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ABSTRACT

The metal-oxide-semiconductor(MOS) structures is the core structure in

modern day microelectronics. Advancement of the fabrication technology,

submicron structures are possible to fabricate. The combination of higher

substrate doping level and thinner gate oxides increases the electric field at

SiOrSi interface to a level such that the energy band bending at Si02-Si

interface under inversion condition is very steep. Thus, a narrow potential well

is formed near Si02-Si interface and the classical treatment of inversion layer

carrier becomes less appropriate as the bulk energy band split into discrete

subbands at the surface. The effects of quantization can be most accurately

modeled by solving the Schrodinger's and Poisson's equations self-consistently.

It is very time consuming and unsuitable for incorporation within larger

programs, such as device simulators. Therefore, it is necessary to develop a

simple model which includes the quantization effects and requires less

computational time. WKB. (Wentzel-Kramers-Brillouin) or Airy function

approximation method can be applied for the calculation of subband energies in

the inversion layer if the potential profile is considered linear. But if the total

electron concentrations within the inversion layer is comparable to the total

impurity charges within the depletion region, potential profile will no longer be

linear. The variatioinal approximation method can be applied for an arbitrary

potential profile to frod analytical expression for subband energies if the wave

functions are assumed to have a predetermined form.
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In this thesis, the analytical expressIOns for first three consecutive

subband energies are obtained by variational approximation method and the

results are compared with those of the self-consistentresults. It is found that the

results of the variational approximation method agree well with that of the self-

consistent results. In this work, the analytical expression of inversion layer

capacitance is derived considering quantization effects and the Fermi-Dirac

statistical distribution law. The analytical expression of total gate capacitance is

obtained incorporating the thermally generated electrons within the depletion

region and the flow of electrons from the bulk to the SiOrSi interface in the

quantum capacitance calculated from energy subbands. It is found that the total

gate capacitance of MOS structure depends on gate voltage and frequency. This

work shows that the total gate capacitance decreases at high frequencies and

increases at low frequencies. This work also compares the inversion layer

quantum capacitance and the total gate capacitance with that of the classical

calculations. Quantum mechanically calculated results are smaller than that of

the classical results.
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CHAPTER 1

INTRODUCTION

1.1 Capacitance of MOS structures

Metal-oxide semiconductor (MOS) devices dominate the integrated

circuit industry, both in numbers produced and in the variety of their

applications. The two terminal MOS structure is the simplest of MOS devices

and the structural heart of all MOS devices. Capacitance is of course the

primary electrical observable exhibited by an MOS structure. The total gate

capacitance of MOS structure depends. on bias voltage and frequency. To the

device specialist, the capacitance-voltage ( C-V) characteristic is like a picture-

window, a window revealing the internal nature of the structure. The

characteristic serves as a powerful diagnostic tool for identifYing deviations

from the ideal in both oxide and the semiconductor. C-V characteristics are

routinely monitored during MOS device fabrication.

The submicron MOS structure is a simple two terminal device composed

ofa thin (4 nm to 14 nm) Si02 layer sandwiched between a silicon substrate

and a metallic field plate called gate (Fig. 1.1). The most conmlon field plate

materials are aluminum and heavily doped polycryStalline silicon. A second

metallic layer present along the back or bottom side of the semiconductor

provides an electrical contact to the silicon substrate. It is normally grounded

and is called the substrate contact.



vG(gate)

M~tQI (AL) contact

o

z

Si02 (insulator)

Si ( p- type Substrate)

B (base)

Fig. 1.1 The metal oxide-semiconductor structures
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The ideal MOS structure has the following explicit properties:

(i) The metallic gate is sufficiently thick so that it can be considered as

equipotential region under ac as well as dc biasing conditions.

(ii) The oxide is perfect insulator with zero current flowing through the layer

under all static biasing conditions.

(iii) There are no charge centers located ill the oxide or at the oxide-

semiconductor interface.

(iv) The semiconductor is uniformly doped.

(v) The semiconductor is sufficiently thick so that regardless of tile applied

gate potential, a field-free region (the so-called Si bulk) is encountered before

reaching the back contact.

Electron and hole concentration in the silicon at equilibrium can be

expressed as [1]:

(Ll)

and

...'L(h -,",)
p= niekT (1.2)

Where, ni is the intrinsic camer concentration, k is Boltzmann's

constant, T is the absolute temperature, IV is the potential of the intriilsic

energy level and q>p is the Fermi potential (Fig 1.2). The potential \v is

assumed to be zero in the bulk. IV evaluated at the oxide-semiconductor

interface (at z = 0) is given the special symbol IV, and is known as the

surface potentia!. The electron concentration can be written as
q

N
kT(1j1-2h)

n= Ae

3



Si02-Si INTERFACE

Ec

-r - ----
'Yo >0 q\U
-=-L:

INSULATOR

z

SEMICONDUCTOR

E.
I

I

Fig. 1.2 Energy band diagram of a p-type substrate MOS structures
. I
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Where NA is the doping density of the p-type substrate.

Positive gate voltage produce an electric field which bends the energy

bands downward. For small positive gate voltage (Fig 1.3a) the holes will be

repelled from the vicinity of the oxide-silicon interface leaving behind a space

charge region of uncompensated ionized acceptor ions. Since in this region the

concentration of carriers is negligible in comparison to the impurity

concentration, it will be referred to as a depletion region. Upon further increase

of gate voltage (Fig 1.3b), the bands at the semiconductor surface bend down

more strongly which causes Ej below EF and an inversion layer is formed. In

that case, electrons (the minority carriers) will be attracted to the interface so

that while some of the charge in the semiconductor will still consist of the

charge of ionized acceptors, another part will consist of the electrons in the

inversion layer. We consider that these electrons come from the relatively slow

process of electron hole generation in the depletion region. This inversion layer

near the semiconductor surface has conduction properties typical of n-type

material.

The electron concentration at the surface is given by
q
-('Vs-2h)

nsurface= N A ekT ( 1.4 )

At IVs= ~, t1surfaee= nj . ; intrinsic concentration as seen from equation

(1.1) and from np = nj2 ; then Ilsurraee= Psurfaee= nj this is defined as the

limited point between the depletion and inversion regions. With increasing IV,

above ~ , nsurfaeeincreases drastically, and at IV,= 2~ , we have t1surfaee= NA .

5
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This is known as the condition of the onset of strong inversion and this situation \J
is shown in (Fig 1.4). ~~i

The density of induced charge in the semiconductor denoted by Q, is

given by Gauss' law,

(1.5 )

Where,

go. = Pennitivity of oxide

gs = Permitivity of semiconductor

Fo.= Electric field in the semiconductor

F, = Electric field at the semiconductor surface

When the semiconductor surface is depleted the total ionized acceptors in

the depletion region is given by

(1.6)

(1.7)

Where, Zd is the width of the depletion region. The relationship between

\II. and Zd can be obtained by solving Poisson's equation using the depletion

approximation. The results is,

z = ~2es\jJs
d qN

A

7
(,
) I
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Once the strong inversion occurs, the depletion-layer width reaches a maximum.

The depletion width is given by [ 2 ],

Where,

(1.8)

(1.9) .

