
Performance Evaluation of Incremental Materialized View

Maintenance in ORDBMS

by

A.N.M. Bazlur Rashid

MASTER OF SCIENCE IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

May 2010

The thesis titled “Performance Evaluation of Incremental Materialized View

Maintenance in ORDBMS” submitted by A.N.M. Bazlur Rashid, Roll No:

M10053122P, Session: October 2005 has been accepted as satisfactory in partial

fulfillment of the requirement for the degree of Master of Science in Information and

Communication Technology on 8th May, 2010.

BOARD OF EXAMINERS

1. __
Dr. Md. Saiful Islam Chairman
Associate Professor (Supervisor)
Institute of Information and Communication Technology
Bangladesh University of Engineering and Technology, Dhaka – 1000

2. __
Dr. S. M. Lutful Kabir Member
Professor and Director (Ex-officio)
Institute of Information and Communication Technology
Bangladesh University of Engineering and Technology, Dhaka – 1000

3. __
Mr. Mohammad Ashraful Anam Member
Assistant Professor
Institute of Information and Communication Technology
Bangladesh University of Engineering and Technology, Dhaka – 1000

4. __
Dr. Hafiz Md. Hasan Babu Member
Professor (External)
Department of Computer Science and Engineering
University of Dhaka, Dhaka – 1000

 ii

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

A.N.M. Bazlur Rashid

 iii

DEDICATED TO MY PARENTS, BROTHER AND FAMILY MEMBERS

 iv

TABLE OF CONTENTS

Board of Examiners . ii

Candidate’s Declaration . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

List of Abbreviations . xii

Acknowledgements . xiii

Abstract . xiv

Chapter 1 Introduction . 1-11

1.1 Overview of Database Management System . 2

1.2 Object Relational Database Management System . 2

1.3 Database Query, View and Materialized View . 4

 1.3.1 Database query . 4

 1.3.2 Database view . 4

 1.3.3 Materialized view . 6

1.4 Materialized View Maintenance . 6

1.5 Literature Review . 7

1.6 Objective and Aims of the Research . 10

1.7 Organization of the Thesis . 11

Chapter 2 Materialized Views . 12-43

2.1 What is Materialized View? . 13

2.2 The Need for Materialized View . 14

2.3 Summary Management . 15

2.4 Materialized View Management Tasks . 16

2.5 Materialized View Creation . 17

2.6 Types of Materialized View . 19

 2.6.1 Read-only, updatable and writable materialized views 19

 2.6.2 Primary key, object, ROWID and complex materialized views 22

 v

2.6.3 Materialized views with aggregates, containing only joins and nested

materialized views . 27

2.7 Materialized View Maintenance . 34

 2.7.1 Incremental materialized view maintenance . 36

 2.7.2 Materialized view selection . 39

2.8 Query Rewrite . 40

 2.8.1 How oracle rewrites queries? . 42

 2.8.2 General query rewrite method . 42

 2.8.3 Types of query rewrite . 43

Chapter 3 View Materialization . 44-64

3.1 Introduction . 45

3.2 Brief Description of the Factors . 46

3.3 Performance Evaluation Measurement . 48

3.4 Methodology to Determine View Materialization . 49

3.5 Dynamic Cost Model for Selection of Views for Materialization and

Removal of Old Materialized Views . 51

 3.5.1 Dynamic selection of views for materialization 52

 3.5.2 Dynamic removal of old materialized views . 62

Chapter 4 Results and Discussions . 65-110

4.1 Experimental Background . 66

4.2 Experiments Results on View Materialization Determination Methodology. 68

 4.2.1 Varying view selectivity . 69

 4.2.2 Varying view structural complexity . 78

 4.2.3 Varying database size . 87

 4.2.4 Comparison with related work . 96

4.3 Experiments Results on Dynamic Selection of Views and Removal of

Materialized views . 97

 4.3.1 Dynamic selection of views . 97

 4.3.2 Dynamic removal of materialized views . 106

 4.3.3 Comparison with related work . 107

 vi

Chapter 5 Conclusion and Future Research . 111-114

5.1 Conclusion . 112

5.2 Recommendation for Future Work . 114

References . 115

Appendix A Sales History Schema Tables with Columns Definitions 121

Appendix B Queries for Incremental Maintenance Performance Evaluation 129

Appendix C Queries for Dynamic Selection of Views . 136

 vii

LIST OF FIGURES

Fig. No. Figure Caption Page No.

Fig. 1.1 Example of object-relational database management system 3

Fig. 2.1 Transparent query rewrite . 14

Fig. 2.2 Overview of summary management . 16

Fig. 2.3 Read-only materialized view in replication environment 20

Fig. 2.4 Updatable materialized view in replication environment 21

Fig. 2.5 Comparison of simple and complex materialized views 26

Fig. 2.6 A simple ROLLUP aggregation . 28

Fig. 2.7 Logical CUBEs and views by different users 28

Fig. 2.8 Action of PIVOT and UNPIVOT operations 29

Fig. 2.9 Two tables join operation workflow . 32

Fig. 2.10 A view materialization process . 40

Fig. 2.11 Oracle SQL query rewrite mechanism . 41

Fig. 3.1 Methodology to determine view materialization 49

Fig. 3.2 Sample representation of query execution frequencies 54

Fig. 3.3 Algorithm for finding access frequencies of the queries 55

Fig. 3.4 Algorithm for finding query complexities namely no. tables,

joining and aggregations . 56

Fig. 3.5 Algorithm for finding update frequencies of the base tables 58

Fig. 3.6 Algorithm for dynamic view selection to materialize 61

Fig. 3.7 Algorithm for dynamic removal of old materialized views 63

Fig. 4.1 Relationship of the sales history schema tables 67

Fig. 4.2 Template used to derive view selectivities . 69

Fig. 4.3 (a) View maintenance costs for joins only query 70

Fig. 4.3 (b) View maintenance costs for aggregate query 70

Fig. 4.4 (a) Query answering costs of view for joins only query 71

Fig. 4.4 (b) Query answering costs of view for aggregate query 72

Fig. 4.4 (c) Query answering costs using rewrite for joins only query 72

Fig. 4.4 (d) Query answering costs using rewrite for aggregate query 73

Fig. 4.5 (a) Relative cost of answering a view to the incremental propagation

time for joins only query . 74

 viii

Fig. 4.5 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query . 75

Fig. 4.5 (c) Relative cost of answering a view to that of using rewrite for joins

only query . 75

Fig. 4.5 (d) Relative cost of answering a view to the incremental propagation

time for aggregate query . 76

Fig. 4.5 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query . 77

Fig. 4.5 (f) Relative cost of answering a view to that of using rewrite for

aggregate query . 77

Fig. 4.6 (a) View maintenance costs for joins only query 79

Fig. 4.6 (b) View maintenance costs for aggregate query 79

Fig. 4.7 (a) Query answering costs of view for joins only query 80

Fig. 4.7 (b) Query answering costs of view for aggregate query 81

Fig. 4.7 (c) Query answering costs using rewrite for joins only query 81

Fig. 4.7 (d) Query answering costs using rewrite for aggregate query 82

Fig. 4.8 (a) Relative cost of answering a view to the incremental propagation

time for joins only query . 83

Fig. 4.8 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query . 84

Fig. 4.8 (c) Relative cost of answering a view to that of using rewrite for joins

only query . 84

Fig. 4.8 (d) Relative cost of answering a view to the incremental propagation

time for aggregate query . 85

Fig. 4.8 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query . 86

Fig. 4.8 (f) Relative cost of answering a view to that of using rewrite for

aggregate query . 86

Fig. 4.9 (a) View maintenance costs for joins only query 88

Fig. 4.9 (b) View maintenance costs for aggregate query 88

Fig. 4.10 (a) Query answering costs of view for joins only query 89

Fig. 4.10 (b) Query answering costs of view for aggregate query 90

Fig. 4.10 (c) Query answering costs using rewrite for joins only query 90

 ix

Fig. 4.10 (d) Query answering costs using rewrite for aggregate query 91

Fig. 4.11 (a) Relative cost of answering a view to the incremental propagation

time for joins only query . 92

Fig. 4.11 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query . 93

Fig. 4.11 (c) Relative cost of answering a view to that of using rewrite for joins

only query . 93

Fig. 4.11 (d) Relative cost of answering a view to the incremental propagation

time for aggregate query . 94

Fig. 4.11 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query . 94

Fig. 4.11 (f) Relative cost of answering a view to that of using rewrite for

aggregate query . 95

Fig. 4.12 Relative cost of answering a view to the incremental propagation . . 96

Fig. 4.13 (a) Dynamically selected queries for materialization (Column Chart) . . 100

Fig. 4.13 (b) Dynamically selected queries for materialization (Line Chart) 101

Fig. 4.14 Query answering cost comparison for experiment 01 102

Fig. 4.15 Dynamically selected queries for materialization 104

Fig. 4.16 Query answering cost comparison for experiment 02 105

Fig. 4.17 Dynamically selected queries for materialization 110

 x

LIST OF TABLES

Table No. Table Caption Page No.

Table 2.1 Materialized view refresh methods in Oracle 18

Table 2.2 Materialized view refresh modes in Oracle . 18

Table 3.1 Database size example . 47

Table 3.2 Different costs and factors associated with queries or views 53

Table 3.3 Access frequency count total for Fig. 3.2 . 54

Table 3.4 Sample table-update frequency status . 58

Table 3.5 Table maintenance costs . 59

Table 3.6 Dynamically selected views for materialization 62

Table 3.7 Materialized views-access frequencies matrix. 62

Table 3.8 Dynamically selected materialized views to remove 64

Table 4.1 List of database parameters and assigned values 68

Table 4.2 Database used in the experiments . 68

Table 4.3 Maintenance cost calculation of the tables . 97

Table 4.4 Query associated cost calculation . 98

Table 4.5 Candidates query for the view materialization 100

Table 4.6 Maintenance cost calculation of the tables . 102

Table 4.7 Query associated cost calculation . 103

Table 4.8 Candidates query for the view materialization 104

Table 4.9 Access frequencies of existing materialized views 106

Table 4.10 Dynamically selected materialized views for removal 106

Table 4.11 Comparison of factors for selection of views with [35] 107

Table 4.12 Initial selection of views for further process 109

Table 4.13 Selected views for materialization . 110

Table A.1 SALES HISTORY SCHEMA TABLES . 121

Table A.2 ORDER ENTRY SCHEMA TABLES . 125

Table B.1 List of queries used for selectivity experiments 129

Table B.2 List of queries used for complexity experiments 132

Table B.3 List of queries used for database size experiments 135

Table C.1 List of the queries used for dynamic selection of views in
experiment no. 01 .

136

Table C.2 List of the queries used for dynamic selection of views in
experiment no. 02 .

147

 xi

LIST OF ABBREVIATIONS

ADC Australian Database Conference

BPUS Benefit Per Unit Space

BUET Bangladesh University of Engineering and Technology

DBMS Database Management System

DDL Data Definition Language

DML Data Manipulation Language

DSS Decision Support System

ERD Entity Relationship Diagram

IACC International Advance Computing Conference

ICDE International Conference on Data Engineering

ICDT International Conference on Database Theory

ICYCS International Conference for Young Computer Scientist

IICT Institute of Information and Communication Technology

IJCSNS International Journal of Computer Science and Network Security

MVPP Multiple View Processing Plan

ODBMS Object Database Management System

ODMG Object Data Management Group

OID Object Identifier

OLAP Online Analytical Processing

OODBMS Object-Oriented Database Management System

OOP Object-Oriented Programming

OQL Object Query Language

ORD Object-Relational Database

ORM Object-Relational Mapping

PBS Pick by Size

RDBMS Relational-Database Management System

SQL Structured Query Language

 xii

ACKNOWLEDGEMENTS

First of all, I sincerely express my gratitude to Almighty Allah for the successful

completion of the thesis.

I would like to express my cordial gratitude and deep respect to my supervisor, Dr. Md.

Saiful Islam for his constant supervision, unfailing encouragement, valuable suggestions

and kind helps in many ways throughout this research work.

I want to thank Dr. Abu Sayed Md. Latiful Hoque, Associate Professor, Department of

Computer Science and Engineering of BUET for his valuable guidance to emphasis the

thesis to a perfect direction. I also gratefully acknowledge the valuable guidance from

the Director of IICT and all of my honorable teachers of IICT, BUET.

I would like to express my deepest gratitude to my beloved parents, brother and all other

family members for their constant love, peaceful cooperation and encouragement.

 xiii

ABSTRACT

A materialized view is a derived relation stored in the database, resembles like tables

and behaves like indexes. Because of the query intensive nature of data warehousing or

online analytical processing applications, materialized view is quite promising in

efficiently processing queries to improve query performance. When a base relation is

updated, all its dependent materialized views have to be updated in order to maintain the

consistency and integrity of the database in response to the changes in the base relation.

It is costly to rematerialize the view each time a change is made to the base tables that

might affect it and it is desirable to propagate the changes incrementally. Hence, all of

the views cannot be materialized due to the maintenance cost. So, it is necessary to

evaluate the performance of incremental materialized view maintenance and to

determine the circumstances in which a view is beneficial to be materialized for faster

query performance. It is also necessary to dynamically select a subset of views from a

set of views queried at a particular time period based on the query processing cost and

view maintenance cost.

A methodology has been developed based on the performance affecting factors like -

view selectivity, complexity and database size to evaluate the performance of

incremental view maintenance and to determine the situations a view is profitable for

materialization by computing the incremental propagation cost, query answering cost

and relative costs of query answering versus propagating a materialized view. After this

a dynamic cost model has been designed incorporating the above mentioned factors as

well as query access frequency, execution time, table update frequency and view

maintenance cost to select a subset of views from a set of views for materialization and

to replace the old materialized views that are no longer in use or the materialized view

access frequency is too low. A number of algorithms have been designed and

mathematical equations have been developed to define the dynamic threshold level.

At the end, experimental results have been carried out for the incremental maintenance

performance evaluation and on dynamic view selection and removal by using synthetic

and real data sets with different characteristics in object-relational database. The

outcome of the thesis reveals that the incremental maintenance is always cost effective.

Finally, dynamic view selection for materialization and removal of old materialized

views is explored based on dynamic threshold level.

 xiv

CHAPTER - 1

INTRODUCTION

1.1 Overview of Database Management System

1.2 Object Relational Database Management System

1.3 Database Query, View and Materialized View

 1.3.1 Database query

 1.3.2 Database view

 1.3.3 Materialized view

1.4 Materialized View Maintenance

1.5 Literature Review

1.6 Objective and Aims of the Research

1.7 Organization of the Thesis

C h a p t e r 1

INTRODUCTION

This chapter introduces the overview of database management system, database query,

view, materialized view and materialized view maintenance. The chapter illustrates the

review of the previous related research works, objectives and aims of the thesis and

organization of the thesis.

1.1 Overview of Database Management System

A Database Management System (DBMS) is a set of computer programs that controls the

creation, maintenance and the use of the database in a computer platform or of an

organization and its end users. A DBMS is a system software package that helps the use

of integrated collection of data records and files known as databases. The primary goal of

a DBMS is to provide a way to store and retrieve database information that is both

convenient and efficient. It allows different user application programs to easily access the

same database. DBMSs may use any of a variety of database models, such as the network

model, relational model, object model or object-relational model. The relational data

model by Codd [1] is the basis for Relational Database Management System (RDBMS).

In large systems, a DBMS allows users and other software to store and retrieve data in a

structured way. Instead of having to write computer programs to extract information, user

can ask simple questions in a query language. It helps to specify the logical organization

for a database and access and use the information within a database. It provides facilities

for controlling data access, enforcing data integrity, managing concurrency controlled,

and restoring database.

1.2 Object Relational Database Management System

A relational database management system (RDBMS) is a DBMS that is based on the

relational model and where all data is stored and accessed via relations. A relation is

usually described as a table organized into rows and columns. An object database

management system (ODBMS) or object-oriented database management system

(OODBMS) is a database model in which information is represented in the form of

objects as used in object-oriented programming (OOP).

http://en.wikipedia.org/wiki/Relational_model

3

Object-relational database management systems (ORDBMS) grew out of research that

occurred in the early 1990s. That research extended existing relational database concepts

by adding object concepts. An object-relational database (ORD) or ORDBMS is a DBMS

similar to a relational database, but with an object-oriented database model: objects,

classes and inheritance are directly supported in database schemas and in the query

language. In addition, it supports extension of the data model with custom data-types and

methods. Fig. 1.1 shows an example of object-relational database management system

where the entities are amends, users, shifts, departments, stores and jobs. Each entity has

several attributes. The department entity has two attributes - id and name. Every attribute

is defined with a type like - id is integer while name is character type field. Each of the

entities is related with each other by their primary-foreign key relationship. The primary

keys, foreign keys and uniquely keys are identified in the entities by P, F and U.

Fig. 1.1 Example of object-relational database management system

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Method_%28computer_science%29

4

An object-relational database can be said to provide a middle ground between relational

databases and object-oriented databases (OODBMS). In object-relational databases, the

approach is essentially that of relational databases: the data resides in the database and is

manipulated collectively with queries in a query language; at the other extreme are

OODBMSs in which the database is essentially a persistent object store for software

written in an object-oriented programming language, with a programming API for storing

and retrieving objects, and little or no specific support for querying [2].

One aim for the Object-relational database is to bridge the gap between conceptual data

modeling techniques such as Entity-relationship diagram (ERD) and object-relational

mapping (ORM), which often use classes and inheritance and relational databases, which

do not directly support them. Another, related aim is to bridge the gap between relational

databases and the object-oriented modeling techniques used in programming languages

such as Java, C++, Visual Basic .NET or C#.

1.3 Database Query, View and Materialized View

1.3.1 Database query

A database query is basically a question that is asked and answered from the database.

The result of the query is the information that is returned by the database management

system. Queries are usually constructed using structured query language (SQL) which

resembles a high-level programming language. Object query language (OQL) is used to

retrieve objects from object databases. The traditional SELECT-PROJECT-JOIN

operators are the basis of an SQL query. The following syntax is an SQL select query to

retrieve data from the database.

select <column_name>

from <table>

where <condition>;

1.3.2 Database view

In database theory, a view consists of a stored query accessible as a virtual table

composed of the result set of a query. Unlike ordinary tables (base tables) in a relational

database, a view does not form part of the physical schema: it is a dynamic, virtual table

http://en.wikipedia.org/wiki/OODBMS
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database_theory
http://en.wikipedia.org/wiki/Database_query
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Database_design

5

computed or collated from data in the database. Changing the data in a table alters the

data shown in subsequent invocations of the view. Views can provide advantages over

tables:

 Views can represent a subset of the data contained in a table;

 Views can join and simplify multiple tables into a single virtual table;

 Views can act as aggregated tables, where the database engine aggregates data

(sum, average etc) and presents the calculated results as part of the data;

 Views can hide the complexity of data; for example a view could appear as

Sales2000 or Sales2001, transparently partitioning the actual underlying table;

 Views take very little space to store; the database contains only the definition of a

view, not a copy of all the data it presents;

 Depending on the SQL engine used, views can provide extra security;

 Views can limit the degree of exposure of a table or tables to the outer world.

Just as functions (in programming) can provide abstraction, so database users can create

abstraction by using views. In another parallel with functions, database users can

manipulate nested views, thus one view can aggregate data from other views. Without the

use of views the normalization of databases above second normal form would become

much more difficult. Views can make it easier to create lossless join decomposition. Just

as rows in a base table lack any defined ordering, rows available through a view do not

appear with any default sorting. A view is a relational table and the relational model

defines a table as a set of rows. The following is an example of a database view where the

query selects customer name, money received and sent and balance:

create or replace view account_view as

select name, money_received, money_sent,

(money_received - money_sent) as balance, address

from table_customers c join accounts_table a

on a.customerid = c.customer_id;

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Join_%28SQL%29
http://en.wikipedia.org/wiki/Sum
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Partition_%28database%29
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Function_%28computing%29
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Second_normal_form

6

1.3.3 Materialized view

A materialized view takes a different approach in which the query result is cached as a

concrete table that may be updated from the original base tables from time to time. This

enables much more efficient access, at the cost of some data being potentially out-of-date.

It is most useful in data warehousing scenarios, where frequent queries of the actual base

tables can be extremely expensive. In addition, because the view is manifested as a real

table, anything that can be done to a real table can be done to it, most importantly building

indexes on any column, enabling drastic speedups in query time. In a normal view, it's

typically only possible to exploit indexes on columns that come directly from (or have a

mapping to) indexed columns in the base tables; often this functionality is not offered at

all. Materialized views were implemented first by the Oracle database [3]. The following

is an example of creating a materialized view on SALES schema:

create materialized view sales_mv

build immediate

refresh fast on commit

as

select t.calendar_year, p.prod_id, sum (s.amount_sold) as sum_sales

from times t, products p, sales s

where t.time_id = s.time_id and p.prod_id = s.prod_id

group by t.calendar_year, p.prod_id;

1.4 Materialized View Maintenance

Just as a cache gets dirty when the data from which it is copied is updated, a materialized

view gets dirty whenever the underlying base relations are modified. The process of

updating a materialized view in response to changes to the underlying data is called view

maintenance.

