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ABSTRACT

The metal-oxide-semiconductor (MOS) structures is the core structure in
modern day microelectronics. Advancement of the fabrication technology,
submicron structures are possible to fabricate. The combination of higher
substrate doping level and thinner gate oxides increases the electric field at
8i0,-8i interface to a level such that the energy band bending at SiO,-Si
interface under inversion condition is very steep. Thus, a narrow potential well
is formed near SiO,-Si interface and the classical treatment of inversion layer
carrier becomes less appropriate as the bulk energy band split into discrete
subbands at the surface. .The effects of quantization can be most accurately
modeled by solving the Schrodinger’s and Poisson’s equations self-consistently.
+ It is very time consuming and unsuitable for incorporation within larger
programs, such as device simulators. Therefore, it is necessary to develop a
simple model which includes the quantization effects and requires less
computational time. WKB (Wentzel-Kramers-Brillouin) or Airy function
approximation method can be applied for the calculation of subband energies in
the inversion layer if the potential profile is considered linear. But if the total
clectron concentrations within the inversion layer is comparable to the total
impurity charges within the depletion region, potential profile will no longer be
linear. The variatioinal approximation methodrcan be applied for an arbitrary
potential profile to find analytical expression for subband energies if the wave

functions are assumed to have a predetermined form.



In this thesis, the analytical expressions for ﬁrst three consecutive
subband energies are obtained by variational approximation method and the
results are compared with those of the self-consistent results. It is found that the
results of the variational approximation method agree well with that of the self-
consistent results. In this work, the analytical expression of inversion layer
capacitance is derived considéring quantization effects and the Fermi-Dirac
statistical distribution law. The analytical expression of total gate capacitance is
obtained incorporating the thermally generated electrons within the depletion
region and the flow of electrons from the bulk to the SiO,-Si interface in the
quantum capacitance calculated from energy subbands. It is found that the total
gate capacitance of MOS structure depends on gate voltage and ﬁ.‘equency, This
work shows that the total gate capacitance decreases at high frequencies and
increases at low frequencies. This work also compares the inversion layer
quantum capacitance and the total gate capacitance with that of the classical
calculations. Quantum mechanically calculated results are smaller than that of

the classical results.
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CHAPTER 1
INTRODUCTION

1.1 Capacitance of MOS structures

Metal-oxide semiconductor (MOS) devices dominate the | integrated
circuit industry, both in numbers produced and in the variety of their
applications. The tﬁo terminal MOS structure is the simplest of MOS devices
and the structural heart of all MOS devices. Capacitance is of course the
primary electrical observable exhibited by an MOS structure. The total gate
capacitance of MOS structure depends . on bias voltage and frequency. To the

device specialist, the capacitance-voltage ( C-V) characteristic is like a picture-

window, a window revealing the internal nature of the structure. The -

characteristic serves as a powerful diagnostic tool for identifying deviations
from the ideal in both oxide and the semiconductor, C-V characteristics are

routinely monitored during MOS - device fabrication.

The submicron MOS structure is a simple two terminal device composed
of a thin (4 nm to 14 nm) SiO, layer sandwiched between a silicon substrate
and a metallic field pl;'ite called gate (Fig, ‘1.1). The most common field plate
materials are aluminum and heavily doped polycrystalline silicon. A second
metallic layer present along the back or bottom side of the semiconductor
provides an electrical 'contact to the silicon substrate. It is normally grounded

and 1s called the substrate contact.

Fate

T A,
TR




Vg (gate) ‘
Melal (AL contact

LT
Si0, '(i.nsul'cxtor)

Si (P-type Substrate)

Metal contact

W ¥

B (base) '

Fig. 1.1 The metal oxide-semiconductor structures



The ideal MOS structure has the following explicit properties:

(1) The metallic gate is sufficiently thick so that it can be considered as
eqﬁipotential region under ac as well as dc biasing conditions. |
(i1) The oxide is perfect insulator with zero current flowing through the layer
under all static biasing conditions.

(i) There are no charge centers located in the oxide or at the oxide-
semiconductor interface.

(iv) The semiconductor is uniformly doped.

{(v) The semiconductor is sufficiently thick so that regardless of the applied
gate potential, a field-free region (the so-called Si bulk) is encountered before
reaching the back contact, '

Electron and hole concentration in the silicon at equilibrium can be

expressed as [1]:
L Ubr)
n=n;ekl (1.1)
and
e, _ ‘
p=niekT(¢F ) _ _ (1.2)‘

Where, n; is the intrinsic éarrier concentration, k is Boltzmann's
constant, T is the absolute temperature, y is the potential of the intrinsic
energy level and @ is the Fermi potential (Fig 1.2). The potential  is
assumed to be zéro in the bulk. ¢ evaluated at the oxide-semiconductor
interface (at z = 0) is given the special symbol 1y, and is known as the

surface potential. The electron concentration can be written as

LN R
=N, ‘

(1.3)
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Fig, 1.2 Energy band diagram of a p-type substrate MOS structures
. }



Where N, is the doping density of the p-type substrate.

Positive gate voltage produce an electric field which bends the energy
bands dowhward. For small positive gate voltage (Fig 1.3a) the holes will be
repelled from the vicihity of the oxide-silicon interface leaving behind a space
charge region of uncompensated ionized acceptor ions. Since in this region the
concentration of carriers is negligible in comparison to the impurity
concentration, it will be referred to as a depletion region. Upon further increase
of gate voltage (Fig 1.3b), the bands at the semiconductor surface bend down
more strongly which causes E; below Eg and an inversion laver is formed. In
that case, electrons (the minority carriers) will be attracted to the interface so
that while some of the charge in the semiconductor will still consist of the
charge of ionized acceptors, another part will consist of the electrons in the
inversion layer. We consider that these electrons come from the relétively slow
process of electron hole generation'in .the depletion region. This inversion layer
near the semiconductor surface has conduction properties typical of n-type
material. |

The electron concentration at the surface is given by

q
-y —2
kr(“’s br) (1.4)

Ngyrgace = Np€

At s = ¢F, Daymaee = N .5 intrinsic concentration as seen from equation

(1.1) and from np = n; ;1 then Ngyfuce = Paurface = 1 this is defined as . the
limited point between the depletion and inversion regions. With increasing s,

above ¢r , Ngypece increases drastically, and at y, = 2¢r , we have ngmee = Na .
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This is known as the condition of the onset of strong inversion and this situation k
. et

is shown in (Fig 1.4). }?

The density of induced charge in the semiconductor denoted by Q. is

given by Gauss’ law ,

- Qs =t Fox =& Fs (15)

Where,
Eox = Permitivity of oxide
g = Permitivity of semiconductor
Fox = Electric field in the semiconductor
F. = Electric field at thé semiconductor surface

When the semiconductor surface is depleted the total ionized acceptors in

the depletion région is given by
Qs=-qNaZ, , (1.6)

Where, Z,is the Width of the depletion region. The‘relationship between
Y, and Zy can be obtained by solving Poisson’s equation using the depletion

approximation. The results is,

s¥s |
_ |Zs¥s : v
z,- o 17)

T
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Fig. 1.4 Energy band diagram of p-type substrate at the onset of strong
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Once the strong inversion occurs, the depletion-layer width reaches a maximum.

