B
= 2n B2n

= - - L
A0 * A1 w 2 +‘ essesansa + Azn w n

i3 - .oo-o(.-o(qnlo)



36
Sinilar expression can be obtained for Chebyshev functicn

also;

Equation (4.10) is sinilar to Zgn. 3:9 except the differvny. iu-
thetﬁumeratorflThe nunerator obtained from the circuit analysis is
w;(Zn-l)' whereas in this case it is wEn. This is due te the fact
hat the transformed band pass filter, being practically difficult
to construct, is tc be modified and the se¢ries resonators are convers
ted to the parallel resonators with additional dapacitors between ths

resonator as shown in Fig.h,2,

v
- [
Oo—— AT t—— a I & &
-oc B
UE T
Gm———ee -0 & ; -0
Fig.b.2(a) Fig.4.,2(b)
Band pass series branch Band pass parallel resonator
Before nmodification, corresponding to series reso-~

nator of 4,2(a) after modi-
fication.

The circuit of Fig.h4s2(a) has a transmission zero at origin
due to capacitance and a transmission zero at infirity due to induc-
tance. The circuit of Fig.4,2(b) has 2 transnission zero =t origin
due tc series capacitance and a tranerission zero at origin due to
shunt inductance. The shunt capacitance can not hove any independont
transmission gero. A1l such capacitancesof ail the branches will con-
tribute one transmissi;n zerc at infinity. Because at that time tie
shunt inductances will become opet { infinite icpedance) and the se-
ries capacitances will become shorted (zero iupedance). So that all

the shunt capacitancee will contribute one transmnission gero at s= -
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For this reason all the transmission zero of the modified circuit

will be at the origin except only one which is’infinity. For this

reason equation 3.0, has w2(2n—1)

tern as numerator indicating alil
the transuission zeroes except one at the origin while the reméiniu‘
one at infinity whereas equaticn 4,10contains w2n as the numerator
indicating equal number of transmission zeros at the origin and ot
infinity.

For this reason, the response of the final network obtai-
ned by Butterworth or Chebyshev function and after being transforrme:
for band pass after modification to be easily constructable becones
smaller at frequencies near origin than that at frequencies near in-
finity, that means for freguency lower than the centre frequency th:
value oflT (jw)g e is smaller than that at the frequency higher tr.:»

the centre frequency by the same amount. Moreover thisg difference vwil_l

increase for higher order filters.

4,3, GENERAL DESCRIPTION OF THE FOURIER METHOD OF APPROXIMATICN

The Fourier seris expansion =nd the Chebyshev polynonisl

Fa
4

iay be simultaneously used for a rational function approximation o

‘a'given band pass résponse so that tHe ratiocnal functitn, T Cjw)% i,
thus obtained can be synthesized in a network configuration consist-
ing of shunt resonators coupled by capacitors. In. article 3.2 we have
shown that for such a network configuragtion |7 (jw)ﬁa, the transui-

ssion funeticn, will have the form 7
RS w{»’,- l‘l‘é—»'ﬁ". -—-1.) ] .
'\T()w)f = - : . e
AR, 4 Af, T AR o sa
) - ‘ ~ AN
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(where m iz the number of resonstors).

Equation (4.11) can be written =s

J ;. 2
P Gl ™ L
- 7(L$ﬂ
- X K (o) L . gy
B S FAT 135
“he v s A > [ e )
wﬁww y(uf) bt _{i.u;—*——**\ 7 P (
.\‘1 <+ ”'. . )
, AH4+—AHluf;Aﬁ¢=m4+_.,A_Aﬁiﬁ+“ﬁ
X X ({;_) ',) - R SR e
(’i__!_l.dq,j/.tﬁ __—{‘4 ’j/

By conversion of the frequency variable, w, in to a new va-
riable, 4, so that the range of w from 0 to * will be changed Iron
0 to 7w for 4, Xx(wz) can be converted into F(A) such that F (i)
can be expanded in a trigometric series (4.15) by Fourier series ex-

pansion,

F (a) = Ay + Ay Ces A + AB COB 2 Nl + evovnvensnnonet Ay cos{n-1)
eeeese (B15).
The value of F(A) at some A is same as the value of XI(WE) at
corresponding w. The values of A1, Ag“‘A% can be found out from n
kncwn values of "~ F(4) correspBnding to n values of A, Thug if
JT (jw)i2 be given for n values w, then XX (wS) and A can be calcu-
lated corresponding to these n values of /T (jw)l2 and we We thus cb;
tain n values Of.F(A) corresponding to n values of A. We then obtzin
n nuober of equations from (4,15) involving n nucber of unknown a;'s

s0 that Ay (i =1 ton) can be obtaineq from these n equations.,

Knowing the values of Aqy Ae ............uﬁn for ecqguation
(4.15), equation (4.14) can be obtained with the help of Chebyshev

polynomial by converting A into w. which igshown below.
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The Chebyshev polynomial of order n is defined by

Tn(x) = COS ( n‘COS-lx) c,-_n--o-.A..uo-..--q(t}.lb)-

Let us assunme,

X = COS A, L= COS“lx -.oo.--o---c-.-o( 4.1?)

Then (4,16) becomes

i
Tn(x) cos n A

= A polynomial in cos A )

.ll..’(}-l-llo,

)

With the help of equation (4.18) , the trigonometric series

= A polynonmial in x

(4,15) can be converted into an equivalent serics, G(x), a polyno-
mnial in x where

2 n=1 1o
G (x) -— B1 + Ba B3 X + T eS8 s et say + Bn X ll'..‘.(q.L/f‘

The coefficients B, BZ.........Bn in the polynomial (4.15) - ..
be computed by substituting for each cosine term of series (4.15)

its equivalent polyndmial in x accofdiﬁg to (& ,18) ang collectin;;

the coefficients of like powers of Xe

The transfiormation of w inte 4 can be -obtained by ‘the equation

‘A= 2 tan™t W, w = tan -%_ PP €. 9-'))

Plot of w and A is given in figure 4, % Fron the figure, it ..

clear that the change of the variable w into A transforms w from -
to o0 into A from - 7% to % so that XX(wS), an epcriodic funotlnn
Of w will-be transformed into F(A), a permdic function

of Ay which can be expanded in Fourler series.,

—l -4 o a o

] I | ] | —

| 1 ¥ f |

i ! t. ' ' . ) ' .

| | i

: I

{ | | E i .

-_.T\ -'_ﬂ (} ----- -?- K ﬂ———p ﬁ
2 A

Fig 43
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From the equation (4.20) . -
e A L-{ag M4
-, sy = S
LC'L = +an Ao ,__‘,_i:ww....,_d_. e —
= Cf. ":\/, CG:‘;V>A/2.
w Z e pa Al 2w fena 1)
L ((,r! ' ’,i Sf 't_;:‘- . 7/,\_‘ {— 'L
= b Coy £ L b
3 i+ s A ; + X
o L L', {1 _ . - - \,‘1 1}
[ o7
T
Y - o A ~ i - ~ (’\4” 42 )
| 4 ep &

Substituting the value of x in eguation (4.20)

":'?f 1) - B+ F“ o Ao B, '.‘&1}, R . K re-d -~
5 - - T e (‘4 l{'.'-i
(X (1) = 6 - [i- a= Y 1
e B B2 |4 E +-E‘§5 —“M”—) o *6(':!/‘&{0 \r}—f/
VoA o - . - I <
\I+ i £
- MAQ’ + A )\_:..{.‘;‘..-* A f&_‘ to* ST e A f;':‘.n (4)1.(2”'&'
{l“f"(a;_lq)n"J ‘
{a.,j.
‘ 5AR4; ARé“.L;......;.ARn can be obteimed from the knawn
values of B1' B2 R Bn‘and the expansion of (4,23)
. .

Equations (4.25) and (4.1%) are sane for
n-1 = 2n
i.e. n= 2_m+1
Here m is the number of rnsonators and n is the number of

required known Values of XX(w %) i.e. h(JW)l . This means that for

a fllter w1th n reaonators, (2m +1) valuba of Transmission function

are to bhe taken to met the polynomlal ﬂpproxlmatlon .
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bol4 EXPANSION IN FOURIER SERIES OF COSINE TERMS

In equation (4u24), the denominator XX(w°) of transrlgu1
functlon’T Qw ) lb expressed as a rational polynonial of wa‘ The vo-
.

lues of coefflclents of expansion‘ARi ‘s can be calculated by chon in -

the w by 4 and expressing XX as a Fourier series of cosine ternms.

XX(A) =R, + R, Cos A + R. Cos 25 + ‘esseeses+ B Cosln~1) _,
1 2 ; n
.
2 d?? eee. (1,235,
! !
| }
. RGN
\ s .
\ AN Z,i- # (A2
\\\\xl‘ ’}f/\\f
/ = b _
ol 9.7 1ge?
L e—am A
Fe 4.4

The range of w from O to o0 hesg been taken equivalent tc
o] 0.0 o]
the range of 4 from O to 180 . For the range <1807 to O y S¥yletry

nay be assutled very easily as shown in fig. 4,%. Then the Fourier

series expansion will involve coslne verns only. The approximation
problern may be solved by b klng n different value oflT(w ))COrreo—

ponding to n valuies of w2 and then ca¢cu1at1ng corresponding n va-

o o4
lues of XX (wo) from |T(Gw i/ and ¥ (w%) and n valuesvi from w, Futting

these values, equation (4-25) becomes n number of equations for 2
nutiber of unknown values R, so that these values of R can be calcu-—

lated by solving the equations (4-26)
l

R1 + R2 COS A,} + R} COs 2.&1 4+ sas s e aseteaet R Cos(n"l).l’-‘k. =i

1
t

R1 + R2 cos A+ R3 cos 2 A4 erenanaias Rn cos (n=1) A =KX

- (26,
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JIn matrix fornm

l COSA,I . :COB 2A1 W bsemresssesCOS (n"l).{lq R1 i :

T 7 e 7
|

. . .

- Ao ; !
l cOoB An COSEAR -.---....-....COS(H l) :ln_l Rnl X}{ni

veeene(ha27)

12l [&] - ] (k28)
[A—ljl l:xxJ ceeernena (U428 2 )

R is a column natrix.

Thus from n known values of{T QWJ)], we get R1""‘°'Rn‘ Thexn
we get the approximate continuous function XX(A) according to eque-
tion (4.25). This continuous function XX(4) will have the exactly c:-
ual values for the specified points. The intermediate point may ha.o..
values not perniitted to the specification if the values of n fixed
points are not chosen properly. Out of these n fixed points 3 points
one at centre frequency w, = l rad for normalised fregquency scnale,cnd
two at the cut’ off frequencies will be fixed. The value of !T(jw}} -
at the center frequency is unity, at the two cut off frequéncies is
0.5: The cutt off frequency points will be fixed (values of w) by thre
specification of the band width. The stopband szttenuatiecn will be
specified. The value of{? (jw) e is at any other frequency which is
at stop band range will be lower than the specified. (obtained fron
the specified stopband attenurtion). For each point , XX(4) wiil be

Y
found for %T (Jw )\2 ang Y (wa) and value of 4 will be found frox
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corresponding value of w. Thus knéwing n values of XX corresponding
to n values of Aj we can calculate n values of R by (4,28) and have

the continuous expression XX(4) from eg.(%.25).

Assumiﬁg a fixed curve, XX(WZ) can be approximafed by a Fouricr
series expansion taking n number of terms, The fixed curve should
‘have symmetry so that the expansiop congist of cosiﬁe terms only.