In most cases, it is wasteful to maintain a view by re-computing it from scratch. Often it is

cheaper to use the heuristic of inertia (only a part of the view changes in response to

changes in the base relations) and thus compute only the changes in the view to update its

materialization. The above scenario is only a heuristic. For example, if an entire base

http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/Data_warehousing
http://en.wikipedia.org/wiki/Index_%28database%29
http://en.wikipedia.org/wiki/Oracle_database

7

relation is deleted, it may be cheaper to recomputed a view that depends on the deleted

relation (if the new view quickly evaluates to an empty relation) than to compute the

changes to the view. Algorithms that compute changes to a view in response to changes to

the base relations are called incremental view maintenance algorithms.

1.5 Literature Review

A materialized view is like a cache – a copy of data that can be accessed quickly. From a

physical design point of view, materialized view resembles like tables or partitioned

tables and behaves like indexes and it is used for improving query performance. Utilizing

materialized views that incorporate not just traditional simple SELECT-PROJECT-JOIN

operators but also complex online analytical processing (OLAP) operators (i.e., PIVOT

and UNPIVOT) play crucial role to improve the OLAP query performance. Materialized

views are useful in applications such as data warehousing, replication servers, data

recording systems, data visualization and mobile systems [4-6].

In certain situations, it is more profitable to materialize a view than to compute the base

relations every time the view is queried. Materializing a view causes it to be refreshed

every time a change has been made to the base relations that it references. It can be costly

to rematerialize the view each time a change is made to the base tables that might affect it.

So it is desirable to propagate the changes incrementally i.e., the materialized view should

be refreshed for incremental changes to the base relations. In the last few years several

view maintenance methods and algorithms have been designed and developed to obtain

an efficient incremental view maintenance plan and view selection for materialization [7-

11].

Since materialized views correspond to pre-computed and stored query results, they may

become out-of-date when the underlying sources are changed. Hence, one important issue

is to maintain the materialized view’s consistency upon any source changes. While re-

computing views from scratch in response to any source updates may be acceptable for

some relatively static databases, it is unaffordable when the source changes are frequent.

Hence, incremental view maintenance, as an efficient alternative, has been proposed and

extensively studied [12].

8

Ali et al. (2003) reported and evaluated an algebraic incremental maintenance plan for

each of the update events for incremental maintenance of materialized object query

language (OQL) views in object data management group (ODMG) compliant object

databases [13]. Lee et al. (2007) designed an optimal delta evaluation method to minimize

the total accesses to relations for efficient incremental view maintenance [14]. An

improved algorithm Glide* based on the incremental view maintenance algorithms is

introduced by Chen et al. (2008) to eliminate the anomalies by using extra compensating

queries [15].

A delta propagation strategy is introduced for multiple views that compute the change of a

join view in a recursive manner to incrementally maintain the multiple join views

efficiently [16]. Surendrababu et al. (2006) developed an algorithm to implement an

incremental update to the schema-restructuring view that propagates the updates through

the operators of the SchemaSQL algebra tree [17]. Hanson (1987) used a cost model to

compare the performance of immediate and deferred view materialization algorithms with

that of virtual views. The study reveals that the performance of materialized views and

their virtual correspondents is sensitive to: selectivity of the view predicate, probability of

updates, the selectivity of the query over the view and the number of tuples affected by

each update [18]. Blakeley et al. (1990) compared the performance of materialized views

against the use of join indexes and hybrid-hash joins in virtual views. Their study is based

on a cost model and reveals the issues like selectivity, update activity, the probability of

update to the joining attributes and the size of tables and memory [19]. Hull et al. (1996)

evaluated the performance which reveals an impact of selectivity. They also addressed

query/update issues and showed that network traffic for materialized views is proportional

to the update rate [20].

The materializing of views is the most important task in data warehousing environment. It

is impossible to materialize all possible views due to the large computation and huge

space occupied by the materialized view. The selection of view materialization is affected

by numerous factors. Thus the process of selecting the suitable views to materialize in

ORDBMS or especially in data warehousing environment is a critical issue [21].

9

Harianarayan et al. [22] presented a greedy algorithm for the selection of materialized

views so that query evaluation costs can be optimized in the special case of “data cubes”

without addressing the cost of view maintenance and storage. Yang et al. [23] proposed a

heuristic algorithm which utilizes a multiple view processing plan (MVPP) to obtain an

optimal materialized view selection such that the best combination of good performance

and low maintenance cost can be achieved. But the algorithm did not consider the system

storage constraints. Gupta [24] developed a greedy algorithm to incorporate the

maintenance cost and storage constraint in the selection of data warehouse materialized

views. “AND-OR” view graphs introduced to represent all the possible ways to generate

warehouse views such that the best query path can be utilized to optimize query response

time.

Shukla et al. [25] proposed a simple and fast heuristic algorithm, Pick by Size (PBS), to

select aggregates for pre-computation. PBS runs several orders of magnitude faster than

Benefit Per Unit Space (BPUS) and is fast enough to make the exploration of the time-

space tradeoff feasible during system configuration. Gupta and Mumick [26] developed

algorithms to select a set of views to materialize in a data warehouse in order to minimize

the total query response time under the constraint of a given total view maintenance time.

Zhang et al. [27] proposed a completely different approach, Genetic Algorithm, to choose

materialized views and it was effective compared with heuristic approaches. Agrawal et

al. [28] presented an end-to-end solution to the problem of selecting materialized views

and indexes.

Zhang et al. [29] explored the use of a hybrid evolutionary algorithm for materialized

view selection based on multiple global processing plans for queries. An efficient solution

has been proposed by Lee and Hammer [30] to the maintenance-cost view selection

problem using a genetic algorithm for computing a near optimal set of views used to

search for a near optimal solution. Kalnis et al. [31] proposed the application of

randomized search heuristics, namely iterative improvement and simulated annealing

which select fast a sub-optimal set of views.

Yu et al. [32] presented a new constrained evolutionary algorithm for the maintenance-

cost view-selection problem where the constraints were incorporated through a stochastic

10

ranking procedure. Wang et al. [33] proposed a modified genetic algorithm for the

selection of a set of views for materialization. Aouiche et al. [34] developed a framework

for materialized view selection that exploits a data mining technique (clustering) in order

to determine clusters of similar queries. They also proposed a view merging algorithm

that builds a set of candidate views as well as a greedy process for selecting a set of views

to materialize. An optimized framework has been designed by Ashadevi and

Balasubramanian [35] for the selection of views to materialize for a given storage space

constraints to achieve the best combination good query response, low query processing

cost and low view maintenance cost. The proposed framework considered the query

execution frequencies, query access costs, view maintenance costs and system’s storage

space constraints for materialized view selection.

From the above mentioned works, it is found that most of the research works have been

focused on different methods and algorithms based on various data models and view

languages to process the incremental materialized view maintenance efficiently. The

research works also provided different approaches for the selection of views to

materialize considering view maintenance cost and storage space. A systematic

performance evaluation on incremental view maintenance for selecting a view to be

materialized in different situations and the dynamic selection of views for materialization

and removal of old materialized views based on dynamic threshold level is yet to be

reported in ORDBMS. Thus, it is necessary to evaluate the performance of incremental

maintenance of materialized views and to develop cost model for the dynamic selection of

views to materialize and removal of old materialized views in ORDBMS.

1.6 Objective and Aims of the Research

The goal of this research is to evaluate the performance of incremental materialized view

in ORDBMS to determine in what circumstances a view is to be materialized and which

view is to be selected for materialization and which old materialized views are to be

removed dynamically. To meet the goal, the following objectives have been pointed out:

 Developing a methodology to evaluate the performance of incremental

maintenance;

11

 Developing a cost model to dynamically select views to materialize and remove

old materialized views dynamically;

 Applying update events to the base tables and propagating the changes to the

materialized views;

 Computing the cost of answering query, update propagation and the relative costs;

 Simulating and analyzing the performance results.

1.7 Organization of the Thesis

The thesis is organized in five different chapters. At a first glance, in Chapter 1,

introduction of database, materialized view, literature review of related works and

objectives of the thesis have been discussed.

Chapter 2 provides the detailed on materialized view, its importance, maintenance of

materialized view and related tasks.

Chapter 3 includes the theoretical detailed of materialized view maintenance

performance evaluation, dynamic selection of views for materialization and removal of

old views.

Chapter 4 presents the experimental results and simulated output. The results are

analyzed to determine the situations of view materialization and performance of dynamic

selection of views for materialization and dynamic removal of old materialized views.

Finally, Chapter 5 concludes the thesis and suggests recommendations for future

research works.

CHAPTER - 2

MATERIALIZED VIEWS

2.1 What is Materialized View?

2.2 The Need for Materialized View

2.3 Summary Management

2.4 Materialized View Management Tasks

2.5 Materialized View Creation

2.6 Types of Materialized View

 2.6.1 Read-only, updatable and writable materialized views

 2.6.2 Primary key, object, ROWID and complex materialized views

2.6.3 Materialized views with aggregates, containing only joins and

nested materialized views

2.7 Materialized View Maintenance

 2.7.1 Incremental materialized view maintenance

 2.7.2 Materialized view selection

2.8 Query Rewrite

 2.8.1 How oracle rewrites queries?

 2.8.2 General query rewrite method

 2.8.3 Types of query rewrite

C h a p t e r 2

MATERIALIZED VIEWS

This chapter describes materialized view, its importance, materialized view management

tasks and materialized view creation, different types of materialized views. This chapter

also illustrates materialized view maintenance and query rewrite.

2.1 What is Materialized View?

When a view is defined, normally the database stores only the query defining the view. In

contrast, a materialized view is a view whose contents are computed and stored.

Materialized views constitute redundant data, in that their contents can be inferred from

the view definition and the rest of the database contents. However, it is much cheaper in

many cases to read the contents of a materialized view than to compute the contents of the

view by executing the query defining the view.

Materialized views are important for improving performance in some applications. We

may consider the following view definition, which gives the total loan amount at each

branch:

create view branch_total_loan (branch_name, total_loan) as

select branch_name, sum (amount)

from loan

group by branch_name;

Suppose the total loan amount at the branch is required frequently (i.e., before making a

new loan). Computing the view requires reading every loan tuple pertaining to the branch

and summing up the loan amounts which can be time consuming. In contrast, if the view

definition of the total loan amount is materialized, the total loan amount could be found

by looking up a single tuple in the materialized view [36].

So the materialized views are query results that have been stored in advance so long-

running calculations are not necessary when we actually execute our SQL statements.

From a physical design point of view, materialized views resemble tables or partitioned

tables and behave like indexes in that they are used transparently and improve

performance.

14

2.2 The Need for Materialized Views

Materialized views are used to increase the speed of queries on very large databases.

Queries to large databases often involve joins between tables, aggregations such as SUM

or both. These operations are expensive in terms of time and processing power. The way

the materialized view is created that determines how the materialized view is refreshed

and used by query rewrite. Materialized views improve query performance by pre-

calculating expensive joins and aggregation operations on the database prior to execution

and storing the results in the database. The query optimizer automatically recognizes

when an existing materialized view can and should be used to satisfy a request. It then

transparently rewrites the request to use the materialized view. In Fig. 2.1, a general query

rewrite process is given. Queries go directly to the materialized view and not to the

underlying base tables. In general, rewriting queries to use materialized view rather than

base tables and thus improves response time.

Fig. 2.1 Transparent query rewrite

For query rewrite, materialized views need to be created to satisfy the largest number of

queries. For example, if 15 queries are commonly applied to the base tables, then with

four or five well written materialized views can be able to satisfy them. If a materialized

view is to be used by query rewrite, it must be stored in the same database as the base

tables on which it is relies. Unlike indexes, materialized views can be accessed directly

using a select statement. However it is recommended to avoid querying the materialized

15

view directly as it is difficult to change the SQL statement without affecting the

application and it should use the query rewrite to use the materialized view.

Materialized views application are formed in different systems like - data warehousing,

distributed computing and mobile computing etc. In data warehouses, materialized views

can be used to pre-compute and store aggregated data such as the sum of sales.

Materialized views in these environments are often referred to as summaries because they

store summarized data. They can also be used to pre-compute joins with or without

aggregations. A materialized view eliminates the overhead associated with expensive

joins and aggregations for a large or important class of queries.

In distributed environments, materialized views can be used to replicate data at distributed

sites and to synchronize updates at sites with conflict resolution methods. These replica

materialized views provide local access to data that otherwise would have to be accessed

from remote sites. Materialized views are useful in remote data marts. Materialized views

can also be used to download a subset of data from central servers to mobile clients with

periodic refreshes and updates between clients and the central servers [37].

Materialized views can be used to replicate data to non-master sites in a replication

environment and to cache expensive queries in a data warehouse environment. In a

replication environment, materialized views can be used to achieve the goals like - ease

network loads, create a master deployment environment, enable data sub-setting and

enable disconnected computing etc.

2.3 Summary Management

The use of summary management features imposes no schema restrictions and can enable

some existing decision support system (DSS) database applications to improve

performance without need to redesign the database or the application. Fig. 2.2 illustrates

the use of summary management in the data warehousing cycle. After the data has been

transformed, stages and loaded into the base data in the data warehouse, the summary

management process can be invoked. The summary management process consists of:

16

 Mechanism to define materialized views and dimensions;

 A refresh mechanism to ensure that all materialized views contain the latest data;

 A query rewrite capability to transparently rewrite a query to use a materialized

view.

Fig. 2.2 Overview of summary management

2.4 Materialized View Management Tasks

The motivation for using materialized view is to improve query performance but the

overhead associated with materialized view management can become a significant system

management problem. The common materialized view management activities are:

17

 Identifying which materialized views to create;

 Indexing the materialized view;

 Ensuring that all materialized views and materialized view indexes are refreshed

properly each time the database is updated;

 Verifying the incremental changes are correct, consistent and complete;

 Checking which materialized views have been used;

 Determining how effective each materialized view has been on workload

performance;

 Measuring the space being used by the materialized views;

 Determining which new materialized views should be created;

 Determining which existing materialized views should be dropped;

 Archiving old detail and materialized view data that is no longer useful.

2.5 Materialized View Creation

The basic syntax for creating a materialized view in Oracle Database is like the following:

create materialized view <materialized_view_name>

tablespace <tablespace_name>

build <build_method>

refresh <refresh_method>

<refresh_mode>

<query rewrite enable/disable>

as

<select subquery>;

From the syntax, <materialized_view_name> specifies the materialized view name to be

defined. <tablespace_name> is the tablespace in which the materialized view is to be

created; if the tablespace name is unspecified then the default tablespace will be used to

store the materialized view. There are two build methods for creating a materialized view

in the <build_method> namely build immediate and build deferred; build immediate

method creates the materialized view and then populates it with data while build deferred

method creates the materialized view but do not populate it with data. In case of build

immediate, the materialized view definition is added to the schema according to the

18

SELECT expression and the results are stored in the materialized view; Depending on the

size of the tables, this build process can take a considerable amount of time. For the build

deferred method, after the materialized view is created, it should be refreshed completely

for populating it with data.

The refresh option can be specified at the time of materialized view creation in

<refresh_method>. The refresh mode can also be specified with the refresh method. There

are four different kinds of refresh methods and two types of refresh modes in Oracle. The

refresh methods are Complete, Fast, Force and Never. The refresh modes are On Commit

and On Demand. Table 2.1 and 2.2 show the different refresh methods and modes

available in Oracle database.

Table 2.1 Materialized view refresh methods in Oracle.

Refresh Method Description

COMPLETE Refreshes by recalculating the materialized view's defining query.

FAST

Applies incremental changes to refresh the materialized view using

the information logged in the materialized view logs, or from a

SQL*Loader direct-path or a partition maintenance operation.

FORCE
Applies FAST refresh if possible; otherwise, it applies COMPLETE

refresh.

NEVER
Indicates that the materialized view will not be refreshed with

refresh mechanisms.

Table 2.2 Materialized view refresh modes in Oracle.

Refresh Mode Description

ON COMMIT

Refresh occurs automatically when a transaction that modified one

of the materialized view's detail tables commits. This can be

specified as long as the materialized view is fast refreshable (in

other words, not complex). The ON COMMIT privilege is

necessary to use this mode.

ON DEMAND Refresh occurs when a user manually executes one of the available

refresh procedures contained in the DBMS_MVIEW package

(REFRESH, REFRESH_ALL_MVIEWS, and

REFRESH_DEPENDENT).

19

2.6 Types of Materialized View

There are different types of materialized view: read-only, updatable and writable, primary

key materialized views, object materialized views, ROWID materialized views, complex

materialized views, materialized views with aggregates, materialized views containing

only joins and nested materialized views [38].

2.6.1 Read-only, updatable and writable materialized views

A materialized view can be read-only, updatable or writable. Users can not perform data

manipulation language (DML) statements on read-only materialized view but they can

perform DML on updatable and writable materialized views.

Read-only materialized view: A materialized view can be made read-only during creation

by omitting the FOR UPDATE clause. Read-only materialized views use many of the

same mechanisms as updatable materialized views except they do not need to belong to a

materialized view group. In addition, using read-only materialized view eliminates the

possibility of a materialized view introducing data conflicts at the master site or master

materialized view site, although this convenience means that updates can not be made at

the remote materialized view site. The following is an example of creating a read-only

materialized view:

create materialized view <mv_name> as

select * from hr. employees;

Fig. 2.3 shows an example of a read-only materialized view in a replication environment

where from the client the materialized view can be locally queried but can not be

updatable.

20

Fig. 2.3 Read-only materialized view in a replication environment

Updatable materialized view: A materialized view can be made updatable during creation

by including the FOR UPDATE clause. For changes made to an updatable materialized

view to be pushed back to the master during refresh, the updatable materialized view must

belong to a materialized view group. Updatable materialized views enable to decrease the

load on master sites because users can make changes to the data at the materialized view

site. The following is an example of creating updatable materialized view:

create materialized view hr.departments for update as

select * from hr.departments@orcl.world;

The following statement creates a materialized view group:

begin

dbms_repcat.create_mview_repgroup (

gname => ‘hr_repg’,

master => ‘orcl.world’,

propagation_mode => ‘ASYNCHRONOUS’);

end;

/

21

The following statement adds the hr.departments materialized view to the materialized

view group, making the materialized view updatable:

begin

dbms_repcat.create_mview_repobject (

gname => ‘hr_repg’,

sname => ‘hr’,

oname => ‘departments’,

type => ‘SNAPSHOT’,

min_communication => TRUE);

end;

/

Fig. 2.4 Updatable materialized view in a replication environment

Fig. 2.4 shows an example of an updatable materialized view in a replication environment

where from the client the materialized view can be locally queried as well as it can be

locally updatable.

Writable materialized view: A writable materialized view is one that is created using the

FOR UPDATE clause but is not part of a materialized view group. Users can perform

DML operations on a writable materialized view, but refreshing the materialized view,

22

these changes are not pushed back to the master and the changes are lost in the

materialized view itself. Writable materialized views are typically allowed wherever fast-

refreshable read-only materialized views are allowed.

2.6.2 Primary key, object, ROWID and complex materialized views

In Oracle database, it offers several types of materialized views to meet the needs of many

different situations like data warehousing and replication. The examples of different types

of materialized views include primary key materialized views, object materialized views,

ROWID materialized views and complex materialized views. The materialized views

with aggregates, containing only joins and nested materialized views are fall under the

category of complex materialized views.

Primary key materialized views: Primary key materialized views are the default type of

materialized view. These kind of materialized views are based on the primary key of the

underlying table. They are updatable if the materialized view is created as part of a

materialized view group and FOR UPDATE is specified when defining the materialized

view. Changes are propagated according to the row-level changes that have occurred as

identified by the primary key value of the row (not the ROWID). The following is an

example of a SQL statement for creating a primary key materialized view:

create materialized view employees_mv as

select * from emp_user.employee;

The following is an example of a SQL statement for creating an updatable, primary key

materialized view:

create materialized view oe.customers_mv for update as

select * from oe.customers;

Object materialized views: If a materialized view is based on an object table and is

created using the OF type clause, then the materialized view is called an object

materialized view. An object materialized view is structured in the same way as an object

table. That is, an object materialized view is composed of row objects and each row object

is identified by an object identified (OID) column. If a materialized view that is based on

an object table is created without using the OF type clause, then the materialized view is

23

read-only and is not an object materialized view. That is such a materialized view has

regular rows, not row objects. To create a materialized view based on an object table, the

types on which the materialized view depends must exist at the materialized view site and

each type must have the same object identifier as it does at the master site. The following

SQL statements create the oe.categories_tab object table at the orcl.world master site:

create type oe.category_typ as object

(category_name VARCHAR2(50),

category_description VARCHAR2(1000),

category_id NUMBER(2));

create table oe.categories_tab OF oe.category_typ

(category_id PRIMARY KEY);

Now an object materialized view can be created based on the oe.categories_tab object

table using the OF type clause as in the following SQL statement:

create materialized view oe.categories_objmv OF oe.category_typ

refresh fast for update as

select * from oe.categories_tab;

ROWID materialized views: A ROWID materialized view is based on the physical row

identifiers (rowids) of the rows in a master site. ROWID materialized view can be used

for materialized views based on master tables that do not have a primary key or for

materialized views that do not include all primary key columns of the master tables. The

following is an example of a SQL statement that creates a ROWID materialized view:

create materialized view oe.orders

refresh with ROWID as

select * from oe.orders;

Complex materialized view: Generally, a materialized view is considered complex when

the defining query of the materialized view contains:

24

 A CONNECT BY clause;

 An INTERSECT, MINUS, or UNION ALL set operation;

 The DISTINCT or UNIQUE keyword;

 An aggregate function;

 Joins other than those in a subquery;

 A UNION operation;

 More than 1 table is involved.