The depletion width is given by [ 2 ],

2e5(205) _
Lo = | ——" 1.8
“2\"oN, (138)
T : .
Where, d)F—k— % - (1.9)

The electric field at the interface is given by [3],

F Na —2¢r Y :
e = \r—ﬂﬁmm+w ¢}e®@w%*% ®} (1.10)

AWhere, F=/2qe, and the ‘+’ sign for F; is to be used with y,> 0, and the ‘-’

sign with yw< 0 ; ¢, = —ql and the total semiconductor charge per unit area QS

1S given as :

2] “2¢F Y% |
Qs:iFm\/{(""e T J“’ " (""et““"x‘*"]} (L11)

The total charge Qg ( per unit area ) below the oxide is the sum of the

charge due to the electrons in the inversion layer Q,, and the charge due to the '

ionized acceptor atoms in the depletion region Qg

Qs = Qinv + Qg (1.12)



‘The small signal capacitance per unit area corresponding to the

semiconductor charge regions denoted by

dQ,
Co= = (1.13)
From equation (1.12)
_ innv dQB -
T T aw, (L4

We have then separated the total semiconductor capacitance C, into .two
components, one owing to the depletion region charge and one owing to the
inversion layer charge. So, we can define a inversion region incremental

capacitance per unit area [3],

d inv
CI:ﬁ*ag'ly_
[va-20g)
e Py :
C,=F /N, — (1.15)

(P-‘”r)

2\/Ws+¢te &

We can also define a depletion region incremental capacitance per unit area[4],

dQg

Cp =~

PTody,

3 )

_[qasNAJI _ 88

- 2ws —-Zd
c. =% (1.16)
D Zd

10



1.2 Quantum effects on inversion layer capacitance

The need for careful treatment of inversion layer quantization has
recently become more pressing due to the increasing impact of the quantization
on submicron MOS structures with the reduced gate oxide thicknéss and
increased channe! doping required in scaled devices. The combination of
higher doping levels and thinner gate oxides increases the electric field at the
Si0,-8i interface to a level such that the energy-band bending at the SiO;-Si
interface under inversion condition is very steep. So, a potential well is created.
The confinement of the carriers in this potential well leads to a two-dimensional
electron gas ( 2DEG ) system. Therefore in order to accurately simulate the
inversion carriers in submicron MOS devices, models that incorporate the two-

dimensional quantum nature of the carriers are necessary.

The quantum mechanical picture differs in several aspects from the
classical one [5]. The bulk conduction energy band is split into discrete
subbands in the inversion layer, with the lowest subband shifted substantially
above the conduction band minimum (Fig 1.5). Hence a larger surface potential
is needed for a given channel charge. This has the effect of decreasing the
inversion layer charge density for a given gate voltage. In addition , because of
the quantum mechanical nature of 2DEG, the distribution of carriers is
| displaced away from the Si-SiO, interface and the average distance of the
spatial distribution of the inversion layer charge from the interface is larger.

Hence, a larger band bending is needed for a given population in the conduction
band.

11
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Considering all the effects we conclude that the inversion layer

capacitance(C; ) is decreased when compared to the classical value.

1.3 Frequency dependence of total gate capacitance

The capacitance of a semiconductor device , with its non-linear charge-
voltage relationship, is defined by [ 4 ]

_dQ |
c==3 | (1.17)

Viewed from the gate, the MOS capacitance becomes ,

an

C:= 3y (1.18)
. G
The expression of Cg, can be written as ,
1
T (1.19)
—t

Co ,CD + CI

 Where, C, is the oxide capacitance; Cp and C; are the depletion and

inversion layer capacitances respectively.

The complete description of frequency dependence of MOS structures
is shown in Fig. 1.6. When the devices is driven from accumulation into
depletion, the inversion layer charge is negligible compared with the depletion
layer charge. As a result C;=0. So, Cg is merely C, in series with Cp,. As

the gate voltage continues to increase, the surface becomes strongly inverted if

13
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Fig. 1.6 Low frequency (LF), high frequency (HF), and deep-depletion
(DD) capacitance-voltage characteristics [ Ref. 4].
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the gate voitage is swept slowly enough to allow generation of ninority carriers
required for formation of this inversion layer. If the ac probing voltage used in
the capacitance measurement is of sufficiently low frequency that the inversion
charge is able to follow the ac probing voltage and the dc sweeping voltage, then
the low frequency (LF) curve is obtained. If the ac voltage frequency is too high,
but the dc sweep voltage rate is suﬂ'iciéntly low, then the high ﬁequéncy (HF)
curve is measured. If the sweep voltage rate is too high and there is not enou gh
time for the inversion charge to be thermally generated, then the deep depletion
(DD) curve is obtained regardless of the frequency of the ac probing voltage.

1.4 Review of recent works on MOS capacitance

The Two-dimensional quantum nature of the electrons in inversion layers.
has been studied in details by a number of researches [5.6] by solving
Schrodinger’s and Poisson’s equation self-consistently. In these work, the
electron inversion layer charge density is obtained self- consnstently utilizing
Schrodinger’s and Poisson’s equations. C. Moglestue[5] also compared the
self-consistent and Airy function (Solution of Schrodinger’s equation for a
triangular potential well) normalized charge density for inversion electrons in
the Si0,-Si system. Recently simplé and approximate models have also been
proposed [7,8] and their implementation in classical device simulators
described. In these works, the authors proposed a modified semi-quantum
mechanical method for the calculation of inversion layer carrier concentration

and compared the modified calculations with that of the self-consistent quantum

mechanical calculations.

15



Two-dimensional ( 2DEG ) electron gas in a quantum well or inversion
~ layer, unlike an ordinary grounded metallic plate, does not completely screen
an applied electric field. A 2DEG manifests itself as a capacitance in series in
the direction transverse to the quantum well [9]. Recent analytical works
[10,11] have carried out for determination of energy subbands and capacitance
_ in the inversion layer. to find the dependence of frequency on capacitance, the
thermally generated electrons within the depletion region and the flow of
electrons from the bulk to the Si-S10, interface need to be incorporated in the
quantum capacitance calculated from energy subbands. Recent works on this
issues have been carried out on Double-barrief tunneling structure [12] but not

on MOS structures.

1.5 Objective of this thesis

The main objective of this research is to obtain an analytical expression
of total gate capacitance of an inversion MOS structure as a function of gate
voltage and frequency. Inversion lay"er capacitance has significant contribution
to the total gate capacitance. It is well known that the electrons of MOS
inversion layer form subbands, each of which corresponds to a quantized level
for motion in the direction perpendicula.r to the silicon-insulator surface. In this
work, the analytical expressions of inversion layer capacitance is derived
considering quantization effects and the Fermi-Dirac statistical distribution law.
- The expression for eigen energies of subbands is derived by ﬁpplyiﬁg the
variational approximation method. To derive the analytical expression of total
gate capacitance, the thermally generated electrons within the depletion region
and the flow of electrons from the bulk to the 8i0,-S; interface is incorporated in

16



the quantum capacitance calculated from energy subbands. This work also
compares the inversion layer quantum capacitance and the total gate

capacitance with that of the classical calculations.

\

1.6 Summary of the dissertation

In this thesis. work, the analytical expressions for inversion laye-r quantum
capacitance and the total gate capacitance of MOS structure are derived in chapter
three. The analytical expression of first three subband energies in the inversion layer are
" also derived in chapter two by using variational approximation method. The vaﬁational

approximation method is described in chapter two.

Based on the analytical model developed in chapter two and three, the behavior
of total gate capacitance is studied in chapter four. The results of quantum effects on
inversion capacitance, inversion layer charge concentration, the electron concentration
in the first three consecutive subbands and also the predicted difference between
classically and quantum mechanically calculated inversion layer capacitances are studied
in chapter four. Chapter five contains the concluding remarks along with suggestions
for future work on this tépics. '

17



CHAPTER 2

DETERMINATION OF SUBBAND ENERGIES

2.1 Introduction

In MOS devices quantum effects play an important role even at room
temperature, where the width of the inversion layer is of the same order of
magnitude as the De Broglie Wavelength of the electrons in the inversion layer.
Therefore it becomes necessary to solve Schrodinger’s equation for the subband
energies and wave functions in order to study the transport properties of
inversion layer electrons. In this case, since the potential energy term is
connected to the electron density and thus to the wave functions through
Poisson’s equation, the determination of the subband structure requires the
simultaneous and self~consistent solution of Schfodinger’s and Poisson’s

equations.

- However, the nonlinear coupling of these two equations prevents an
analytical solution from being found, forcing one to make use of iterative
numerical procedures. Although they are very accurate, they fail to provide
information about the amalytical character of wave functions at nonzero
temperatures[13]. Moreover, fully numerical calculations require considerable
computational effort, thus making them unsuitable for incorporation within

larger programs, such as device simulators. So, several simpler methods are

13



developed that approximate the quantum mechanical calculation results and

require the same CPU time as that of the classical calculation.