The electric field at the interface is given by [3],

F~NA
Fs=i:.--s, (1.1 0)

Where, F= J2qs, and the '+' sign for F, is to be used with \jJ,> 0, and the '-'

sign with \jJ,< 0 ; <P. = k: ' and the total semiconductor charge per unit area Q"

ISgIVenas :

(1.11)

The total charge Qs ( per unit area ) below the oxide is the sum of the

charge due to the electrons in the inversion layer Qinv and the charge due to the .

ionized acceptor atoms in the depletion region QB ,

Q, = Qinv+QB

9

(1.12)



(1.13)

(1.14)

.TIle small signal capacitance per unit area corresponding to the

semiconductor charge regions denoted by

dQ,
C,=--

d\jJ,

From equation (1.12)

dQinv dQBC,=------
d\jJ, d\jJ,

We have then separated the total semiconductor capacitance C, into two

components, one owing to the depletion region charge and one owing to the

inversion layer charge. So, we can defme a inversion region incremental

capacitance per unit area [3],

(~.-2~p)
2 \II.+cPte ~t

(1.15)

We can also define a depletion region incremental capacitance per unit area[4],

C __ dQB
D - d%

=(qS.NAJ!
2%

(1.16)

10



1.2 Quantum effects on inversion layer capacitance

The need for careful treatment of inversion layer quantization has

recently becomemore pressing due to the increasing impact of the qnantization

on submicron MOS structures with the reduced gate oxide thickness and

increased channel doping required in scaled devices. The combination of

higher doping levels and thinner gate oxides increases the electric field at the

Si02-Si interface to a level such that the energy-band bending at the Si02-Si

interface under inversion condition is very steep. So, a potential well is created.

The confmement of the carriers in this potential well leads to a two-dimensional

electron gas ( 2DEG ) system. Therefore in order to accurately simulate the

inversion carriers in submicron MOS devices, models that incorporate the two-

dimensional quantum nature of the carriers are necessary.

The quantum mechanical picture differs in several aspects from the

classical one [5]. The bulk conduction energy band is split into discrete

subbands in the inversion layer, with the lowest subband shifted substantially

above the conduction band minimum (Fig 1.5). Hence a larger surface potential

is needed for a given channel charge. This has the effect of decreasing the

inversion layer charge density for a given gate voltage. In addition , because of

the quantum mechanical nature of 2DEG, the distribution of carriers is

displaced away from the Si-Si02 interface and the average distance of the

spatial distribution of the inversion layer charge from the interface is larger.

Hence, a larger band bending is needed for a given population in the conduction
band.

11
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Fig. 1.5 Quantum effects on inversion layer

(a) Discretisation of energy levels

(b) Spatial distribution of charge carriers
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(1.17)

Considering all the effects we conclude that the inversion layer

capacitance(C1) is decreasedwhen compared to the classical value.

1.3 Frequency dependence of total gate capacitance

The capacitance of a semiconductor device, with its non-linear charge-

voltage relationship, is defmed by [ 4 1
c= dQ

dV

Viewed from the gate, the MOS capacitance becomes,

The expression of Co, can be written as ,

1
Co= 1 1
.-+---
Co CO+C1,

Where, Co is the oxide capacitance, CD

inversion layer capacitances respectively.

(1.18)

(1.19)

and C1 are the depletion and

The complete description of frequency dependence of MOS structures

is shown in Fig. 1.6. When the devices is driven from accumulation into

depletion, the inversion layer charge is negligible compared with the depletion

layer charge. As a result C1= O. So, Co is merely Co in series with CD' As

the gate voltage continues to increase, the surface becomes strongly inverted if

13
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LF

HF

DD

,
, ', I

\ I

l.'\J

ov- -4~- Gate voltage ---- +v

I
I

I
I

Fig. 1.6 Low frequency (LF), high frequency (HF), and deep-depletion

(DD) capacitance-voltage characteristics [Ref. 4].
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the gate voltage is swept slowly enough to allow generation of minority carriers

required for formation of this inversion layer. If the ac probing voltage used in

the capacitance measurement is of sufficiently low frequency that the inversion

charge is able to follow the ac probing voltage and the dc sweeping voltage, then

the low frequency (LF) curve is obtained. If the ac voltage frequency is too high,

but the dc sweep voltage rate is sufficiently low, then the high frequency (HF)

curve is measured. If the sweep voltage rate is too high and there is not enough

time for the inversion charge to be thermally generated, then the deep depletion

(DD) curve is obtained regardless of the frequency of the ac probing voltage.

1.4 Review of recent works on MOS capacitance

The Two-dimensional quantum nature of the electrons in inversion layers.

has been studied in details by a number of researches [5,6] by solving

Schrodinger's and Poisson's equation self-consistently. ,In these work, the

electron inversion layer charge density is obtained self-consistently utilizing

Schrodinger's and Poisson's equations. C. Moglestue[5] also compared the

self-consistent and Airy function (Solution of Schrodinger's equation for a

triangular potential well) normalized charge density for inversion electrons in

the SiOrSi system. Recently simple and approximate models have also been

proposed [7,8] and their implementation in classical device simulators

described. In these works, the authors proposed a modified semi-quantum

mechanical method for the calculation of inversion layer carrier concentration

and compared the modified calculations with that of the self-consistent quantum

mechanical calculations.

15



Two-dimensional ( 2DEG ) electron gas in a quantum well or inversion

layer, unlike an ordinary grounded metallic plate, does not completely screen

an applied electric field. A 2DEG manifests itself as a capacitance in series in

the direction transverse to the quantum well [9]. Recent analytical works

[10,11] have carried out for determination of energy subbands and capacitance

in the inversion layer. to find the dependence of frequency on capacitance, the

thermally generated electrons within the depletion region and the flow of

electrons from the bulk to the Si-Si02 interface need to be incorporated in the

quantum capacitance calculated from energy subbands. Recent works on this

issues have been carried out on Double-barrier tunneling structure [12] but not

on MOS structures.

1.5 Objective of this thesis

The main objective of this research is to obtain an analytical expression

oftotal gate capacitance of an inversion MOS structure as a function of gate

voltage and frequency. Inversion layer capacitance has significant contribution

to the total gate capacitance. It is well known that the electrons of MOS

inversion layer form subbands, each of which corresponds to a quantized level

for motion in the direction perpendicular to the silicon-insulator surface. In this
•work, the analytical expressions of inversion layer capacitance is derived

considering quantization effects and the Fermi-Dirac statistical distribution law.

The expression for eigen energies of subbands is derived by applying the

variational approximation method. To derive the analytical expression of total

gate capacitance, the thermally generated electrons within the depletion region

and the flow of electrons from the bulk to the SiOrSj interface is incorporated in

16

l....)

,.,

I



the quantum capacitance calculated from energy subbands. This work also

compares the inversion layer quantum capacitance and the total gate

capacitance with that of the classical calculations.

1.6 Summary of the dissertation

In this thesis. work, the analytical expressions for inversion layer quantum

capacitance and the total gate capacitance of MOS slructure are derived in chapter

three. The analyticalexpressionof first three subband energies in the inversion layer are

also derived in chapter two by using variational approximation method. The variational

approximationmethod is described in chapter two.

Based on the analyticalmodel developed in chapter two and three, the behavior

of total gate capacitance is studied in chapter four. The results of quantum effects on

inversion capacitance, inversion layer charge concentration, the electron concentration

in the first three consecutive subbands and also the predicted difference between

classicallyand quantum mechanicallycalculated inversion layer capacitances are studied

in chapter four. Chapter five contains the concluding remarks along with suggestions

for future work on this topics.

17



CHAPTER 2

DETERMINATION OF SUBBAND ENERGIES

2.1 Introduction

In MOS devices quantum effects play an important role even at room

temperature, where the width. of the inversion layer is of the same order of

magnitude as the De Broglie wavelength of the electrons in the inversion layer.