The following examples create complex materialized view:

To select the employees those are manager with their level and email address, the

following complex materialized view can be created which uses CONNECT BY clause:

create materialized view hr.emp_hierarchy as

select LPAD (' ' , 4 * (level - 1)) || email USERNAME

from hr.employees start with manager_id is null

connect by prior employee_id = manager_id;

Find the old and new employee’s IDs and email addresses and then combine all the

employees’ ID and email by using the UNION ALL set operation:

create materialized view hr.mview_employees as

select employees.employee_id, employees.email

from hr.employees

union all

select new_employees.employee_id, new_employees.email

from hr.new_employees;

Find the unique department ids from the employees table and sort the result in ascending

order:

create materialized view hr.employee_depts as

select distinct department_id from hr.employees

order by department_id;

25

Find the average salary of the employees:

create materialized view hr.average_sal as

select AVG (salary) "Average" from hr.employees;

Find the name of the employees who work in a department:

create materialized view hr.emp_join_dep as

select last_name from hr.employees e, hr.departments d

where e.department_id = d.department_id;

Find the orders of the customers whose credit limit equals to 30 or greater than 50:

create materialized view oe.orders as

select order_total

from oe.orders o

where exists (select cust_first_name, cust_last_name

from oe.customers c

where o.customer_id = c.customer_id and c.credit_limit > 50)

union

select customer_id

from oe.orders o

where exists (select cust_first_name, cust_last_name

from oe.customers c

where o.customer_id = c.customer_id and c.account_mgr_id = 30);

26

Fig. 2.5 Comparison of simple and complex materialized views

Fig. 2.5 shows the comparison between the simple and complex materialized views. The

complex materialized view (Method A) in Database II exhibits efficient query

performance because the join operation was completed during the materialized view’s

refresh. However, complete refreshes must be performed because the materialized view is

complex and these refreshes will probably be slower than incremental refreshes. On the

other hand, a virtual view performs the join operation between the simple materialized

views (Method B) in Database II. Query performance against the virtual view would not

be as good as the query performance against the complex materialized view in Method A.

However, the simple materialized views can be refreshed more efficiently using

incremental refresh. So, if the refresh occurs rarely and it needs faster query performance

then complex materialized view is better than the simple materialized view where the

refresh may occur regularly and query performance may be sacrificed.

27

2.6.3 Materialized views with aggregates, containing only joins and nested

materialized views

The SELECT clause in the materialized view creation statement defines the data that the

materialized view is to contain. Any number of tables can be joined together. Views,

inline views (subqueries in the FROM clause of a SELECT statement), subqueries and

materialized views can all be joined or referenced in the SELECT clause. The SELECT

clause of the materialized view may retrieve data by aggregating; joining of tables from

more than two tables or from remote locations and materialized views can itself be nested.

Materialized views with aggregates: Aggregation is a fundamental part of data

warehousing. In data warehouses, materialized views normally contain aggregates. There

are lots of aggregates and the functionally of each of the aggregates distinguishes from

each other. The CUBE, ROLLUP and GROUPING SETS extensions to SQL make

querying and reporting easier and faster. CUBE, ROLLUP and GROUPING SETS

produce a single result set that is equivalent to a UNION ALL of differently grouped

rows. ROLLUP calculates aggregations such as SUM, COUNT, MAX, MIN and AVG at

increasing levels of aggregations from the most detailed up to a grand total. CUBE is an

extension similar to ROLLUP, enabling a single statement to calculate all possible

combination of aggregations. Computing a CUBE creates a heavy processing load, so

replacing cubes with grouping sets can significantly increase performance. Fig. 2.6 shows

a ROLLUP aggregation where the individual order total price is aggregated first and then

the total price of that customer aggregated and finally the total price for all customers is

aggregated by the ROLLUP operation.

28

Fig. 2.6 A simple ROLLUP aggregation

Fig. 2.7 shows a logical data CUBE and how it can be used differently by various groups.

The CUBE stores sales data organized by the dimensions of product, markets, sales and

time.

Fig. 2.7 Logical CUBEs and views by different users

29

PIVOT transforms a series of rows into a series of fewer rows with additional columns.

Data in one source column is used to determine the new column for a row and another

source column is used as the data for the new column. UNPIVOT provides the inverse

operation, removing a number of columns and creating additional rows that capture the

column names and values from the pivoted form. The pivoted form can be considered as a

matrix of column of values while the unpivoted form is a natural encoding of a sparse

matrix [39]. Fig. 2.8 shows the pivot and unpivot operations.

Fig. 2.8 Action of PIVOT and UNPIVOT operations

The followings are examples of materialized views with different aggregations:

Find the product wise total sales amount and quantity of the store:

create materialized view product_sales_mv

tablespace demo

build immediate

refresh fast

enable query rewrite as

30

select p.prod_name, sum(s.amount_sold) as dollar_sales,

count(*) as cnt, count(s.amount_sold) as cnt_amt

from sales s, products p

where s.prod_id = p.prod_id group by p.prod_name;

Find the total sales amount, number of sales, total quantity sold and number of quantity

sold in the store:

create materialized view sum_sales

parallel

build immediate

refresh fast on commit

as

select s.prod_id, s.time_id, count(*) as count_grp,

sum(s.amount_sold) as sum_dollar_sales,

count(s.amount_sold) as count_dollar_sales,

sum(s.quantity_sold) as sum_quantity_sales,

count(s.quantity_sold) as count_quantity_sales

from sales s

group by s.prod_id, s.time_id;

Find the daily total sales amount of each of the total channel, month and country standard

code wise sales:

create materialized view sales_mv

as

select channels.channel_desc, calendar_month_desc,

countries.country_iso_code,

to_char(sum(amount_sold), '9,999,999,999') sales$

from sales, customers, times, channels, countries

where sales.time_id=times.time_id

and sales.cust_id=customers.cust_id

and customers.country_id = countries.country_id

31

and sales.channel_id = channels.channel_id

and channels.channel_desc in ('direct sales', 'internet')

and times.calendar_month_desc in ('2000-09', '2000-10')

and countries.country_iso_code in ('gb', 'us')

group by rollup (channels.channel_desc, calendar_month_desc,

countries.country_iso_code);

Find the daily total sales amount of each of the total channel, month and country standard

code wise detail sales whose country standard code is ‘BD’ and ‘US’:

create materialized view sales_mv as

select channel_desc, calendar_month_desc, countries.country_iso_code,

to_char(sum(amount_sold), '9,999,999,999') sales$

from sales, customers, times, channels, countries

where sales.time_id=times.time_id and sales.cust_id=customers.cust_id and

sales.channel_id= channels.channel_id

and customers.country_id = countries.country_id

and channels.channel_desc in

('direct sales', 'internet') and times.calendar_month_desc in

('2000-09', '2000-10') and countries.country_iso_code in ('bd', 'us')

group by cube(channel_desc, calendar_month_desc,

countries.country_iso_code);

Find the daily total sales amount of each of the total channel, month and country standard

code wise sales whose country standard code is ‘BD’ and ‘US’:

create materialized view sales_mv as

select channel_desc, calendar_month_desc, country_iso_code,

to_char(sum(amount_sold), '9,999,999,999') sales$, grouping(channel_desc)

as ch,

grouping(calendar_month_desc) as mo, grouping(country_iso_code) as co

from sales, customers, times, channels, countries

where sales.time_id=times.time_id

32

and sales.cust_id=customers.cust_id

and customers.country_id = countries.country_id

and sales.channel_id= channels.channel_id

and channels.channel_desc in ('direct sales', 'internet')

and times.calendar_month_desc in ('2000-09', '2000-10')

and countries.country_iso_code in ('bd', 'us')

group by rollup(channel_desc, calendar_month_desc,

countries.country_iso_code);

Materialized views containing only joins: A join is a means for combining fields from

two or more tables by using values common to each. But the joining of tables is expensive

as it incurs a lot of steps to do the operation. Fig. 2.9 shows sample tables join operation

between two tables. From the table join workflow, it is found that there are lots of

processing steps for the join and it is much expensive. So if the table join can be pre-

computed and stored in the database before the actual query occurs, the query

performance will improve as it is not needed re-computing the join on the runtime of the

query. The materialized view with the table joins serves the expensive table joins by pre-

computing the join and storing the result in the database.

Fig. 2.9 Two tables join operation workflow

33

The following example shows the materialized view creation containing only the table

joins:

create materialized view detail_sales_mv

parallel build immediate

refresh fast

as

select s.rowid "sales_rid", t.rowid "times_rid", c.rowid

"customers_rid",

c.cust_id, c.cust_last_name, s.amount_sold, s.quantity_sold, s.time_id

from sales s, times t, customers c

where s.cust_id = c.cust_id(+) and s.time_id = t.time_id(+);

Nested materialized views: A nested materialized view is a materialized view whose

definition is based on another materialized view. A nested materialized view can

reference other relations in the database in addition to referencing materialized view.

Incrementally maintaining the distinct materialized aggregate views on the single join can

take a long time because the underlying join need to perform many times. Using nested

materialized views, multiple single-table materialized views can be created based on a

joins only materialized view and the join is performed just once. In Oracle database, for

creating a nested materialized view on materialized views, all parent and base

materialized views must contain joins or aggregations. The following example creates a

nested materialized view on another materialized view join_sales_cust_time:

create materialized view join_sales_cust_time

refresh fast on commit

as

select c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,

t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid

from sales s, customers c, times t

where s.time_id = t.time_id and s.cust_id = c.cust_id;

34

create materialized view sum_sales_cust_time

refresh fast on commit

as

select count(*) cnt_all, sum(amount_sold) sum_sales,

count(amount_sold)

cnt_sales, cust_last_name, day_number_in_week

from join_sales_cust_time

group by cust_last_name, day_number_in_week;

2.7 Materialized View Maintenance

Materialized views must be kept up-to-date when the data used in the view definition

changes. For instance, if the amount value of a loan is updated, the materialized view

would become inconsistent with the underlying data and must be updated. The task of

keeping a materialized view up-to-date with the underlying data is known as materialized

view maintenance.

Materialized views can be maintained is several ways. One way to materialized views

maintenance can be a manually written code: That is, every piece of code that updates the

amount value of a loan can be modified to also update the total loan amount in the

corresponding branch. Another option for maintaining materialized views is to define

triggers on insert, delete and update of each relation in the view definition. The triggers

must modify the contents of the materialized view, to take into account the change that

caused the trigger to fire. A simplistic way of doing so is to completely recompute the

materialized view on every update i.e., rematerializing the view for every update on the

base relations. A better option is to modify only the affected parts of the materialized

view, which is known as incremental materialized view maintenance. Several incremental

materialized view maintenance techniques, algorithms and methods have been designed

and developed in the decades and methods have been optimized for efficient incremental

maintenance of the materialized views.

The existing view maintenance algorithms can be classified into two categories, namely,

algorithmic and algebraic. Given a view and source updates, algorithmic view

maintenance algorithms derive a program (a program can be a collection of deductive

35

rules or SQL statements) whose evaluation maintains the view. The first proposal is the

finite differencing algorithm, for incremental view maintenance under a functional data

model. The output of the maintenance algorithm adds several lines of code into the source

update transaction in order to also update the view. It assumes set semantics of all base

tables and a key is required to exist in the view. A counting algorithm for maintaining

views under bag semantics essentially keeps track of the multiplicity of each view tuple,

or in other words, the number of derivations of each view tuple. A delta is a count of rows

or data that appears in the query but not in the materialized view. The insert deltas have a

positive count while the delete deltas have a negative count. A view tuple is deleted from

the view if its count becomes 0.

The main issues with algorithmic view maintenance algorithms are that (1) the

correctness of the algorithms is hard to prove, especially when the view language is

extended, it is unclear and hard to prove if the existing algorithms will still work; (2) the

output of maintenance algorithms (a program as mentioned above) is also hard to

optimize. Hence algebraic solutions have been proposed to address these limitations.

More specifically, an algebraic approach pre-defines a set of primitive change

propagation rules for each operator. The maintenance plan can then be constructed by

propagating changes through each algebra operator in the view query algebra tree and

recursively applying those primitive rules. The output of such algorithms, namely, the

maintenance plan, can be optimized by a cost-based query optimizer. Also since the

algorithm is algebra-based, the result is not tied to any particular query language.

Due to these benefits mentioned above, algebraic view maintenance algorithms have been

extensively explored. Most existing work builds upon such an algebraic maintenance

framework by considering more types of operators or considering different underlying

data models. Algebra-based maintenance work has also been studied beyond the relational

data model, e.g., maintaining XQuery views based on an XML algebra. The extensibility

of such an algebraic maintenance framework lies in the fact that for each algebra operator,

its change propagation is independent of its application context. Hence the existing

change propagation rules can be reused for the same operator in more complex language

constructs.

36

Incremental view maintenance techniques are applicable to many other applications, such

as trigger/constraint processing, cache/replica maintenance etc. The view self-

maintenance problem can also be considered as an application of the view maintenance

techniques. That is, given a view and source updates, after generating the maintenance

plan, we can easily determine if we need to query the sources or not. Some recent

emerging applications, such as continuous query processing over data streams, are also

closely related to the incremental view maintenance techniques.

2.7.1 Incremental materialized view maintenance

To incrementally maintain a materialized view, the changes need to be tracked regularly

and only the changes applied to the materialized view. The changes to a relation that

cause a materialized view to become out-of-date are inserts, deletes and updates. The

changes (say inserts and deletes) to a relation or expression are referred to as its

differential. The incremental maintenance process undergoes through several operations

like joining of old materialized view and to the changes, selection operations, aggregation

operations etc.

Join operation: Consider the materialized view v = r s. Suppose the relation r is

modified by inserting a set of tuples denoted by ir. If the old value of r is denoted by rold,

and the new value of r by rnew, rnew = rold ∪ ir. Now, the old value of the view, vold is given

by rold s, and new value of vnew is given by rnew s. So rnew s can be rewritten as (rold

∪ ir) s, which can again be rewritten as (rold s) ∪ (ir s). In other words,

vnew = vold ∪ (ir s)

Thus, to update the materialized view v, it simply needs to add the tuples ir s to the old

contents of the materialized view. Inserts to s are handled in an exactly symmetric

fashion.

Now suppose r is modified by deleting a set of tuples denoted by dr. Using the same

reasoning as above,

vnew = vold - (dr s)

Deletes on s are handled in an exactly symmetric fashion.

37

Selection and projection operations: Consider a view v = бθ (r). If r is modified by

inserting a set of tuples ir, the new value of v can be computed as

vnew = vold ∪ бθ (ir)

Similarly, if r is modified by deleting a set of tuples dr, the new value of v can be

computed as

vnew = vold - бθ (dr)

Projection is a more difficult operation with which to deal. Consider, a materialized view

v = ПA(r). Suppose the relation r is on the schema R = (A, B), and r contains two tuples (a,

2) and (a, 3). Then, ПA(r) has a single tuple (a). If the tuple (a, 2) is deleted from r, the

tuple (a) cannot be deleted from ПA(r): If it did so, the result would be an empty relation,

whereas in reality ПA(r) still has a single tuple (a). The reason is that the same tuple (a) is

derived in two ways, and deleting one tuple from r removes only one of the ways pf

deriving (a); the other is still present.

This reason also gives the intuition for solution for each tuple in a projection such as

ПA(r), a count of how many times it was derived will be kept.

When a set of tuples dr is deleted from r, for each tuple t in dr the following can be done.

Let t.A denote the projection of t on the attribute A. (t.A) is found in the materialized view,

and the count is decreased stored with it by 1. If the count becomes 0, (t.A) is deleted from

the materialized view.

Handling insertions is relatively straightforward. When a set of tuples ir is inserted into r,

for each tuple t in ir the following can be done. If (t.A) is already present in the

materialized view, the count is increased stored with it by 1. If not, (t.A) is added to the

materialized view, with the count set to 1.

38

Aggregation operations: Aggregation operations proceed somewhat like projections. The

aggregate operations in SQL are count, sum, avg, min, max etc. Here on the aggregate

operation sum is discussed.

Sum: Consider a materialized view v = Agsum(B) (r). When a set of tuples ir is inserted into

r, for each tuple t in ir the following can be done. The group t.A is to be looked in the

materialized view. If it is not present, (t.A, t.B) is added to the materialized view; in

addition, a count of 1 is stored associated with (t.A, t.B), just as did for the projection. If

the group t.A is present, the value of t.B is added to the aggregate value for the group, and

1 is added to the count of the group.

When a set of tuples dr is deleted from r, for each tuple t in dr, the following can be done.

The group t.A is to be looked in the materialized view, and t.B is to be subtracted from the

aggregate value for the group. Also 1 can be subtracted from the count for the group, and

if the count becomes 0, the tuple for the group t.A is deleted from the materialized view.

Without keeping the extra count value, it would not be able to distinguish a case where

the sum for a group is 0 from the case where the last tuple in a group is deleted.

Other operations: The set operation intersection is maintained as follows. Given

materialized view v = r ∩ s, when a tuple is inserted in r, it is checked if it is present in s,

and if so it is added to v. If a tuple is deleted from r, it is deleted from the intersection if it

is present. The other set operations, union and set difference, are handled in a similar

fashion as with the intersection set operation.

Outer joins are handled in much the same way as joins, but with some extra work. In the

case of deletion from r tuples in s have to be handled that no longer match any tuple in r.

In the case of insertion to r, tuples in s have to be handled that did not match any tuple in

r.

Handling expressions or statements: To handle an entire expression, expressions can be

derived for computing the incremental change to the result of each subexpression, starting

from the smallest subexpressions. For example, suppose a materialized view E1 E2 is to

39

be updated incrementally when a set of tuples ir is inserted into relation r. Let assume r is

used in E1 alone. Suppose the set of tuples to be inserted into E1 is given by expression

D1. Then the expression D1 E2 gives the set of tuples to be inserted into E1 E2.

Query optimization: Query optimization can be performed by treating materialized views

just like regular relations.

 Rewriting queries to use materialized views: Suppose a materialized view v = r

s is available, and a user submits a query r s t. Rewriting the query as v t

may provide a more efficient query plan than optimizing the query submitted.

Thus, it is the job for the query optimizer to recognize when a materialized view

can be used to speed up a query.

 Replacing a use of a materialized view by the view definition: Suppose a

materialized view v = r s is available, but without any index on it, and a user

submits a query бA = 10 (v). Suppose also that s has an index on the common

attribute B, and r has an index on attribute A. The best plan for this query may be

to replace v by r s, which can lead to the query plan бA = 10 (r) s; the

selection and join can be performed efficiently by using the indices on r.A and s.B,

respectively. In contrast, evaluating the selection directly on r may require a full

scan of v, which may be more expensive.

2.7.2 Materialized view selection

Materialized view selection is an optimization problem, namely, “what is the best set of

views to materialize?” This decision must be made on the basis of the system workload,

which is a sequence of queries and updates that reflects the typical load on the system.

One simple criterion would be to select a set of materialized views that minimizes the

overall execution time of the workload of queries and updates, including the time taken to

maintain the materialized views.

Typically view selection is under a space constraint, and / or a maintenance cost

constraint. Unlike answering queries using views that need to handle ad-hoc queries, in

view selection scenarios, the queries are known. Hence, most view selection algorithms

40

start from identifying common sub-expressions among queries. These common sub-

expressions serve as the candidates of the materialized views. One fundamental practical

issue with view selection is that there are many possibly competing factors to be

considered during the view selection phase, such as view selectivity, query complexity,

database size, query performance, update performance etc.

Fig. 2.10 A view materialization process

Fig. 2.10 shows a typical view materialization process where the methodology determines

what kind of views is beneficial to materialize under the conditions like view selectivity,

complexity, database size, view maintenance cost, access frequency etc.