~ When only one subband is occupied, i.e., in the electric lquantum limit,
WKB (Wentzel-Kramers-Brillouin) can be used to find an analytical expression
for the energy subbands, When more than one subband is occupied, Airy
function approximation method can be used to find an analytical expression for
the energy subbands. In both methods mentioned above, the potential profile-
within the inversion layer is considered linear. But if the total electron
concentrations within the inversion layer is comparable to the total impurity
charges within the depletion region, pbteﬂtial profile will no longer be linecar.
The variational method can be applied for an arbitrary potential profile to find
analytical expression for energy subbands if the wave functions are assumed to
have a predetermined form [6,14]. In this chapter variational method is used to

find an analytical expression for energy subbands.

2.2 Variational mgthod

The variation method can be used for the approximate determination of
the energy levels of a system when there is no closely related problem that is
capable of exact solution, so that the perturbation method is inapplicable. It can
also be applied to the systems that are described by a nonseparable Schrodinger
equation, in which case numerical solutions are extremely arduous and the
WKB method cannot be used. The variational method is specially applicable for
the determination of lowest energy state. In special cases variational method can

be extended to the state of the system other than the lowest one.

19



2.2.1 Principle of the method

Let us consider an arbitrary physical system whose Hamiltonian H is
time-independent. To simplify the notation, we shall assume that the entire
spectrum of H is Discrete and non-degenerative [1 5'],

Hpu=Fn@n 3 0=0,1,2, oo 2.1)

Although the Hamiltonian H is known , this is not necessarily the case

for its eigen values E, and the corresponding eigen states ¢, .

Let us choose an arbitrary wave function y of the state space of the

system. The mean vatue of Hamiltonian H in the state s is such that

{y|H]y)
{w] w)

(H)= > Eq . ‘ (2.2)

( Where E, is ﬂie smallest eigen value of H ), equality occurring if and only if.

y is an eigenvector of H with the eigenvalue E, .

20




To prove inequality (2.1), we expand the wave function y on the basis of

eigenstates of H :

Y= %Cnan | : (23)
We then have

(viiy)=Zlcal Bn 2 EoZlcal @24)
With  (vlv)=Zlc, [ | (25)

Which proves (2.2). For inequality (2.4) to become an equality, it is
necessary and sufficient that all the coefficients C, be zero, with the exception of

Co ; W is then an eigenvector of H with the eigen value E, .

* This property is the basis for a method of approximate determination of
Eo . We choose (in theory, arbitrarily, but in fact, by using physical criteria) a
family of wave functions (o) which depend on a certain number of
parameters which we symbolize by o. We can calculate the mean value <H>(o)
of the Hamiltonian H in these states, and we minimize <H>(at) with respect to
the parameter o, The minimal value so obtained constitutes an approximation of
the ground state E, of the system. The wave functions y(at) are called trail
functions, and the method itself, the variational method.

21



2.2.2 Application to excited states

The variational method can also be used to obtain an upper limit for one
of the higher energy levels if the trial function is orthogonal to the eigen-
functions of all the lower states [15]. Suppose that the enérgy levels "are

axfanged in an ascending series ; E, , E,l, | 7 R — Then if y is
| orthogonal to ¢; ; for j = 0,1,2 ..... n ; it is easily seen from (2.3) that the
corresponding expansion coefficients C; are all zero . An inequality can be
derived from (2.4) by replacing each eigen value E in the summation on the
right by E., . With the result that the expectation value of the energy is an

upper limit on this eigen value .

The technique of choosing the trial function for evaluation of energy for
“any excited state is that this function must be orthogonal to the eigen functions
of all the lower states (arranged in ascending order of energy). For example, if
we want to calculate (approximately, in theory) the first excited state E,, we
should choose trial function which are orthogonal to wave function of the
ground state. This follows from the above discussion which shows that <H> has
a lower bound of E; , and no longer of E, , if the coefficient C, is zero. Thus, the
first excited state E, is determined. In this way we can determine the higher

excited states.

22



2.3 Mathematical expression for energy levels

In formulating Schrodinger’s eqixaﬁon for the two-dimensional electron
gas (2DEG) system of the inversion layer of an N-channel MOS devices, it is
assumed that the wave functions can be expanded in terms of Bloch waves
traveling parallel to the interface constrained by an envelope ﬁmction &ii(z) (for
the jth subband in the ith valley) normal to the interface (i.e. in the z—difection).
The envelope function is found to satisfy Schrodinger’s equation [11]

n? d? ‘
gz";_éij(z)+[Eﬁ _V(Z)]E.vij(z)= 0 (2.6)

2m,,-

Where m,; is the effective mass normal to the interface, V(z) is the electrostatic

| potential, and Ej; is the eigen value of the jth subband in the ith valley. This

equation must be solved with boundary conditions that &; go to zero for z =0

~ and z — oo . This should be a good approximation for the SiO,-Si interface for

which the potential barrier for electrons is approximately 3 eV. In the

variational approximation technique presented here, the eigen energy are

. determined by using the trial envelope function considering the above boundary

conditions.

The potential energy V(z) which enters in equation (2.6) can be written
as sum of the three terms as

V(z) = Vi(z) + Vi(2) + V(z) | (2.7)

Which represent, respectively, the contributions from fixed space charges
(Depletion layer charges), from induced charges in the space charge layer
(inversion layer charges), and from image charges at the semiconductor-

insulator interface.
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If the band bending ¢4 associated with the depletion layer is not too small,
if the bulk is p type, and if the acceptor density N, is constant throughout the
depletion layer, then a good approximation for the potential energy in the

depletion layer is
qud.epI 2( 2 ] . .
Vy(2)= s 1- 27,) 0<z< Zy , (2.8)

With Ndepl = NAZd - (29) .

Where Nyg is the number of charges per unit area in the depletion layer, whose
thickness is Z4 and q is the electron charge. If compensating donors are present,
Na should be replaced by N4~ Np . In most case of interest for silicon, the
depletion layer is much wider than the inversion layer, and it is usually a good

approximation to neglect the term quadratic in z in equation (2.8).

V(z), the second term in equation (2.7) is the contribution to the
potential energy from the charge distribution of the electroné in the space-
charge layer, and is given by the solution of Poisson"s equation with the charge
density in all subbands as the source term. The Poisson’s equation considering

only the inversion layer charges,
——-—Vs(z)— ZNu &(2) (2.10)
S
The solution of equation (2.10) is

Vi(2) = ZNIJ[Z + _[(z - z)é‘71J (z )dz':l (2.11)

si_]
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Where Nj; is the electron concentration in the jth subband in the ith valley ancwj'

£j(2) s the corresponding normalized envelope wave function. The arbitrary

: dv
constant of integration has been chosen to make V,(0)=0 and 1t —ﬁg =0
’ . Z—»0

The last term in the potential energy (2.7) is the image term

8 8u 4’
g, +8, 16nzs,

Vi(2)= (2.12)

Which anises because of the different dielectric constant of the semiconductor
and the insulator. We will neglect this image term in all our calculations

presented in this section. It is a2 good approximation at high carrier densities.

2.3.1 Ground state

Let, the trail eﬁvelope function for ground state,

~-bz

Eo(z)=Aze 2

Considering the boundary conditions that , envelope function vanishes at z = 0

and z —» oo . Here b is the undetermined parameter and A is a constant.

Normalization condition tells that ,

I k@ dz=1
| _‘:Alzzze""dz =]

2%



. .
The value of A comes out, A = [7]

So, the normalized envelope function for ground state,

1

bs 2 :.Ef: .
Em(z)=[-2—] ze ? (2.13)

The trial function of first excitation state is orthogonal to the envelope
function of the ground state. Let, the trial envelope function for the first exited
state

-bz

£.(2)=Bz(1-Cz)e 2
Where B & C are arbitrary constants.