Therefore it becomes necessary to solve Schrodinger's ~quation for the subband

energies and wave functions in order to study the transport properties of

inversion layer electrons. In this case, since the potential energy term is

.connected to the electron density and thus to the wave functions through

Poisson's equation, the determination of the subband structure requires the

simultaneous and self-eonsistent solution of Schrodinger's and Poisson's

equations.

. However,. the nonlinear coupling of these two equations prevents an

analytical solution from being found, forcing one to make use of iterative

numerical procedures. Although they are very accurate, they fail to provide

information about the analytical character of wave functions at nonzero

temperatures[13]. Moreover, fully numerical calculations require considerable

computational effort, thus making them unsuitable for incorporation within

larger programs, such as device simulators. So, several simpler methods are

18



developed that approximate the quantum mechanical calculation results and

require the same CPU time as that of the classical calculation.

When only one subband is occupied, i.e., in the electric quantum limit,

WKB (Wentzel-Kramers-Brillouin) can be used to find an analytical expression

for the energy subbands. When more than one subband is occupied, Airy

function approximation method can be used to find an analytical expression for

the energy subbands. In both methods mentioned above, the potential profile

within the. inversion layer is considered linear. But if the total electron

concentrations within the inversion layer is comparable to the total impurity

charges within the depletion region, potential profile will no longer be linear.

The variational method can be applied for an arbitrary potential profile to find

analytical expression for energy sul?bands if the wave functions are assumed to

have a predetermined form [6,14]. In this chapter variational method is used to

fmd an analytical expression for energy subbands.

2.2 Variational method

The variation method can be used for the approximate determination of

the energy levels of a system when there is no closely related problem that is

capable of exact solution, so that the perturbation method is inapplicable. It can

also be applied to the systems that are described by a nonseparable Schrodinger

equation, in which case numerical solutions are extremely arduous and the

WKB method cannot be used. The variational method is specially applicable for

the determination oflowest energy state. In special cases variational method can

be extended to the state of the system other than the lowest one.

19.
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2.2.1 Principle of the method.

Let us consider an arbitrary physical system whose Hamiltonian H is

time-independent. To simplifY the notation, we shall assume that the entire

spectrum ofH is Discrete and non-degenerative [15],

Hcp"= E" cp" ; n = 0, 1, 2, ,........... (2.1)

Although the Hamiltonian H is known, this is not necessarily the case

for its eigen values E" and the corresponding eigen states cp" .

" Let us choose an arbitrary wave function \II of the state space of the

system. The mean value of Hamiltonian H in the state \II is such that

(2.2)

( Where Eo is the smallest eigen value of H ), equality occurring if and only if.

\II is an eigenvector ofH with the eigenvalue Eo.

20



To prove inequality (2.1), we expand the wave function \II on the basis of

eigenstates of H :

We then have

(2.3)

With

(1jI/H11jI)= 2:ICn/2En ~ Eo2:ICnI2
n n

(ljIjljl) = 2:lcJ
n

(2.4)

(2.5)

Which proves (2.2). For inequality (2.4) to become an equality, it is

necessary and sufficient that all the coefficients Co be zero, with the exception of

Co ; \II is then an eigenvector ofH with the eigen value Eo .

1bis property is the basis for a method of approximate determination of

Eo. We choose (in theory, arbitrarily, but in fact, by using physical criteria) a

family of wave functions \II(a) which depend on a certain number of

parameters which we symbolize by a. We can calculate the mean value <H>( a)

of the Hamiltonian H in these states, and we minimize <H>( a) with respect to

the parameter a. The minimal value so obtained constitutes an approximation of

the ground state Eo of the system. The wave functions \II(a) are called trail

functions, and the method itself, the variational method.

21



2.2.2 Application to excited states

The variational method can also be used to obtain an upper limit for one

of the higher energy levels if the trial function is orthogonal to the eigen-

functions of all the lower states [15]. Suppose that the energy levels "are

arranged in an ascending series; Eo , E1 . ~ Then if '11 is

orthogonal to <Pj; for j = 0,1,2 n ; it is easily seen from (2.3) that the

corresponding expansion coefficients Cj are all. zero . An inequality can be

derived from (2.4) by replacing each eigen value E in the summation on the

right by En+1. With the result that the expectation value of the energy is an

upper limit on this eigen value.

The teclmique of choosmg the trial function for evaluation of energy for

. any excited state is that this function must be orthogonal to the eigen functions

of all the lower states (arranged in ascending order of energy). For example, if

we want to calculate (approximately, in theory) the first excited state E}, we

should choose trial function which are orthogonal to wave function of the

ground state. This follows from the above discussion which shows that <H> has

it lower bound ofEI , and no longer of Eo , if the coefficient Co is zero. Thus, the

first excited state E1 is determined. In this way we can determine the higher

excited states.
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2.3 Mathematical expression for energy levels

In formulating Schrodinger's equation for the two-dimensional electron

gas (2DEG) system of the inversion layer of an N-channel MOS devices, it is

assumed that the wave functions can be expanded in terms of Bloch waves

traveling parallel to the interface constrained by an envelope function Sij(z)(for

the jth subband in the ith valley) normal to the interface (i.e. in the z-direction).

The envelope function is found to satisfYSchrodinger's equation [11]

fiz d2

2m. dzZSij(z)+[Eij - V(z)]l;;j(z)= 0 (2.6)
ZI .

Where mziis the effective mass normal to the interface, V(z) is the electrostatic

potential, and Eij is the eigen value of the jth subband in the ith valley. This

equation must be solved with boundary conditions that Sijgo to zero for z =0

and z ~ 00 . This should be a good approximation for the Si02-Si interface for

which the potential barrier for electrons is approximately 3 eV. In the

variational approximation technique presented here, the eigen energy are

determined by using the trial envelope function considering the above boundary

conditions.

The potential energy V(z) which enters in equation (2.6) can be written

as sum of the three terms as

V(z) = Vd(z)+ V,(z) + Vl...z) (2.7)

Which represent, respectively, the contributions from fixed space charges

(Depletion layer charges), from induced charges in the space charge layer

(inversion layer charges), and from image charges at the semiconductor-

insulator interface.
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If the band bending +d associated with the depletion layer is not too small,

if the bulk is p type, and if the acceptor density NA is constant throughout the

depletion layer, then a good approximation for the potential energy in the

depletion layer is

(2.8)

(2.9) .

Where Ndepl is the number of charges per unit area in the depletion layer, whose

thickness is Zd and q is the electron charge. If compensating donors are present,

NA should be replaced by NA- ND • In most case of interest for silicon, the

depletion layer is much wider than the inversion layer, and it is usually a good

approximation to neglect the term quadratic in z in equation (2.8).

V,(z), the second term in equation (2.7) is the contribution to the

potential energy from the charge distribution of the electrons in the space-

charge layer, and is given by the solution of Poisson's equation with the charge

density in all subbands as the source term. The Poisson's equation considering

only the inversion layer charges,

(2.10)

The solution of equation (2.10) is

(2.11)

24



1: .'
I

Where Nij is the electron concentration in the jth subband in the ith valley and

Sij(z) is the corresponding normalized envelope wave function. The arbitrary

. .. . dV,(z)
constant oftntegrabon has been chosen to make V.(O) = 0 and It dz = 0 .