One such‘assumeq curvg is shown 1575.1. Fourier series expangion of
this curve will consist of cosine terms qnly agsuming the symmotry

described previously.
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- 4,5 EXPRESSING IN POLYNOWMIAL OF w°
In the previous article we explain the procedure to trans-
migsion function as a cosine series of n terus , This cosine"seri-n
can be expresséd"as*a polynonial in w2 by expanding cos n A in ter

of cos A according to the Chebyshev polynonials

xx(a) = R, + R, cos A + Ry €O8 24 + duvivenat+ R cosln-2
1 2 3 n

= R;+ R’_}_Ti (x) + Rf‘. Té_tz} AR AREREREE: Rf‘. Tnm*i G

-‘.‘ '(- i ) ‘

-—;iRl R:‘. evr v ey R, J‘)’.:—' \\.Qﬁll'lll'"""' (4.29)
- Py |
2
7

R
By use of eg. (4d8) each term of the column natrix 11 EIARRELS

- 3

in the right side of eq.i'?ﬂ.zé) is a polynomial in x, so that &' |-~

can be written as

Qe . SRR, _ ) i
1 CP, . CPpeeeneenaaaCPy .
407} x .
T 2
P - . X
= t
Ty,
]
i
. ]
1
1
]
t i
e A e em T A
T .1 CPyy CP 5 esdeannaaie OP - ol x i
J - J

1
H
e
1]

[CP] LX J .'.‘..?...::. (4.30)
. .
The rows of CP are the coefficients of the Chebysh.v

ﬁ&lﬁﬁbmiél; row ‘1 for Tég : row 'aﬂfor”Tq and SOlén, the last

o s I T,

row is. for-T -4 = oo
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Agein the column matrix{(}{){, can be express:d as a funct..r

of w2 by the relation (4,12) ie.

1 - .
X = """""Ej—"'— ..l..on-clzl..lb.l‘.;.‘lil;o.lJ"‘;!‘:_‘
i
1 +w _
- . - e |
1 |- }” 1 | L RS 1 .,i
i L2 -y, RN (R [, Nyt N .
x i ___‘_:J_ E (« T ) { L-i‘.A" Wy ] (i el _/‘ H
1. - § .
LS \ _ \ . :
-{ ! . H i
\ ; . AN "’\ 4 .,w\\. feoms
' " [ize | A T A
L. - \“I%'vr\.“’l o (L_ -

~—(a.aD)
Each ternm of the matrix on the right side of cqn.(4.:8 coo

agaln be expressed as a polynomial in wz"

B Vi TN o~ T
{1+ w }
N .
/ w \". - x \({ J
Vi ) (lm-u_J—L'f;* =
{1+ 4 {’ — ) i ,
t {
vyl
1 ("_ W
. j
- 1 L £l
- S -’—(”"') \ /-'*')‘,'\{ o l-‘-—lr [EB RN ” + _:*iU;,f- w
L SAW W )f\ el oS E Vil |
P /
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Awri . AW . eseiseas AW are the coefficients cof the
' z— : - )

n=1 . e
binomial expansion (1+ w %) . Bwnll BW _ebeeesesss B are the

, . . . 2\n=1" -
coefficients of binomial expansion (l-w | * . Bwlz, Bl}""""jln
are equal td zero, so that the highest or&ef of the polynonial o'y

2{n-1)

1st column is w o Similarly BW Bﬁ24 """"‘Bw2n are equal

23,
to zero and AW, is also equal to zero so that the highest order of

. -1 : 1
the polynomial of the second column is also wa(n ). Thus it cesn bo

explained that the highest order cof the polynomial of each column of

atrix is wa(‘n—l). So that this can be written as
pe— ! r— ——_i - -
- . B 1
1 7 | cﬁ L‘\l‘” o h/h. fn
[T R I N Yoo
ot = {(lrw)
Vet \ .
v Iy i -
24 - : ,
) ) Cwp CWoz - CH E
‘\ i+ [ i ; H
i. B ! — T i
(4,33) -
Now the equations, may be written in matrix form
XX a) = [-R-j ; $j.....(4_34)R is row natrix
o - T is colum matrix
1 C el Tyl
T = | cpi L ox] ....(4 35) CP is square matrix.
A - - 4
) X is colunn matrix.
“i _ l [—‘ \! ---‘ ‘. .
X | S CW ; W ....(4.36)Cd is square matrizx.
] (1+ 2» Bel CW - - - W iz a eolunn nztrix.

From these equation (4,31),

XX(wa) - R J

I B
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which

(419) .

1 (4.37)

(4.36)

" . 4 '
Hhe et

equai d

. / R
E»j e_(lﬁua*f*mn {\-‘1',’% ;

© (4.39)

From (422 , (4.232) and (4-24)

17 T o]
! w¢’LQPQ§ 2 Exxj

1t
I
5
I
—{
-
™
F
Ly
™
.{.
& -
S

AR = TACT [
- - L .X‘)( 2

uuuuuuu

column  malix given

-1

A (n 1)
+ AR N
by
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CHAPTER-5

SYINTHESIS OF THE BANDPASS FILTERS

5.1. PRELIMINARIES:

The synthesis of band pass fillter by this method essenti -

11y consists of three parts, the first is the approximation, the o

cond is the realization of the network and the third is the trans?.

mation of the network.

In this chapter we discuss these three parts separately.

Approxiﬁation is done by two metho&s,”one by approximatin-:
denomina&or~bf-;lT.(jw)'2 assutiing n number of values and expandi: -
in Fourier series of cosine terms and the second‘hy assﬁﬁihg a fi-

a

curve . Since all but one transmission zeroes are at origin znd

the rest is at infinity, the realization can be done by Ladder deve-

lopment of the input imped nece realizlng shaunt inductance and seri.

E)

capacitance each time. After realizing all the transmission zero ol

origiﬁ5thé“one ‘gt Infinity is realized by a shunt capacitance.
Cafacitsnce-matrii traﬁsmissioh of eachjsectioh of-the
filter may be used to get the filter realized in the usual form on

parallel resonators coupled by capac1tances.

s

5.2 APPROXIMATION PROBLEM:
In the analysis of the bqnd pass filters consisting of
resonators coupled by capac1tors we hwve shown (art 3 1) that “he

transm1551on function of such a filter has the form
?.- SRR T4

‘T TAF AL - v A w0

Y

Where, 24 n-1Y = bm; m being the ‘order of the filter . . = -~

: ooa.o-nnoc-o(B 2)
i.’e. n-= 2111 +1
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. 5] 2 . .
iT (Jw)‘ may be obtained from n different values cf
'T(jw)!a corresponding to n values of w the frequency variablc,

In article 32 we have shown that to realize the network, the
: P2
value of |T(jwﬂ must be such that

OéT(jW) 2 :‘-_-_- 1 0.'.--!0_0060-..-lcl-.rtohli{505)t

This condition is also sufficient for !T(jw)ia te be realirze

Therefore we have to obtain the expression 5.1 for'T(jw” € s
that it:satisfies 5.34 For getting the.continuous J_E‘unctior}jT(jw)l_E
in polynomial form we have to take n values of ]T(jw)larcorresponw
ding n different values of frequency variable w. After getting thg
continuous expression of }T(jw)'a, it may exceed the range 5.3 Zor

other values of w. This is the main problem of approximation.

The required specifications, generally given, will fix up 5

such points, one for band centre, two for band edges and two for

required attenuation at some different values of w. Approximation

.ana network obtained by these five poiuts_will give a filter of ordar
2 which:ig eas;ly seeu from equation 5.ﬁ.tn;5, m=2)., For sucu 5 fil-
uﬂr.of oruerJE has s maximum limit of attenuation. Beyond this limit,
the contlnuous-functlon nT(Jw)I exceed the limit (5.3). 8o thot it

can not he reallzed.
UL I TR TR . : L L T B O A S S

ngher attenuatlon wlll be obt 1ned if we 1ncrease the ord

. . L . '
Ti. gt " I i LT

of the fllter from 2. For order 3, (n_ 2'n+l 2.§:+¥ = ?) 7 poiu:s

.

wlll be requlred. Flve g1ven p01nts nd two assumed points will thin

%

be requlred to solve the problem of sntlsfylng cquatlon 5 J.The tvo

< cu ¥

assumed ]T (Jw)l values for two w values is to be wlthln the spe-

. . ' A e

cified tolerance. Suppose at w = 2w y, attenuation A, is specified.

Then the”ésSﬁméd point may be at w = j.Wc and the value of IT“(”Qn' ;
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may be taken more thaﬁ A« By changing this value we can have the
approximate function safisfying the range (5.3}, If still highor
attenuation is required than two more points w1ll be taken zmnd il

specifica!ion can be satisfied along with the comdition 5.3, If‘'4wi7

o

becomles greater than 1 by a small value, then by dividingiT(jw)i Ry
méximum value, the range 5.3 may be satisfiéd. Then the réalized n .
work wlll have response of new {T(Jw)la after division and the ﬁand_
w1dth will’ be chunged. But 1ffT(Jw)[ becomes smaller than zer:j1 i,a,
negatlve then the change of values of ]T(Jw)l at fhe chosen w:will

be requlred.

From equation th 12) l1(h;§
Y L Y(wl) - . - D S
\T{l’o), )()((‘LQL) J where \‘5/\/%1.) (/.f. wl—)h"

Thus ¥ (w") is always positive. Moreover when n is fixed,the
value of Y(w ) at any w can be easily calculated. The agpproximaticn
i done with the valuc of XX(wS) whicn id given by

xk (w) WD) i.:..:.;....;....(5.4>
fn(iwe }

For the values of A from 0 to 180 (i €. for w from O to o;)

S “ ;_

tne value of XX(A) is shqwn in Figwe 1. The values of XX(W %) is col-
culuted for speclflc valubs of [T(Jw)fz at A = 90 &nd hlgher. Then
symmetry 1s.assumed for XX(A) t left and rlght side of 90 .'Soﬂthat
the VQIUEO of XX(A) at lower pOlnts is assumed to be same as corres-
Rond;ng hlsher pq1qts, alue'at‘So equal to the valﬁe.?t ;Qoo,lvalue
at 750 gquél to”thé value at 1050, and so on. By this éssumptiob odd

harnonics will beeone zero.,The vslue of XX{4) is given by

5

and t'he solution of the problem will become casiér.



52
" For the approximation assuming a fixed curve, the curve is

taken to be as shown in fig. 5.1,

The approximate values of the curve obtained by Fourier ansly-
sis is

XxX(a) = RO + chos A+ R, cos 24 + @ wmme-w + R cos na

e

eeeees5i5(a)

Where R is given by the relation

R has been calculated from the values of R1’R2' R3 s0 that at
4=90°, the value of XX(4) becomes equal to the value Y(A),Because
at =9OO, the value of the transmission functicn T(jw) 2 should be

equal to unity.

By this process, attenuation may be increased by increasing the
value of)ixyh . But ét the same time the band width of the filter
will be decreasedi Band width can be increased by decreasing the va-
lue of x,: By increasing the values of x

increased, but for this case also the band width of the filter will be

. the attenuation may be

decreased.

Y(A) which is fixed, increases if A increases from 90° for a
specific range. So that in this range, if we can increase XX(A). he
response will become uniform. This can be done by decreasing the va-
lue of XBf

Assuming X3 to be equal to (180°- X,) the value of RisRgeeas.en

EER

from equation 5.5(b) becomes zercd. So the odd harmonics will becomes

zero.The sodution of the problem will beccome easier.The values cf
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XX(A) at stop band range is higher,at 900 it is very small as com-
pared to the values at stop band. So that the oad harmoﬁics effects
XX(A) very much near 900 and it ﬁay be negative at frequehciés aear
900; For this reason this assumption of symnmetry about 900,‘makes
the approxinmation problem easier.

+»

S5e& REALIZATION OF THE FILTER NETWORL
After getting lT(jw)'E, we shall synthesize the filter from
the input impedance by ladder development.

For the circuit shown in figure, § 9

E1 m,,I + n1
Z1 = - R L R
11 m2 + n2

i’T(jw)}2 is obtained by approximation .