Orthogonal condition yields that,

E,éio (2)€,(2)dz=0

1

wof b3 \2
_[] [?) Bz2(1-Cz)e*dz=0

b
From the above equation, C= 3

Again the normalization condition yields,

J: |§.1(z)lzdz =1
];“’1327,2(1—%1)2 etz =1

26

o



3b’ 2
From the above equation we get, B= =

So, the normalized envelope function for first excited state is ,

| |
3p° 2 ( bz) =
él(z)=[—2—-) z( ——371 ’ (2.14)

In equilibrium and at the relatively high transverse fields existing in
modern devices ( even at zefo gate drive ), the Jowest three energy levels are
sufficient to account for most of the inversion layer charge [5]. It was found that
adding higher subbands provided no discemible change in either the distribution
or the total charge for positive gate biases and the channe] doping levels ( = 10*7
cm™ ) and oxide thickness (4 nm to 14 nm) considered there. The three lowest
energy levels are in ascending order E,q , E,y , E;; and electron concentration in

the three lowest subbands are in ascending order N5, N3p and Ny, +
Considering only the three lowest subbands, the equation (2.11) becomes ,
q’ §
Vi(2) = ;"_N 10[2 +) (z— Z)&O(Z')dz']

'z
+%— Nyl z +_0 (z'— z)iﬁo(z’)dz':|

+—=— Ny z+_:(z'—z)“';f1(z')dz':| (2.15)
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Let us assume that the envelope wave functions of ground state are same

for both first and second valleys . i.e.

31 =bz

Go=bn=(7)1ze ® (2.16)

Integrating equation (2.15), we get,

q2

=F

V,(z) =

31
(N,0+Nm){g——-2—be (6+4bz+b222)}

2
5 1
+ 3 N“{E“Ee (5+4bz+%b222+§b3z3+%b424)} (2.17)

- The expectation value of V(z) for ground state envelope function in the
Hamiltonian, ' |

(V=& (2)|V.(2)10(2))
= [PV dz

<Vg> 163;1 (N10+Nzo+11N11) (2.18)

Similarly, the expectation value of V(z) in the Hamiltonian,

(V)= J‘: Vd(z)lgw(z)‘zdz
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' Pufting the value of Vy(z) and &,¢(z) and integrating the above equation we get,

_ 39" Nawi 69° Ny

(Vy) = b T mbiz | (2.19)

The expectation value of kinetic energy of an electron for ground state
envelope function, | |

__ 1 [hog,(2)
<T>_2mm"0 1 oz

1 2
B (b 2 p =
- el 2 _ 2 2
Zmg (2 )€ T22€ % | &
#?b?
=8mzi

2
dz

H*b?
ST (2.20)

A=

So , the mean value < H>(b) 0f the Hamiltonian H in the ground state,
<H>(b)= <T> +<Vy>+<V> (2.21)

However the total energj,r per electron, which is the quantity to be minimized is,

E 1
N {T)+ (Vd> + 5(\/,)
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Where the factor 32 prevents double counting of electron-electron mteractlom

Neglecting second term in < V4> , We have,

E_#%? 3¢° Nap 33q”
N~ 8my, gsb 32 ¢b

(N10+N20+1.1 Nn) (2.22)

The value of b that minimizes the total energy per electron is

1
12mz..q2N* P :
b=b, = Toh (2.23)

11
Where, N = Ny +5= (Njg + Ny +LINy,)

32 (
The energy of the lowest subband is

Ej =<H>(bu)
_ Kb’ s 3q? qu,l_+ 33q®
"~ 8my. b,  16s,b,

0

(N10+ Nao+ LlNu)

Where, N"'= Ny, + %E( Nio+ Ny +1.1 Nyy)
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Thus we have,

s 2
3p ¢*8* | NT
Eq =(5) [ 1 1] (2.24)
] ‘

[FRR S

. 2 ‘
3‘3“ q*h? P N -
Eq 2[5) : (2.25)

2.3.2 Exited energy state

- The envelope wave function for the first excited state of first valley is
[from equation 2.14]

| |
(30 f (. bz) =
a2 ] o[- 2}

The expectation value of kinetic energy for the envelope wave function &,,(z) is,

| 1 (=|n & 2
TS = —-
7b2H% . .
AT = 2o, (2.26)
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The expectation value of Vy(z) for the envelope wave function £,,(z) is ,

(Va)= J}d@)léu(z)lzdz

59°N gepn (1- 3.6)

<Vd> £gb Zgb

(2.27)

The expectﬁtion-value of V(z) for the envelope wave function &,,(z) is

<Vs>=J;°°vs(z)l@u<z)|2dz

73¢° |
(V)= 323 (Nyo+Nyg +137N,,) | (2.28)

So, the mean value (H)(b) of the Hamiltonian H in the first excited state of first

valley,

(H)b) = (T)+{V,)+({V,)

) 292 2
=] Th%b +5q *Neep, 36} 73q

+ Njo+Nyp+ 137N
4m,; bg, K Z4b 32bss( '1_0 ® ”)

This function for the same value of b, as above ( equation 2.23) , presents a

minimum equal to

T5%b2  5q°N 36 )| 73q>
0,2 "”Pl[—- d (Nyo+Nyp+137Ny;) (2.29)

E;y= + +
_ 1 24 My bOBS Zdb() 32b085
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putting the value of by and neglecting the second term of <V, > , the expression

of E;; becomes,

2
3

1
17Y 15 %62 |° N™
E“:(?IE) 1 : ; | (2.30)
£gM, 2 (N“)s

where, N™" = Nyepi +0 .41( Ny + N3o +1.28N, )

2.4 Conclusions

In this chapter, the analytical expressions of the ground state eigen
energies for two valleys and the first excited state eigen energy for first valley of
inversion MOS structure are derived using the variational approximation
technique. The eigen functions for various subbands are assumed considering
the physical criteria of the system. Knowing the energy and wavefunction of
energy-bands, electron population and other pc;u'ameters for characterizing the

inversion layer MOS structure can be obtained in next chapter.
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CHAPTER 3

ANALYSIS FOR FREQUENCY DEPENDENCE OF
TOTAL GATE CAPACITANCE

3.1 Introduction

It is well known that the electrons of the MOS inversion layer form
subbands cach of which corresponds to a quantized level for motion in the
direction perpendicular to the silicon-insulator surface. In chapter two, eigen
values of first three consecutive subbands of inversion MOS structure are

determined by applying variational approximation method.

In this chapter, the electron charges in the three subbands are determined
as a function of Fermi energy and subband enérgjes with the help of Fermi-
Dirac statistical distribution law. The total electron charges within the inversion
layer is considered as the sum of electron charges in the three first consecutive
subbands. Knowing the carrier concentration in the subbands, an analytical
expression for capacitance is determined by simply differentiating the total

charge in the inversion layer with respect to the Fermi potential, in contrary to
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the conventional method. In conventional approach the charges are
differentiated with respect to surface potential. To find the dependence on
capacitance, the ﬂlermally generated electrons with in the depletion region and
the flow of electrons from the bulk to the Si0,-Si interface need to be
incorporated in quantum capacitance calculated from energy subbands. The
approximate equivalent circuit of MOS structure is determined by following
step by step the flow of charées (electrons and holes) from the bulk of the
semiconductor to the $i0,-Si interface. In Each step, the rate of flow of charges
is limited by its resistance. Accumulation of charges can be associated with a
capacitor. Resistances are calculated using the standard equation\s' for finding the
resistances in the semiconductor. In chapter one, the oxide capacitance and the
depletion capacitance are expressed using the classical method for finding the
capacitance. Finally, from the equivalent circuit of MOS structure, the

analytical expression for the frequency dependence of total gate capacitance of

inversion MOS structure is determined here in this chapter.