. . z--.+(X)

The last term in the potential energy (2.7) is the unage term

l: -I: q2V (z) - -' _ClIt _

I - I: +1: 161tZ8
• ClIt •

(2.12)

Which arises because of the different dielectric constant of the semiconductor

and the insulator. We will neglect this image term in all our calculations

presented in this section. It is a good approximation at high carrier densities.

2.3.1 Ground state

Let, the trail envelope function for ground state,

-bz

So(z) = Az e-2

Considering the boundary conditions that, envelope function vanishes at z = 0

and z ~ 00 . Here b is the undetermined parameter and A is a constant.

Normalization condition tells that,

. tISo(z)1
2

dz = 1

:.t A2z2e-bzdz = 1o .
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The value of A comes out,

1

_ (b3)iA- -
2

So, the normalized envelope function for ground state,

1

(b3)2 -bz
~iO(Z) = 2" z eT (2.13)

., .

The trial function of first excitation state is orthogonal to the envelope

function of the ground state. Let, the trial envelope function for the first exited

state

-bz

Sl(Z) = Bz (1- Cz)e-2

Where B & C are arbitrary constants.

Orthogonal condition yields that,

b
From the above equation, C = "3

Again the normalization condition yields,

t ~l (z)1
2
dz = 1

:.1"'B2z2(1-tz)2 e-bzdz = 1
o
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(
3b

3JlFrom the above equation we get, B= 2

So, the normalized envelope function for frrst excited state is ,

(
3b

3Jl ( b 1 -bz
Sil(Z)= 2 Z 1- ;,-2 (2.14)

In equilibrium and at the relatively high transverse fields existing in

modern devices ( even at zero gate drive ), the lowest three energy levels arc

sufficient to account for most of the inversion layer charge [5]. It was found that

adding higher subbands provided no discernible change in either the distribution

or the total charge for positive gate biases and the channel doping levels ( e: 1017

cm.3 ) and oxide thickness (4 om to 14 om) considered there. The three lowest

energy levels are in ascending order EIO , E20 , Ell and electron concentration in

the three lowest subbands are in ascending order N10, N20 and Nll •

Considering only the three lowest subbands, the equation (2.11) becomes,

V,(z) = q2 NlO[z+ 1'(Z'-Z)stO(Z')dZ']
s.. 0

+ q2 N20[Z +l'(z'- z)~o(Z')dZ']s. o.

(2.15)
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Let us assume that the envelope wave functions of ground state are same

for both first and second valleys. i.e.

(2.16)

Integrating equation (2.15), we get,

(2.17)

The expectation value of V,(z) for ground state envelope function in the

Hamiltonian,

(v ,)=(slO(z)IV ,(z)lslo(z)

= fo" v ,(z ) lSI 0 ( Z ) 1
2
d z

(2.18)

Similarly, the expectation value of Viz) in the Hamiltonian,
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Putting the value of Vd(z) and ;IO(Z) and integrating the above equation we get,

(2.19)

The expectation value of kinetic energy of an electron for ground state

envelope function,

tz2 f"'rb3)~( -bz b _bz~2=--1 - e 2 --Ze 2 dz2mzi 0 2 2

(2.20)

So, the mean value < H>(b) Ofthe Hamiltonian H in the ground state,

<H>(b)= <T> +<Vd >+<V.> (2.21)

However the total energy per electron, which is the quantity to be minimized is,
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Where the factor ~ prevents double counting of electron-electron interactions,

Neglecting second term in < Vd >, We have,

(2.22)

The value ofb that minimizes the total energy per electron is

(2.23)

• 1l( )Where, N = N depl + 32 N 10 +N 20 +UN II

The energy of the 'Iowest subband is
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Thus we have,

,,, .

(2.24)

(2.25)

'I
"

2.3.2 Exited energy state

The envelope wave function for the first excited state of fIrst valley is

[from equation 2.14]

The expectation value of kinetic energy for the envelope wave function ;11(z) is,

11«>l'IiJ 2
(T) = -2 - -;- ",-;11 (z) dz

mzi 0 I UL

,
.' .
i:
I:
:!
I!

II'
i ,I
1'1

I
I

I I

(2.26)
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The expectation value ofYiz) for the envelope wave function Sl1(z) is,

The expectation value of Y,(z) for the envelope wave function Sl1(z) is

73q2
:. (Y,) = 32bE, (NIO +N20 +1.37Nll)

(2.27)

(2.28)

So, the mean value (H)(b) of the Hamiltonian H in the first excited state offIrst

valley,

This function for the same value of bo as above ( equation 2.23) , presents a

minimum equal to

(2.29)
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putting the value ofbo and neglecting the second term of <Vd > , the expression
ofEl1 becomes,

(2.30)

•••where, N = Ndepl+0 .41( NIO + N20 +1.28Nl1 )

2.4 Conclusions

In this chapter, the analytical expressions of the ground state elgen

energies for two valleys and the first excited state eigen energy for first valley of

inversion MOS structure are derived using the variational approximation

technique. The eigen functions for various subbands are assumed considering

the physical criteria of the system. Knowing the energy and wavefunction of

energy-bands, electron population and other parameters for characterizing the

inversion layer MOS structure can be obtained in next chapter.

33



CHAPTER 3

ANALYSIS FOR FREQUENCY DEPENDENCE OF

TOTAL GATE CAPACITANCE

3.1 Introduction

It is well known that the electrons of the MOS inversion layer form

subbands, each of which corresponds to a quantized level for motion in the

direction perpendicular to the silicon-insulator surface. In chapter two, eigen

values of fIrst three consecutive subbands of inversion MOS structure are

determined by applying variational approximation method.

In this chapter, the electron charges in the three subbands are determined

as a function of Fermi energy and subband energies with the help of Fermi-

Dirac statistical distribution law. The total electron charges within the inversion

layer is considered as the sum of electron charges in the three first consecutive

subbands. Knowing the carrier concentration in the subbands, an analytical

expression for capacitance is determined by simply differentiating the total

charge in the inversion layer with respect to the Fermi potential, in contrary to
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the conventional method. In conventional approach .the charges are

differentiated with respect to surface potentia!. To find the dependence on

capacitance, the thermally generated electrons with in the depletion region and

the flow of electrons from the bulk to the SiOrSi interface need to be

incorporated in quantum capacitance calculated from energy subbands. The

approximate equivalent circuit of MOS structure is determined by following

step by step the flow of charges (electrons and holes) from the bulk of the

semiconductor to the SiOrSi interface. In Each step, the rate of flow of charges

is limited by its resistance. Accumulation of charges can be associated with a
\

capacitor. Resistances are calculated using the standard equations for fmding the

resistances in the semiconductor. In chapter one, the oxide capacitance and the

depletion capacitance are expressed using the classical method for finding the

capacitance. Finally, from the equivalent circuit of MOS structure, the

analytical expression for the frequency dependence of total gate capacitance of

inversion MOS structure is determined here in this chapter.

3.2 Charge concentration in three sub bands

The density of states for a two-dimensional system is constant and is

given by the following equation [5],

2n .ffidi
D(E)= 2~2 (3.1)

35



I:
I:

II
I;
i:
I;
I .