2.8 Query Rewrite

Query rewrite transforms a SQL statement expressed in terms of tables or views into a

statement accessing one or more materialized views that are defined on the detail tables.

The transformation is transparent to the end user or application, requiring no intervention

and no reference to the materialized view in the SQL statement. Because query rewrite is

transparent, materialized views can be added or dropped just like indexes without

invalidating the SQL in the application code.

41

A query undergoes several checks to determine whether it is a candidate for query rewrite.

If the query fails any of the checks, then the query is applied to the detail tables rather

than the materialized view. This can be costly in terms of response time and processing

power.

Fig. 2.11 Oracle SQL query rewrite mechanism

Figure 2.11 shows how the Oracle SQL optimizer checks the Oracle data dictionary for

the presence of a materialized view whenever a new SQL statement enters the Oracle

library cache.

The optimizer uses two different methods to recognize when to rewrite a query in terms

of a materialized view. The first method is based on matching the SQL text of the query

with the SQL text of the materialized view definition. If the first method fails, the

optimizer uses the more general method in which it compares joins, selections, data

columns, grouping columns and aggregate functions between the query and materialized

views.

42

2.8.1 How oracle rewrites queries?

The optimizer uses a number of different methods to rewrite a query. The first step in

determining whether query rewrite is possible is to see if the query satisfies the following

prerequisites:

 Joins present in the materialized view are present in the SQL.

 There is sufficient data in the materialized view(s) to answer the query.

After that, it must determine how it will rewrite the query. The simplest case occurs when

the result stored in a materialized view exactly matches what is requested by a query. The

optimizer makes this type of determination by comparing the text of the query with the

text of the materialized view definition. This text match method is most straightforward

but the number of queries eligible for this type of query rewrite is minimal.

When the text comparison test fails, the optimizer performs a series of generalized checks

based on the joins, selections, grouping, aggregates, and column data fetched. This is

accomplished by individually comparing various clauses (SELECT, FROM, WHERE,

HAVING, or GROUP BY) of a query with those of a materialized view.

2.8.2 General query rewrite method

The optimizer has a number of different types of query rewrite methods that it can choose

from to answer a query. When text match rewrite is not possible, this group of rewrite

methods is known as general query rewrite. The advantage of using these more advanced

techniques is that one or more materialized views can be used to answer a number of

different queries and the query does not always have to match the materialized view

exactly for query rewrite to occur.

When using general query rewrite methods, the optimizer uses data relationships on

which it can depend, such as primary and foreign key constraints and dimension objects.

For example, primary key and foreign key relationships tell the optimizer that each row in

the foreign key table joins with at most one row in the primary key table. Furthermore, if

there is a NOT NULL constraint on the foreign key, it indicates that each row in the

43

foreign key table must join to exactly one row in the primary key table. A dimension

object will describe the relationship between, say, day, months, and year, which can be

used to roll up data from the day to the month level.

Data relationships such as these are very important for query rewrite because they tell

what type of result is produced by joins, grouping, or aggregation of data. Therefore, to

maximize the rewritability of a large set of queries when such data relationships exist in a

database, you should declare constraints and dimensions.

2.8.3 Types of query rewrite

Queries that have aggregates that require computations over a large number of rows or

joins between very large tables can be expensive and thus can take a long time to return

the results. Query rewrite transparently rewrites such queries using materialized views

that have pre-computed results, so that the queries can be answered almost

instantaneously. These materialized views can be broadly categorized into two groups,

namely materialized aggregate views and materialized join views. Materialized aggregate

views are tables that have pre-computed aggregate values for columns from original

tables. Similarly, materialized join views are tables that have pre-computed joins between

columns from original tables. Query rewrite transforms an incoming query to fetch the

results from materialized view columns. Because these columns contain already pre-

computed results, the incoming query can be answered almost instantaneously.

CHAPTER - 3

VIEW MATERIALIZATION

3.1 Introduction

3.2 Brief Description of the Factors

3.3 Performance Evaluation Measurement

3.4 Methodology to Determine View Materialization

3.5 Dynamic Mathematical Model for Selection of Views for

Materialization and Removal of Old Materialized Views

 3.5.1 Dynamic selection of views for materialization

 3.5.2 Dynamic removal of old materialized views

C h a p t e r 3

VIEW MATERIALIZATION

This chapter discusses about the theoretical background of the research work, design and

development of methodology, dynamic cost model for view materialization and finally

removal of old materialized views.

3.1 Introduction

A materialized view is a pre-calculated result of a query and the materialized view is

stored in the database with the data unlike with the virtual views where only the view

definition is stored in the database and when a query is issued against the virtual view, the

result is actually performed by computing from the base tables. View materialization is

profitable for the query performance as the result of the query is already pre-computed.

But it should also be in mind that materializing incurs space utilization and maintenance

cost. Rather than rematerializing incremental update propagation is desirable to reduce the

maintenance cost. It is necessary to determine a query or a virtual view is really profitable

for materializing or not in different circumstances like - views with different aggregations,

containing only joins and containing set operations or nesting of views and also need to

compare whether incremental materialized view maintenance performance is beneficial

than rematerializing or not. One particular view or query materialization is not only a

solution for improving the query performance as in a certain time period lots of queries

are issued to retrieve result from the database and all of the queries or views cannot be

materialized due the maintenance cost and space cost constraints. So it is expected to

select a set of views from a list of all queries or views requested at a particular time period

based on the access frequency of the query or the view, selectivity, database size, query

complexity (like number of joins, aggregations and tables involved in the query), query

execution cost and also the update frequency and materialized view maintenance cost. It

is also necessary to remove the old materialized view that is no longer in use or the

materialized view access frequency is too low.

In this thesis, we have developed a methodology that evaluates the incremental

materialized view maintenance performance over rematerializing and determines the

46

various situations in which a view or a query is beneficial for selecting to be materialized

considering the incremental materialized view maintenance cost and the performance

evaluation criteria based on the issues like - view selectivity, complexity and database

size.

We have also developed a dynamic cost model to dynamically select a set of query or

virtual views out of all of the queries or views requested by the users at a particular time

period considering the access frequency of the queries, weighting factor reflecting the

importance of the query, query execution time, query complexity (number of tables, joins

and aggregations involved in the query), view selectivity, database size, update frequency,

weighting factor reflecting the importance of the table and view maintenance cost.

Finally, we have provided another dynamic cost model to remove the old materialized

view that is no longer in use or the materialized views access frequency is too low.

In the next section, a brief description of the factors like - view selectivity, complexity,

database size, query execution time, view maintenance cost has been provided.

3.2 Brief Description of the Factors

View selectivity: Selectivity is defined as the ratio of the number of records selected by a

query to the number of input records. Different view selectivities arise as a result of a

view containing the predicates that filter (to different degrees) the input data. For

example, a view template contains the following definition:

create view <view_name>

as

select <columni>

from <table>

where фi;

From the above view template, more than one view can be derived with different

selectivities by varying the predicate фi. Lets say, if there are 1,00,000 records in the

table, then each predicate can be obtained with column <= kj where k1 = 20,000 to k5 =

1,00,000 with the selectivities from 0.2 to 1.0 in increments of 0.2.

47

View complexity: For the structural complexity of the view, here it is assumed to vary the

number and the kind of algebraic operators needed to evaluate the query, number of

joining and the number of tables involved as a part of the query or the view. For example,

a query that contains two joins is more complex than a query that contains one join. From

the following two view templates the later template is more complex comparing to the

first one as the later selects data from two tables and contains two joins.

create view <view_name>

as

select <column>

from <table>

where фi;

create view <view_name>

as

select a.col1, b.col2

from table1 a, table2 b

where a.col1 <= фj and b.col2 >= фk;

Database size: With regard to the database size, the number of records varies uniformly

across different databases. For example, the following view template can retrieve all

records from its query with the different database as specified in the Table 3.1.

create view <view_name>

as

select a.col1, b.col2

from table1 a, table2 b;

Table 3.1 Database size example

Database Size

Database db1 db2 db3 db4 db5

Records 100000 200000 300000 400000 500000

Size (GB) 1 2 3 4 5

48

Maintenance cost: The update propagation time to the materialized view is considered as

the maintenance cost of the materialized view.

Cost of query answering: The query response time or the query execution time is the cost

of answering a query.

Query access frequency: The number of times a query is requested at a particular time

period is the access frequency of that query.

Tables, joins and aggregations: The number of tables involved in a query; the number of

joins in the query and the number aggregate operators used in the query.

3.3 Performance Evaluation Measurement

The performance of incremental materialized view maintenance and the determination of

view materialization profitable can be evaluated by considering:

i. The cost of incrementally maintaining the materialized view by update propagation;

ii. The cost of answering query over the materialized view and over its virtual

equivalent;

iii. The cost of answering query over the materialized view and over its query rewrite;

iv. The cost of incrementally maintaining the materialized view in comparison with the

cost of answering a query over its virtual equivalent;

v. The cost of incrementally maintaining the materialized view in comparison with the

cost of answering a query rewrite;

vi. The cost of answering a query using query rewrite in comparison with answering a

virtual view.

The first consideration (i) compares the view maintenance cost between incremental

maintenance and rematerializing. The (ii) and (iii) points compare the query answering

costs between materialized views, virtual views and using rewrites. The last three points

(iv), (v) and (vi) compare the relative costs incremental maintenance cost, query

answering between materialized views, virtual views and rewrites. All of the above

evaluation measurements can be applied to the issues like - selectivity of views,

complexity and database size.

49

3.4 Methodology to Determine View Materialization

We have developed a methodology to evaluate the incremental materialized view

maintenance performance and to determine the circumstances in which a view is

beneficial to be selected for materialization considering the incremental materialized view

maintenance cost based on the factors like - view selectivity, complexity and database

size in object-relational database management system. The view materialization

determination methodology is illustrated in Fig. 3.1.

Given:

Vi = A set of virtual view definitions to be materialized;

Ii = A set of issues affecting the view performance like selectivity, complexity and database size;

Mi = A set of materialized view as the conclusion drawn from simulated output.

Begin

While (all virtual views (Vi) are materialized (Mi)) {

While (all issues (Ii): selectivities/complexities/database sizes are applied) {

Apply update events to the base tables;

Apply rematerializing and incremental maintenance separately;

Assign:

IncMAT[j] = Compute the incremental refresh time;

ReMAT[j] = Compute the rematerializing refresh time;

CoQVIR[j] = Compute the cost of answering query using the virtual view;

CoQMAT[j] = Compute the cost of answering query using materialized view;

CoQRW[j] = Compute the cost of answering query using query rewrite;

RelVvMT[j] = CoQVIR[j] / IncMAT[j];

RelRWvMT[j] = CoQRW[j] / IncMAT[j];

RelVvRW[j] = CoQVIR[j] / CoQRW[j];

} End While;

For k = 1 to all selectivities/complexities/database sizes {

Plot (a, b) = {(Elapsed Time, IncMAT[j]), (Elapsed Time, ReMAT[j])};

Plot (c, d) = {(Elapsed Time, CoQVIR[j]), (Elapsed Time, CoQMAT[j])};

Plot (e, f) = {(Elapsed Time, CoQVIR[j]), (Elapsed Time, CoQRW[j])};

Plot (g, h) = {(No. of updates, RelVvMT[j])};

Plot (m, n) = {(No. of updates, RelRWvMT[j])};

Plot (p, q) = {(No. of rewrites, RelVvRW[j])};

} End For;

} End While;

End;

Fig. 3.1 Methodology to determine view materialization

50

The goal of the methodology for view materialization is to determine various conditions

when a view or a query can be selected for materialization to improve overall query

performance. The methodology evaluates the performance of incremental materialized

view maintenance and finally from the simulated result conclusion will be drawn for the

different situations under which a view can be selected for materialization.

The working principle of the methodology is that it takes a set of virtual view definitions

or select queries and the performance affecting factors like - selectivity, complexity or

database size as the input. Inference can be drawn from the simulated output that a

particular view or all of the views can be selected to be materialized if and only if the

incremental maintenance of that view is cost effective. So according to methodology, first

all of the virtual view definitions and corresponding defined materialized view definitions

are based on the different conditions like - various types of aggregations, joining and

nesting of views, set operations etc. Then update events like - insertion of data, deletion of

data or modification of data are applied to the base tables. To propagate the changes to the

materialized view for the latest changes on the base tables, re-materialization and

incremental materialized view maintenance are applied to the materialized views

independently. The propagation time and query response time have been considered here

as the cost of maintenance and cost of query answering respectively. The materialized

view maintenance cost using re-materialization and incremental maintenance are

computed.

The cost of answering a virtual view, materialized view and query rewrite are also

computed. A measurement of the effectiveness can be done by comparing the different

cost and it is defined as relative cost. The relative costs of answering a virtual view vs.

incremental maintenance and relative costs of answering a virtual view vs. using rewrite

are calculated. Finally, the results are plotted in different simulated output graphs:

incremental view maintenance vs. re-materialization graph, query answering using virtual

view vs. materialized view graph, query answering using virtual view vs. query rewrite

graph, relative costs graph of answering virtual view vs. incremental materialized view

maintenance, relative costs graph of query answering using query rewrite vs. incremental

materialized view maintenance and relative costs graph of answering virtual view vs.

query rewrite. Conclusion is drawn from the simulated output regarding the performance

of incremental maintenance and the circumstances under which view materialization is

beneficial or not.

51

3.5 Dynamic Cost Model for Selection of Views for Materialization and Removal of

Materialized Views

View materialization improves the query performance but materializing views in a

predefined time cannot be a perfect solution. Because those queries or views that have

been materialized might not have been used for long time or the access frequencies of

these materialized views are very low while the materialized views occupying storage

space and also to be updated with the base tables, the maintenance of the materialized

views is a necessary in a periodic schedule. At a particular time period, there may be a

large number of queries or views is answered that might not be materialized previously to

improve the query performance. But it is also not possible that all the queries or views at a

particular time period should be materialized for improving query performance as there

are lots of issues are involved with the view materialization. The issues are like - access

frequency of the queries, execution time, view selectivity, database size, complexity

(number of tables, joins and aggregations involved) and maintenance cost based on

update frequency and the importance of the table. As our main goal is to improve the

query performance, we are considering the storage space is sufficient to provide the

necessary space for view materialization.

We have designed a dynamic cost model in the next section that selects a set of queries or

views from a pool set of views or queries at a particular time period based on factors like -

the access frequencies of the queries, query processing cost and maintenance cost. The

dynamic model selects views with the combination of higher query access frequency and

higher execution time to materialize at a certain time difference from a set of large

number views or queries to improve query performance. The query processing cost

includes the cost of execution time of the query, selectivity, complexity (number of tables,

joins and aggregations involved), query access frequency and a weighting factor

reflecting the importance of the query. Maintenance cost includes the update frequency

and the weighting factor reflecting the importance of the base tables. Finally, we have

designed another dynamic cost model and proposed algorithm to remove the old

materialized views that are no longer in use for a long time or the access frequencies of

the materialized views are very low. The most important criteria in the dynamic model is

that for both of the dynamic selection of views for materialization and removal of old

materialized views, the threshold level is selected dynamically.

52

3.5.1 Dynamic selection of views for materialization

The costs and factors that we have considered here for the dynamic selection of views for

materialization are shown in the following Table 3.2. It shows the access frequencies of

the queries, weight of different queries and different cost associated with the queries or

views like - execution cost, selectivity, complexity issues, and maintenance cost for the

update frequency of the base tables.

The first column in the table represents the SQL statements that are called queries or

views. All the queries used in the table are unique SQL statements in a particular time.

The second column is the access frequency count of each query or view at that particular

time period. We have assigned a weighting factor to reflect the importance of the query.

The third column presents the query or view execution time and it is called the response

time of that query.

The fifth column of the table is the selectivity of the query and it is the ratio of the number

of rows retrieved by the query to the number of input rows.

The sixth, seventh and eighth columns focus on the complexity issue of the query by

calculating the total number of tables involved in the query, total number of joining

occurred and the total number aggregate operators used in the query.

The remaining columns are used to calculate the maintenance cost of the view by

summing up the total table maintenance costs for those tables that are involved in the

query. For the maintenance cost of the view, corresponding involved table maintenance

cost is places in the columns. If a table maintenance cost is not associated with the query

then a “0” is placed in that column. For example, if table t1 and table t2 are involved in the

query Q1, then the maintenance cost of the table t1 and t2 are placed in the columns for the

view maintenance cost. Remaining table maintenance costs are set as “0”. All the

information of the table is found from the database. After filled up the table, a (n, 12 + m)

matrix is formed where n is the total number queries and m is the total number tables in

the schema. In the subsequent paragraph, the calculation of each of the factors and cost

associated with the query or the view has shown.

53

To
ta

l
C

os
t

(T
C n

=

Q
P n

+

M
C n

)

TC
1

TC
2

TC
3

TC
4

TC
5

…

…

…

TC
n

V
ie

w

M
ai

nt
en

an
ce

 C
os

t
(M

C n
=

M
T 1

+M
T 2

+.
..+

M
T m

)

M
C 1

M
C 2

M
C 3

M
C 4

M
C 5

…

…

…

M
C n

Ta
bl

e
M

ai
nt

e
na

nc
e

C
os

t,
M

T m

co
st

co
st 0 0 co
st …

…

co
st 0

…

…

…

…

…

…

…

…

…

…

Ta
bl

e
M

ai
nt

e
na

nc
e

C
os

t,
M

T 2

co
st

co
st 0 co
st 0 …

…

. .
 .

co
st

Ta
bl

e
M

ai
nt

e
na

nc
e

C
os

t,
M

T 1

co
st 0 co
st 0 co
st …

…

. .
 . 0

Q
ue

ry

Pr
oc

es
sin

g
C

os
t (

Q
P n

=

f nw
ne

ns
nc

n)

Q
P 1

Q
P 2

Q
P 3

Q
P 4

Q
P 5

…

…

…

Q
P n

Q
ue

ry

C
om

pl
ex

iti
es

 (c
n
=

t n+
j n+

a n
)

c 1

c 2

c 3

c 4

c 5

…

…

. .
 . c n

N
o.

 o
f

A
gg

re
g

at
io

ns

(a
n) a 1

a 2

a 3

a 4

a 5

…

…

. .
 . a n

N
o.

 o
f

Jo
in

in
g

O
cc

ur
s

(j n
) j 1 j 2 j 3 j 4 j 5 …

…

. .
 . j n

N
o.

 o
f

Ta
bl

es

In
vo

lv
e

d
(t n

)

t 1 t 2 t 3 t 4 t 5 …

…

. .
 . t n

Q
ue

ry

Se
le

ct
iv

ity

(s
n) s 1

s 2

s 3

s 4

s 5

…

…

. .
 . s n

Q
ue

ry

Ex
ec

u
tio

n
Ti

m
e

(e
n) e 1

e 2

e 3

e 4

e 5

…

…

. .
 . e n

W
ei

g
ht

in
g

Fa
ct

or

(w
n =

lo

g k

(f n
+1

))

w 1

w 2

w 3

w 4

w 5

…

…

. .
 . w n

Q
ue

ry

A
cc

es
s

Fr
eq

ue
nc

y
(f n

)

f 1 f 2 f 3 f 4 f 5 …

…

. .
 . f n

Q
ue

ry
/

V
ie

w

(Q
n/V

n)

Q
1/V

1

Q
2/V

2

Q
3/V

3

Q
4/V

4

Q
5/V

5

…

…

. .
 .

Q
n/V

n

T
ab

le
 3

.2
 D

iff
er

en
t c

os
ts

an
d

fa
ct

or
s a

ss
oc

ia
te

d
w

ith
 q

ue
rie

s o
r v

ie
w

s

54

In the following sections, some important terms have been briefly discussed and we

developed some algorithms and equations that are used to compute the cost of query.

Access frequency of the query: The query access frequency (an) is the counting of the

total number of times of the execution of a particular query occurred in the database or in

the application. For example, let’s say there are 10 unique queries or views that have been

executed at a certain time difference and the execution status of the queries are depicted in

a sample representation in the figure 3.2:

 Q1 Q2 Q3

 Q4 Q5
Q1 Q6 Q2 Q7

 Q8 Q9 Q10
Q4 Q5 Q6 Q7

 Q8 Q9
Q3 Q5 Q10 Q2

 Q9 Q6 Q2

Fig. 3.2 Sample representation of query execution frequencies

From the Fig. 3.2 the access frequency count of different queries can be found in the

Table 3.3:

Table 3.3 Access frequency count total for Fig. 3.2

Queries (Qn)-> Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Frequency (fn)-> 2 4 2 2 3 3 2 2 3 2

The access frequency of the query or how many times a query has been executed can be

found by querying the database history for SQL statements. The following algorithm

FindAccessFrequency in Fig. 3.3 computes the access frequencies of the queries:

55

Algorithm FindAccessFrequency

{

Given:

Input: A set of queries or views;

Output: Query-Access Frequency (n × 2) table matrix;

count = 0;

Begin

For i = 1 to total number of queries (n) {

Assign:

Qi = getNextQuery ();

SearchExistingQuery in the database SQL history;

If found () {

count = count + 1;

Add n to the query-access frequency matrix (Qi, fi);

}

Else {

count = 1;

Add count to the query-access frequency matrix (Qi, fi);

}

} End For;

End;

}

Fig. 3.3 Algorithm for finding access frequencies of the queries

Weighting factor for the query: To emphasis on the query access frequency, a weighting

factor (wn) has been assigned to reflect the importance of the query. If a query has higher

access frequency in the system, the higher is the weight. The weight can be calculated as,

 () ()1log += nkn fwWeight . (1)

The value of k is either 2 or 10. If the difference between the maximum and the minimum

frequency is using high, k is 10; otherwise it is 2.