3.2 Charge concentration in three subbands

The density of states for a two-dimensional system is constant and is
given by the following equation [5],

2nvimdi

D(e)= A i

(3.
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Where n,; and my; are the valley degeneracy factor and the density-of-states
| ~ effective mass per valley. the degeneracy is taken care of by the factor 2n,; ,
where ny; is the number of equivalent energy surfaces and the factor two
represents an additional degeneracy due to electron spin. The occupancy n;; (Jjth

subband in the ith valley ) is defined through Fermi-Dirac statistics by
Nj = L D(E)fep (E)dE (3.2)
i

Where fip (E) is the Fermi-Dirac distribution function which is given by

fp(E)=—g5y (3.3)
I+e T
_nvimdi I‘” 1
So, Ny=—23% ) ——eqdE
l+e kT
makT ~(Ej-EF)
Nij.—_ﬁ"%m{ue K (3.4)

‘The total inversion layer charge
Ninv:ZNij - (35)
ij

is the total number of charges per unit area in the inversion layer

3.3 Surface potential and related equations considering
quantum mechanical effects

The electric field at the Si-SiO, interface is given by

(N +N,,)

F, . (3.6)
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l Where, qu,; = NAZd (37)

2 ‘
and Z,= /q%: - - (3.8)

Here, Ny is the concentration of depletion layer charge, g, is the permitivity of
semiconductor, Zq is the width of the depletion layer and ¢4 is the surface

potential due to depletion region ionized acceptors.

The surface potential \, arises from the contribution of both the
depletion ahd inversion layer charges. Since the bottom of the contribution band
is taken as zero the 81-810; interface we have [ fig 3.1]

qye =(E.-Ep » + Ep (3.9)
Where ( E; - E ), is the energy difference between the bottom of the conduction
band in the bulk and the Fermi level and Er is the Fermi energy relative to the

nominal conduction band edge at the surface. ( E, - E¢ )b is given by

N,

(Ec-Ep} = E;-kT Ing (3.10)

Where N, is the effective density of states in the valence band .

Now, the contribution of inversion layer electrons to the surface potential .

can be written as

qunvZaV '
' Vi=_—"8“—“— 7 (3.11)

Where, Zg is the average distribution of inversion layer from the

semiconductor- insulator interface which is given by

= (3.12)

Loy = Z
i

NlJZU
inv
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0 Zay z

(b)

Fig. 3.1 Schematic band bending due to depletion and inversion layer
charges (solid line) énd corresponding band bending associated with
the fixed depletion layer charges only{ dashed Luu? .
(a) Surface potential y, and band bending

(b) Potential drop due to inversion charges
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D 2
.[0 z&;(z)dz
Y e e

o Gi(2)dz
is the average distance from the semiconductor- insulator interface of electrons

of the jth subband in the ith valley.

where (3.13)

It is usually assumed that the depletion charge is constant for a distance
Z4,the depletion layer width, from the surface and then goes abruptly zero. This
assumption fails in the transition region from depletion to bulk, in which the

field decays to zero exponentially with a characteristic distance given by the
: : kT

bulk screening length. When the correction to ¢y is taken to be — — [6].
q

NinvZav
4

abe =|(E.~Ey), +E, - KT] - (3.14)

Where, k is the Boltzmann’s constant and T is the absolute temperature.

The gate voltage Vg can be written as

Vo = Vo + y, + Vpp | | (3.15)
g Fd
Where, V _= - (3.16)

is the oxide layer voltage drop, F, is the normal electric field at 810,-8;
interface, d is the oxide iayer thickness and s, is the permitivity of the oxide.
Vg is the flat-band voltage. If we neglect charges in the oxide, then Vrg is the
required gate voltage due to the difference of work functions between Si and

metal contact.
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3.4 Analytical expression for inversion layer quantum

capacitance

Inversion layer quantum capacitance per unit area is denoted by
innv
C, = _T‘Ps— | 3.17)

Qi is total charge in the inversion layer and vy, is the surface potential

putting Q.. =- q Ny, in equation (3.17) we have ,
C, = Moy 3.18
Cmage | G.18)

It can be written as,

C = iy dEy 3.19
q dE dw. ( * )
Dlﬁ'erent:latmg equatlon (3.9) w.r.t y, we get,
dE¢
= q (3.20)
dy, .

d
putting the value of Ee

2 Wi 3.21
TG (3.21)
From equation (3.4) , (3.5) and (3.21), we have

2
_ 9 N.iMyg;
= §

E 5 (3.22)
l+e '

in equation (3.19) , we have

Ci=
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Considering only first three consecutive subbands,

2

C. = q N, Mg + NyMgy; n,;My,;
Ly (E;p~Er) (B y-Er) (B =Fe) | (3.23)
I+e ¥ I+e T I+e T

Thus the inversion layer quantum capacitance depends on the eigen
energies, Fermi energy, valley degeneracy and the density-of-states effective

mass per valley.

3.5 Frequency dependence of total gate capacitance of

submicron inversion MOS structure

In the inversion mode of operation of MOS structure, a thin inversion
layer near Si0,-Si interface is formed. There are several sources which can
supply the minority carriers required to change the charge in the inversion layer
and a current can be associated with each source. Lehovec and Slobodskoy
[16,17] have proposed an equivalent circuit for the input impedance of the MOS
capacitor in the bias range for depletion-inversion. This circuit is reproduced in

Fig.3.2, with the notation appropriate to a p-type substrate.

The equivalent circuit of Fig. 3.2 is given by following step by step the

flow of charges (electrons and holes) from the bulk of the semiconductor to the

SiO,-Si interface. In each step, the rate of flow of charges is limited by its

resistance. Accumulation of charges can be associated with capacitors.
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11

Fig. 3.2 Equivalent circuit for p-type MOS capacitor in depletion-
inversion mode after Lehovec and Slobodsky [ Ref. 16 |.

42



Since changes of charge in surface states with time involve flow of
electrons or holes through the space-charge layer, the rate of these changes will
be limited by the a.c voltage across the space-charge layer, by its conductance
and by the transition rates of carriers from the conduction band and valence
band to the surface states. C, is the capacitance of the oxide and is supplied by
the displacement current of Cp and by the flow of electrons between the bulk
and the inversion layer. There are two resistances associated with this latter
flow. One is Ryp , associated with the diffusion current of electrons from the
bulk to the edge of the depletion region. The other is R, p , associated with the
electron current through the depletion region to the surface.

C; 1s the surface state capacitance supplied by the flow of holes between
tﬁe valence band and the surface states and by the flow of electrons between the
conduction band and the surface states. The resistances associated with theses
two flows are R;, and R, respectively. In addition , there is a resistance R, p
associated with the flow of holes from the bulk to the surface, and a resistance
Ry which is simply the bulk resistance of the semiconductor.

C; 1s the inversion layer capacitance , which is supplied by a flow of
electrons between the inversion layer and the surface states and by a flow of
electrons from the bulk through the depletion layer. Cp is the capacitance

associated with majority carrier motion at the butk edge of the depletion region.
In the heavy inversion mode, the circuit may be simplified considerably

to that shown in Fig. 3.3a, an additional source of catriers to the inversion layer,

not considered by Lehovec and Slobodskoy, is finite generation and
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recombination with in the space charge layer. The resistance associated with this |
current is defined as Ryp and appears across the combination R,5 +R,.5 . The
physical basis for these simplifications are presented in the following

discussions.

(i) The bulk resistance Rp , will be neglected in the analysis, since it does not
affect directly the frequency response of the inversion layer.

(i1) Due to the quantum mechanical nature of 2DEG, the distribution of carriers
follow the curve of Fig.1.5 and there is no carriers in $i0,-Si interface. So, we

can neglect all parameters of Fig.3.2 related to the surface states.
Thus, the resulting simplified equivalent circuit is shown in Fig. 3.3a.

For frequencies substantially below the inverse of minority carrier

* lifetime, the bulk diffusion resistance R, p is given by [Appendix I ],

1
Dnn-i
R..B-( T,)

® 7 quNa
D, is the diffusion coefﬁc;ient of electron , y,, is the mobility of electron and , is

(3.24)

the minority carrier lifetime in the bulk.
The resistance R,p is associated with the flow of minority carriers

through the depletion layer. It is shown in Appendix II that

Ros w1 | 3.25
) | (3.25)
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Fig. 3.3 Simplified equivalent circuit for p-type MOS capacitor with

heavy inversion layer.