I

I

Where nvi and mdi are the valley degeneracy factor and the density-of-~1ates

effective mass per valley. the degeneracy is taken care of by the factor 2nv; ,

where nvi is the number of equivalent energy surfaces and the factor two

represents an additional degeneracy due to electron spin. The occupancy nij (jth

subband in the ith valley) is defmed through Fermi-Dirac statistics by

~=~~~~~ 0.2)
Eij

(3.3)(E-Ef)

l+e kT

nvi I1\Ii fro 1
Nij = 1tn2 E.. (E-Ep)dE

IJI+e kT

fID(E) =

So,

Where fro (E) is the Fermi-Dirac distribution function which is given by

I

(3.4)

The total inversion layer charge

Nmv=LNij
ij

(3.5)

is the total number of charges per unit area in the inversion layer

3.3 Surface potential and related equations considering

quantum mechanical effects

The electric field at the Si-Si02 interface is given by

q(Nmv +Ndepl)
F=----

• & •
(3.6)
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(3.7)

(3.8)

I

i
I
I
!

. Where, Ndepl= NAZd

and Z = ~2SS$d
d qN

A

Here, Ndeplis the concentration of depletion layer charge, Ss is the pennitivity of

semiconductor, Zd is the width of the depletion layer and $d is the surface

potential due to depletion region ionized acceptors.

The surface potential \II. anses from the contribution of both the

depletion and inversion layer charges. Since the bottom ofthe contribution band

is taken as zero the Si-Si02 interface we have [ fig 3.1]

q\lls= (E, - EF A,+ EF (3.9)

Where ( E, • EF A, is the energy difference between the bottom ofthe conduction

band in the bulk and the Fermi level and EF is the Fermi energy relative to the

nominal conduction band edge at the surface. (E, - EF A,is given by

(E, - EFA,=E8-kTln~: (3.10)

Where Nv is the effective density of states in the valence band.

Now, the contribution ofitiversion layer electrons to the surface potential

can be written as

qNinvZ••V.=---
I S•

Where, Z.. is the average distribution of inversion

semiconductor- insulator interface which is given by

_ '" NijZij
Zav -.t... N.

ij UIV
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Fig. 3.1 Schematic band bending due to depletion and inversion layer

charges (solid line) and corresponding band bending associated with

the fixed depletion layer charges only( dt'.$hQa y.
(a) Surface potential \jI, and band bending

(b) Potential drop due to inversion charges
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f'" 2o z~i/z)dz
where Ze.= ~--- (3.13)

IJ f"'l',2(z)dzo ""'J

is the average distance from the semiconductor- insulator interface of electrons

of the jth subband in the ith valley.

It is usually assumed that the depletion charg(: is constant for a distance

Zd, the depletion layer width, from the surface and then goes abruptly zero. This

assumption fails in the transition region from depletion to bulk, in which the

field decays to zero exponentially with a characteristic distance given by the .

bulk screening length. When the correction to <jld is taken to be _ kT [6],
q

I
e 'I

(3.14)

Where, k is the Boltzmann's constant and T is the absolute temperature.

Where,

The gate voltage Va can be written as

Va = Vox + \fI, + VFB

V = e,F,d
ox e

ox

(3.15)

(3.16)

is the oxide layer voltage drop, F, is the normal electric field at SiOrSj

interface, d is the oxide layer thickness and eox is the perrnitivity of the oxide.

VFB is the flat-band voltage. If we neglect charges in the oxide, then VPB is the

required gate voltage due to the difference of work functions between Si and

metal contact.

39



(3.17)

I:

I

3.4 Analytical expression for inversion layer quantum

capacitance

Inversion layer quantum capacitance per unit area is denoted by

C =_ dQinv
, d'V.

Qinvis total charge in the inversion layer and 'V. is the surface potential .

putting Qinv= - q Ninvin equation (3.17) we have,

dNinv
C, = q d'V.

It can be written as ,

dNinv dEFC -q--.-
,- dEF d'V.

Differentiating equation (3.9) w.r.t 'V. we get,

dEF

d'Vs = q

. dEF•• hputtmg the value of -d m equation (3.19) ,we ave'V.
2 dNinv

C, = q dE
F

From equation (3.4), (3.5) and (3.21), we have

q 2 nvimdi
C, = _",2 L" ----

,"If' y (E'j-E,)

l+e kT

40

(3.18)

(3.19)
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(3.21)
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Considering only first three consecutive subbands,
\,

nvZmdZ
+(E20-E,j

1+ e kT

nv1mdl
(EII-E,l

1+ e kT
(3.23)

Thus the inversion layer quantum capacitance depends on the eigen

energies, Fermi energy, valley degeneracy and the density-of-states effective

mass per valley.

3.5 Frequency dependence of total gate capacitance of

submicron inversion MOS structure

In the inversion mode of operation of MOS structure, a thin inversion

layer near SiOrSi interface is formed. There are several sources which can

supply the minority carriers required to change the charge in the inversion layer

and a current can be .associated with each source. Lehovec and Siobodskoy

[16,17] have proposed an equivalent circuitfor the input impedance of the MOS

capacitor in the bias range for depletion-inversion. This circuit is reproduced in

Fig.3.2, with the notation appropriate to a p-type substrate.

The equivalent circuit of Fig. 3.2 is given by following step by step the

flow of charges (electrons and holes) from the bulk of the semiconductor to the

SiOrSi interface. In each step, the rate of flow of charges is limited by its

resistance. Accumulation of charges can be associated with capacitors.
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Fig. 3.2 Equivalent circuit for p-type MOS capacitor in depletion-

inversion mode after Lehovec and Slobodsky [ Ref. 16].
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Since changes of charge in surface states with time involve flow of

electrons or holes through the space-charge layer, the rate of these changes will

be limited by the a.c voltage across the space-charge layer, by its conductance

and by the transition rates of carriers from the conduction band and valence

band to the surface states. Co is the capacitance of the oxide and is supplied by

the displacement current of CD and by the flow of electrons between the bulk

and the inversion layer. There are two resistances associated with this latter

flow. One is Rn,B , associated with the diffusion current of electrons from the

bulk to the edge of the depletion region. The other is Rn» ' associated with the

electron current through the depletion region to the surface.

Cs is the surface state capacitance supplied by the flow of holes between

the valence band and the surface states and by the flow of electrons between the

conduction band and the surface states. The resistances associated with theses

two flows are Rp.. and Rn.. respectively. In addition , there is a resistance Rp.o

associated with the flow of holes from the bulk to the surface, and a resistance

RB which is simply the bulk resistance of the semiconductor.

C1 is the inversion layer capacitance , which is supplied by a flow of

electrons between the inversion layer and the surface states and by a flow of

electrons from the bulk through the depletion layer. CD is the capacitance

associated with majority carrier motion at the bulk edge of the depletion region.

In the heavy inversion mode, the circuit may be simplified considerably

to that shown in Fig. 3.3a, an additional source of carriers to the inversion layer,

not considered by Lehovec and Slobodskoy, is finite generation and
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(3.24)

recombination with in the space charge layer. The resistance associated with this

current is defined as Rgo .and appears across the combination Rn.B +Rn.D ' The

physical basis. for these simplifications are presented in the following

discussions.

(i) The bulk resistance RB , will be neglected in the analysis, since it does not

affect directly the frequency response of the inversion layer.

(ii) Due to the quantum mechanical nature of 2DEG, the distribution of carriers

follow the curve of Fig. 1.5 and there is no carriers in SiOrSi interface. So, we

can neglect all parameters ofFig.3.2 related to the surface states,

Thus, the resulting simplified equivalent circuit is shown in Fig. 3.3a.