The reflection function /F’(jw)/2 is given by

rA ) 2
[fiw] = 1=The)= - 247

A (wl)
= jiéﬁi2::£§ﬁﬁf).'__,_ _ Ccr'fi)
A(dr) -
= 1o f%&lg)}/ |
. ) 5:i)co 7
.P(S) = 1=Z®& (=) g (a=P) L (5. ¢)
/42,0 Cﬂf+mg:+(h1+nd —
2 B e (47 -
1) = e (=3

From the transmission function ’T(jw))2 we can c¢alculate

LP(jW),i the reflection function,

f (s) will be obtained from /,F(jw)la in '5.5 by finding out the
roots of the equationé
a( -5%) = 0, &(- &%) - B (~5°) = o,
and collecting the left half zerds of the denomination and the nu-~

meratbr polynomial.
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2y i .
A-<t) = (Sxoy + L)) (o3.0% 4 W)= = (5.5
Tlsn :’Tu_.;-"[.‘ehm'f}-né—'é[‘-y {(?(."5) ! U.( -f’(f) e < fu€n by
GG = (5 +o 1) w,}(5+wziialz)-«— — (510}

Similarly numerator of_F(s) can also be obtained,For nume-
rators selecting left half zeros is not hecessary. However if we G-
the left zeros and calculate the numerstor polynomial of (s), The re
sultant network synthesised will have gainxband width to be maxinmum,

Thus we obtain

TR (ﬁz-m:)(”z"hf)_ —_ ..t}_gfg_. T Y )
‘é(g) —_ (?""z-l'mr).{h)_.‘f' h’) - G‘(S) ( .

G(s) and H(s) calculated in this Danier are polynomizls of

Se

From equation 5-11.

2 m, + ;n2_= G(s) + B(s)
G+ H(s)
er+ n‘2 = Py ,<> ~/2)
Similarly
m, +n, = E‘: (8) -H(s)[ / 2 (5-1%)
E,
Thus we get the expression of Z1 = wmpe—-
I
m1 n
Z1 = —-—.....j _J._ — — m— —— LS‘-‘L'E
g+ N,

Since all except oune transmission zeroes are at origin,ve
can develop 2.(s) in a ladder form shown in the fig® %, transmission
zero at infinity will be synthesi 88d by the last capacitance.

This network is potentially equivalent to the band pass
filter consisting of resonators couplsd by capacitors. So that chan-
ging the internal capacitance mmtrigés such that inputimpedance re-

wmain invariant, we can get the required filter configuration,
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5+#4NETWORK TRANSFORMATION

In the synthesis procedure describeé in aréidle 5i§;.we obh=~
_taiﬁgd the filter network by ladder development of 2., thé input
impedaﬁce. If we change the network, go that Z; remains éonstant,
then the chéﬁged network will also have the safie trgnsmiséion DT GTREr -
ty. A real ﬁbnsingular transformations of the loop currents in the
network, keeping the input loop current i, to be constant, will lcad
to networks inﬁoiving a number of variations in structureland ele-
ment falues, while presenting the same input impedance at the dri-
ving point.

By this process we can change the terminating resistance =
of the synthesized network to be equatl to 1, the normalised value,

The impedaﬁce level of the output terminal is to be changed..

For this change an additional capacitance C will be reguirca

which is shown below.

We want to change R to be 1 so that remains constant, For this
the inductance L, will have a new value Ln/Ra The capacitance matrix

for C, ; and Cqa for the circuit of Fig.ﬁla _pan be written as

I N NN RN RN _(:-o}{}

_cn-l Cn* Cpq

rrmmnnmnl

A new capacitance natrix written as

’ [

Cn—--l tcn-l Xy K

L R R R /—;,f'b‘
L /
-cn—l X\]R R (Cn+ Cn_l)

will keep Z constant and changé the output side so as to incluce

the change in R for the capacitance. For the capacitance matrix (2)
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The circuit can be written as Fig.5.8.
Fig.5.7 and Fig.5.8 will have the same % at the terminals

aa while the admittance level at terminals bb will be increased by
a factor R, i.e. the impedance level is decreased by the factor R,
so that we can get the output resistance fo be equal to 1, The cir-
cuit of the figure 5.5  will then be transformed as that of fig. -
3¢9 having seme impedance at the terminal aa while the output impe-
dance is decreased by a factor R. For this change we require azn
additional capacitance C. The network of Fig. 5i3. will now have

the form of Fig. -Jak.

After getting the network in the form Fig.S5.#  , the induc-
tancés excepting the first one (Ll), can be made equal to the induc-
tance Ln by lowering the impedance level in each case by a factor

of Q—h/ﬂ)xfwg y L being the inductance of the réspective branch,

For this change the capacitance seen at aa is again to be
changed, admittance level increased by a factof %; ri?). So a new
set of capacitances will be obtained. Taking C! to be left side of
the inductance and increasing its admittance level, the new circuit
becomes .as'fig.B.i};‘

~ Admittance level of terminal aa of Fig, 5.14% can be incruoased

by a factor L x % y keeping the admittance at bb invarinnt,
R .
involving one more capacitance, Ca, as shown in fig. 5,15 The

complete circuit on the right side now becomes

4

In a similar manner circuit of Fig. 5,3 can be converted ic

a network configuration cisting of shunt resonator coupled by copa-

citances.
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5.5. COMPUTER PROGRAMME:

Comput:.> programmes have been veitten for the complete prece-
dure as has been describedlin Drevious sections, The main steps-ars
shown ip the flow chart of fig.%,17. The values of denominator of
transmission function XX(we) are very high compared to that of the
numerator ¥ (w*) at frequencies of stipband. At centre frequency - .
transmission function is unity so tha: the value of its denominstor
and numerator is equal., For this reas:n, double precision is used -

the entire programme,

Values of the approximated tran.mission function with tae valu
es of its denominator and numerator ar.d the attenuation of the fil~
are calculated for different frequenc;:” ranges for rlotting curves

which will be shown in the next chapter.

The programme is a generalised (ne for any order of filterg

and is only limited by the storage caracity of the computer,

The operating time required for a filter of order 2 is appro-
¥imately 15 minuntes and for a filter c¢f order > is approximately 20

minute for the IBM 360/30 computer which has been used for: computer,

The poles and zeroes of the refiection coefficient are calcu-
lated with the help ofra'subroutiﬁe written applying Newton-Rapscn
method. Major time is required for this subroutine. It was observed
that about 45 minutes time is requirec for a filter of order 4 where

a polynomial of sixteenth order has tc be solved.

R; the coefficients of the Fourier series are calculated by
two method- one by assuming fixed points(point matching technique)
and the other by assuming a regular curve. The flow chart of Fig,

15.17 shows the 1lst method. The flow chart of the second methos is
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shown in figure 5.18. The prégramme “or fig.5.18 is same as that

of Fig.5.1%? oxcept in the calculation of R.

Inputs to the programme of 1'iz.15.17 are the order of tn:
filter MA. The values of the denomin:.tor of transmission functioz;
XX which arc assumed depending on th: requirement and the ahgles

AB in degrees corresponding to the volues of ¥,

The outputs are the values «f elements of final networis,
and the values of transmission funct:.on, its numerator and denowi-
rator, and the attenuation in dB for different freguencies.

Inputs to the programme of :'ig.15.18 are the angles AB x.

sym in degrees, AFMX, the maximum va ue of XX, in number and, 19550,

the order of the filter, Outputs are same as in the previous cosa,
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Flow Chart
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{
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Fige 5417
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Flow Chart

Calculate:

T (jw) 2, XX(WE), Y(wa) and
Attenuation as a funmztion o
w. output.

Calculate:
Polls and zerces of
Reflection coefficients

Sort:
Left half poles and =zeroces

Calculate
Input
Impedance

:
r

e

>
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Flow chart

Calculate: Element values

Realization of the net-
work in Ladder form

]

i

Obtain: final network
transformation of the net
work,

Qutput.

Calculate:
Transmission function from
final network for check

Stop

Fig.5.17.
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Flow chart

Synthesize
output

AB = AB 4

10 RD
= 10 RD+11

NN x X |

Fig. 5. 18
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CHAPTER-6

RESULTS AND DISCUSSION
6.1 PRELIMINARIES

In this chapter the results of filters synthesiged for di-
fferent orders are discussed compared with those of Butterworth and

T

Chebyshev filters.,

In article 6.2 Butterworth and Chebyshev band pass filters

are designed for band width of .07 for different orders.

In article 6.3 second order filters are discussed. The ole-
ment values are tabulated for Fourier, Chebyshev and Buttefworth
filters. The attenuation curves are plotted for different types of

filters

In article 6.4 third and fourth order filters are discucssecd.
In article 6.5 discussions have been made in the results

obtained using IBM Model 360/30 computer.
6.2. BUTTERWORTH AND CHEBYSHEV FILTER DESIGN

Tabulated Butterworth and Chebyshev low pass, values are
taken from Hand Book of Filter Synthesis, by Anatol, I.Zverev (15).
These values are converted for the band pass response. For Fourier
approximation by point matching 2fchnique.we have taken cutoff fre-
quency points corresponding to ;89 and 920, because, fpr the noriia-
lised case, centre freduency 1l rad/sec curresponds to 900 when cone
verted to éngle éccoéaing to the equation (4.20) and by the szne

equation 920 degreé corresponds to a frequency 1.035 rad/sec.issu-

ming these values as cut off frequencies, we may obtain a band width
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of (.0355Ix 2) = ,070 rad/sec. Neormalised low pass Butterworti zng
Chebyshev, filters are tragsformed to band pass filters for this
band width. The element vaiues of the Butterworth and Chebyshev
filters are then calculated for second third and fourth order fil-
ters. These values are tabulated. Calculations are shown in ipren-

dix A-l. A computer programme is prepared for calculation of res-

ponse curves which are then shown graphically.

6.3 SECOND ORDFR FILTERS (FILTERS WITH RESONATOR 2)

For Fourier method of approximatisn, the value of the angle
is taken to be 900 corresponding to w = 1 rad/se¢ as center point
and the cuttoff points are taken to be 920 and 88°, The frequency
corresponding to 920 in 1.035, so that band width becomes equal to
2x(1.035 -1.0) = 0,070 fadians/sec. approxinately. The value of

T(jw) © at points 88°, 90° and 92° are respectively 0.5, 1.0 ard
0.5 approximately corresponding values of Y(wa); the numeratcr cf
T (jw) 2 ig 0.05814, 0.0625, 0.0668, we have considered XX (wz},
the denéminator of T (jw) 2 to be symmetrical so that the value of

2 ) T(wo) 2

XX(w™) at 927 comes RT3y 2 T 0.1337. The value of XX{(w") at
88° comes to be the same i.e. 0.1337. 50 that the values of Xx(wa)
at 88°, 90° and 92° become 0.1337, .0625 and 0.1337 respectively.
The remaining two points required for m =2, are assumed in such =
way that the attenuation at stop band becomes very high while ét
the sare time T(jw) 2femains positive. Preliminary testing value of
3,4,5 and 6 have been taken satisfying thé foregoing conditicns Ior
angles 85° and 950 For XX (B5°) = XX (95°) = 3. It is found the:
there is no ripple. But for XX (850) = XX (950) = 5, there is =

+7 db ripple in the pass band. Increasing the values of XX (8303
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and XX (950); 50 as to obtéin sharp attenuation it is observed that
the ripple becomes larger and at some point with Xxx(85°) = XX(95%)
= 7.5, XX (wa) and T (jw) 2 becomes negative for which the networ:

realization is not possible.

For Fourier approximation assuming the specific curve for

XX(wa), the value X, is taken tc be 60° and the value of X1 is +alten
to be O. The maximum values of XX(A) have been taken 103, 104. For

fig.5.1, for X, to be 60°, the value of XX (A) is assumed to be zore
for obtaining a reasonable band width. After approximation, the band

width beccmes 0.18, The results are shown in table-1,

Computations have been made for different X2 values algo.