45



Therfore, we can neglect the depletion layer resistance R,p in our

equivalent circuit so that resistance associated with electron diffusion current
from the bulk, Ry = R,z .

The resistance associated with the generation recombination in the

depietion region is given by [Appendix III | ,

2t0¢4
qn; Zq

Ry = (3.26)

From the simplified equivalent circuit of Fig.3.3a, it is seen that R, and

Rgq are in parallel. So, the equivalent value of résistance R is given by,

Rgd Rn,B

R= Ry +Roz

(3.27)

Therefore, the series combination of quantum capacitance C; and
resistance R are in the parallel ‘with depletion capacitance Cp. From Fig. 3.3a,

these combinations can be written as an equivalent admittance,

Y, =joC,+G, (3.28)

Whe C,=Cp+—T— = | . (3.29

re, ® T +e?r 29)
C,o1

and G,= s (3.30)

® is the angular frequency andt=RC;.
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So, the equivalent circuit of Fig. 3.3a can be redrawn in Fig. 3.3b in
more simplified form. From Fig. 3.3b, the input admittance of MOS capacitor

can be wrnitten as

Yo =j@Cq + Gg (3.31)
) 2 22
Where, Gg = “’ZRC’ZC" . (3.32)
(C1+Co+Cp)" +0*RC,(C, +Cp)
Co - 1+(2)?
and Co=—F——=(Cp+C 3.33
7T Ce+Cp +C1{ T+ (3:33)

o is the cut-off frequency . It is the transition frequency from the low to high

frequency behavior of MOS capacitor. The expression of o, can be written as -

_ Co+Cp +C[
RC; yCp(Co+Cp)

So, the analytical expression of ﬁ'equency dependence of total gate capacitance

(3.34)

W,

can be written as,

. Ry '
Co ———C-Q———-{c,,w I+ ) } . (3.3%)

" Co+Cp +C; I1+(-t;;,:'1)2(1+%9;

For o<<o,

_ColCp+Cy) 1
T Co+Cp+C; 1 1

Co CD +C]

(3.36)
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While for ® >> o,

Co=—0Cp 1 (3.37
*TC+Cp T 1 T 7
Co Cp

Thus the total gate capacitance at low frequencies follows the equation
(3.36) and at high frequencies the total gate capacitance follows the equation
(3.37).

3.6 Conclusions

In this chapter, analytical expressions for inversion layer quantum
capacitance and the frequency dependence of total gate capacitance of inversion
MOS structure are derived. The populations of electrons in three-subbands are
determined using density of states and Fermi-Dirac statistics. The total charges
- 1in the inversion layer depend upon the values of Fermi energy and the subband
energies. Knowing the carrier concentration in the subbands, an analytical
expression for inversion layer quantum capacitance is determined by simply
differentiating the total charge in the inversion layer with respect to the Fermi
potential. The approximate equi\./alent circuit for determining the impedance of
MOS structure is obtained following step by step the flow of charges (electrons
and holes) from the bulk of the semiconductor to the SiO,-Si interface. From the
equivalent circuit of MOS structure, the analytical expression for the frequency
dependence of total gate capacitance of inversion MOS structure is determined.

The results based on analytical solutions of this chapter and the comparison
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study between the results of classical and quantum mechanical analysis are

given in the next chapter.
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CHAPTER 4

RESULTS AND DISCUSSIONS

| 4.1 Introduction-

Based on the mathematical model developed in chapter two and chapter
three, the frequency depéndence of total gate capacitance is studied in this
chapter using computational method. In chapter two, the analytical expressions
of first three consecutive subbands are derived. The analytical model for
quantum capacitance and frequency dependence of total gate capacitance -
considering quantumn effects are obtained in chapter three. The eigen energies,
the inversion layer carrier éoncentrations, the carrier concentration in the three
consecutive subbands, the inversion layer quantum cabacitance and the
frequency dependence of total gate capacitance for different channel doping
levéls are studied in this chapter. Also, in this chapter, inversion layer quantum
capacitance and the total gate capacitance considering the quantum mechanical
effects are compared with that of the classical one. All studies are performed at
300°K for a (100) surface of p-type silicon substrate with a gate oxide thickness
of 4 nm . The parameters required for computational studies are taken from
table I.
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TABLE 1. Parameters used in the calculation.®

Surface ' (100)

Vaileys Lower Higher
Degeneracy ny 2 ‘ 4
Normal mass m, 0916 0.190
Density of states .

mass (per valley ) my 0.190 0.417

"All effective masses are in units of the free-electron mass ( Courtesy Ref . 6 )

4.2 Subbands energies

The predicted energy levels ( with the bottom of conduction band at Si-
8i0, interface is considered as reference level zero) of the lower two subbands
in the first valley ( E;, and E11) and one subband in the higher valley for MOS
. capacitor with a uniform channel doping of N,=1.1 x 10** m™ are shown in Fig.
4.1,4.2,43 and 4.4 . The energy levels of the lowest three subbands ( E;; , Ej

and Ey; ) increases as the device becomes more strongly inverted.

The energy levels of first three consecutive subbands ( Ey, , Eoo and E;; )
for three channel doping are shown in Fig. 4.5 and Fig, 4.6 . The doping values
corresponding to three sets of data are 1.0 x 10 m™ , 5.0 x 10®* m® and 1.1 x
10** m™ respectively. The variation of energy levels E;; and E,, with the
variation of channel doping is small and it decreases as the device becomes more

strongly inverted. But there exists considerable variation in the energy level E1 i

51



E10, Ea0. Eqy (e\f)

0.50

0.40

Na=1.1 X 10%* m™3

Fig. 4.1 Effect of surface electric field on the subband energy levels

] e
i S
] A
] 7z
- - //
N e e Eio
“1 // “‘/ """
. -
: /
T T T H T
10°

Surface electric field Fy(V/m)

52




Ezo. Eiq (eV)

E10!

0.50

0.40

0.30

0.20

0.10

Na=1.1 X 10%* m™

1lllIllllllllllll}llIllllllllllllltllli

ill!llll1|l-lll||iflIIIITIIIIE|Illl!lllllli!llflli|IITIIIIT

10 1.15 1.20 1.25 1.30 1.35 1.40

Surface potential ( V )

Fig. 4.2 Effect of surface potential on the subband energy levels

53



Evo, Ezo, Eqy (eV)

0.50

CNa=1.1 X 10% 3

0.40
'{;/
0.30 /
-
=
0.20
//.-‘.
"
O.']O Ii’ltTJJll]illI]flil]lllflllli‘lli
.0.50 1.00 1.50

Fig. 43 Effect of gate voltage on the subband energy levels

54




E10, Ezo, En (eV)

Fig. 4.4 Effect of inversion layer charge on the subband energy levels
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with the variation of channel doping. For a fixed electric field at the Si0,-S;
interface the total charge concentration ( depletion plus inversion layer chafge )
is also fixed and the concentration of depletion layer charge increases
considerably with the increase of channel doping. It is found from expression
(2.29)'that contribution of depletion layer charge ( Ny ) to the value of energy
E;; is almost two times greater than inversion layer charge. Thus the value of

energy E;; increases considerably with the increase of channel doping.
4.2.1 Comparison with self-consistent results

The self-consistent calculations resulté[l 1] of energy levels of first three
consecutive subbands ( Eyy , Ez and E,;) are given in Fig 4.7 for a (100)
surface of p-type silicon at 300°K with a gate oxide thickness of 4 nm and with
a uniform channel doping of Na=1.1 x10* m™ . The comparison of variational
and self-consistent [11] values of energies E,, EZO and E,; as a function of gate
voltage are given in tablell. It is seen that there is very small difference between
the energy levels computation using variational approximation method and the
self-consistent results. The results of the variational approximation agree well

with the self-consistent calculation[11].