For frequencies substantially below the inverse of minority carner

. lifetime, the bulk diffusi9n resistance Rn.ais given by [Appendix I ],

1
R _ (Dn'tn)I

n.B - qJ.LnNA

Dn is the diffusion coefficient of electron, J.Lnis the mobility of electron and 'til. is

the minority carrier lifetime in the bulk.

The resistance R.,D is associated with the flow of minority carrIers

through the depletion layer. It is shown in Appendix II that

Rn,B »I (3.25)
RnD
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Cp

(b)

Gp

Fig,3,3 Simplified equivalent circuit for p-type MOS capacitor with

heavy inversion layer.
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Therfore, we can neglect the depletion layer resistance Rn.D in our

equivalent circuit so that resistance associated with electron diffusion current

from the bulk, R.J = Rn.a .

The resistance associated with the generation recombination III the

depletion region is given by [Appendix III 1 ,

(3.26)

From the simplified equivalent circuit of Fig.3.3a., it is seen that Rn,B and

Rgd are in parallel. So, the equivalent value of resistance R is given by,

(3.27) .

Therefore, the senes combination of quantum capacitance Cj and

resistance R are in the parallel with depletion capacitance CD' From Fig. 3.3a,

these combinations can be written as an equivalent admittance,

and

Where,

Yjri= jooCp +Gp

. Cj
Cp = CD + 2 21+00 't

G = Cjoo't
p 1+oo2't2

00 is the an&,"lar frequency and 't = R Cj •
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So, the equivalent circuit of Fig. 3.3a can be redrawn in Fig. 3.3b in

more simplified form. From Fig. 3.3b, the input admittance of MOS capacitor

can be written as

Where,

YG =j roCG + GG

, ro2Rcfc~
GG = ( )2 2 ( )2CI +Co +Co +ro RCI Co +Co

(3.31 )

(3.32)

(3.33)
Co {, 1+(-:)2}CG = ----- Co +CI------

Co +CO +CI 1+(':)2(1+ ~~)

roc is the cut-off frequency. It is the transition frequency from the low to high

and

frequency behavior ofMOS capacitor. The expression of roccan be written as

(3.34)
Co +Co +CI

OJ --------
c - RC,-JCo(Co +Co)

So, the analytical expression of frequency dependence of total gate capacitance

can be written as,

(3.35)

For ro «roc

1
1 1-+---
Co CD +C,

(3.36)
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While for ro > > roc
I

I I-+-
Co CD

(3.37)

Thus the total gate capacitance at low frequencies follows the equation

(3.36) and at high frequencies the total gate capacitance follows the equation

(3.37).

3.6 Conclusions

In this chapter, analytical expressions for inversion layer quantum

capacitance and the frequency dependence of total gate capacitance of inversion

MOS structure are derived. The populations of electrons in three-subbands are

determined using density of states and Fermi-Dirac statistics. The total charges

in the inversion layer depend upon the values of Fermi energy and the subband

energies. Knowing the carrier concentration in the subbands, an analytical

expression for inversion layer quantum capacitance is determined by simply

differentiating the total charge in the inversion layer with respect to the Fermi

potentia!. The approximate equivalent circuit for determining the impedance of

MOS structure is obtained following step by step the flow of charges (electrons

and holes) from the bulk of the semiconductor to the Si02-Si interface. From the

equivalent circuit ofMOS structure, the analytical expression for the frequency

dependence oftotal gate capacitance of inversion MOS structure is determined.

The results based on analytical solutions of this chapter and the comparison
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study between the results of classical and quantum mechanical analysis are

given in the next chapter.
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CHAPTER 4

.RESULTS AND DISCUSSIONS

4.1 Introduction

Based on the mathematical model developed in chapter two and chapter

three, the frequency dependence of total gate capacitance is studied in this

chapter using computational method. In chapter two, the analytical expressions

of first three consecutive subbands are derived. The analytical model for

quantum capacitance and frequency dependence of total gate capacitance

considering quantum effects are obtained in chapter three. The eigen energies,

the inversion layer carrier concentrations, the carrier concentration in the three

consecutive subbands, the inversion layer quantum capacitance and the

frequency dependence of total gate capacitance for different channel doping

levels are studied in this chapter. Also, in this chapter, inversion layer quantum

capacitance and the total gate capacitance considering the quantum mechanical

effects are compared with that of the classical one. All studies are performed at

3000K for a (100) surface ofp-type silicon substrate with a gate oxide thickness

of 4 nm . The parameters required for computational studies are taken from

table I .
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TABLE I. Parameters used in the calculation. 8

Surface (100)

Valleys

Degeneracy

Normal mass

Lower

2

0.916

Higher

4

0.190
Density of states

mass (per valley) Il\l 0.190 0.417

8All effective masses are in units of the free-elec1ron mass (Courtesy Ref. 6 )

4.2 Sub bands energies

The predicted energy levels ( with the bottom of conduction band at Si-

Si02 interface is considered as reference level zero) of the lower two subbands

in the fIrst valley ( EIO and Ell) and one subband in the higher valley for MOS

capacitor with a uniform channel doping ofNA=1.1 x 1024m.3 are shown in Fig.

4.1 ,4.2 , 4.3 and 4.4. The energy levels of the lowest three subbands ( E10, E20
and Ell ) increases as the device becomes more strongly inverted.

The energy levels offrrst three consecutive subbands ( EIO , E20.and Ell)

for three channel doping are shown in Fig. 4.5 and Fig. 4.6 . The doping values

corresponding to three sets of data are 1.0 x 1023m'3 , 5.0 x 1023m.3 and 1.l x

1024 m'3 respectively. The variation of energy leveisEIO and E20 with the

variation of channel doping is small and it decreases as the device becomes more

strongly inverted. But there exists considerable variation in the energy level Ell
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with the variation of channel doping. For a fixed electric field at the Si02-Sj

interface the total charge concentration ( depletion plus inversion layer charge )

is also fixed and the concentration of depletion layer charge increases

considerably with the increase of channel doping. It is found from expression

(2.29) that contribution of depletion layer charge ( Ndepl) to the value of energy

Ell is almost two times greater than inversion layer charge. Thus the value of

energy Ell increases considerably with the increase of channel doping.

4.2.1 Comparison with self-consistent results

The self-consistent calculations results(11] of energy levels of first three

consecutive subbands ( EIO , E20 and Ell) are given in Fig 4.7 for a (100)

surface of p-type silicon at 3000K with a gate oxide thickness of 4 nm and with

a uniform channel doping of NA=l.l X 1024 mo3
• The comparison of variational

and self-consistent [11] values of energies EIO, E20 and Ell as a function of gate

voltage are given in tableII. It is seen that there is very small difference between

the energy levels computation using variational approximation method and the

self-consistent results. The results of the variational approximation agree well

with the self-consistent calculation(11 ].

The determination of energy levels using self-consistent calculation are

very accurate. But self-consistent solution of Schrodinger's and Poisson's

equations .requires iterative numerical procedures. Numerical calculations

require considerable computational effort and it is very time consuming. But

almost the same results can be obtained by using variational method. The main

advantage of using this method is that it gives analytical solutions and requires

very small computational time. The other important advantage is that it reveals

the contribution of different parameters on the subband energies.
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TABLE II: Comparison of variational (var) and self-consistent (sc)[Ref. 11]

values of energies EIO, E20 and Ell as a function of gate voltage

(Va) for channel doping ofNA =1.1x1Q24 m-3 • All energies are in

eV.