For X, greater than 600, though the attenuation increased the band-
width becomes smaller and the attenuation is very peoor colpared tco

- Dy -
the Chebyshev and Butterworth filter and ghe value of the capacitconce,

C, becomes negative, after network transformation, which is corgi-

derable. " ' - B

-~

6.4, THIRD ORDER AND FOURTH ORDER FILTHERS:

For the design of third order filter, the values XX{A) is

assutied at 7 points, the value of A at these points are 80°, 85°,£2°

°, 92%, 95°, 100°. The band width is assumed to be .07 as in the

90
case of 2nd order. The values of XX(A) =t the cut off points 88° (a2
920 are calculiated to be ,0358, Symnetry is assumed in this crnse rlan
so that the value of XX(a) at 85° is equal to that at 950 and tho vo -
lue ot 80° is equal to that at iOOOﬁ Different sets of values “?e
taken for these points. On the basis of previous discussion we tuci:
the value of XX at 85° and 95°to be 14 znd that at 80° and 10067 t¢ %=

103. The response curve for these values is approximately simil -»r t:

the Chebyshev, and Butterworth response curve. If we want to iner: . ze
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the attenuaticn, the value at 85° and 95° is to be increased wmd t.c
the value at 80° and 100° has to be increased also. If we chonre vro-
one of these vzlues, ripple occurs at passband. When the chango is
sufficiently large, ripple becomes so large that the value of E¥{a)

is negative for which T(jw) 2 is also hegative and the nefwork ren-
lization is not possible.

For fourth order filter the values ¢f A are taken to 755; 50",
85°, 88°, 90°. 92°, 100° ana 105°. aymmstry is assumed in this c.ss
also, so that we can assume three values of XX{A) one at—?SO and LUSQ,
one at 80° and 100° and the rest at 85° and 95°. The values of (s}

3and 3.4 at ?50, 80° ana 850 respeciively.

is assumed to be 105, 5 % 10
The filter has been synthesized with three values. The pass b nd vog-

ponse of this filter has been found to be quite satisfactory, *though

conglderable attenuation has been obtained at the stop band.

The results are shown in table 2 & 3.
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ORDER OF THE FILTER =2

L

0495
-0359
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= 5

TABL £~1

Cc1 La Ca
1.00 0495 19,2
1.41 .0359 26 44
1.10899 . 0585 16,06
1.2871 LOU620 20,47
1.485 .03889 24,40
1.138 179 4,635
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TABLE-2
ORDER OF THE FILTER =3
B L‘1 C’i Cc‘l L2 CEK ¢c2 L3 CB
1.Butterwidth .07 .07 13,48 +7071 +07 12,77 . 7071 407 13,48
2.Chebychev .07 .0376 25.396 1,204 .0376 2hk,192  1.204 10376 25,396
-B.Fourierclj .07 02559 27.82 1.0504 05590 15.94 9634 0590 17.03
e 055074 Lot boah T SR POV RV E N 0%

(1) xx(85%) - xx (95%°) = 14 ,

1L : 1~
Ce, l ¢y
a g — -
IX 1 3

xx (100%) = 1000

4
»4
~—
- 0
o]
o
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1]

™
r-)
e
r~
W
it
o
vy
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TABLE-3
CRDLR OF THE FILTER=A

BW = .07, Wﬁ = 1 rad/secc,

L, c, Cor L, c, C,s Ly C, Cos
1.Butterworth ,0913 9.305 0.645 .0913 8.882 o.4217  .,0913 8.882 .,645
E-E?Sbgg?ev 0384 24,885 1,185 L0384 23,893 .992 L0384  23.893 1.185
3. Fourier 1) 008312 119.14%  .733 L2942 2,475 .19 L2942 2,97 265

(1) xx(85°) = xx (95°) = 34
x(80°) = xx (100°) = 5000
xx(75%) = xx (105°) = 100,000
i it 1L [
L l. Cey Jﬂ Ql. J‘ CCB
W T J ey s
! L’ Cf {{Ll Tﬂl Lb Ca %LA ‘14 f-n-w

0913

L0384

.3942

2.305
24,885

3.154
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6.5 DISCUSSION OF THE RESULTS:

Graphs are plotted for Butterworth Chebyshev and Fouricr il
ters to show the different attenuation characteristics. In Fig.6.1
and 6.2 Attenuaticn Characteristic ofrFourier filters of Second oi~
der are shown. Attenuation in 4B is plotted, as = function ol normna-
lised frequency in radian/sec. It is observed that the attenuction

at the stop band of filter can be increased by increasing the viius

ssion function.

In fig.6.3 and 6.4 comparison is shown with Butterwor:i sa1d
Chebyshev 5 dB filters. In fig., 6.3 the characteristic of Fourier
filter for XX (85 ) = XX (95°) = 5.0 is plotted with those Buites
worth and Chebyshev filters. The stop band attenuation is highest
for the Fourier filter. But &t the same time the Pass band ripple
als0 becomes highest (approximately 1 dB). In fig. 6.4, Fourier “il-
ter characteristics are plotted for xX(95°) = XX (95°) = 3. In thiz

case there is no ripple and the attenuation at stop band is ir bat-

ween Butterworth and Che byshev .5 dB ripple filters.

In Fig.6.5 the pass band response is plotted. The response of
the Fourier filter for xx(8s5°) = % in the pass band is observed tco
be similar to the Butterworth filter.

In Fig.6.6 the numerator of the transmission function is o

e

tted as a functicn of normalised frequency. For the filters =f 7:i:.
6.1 and 6.2, symmetry has been taken for the denominator, XX. The
transmission function can not be symmetrical about centre frequency.

But at the frequency lower than the centre frequency the valu: ¢f the

transmission function will be smaller and at the frequency higher
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than the centre the value will be greater than that at the centre
frequency. This is observed i; fig.6.5.For symmetricai response the
value of XX may be taken so that |T (jw)!_2 is same at both sides of
centre frequency at equal distance. For this XX at lower frequency
should be smaller than that at higher freguency than the centre fre-
quency. The difference im values of XX at equal distance apart from
the centre frequency, will cause the odd harrmonics in the Fourier
expansion. Fig.6.7 explains the numerator polynomial as a function of

angle A of Fourier series expansion.

In Fig.6.8, the effect of increasing the value of X at 35°
and 950 is explained. It is observed that if the values are increased
the ripple occurs at the pass band. Further continuation of this pro-
cedure which resulted in negative values for XX (w2) in the pass bvuid,

the realigation was not possible.

Fig.6.9 and 6.10 explain the response curve for second orger

filter designed for the assumed curve shown in fig.6.9.

Fig.6.11, 612 and 6.13 are characteristic curves for the

third order filter. It is observed from Fig.6.ll that the response of
Fourier filter is satisfactory compared with the Butterworth and Cheby-
shev filter,Ilh ths segsé,that the Fourier filter has got almost thc
same sharp cutoff as the Chevyshev filtar but without the ripple ef.zct
of the latter in the ﬁassband. The Butterworth Filter has got a cor-
parable passband response but with a less sharp cut off characteristice
These remarks will be evident from a comparison of curves (a) (b) ani

(¢c) of Fig.6.1l. Systematic synthesis procedure for Fourier filt:or o::

be obtained via the assumed curve shown in Fig.6.9, but the point -
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matchine technique does not yield good high order filters as sut-n
in Fig.6.14 where a fourth order filter response has been obtainu!
using point-matching techninsue. The passband ripple magnitude b

comes unacceptably large though a setisfgctory stepband respounsoe o o

be obtsined without much difficulty.
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Chapter-?

CONCLUSIONS.

In this study a procedure has been developed for the synthe-

sis of band pass filters. The realizable ratiomal function has been

obtained by approximating YPhe bandpass response s0 that conven-

tional lowpass to band pass transformation is not required for ob-
taining the band pass filter network. The filter metwork thus ob-
tained has been transformed to a common band pass network consis-

ting of shunt resonators coupled by capacitors,

Solution of the approximation Problem by point matching tech-
nique is a laborious task though the results obtained has been ob-
served to be satisfactory for the second and the third order fil-
ters compared to Butterworth and Chebyshev filters. For the fil~
ters of order higher than 3.the solution of the approximation pro-

blem by this technique becomes much labouriocus,

" For the calculation of input impedance,solution of a polyno-
mial of order 4 times the orddr of the filter is required., It has
been observed that for some cases of higher order filters, the sub-
routine used to solve the polynomial is not sufficVently efficient,

A more efficient subroutine is to be developed for such cases,

An alternate procedure for approximation assuming a fixed
curve has also been developed which is observed to be better than
the point Batching technique. 4 second order filfer has been desi-
gned by this procedure. Further improvement of this procedure may

be a better procedure for the approximation,

The remaining part of the synthesis proeedure developed in
this study such as the realization of the network by ladder deVe-

lopment of the input impedance and the transformation of the net-
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work into a practicélly attainable network ig quite satisfactory. .

The procedure of the synthesis of band pass filter may be
further developed to design a filter having symmetrical bandpass
response. The response of the conventional bandpass filters desi-
gned by lowpass to band pass transformation is not symmetrical
because of the transformationg required after the approximation of
the low pass Tegponse, change the symmetry of the bandpass respon-
ses For this method of approximation, the band pass response may be
assumed symmetrical and then the approximation problem can be sol-

ved so that the symmetry will not be changed for the final netwerk,
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APPENDIX A=l

BUTTERWORTH AND CHEBYSHEV FILTER DESIGN

BANDWIDTE = 0.07, CEIRE FREQUENCY = 1 rad/sec.
N= 2
Butterworth
Low pass values q, = L.hk142
q, = 1,414
K12— 0.7071
L :92-- = 0.0495
1,442
C = 20,2
_ . L -
012— K12‘Aﬁik_,- 0.7071 x .07 x 20.2 1.0
=,
L;:LZ:'049§

=2y = 20.2— 1.0 = 19,2

-

N=2
Chebyshev 0.5 db ripple

q, = 1.9497
4, = 1.9497
K12= 0.7225
L=-220 . - 0,035
1.9497
C = 2?.85
12 = 0-7225 X -O? x 27.85 = l.LH = C'C-l
L, = L= 0352
c,= ¢, = 2345~ | 41 = 26.44
ey
5 L, LI
la rlﬂ T\Cl ‘ﬁt*l ]ﬁez |
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N=3
Butterworth
q1 = 1,00
q3 = 1,00
K12= . 7071
K23 = o?O?l
.07
L= -2z = 07
1 qg==.07

C12 = ,07%x.7071 x 14,29

N=3

Chebyshev 0,5 4B ripple

qq = 1.8636
a3 = 1.8636
Ky o= 0,647k
7K23= 0.6474
L =227 . 0,037
1.8637
C = 26.6

012 = 0.6474 x ,07 x 26.6

c—(|' C‘C'Z_
i

¢

1.204

i}

= 129 = 0. 703
= 1248 =3

Cp= 1429~ (0307 1+ ¢
= (2,33

- - — .02
L, =1L ﬁ.L_% — £.O03FL

2
C[: 2446 — (.04

= 2529 ¢ =y
C2:2@4¢4y2o4+Licq}

= 24 1922

= 013

3 T 2o
!

1070



N=b4
Butterworth

C

10.95

023= 0.5512 x .07

94

= 0.7654

2
s
[

1

0.7654
= 0.8409

ay
12

K23= 0.5512

KBL" = 0.8409

.0913

x 10.95 = 0,645

x 10.95 = 0,421

L= Ly = l“}:' Ly = 0313

L 21095 0,640 = 230G = Lgq

cl:|0u3gw(964s+0429319.884 = C3

Cca: 0£4< ,

N-4

Chebyshev 0,5 dB ripple

L= wmeee 297 ____
1.8258

¢ = 26,07

012 =

023 =

L—r - 1_,2:: 1__.‘5 = L_,_‘ pund 0.03@4

0.6482 x .07 x 26.07

(-Cl T o9y
q, = 1.8258

aQ, = 1.8258
Kqp = 0,6482
K23 = 00,5446
K3}+ = 0.6482
----- = 0.0384

-1.185

0.5446 x ,07 x 26,07 = 0.992

<, = 26031 %C
= 249.88¢ = Cq
Cop= 2609 {8S+0 23
= 23,595 — CD:
{16}1: s ST
Cc_z - o 991



APPENDIX A2
COMPUTER PROGRAMMES
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n

’

.IV JEN-FD-4T79 3-p MAI NPGM DAT E 15/11/77 TIME 12.72

DIMENSTON JAW(1!411),18BW{11,13),ICW(1],11),ICP(11,11], IPW {11,113,

LICT( 11511),1 TH( 11 ,11) , \
DOUBLE PRECISION A{l1,11),CR{11+11), A(L1),AB(LI)sXX(1L),YY(11),

1TT{11)sAR{11) 4EM(L2) ,G(11) ,H{11) ,GG(11),ZIRC11), 2100110, TTHS(L1),
2ZL{11)  XR(12) 4R{12) 4XCOF 122} JCOF(22) yRNCTR{22}, ROOT (221, 2AA( 3},