The determination of energy levels using self-consistent calculation are
very accurate. But self-consistent solution of Schrodinger’s and Poisson’s
equations requires iterative numerical procedures. Numerical calculations
require considerable computational effort and it is very time consuming, But
almost the same results can be obtained by using variational method. The main
advantage of using this method is that it gives analytical solutions and requires
very small computational time. The other important advantaée is that it reveals

the contribution of different parameters on the subband energies.
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TABLE II: Comparison of variational (var) and self-consistent (sc)[Ref. 11]
values of energies E,q , Ez and Ey, as a function of gate voltage

(Vo) for channel doping of N =1.1x10* m™ . All energies are in

eV.

Vo (volt) | Eio(var) | Eio(s0) |Eao(var) | Eao(sc) | Ens (var) | Ey, (s0)
08 0.126 |0.126 (0212 |0220 0231 |o0227
0.9 0.131 " |0.131 0219 |0227 |0240 |0234
1.0 0.137 {0137 (0230 |0234 |0247 |0241
1.1 0143 [0.144 [0241 |0241 |0255 |0.248
1.2 0.150 0.151 0.251 0.249 0.263 0.256
1.3 0.157 |0.158 |0263 |0256 |0271 |0.264
1.4 0163 |0164 [0274 |0264 (0281 0270
L5 0.170  |0.170  [0.286 |0.271 {0289 |0.276
1.6 0.176  |0177 [0296 |0276 0296 | 0.285
1.7 0.183  [0.182 |0306 0285 |0305 0294
1.8 0.189 |0.188 [0319 |0.294 0313 |0.302
1.9 0.196 0196 |0329 |0302 10322 |0309
2.0 0.202 0203 10339 0309 0329 |0315
2.1 0208 |0209 |0350 |0315 [0337 |0324
22 0.214 0215 [0360 {0324 |0345 |0.333
23 0220 0221 |0371 {0333 0353 | 0.342
2.4 0.227 |0227 |0381 |0342 |0361 | 0349
2.5 0235 10235 |0391 |0349 |0368 |0.357
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4.3 Inversion layer carrier concentration

The mversion layer carrier concentration calculated quantum
mechanically for channel doping N,=1.1 x10* m® as a function of surface.
potential (y,) and gate voltage (V) are shown in Fig. 4.8 and Fig. 4.9
respectively. From Fig. 4.8 and Fig. 4.9 it is seen that the quantum mechanical
inversion layer charge concentration increases considerably as the surface

potential as well as gate voltage increase.

The inversion carrier conccntratidn for three doping concentration as a
function of gate voltage for channel doping Ns=1.1 x10* m® is shown in
Fig4.10. From Fig. 4.10 it is seen that the requirement of gate voltage
increases with the increase of channel dbping to get a fixed amount of inversion
carrier concentration. In the inversion mode of opération of MOS structure the
depletion carrier concentration will not change with the further increase of gate
voltage. But the depletion carrier concentration increases with the increase of
channel doping. For a fixed gate voltage the summation of inversion and
depletion charge is almost fixed. The depletion charge increases with -the
increase of channel doping. Therefore, the inversion charge decreases with the

increase of channel doping for a fixed gate voltage.
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4.3.1 Electron concentration in three subbands

The electron concentration in the three subbands as a function of surface
potential is shown in Fig. 4.11 . Although energy levels E,, = E,, , the ground
state of second valley ( level 2,0) is favored by the electrons because of the
larger density of states and fn'gher valley degeneracy.

4.3.2 Depletion layer carrier concentration

The depletion layer carrier concentration as a function of surface
potential with uniform channel doping is given in Fig, 4.12 . From Fig. 4.12 it is
seen that the variation of depletion layer charge with the surface potential is
very small compared to the inversion layer charge. Afier strong inversion_j a

small increase of \, produces a large increase of electrons at the surface and the

' inversion layer acts like a narrow n* layer by shielding the semiconductor from

further penetration of the electric field. Therefore the depletion layer charge

- remains constant and after strong inversion the-depletion layer width becomes

fixed.

4.3.3 Average spatial extent of the inversion layer electrons

from the surface

The average potential of the inversion layer charge concentration from

the surface Z,y, as a function of the inversion layer charge concentration and the
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surface potential with channel doping 1.1x10** m™ are shown in Fig. 4.13 and
Fig. 4.14 respectively. The decrease of Z,, with increasing inversion layer
charge is a reflection of the increasing surface electric field seen by the electrons

which pushes them closer to the surface.

4.4 Inversion layer quantum capacitance

The inversion layer quantum capacitance as a function of surface
potential and gate voltage for uniform channel doping of 5x 10 m™ are shown
in Fig. 4.15 and Fig. 4.16 . The predicted difference between quantum
mechanically and classically calculated capacitance in inversion for an MOS
capacitance with a uniform channel doping of 5x10* m™ are shown in Fig, 4.17
and Fig. 4.18 . It is seen from these figures that the difference between the

quantum mechanically calculated capacitance and the classically calculated

 capacitance increases markedly with the increase of surface potential as well as

gate voltage. The variation of inversion layer quantum capacitance with the
applied surface potential is small compared to that. calculated classically
because with the increase of y, both the energy levels ( Ejo , Es and E,, ) and

also Fermi energy level with respect to the bottom of the conduction band at the

silicon surface shified upward and the number of inversion layer carriers cannot

increase at the previous rate which is exponential in nature. But classically

calculated inversion charge is truly an exponential function of surface potential.

‘Therefore, for a given value of surface potential ( or gate voltage ) the inversion

'layer capacitance calculated quantﬁm mechanically will be smaller than when

calculated classically, .
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Fig. 4.19 shows the inversion layer quantum capacitance as a function of
gate voltage for different channel doping. The channel doping levels are
1.1x10* m? , 5.0x10® m* and 1.0x10® m? For a fixed gate voltage, the
inversion layer quantum capacitance decreases with the increase of channel
doping because inversion layer carrier concentration ciecreases with the increase

of channel doping for a fixed gate voltage ( Fig. 4.9).

4.5 Total gate capacitance

The total gate capacitance calculated as a function of gaté voltage both
quantum mechanically ( solid line ) and classically ( dashed line ) for channel
doping of 5x10* m™ is shown in Fig. 4.20 . The difference between the
quantum mechanically and classically calculated gate capacitance is due to the

difference of inversion layer capacitance between those two methods (Fig.4.18 ).

The gate' capacitance considering quantum mechanical effects as a

function of gate voltage for three different channel doping is shown in Fig.4.21 .

At low frequencies, the inversion layer quantum capacitance has
significant contribution on total gate capacitance. After strong inversidn, the
-inversion layer quanmtum capacitance is much larger than the depletion
capacitance. So, total gate capacitance is essentially equal to the series

combination of oxide capacitance and inversion layer quantum capacitance. As
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C, is much larger than C, , the total gate capacitance is approximately equal to

the oxide capacitance when the device is more strongly inverted.

At high frequencies, it is seen from equation (3.37) that the inversion
. layer quantum capacitance has no contribution to the total gate capacitance. So,
the total gate capacitance is essentially equal to the series combination of oxide
capacitance (C, ) and depletion capacitance (CD ). As Cp is very small compared
to G, Cp dominates the total gate capacitance. With the increase of the channel
doping, the maximum width of depletion layer decreases and the depletion
capacitance increases. Thus, the total gate capacitance at high frequencies

increases with the increase of channel doping as seen in Fig.21.

4.6 Conclusions

The analytical model developed in chapter two and chapter three is used
here to study the quantum capacitance, frequency dependence of total gate
capacitance-and other characteristics of MOS device considering the quantuni

mechanical effects on the inversion layer minority carriers.

The first three consecutive subband energy- levels with respect to the -
bottom of conduction band at SiO,-Si interface are studied and compared with
self-consistent calculation results and found to closely agree with self-consistent
results. Though the self-consistent calculation is accurate but it is very time

consuming. But almost the same result is obtained by using variational
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approximation method and it requires the same CPU time as that of the classical

calculation.