56

Query Execution time: The time taken to execute a query is called the execution time (en)

of that query. The execution time of a query can be found from the database while

requesting the query or by enabling the execution time display.

Query Selectivity: As in the section 3.2, selectivity of view or query is defined as,

recordsinputofnoTotal

querythebyselectedrecordsofNosySelectivit n .
 .)(=(2)

Query Complexity: We have assumed that a query is more complex when the query

includes more than one table, more than one join or more than one aggregate operator in

its SQL statements. So the complexity is defined as

Complexity (cn) = No. of tables involved + No. of joining occurred + No. of aggregate

operator used

 = tn + jn + an . (3)

An algorithm FindQueryComplexities is provided in Fig. 3.4 for finding the query

complexities of number of tables involved in the query, number of joining occurred and

number of aggregate operators used for summarized data.

Algorithm FindQueryComplexities{

Given: Input: A set of queries or views;

Output: Query-Complexity (n × 4) table matrix;

Begin

For i = 1 to total number of queries (n) {

Assign: Qi = getNextQuery ();

SearchNumberofTablesInvolved (ti);

Add count total to QueryTableCount (Qi, ti);

SearchNumberofJoiningOccurred (ji);

Add count total to QueryJoiningCount (Qi, ji);

SearchNumberofAggregateOperatorsUsed (ai);

Add count total to QueryAggregationCount (Qi, ai);

Total Query Complexity, ci = ti + ji + ai;

} End For;

End;}

Fig. 3.4 Algorithm for finding query complexities namely no. tables, joining and

aggregations

57

Query processing cost: To compute the total query processing cost (QPn), we have

considered the query access frequency, weighting factor, query execution time,

selectivity, and complexity of the query. After completion of the (n, 8 + m) cost

associated table matrix, by applying the modified data mining algorithm [40] for finding

the large total cost associated with the queries, the query processing cost of each query

can be calculated as,

 Query processing cost of query Q1, 111111 csewf)(QP = (4a)

 Query processing cost of query Q2, 222222 csewf)(QP = (4b)

 Query processing cost of query Q3, 333333 csewf)(QP = (4c)

 .

 Query processing cost of query Qn, nnnnnn csewf)(QP = (4n)

Update frequency of base tables: The update frequency of the base tables (um) is the

counting of the total number of updates on the base tables at a particular time period. The

updates to the base tables can be insertion of new rows, modification of existing rows and

deletion of rows from the tables. We can calculate the update frequency of the base tables

as,

3

3
 . . .

)(

mmm

m

dmi

DeletionTimesofNoonModificatiTimesofNoInsertionsTimesofNo
ufrequencyUpdate

++
=

++
= (5)

Let’s say, in a database there are five base tables and at a particular time period the

updates to the tables are insertion, modification and deletion of rows. To illustrate the

example, a sample table-update frequency status is shown in Table 3.4.

58

Table 3.4 Sample table-update frequency status

No. of times updates to the tables
Tables (tm)

Insertion (im) Modification (mm) Deletion (dm)

Update Frequency

(um)

t1 10 4 2 33.5
3

2410
=

++
=

t2 8 3 4 5
3

438
=

++
=

t3 0 10 6 33.5
3

6100
=

++
=

t4 7 0 0 33.2
3

007
=

++
=

t5 9 5 0 67.4
3

059
=

++
=

The following algorithm FindUpdateFrequency in Fig. 3.5 is used to compute the total

update frequency of a query for the base tables:

Algorithm FindUpdateFrequency

{

Given:

Input: A set of database tables;

Output: Table-Update Frequency (m × 2) matrix;

Begin

For i = 1 to total number of tables (m) {

Assign:

ti = getNextTable ();

ij = SearchTableDataInsertHistory for table ti;

mj = SearchTableDataModificationHistory for table ti;;

dj = SearchTableDataDeletionHistory for table ti;

3
jjj

j

dmi
u

++
= ;

Add uj to Table-Update Frequency table matrix (ti, ui);

} End For;

End;

}

Fig. 3.5 Algorithm for finding update frequencies of the base tables

59

Weighting factor for the table: To emphasis on the base table update frequency, we have

assigned a weighting factor (wm) considering that the higher the frequency of the update in

the tables, the higher is the weight. To each table, the weight can be calculated as,

 () ()1log += mkm uwWeight .(6)

The value of k is either 2 or 10. If the difference between the minimum and the maximum

frequency is using high, k is 10; otherwise it is 2.

View maintenance cost: View maintenance is the process of updating pre-computed

views when the base fact table is updated. The maintenance cost for the materialized view

is the cost used for refreshing this view whenever a change is made to the base table. We

have calculated the maintenance cost using the update frequency of the base table and the

weighting factor to reflect the importance of the base table update frequency.

The associated update frequencies, corresponding weighting factors and maintenance cost

of the tables can be depicted in the following Table 3.5.

Table 3.5 Table maintenance costs

Table (tm)
Update

Frequency (um)

Weighting

Factor (wm)

Table Maintenance

Cost (MTm)

t1 u1 w1 MT1

t2 u2 w2 MT2

t3 u3 w3 MT3

.

tm um wm MTm

The maintenance cost of a table can be defined as of the multiplication of the update

frequency of that table and the weighting factor reflecting the importance of the table by

applying the modified data mining algorithm for finding large table maintenance cost,

 1111 , cos int wuMTtableaoftenanceMa = (7a)

60

 2222 , cos int wuMTtableaoftenanceMa = (7b)

 3333 , cos int wuMTtableaoftenanceMa = (7c)

 .

 mmmm wuMTtableaoftenanceMa = , cos int (7m)

The total maintenance cost associated with a query is the summation of the maintenance

costs of the tables that are involved with the query and is defined as,

 mMTMTMTMTMCQQueryofCostenanceMa ++++= ... , int 32111 (8a)

 mMTMTMTMTMCQQueryofCostenanceMa ++++= ... , int 32122 (8b)

 mMTMTMTMTMCQQueryofCostenanceMa ++++= ... , int 32133 (8c)

 .

 mnn MTMTMTMTMCQQueryofCostenanceMa ++++= ... , int 321 (8n)

Total query cost: Now, the total cost of the query and the associated maintenance cost can

be calculated by summing up the query processing cost and the view maintenance cost.

 1111 , otal MCQPTCQQueryofCostT += . (9a)

 2222 , otal MCQPTCQQueryofCostT += . (9b)

 3333 , otal MCQPTCQQueryofCostT += . (9c)

 .

 nnnn MCQPTCQQueryofCostT += , otal . (9n)

 Minimum of query total cost,
n

TCTCTCTC
MCMin n++++

=
...

)(321 (10)

n

TCi

n

i
∑
== 1 . (10a)

61

View selection algorithm: The following algorithm DynamicViewMaterializationSelection in

Fig. 3.6 selects the views dynamically for materialization to improve the query

performance based on the query processing cost and the view maintenance cost. The

algorithm first calculates the query processing cost and the maintenance cost associated

with the queries and the total cost for materialized view maintenance. Then it finds the

minimum of the total cost. Finally, the algorithm selects the queries with higher total

processing cost than the minimum total processing cost, Min (TC). Here, the Min (TC)

acts as the dynamic threshold level for the total processing cost.

Algorithm DynamicViewMaterializationSelection

{

Given:

Input: A set of queries or views;

Output: Query cost (n × 4) table matrix;

Begin

For i = 1 to total number of queries (n) {

Assign:

Qi = getNextQuery ();

Calculate the query processing cost (QPi);

Calculate the view maintenance cost (MCi);

TCi = Calculate the total cost (QPi + MCi)

} End For;

Find the minimum of the total cost Min (TC);

For i = 1 to total number of queries (n) {

If TCi > Min (TC) Then {

Select Qi for materialization;

Insertlist (Qi, QPi, MCi, TCi);

} End If;

} End For;

End;

}

Fig. 3.6 Algorithm for dynamic view selection to materialize

62

The output of the dynamic view selection algorithm is like in the following Table 3.6.

Table 3.6 Dynamically selected views for materialization

Query Query Cost Maintenance Cost Total Cost

Q1 QP1 MC1 TC1

Q3 QP3 MC3 TC2

Q7 QP7 MC7 TC7

Q10 QP10 MC10 TC10

3.5.2 Dynamic removal of old materialized views

To improve the query performance, the virtual views are materialized and the

materialized views need to be periodically updated with the changes to the base tables.

Materializing a view not only incurs maintenance cost but also it occupies a large storage

space. So it needs to check periodically that the materialized views are useful or not and

whether the materialize views are queried frequently. If the materialized views are not

queried frequently or the access frequencies to the materialized views are much less, then

those materialized views can be removed from the database in order to save the

maintenance time and also to free the storage spaces for the new view materialization.

Here, we have designed a dynamic model to remove the old materialized views based on

the access frequencies. To develop the algorithm for dynamic removal of old materialized

views first we need to fill up the following materialized views-access frequencies (n × 2)

matrix in Table 3.7.

Table 3.7 Materialized views-access frequencies matrix

Materialized Views (MVn) Access Frequencies (fn)

MV1 f1

MV2 f2
MV3 f3
.

MVn fn

The access frequencies of the materialized views can be computed as like the query

access frequency finding algorithm FindAccessFrequency in Fig. 3.3.

63

After filling up the table 3.7, the minimum of the access frequencies of the materialized

views is calculated using the following equation:

Minimum of the materialized view access frequency,
n

ffff
fMin n++++

=
...

)(321 (11)

Finally, the materialized views with low access frequencies below the minimum access

frequencies of the materialized views, Min (f) (Min (f) is the dynamic threshold level) are

selected for removal from the database. The dynamic old materialized view removal

process is depicted through the algorithm DynamicMaterializedViewRemoval in Fig. 3.7.

Algorithm DynamicMaterializedViewRemoval

{

Given:

Input: A set of existing materialized views;

Output: Materialized view (n × 1) table matrix;

Begin

For i = 1 to total number of materialized views (n) {

Assign:

MVi = getNextMaterializedView ();

Calculate the access frequencies of the materialized views (fi);

} End For;

Find the minimum of materialized view access frequency Min (f);

For i = 1 to total number of materialized views (n) {

If fi < Min (f) Then {

Select MVi for removal;

Insertlist (MVi);

Remove the materialized view MVi from the database;

} End If;

} End For;

End;

}

Fig. 3.7 Algorithm for dynamic removal of old materialized views

64

The output of the dynamic materialized view removal algorithm selects the materialized

views to remove the database is like in the following Table 3.8.

Table 3.8 Dynamically selected materialized views to remove

Materialized Views

MV2

MV4

MV8

MV9

CHAPTER - 4

RESULTS and DISCUSSIONS

4.1 Experimental Background

4.2 Experiments Results on View Materialization Determination

Methodology

 4.2.1 Varying view selectivity

 4.2.2 Varying view structural complexity

 4.2.3 Varying database size

4.3 Experiments Results on Dynamic Selection of Views and Removal of

Materialized views

 4.3.1 Dynamic selection of views

 4.3.2 Dynamic removal of materialized views

C h a p t e r 4

RESULTS AND DISCUSSIONS

Following the theoretical design and performance evaluation of view materialization

methodology and dynamic model for selecting views dynamically for materialization and

dynamic removal of old materialized views in Chapter 3, experimental performance

results have been carried out in this chapter.

4.1 Experimental Background

The experiments reported in this chapter have been carried out under the following

hardware and software environment:

Hardware: The hardware used in the experiments in a PC with the following

specifications:

Processor: Intel(R) Core(TM) 2 Duo, 2.00 GHz;

L2 Cache: 2 MB;

RAM: 3 GB and

Hard disk: 150 GB (where the systems software and 6 GB of paging space reside).

Software: The system software used in the experiments is Microsoft Windows XP

Professional Service Pack 3.

Database: The database used in the experiments is Oracle 11g Release 1 (11.1.0.6.0)

Enterprise Edition.

Database Schema: The popular sales history and order entry database schemas have

been used in the experiments by generating appropriate set of data to meet the research

experiment goal. The sales history schema contains the tables: CHANNELS,

COUNTRIES, COSTS, CUSTOMERS, PRODUCTS, PROMOTIONS, TIMES and SALES.

The order entry schema contains the tables: CUSTOMERS, COUNTRIES,

INVENTORIES, WAREHOUSES, ORDERS, ORDER_ITEMS,

PRODUCT_INFORMATIONS and PRODUCT_DESCRIPTIONS. The relationship of the

sales history schema tables is shown in Fig. 4.1. The detail table structures are given in

Appendix A.

67

Fig. 4.1 Relationship of the sales history schema tables

The sales history schema is a star schema representation of the data warehouse

environment. The star schema representation resembles a star with points radiating from a

center. Center of the star consists of one or more fact tables and the points of the star are

the dimension tables. The fact tables are the large tables in the data warehouse that store

the business measurements. These typically contain facts and foreign keys to the

dimension tables. The fact tables represent data, usually numeric and additive, that can be

analyzed and examined. Examples of facts tables in the sales history schema are SALES

and COSTS. The dimension tables are known as lookup or reference tables. It contains the

relatively static data in the data warehouse. Dimension tables store the information

normally used to contain in the queries and the information is usually textual and

descriptive and can use them as the row headers of the result set. Examples of dimension

tables in sales history schema are CUSTOMERS and PRODUCTS. Only one join

establishes the relationship between the fact table and any one of the dimension tables. In

Fig. 4.1, a relationship between the sales information in the fact table and the dimension

tables products and customers enforces the business rules in the database.

Database parameters setting: Normally when a database is installed the default settings

of the different database parameters meet the user’s operations. But all of the database

features are not enabled at the installation time or some parameters need to change to

meet the experiment like to use the query rewrite feature for using a materialized view to

answer a fully text matched or partially text matched query. The database parameters that

have been used for the experiments are listed in Table 4.1.

68

Table 4.1 List of database parameters and assigned values

Database Parameters (=) Assigned Values

memory_target = 314572800

max_memory_target = 536870912

query_rewrite_enabled = TRUE

query_rewrite_integrity = ENFORCED

job_queue_processes = 1000

optimizer_mode = FIRST_ROWS

compatible = 11.1.0.0.0

db_file_multiblock_read_count = 128

Open_cursors = 300

processes = 150

4.2 Experiments Results on View Materialization Determination Methodology

The methodology in the previous chapter evaluates the incremental materialized view

maintenance performance and determines the circumstances in which a virtual view or a

query can be selected as profitable to materialized for improving the query performance

considering the incremental materialized view maintenance cost. The incremental

performance and the circumstances being beneficial have been evaluated based on the

three issues namely - view selectivity, view structural complexity and database size. Each

of the issues then evaluated by considering the view maintenance cost comparison, query

answering cost comparison and relative cost of query answering and view maintenance

cost. In the subsequent sections, experimental results have shown for different view

selectivities, complexities and database size. The following databases in Table 4.2 have

been used in the experiments:

Table 4.2 Database used in the experiments

Database Size

Database db1 db2 db3 db4 db5

Records 730400 1460800 2191200 2921600 3652000

Size (MB) 41.69 83.38 125.12 166.82 208.53

69

4.2.1 Varying view selectivity

Different view selectivities arise as a result of a view containing predicates that filter the

input data. A set of five views and a set of five materialized views with different

selectivities are derived by instantiating the templates in Fig. 4.2. Each virtual view and

materialized views differ in the predicate фi in the where clause. Each predicate is

obtained by instantiating the template фi with cs.cust_id <= ki where k1 = 400 to k5 = 2000

in increments of 400, thereby yielding five different views and materialized views with

selectivities from 0.2 to 1.0 in increments of 0.2. In the customer table, there are 2000

customers and their cust_id is sequentially set from 1 to 2000, so it is possible to control

the selectivity of the template. For the experiment of the selectivity issue, the database db5

in Table 4.2 has been used by varying the cust_id in where condition. The detail

description of the queries or views is given in Appendix B.

CREATE VIEW <join_viewi> AS

SELECT cn.country_name country, p.prod_name prod, t.calendar_year year,

s.amount_sold sale FROM sales s, times t, customers cs, countries cn, products p

WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id

AND cs.country_id = cn.country_id AND cs.cust_id <= фi;

CREATE VIEW <aggregate_viewi> AS

SELECT ch.channel_desc, t.calendar_month_desc, cn.country_iso_code,

p.prod_name, SUM(s.amount_sold) SALES$, count(s.amount_sold) total FROM sales

s, customers c, times t, channels ch, countries cn, products p WHERE s.time_id=

t.time_id AND s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id <= фi GROUP

BY ch.channel_desc, t.calendar_month_desc, cn.country_iso_code, p.prod_name;

Fig. 4.2 Template used to derive view selectivities

The experiments on selectivity test explore the impact of view predicate selectivity on the

performance of incremental materialized view maintenance and determine the situations

of view materialization profitable. The experiment has been broken down into three parts

– view maintenance, query answering and relative costs; each corresponding to the

performance measurement factors under scrutiny.

70

View maintenance: The elapsed times of the incremental view maintenance and

rematerializing a view have been measured and the results are plotted in the Fig. 4.3 (a)

and Fig. 4.3 (b) for two types of queries: joins only queries and aggregate queries.

Joins Only Query (Incremental vs. Rematerialization graph)

0

10

20

30

40

50

60

Selectivity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 10.53 13.04 21.42 32.31 40.71

ReMat 11.67 15.99 23.9 37.89 54.13

0.2 0.4 0.6 0.8 1

Fig. 4.3 (a) View maintenance costs for joins only query

For the joins only query from Fig. 4.3 (a), the incremental maintenance cost and

rematerializing cost are almost same at a selectivity of 0.2, but as selectivity increases cost

increases for both cases. At selectivity 0.8, the incremental cost is 32.31 seconds whereas

for rematerializing the cost is 37.89 seconds.

Aggregate Query (Incremental vs. Rematerialization graph)

0

10

20

30

40

50

60

Selectivity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 7.2 11.01 13.64 17.45 22.45

ReMat 24.96 30.78 35.2 41.02 48.24

0.2 0.4 0.6 0.8 1

Fig. 4.3 (b) View maintenance costs for aggregate query

71

For the aggregate query from Fig. 4.3 (b), the incremental maintenance cost and

rematerializing cost are 7.2 and 24.96 at a selectivity of 0.2 but as selectivity increases

cost increases for both cases. At selectivity 0.6, the incremental cost is 13.64 seconds

whereas for rematerializing the cost is 35.2 seconds.

So, the cost of materialized view maintenance increases with an increase in view

selectivity in both cases (incremental propagation and rematerializing) but incremental

maintenance performs better that rematerializing.

Query answering: The Fig. 4.4 (a), (b), (c) and (d) show the cost of answering a view and

using rewrite in comparison with the cost of answering a materialized view.

Joins Only Query (Query answering using materialized view and virtual
view graph)

0

20

40

60

80

100

120

140

160

Selectivity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 6.86 13.6 20.78 28.4 36.49

View 19.06 35.48 60.14 98.04 134.18

0.2 0.4 0.6 0.8 1

Fig. 4.4 (a) Query answering costs of view for joins only query

For the joins only query, from Fig. 4.4 (a), the query answering cost for materialized view

and virtual view are 6.86 and 19.06 at a selectivity of 0.2, but after that the difference is

increases with in increase in selectivity. At a selectivity of 1.0, the query answering costs

are 36.49 and 134.18 respectively for materialized view and virtual view.

72

Aggregate Query (Query answering using materialized view and virtual
view graph)

0

10

20

30

40

50

60

70

80

Selectivity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 1.07 1.17 1.24 1.34 1.47

View 8.71 23.07 34.7 52.06 72.26

0.2 0.4 0.6 0.8 1

Fig. 4.4 (b) Query answering costs of view for aggregate query

For the aggregate query, from Fig. 4.4 (b), the query answering cost for materialized view

and virtual view are 1.07 and 8.71 at a selectivity of 0.2, but after that the difference is

increases with in increase in selectivity. At a selectivity of 0.8, the query answering costs

are 1.34 and 52.06 respectively for materialized view and virtual view.