3ZA305142C0(2)4PPU5) 40Q(5) 4DG (L1 42) 4,7 Cl4) +25CI{4)sP(6)s ARR( 6, 61,
4AT(6,6)48{6,6) ,0064,6) JAFT (6 46) yATT(646) JAFFIL6,6), AFXI(646),

SAXI{ €9 6) 905 SyBR yABR y XXA ¢ XXH oAFMX ,Y1 1 oY Ry CNXW, T MAX
6y WL 150) AW 150) s THIL50) ,TTWIL50) JXW(150) YW {1501, ADB{150 ), PHAT{ 150

Tl WW(11)
ByZLL(2),2C13)

10¢
1¢

READ{1,1C)MaA
FORMATI(I10)

.10z

IF(MA-10) 104,102,102
G0 _TO 900

104

CONTINUE
N=(MA%2)+1

CREADUI,12Y(AB(I) ,1=1,N)

FORMAT( 7F1C. 5)

2 FORMAT{ TE11.4)

READ {1,131 XX{1}40=1,4N)

MB={MA%2-1) %2
MC=MA%2

2C

WRITE(3,20)
FORMAT( GXs 1! 4BXp' AR 413X, WW! 13X ,'YY? 313X 4 *XX ", 13X, 'TT *)

DO 110 T=1,.N
AA(T)=AB(I)*1,57079633 /90,

WW{I)=DSIN{AA{T) /2. /DCOS(AA{T}Y /2.7
YYCII=(WWOT ) %XMB) /(11 .+ WW(I) %52) %*%MC)

TV I)=YY(IY/7XX(1)
WRITE(3,22)T yABCTY S WH{T) o¥YYIT) oXX{I) ,TT{I}

XXA=C. 00
DO_110 J=1,N

A{T,0)=DCOSIXXA)
XXA=XXA+AA{ 1)

11¢C
22

CONTINUE
FORMAT{I10,5F15, 8)

14

BUW=WW{MA +2)-WW[ MA)
WRITE(3,14) o S o N _
FORMATI{ 5X, '*ORDFR OF THE FILTER',5X, 'BANOWIDTH OF TRE FILTER' }
WRITE{ 3y 161 MA 4B W

1¢

FORMAT({I15,F4C.5)
WRITEL 3,28)

2E

FORMATU15X,"MATRIX A FOR FOURIER SERIES EXPANSION')
CWRITE(3,26) L (ALT I 90=1 4N} 41 =1 ,N)

2¢

FORMAT( TE17. 7}
MD=MA +1

DN 106 [=1,M

DO 106 KJ=1,MD

10¢€

J=2%KJ- 1
ARRUI,KJI=A(T ,J)

D0 318 I=1,N

DD 318 J=1,N

31€

IAW{ 1,J)=0

A2,1 GENERALISED PROGRAMME FOR BANDPASS FILTER DESIGN BY
FOURIER METHOD USING POINT MATCHING TECHNIQUE(Contd,)
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IV 3eCN—-FO-479 3-4 MAT NPGM DATE

15711777

TIME

00319 J=1,N

216 TAW(J,10=1

1AW 2,2)=1

DO 320 I=3,N
DO 220 J=2,N

22¢

K=J-1
TAW( Ty JI=TAMWIT 4K} ={I~-K) /K

DO 321 I=1,N
DO 221 J=1,N

321

IBW  Tod d=TAWIN-T+#1,J) *(=1) *%{ J+1}
DN 222 I1=1,N

ICW{ I,1)=IAW(LI,17 X5IBW(T ,1}
NO 222 J=2,N

ICH{ T+J)=0
_DD 222 K=1,.1

327

ICWE Ty d)=T2W(T s N+IANT JK) #¥18RWI{I ,d=K+1)
WRITE{ 3, 313)

317 FORMAT(15X, *MATRI X ICW')

WRITE (3,354)0{ICWIT »J) sd=1 4N) 4T =1L,N)

3£ 4

FORMA T{ 71 15)
DO 225 I=1,N

22f

DO 225 J=1,N
Icril,JN)=0

DO 226 T=1,MA
K=2%] -1

KK= 2%1
ICP{Ky 1) =1%(~-1} #*{I+1)

ERX3

ICP(KK,11=0
ICP{ 2,2)=1

ICP(N, 1)=(—1) **MA
DO 228 K=3,N

LL=K-1
LLL=K-2

DO 228 [=2,N
J=1-1

228 TCPUK, I =ICPTLL D #2-1CPILLLST)

WRITE (3,3543({1CPUI 4+J) sd=1 4N} ,I1=1,N)

321

DO 227 I=1,N
DD 227 J=1,N

ITW{T+J)=IC WIN-T+1,d)7
DO 329 [=1,N

DO 229 J=1,N
ICWET,J)=] TW(J,

325

1)
ICT{I,43=ICP{J,1)
DO 230 I=1,.N

DO 230 J=1,N
IPH(T,0)=0

33C

DO 320 K=1,N
IPWI T J)=TPWIT 4 JI+ICW{T yK) XICT{K,J)

31C

WRITE{3,310)
FORMAT{LISX,*MATRI X TAW')

WRITE {3,354} ({IAVIT 400 ,J=1 o N} S1 =1 N}
WRITE( 3,311}

311

FORMAT{ 15X,'MATRI X IB W'}
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1V 36(N-FO-479 3-6

MAT NPG#M NATE

15711771

TIME

WRITE {3,35400{IBWIT yJ) yJ=1 4N} ,I=1,N)

13.3

WRITE(3,312)

FORMAT(L5Xy *MATRI X IC W'}

WRITE (3435340 ({ICWII4J},J=14N)4I=1,N)

WRITE({3,314)

FORMAT( 15X, *MATRI X ICP?)
WRITE {3,354 )1 (ICPIT yJ} 2J=1 4N)s1=1,N)

WRITE{ 3,315)

FORMATL 15X, "MATRI X [PW"}

WRITE (3,354)({IPWIT yJ) 4J=1 4N} I =1 ,N)

DO 232 J=1,N

322

DO 3322 T=1,N
CRITHJI=IPWII, J)

24

WRITE{ 3, 24)

FORMAT{15X,*MATRI X CR FOR CCNVERSION OF A IATO W)

HRITE(B,Z&)!(CR(I)J) 2J=1 4N} 41 =1,N)

N=MD

DO 113 I=1,N
DO 113 J=1,N

112

A{T4+J)=ARR(T,4)}
P{l1l}=0.0

114

DO 114 I=1,N
PL1)1=PC1)+A{T ,1)

DO 116 T=14N
DO 116 J=1,N

11¢

CUIy)=A{I,0}
DO 128 K=2,4N

0O 118 I=14N
DO 118 J=1,N

11¢

B{TyJd¥=C1T1,J)
00 1290 1=14N

12¢

B{IyII=B{TI,1)-P{K- 13

LD 122 1=1,4N

DO 122 J=1,N
C(1,J)=0.00C

DO 122 L=1,N

ClTaJI=CUT,0)+A(T 4L)*B{L,J}

0=0.C0
DO 124 T=1,N

Q=04+L{],1)
S._

P{K}I=Q/S
DO 136 I=1,N

DO 1326 J=1,N

AT, J)=B{I,J1/P{N)

WRITE( 2,32)

FORMAT{10X,* THE MATRIX ATt}

WRTITEL3,2&)({ALI{T5J) 2d=1¢N) I =1 ,N)

DO 340 I=1,N

DO 340 J=1,N
AFI{I,J)=C.

34C

DO 340 K=1,4N

AFTUTJ)=AFT{I,J)+A{] 4K} *AT (K, J}

DO 345 I=1,N




98

1V _36(N-FO-479_3-6 MAT NPG M DATE  15/11/77

TIME

DO 345 J=1,N

13.31

AII{I,J)=0,
IF{I1-J)345,342,345

34:
34%

ATI{T,J1=1.
CONTINUE

WRITE(3,26)((ATTI(] 5J) yJ=1,N) ,I=],N)
DO 246 I=1,N

DD 346 J=1,N
AFFI(I,d3=0.

34¢

AFFTCIJ)=ATI{I 4 J)=AFL{[ 0
WRITE{3,26)({AFFI(I yJ} yJ=1 4N} oI =1 ,N}

AFMX=1.
D0 348 I=1,N

DO 348 J=1,N
[FIAFMX-AFFI{T1,J}1350,348,348

35¢
34¢

AFMX=AFFI{1,4J)
CONTINUE

WRITE(3,4C)AFMX
IF{AFMX-1.)3¢€4,364,367

¢ WRITE( 3,33)

FORMAT{5X, 'CORREC TION DOES NCT CCNYERGE')

364

GO TO 99¢
CONTINUE

DG 3460 IK=1.N
DD 3252 I=1,N

35¢

DD 352 J=1,N
AREXIUT4J)=ATI{I ,J)+AFFI(] .0}

DO 351 T=1,N
DO 351 J=1,N

AXI{I.J)=0.
DO 381 K=1,N

351

AXI(IvJ)=AXIIIaJ)+AI{IyK]*AFX](KfJ’

352

WRITE( 3,353)
FORMATI(5X, "CORREC TED Al =AXI *)

WRITEL3,26)} {{AXI(I 4J) yJ=1 4N} 1=1,N)
DO 256 [=1,N

DO 356 J=1.N
AFI{I,J)=0.

35¢

D0 35%6 K=1,N
AFTUT,J)=AFT{I 4 J)+A{I 4K} *AXT (K, J)

DO 358 I=1,N
DO 258 J=14N

ATCT,JF=AXI(I ,d)
AFFI{1,4)=0C,

35¢
36C

AFFI{T3)=A1T{I ,J)=-AFI (] ,J)
CONTINUE

DO 138 K=1,N
R{KI=0.0

D) 128 J=1,N
BR=AT{K+JIEXX{ N}

R{KJ=R({K}+8R
DO 139 T=1,N

[K=2*]-1
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IV 36CN-FD-479 3-6 MAT NPG M DATE 15/11/717 TIME 13.