Va (volt) EIO (var) EIO(so) E20(var) E20(so) En (var) En (sc)

0.8 0.126 0.126 0.212 0.220 0.231 0.227

0.9 0.131 0.131 0.219 0.227 0.240 0.234

1.0 0.137 0.137 0.230 0.234 0.247 0.241

1.1 0.143 0.144 0.241 0.241 0.255 0.248

1.2 0.150 0.151 0.251 0.249 0.263 0.256

1.3 0.157 0.158 0.263 0.256 0.271 0.264

1.4 0.163 0.164 0.274 0.264 0.281 0.270

1.5 0.170 0.170 0.286 0.271 0.289 0.276

1.6 0.176 0.177 0.296 0.276 0.296 0.285

1.7 0.183 0.182 0.306 0.285 0.305 0.294

1.8 0.189 0.188 0.319 0.294 0.313 0.302
I

1.9 10.196 0.196 0.329 0.302 0.322 0.309

2.0 0.202 0.203 0.339 0.309 0.329 0.315

2.1 0.208 0.209 0.350 0.315 0.337 0.324

2.2 0.214 0.215 0.360 0.324 0.345 0.333

2.3 0.220 0.221 0.371 0.333 0.353 0.342

2.4 0.227 0.227 0.381 0.342 0.361 0.349

2.5 0.235 0.235 0.391 0.349 0.368 0.357
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4.3 Inversion layer carrier concentration

The inversion layer carner concentration calculated quantum

mechanically for channel doping NA=l.l xl024 m-3 as a function of surface.

potential (\JI,) and gate voltage (Va) are shown in Fig. 4.8 and Fig. 4.9

respectively. From Fig. 4.8 and Fig. 4.9 it is seen that the quantum mechanical

inversion layer charge concentration increases considerably as the surface

potential as well as gate voltage increase.

The inversion carrier concentration for three doping concentration as a

function of gate voltage for channel doping NA=1.1x1024 m-3 is shown in

FigA.lO. From Fig. 4.10 it is seen that the requirement of gate voltage

increases with the increase of channel doping to get a fixed amount of inversion

carrier concentration. In the inversion mode of operation of MOS structure the

depletion carrier concentration will not change with the further increase of gate

voltage. But the depletion carrier concentration increases with the increase of

channel doping. For a fixed gate voltage the summation of inversion and

depletion charge is almost fixed. The depletion charge increases with. the

increase of channel doping. Therefore, the inversion charge decreases with the

increase of channel doping for a fixed gate voltage.
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4.3.1 Electron concentration in three subbands

The electron concentration in the three subbands as a function of surface

potential is shown in Fig. 4.11 . Although energy levels E20 '= Ell , the ground

state of second valley ( level 2,0) is favored by the electrons because of the

larger density of states and higher valley degeneracy.

4.3.2 Depletion layer carrier concentration

The depletion layer carner concentration as a function of surface

potential with uniform channel doping is given in Fig. 4.12 . From Fig. 4.12 it is

seen that the variation of depletion layer charge with the surface potential is

very small compared to the inversion layer charge. After strong inversion, a

small increase of 0/. produces a large increase of electrons at the surface and the

inversion layer acts like a narrow n+ layer by shielding the semiconductor from

further penetration of the electric field. Therefore the depletion layer charge

remains constant and after strong inversion the depletion layer width becomes

fixed.

4.3.3 Average spatial extent of the inversion layer electrons

from the surface

The average potential of the inversion layer charge concentration from

the surface Zav as a function of the inversion layer charge concentration and the ,--,
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surface potential with channel dopmg 1.1x1024 m"3are shown in Fig. 4.13 and

Fig. 4.14 respectively. The decrease of Z•• with increasing inversion layer

charge is a reflection of the increasing surface electric field seen by the electrons

which pushes them closer to the surface.

4.4 Inversion layer quantum capacitance

The inversion layer quantum capacitance as a function of surface

potential and gate voltage for uniform channel doping of 5xl 023m'3 are shown

in Fig. 4.15 and Fig. 4.16 . The predicted difference between quantum

mechanically and classically calculated capacitance in inversion for an MOS

capacitance with a uniform channel doping of 5xl 023m'3 are shown in Fig. 4.17

and Fig. 4.18 . It is seen from these figures that the difference between the

quantum mechanically calculated capacitance and the classically calculated

, capacitance increases markedly with the increase of surface potential as well as

gate voltage. The variation of inversion layer quantum capacitance with the

applied ~urface potential' is small compared to that calculated classically

because with the increase of \jiB both the energy levels ( ElO , E20and Ell ) and

also Fermi energy level with respect to the bottom of the conduction band at the

silicon surface shifted upward and the number of inversion layer carriers cannot

increase at the preVious rate which is exponential in nature. But classically

calculated inversion charge is truly an exponential function of surface potentia!.

Therefore, for a given value of surface potential ( or gate voltage) the inversion

layer capacitance calculated quantum mechanically will be smaller than when

calculated classically.
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Fig.4.15 Inversion layer quantum capacitance vs. surface potential
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Fig. 4.19 showsthe inversion layer quantum capacitance as a function of

gate voltage for different channel doping. The channel doping levels are

1.lx1024 m.3 , 5.0xl023 m.3 and 1.0xl023 m.3 • For a fixed gate voltage, the

inversion layer quantum capacitance decreases with the increase of channel

doping because inversion layer carrier concentration decreases with the increase

of channel doping for a fixed gate voltage ( Fig. 4.9 ).

4.5 Total gate capacitance

The total gate capacitance calculated as a function of gate voltage both

quantum mechanically ( solid line ) and classically ( dashed line ) for chanrtel

doping of 5x1023 m.3 is shown in Fig. 4.20 . The difference between the

quantum mechanically and classically calculated gate capacitance is due to the

difference of inversion layer capacitance between those two methods (Fig.4.18 ).

The gate capacitance considering quantum mechanical effects as a

function of gate voltage for three different channel doping is shown in Fig.4.2l .

At low frequencies, the inversion layer quantum capacitance has

significant contribution on total gate capacitance. After strong inversion, the

. inversion layer quantum capacitance is much larger than the depletion

capacitance. So, total gate capacitance is essentially equal to the series

combination of oxide capacitance and inversion layer quantum capacitance. As
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C1 is much larger than Co , the total gate capacitance is approximately equal to

the oxide capacitance when the device is more strongly inverted.

At high frequencies, it is seen from equation (3.37) that the inversion

- layer quantum capacitance has no contribution to the total gate capacitance. So,

the total gate capacitance is essentially equal to the series combination of oxide

capacitance (Co) and depletion capacitance (CD). As Co is very small compared

to Co , Co dominates the total gate capacitance. With the increase of the channel

doping, the maximum width of depletion layer decreases and the depletion

capacitance increases. Thus, the total gate capacitance at high frequencies

increaseswith the increase of channel doping as seen in Fig.21.

4.6 <:onclusions

The analytical model developed in chapter two and chapter three is used

here to study the quantum capacitance, frequency dependence of total gate

capacitance and other characteristics of MOS device considering the quantum

mechanical effects on the inversion layer minority carriers.

The fIrst three consecutive subband energy-levels with respect to the

bottom of conduction band at SiOrSi interface are studied and compared with

self-consistentcalculation results and found to closely agree with self-consistent

results. Though the self-consistent calculation is accurate but it is very time

consuming. But almost the same result is obtained by using variational
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approximation method and it requires the same CPU time as that of the classical

calculation:

The inversion layer carner concentration for three different channel

doping is studied and is seen that to get the same inversion layer carrier

concentration the requirement of gate voltage increases with the increase of

channel doping. The electron concentration in the three consecutive subbands is

studied and is seen that relative occupation of carriers in the flISt subband

increases with the increasing gate voltage.