Joins Only Query (Query answering using materialized view and rewriting
grpah)

0

10

20

30

40

50

60

70

80

90

100

Selectivity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 6.86 13.6 20.78 28.4 36.49

Rewrite 6.95 23.65 40.8 68.57 87.93

0.2 0.4 0.6 0.8 1

Fig. 4.4 (c) Query answering costs using rewrite for joins only query

73

For the joins only query, from Fig. 4.4 (c), the query answering cost for materialized view

and using rewrite are 6.86 and 6.95 at a selectivity of 0.2, but after that the difference is

increases with in increase in selectivity. At a selectivity of 1.0, the query answering costs

are 36.49 and 87.93 respectively for materialized view and using rewrite.

Aggregate Query (Query answering using materialized view and rewriting
grpah)

0

5

10

15

20

25

30

Selectivity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

Mat 1.07 1.17 1.24 1.34 1.47

Rewrite 8.1 13.24 17.37 20.49 25.6

0.2 0.4 0.6 0.8 1

Fig. 4.4 (d) Query answering costs using rewrite for aggregate query

For the aggregate query, from Fig. 4.4 (d), the query answering cost for materialized view

and using rewrite are 1.07 and 8.1 at a selectivity of 0.2, but after that the difference is

increases with in increase in selectivity. At a selectivity of 0.8, the query answering costs

are 1.34 and 20.49 respectively for materialized view and using rewrite.

So, it is seen that the query answering directly from the materialized views outperforms to

that of the answering a virtual view and answering query using query rewrite. It is also

noted that the query answering using rewrite is better than answering a virtual view. This

is because that the query rewrite engine rewrites a query based on full text match or

partial match to query from the materialized view rather than the base tables. Rewriting a

query takes more time to query than the direct query from the materialized view because

it takes time to search the materialized view text to match to its SQL statements and then

queries from the materialized views if it is matched.

74

Relative costs: The ratio of the cost of answering a virtual view to the cost of incremental

propagation, ratio of the cost of answering query rewrite to the incremental propagation

and the ratio of the cost of answering a virtual view to the cost of answering a query

rewrite measure how much it is profitable to select a view to materialize for improving the

query performance. Fig. 4.5 (a), (b), (c), (d), (e) and (f) show the relative costs of joins

only and aggregate queries.

Joins Only Query (Relative Cost Graph)

0

0.5

1

1.5

2

2.5

3

3.5

Selectivity

N
o.

 o
f U

pd
at

es

Rel. Cost 1.81 2.72 2.8 3.03 3.3

0.2 0.4 0.6 0.8 1

Fig. 4.5 (a) Relative cost of answering a view to the incremental propagation time for

joins only query

For the joins only query, from Fig. 4.5 (a), the relative cost of answering a virtual view to

the incremental maintenance of the materialized view is 1.81 at a selectivity of 0.2 and it

means that with the cost of answering a virtual view, two updates can be propagated to the

materialized view. Similarly, at a selectivity of 0.8, the relative cost is 3.30 means three

updates can be propagated with the cost of answering a virtual view.

75

Joins Only Query (Relative Cost Graph)

0

0.5

1

1.5

2

2.5

Selectivity

No
. o

f U
pd

at
es

Rel. Cost 1.61 1.81 1.9 2.12 2.16

0.2 0.4 0.6 0.8 1

Fig. 4.5 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query

For the joins only query, from Fig. 4.5 (b), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.61 at a selectivity of 0.2 and it

means that with the cost of query answering using rewrite, two updates can be propagated

to the materialized view. Similarly, at a selectivity of 0.8, the relative cost is 2.12 means

two updates can be propagated with the cost of query answering using rewrite.

Joins Only Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Selectivity

No
. o

f R
ew

ri
te

s

Rel. Cost 1.12 1.5 1.47 1.43 1.53

0.2 0.4 0.6 0.8 1

Fig. 4.5 (c) Relative cost of answering a view to that of using rewrite for joins only query

76

For the joins only query, from Fig. 4.5 (c), the relative cost of answering a virtual view to

that of using rewrite is 1.12 at a selectivity of 0.2 and it means that with the cost of

answering a virtual view one rewrite can possible. Similarly, at a selectivity of 1.0, two

rewrites can possible for the cost of answering a virtual view.

Aggregate Query (Relative Cost Graph)

0

0.5

1

1.5

2

2.5

3

3.5

Selectivity

N
o.

 o
f U

pd
at

es

Rel. Cost 1.21 2.1 2.54 2.98 3.22

0.2 0.4 0.6 0.8 1

Fig. 4.5 (d) Relative cost of answering a view to the incremental propagation time for

aggregate query

For the aggregate query, from Fig. 4.5 (d), the relative cost of answering a virtual view to

the incremental maintenance of the materialized view is 1.21 and it means that with the

cost of answering a virtual view, one update can be propagated to the materialized view at

a selectivity of 0.2. Similarly, at a selectivity of 0.8, the relative cost is 2.98 means three

updates can be propagated with the cost of answering a virtual view.

77

Aggregate Query (Relative Cost Graph)

1.05

1.1

1.15

1.2

1.25

1.3

Selectivity

No
. o

f u
pd

at
es

Rel. Cost 1.13 1.2 1.27 1.17 1.14

0.2 0.4 0.6 0.8 1

Fig. 4.5 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query

For the aggregate query, from Fig. 4.5 (e), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.13 at a selectivity of 0.2 and it

means that with the cost of query answering using rewrite, one update can be propagated

to the materialized view. Similarly, at a selectivity of 0.8, the relative cost is 1.17 means

one update can be propagated with the cost of answering using rewrite.

Aggregate Query (Relative Cost Graph)

0

0.5

1

1.5

2

2.5

3

Selectivity

N
o.

 o
f R

ew
ri

te
s

Rel. Cost 1.1 1.74 2 2.54 2.82

0.2 0.4 0.6 0.8 1

Fig. 4.5 (f) Relative cost of answering a view to that of using rewrite for aggregate query

78

For the aggregate query, from Fig. 4.5 (f), the relative cost of answering a virtual view to

that of using rewrite is 1.1 at a selectivity of 0.2 and it means that with the cost of

answering a virtual view one rewrite can possible. Similarly, at a selectivity of 0.8, three

rewrites can possible for the cost of answering a virtual view.

So, from the relative costs plots, it is observed that with the increase in selectivity for the

cost of answering a virtual view or answering a query using rewrite, more number of

updates can be propagated to the materialized views. It is also observed that if a query is

materialized then using query rewrite, answering a query time is saved at a considerable

amount in comparison with answering a virtual view.

In summary, the incremental materialized view maintenance is profitable over

rematerializing a view each time a change is made to the base tables and hence we can

infer that with the increase in view selectivity, a view is more cost effective for

materialization when the goal is to optimize query execution.

4.2.2 Varying view structural complexity

A view is structurally complex based on the number of tables involves, number of joining

conditions and number and kind of algebraic operators used for aggregating different data.

The complex views that have been used for the experiments are given in Appendix A. For

the experiment of the complexity issue, the database db5 in Table 4.2 has been used. This

experiment seeks to show how the complexity of the views may affect the performance of

incremental materialized view maintenance. Again, the experiment has been divided into

three parts – view maintenance, query answering and relative costs; each one

corresponding to the performance measurement factors under scrutiny.

View maintenance: The elapsed times of the incremental view maintenance and

rematerializing a view have been measured and the results are plotted in the Fig. 4.6 (a)

and Fig. 4.6 (b) for two types of queries: joins only queries and aggregate queries.

79

Joins Only Query (Incremental vs. Rematerialization graph)

0

20

40

60

80

100

120

140

160

180

Complexity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 27.17 35.54 44.49 53.28 61.71

ReMat 39.03 66.07 91.1 124.01 165.43

CV1 CV2 CV3 CV4 CV5

Fig. 4.6 (a) View maintenance costs for joins only query

For the joins only query from Fig. 4.6 (a), the incremental maintenance cost and

rematerializing cost are 27.17 and 39.03 respectively at a simple complex view, but as

complexity increases cost increases for both cases. At complexity CV4, the incremental

cost is 53.28 seconds whereas for rematerializing the cost is 124.01 seconds.

Aggregate Query (Incremental vs. Rematerialization graph)

0

20

40

60

80

100

120

140

Complexity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 33.89 43.67 54.23 65.88 77.07

ReMat 48.37 63.15 81.74 98.21 129.15

CV1 CV2 CV3 CV4 CV5

Fig. 4.6 (b) View maintenance costs for aggregate query

80

For the aggregate query from Fig. 4.6 (b), the incremental maintenance cost and

rematerializing cost are 33.89 and 48.37 respectively at complexity CV1, but as

complexity increases cost increases for both cases. At complexity CV3, the incremental

cost is 54.23 seconds whereas for rematerializing the cost is 48.37 seconds.

So, the cost of materialized view maintenance increases with an increase in view

complexity in both cases (incremental propagation and rematerializing) but incremental

maintenance performs better that rematerializing.

Query answering: The Fig. 4.7 (a), (b), (c) and (d) show the cost of answering a view and

using rewrite in comparison with the cost of answering a materialized view.

Joins Only Query (Query answering using materialized view and virtual
view graph)

0

20

40

60

80

100

120

Complexity

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

Mat 20.76 26.23 34.14 41.23 49.15

View 40.39 53.45 68.09 83.17 102.14

CV1 CV2 CV3 CV4 CV5

Fig. 4.7 (a) Query answering costs of view for joins only query

For the joins only query, from Fig. 4.7 (a), the query answering cost for materialized view

and virtual view are 20.76 and 40.39 at a complexity of CV1, but after that the difference

is increases with in increase in complexity. At a complexity of CV5, the query answering

costs are 49.15 and 102.14 respectively for materialized view and virtual view.

81

Aggregate Query (Query answering using materialized view and virtual
view graph)

0

20

40

60

80

100

120

140

Complexity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 11.03 14.14 19.43 26.02 33.54

View 44.06 69.57 75.04 98.79 123.01

CV1 CV2 CV3 CV4 CV5

Fig. 4.7 (b) Query answering costs of view for aggregate query

For the aggregate query, from Fig. 4.7 (b), the query answering cost for materialized view

and virtual view are 11.03 and 44.06 respectively at a complexity of CV1 but after that the

difference is increases with in increase in complexity. At a complexity of CV4, the query

answering costs are 26.02 and 98.79 respectively for materialized view and virtual view.

Joins Only Query (Query answering using materialized view and rewriting
grpah)

0

10

20

30

40

50

60

70

80

Complexity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 20.76 26.23 34.14 41.23 49.15

Rewrite 30.6 38.2 46.26 55.69 69.16

CV1 CV2 CV3 CV4 CV5

Fig. 4.7 (c) Query answering costs using rewrite for joins only query

82

For the joins only query, from Fig. 4.7 (c), the query answering cost for materialized view

and using rewrite are 20.76 and 30.6 at a complexity of CV1, but after that the difference

is increases with in increase in complexity. At a complexity of 1.0, the query answering

costs are 49.15 and 69.16.93 respectively for materialized view and using rewrite.

Aggregate Query (Query answering using materialized view and rewriting
grpah)

0

10

20

30

40

50

60

70

80

90

100

Complexity

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 11.03 14.14 19.43 26.02 33.54

Rewrite 36.38 49.08 58.98 72.73 87.05

CV1 CV2 CV3 CV4 CV5

Fig. 4.7 (d) Query answering costs using rewrite for aggregate query

For the aggregate query, from Fig. 4.7 (d), the query answering cost for materialized view

and using rewrite are 11.03 and 36.38 at a complexity of CV1, but after that the difference

is increases with in increase in complexity. At a complexity of CV4, the query answering

costs are 26.02 and 72.73 respectively for materialized view and using rewrite.

So, it is seen that the query answering directly from the materialized views outperforms to

that of the answering a virtual view and answering query using query rewrite. It is also

noted that the query answering using rewrite is better than answering a virtual view. This

is because that the query rewrite engine rewrites a query based on full text match or

partial match to query from the materialized view rather than the base tables. Rewriting a

query takes more time to query than the direct query from the materialized view because

it takes time to search the materialized view text to match to its SQL statements and then

queries from the materialized views if it is matched.

83

Relative costs: The ratio of the cost of answering a virtual view to the cost of incremental

propagation, ratio of the cost of answering query rewrite to the incremental propagation

and the ratio of the cost of answering a virtual view to the cost of answering a query

rewrite measure how much it is profitable to select a view to materialize for improving the

query performance. Fig. 4.8 (a), (b), (c), (d), (e) and (f) show the relative costs of joins

only and aggregate queries.

Joins Only Query (Relative Cost Graph)

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Complexity

N
o.

 o
f U

pd
at

es

Rel. Cost 1.49 1.5 1.54 1.56 1.66

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (a) Relative cost of answering a view to the incremental propagation time for

joins only query

For the joins only query, from Fig. 4.8 (a), the relative cost of answering a virtual view to

the incremental maintenance of the materialized view is 1.49 and it means that with the

cost of answering a virtual view, one update can be propagated to the materialized view at

a complexity of CV1. Similarly, at a complexity of CV4, the relative cost is 1.56 means

two updates can be propagated with the cost of answering a virtual view.

84

Joins Only Query (Relative Cost Graph)

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Complexity

No
. o

f U
pd

at
es

Rel. Cost 1.13 1.07 1.11 1.05 1.12

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query

For the joins only query, from Fig. 4.8 (b), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.13 at a complexity of CV1 and

it means that with the cost of answering using rewrite, one update can be propagated to

the materialized view. Similarly, at a complexity of CV4, the relative cost is 1.05 means

one update can be propagated with the cost of answering using rewrite.

Joins Only Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Complexity

No
. o

f R
ew

rit
es

Rel. Cost 0.76 1.4 1.47 1.49 1.48

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (c) Relative cost of answering a view to that of using rewrite for joins only query

85

For the joins only query, from Fig. 4.8 (c), the relative cost of answering a virtual view to

that of using rewrite is 0.76 at a complexity of CV1 and it means that with the cost of

query answering, one rewrite can possible. Similarly, at a complexity of CV4, one rewrite

can possible for the cost of answering a virtual view.

Aggregate Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Complexity

N
o.

 o
f U

pd
at

es

Rel. Cost 1.3 1.36 1.38 1.5 1.6

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (d) Relative cost of answering a view to the incremental propagation time for

aggregate query

For the aggregate query, from Fig. 4.8 (d), the relative cost of answering a virtual view to

the incremental maintenance of the materialized view is 1.3 and it means that with the

cost of answering a virtual view, one update can be propagated to the materialized view at

a complexity of CV1. Similarly, at a complexity of CV4, the relative cost is 1.5 means two

updates can be propagated with the cost of answering a virtual view.

86

Aggregate Query (Relative Cost Graph)

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

Complexity

No
. o

f U
pd

at
es

Rel. Cost 1.07 1.12 1.08 1.1 1.13

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query

For the aggregate query, from Fig. 4.8 (e), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.07 at a complexity of CV1 and

it means that with the cost of answering using rewrite, one update can be propagated to

the materialized view. Similarly, at a complexity of CV4, the relative cost is 1.1 means one

update can be propagated with the cost of answering using rewrite.

Aggregate Query (Relative Cost Graph)

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Complexity

N
o.

 o
f R

ew
ri

te
s

Rel. Cost 1.21 1.21 1.27 1.36 1.41

CV1 CV2 CV3 CV4 CV5

Fig. 4.8 (f) Relative cost of answering a view to that of using rewrite for aggregate query

87

For the aggregate query, from Fig. 4.8 (f), the relative cost of answering a virtual view to

that of using rewrite is 1.21 at a selectivity of 0.2 and it means that with the cost of

answering a virtual view one rewrite can possible. Similarly, at a complexity of CV4, one

rewrite can possible for the cost of answering a virtual view.

So, from the relative costs plots, it is observed that with the increase in view complexity

for the cost of answering a virtual view or answering a query using rewrite, more number

of updates can be propagated to the materialized views. It is also observed that if a query

is materialized then using query rewrite, answering a query time is saved at a considerable

amount in comparison with answering a virtual view.

In summary, the incremental materialized view maintenance is profitable over

rematerializing a view each time a change is made to the base tables and hence we can

infer that with the increase in view complexity, a view is more cost effective for

materialization when the goal is to optimize query execution.

4.2.3 Varying database size

When the database size varies from small size to large databases, requesting a query

causes more time to execute. The views that have been used for the database size

experiments are given in Appendix A. For the experiment of the database size issue, the

databases db1 to db5 in Table 4.2 have been used. This experiment explores the impact of

database size on the performance of incremental materialized view maintenance. Once

again, the experiment has been divided into three parts – view maintenance, query

answering and relative costs; each one corresponding to the performance measurement

factors under study.

View maintenance: The elapsed time of the incremental view maintenance and

rematerializing a view has been measured and the results are plotted in the Fig. 4.9 (a) and

Fig. 4.9 (b) for two types of queries: joins only queries and aggregate queries.

88

Joins Only Query (Incremental vs. Rematerialization graph)

0

20

40

60

80

100

120

140

160

180

200

DB Size

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 14.84 21.15 28.27 43.13 62.48

ReMat 37.26 66.98 116.27 154.15 190.09

DB1 DB2 DB3 DB4 DB5

Fig. 4.9 (a) View maintenance costs for joins only query

For the joins only query from Fig. 4.9 (a), the incremental maintenance cost and

rematerializing cost are 14.84 and 37.26 respectively at a database size of DB1, but as

database size increases cost increases for both cases. At a database size of DB4, the

incremental cost is 43.13 seconds whereas for rematerializing the cost is 154.15 seconds.

Aggregate Query (Incremental vs. Rematerialization graph)

0

50

100

150

200

250

DB Size

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

IncMat 16.79 24.63 36.2 48.01 56.69

ReMat 28.91 59.01 118.64 161.52 197.03

DB1 DB2 DB3 DB4 DB5

Fig. 4.9 (b) View maintenance costs for aggregate query

89

For the aggregate query from Fig. 4.9 (b), the incremental maintenance cost and

rematerializing cost are 16.79 and 28.91 at a database size of DB1, but as database size

increases cost increases for both cases. At a database size of DB3, the incremental cost is

36.2 seconds whereas for rematerializing the cost is 118.64.

So, the cost of materialized view maintenance increases with an increase in database size

in both cases (incremental propagation and rematerializing) but incremental maintenance

performs better that rematerializing.

Query answering: The Fig. 4.10 (a), (b), (c) and (d) show the cost of answering a view

and using rewrite in comparison with the cost of answering a materialized view.

Joins Only Query (Query answering using materialized view and virtual
view graph)

0

20

40

60

80

100

120

DB Size

E
la

ps
ed

 T
im

e
(in

 S
ec

on
ds

)

Mat 8.7 16.59 22.5 29.24 35.38

View 18.31 26.79 37.23 64.66 101.33

DB1 DB2 DB3 DB4 DB5

Fig. 4.10 (a) Query answering costs of view for joins only query

For the joins only query, from Fig. 4.10 (a), the query answering cost for materialized

view and virtual view are 8.7 and 18.31 at a database size of DB1, but after that the

difference is increases with in increase in database size. At a database size of DB5, the

query answering costs are 35.38 and 101.33 respectively for materialized view and virtual

view.

90

Aggregate Query (Query answering using materialized view and virtual
view graph)

0

20

40

60

80

100

120

DB Size

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

Mat 13.02 20.13 31.59 43.2 54.35

View 24.61 37.93 58.29 79.68 98.07

DB1 DB2 DB3 DB4 DB5

Fig. 4.10 (b) Query answering costs of view for aggregate query

For the aggregate query, from Fig. 4.10 (b), the query answering cost for materialized

view and virtual view are 13.02 and 24.61 at a database size of DB1, but after that the

difference is increases with in increase in database size. At a database size of DB4, the

query answering costs are 43.2 and 79.68 respectively for materialized view and virtual

view.

Joins Only Query (Query answering using materialized view and rewriting
grpah)

0

10

20

30

40

50

60

70

DB Size

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

Mat 8.7 16.59 22.5 29.24 35.38

Rewrite 17.48 23.23 34.02 45.31 64.07

DB1 DB2 DB3 DB4 DB5

Fig. 4.10 (c) Query answering costs using rewrite for joins only query

91

For the joins only query, from Fig. 4.10 (c), the query answering cost for materialized

view and using rewrite are 8.7 and 17.48 at a database size of DB1, but after that the

difference is increases with in increase in database size. At a database size of DB5, the

query answering costs are 35.38 and 64.07 respectively for materialized view and using

rewrite.

Aggregate Query (Query answering using materialized view and rewriting
grpah)

0

10

20

30

40

50

60

70

80

90

100

DB Size

El
ap

se
d

Ti
m

e
(in

 S
ec

on
ds

)

Mat 13.02 20.13 31.59 43.2 54.35

Rewrite 19.07 33.04 54.81 69.97 89.53

DB1 DB2 DB3 DB4 DB5

Fig. 4.10 (d) Query answering costs using rewrite for aggregate query

For the aggregate query, from Fig. 4.10 (d), the query answering cost for materialized

view and using rewrite are 13.02 and 19.07 at a database size of DB1, but after that the

difference is increases with in increase in database size. At a database size of DB4, the

query answering costs are 43.2 and 69.97 respectively for materialized view and using

rewrite.