[J=2%]

- XR{T1J4)=0.0 .
13¢ XR{IKI=R(])

N=2%MA +1
DO 141 I=1,N

14T RIT)=XR(1)
WRITE( 3, 34)

34 FORMAT(5X,'R,COEFFICTENT OF FOURIER SERIES *)
WRITE{3,426)(R{I),1=1,N}

WRTTE( 3, 38) _
3€ FORMAT( 6Xy "W' L 7X, AW’ 416X+ ' PHAL " 15X, 'YW , 15X, " XA ', 15X, ' TW* )

Wi11=0.98 c—a
DO 142 J=1,15C

AW(J)=2.%DA TAN{ W( J) )
YHEJI=SOWOJ) *=MB) A {1+ W J) 2%2) 22=pC)

XXW=C.00C
XW{J)=0.040

K=1 R ;
DD 140 I=1,N N '

XW(J)=XHIJ]+R(K)*DCDS(XXW?
XXW= XXHW+A W J)

14C K=1+1
THEJ =YW J) /XKD

PHAT(J)=(180./3.1416) *Al{ J)
NRITE(31391H(J}»AH{J1;PHAI(J];YH(J)q XWII) ,TH )

3¢ FDRMAT(GEIB.?)
L=J+1]

142z WL }=W(J)+0.0005
TMA X=TW{ 1}

DD 148 K=2,150
IF(TWKI-TMAX) 148,146,146

14¢€ TMAX=TW{ K]}
14¢ CONTINLUE

TMA X=TMA X+ 0. 001
WRITE(3,40) TMA X

4C FORMAT(F 30.16)
02 154 J=1,N

AR(J31=0.0

DO 154 K=1,N

ABR=CR{ J 4K} *R (K]
154 AR(J}=A{ J)+ABR

WRITE{ 3, 48)
4€ FORMAT(S5X,*ARJCOEFFICIENT OF POLYNOMIAL OF W*)

WRITE{3,26){AR{J) yJ=1,N)
CNXW=1./(AR{N) *TMA X)

WRITE (3,40) CNXW
WRITEL 3, 50)

5C FORMAT(6X1‘N',le,'XW',ISX.'ADB',lQX;'TW'115X,‘TTH',14X,'PHAI',13
LXy "YW') '

Wi 1)=0.10
DO 1€2 J=1,150

AW D )=2. DA TAN( W( J))
WIJI=DSIN{AW(J) /2.) /DCOSIAW(J}/2.}

XH{J)I=AR (1)
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1V 36CN-FD-479 3-6 MAT NPGHM DAT E 15/11/77

TIME

13.7

15¢

RO 158 I1=2,N
XWOI V=0 XWOI)+AR(T ) %Wl ) *2{2={]~1)3).
KW {I3=XW0J) /0 L+ Wl J) ¥32) #4MC

YWREI 1= { WO JTHAMB ) /0 { L. + W{ J1 %32} %% NC)
TWEJ )= YW J) /XWL J)

TTH ) =TWI J) /TMA X
ADBI{ U)=-10.CHOLOG10{TTHW{ )

PHAT(J)={180./3.1416) A K{ N}
L=J+1

W{L)=W{J)+0,025¢C

¢ WRITEL3,60) WLJ) o XWE J} LADBU ) HTWED JTTHIIY s PHATLJ) JYWLJ )

FORMAT{TEL 7. 5)
KM= 2%N-1

DO 168 J=1,N
JJ=2%J-1

JK=2%]
JL=3+1

16E

XCOF(Jd )= {ART ) FARCNY ) #{—-1.) #*xJL
XCOF{JKI1=0. GO

M=2%(N-1)
DO 264 J=1,2

CALL DPOLRT{ XCOF ,COF +M,ROGTR 4ROOTI 5T ER)
WRITE(3,56){ XCOF{ K} ,K=1 4KM)

FORMAT{ SE13.5)
DC 160 I=1,M

WRITE( 34 54)RCOTRIT) 4ROOTI{T)

FORMA TL 2{ 15X,E25. 6) )

K=0
L=G

CCC{1)=0.000C
DO 240 I=1,M

IF(RODTRUT }) 2464242 4240
IF(RO0TI(T)) 244,240,240

t K=K+1

CCC{KI=ROOTI(I}

24 ¢
24 ¢

IF(RODTI(I))248,248,24
L=L+1 :

ZAATL)=RO0OTR(T)
ZAB{L)=RODTI{]}

24(

CONTINLUE
IF{CCCL1))25GC,252,250

2572

ne 254 I1=1,M7
PP{1)=-2.%ZAA(1)

254

QQAUT)=ZAAL T} **2+ZAB{T) %2
GO 10 255

25¢

MAA=MA~ 1
NO_259 I=1,MAA

25¢

PP({I)==2,.%ZAA(1)
QAT I=ZAALT I XH2+ZABLT ) %42

PP(MAI=0.
QO(MAI=CCCT 1)

25¢

DGl 1,J31=1.0
DO 256 1=2,N

25¢

DG(I1,d1=C.0
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TIME

1

2

ek

IV_360N-FO-479 3-&% MAT NPG M DAT E 15/11/77

DO_262 T=1,MA

EM{ 13=DG({1,J)*QQ{1)
EM{21=DGI2+J)*0Q(II+DGI L , J) *PP(I)

NMN=N=-1
DO 260 K=24NNN

26C

EMIK+1)=DGI{K+1},J) *QQ{I)I+DG (K4 J) =PP(I)+DG((K=11, J)
DO 2&2 K=1,N

26¢

DG{K,JI=EM{K)
XCOF{ 2.%N-3)=XCOF {2AN-3 3 +1. /{AR(N) =T MAX)

2¢€ 4

CONTIN UE
WRITE (3,26)((DG{I4J},1=1,N),J=1,42)

NK=N+2
DO 265 J=1,NK

26 %

G{JI1=0.0
H{J}=0.0

DO 266 T=1,N
G (I)=(DG{I,1)+DGI(I,2)) /2.

26¢

H (I)=(DG{1,11-DG(1,2)) /2.
WRITE(3,26)(G (1) +I=1,N)

WRITE(3,26}{H {I},I=1,N)
NA=N-3

NG=N=-2
DO 28C I=1,NB

ZL{I)=HL I+1} /G( )
IF(I-N+5) 268,268,272

26¢
27c

DO 270 K=1,NG
G(K+I-1)=G{K+I=1)-H(K+I) /ZL(T)

27z

G0 TO 27¢
DN 274 K=1,3

274
21 E

GIK*1-1)=G{K+T=1)-H(K+I1} /ZL(1)
DD 278 K=1,N

GG(K I=G{K)
G{K )=H(K)

2T¢E

H{K )=GGI K}
WRITEL 3,26){G{K) y K=1 4 N}

28¢C

WRITE(3,263{H{K),K=1,N)
CONTINUE

ZL{N=2)=H{N-1) /GIN-2)
ZLIN=13=G{N)} /H{N~-1}

ZL{NI=H(N-1) /GIN-1)
WRITE(3,26){ZL (1},1=1,N)

MAA=MA-1
ZSL=Z1L(N=2) /ZL(N)

ZLLT 2)=2L{N)
IC(3)1=ZL{N-1)

DO 610 I=1,MAA
IFIMAA-T)614,612,614

6lc

ZLL{1)=1.0
GO 10 €&lé6

€l
61¢

ILL 1)=Z L{N=-2%1-2) /7 5L
CONTINUE

ZOCLI=ZL{N=-2*]~-1)
ZC12)=-2C(1)

IC13)=2C(3)+2C{ 1)
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IV 36N-F0-479 3-8 MATNPGHM DATE

15/11/77 TIME

ZCL 1)=2C 0 13*2 1111}

ZCL2)=DSORTIZLLL{L)} *DSQRTIZLLIZ}) *ZC(2)
ZC{3)=ZLL(2)%ZC (3}

2CC{I)=-2C1(2) )
ZSCIT)=2C13)+2C1(2)

61C

ZLL{ 2)=2L1( 1} -
ZC(3)1=1Z2C(13+2CL{2)) /ZLL(L)

ZSCIMA)=2C( 3)
WRITE({3,288)

28¢

FORMATI5X,'COUPLING CAPACITANCE,ZCCY)
ZIR{II=YIR /{ YIR%¥2+YI 1 %%2)

WRITE(3,13)(ZSC{1),I=1,MA)
WRITE(3,13)(ZCCLI) 4] =1,MAA)

WRITE(3,13)7Z5SL
WRITE{3,26)1ZCC(T} ,1=1,MAA)

WRITE(3,26)3{ZSC{I} ,I=1,MA}
WRITE{3,26)Z1L{1),Z5L

DO 292 I=1,N
ZIR{T1=1.0

ZII{I3}=0.0
DO 290 K=1,MAA

YIR=ZIRIT)} HZIR(I) %2+ 71T {1} #%2)

YII=~ZTT(1) /{ZTR(T} **2+ 71T (1) ¥%2) (1. —(WW (I )% *2)% 7S L% 7SC(K))/

LOWW( I )%*Z SL)
ZIR(CTII=YIR /U YIR *#2+ Y[ | *%2)

25¢

WRITE(3,26) YIRWYIT ,ZIR(I),ZIT (1)

ZIIC )=~ YTT /{ YIR*¥2+ YI T #42) =1, /(ZCC(K) *WW (1))

YIR=ZIR{T)I/OZIR{T ) **2+ 711 (1) %22}

YII=—ZIIII}/(ZIR{IB**2+ZII{IJ**2)-(1.-(HH(I]**2!*ZL(li*ZSC(MA))/

TOWWO T *ZL(1})
ZIRUTI=YIR /L YIR #%2+ Y] T %42)

ZITCD)==NIT /O YIRZE:2+ Y]] %42)
WRITE(3,26) YIR,,YIT 4ZIR(I)} 4ZIT (1)

292 TTHS(IJ=1.—({1.~ZIR(I))**2+ZII(I)**2)/((1.+ZIR(IJ)**2+ZII(T)**2}

WRITE{ 3,260 TTRS{I} 41=1,N)

99¢
90¢C

GO 10 100
CALL EXIT

END




103

A6ON-FO-479 3-6 . DPOLRY DATE Q1711777 T IMFE 0731

SUBROUTINE DPOLR T{ XCOF yCOF +M,RO0TR ,RGOTI ,1ER)

DIMENSION XCOF(1)},COF(1)} RO0TR(1} ,RCGTITI{L)} .
DOUBLE PRECISION XCs YOy Xy Yy XPRyYPRsUX +UY VYT oXT yU 4 XT2,YT2, SUMS D1

1 OXyDY, TEMP ,ALPHA
DOUBLE PRECISION XCOF ,COF ,ROCTR,ROQTI .

IFIT=0 POL 6
N=M

IER=C
IFIXCOFIN+1)) 10+25410 POL 10

10
15

IFINY 15,15,32
IER=1

20
25

RETURN
IER= 4

30

GO TD 20
1ER=2

32

GO 7O 20
IF {N-36)35,35,30

25

N X=N
NXX=N+1

N2Z=1
KJ1=N+1

DO 4C L=1,KJ1 POL 2
MT=KJ1-L+1

40

CORMTI=XCOF(1)
X0=.C05001C1

YU=0G.010001C1
IN=C o

50

*=X0
XC=—10.0%YQ]

¥Y0=-10.0%X
X= X0

Y=%0
IN= IN+1

GO TO 59
IFIT=1

XPR=X
YPR=Y

ICT=G
UX=0.0

"Uy=0.0
V=C.C

YT=0.0
XT=1,0

U=COF(N+1)
IF{YU) £5,13C,¢€5

[N
\n

DO 7C 1=1,4N
L=N-T+1

TEMP=COF{L ]
XT 2= X% XT= Y% YT

YT2= X ¥TeYeXT
U=U+TEMP *XT2

V=V+TEMP*YT2
Fl=1

UX=UX+F 1% XTxTEMP
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N IV 360N-FO-479 2-4 DPOLRT DATE 01/11/77 TIME 07

UY=UY-F1xYT*TEMP
XT=xT7?
70 YT=v¥T2 *
SUMSQ=UX*UX+UYFLY )
IF(SUMSQ ) 75.11C,75 .
75 DX={ V*UY-U%UX] /SUMSQ
X= X+D X
DY=—{UXUY+VE(X?} /SUMSQ
Y=Y+DY
78 IF(DABS{DY)+DABS{DX}~1.0D-107 100,380,580
80 ICT=ICT+1
IF{ICT-500) €0,85,a5
85 IF(IFIT) 1CC,90,1CC
30 IF{IN=-5) 5C+G5,55
95 IER =12
GO 10 20
100 DO 1G5 L=1,NXX
MT=KJI-L+1

TEMP=XCOF(MT)

XCOF(MTYI=COF(L)
105 COF(L )=TEMP

[TEMP=N
N=N X

NX=TTEMP
IF(IFITY 12C,55,4512C

110 IF(IFIT) 115,5C,115
115 X= XPR

Y=YPR
120 IFIT=0
122 IF{DABSt Y/X)-1.0-C8) 135,125,125
125 ALPHA= X+ X :

SUMSD= X% X+ Yy
N=N-2Z

GO TC 140
130 X=0.C

NX=NX—1
NXX=NXX-1

135 Y=CuC
SUMSR=0.C

ALPHA= X
N=N-1

140 COFUZ2Y=COF({ ZY+ALPHASCOF (1)
145 DO 15C L=2,N

150 COFIL +1)=COF{L+I}+ALPHARCOF{ L1~ SUMSCRCUF (=11
155 ROOTIINZ2)=Y

ROOTR{NZ)=X
NZz=N2Z+]

IF{SUMS]) 1€0,1€5,16C
160 Y=-—Y

SUMSQ=0.0
GO TO 155

15 IF(N} 2Cy2C,45
END
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y_ IV 3E60N~-FD-479 3-6 MAY NPGM DATE 12/12/77 TIME l4,