The inversion layer carrier concentration for three different channel
doping is studied and is seen that to get the same inversion layer carrier
concentration the requirement of gate voltage increases with the increase of
channel doping. The electron concentration in the three consecutive subbands is
studied and is seen that relative occupation of carriers in the first subband

increases with the increasing gate voltage.

The average separation of the inversion layer electrons from the $i0,-Si

interface decreases with the increasing gate voltage.

The variation of inversion layer quantum capacitance and the total gate
capacitance with the applied surface potential and gate voltage are studied and

is found to be small compared to the classical one.
Finally, the frequency dependence of total gate capacitance for different

channel doping is studied and is seen that the total gate capacitance decreases at

high frequencies and increases at low frequencies.
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CHAPTER 3§

CONCLUSIONS

5.1 Conclusions

In this work, the total gate capacitance of submicron inversion MOS
capacitor is studied. It is found that the total gate capacitance of MOS structure
depends on gate voltage and frequency. Inversion layer quantum capacitance

has significant contribution to the total gate capacitance. In order to calculate

the inversion layer quantum capacitance, it is necessary to determine the
subbands energy levels. In this work the analytical expressions of first three
consecutive subband energy lévels ‘are  determined using variational
approximation method. It is very difficult to obtain the exact analytical
expression for subband energy levels for érbitrary potential profile like that of
MOS structure. However, the subband emergy levels obtained by using
variational approximation method is co@med with that of the self-consistent
results. It is found that our calculations of subband energy levels are in good

agreement with the self-consistent results.

In equilibrium and at the relatively high transverse fields existing in
submicron devices (even at zero gate drive), the lowest three energy levels are
sufficient to account for most of inversion layer charge. This means that the

occupancy of the energy levels higher than the third subband is sufficiently
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negligible to be ignored without sacrificing accuracy. Very laborious work is
~ required to determine the analytical expression for energy levels higher than
third subband. In that case we should go for numerical solutions. The analytical
expressions for subband energies of this work can be the basis of the numerical

solution of the energy levels higher than the third subband.

5.2 Suggestions for future work

In order to determine the inversion layer quantum capacitance, the
analytical expression of the first three subband energy levels are determined by
using variational approximation method. The analytical expressions of these
energy subbands can be used to calculate other parameters of MOS device
considering quantum mechanical effects. The variational approximation method
can be applied for an arbitrary potentiél profile to find analytical expression for
energy subbands if the wave functions are assumed to have a predetermined
form. So, this variational technique described in the calculation of subband
energy levelé 1n chapter two can be 'applied to other types of device for the

calculation of the analytical expressions of subband energies.
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APPENDIX 1

RESISTANCE ASSOCIATED WITH THE DIFFUSION CURRENT
OF ELECTRONS FROM THE BULK 170 THE EDGE OF THE
DEPLETION REGION

The “driving force” for the excess-electron current, which results from
in the region of quasi-neutrality z = Zy, is not an ordinary potential, but the
concentration potential, ( i.e. potential due to céncentration variation of electron
atz=2y) |

UL E . | ~ :
o R - (1-1)

Where n, is the electrons concentration in the bulk and fi4 is the concentration

variation of electron at z = Z .

The continuity equation for electrons can be written as,

85y By %8,

Where, 1, is the minority carrier life-time and &, is the concentration of excess
electron. - |
By solving the continuity equation ( I-2), we get ,

fi o'

joil=——+D, —5
Tn 522

(1-3)
Where 11 concentration variation of electron .
Equation ( 1-3) can be written as

. .. . A
Y1¢(1+_|0)‘cn)= on . ‘( 1-4)

Dptq 522
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' Solving equation (I4) we get,

( (_l_,l_w;_)J ( (1+jm..)]
7 Dptp z . Dptg 2
n=Cje +Cy e

(1-5)
Boundary conditions are,atz=Z,4, il = fig and atz >, fi =0
__{ d)( (IEJ‘:::I)J o
fi=tge (1-6)
Diffusion current can be written as,
, dfi(z)
Ing = qD; dz
~(z-Z ){ l;;'m" ] "
ntn _](ﬂ‘tn
= annd e { D.t. (1-7)
At z :Zd |
. ~ (1+jmn)
Ind =annd{ Dpta ' (1-8)
in,anop (1+jora) |
— = — I-9
By qinng { D,t, } o (1-9)
Resistance is the ratio of voltﬁge and current,
| Vid  Hg
SRpp=——= ; -10
e g noPip (1-10)
From equation ( 1-9) we get,
1 (1+ j&)‘tn)} X
‘qunno{ D (I-11)
Rn,B D
e |
D T o B i
" Ryp= e (112y
quano{1+jot,)? '

.A
SRS
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For frequencies substantially below the inverse of the minority carrier life-

time, the bulk diffusion resistance is,

(Dyta)?
QUay

er,B =

88

(1-13)

: ‘;-'wfr}
O A

xS



APPENDIX I1

EFFECTIVE RESISTANCE OF DEPLETION REGION TO FLOW
OF MINORITY AND MAJORITY CARRIERS

We assume a p-type substrate with a uniform doping concentration N, ,

and approximate the dependence of voltage with position as

_Nag , ]
V(z)= 2, z (II-1)
Y 2' : .
or, BV(z)= E =y (1I-2)

r 7
with Ap =qu33 B]
A

Where Ap is a Debye length based on the charge concentration qN, . For
simplicity we have assumed z = 0 at the bulk edge of the depletion layer and z=

d at the semiconductor-insulator interface.

The resistance R, p associated with the flow of minority carriers through

the depletion layer is given by

R, I I z)dz [1-3)

S o o Lo (
Using the relation,

pz)=Nae® (1I-4)
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We can write equation ( II-3) as,

4
- Natp 55 g, (L)
quunf %o

d ’
Since typically r)}l , we may take the upper limit-as infinite so that the
D

1
2

magnitude of the integral is [E) ~ 1 . Therefore

2
AN A |
sz( D ‘"2‘)= D (11-6)
Hnqnj Hnqnip ‘

Thus, ——= =—= (11-7)

‘The magnitudes of these parameters for typical silicon structures are L, ~ 5x10

meter, Ap~ 1.3 x 10 meter for Ny= 103 /m’ . Therefore,

R
22 ~3x100 C(11-8)
Rn.D

So, we can neglect R, in comparison with R, p .
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APPENDIX TII

RESISTANCE ASSOCIATED WITH THE GENERATION CURRENT
WITHIN THE DEPLETION REGION '

The recombination and generation of electrons and holes in

*-semiconductors may take place at some type of recombination-generation

‘centers or traps. These sites may be crystal lattice dislocations, impurity atoms

located interstitially or substitutionally in the crystal lattice, or surface defects.

The net recombination rate can be given as [18],

CN,(pn—n?
U= (p (‘E) o nos/ sec (TII-1)
n+p+2n; cosh[——%—'—]

Where, C is the capture coefficient, N, is the density of centers, E, is the energy’
of the centers, and E; is the center of the forbidden energy gap.

For the special case of single set of traps at the center of the forbidden
gap(ie. E=E;), |

- CNt(pn-nlz)
N n+p+2ni

So, (111-2)

After applying gate voltage, the holes are rapidly swept out of dépletion
region by the large electric field, thus its density are small compared to n; . For
this case, recombination rate,

CNlni_

Us=-5-

(111-3)
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A negative recombination rate means a positive generation rate, and the
resulting current is a generation current instead of a recombination current. So,

the generation current,

Is=qaAl|U]Z,
An;Z4CN
lg= Ao (1I-4)

Where, Z, is the depletion layer width, A is the area of the MOS structure.
The minority carrier life-time can be written as
1
0= Ny © (IIL-5)
So, the equation { III-4) becomes,

_ qAn; Z4

IG 21:0

(11I-6)

Resistance associated with this generation current,

AT T
R <dd_ 117
87 15 qniZ4 (H-7)
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