So, it is seen that the query answering directly from the materialized views outperforms to

that of the answering a virtual view and answering query using query rewrite. It is also

noted that the query answering using rewrite is better than answering a virtual view. This

is because that the query rewrite engine rewrites a query based on full text match or

partial match to query from the materialized view rather than the base tables. Rewriting a

query takes more time to query than the direct query from the materialized view because

it takes time to search the materialized view text to match to its SQL statements and then

queries from the materialized views if it is matched.

92

Relative costs: The ratio of the cost of answering a virtual view to the cost of incremental

propagation, ratio of the cost of answering query rewrite to the incremental propagation

and the ratio of the cost of answering a virtual view to the cost of answering a query

rewrite measure how much it is profitable to select a view to materialize for improving the

query performance. Fig. 4.11 (a), (b), (c), (d), (e) and (f) show the relative costs of joins

only and aggregate queries.

Joins Only Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

DB Size

No
. o

f U
pd

at
es

Rel. Cost 1.23 1.27 1.32 1.5 1.62

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (a) Relative cost of answering a view to the incremental propagation time for

joins only query

For the joins only query, from Fig. 4.11 (a), the relative cost of answering a virtual view

to the incremental maintenance of the materialized view is 1.23 and it means that with the

cost of answering a virtual view, one update can be propagated to the materialized view at

a database size of DB1. Similarly, at a database size of DB5, the relative cost is 1.62 means

two updates can be propagated with the cost of answering a virtual view.

93

Joins Only Query (Relative Cost Graph)

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

DB Size

N
o.

 o
f U

pd
at

es

Rel. Cost 1.18 1.1 1.2 1.05 1.03

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (b) Relative cost of answering a query using rewrite to the incremental

propagation time for joins only query

For the joins only query, from Fig. 4.11 (b), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.18 at a database size of DB1

and with the cost of query answering using rewrite, one update can be propagated to the

materialized view. Similarly, at a database size of DB4, the relative cost is 1.05 means one

update can be propagated with the cost of query answering using rewrite.

Joins Only Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

DB Size

No
. o

f R
ew

rit
es

Rel. Cost 1.05 1.15 1.09 1.43 1.58

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (c) Relative cost of answering a view to that of using rewrite for joins only

query

94

For the joins only query, from Fig. 4.11 (c), the relative cost of answering a virtual view

to that of using rewrite is 1.05 at a database size of DB1 and it means that with the cost of

answering a virtual view one rewrite can possible. Similarly, at a database size of DB5,

two rewrites can possible for the cost of answering a virtual view.

Aggregate Query (Relative Cost Graph)

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

DB Size

No
. o

f U
pd

at
es

Rel. Cost 1.47 1.54 1.61 1.66 1.73

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (d) Relative cost of answering a view to the incremental propagation time for

aggregate query

For the aggregate query, from Fig. 4.11 (d), the relative cost of answering a virtual view

to the incremental maintenance of the materialized view is 1.47 and it means that with the

cost of answering a virtual view, one update can be propagated to the materialized view at

a database size of DB1. Similarly, at a database size of DB4, the relative cost is 1.66 means

two updates can be propagated with the cost of answering a virtual view.

Aggregate Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

DB Size

No
. o

f U
pd

at
es

Rel. Cost 1.14 1.34 1.5 1.46 1.58

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (e) Relative cost of answering a query using rewrite to the incremental

propagation time for aggregate query

95

For the aggregate query, from Fig. 4.11 (e), the relative cost of answering using rewrite to

the incremental maintenance of the materialized view is 1.14 at a database size of DB1

and it means that with the cost of query answering using rewrite, one update can be

propagated to the materialized view. Similarly, at a database size of DB5, the relative cost

is 1.58 means two update can be propagated with the cost of answering using rewrite.

Aggregate Query (Relative Cost Graph)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DB Size

No
. o

f R
ew

rit
es

Rel. Cost 1.29 1.15 1.06 1.14 1.1

DB1 DB2 DB3 DB4 DB5

Fig. 4.11 (f) Relative cost of answering a view to that of using rewrite for aggregate query

For the aggregate query, from Fig. 4.11 (f), the relative cost of answering a virtual view to

that of using rewrite is 1.29 at a database size of DB1 and it means that with the cost of

answering a virtual view, one rewrite can possible. With the increase in selectivity, less

rewrite can possible with the cost of answering a virtual view and at a database size of

DB4, one rewrite can possible for the cost of answering a virtual view.

So, from the relative costs plots, it is observed that with the increase in database size for

the cost of answering a virtual view or answering a query using rewrite, more number of

updates can be propagated to the materialized views. It is also observed that if a query is

materialized then using query rewrite, answering a query time is saved at a considerable

amount in comparison with answering a virtual view.

In summary, the incremental materialized view maintenance is profitable over

rematerializing a view each time a change is made to the base tables and hence we can

infer that with the increase in database size, a view is more cost effective for

materialization when the goal is to optimize query execution.

96

From the experimental results performed for view selectivity, complexity and database

size, it is found that in all cases, incremental maintenance is always better than

rematerializing and answering a query is cost effective in comparison with answering a

virtual view and if a view satisfies the above measurements, that view can be selected for

materialization for faster execution of that view or query.

4.2.4 Comparison with related work

Akhtar Ali et al. [13] evaluated the incremental materialized view maintenance

performance on object databases to determine the view materialization circumstances by

considering the relative cost comparison of answering a virtual view to the incremental

propagation time. Here, additionally, the relative costs of answering query rewrite to the

incremental propagation and the answering a virtual view to that of using rewrite have

been considered to evaluate the incremental materialized view maintenance performance

in ORDBMS and to determine the various situations of view materialization profitable. In

Fig. 4.12, a relative cost comparison of answering a virtual view to the incremental

propagation has shown on object database and on ORDBMS for selectivity issue. Here, it

is found that for the view with selectivity of 0.2, two updates can be propagated

incrementally for the cost of executing a query against the corresponding virtual view in

both cases. With an increase in the selectivity that ratio reduces to one for object database

while the ratio increases to three for ORDBMS, reflecting that for views with high

selectivity, if updates are all frequent, incremental maintenance may not be beneficial for

object databases but it can be beneficial for ORDBMS. It is noted that the experimental

results may infer other conclusion depending on the query types selection and also the

dependent data whether it contains only the object data or a combination of all kinds of

data.

Joins Only Query (Relative Cost Graph)

0

0.5

1

1.5

2

2.5

3

3.5

Selectivity

No
. o

f U
pd

at
es

Rel. Cost 1.81 2.72 2.8 3.03 3.3

0.2 0.4 0.6 0.8 1

(a) Relative cost in object database (b) Relative cost in ODRBMS

Fig. 4.12 Relative cost of answering a view to the incremental propagation

97

4.3 Experiments Results on Dynamic Selection of Views and Removal of

Materialized views

For the dynamic selection of views for materialization and dynamic removal of old

materialized views, we need to find the a set of individual queries and a set of

materialized views with the execution time, selectivity, complexity calculation, table

maintenance cost, query processing cost, view maintenance cost etc. The subsequent

sections illustrate the experimental results for the dynamic view selection for

materialization and dynamic selection of existing materialized views to remove from the

database.

4.3.1 Dynamic selection of views

Experiment no. 01:

First, we have calculated the maintenance cost associated with the tables using the update

frequencies of the tables and the weighting factors reflecting the importance of the tables.

The maintenance cost calculation of the tables is shown in the following Table 4.3.

Table 4.3 Maintenance cost calculation of the tables

SL tm im mm dm um wm MTm

1 channels 5 0 0 1.67 1.42 2.37

2 countries 0 0 0 0.00 0.00 0.000

3 costs 10 10 5 8.33 3.22 26.82

4 customers 50 0 10 20.00 4.39 87.80

5 products 10 0 0 3.33 2.11 7.03

6 promotions 5 2 0 2.33 1.74 4.05

7 times 1 0 0 0.33 0.41 0.14

8 sales 200 0 0 66.67 6.08 405.35

In Table 4.3, the weighting factor of the table is calculated

using . () (1log2 += mm uwWeight)

Now, the different cost associated with a query is calculated using the formula and

algorithm defined in Chapter 3 and a table of (n, 12 + m) is filled up in the Table 4.4. The

detail query definitions are provided in Appendix C.

98

TC
n

10
06

.1
4

17
67

6.
09

50
8.

81

11
28

7.
63

50
36

.9
0

41
2.

54

15
74

.8
1

17
94

.7
7

44
16

.5
1

45
76

.2
4

26
93

5.
07

35
56

.1
9

40
6.

81

43
65

.1
5

72
57

.4
1

65
1.

96

13
32

2.
45

11
23

.8
0

87
94

.9
3

M
C n

40
5.

35

49
3.

29

49
3.

15

40
5.

49

50
0.

32

41
2.

38

41
2.

52

41
2.

52

41
2.

52

50
0.

32

41
2.

52

50
0.

32

40
5.

49

50
0.

32

50
0.

32

49
3.

29

50
0.

32

50
0.

18

50
0.

32

M
T 8

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

M
T 7 0

0.
14

 0

0.
14

0.
14

 0

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

 0

0.
14

M
T 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
T 5 0 0 0 0

7.
03

7.
03

7.
03

7.
03

7.
03

7.
03

7.
03

7.
03

 0

7.
03

7.
03

 0

7.
03

7.
03

7.
03

M
T 4

0

87
.8

0

87
.8

0 0

87
.8

0 0 0 0 0

87
.8

0 0

87
.8

0 0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

M
T 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
T 2 0 0 0 0

0.
00

 0 0 0 0 0 0 0 0 0 0

0.
00

 0 0 0

M
T 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q
P n

60
0.

79

17
18

2.
80

15
.6

6

10
88

2.
14

45
36

.5
8

0.
16

11
62

.2
9

13
82

.2
5

40
03

.9
9

40
75

.9
2

26
52

2.
55

30
55

.8
7

1.
32

38
64

.8
3

67
57

.0
9

15
8.

67

12
82

2.
13

62
3.

62

82
94

.6
1

C n
6 5 8 17

12
 6 10
 6 6 9 5 8 6 9 8 8 8 6 7

a n 5 0 0 6 3 2 5 1 1 2 0 1 1 2 1 0 1 1 1

j n 0 2 4 5 4 2 2 2 2 3 2 3 3 3 3 4 3 2 2

t n 1 3 4 6 5 2 3 3 3 4 3 4 2 4 4 4 4 3 4

s n
1.

00
00

1.
00

00

0.
00

30

0.
40

00

1.
00

00

0.
00

05

1.
00

00

1.
00

00

1.
00

00

1.
00

00

1.
00

00

1.
00

00

0.
00

80

1.
00

00

1.
00

00

0.
44

40

1.
00

00

1.
00

00

1.
00

00

e n 10
.7

9

77
.4

11
.9

2

32
.3

1

9.
6

0.
31

9.
01

7.
71

15
.0

3

10
.2

69
.3

4

11
.0

4

0.
65

8.
67

9.
62

44
.6

7

40
.7

11
.2

30
.0

9

w n 2.
32

3.
70

3.
91

3.
81

3.
58

2.
81

2.
58

3.
32

3.
70

3.
70

4.
25

3.
46

3.
58

3.
81

4.
39

1.
00

3.
58

2.
32

3.
58

f n 4 12

14

13

11
 6 5 9 12

12

18

10

11

13

20
 1 11
 4 11

Q
n

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

w n
 =

 l
og

2 (
f n

+
1)

; c
n =

 t n
 +

 j n
 +

 a
n;

Q
P n

 =
 f n

w n
e n

s n
c n

; M
C n

 =
 M

T 1
 +

 M
T 2

+
. .

 .
+

M
T 8

; T
C n

 =
 Q

P n
 +

 M
C

n;

T
ab

le
 4

.4
 Q

ue
ry

 a
ss

oc
ia

te
d

co
st

ca
lc

ul
at

io
n

99

TC
n

16
50

.2
3

18
07

.3
7

39
33

.5
3

79
85

.0
0

13
29

.0
0

58
4.

06

36
00

.1
9

58
40

.7
7

80
93

.4
6

50
0.

11

10
98

4.
94

50
00

2.
88

23
33

.1
6

88
00

4.
43

58
50

.7
5

26
31

6.
52

11
03

1.
33

74
3.

80

76
91

.0
9

M
C n

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
3.

29

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

49
5.

66

50
2.

69

50
0.

32

50
0.

32

M
T 8

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

40
5.

35

M
T 7

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

0.
14

M
T 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
T 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.
03

7.
03

7.
03

M
T 4

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

87
.8

0

M
T 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
T 2 0

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

M
T 1

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

 0

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

2.
37

 0 0

Q
P n

11
54

.5
7

13
11

.7
1

34
37

.8
7

74
89

.3
4

83
3.

34

88
.4

0

31
04

.5
3

53
45

.1
1

75
97

.8
0

6.
82

10
48

9.
28

49
50

7.
22

18
37

.5
0

87
50

8.
77

53
54

.7
9

25
82

0.
86

10
52

8.
64

24
3.

48

71
90

.7
7

C n
8 10

10

10

10

10

10

10

10

10
 9 9 10
 9 10

10

12

13

14

a n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

j n 3 4 4 4 4 4 4 4 4 5 3 3 4 3 4 4 5 7 7

t n 4 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 6 5 5

s n 1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0.
12

8

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

0.
20

9

1.
00

0

e n 8.
56

7.
78

8.
73

8.
53

8.
98

8.
84

10
.3

9

7.
54

36
.1

8

0.
21

12
5.

59

11
1.

06

8.
75

11
8.

46

41
.5

1

47
.1

7

22
.2

8

2.
59

10
.3

7

w n 2.
81

2.
81

3.
58

4.
39

2.
32

1.
00

3.
32

4.
17

3.
00

3.
17

2.
32

3.
81

3.
00

4.
32

2.
58

3.
91

3.
58

3.
46

3.
81

f n 6 6 11

20
 4 1 9 17
 7 8 4 13
 7 19
 5 14

11

10

13

Q
n

Q
20

Q
21

Q
22

Q
23

Q
24

Q
25

Q
26

Q
27

Q
28

Q
29

Q
30

Q
31

Q
32

Q
33

Q
34

Q
35

Q
36

Q
37

Q
38

w n
 =

 l
og

2 (
f n

+
1)

; c
n =

 t n
 +

 j n
 +

 a
n;

Q
P n

 =
 f n

w n
e n

s n
c n

; M
C n

 =
 M

T 1
 +

 M
T 2

+
. .

 .
+

M
T 8

; T
C n

 =
 Q

P n
 +

 M
C

n;

100

The minimum of the total query cost, Min (TC) = 9289.13. So according to the

DynamicViewMaterializationSelection in Chapter 3, the following queries are selected for

materialization to improve the query performance.

Table 4.5 Candidates query for the view materialization

Query Query Cost Maintenance Cost Total Cost

Q2 17182.80 493.29 17676.09

Q4 10882.14 405.49 11287.63

Q11 26522.55 412.52 26935.07

Q17 12822.13 500.32 13322.45

Q30 10489.28 495.66 10984.94

Q31 49507.22 495.66 50002.88

Q33 87508.77 495.66 88004.43

Q35 25820.86 495.66 26316.52

Q36 10528.64 502.69 11031.33

From the experimental results, it reveals that the dynamic selection algorithm selects the

queries with not only high access frequencies but it also takes into consideration for

higher execution cost of the query. The Fig. 4.13 (a) and 4.13 (b) illustrate the

dynamically selected queries access frequency-complexity-execution cost graph.

Dynamic View Selection for Materialization

0

20

40

60

80

100

120

140

Queries

Fr
eq

ue
nc

y/
Co

m
pl

ex
ity

/E
xe

cu
tio

n
Ti

m
e

->

Frequency 12 13 18 11 4 13 19 14 11

Complexity 5 17 5 8 9 9 9 10 12

Execution Time 77.4 32.31 69.34 40.7 125.59 111.06 118.46 47.17 28.28

Q2 Q4 Q11 Q17 Q30 Q31 Q33 Q35 Q36

Fig. 4.13 (a) Dynamically selected queries for materialization (Column Chart)

101

From Fig. 4.13 (a), it is found that the dynamic model of the selection of views for

materialization dynamically selects queries not only those have higher access frequencies

but selects queries having execution cost. This means that if a query or a virtual view can

execute in a considerable amount of time but the query is executed a number of times, the

model does not select that query for materialization. The model also recommends for

view materialization of those queries that have higher execution cost but access

frequencies are a little bit low than the higher access frequencies at a particular time

period. In figure, the query Q33 has the higher access frequency 19 among all other

selected queries for materialization and also this query has an execution time of 118.46

less than the higher execution time of other queries that is 125.59. So the selection of this

query for materialization is profitable. In a second case, the query Q30 has a higher

execution cost but the access frequency is only 4 among all other queries and it is selected

for materialization because the query is also a complex query having a complexity count

of 9 which is more than the minimum of the complexity count of the queries. The same

information of the selected queries is depicted in Fig. 4.13 (b) with a line chart.

Dynamic Selection of Views for Materialization

0

20

40

60

80

100

120

140

160

QueriesE
xe

cu
tio

n
Ti

m
e/

C
om

pl
ex

ity
/F

re
qu

en
cy

Execution Time 77.4 32.31 69.34 40.7 125.6 111.1 118.5 47.17 28.28

Complexity 5 17 5 8 9 9 9 10 12

Frequency 12 13 18 11 4 13 19 14 11

Q2 Q4 Q11 Q17 Q30 Q31 Q33 Q35 Q36

Fig. 4.13 (b) Dynamically selected queries for materialization (Line Chart)

After the selected queries have been materialized, the query answering cost comparison

between the virtual view and materialized view is shown in the following Fig. 4.14 where

it is clearly identified that materializing a query increase query response time.

102

Cost comparison between virtual view and materialized view

0

20

40

60

80

100

120

140

Candidates query

El
ap

se
d

tim
e

(in
 s

ec
on

ds
)

Virtual View 77.4 32.3 69.3 40.7 126 111 119 47.2 28.3

Materialized View 18 8.41 22.8 13.1 40.8 35.2 31.3 14 6.09

Q2 Q4 Q11 Q17 Q30 Q31 Q33 Q35 Q36

Fig. 4.14 Query answering cost comparison for experiment 01

Experiment no. 02:

Again, first, we have calculated the maintenance cost associated with the tables using the

update frequencies of the tables and the weighting factors reflecting the importance of the

tables. The maintenance cost calculation of the tables is shown in the following Table 4.6.

Table 4.6 Maintenance cost calculation of the tables

SL tm im mm dm um wm MTm

1 countries 0 0 0 0.00 0.00 0.000

2 customers 50 0 10 20.00 4.39 87.80

3 inventories 200 0 0 66.67 6.08 405.35

4 orders 300 20 50 123.33 6.96 858.38

5 order_items 300 20 50 123.33 6.96 858.38

6 product_description 10 0 0 3.33 2.11 7.03

7 product_information 10 0 0 3.33 2.11 7.03

8 warehouses 50 0 0 16.67 4.14 69.01

In Table 4.6, the weighting factor of the table is calculated

using . () (1log2 += mm uwWeight)
Now, the different cost associated with a query is calculated using the formula and

algorithm defined in Chapter 3 and a table of (n, 12 + m) is filled up in the Table 4.7. The

detail query definitions are provided in Appendix C.

103

TC
n

62
34

.8
0

10
71

7.
76

22
70

0.
47

57
38

3.
28

20
11

2.
35

17
99

8.
83

83
06

1.
67

33
32

4.
72

34
17

5.
43

39
29

7.
39

M
C n 87
.8

0

48
8.

41

87
.8

0

18
04

.5
6

47
4.

35

17
16

.7
6

48
1.

38

14
.0

6

18
04

.5
6

18
04

.5
6

M
T 8

69
.0

1 0 0 0

69
.0

1 0

69
.0

1 0 0 0

M
T 7 0

7.
03

 0 0 0 0

7.
03

7.
03

 0 0

M
T 6 0

7.
03

 0 0 0 0 0

7.
03

 0 0

M
T 5

0 0 0

85
8.

38
 0

85
8.

38
 0 0

85
8.

38

85
8.

38

M
T 4

0 0 0

85
8.

38
 0

85
8.

38
 0 0

85
8.

38

85
8.

38

M
T 3

0

40
5.

34
 0 0

40
5.

34
 0

40
5.