C

BANDPA SS FILTER DESIGMN,APPROXTMATED BY ASSUMED RES PONS E CJRVES o

DIMENSION IAH!llylliyiBwfllfll)vICH(ll;llivICP(llrll)oIPNIllle),
1ICTC 1Ly 113,1 TW 11,11}

DOUBLE 2RECTISION Alll:lll1CR(111113rAAill?vﬂBill?yXK(ll}yYY(lliy
lTT(ll},AR(113,EMI113;3(113»4(11),GthllsZIR(ILQ,ZII(ll?sTTNS(ll)f

ZZL{11};XRilZ),R(lZ),XCDF(22J1CDF(22)yRDDTR(22)sRDDTI(ZZ?,ZAA(5)v
3ZAB(5),:C:I2)1PP(5]1QQ{5)9DG(11;2]yZCC(4):ZSC(4); ARR{6) 6}y

4 2BBI( 23, RN{12) +Al +P4X (40) 4 AK,RABS,
SAXI( 6y 61 40y SyBRABR » XXA o XXW)AFMX ,YIT oY IR, CNXW,T MAX

6:HIISO):AN(15€);TNll5OJ,TTW(lSOi1XNI150),YHIISOJyADBIlSO!vPHAI{l5O
TleWWl11)4,ZLLE2Y,Z043) 4SYM,YI20)

By ZSR+Z SL 4B,y X2
NN=1

2¢€

I6RD=2
FORMAT{ 7E1 7.7}

P=4,0%DA TAN{ Q. 10D Q1)
00 1 I=1,1¢

RN{Ti=0C.C
X2=80.,0*%(P /180.0)

2G

ABL1V=00.00
DO 900 IJ4X=1,NN

BN=Z.O*IDSIN(PI4.0)/)CDS(P/#«O!*DSIN(XEIZ.DJ/DCGS(X2(2.D))
WRITE{3,970)I0RD +B &

S7C

FORMATI1IHL1,///40%X4*0ORDER OF THE FILTER=',12,' ASSJMED BANDW IDTH=1,
1E11.4/)

MA=IDRD
MB={MAa*2-1)%2

MC=MA%?
MD=MA+1

N=2%I0R3+1
SYM=0.0

21

AFM X=190.C*1.00 @2
I=1JK

XCI)={P/180.00})%aBI{1)
Y{I)=(P/180.C0)*{180. 00-AB(1)—=S¥YM)

DG 2 K=1,MC
AT=K

RN(K}=IZ.0/P)*{{1.0/{AI*AI*iX(IJ—XZ?}3*IDCGS{AI*X2)—DCDS{AI*XII)))
l+l1.0/1&1*AI*!Y(I)~P+X2)BJ*IDCDS{AI*Y{I)I—DCUS(AI*(P—XZ)))}

Mo

CONTINUF
FORMATI1Q0E12.5)

RABS=0.0
DO 5 I=1.N

M=T+1
ROIMI=RM{T )*AFMX

DG & I=1,MA
K=2%1+1

L=1+1
RABS=243 S+R{K)*{-1.,0) #**_

RUDI=RA3S+1.0/({2, 0%%( 2%[ ORD} )
DO 318 T=1,N

318

DO 318 J=1,N
[AW(I,J)=0

DO 319 d=1.N

A2.2. GENERALISED PROGRAMME FOR BANDPASS FILTER DESIGN BY FOURIER

METHOD _APPROXTIMATED ASSUMING A RESPONSE _ CURVE. (6ontd.)
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1v

AHCN-F3=-479 3- 4 MAI NPGM DATE 12/12777

TIME

14

318

JAWL 3, 13 =1

IAWL 2, 2)=1
DO 129 I=34N

DO 220 J=2,N
K=J- ]

320

JAWC T I d=TAW(T 4K (T =K) /K
DO 221 I=1,N

321

DO 321 J=1,N
IBWI Ty JI=TAWIN-T+14J3%{~1) #%{ J+1)

DO 222 I=1,N
[ICWE T, 1)=TAW(Y 1) *IB WL 1)

No 222 J=2sN
ICW{f,J1=0Q

DO 222 K=1,4
ICWI T J)=TCWIT o J)+JAWIT 4 K) ¥IBWIT 4 J=K&1)

FORMAT{ 7I15)
DD 325 [=1,N

DO 325 J=1,N
IcCP{i,J}=0

DO 226 1=1,MA
K=2%1 -1

KK=2%]
[CP{Kyl)=1%{-13&%{1+1}

ICP{KK,1)=0
ICP{ 2, 23=1

ICP{N, L)={-1)#*Ma
DO 228 K=3,N

LL=K-1
Lii=K-2

DO 328 1=2,N
J=1-1

ICPIKy T3=ICP{LL »J) #2-1CPILLL,I)
DO 327 1=1,4N

D3 327 J=1,N
ITW(T»JI=ICWIN-T+1,])

DD 229 I=1,N
DD 229 J=1,N

325

ICWI Ty J}=TTWlJ,I)
ICTT,J)=1CP{J,1)

DD 230 I=1.N
DO 330 J=1,N

IPW{I,J)=0
DO 230 K=1,4N

IPWIT,J)=1PHWlI J)+I”W(I;K)*ICT(K,J)
D3 332 J=1,N

DO 232 I=1,N
CRIT,J)=IPWIT 4J)

WRITE( 3, 24)
FORMAT( 15X, *MATRIX CR FOR CONVERSION QF A INTQO W*)

WRITE( 3, 26){(CRITI yJ) yJ=14N) ,I=1 ,N)
WRITE(3, 34)

34

FORMAT(5X, '"R,COEFFICIENT OQF FOURIER SERIES')
WRITE{3, 26)IR{I),I=1,4N)

WRITEL 3, 38)
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N IV BEON-FD-479 3-6 _ MAINP3M DATE 12/12477 TIME 14,

a8

FORMAT{OXs "'+ 17X, AW 316X "PHAT * j15X s 'YW 4 15X 3 "X AW Y3 15X, ' TH? )

40

WRITE( 3, 40) TMA X \
FORMA T{F 30.186)

PHAI( 1)=90,0
DO 142 J=1,101

AWLJ 3=PHAT{J)*(P/180.0)
WIJ)=DSIN{AWIJ) /2.) /2COS{AW{ J} /2.)

YW )I=0 W) HxMB ) /1 {1, ¢ Wl J) %%2) #%pMC)
XXW=C.COC

XW{J)=0.00
K=1

DO 140 I=14N
XWi{J )= XW{JI+R{KI*ICOS{ XX W)

143

XXW= XXW+A W[ J)
K=T+1

TWIJ I=YWL) 7XWE D))
K=J+1

39

WRITEL 3, 39)UWI U} JAKE D) SPHAT L J} yYWLJ) y XW{J) osTHW{J)
FORMAT(6E]18.5)

142

PHAT{KI=PHAI{J)+Q. 05
TMAX=THKW[ 1)

b0 148 K=2,10C
[F{TWIK)I-TMA X) 148,146,146

14¢
148

TMAX=THK({K)
CONTINUE

TMA X= TMA X+ (G, 001
DO 154 _J=1,N

AR(JI)=0.0
D0 154 K=14N

154

ABR=CR(J,K)*R{K)
AR{JI=AR{JI1+ABR

50

WR ITE( 2, 50)
FORMATI 6Xs*W® »16Xs" XW' J15X o* ADB? 414X 4" TW? 415X ,1TTH ', 14X, *PHATIY, 13

1Xy? YW )
W{1)=0.85

PO 162 J=1,150
AW(J)=2.%DATANL WL 1))

WIS )=DSIN{ARI D) /2.0 DCOSAWI D) /2.)
XW(JI=AR(1)

158

DO 158 1=2,N
Xl J 3= XWLJI+ARTT ) *Wl J) *%(2%{f=1)))

AW{d )= XWOJ Y /0L e Wl U} 5%2) R%MC

YW I I={ WS D RAMB ) /(L 1.+ W J) %42 ) *%MC)
TWOJ =YW ) /X0 J) :
TTW{JI=TW(J}/TMA X

ADB{J)=-10.0%¥)LOG1CITTWl 1))
PHATLJ}={180. /P) A K( J)

L=J+1
W(Li=W({J1+0.002

ise
6C

WRITE( 3, 60) WEJ) o XW{J) oADBL I} o TW(J) 4 TTHW (D) SPHAL(J] 4¥W (3]
FORMATI 7E17.5) '

KM= 24N-]
DO 168 J=1,N

JI=2%J-1
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NIV _BEON-FO-47S 3-8 MATINPGM DAT £ 12/12/77 TIME 14

1K= 2% |

JL=d+1 . v
XCOF(JJ)= (ARTJY FAREN) Y =1, %%JL

168 XCOF{JK)=0.CC
WRITE( 3, 48) :

48 FORMAT(5X,"ARCDEFFICIENT CF POLYNOMI AL CF W*)
_WRITE( 35 26 {AR(J} 4 d=] 4N}

CNXW=1./{AR(N) *TMA X)
WRITE {3,40) CTNXW
M=2%({N-1)

PO 264 d=1,2

WRITEC 2, 56} XCOF{KY yK=]1 4KM}
5& FORMATIQE]13.5)

CALL DPOLRT{ XCOF 4COF yM,ROQTR,RCQOTI ,I1ER)
IF( JER 317041724170

17C GO TO 10C
172 CONTINUE

WR ITE{ 3, 52)1ER
52 FORMAT{ 5X, 'IER="*,12)

D0 160 I=1,M
160 WRITE( 3, 54)ROGTIR(I) ,ROOTI (1)

54 FORMAT( 2{ 15X,E25,61)
K=0

L=¢
JJ=0

ZBB{ 11=0.0
CCCL1)=0.00¢C

241 DO 240 1=14M
IF{RDJTR{I)}2464242,240

242 TFIRODTINI 31244,24C4240
244 K=K+1

CCCUKI=RODTI{I}
GO _TO_ 240

2486 TFIRDOTI{I })}2484247,240
248 L=L +1

ZAA{L)=ROOTR{TI)
ZABL{LA=ROOTIC(I )

GO T3 24¢
241 Jd=4J+1

ZB88{JJ=RO0OTR{TI)
240 CONTINUE

IFIZBBT 1})249,251 4249
249 MAA=MA-1

DO 253 I=1,MAA
PPII)=-2.0%ZAAY])

2532 QU 11=Z281 1) %%2+4ZAB(] ) *%2
QQ{MAI=7BB( 1)*2BB(2)

PP{MA)=-2BB(1)-ZBB (2}
GQ 10 255

251 IF(CCL(1))2504252,250
252 DO 284 I=1,MA

PPUT)=-2.%ZAA{ 1}
254 QQ{1)=ZAA{ TI%%242AB{1) #%2

GO TO 255
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DATE V2712777

TIME

14,

NIV 3E60N-FO-475 3-6& MA T NPG M

250

MAA=MA~ |

DO 259 I=1,MAA
PPE{I)=~2.%ZAA{ 1}

QU II=ZAA{ T}*%247AB{] ) #3%2
PP{MA)=0.

QRAIMAI=CCC{ 1) %*%2
DG{1l,J)=1.0

DO 256 I=24N
DG(Iy44)=0.C

DO 262 I=1,MA
EM(1)=DG({1,4)*QQ(1)

EM{231=D6G{ 2,J)#QQ{I }+DG {1 +J) *PP{I)

NNN=N-1

260

O3 260 K=2,NNN

EMI{K+1)=DG{{K+1},J) *QQUI)+DG (K, J) *PPLI)+DGL(K=1), )

262

DO 262 K=1,4N
OGIK+JI=EM{K)

264

XCDF(2.*N—33=XCOF(2*N—3}+l./(A§(N}*TMAX)

CONTINUE

NK=N+2
GO 265 J=14NK

265

GlJ)=0.0
Hl{J1=0.0

DO 266 I=1,N
G {I)={DGII,13+2G(I,2)) /2.