The average separation of the inversion layer electrons from the Si02-Si

interface decreases with the increasing gate voltage.

The variation of inversion layer quantum capacitance and the total gate

capacitance with the applied surface potential and gate voltage are studied and

is found to be small compared to the classical one.

Finally, the frequency dependence of total gate capacitance for different

channel doping is studied and is seen that the total gate capacitance decreases at

high frequencies and increases at low frequencies.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions

In this work, the total gate capacitance of submicron inversion MOS

capacitor is studied. It is found that the total gate capacitance of MOS structure

depends on gate voltage and frequency. Inversion layer quantum capacitance

has significant contribution to the total gate capacitance. In order to calculate

the inversion layer quantum capacitance, it is necessary to determine the

subbands energy levels. In this work the analytical expressions of frrst three

consecutive subband energy levels .are determined using variational

approximation method. It is very difficult to obtain the exact analytical

expression for subband energy levels for arbitrary potential profile like that of

MOS structure. However, the subband energy levels obtained by using

variational approximation method is compared with that of the self-consistent

results. It is found that our calculations of subband energy levels are in good

agreement with the self-conSistentresults.

In equilibrium and at the relatively high transverse fields existing in

submicron devices (even at zero gate drive), the lowest three energy levels are

sufficient to account for most of inversion layer charge. This means that the

occupancy of the energy levels higher than the third subband is sufficiently
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negligible to be ignored without sacrificing accuracy. Very laborious work is

. required to determine the analytical expression for energy levels higher than

third subband. In that case we should go for numerical solutions. The analytical

expressions for subband energies of this work can be the basis of the numerical

solution of the energy levels higher than the third subband.

5.2 Suggestions for future work

In order to determine the inversion layer quantum capacitance, the

analytical expression of the first three subband energy levels are determined by

using variational approximation method. The analytical expressions of these

energy subbands can be used to calculate other parameters of MOS device

considering quantum mechanical effects. The variational approximation method

can be applied for an arbitrary potential profile to find analytical expression for

energy subbands if the wave functions are assumed to have a predetermined

form. So, this variational technique described in the calculation of subband

energy levels in chapter two can be applied to other types of device for the

calculation of the analytical expressions of subband energies.
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APPENDIX I

RESISTANCE ASSOCIATED WITH THE DIFFUSION CURRENT
OF ELECTRONS FROM THE BULK TO THE EDGE OF THE
DEPLETION REGION

The "driving force" for the excess-electron current, which results from

in the region of quasi-neutrality z ~ Zd, is not an ordinary potential, but the

concentration potential, ( i.e. potential due to concentration variation of electron

atz=Zd)

qp=-
kT

( I-I)

( 1-2)

Where no is the electrons concentration in the bulk and nd is the concentration

variation of electron at z = Zd .

The continuity equation for electrons can be written as,

alin lin a2lin-=--+D --at 'tn n l7z2

Where, 'to is the minority carrier life-time and lin is the concentration of excess

electron. .

By solving the continuity equation ( 1-2), \\Fe get,

~ a2~
. - n D nJo>n=--+ n-

'tn az2
Where n concentration variation of electron.

Equation (1-3) can be written as

jI+ jo>'tn) a2n
n-----

Dn'tn az2
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Solving equation (1-4) we get,

_( (l+iOlt,))z ( (l+iOlt,))z
Doto I Dotn

n=C1e +C2e

Boundary conditions are, at z = Zd, n = nd and at z ~oc , n =0

-(~-d)( (l+iOlt,))
Doto

n= nd e .

Diffusion current can be written as,

( 1-5)

( 1-6)

. dn(z)
In,d =qDn dz

-(z-zJ (l+iOlt,)){, Jl Doto
= qDntlde

At Z =Zd

in,d = qDnnd {

(1+jOlt,) }.
D~'Cn ( 1-7)

( 1-8)

( 1-9)

Resistance is the ratio of voltage and current,

From equation (1-9) we get,

_1__ { (l+jOlt,)}
R - qJ.lnno D ~

n,B n n

1
(Dntn)2

.. RnB= 1

, qJ.lnno(l+ jCOtn)2
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For frequencies substantially below the inverse of the minority carrier life-

time, the bulk di1fusion resistance is,

( 1-13)

'. :;1
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(II.I)

( II-2)

( II-3)

APPENDIX II

EFFECTR7E RESISTANCE OF DEPLETION REGION TO FLOW

OF MINORITY AND MAJORITY CARRIERS

We assume a p-type substrate with a uniform doping concentration NA ,

and approximate the dependence of voltage with position as

NAq 2V(z)=--z2Es

or, PV(z) = (:J2 = y2

r E ]t
with AD=lqN:P

Where AD is a Debye length based on the charge concentration qNA . For

simplicity we have assumed z = 0 at the bulk edge of the depletion layer and z=

d at the semiconductor-insulator interface. .. .',

The resistance Rn,Dassociated with the flow of minority carriers thrall gh

the depletion layer is given by

R = id
~ - f dz _ I id

(z)dz
n,D 0 crn(z) - 0 qllnn(z) - qllnn[ l

Using the relation,

I .

p(z) = NA e -~v
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We can write equation (II-3) as,

Rn.n = N AAD I>-~e-r dz
q~nf 0

( II-S)

Since typically AdD))l , we may take the upper limit as infinite s; that the

(1t)i .
magnitude of the integral is 2 '" 1 . Therefore

( II-6)

( II.7)

.The magnitudes of these parameters for typical silicon structures are Ln '" 5x10-5

meter, AD'" 1.3 X 10-8 meter for NA= 1023/ m3
• Therefore,

( II-S)

So, we can neglect Rn.n in comparison with Rn.B .
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APPENDIX III

RESISTANCE ASSOCIATED WITH THE GENERATION CURRENT

WITHIN THE DEPLETION REGION

The recombination and generation of electrons and holes in

.serniconductors may take place at some type of recombination-generation

.centers or traps. These sites may be crystal lattice dislocations, impurity atoms

located interstitially or substitutionally in the crystal lattice, or surface defects.

The net recombination rate can be given as [18],

CNt(pn-nt)
U = -------- nos/ sec ( III-I)

n+p+2nj cosh[(E~E;)]

Where, C is the capture coefficient, Nt is the density of centers, Et is the energy

of the centers, and Ej is the center of the forbidden energy gap.

For the special.case of single set of traps at the center of the forbidden

gape i.e. Et = Ej ),

CNt(pn-nt)
So, u= 2 (III-2)n+p+ nj

After applying gate :voltage,the holes are rapidly swept out of depletion

region by the large electric field, thus its density are small compared to nj . For

this case, recombination rate,

( III-3)
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( I1I-4)

A negative recombination rate means a positive generation rate, and the

resulting current is a generation current instead of a recombination current. So,

the generation current,

IG= qAIUIZd

qAniZdCNtIG=~~~-~
2

Where, Zd is the depletion layer width, A is the area of the MOS structure.

The minority carrier life-time can be written as

,

. Iii
iii
1'1I ~

! I.. ,
!

1
to=--

CNt

So, the equation (I1I-4) becomes,

IG = qAniZd
2to

Resistance associated with this generation current,

~d 2to~dR d=-=~~
g IG qniZd
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( I1I-5)

( I1I-6)

( I1I-7)
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