266

H {I)=(DGUI,1)-D5(I ,2}} /2.
NB=N-3

NG=N=-2
DD 280 I=1,NB

ILIT)=HIT+1)/G(1)
IF{I-N+5)268,268,272

268
270

DD 270 K=14NG
GIK+I- 1)=G(K+I~1)-H{K+I) /Z2L{I1)

212

GO TO 27é
DO 274 K=1,3

274
27¢&

GIK+T-1}=G(K+I-1)=H(K+I) /ZLLI}
DO 278 K=1,4N

GGIK )=G{ K}
G{K )=H(K)

218
28C

HIK )J=GG{ K
CONTINUE

ZLIN=-2)=HIN- 1} /GIN=-2)
ZLIN=1)=GI{N) /H(N~-1)

ZL{NI=H(N-1) /GIN-1)
Z5R=0.100 01

IR X=0
IRY¥=0Q

971

WRITE( 2, G7T1IAFMX,Z LIN)
FORMATIGX, "A=*4E14.6,'R=' ,E14,6)

972 FORMATOLIXs LU L) =" yE14,7,'CLL) SV aELlA .7 4 L{2) =, ELl4.7,"Cl2)=% Fl4.7,

WRITE(3,972)1Z1L(1) 4I=1,M)

1’L(3)=',Elﬁ.?;'C(B)t',El4.71'L{4)=',E14.7y‘C(41='yEl4.7#

WR1TE( 3, 573)

973 FORMAT{&X,'RL'fng'Ll'yQX"Cl'19X1'CC1'!3X1‘L2‘v9X1'C2';9X1'CCZ'p
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12/12/77

TIME

14,

NIV 360N-FN-479 3- 6 MAT NPG M DATF

1RXy ¥ 0, CHQ ' 3Y 39X 203 L, BX L {40 ,9X A 41)

MAA=MA-1
IS =71 {N-2)/ZL(N)

281

ZLL{2¥=7ZLIN}
ZL{3)=71 (N-1)

DD &£1C I=1,MAA
IF(MAA-T1614,612,614

612

ZLL{ )=1.C
GO TG 61¢

614
61¢&

ZLLd 1)=ZL{N-2%1-2) /Z 5L
CONTIN UE

ZCL1)=ZLIN-2%]-1)
ZC{2)==-7C (1)

IC13=20{3)1+2C( 1)
ZC{1)=2C(1)*ZL1L{1)

ZCL23=DSORTIZLLLLII O SQRTIZLLIZ2)} =2C (2)
ZC(3)=7LL{2)*IC(3)

ZCC{1)=-2C( 2)
ZSC{I)=2C(3)}+2C{2)

&1¢

ZLL 2)=2LL 1)
ZCL{3)={2CL 1)+2C(2)) /ZLL(1)

2SC{MA =20 3)
XROLY¥=71L (1)

XROZI=ZSC{MA)
XR{2)=2CCEMAA)

DO 618 I=1,MAA .
Kil=3%T+1

KIC=3%1+2
KCC=3%1+3

Ki= MAA-T+1
KC=K[-1

XR{KIL ¥=Z SL
XRIKICI=ZSCI{KI)

618

XR{KCC )=ZCC{KZ)
WRITE( 3, 288)

288

FORMATI5X, "COUPLING CAPACI TANCE ,ZCC?)
WRITE{3, 26){2CCH{1}),I=1,MAA) :

WRITEL 3, 260( 2 SCII T 1oL MA)
WR ITE{ 3, 263ZL( 1) ,Z SL, RYL , SVM A9

374

HRITE(B.Q?é)ZSR;IXRII# 2l =1 ,KIC)
FORMAT(1Xy12F11.4)

IR X=13 X+1
IF{ IR X-2)282,282,283

282

ZLLE2V=ZLON}*1.C0OD OL **I RX
ZSR=72 SR /1.CGD Q1

Z35.=258/1.C00 Qi
GO 7O 281

IRY=12¥+1
IF{IRY-1)28B5,2684,285

ZLLL 23=ZLIN-2) 72L( 1)
£5L=2L{ 1)}

ZSR=ZLINI/ZLL{ 2)
G0 10 281

CONTINUE
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+

- 1V 360N-F0-479 3-4 MAT NPG M DATE _12/12/77 TIME 14,

AFMX=AFM X*1,000 0O}
IF(AFM X- 0. 1C0 04} 21421 4790
79¢_CONTIN UE
SYM=SYM+ 1.0
IF(SY4-0.00)21,2]1,8C0 .
80C IK=TJK+1
S0 AB{IK)=AB{IJKI+10. 0
X2= X2- 5. C%{P /1 80. 0)
IF{ X2~ 60.%(P /1 8G.C)) 990420,20
99C CONTINUE
IORD=I10RD+1
~ IF( I02D-4)20,20,100
160 CALL EXIT
END
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AEON-FO-47S 3-6

JPOLRT

DATE

14/12/77

TIME

17.59.2

SUBRIJUTINE DPOLRT{ XCOF 4COF 4¥,RO0QTR ,ROOTI ,IER)

DIMENSION XCOF{1l),COF{1),R0O0TR{1},RCOTI (1]

POUBLE PRECTISION XCeYOsXsYsXPRHIYPRIUX +UY sV 4 YT o XT,UXT2,¥YT2,5UMSQ,

1 DXsDY, TEMP »ALPHA
DRUBLE PREC]SION

XCOF ,LOF yROOTR ,ROCTI

TF17=0
N=M

POL &6

1ER=0
IFUXCOF{N+1})

10,25,10

POL 10

TFINY 15,515,327
TER=1

RETURN
1ER=4

GO TO 20
IER=2

GO 75 20

IF (N~26135,35,30C

N X=N
NXX=N+1

Nz=1
KdI=sN+1

DD 4C L=1,KJ1
MT=KJ 1-L +1

POL 2

COF{MT3}=XCOFIL)
XG=.0050C1C1

YC=0.C10CG1G1
IN=G

X= X0
X0=—10.0%YC

YC=-10.0%X
X=X0

Y=Y0
IN=TN+1

GO T2 59
IF1T=1

XPR=X
YPR=Y

1CT=C
UX=0.0

Uy=C.0
‘V=C.C

YT7=C.0
2T=1.0

U=COF{N+1)
IFLU) €5, 13C, 65

0O 7C I=14N
L=N-1+1

TEMP=COFI(L}
XT 2= X% XT- Y% YT

YTe= XeYT+yx XT
U=sU+TEMP 2 XT2

V=V+TEMP XY T2
FI=1

UX=UX+F 1+ XTxTEMP

A2,3. SUBROUTINE FOR SOLUTION OF POLYNOMIALS.
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RAN TV 3£0N-FO-479 3- ¢

DATE

14712777

TIME

UY=UY-F1EYTkTEMP

JPAOLRT

70

XT=XT2
YT=Yt12

SUMSR=UXEY X+ UY*LUY
TIF{SUMSY ) T75,11C+75

75

DX={ v*UY-U*UX) /SUMEQ
X=X+D X

DY=-(UsUY+V=UX} /SUMSQ
Y=Y+DY

78
80

IF(DABSIDYI+DAB S(D XY~
ICT=1CT+1

L. CD=10)

100+80,30

85

IFLICT-5C0) 60485, 85
IF(IFITY 1CC,SC,1GC

50
S5

IF{IN-5) 5C,65,95
IER=3

100

GO 1O 20
DO 1C5 L=1,NXX

MT=XJ1-L+1]
TEMP=XCOF{MT}

105

XCOF(MTI=COFIL)
COF(L )=TEMP

ITEMP=N
N=N X

NX=ITEMP

IF{IFIT} 120,55,12¢C

110
115

IF(IFIT)
X=XPR

L15,5C,11¢%

120

Y=Y¥PR
IFIT=0

122
1Z2¢%

IF(DAB ST ¥/X31-1,.(-C8)
ALP HA= X4 X

13541254125

SUMSQ= X% X+ ¥*&Y
N=N-2

GO 1O 14¢C
X=C.C

NX=NX-1
NXX=NXX-1

Y=C.C
SUMSR=C, C

ALPHA=X
N=N-1

140
145

COFlL 2)=COF{ 2)+ALPHA*COF(1)

DO 150 L=24N

150

155

COFIL+1)=COF{L+1}+ALPHA*C OF { LY —=SUMSC*CCF {L=1)

RODTI{NZ)I=Y

RODTRINZ)I=X
NZ=N2+1

160

TF{SUMSQ) 160,165,160
Y=y

SUMsSQ=C.C
GO TO 15¢%

1€5

TF{N) 20, 2C,45
END
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TRAN JV 360N-FO-479 36 - MTIINV DAYE 28/1G/17 T IMF

SURRDUTINE MTINVIA » XXeNeAT ¢R)
DOUBLE PRECISION ATL11+11) +B{640) sC{06+5) +AT (6 46) XX {L1),R(12),D(6
10, S.BR *
P{1)=0.0
DO 106 I=1,N
10& P(1)=P{1}+AL]I,1)
DO 1C7 I=1,N
DO 107 J=1,N
107 CiI,33=A01,J) .
DO 1CS 1=1,N ) .
DO 169 J=1,N . :
109 R{Ts33=C(1,4)
DO 110 I=1,N
e X0 BTy IN=R(T,T)-P(K-1) . e
DO 111 I=1,N
DO 111 J=1.N___
C{I,d})=0.0
DO 111L=1,N
111 C{TsJd)=CUlI4d)+A(T L) *BIL,J)
. R=C0.0 _ . _ e
DO 112 I=1,N :
112 0=03C{1,1)
S=K
108 P{KI=0/S
IFIPIN})114,115,11%
115 WRITE (3,58} . _ .
98 FORMAT{!'THE MATRIX IS SINGULAR?)
: G0 10 104 i .
114 CONTINUE
DO 116 [=1.N
DO 116 J=1,N
116 AT T1,9)=R{J-JY/PINY_ = _ § .
DO 117 K=1,N
RIKJ)=0D.0 L e
DO 117 J=14N
BR=ATIK.J) % XX J)
117 RIK)=BR+R{K)
104 RETURN . __ U
END ‘

A2,4. SUBROUTINE FOR MATRIX INVERSION AND SOLUTION
OF : : SIMULTANEOUS. 'LINEAR = EQUATIONS. :
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DATE D2/712/77

(RAN IV 3€0N-FO-479 3-6 -FCBPL TIME
SUBRODUTINE CFCBPL{MA,N,ICP]
C SUBRDUTINE CFCBPL FOR CHEBYSHEV PCGLYNCMI AL

DIMENSION ICP(11,11) |

DO 225 TI=1,N
DO 225 J=1,N

¥
[a¥]
in

ICP{1,J3=0
DO 226 I=1,MA

K=2%1 -1
KK= 2%

22€

ICPIK, Li=1%{- 1) *%(1+1)
ICPIKKy13}=0

Pt 2, 2)=1

CICP ANy 11=0— 1) %%MA

D 328 K=3,N
LL=K-1

[LL=K-2
DD 228 1=2,N

J=1-1
ICPIK, T}=ICPILL +J) *2-TICPULLL,I}

RETURN
END

A2,5, SUBROUTINE FOR CHEBYSHEV

POLYNOMIALS.
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‘RAN IV 3&60N-FO-479 3-6 CFBNPL DATE Dari1za2/iv TIME
SUBROUTINE CFBNPL{K,iAh,BW
C SUBROUTINE CFBNPL FOR BINOMIAL EXPANSIGN
DIMENSION JAW(11,11),iBw(1ll,11) *
DO 2 J=1.K '

2 1AW(J.10=1

IF(K=2)3y 44 4
GG 70 10

o LY

TAW( 24 2)=1
IF{K-3)5+ 64 €

un

GO 10 10
CONTINUE

"~

D07 I=34K
DD 7 4=24K

L=J-1
7T TAW( Ly ) 3=TAW I,L)%{(I-L) /L

- DO 8 I=1,K
DO B8 J=14K

8 IBW(I,di=mIAWT yJ0 *(—1)%%x( J+1)
10 RETURN

END

A2,8, 8§ubroutine For Binomial Expansion,
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