34
 0 0 0

M
T 2

87
.8

 0

87
.8

87
.8

 0 0 0 0

87
.8

87
.8

M
T 1 0 0 0 0 0 0 0 0 0 0

Q
P n

61
47

.6
6

10
22

9.
35

22
61

2.
67

55
57

8.
72

19
63

8.
00

16
28

2.
07

82
58

0.
29

33
31

0.
66

32
37

0.
87

37
49

2.
83

C n

4 8 4 5 3 3 5 4 7 6

a n 1 0 0 0 0 0 0 0 2 1

j n 1 4 2 2 1 1 2 2 2 2

t n 2 4 2 3 2 2 3 2 3 3

s n 1 1 1 1 1 1 1 1 1 1

e n 31
.0

3

32
.4

7

43
8.

23

28
1.

34

10
9.

10

15
6.

86

18
8.

11

18
7.

56

22
0.

21

20
9.

13

w n 3.
81

3.
58

2.
58

4.
39

4.
00

3.
46

4.
39

3.
70

3.
00

3.
32

f n 13

11
 5 9 15

10

20

12
 7 9

Q
n

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

w n
 =

 l
og

2 (
f n

+
1)

; c
n =

 t n
 +

 j n
 +

 a
n;

Q
P n

 =
 f n

w n
e n

s n
c n

; M
C n

 =
 M

T 1
 +

 M
T 2

+
. .

 .
+

M
T 8

; T
C n

 =
 Q

P n
 +

 M
C

n;

T
ab

le
 4

.7
 Q

ue
ry

 a
ss

oc
ia

te
d

co
st

ca
lc

ul
at

io
n

(e
xp

er
im

en
t-0

2)

104

The minimum of the total query cost, Min (TC) = 29500.67. So according to the

DynamicViewMaterializationSelection in Chapter 3, the following queries are selected for

materialization to improve the query performance.

Table 4.8 Candidates query for the view materialization

Query Query Cost Maintenance Cost Total Cost

Q4 55578.72 1804.56 57383.28

Q7 82580.29 481.38 83061.67

Q8 33310.66 14.06 33324.72

Q9 32370.87 1804.56 34175.43

Q10 37492.83 1804.56 39297.39

From the experimental results, it reveals that the dynamic selection algorithm selects the

queries with not only high access frequencies but it also takes into consideration for

higher execution cost of the query. The Fig. 4.15 illustrates the dynamically selected

queries access frequency-complexity-execution cost graph.

Dynamic View Selection for Materialization

0

50

100

150

200

250

300

Queries

Fr
eq

ue
nc

y/
C

om
pl

ex
ity

/E
xe

cu
tio

n
Ti

m
e

->

Frequency 9 20 12 7 9

Complexity 5 5 4 7 6

Execution Time 281.34 188.11 187.56 220.21 209.13

Q4 Q7 Q8 Q9 Q10

Fig. 4.15 Dynamically selected queries for materialization

From Fig. 4.15, it is found that the dynamic model of the selection of views for

materialization dynamically selects queries not only those have higher access frequencies

105

but selects queries having execution cost. This means that if a query or a virtual view can

execute in a considerable amount of time but the query is executed a number of times, the

model does not select that query for materialization. The model also recommends for

view materialization of those queries that have higher execution cost but access

frequencies are a little bit low than the higher access frequencies at a particular time

period. In figure, the query Q7 has the higher access frequency 20 among all other

selected queries for materialization and also this query has an execution time of 188.11

less than the higher execution time of other queries that is 281.34. So the selection of this

query for materialization is profitable. In a second case, the query Q4 has a higher

execution cost and the access frequency is 9 among all other queries and it is selected for

materialization because the query is also a complex query having a complexity count of 5

which is more than the minimum of the complexity count of the queries.

After the selected queries have been materialized, the query answering cost comparison

between the virtual view and materialized view is shown in the following Fig. 4.16 where

it is clearly identified that materializing a query increase query response time.

Cost comparison between virtual view and materialized view

0

50

100

150

200

250

300

Candidates query

El
ap

se
d

tim
e

(in
 s

ec
on

ds
)

Virtual View 281.34 188.11 187.56 220.21 209.13

Materialized View 34.33 28.09 26.58 35.18 29.13

Q4 Q7 Q8 Q9 Q10

Fig. 4.16 Query answering cost comparison for experiment 02

106

4.3.2 Dynamic removal of materialized views

In order to dynamically select the materialized views with low access frequencies for the

removal from the database to free the storage space for the new view materialization and

also to decrease the overall view maintenance cost, first we have computed the access

frequencies of the existing materialized views. The existing materialized views with the

access frequencies of these are shown in the Table 4.9.

Table 4.9 Access frequencies of existing materialized views

SL No. Materialized views (MVn) Access frequencies (fn)

1. MV2 6

2. MV4 4

3. MV11 19

4. MV17 10

5. MV30 3

6. MV31 11

7. MV33 5

8. MV35 11

9. MV36 18

Now the minimum of the access frequencies is calculated by dividing the total number of

materialized views to the summation of the access frequencies and the Min (f) = 9.67. So

according the DynamicMaterializedViewRemoval algorithm in the Chapter 3, the

following materialized views are selected for removal dynamically.

Table 4.10 Dynamically selected materialized views for removal

SL No. Materialized views (MVn)

1. MV2

2. MV4

3. MV30

4. MV33

107

4.3.3 Comparison with related work

The factors that have been considered here to compare our work with work done by

Ashadevi and Dr. Balashubramanian [35] are listed out in the following Table 4.11.

Table 4.11 Comparison of factors for selection of views with [35]

SL Factors Existing Method [35] Proposed Method

1. Query access frequency Yes Yes

2. Query weight No Yes

3. Query execution time No Yes

4. View selectivity No Yes

5. View complexity No Yes

6. Base table update frequency Yes Yes

7. Table weight No Yes

8. Priority of table Yes No

9. Threshold level Arbitrary Dynamic

The following points can be noted based on factors in the above table:

i. A weighting factor based on the query access frequency has been assigned to each

of the query to reflect the importance of the query which has not been considered

in [35];

ii. Query execution time has been considered here in the sense that if any query can

be executed in reasonable amount of time then that query should not be selected

for materialization;

iii. If a query retrieves more rows in comparison with the input rows and access

frequency is high can be selected for materialization and the query executes

quickly;

iv. Computing large number of joining at run time of a query faces longer execution

time. In order to avoid, large joining or aggregation operations at run time,

complexity based on joining, aggregations and tables involved has been

considered for the view selection;

v. The base tables may be updated frequently, so a weighting factor has been

assigned to each of the base table to reflect the importance of the tables based on

108

the update frequency of the base tables rather than using a predefined priority

value which is used in [35]. A predefined priority value for the base tables might

not properly reflect the table’s importance;

vi. In [35], the threshold level for the selection of views or any other stage has been

selected arbitrary. An arbitrary selection of threshold level is difficult to choose as

it may results unnecessary selection of views to materialize. In this work, the

threshold level has been calculated dynamically based on the total cost associated

with the queries;

vii. In [35], the arbitrary threshold level has been selected two times – first at the time

of addition of the high frequency queries to the vector of selected queries and

second time at the selection of views for further process. Here, the dynamic

threshold level need to be defined only at the end of all calculation to the views to

materialize;

viii. At the beginning, queries with high access frequencies have been selected to

process further in [35] but this may lead to opt out the selection of queries with

higher execution time, more complex or retrieving most of the input records. This

research guarantees the view selection with not only the high access frequencies

but also with higher execution time, complex or higher selectivities i.e., an

appropriate set of views is selected for materialization.

In case of removing the old existing materialized views and to free storage space for

future view materialization, access frequencies and storage space have been calculated

and then materialized views are selected for removal based on arbitrary threshold level in

[35]. In this research, we have considered only the access frequencies of the materialized

views for removal based on the dynamic threshold level computing from the access

frequencies of the materialized views. The consideration of only materialized view access

frequencies in the sense that materialized views occupying large storage spaces might

have higher access frequencies and removing it would result unnecessary higher

execution time. So, the materialized views with only low access frequencies are selected

to remove from the database to free storage space for future view materialization.

Here, experiments have shown based on two points of arbitrary threshold level selection

and selecting first the queries with higher access frequencies for further process. Let, the

109

threshold level for the initial selection of queries or views with higher access frequencies

is 12. So, the queries with higher frequencies than the threshold level 12 are selected

which are listed in Table 4.9.

Table 4.12 Initial selection of views for further process

View Access Frequency Execution Time Complexity Total Cost

Q3 14 11.92 8 508.81

Q4 13 32.31 17 11287.63

Q11 18 69.34 5 26935.07

Q14 13 8.67 9 4365.15

Q15 20 9.62 8 7257.41

Q23 20 4.39 10 7985.00

Q27 17 4.17 10 5840.77

Q31 13 3.81 9 50002.88

Q33 19 4.32 9 88004.43

Q35 14 3.91 10 26316.52

Q38 13 3.81 14 7691.09

From Table 4.9, it is seen that the initial selection of views higher access frequencies has

opt out the views Q2, Q17, Q30 and Q36 for further process which views have selected for

materialization using our method in the final stage, because these views may have low

access frequencies than the threshold level 12 but these have higher execution cost and

also complex. On the other hand, in Table 4.9, there are some views that may have higher

access frequencies but can execute in a reasonable amount of time.

Now, let the threshold level for the final selection based on the total cost associated with

the queries is 30000. So, according to our view selection algorithm, views Q31 and Q33 are

selected for materialization. If we determine the dynamic threshold level by dividing the

total number of views to the summation of the total costs of the views, the threshold level

is selected as 21472.25. By using this dynamic threshold, we get the following views for

materialization in Table 4.10.

110

Table 4.13 Selected views for materialization

View Access Frequency Execution Time Complexity Total Cost

Q11 18 69.34 5 26935.07
Q31 13 3.81 9 50002.88
Q33 19 4.32 9 88004.43
Q35 14 3.91 10 26316.52

The following Fig. 4.17 shows the selected views status for materialization to materialize.

Dynamic View Selection for Materialization

0

20

40

60

80

100

120

140

Queries

Fr
eq

ue
nc

y/
C

om
pl

ex
ity

/E
xe

cu
tio

n
Ti

m
e

->

Frequency 18 13 19 14

Complexity 5 9 9 10

Execution Time 69.34 111.06 118.46 47.17

Q11 Q31 Q33 Q35

Fig. 4.17 Dynamically selected queries for materialization

So, in comparison with the previously selected views in Section 4.3.1 and from Fig. 4.17,

we found that if the views with high access frequencies are selected for further processing

based on arbitrary threshold level, there is chance of opt out of the views that could be

materialized and be profitable to improve the view performance. But as at first, the views

with less access frequencies than the threshold level are not selected (for example, views

like Q2 or Q30 where Q2 has an access frequency of 12 and normal execution requires 77.4

seconds and Q30 has an access frequency of 4 but normal execution requires 125.59

seconds). After that, arbitrary threshold level selection for view selection selects only two

views Q31 and Q33 while all other views that could be beneficial for materialization are not

selected. Finally, based on the dynamic threshold level in the seconds case (Fig. 4.17),

four views are selected for materialization. In comparison with the Fig. 4.13 and Fig.

4.17, it is found that dynamic threshold level is much better than arbitrary threshold level

for selecting appropriate set of views to materialize for improving query performance.

CHAPTER - 5

CONCLUSION and FUTURE RESEARCH

5.1 Conclusion

5.2 Recommendation for Future Work

C h a p t e r 5

CONCLUSION AND FUTURE RESEARCH

This chapter summarizes the conclusion drawn from the research performed for this thesis

and finally recommends for future research works.

5.1 Conclusion

From a user point of view, a query needs to execute very quickly. And for the faster query

response, the results of that query should have to be stored in the database prior to the

execution of the query. Materialized views provide this benefit. But materializing needs to

reflect the changes that are made in its base relations with very cost effectively. Also users

request usually lots of queries at a time to execute faster, but all of those queries cannot be

materialized as it incurs maintenance cost. All of the views that have been materialized

before may not used for long time and hence to reduce the maintenance cost and to free

the storage space for new view materialization old materialized views need to be removed

periodically. In this research work, we have developed a methodology to evaluate the

incremental materialized view maintenance performance and to determine the

circumstances in which a cost effective view can be selected for materialization. We have

also designed the dynamic cost model for dynamic selection of views to materialize and

dynamically remove the old materialized views. The general findings of the thesis can be

pointed out as follows:

 The methodology evaluates the incremental materialized view maintenance

performance by considering the incremental propagation time in comparison with

the rematerializing, answering query using materialized view, virtual view and

using query rewrite.

 The experiments carried out for the developed methodology infers that:

 Incremental materialized view maintenance is better than rematerializing a

view;

 Answering a query using materialized views and using query rewrite is

beneficial than answering a virtual view.

113

 The methodology determines the situations of the view materialization by

considering the relative costs of answering query in comparison with the

materialized view maintenance where materializing a view benefits over the virtual

view.

 For the dynamic selection of views for materialization, we have considered factors

like - query access frequency, execution time, query selectivity and complexity to

calculate the query processing cost and we have considered the table update

frequency for the calculation of view maintenance cost as the base table update cost

is actually the view maintenance cost to be updated with the base table’s changes.

 A weighting factor is calculated based on the query access frequencies and the

tables update frequencies to reflect the importance of the queries and the tables.

 The total cost of the query is calculated by adding the query processing cost and the

view maintenance cost. Then the queries with higher total cost than that of a

minimum total cost are selected for materialization. The most important thing is that

the minimum total cost which is the threshold level for view selection is selected

dynamically and no previous works have been found on dynamic threshold level for

the dynamic selection of views.

 The dynamic selection of views selects queries not only those have higher access

frequencies but also queries with higher execution costs are selected for

materialization. That means, this model does not select a query for materialization if

the access frequency of this query is very high but execution cost is very low.

Because as the query can be executed from the base tables directly within a

considerable amount of time, the model will not recommend it to materialize where

extra maintenance cost will incur and storage space will be occupied for that.

Conversely, a query with not much less in access frequency but the execution cost

is too high then the model may determine that query for materialization considering

other factors like selectivity and complexity.

 Finally, the old materialized views that have low access frequencies are selected for

removal from the database to free the storage space for future view materialization

to remove the maintenance cost associated with those views. Again, in here, the

threshold level is determined dynamically from all of the access frequencies.

114

5.2 Recommendation for Future Work

The future expansion of this research may explore the following issues:

 Table and materialized view partitioning have not been considered here;

partitioning could further improve the overall query performance.

 It was assumed that there is sufficient storage space available for the dynamically

selected view materialization. How much storage space is required for the new view

materialization and how much storage space is available in the disk can be

calculated and based on the available storage space again a minimal subset of views

those are higher profitable for materialization can be selected from the already

selected subset of views for materialization.

 System’s present workload has not been considered. Based on the system workload

the higher profitable views for materialization can be selected as a minimal subset

from the previous dynamically selected subset of views.

 Indexing not only makes table access faster but also makes faster materialized view

access for query partial rewrite; the dynamic selection of materialized view columns

and table columns for indexing will make query to execute faster.

REFERENCES

REFERENCES

[1] Codd, E. F., “A relational model of data for large data banks,” Communications of

the ACM, vol. 13, no. 6, pp. 377-387, 1970.

[2] Data Integration Glossary, U.S. Department of Transportation, August 2001.

[3] Gupta, A., Mumick, I. S., Materialized views: problems, techniques and

applications, MIT Press, USA, pp. 589, 1999.

[4] Chaudhuri, S., and Dayal, U., “An Overview of Data Warehousing and OLAP

Technology,” SIGMOD Record, vol. 26, no. 1, pp. 65-74, 1997.

[5] Chen, S., and Rundensteiner, E. A., “GPIVOT: Efficient Incremental Maintenance

of Complex ROLAP Views,” 21st International Conference on Data Engineering

(ICDE’05), pp. 552-563, 2005.

[6] Rashid, A. N. M. B., and Islam, M. S., “Role of Materialized View Maintenance

with PIVOT and UNPIVOT Operators,” IEEE International Advance Computing

Conference (IACC’09), Patiala, India, pp. 951-955, March 6-7, 2009.

[7] Valluri, S. R., Vadapalli, S., and Karlapalem, K., “View Relevance Driven

Materialized View Selection in Data Warehousing Environment,” Proceedings of

the 13th Australian Database Conference (ADC2002), Melbourne, Australia, vol. 5,

pp. 187-196, 2002.

[8] Gupta, A., Mumick, I., and Subrahmanian, V., “Maintaining views incrementally,”

Proceedings of SIGMOD, pp. 157–166, 1993.

[9] Griffin, T., and Libkin, L., “Incremental Maintenance of Views with Duplicates,”

Proceedings of SIGMOD, pp. 328-339, 1995.

[10] Agrawal, R., Abbadi, A. E., Singh, A., and Yurek, T., “Efficient View

Maintenance at Data Warehouses,” Proceedings of SIGMOD, Arizona, USA, pp.

417-427, 1997.

[11] Gluche, D., Grust, T., Mainberger, C., and Scholl, M., “Incremental updates for

materialized OQL views,” Proceedings of DOOD, pp. 52–66, 1997.

[12] Zhuge, Y., Molina, H. G., Hammer, J., and Widom, J., “View maintenance in a

warehousing environment,” Proceedings of SIGMOD, pp. 316-327, May 1995.

117

[13] Ali, M. A., Paton, N. W., and Farnandes, A. A. A., “MOVIEW: An incremental

maintenance system for materialized object views,” Data & Knowledge

Engineering, vol. 47, no. 2, pp. 131-166, November 2003.

[14] Lee, K. Y., and Son, J. H., “Reducing cost of accessing relations in incremental

view maintenance,” Decision Support Systems, vol. 43, no. 2, pp. 512-526, March

2007.

[15] Chen, J., Long, T., and Deng, K., “The consistency of materialized view

maintenance and drill-down in a warehousing environment,” Proceedings of the

2008 the 9th International Conference for Young Computer Scientist (ICYCS), pp.

1169-1174, 2008.

[16] Lee, K. Y., and Kim, M. H., “Optimizing the incremental maintenance of multiple

join views,” Proceedings of the 8th ACM International Workshop on Data

Warehousing and OLAP, Bremen, Germany, pp. 107-113, 2005.

[17] Surendrababu, B., Reshmy, K. R., and Srivasta, S. K., “Automatic incremental

view maintenance in SchemaSQL,” Information Technology Journal, vol. 5, no. 2,

pp. 314-321, 2006.

[18] Hanson, E. N., “A performance analysis of view materialization strategies,”

Proceedings of SIGMOD, pp. 440–453, 1987.

[19] Blakeley, J. A., and Martin, N. L., “Join index, materialized view, and hybrid-hash

join: a performance analysis,” Proceedings of ICDE, pp. 256–263, 1990.

[20] Hull, R., and Zhou, G., “Towards the study of performance trade-offs between

materialized and virtual integrated views,” Proceedings of VIEWS, pp. 91–102,

1996.

[21] Ashadevi, B., and Balasubramanian R., “Cost effective approach for materialized

views selection in data warehousing environment,” International Journal of

Computer Science and Network Security (IJCSNS), vol. 8, no. 10, pp. 236-242,

October 2008.

[22] Harianarayan, V., Rajaraman, A., and Ullman, J., “Implementing data cubes

efficiently,” Proceedings of ACM SIGMOD 1996 International Conference on

Management of Data, Montreal, Canada, pp. 205-216, 1996.

118

[23] Yang, J., Karlapalem, K., and Li, Q., “A framework for designing materialized

views in data warehousing environment,” Proceedings of 17th IEEE International

Conference on Distributed Comuting Systems, Maryland, USA, pp. 458, May 1997.

[24] Gupta, H., and Mumick, I. S., “Selection of views to materialized in a data

warehouse,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 1,

pp. 24-43, 2005.

[25] Shukla, A., Deshpande, P., and Naughton, J. F., “Materialized view selection for

multidimensional datasets,” Proceedings of 24th International Conference on Very

Large Data Bases, pp. 488-499, 1998.

[26] Gupta, H., and Mumic, I. S., “Selection of views to materialize under a

maintenance cost constraint,” Proceedings of 7th International Conference on

Database Theory (ICDT’99), Jerusalem, Israel, pp. 453-470, 1999.

[27] Zhang, C., and Yang, J., “Genetic algorithm for materialized view selection in data

warehouse environments,” Proceedings of the International Conference on Data

Warehousing and Knowledge Discovery, LNCS, vol. 1676, pp. 116-125, 1999.

[28] Agrawal, S., Chaudhuri, S., and Narasayya, V., “Automated selection of

materialized views and indexes in SQL databases,” Proceedings of the 26th

International Conference on Very Large Data Bases, pp. 496-505, 2000.

[29] Zhang, C., Yao, X., and Yang, J., “An evolutionary approach to materialized view

selection in a data warehouse environment,” IEEE Transactions on Systems, Man

and Cybernetics, vol. 31, no. 3, pp. 282-293, 2001.

[30] Lee, M., and Hammer, J., “Speeding up materialized view selection in data

warehouses using a randomized algorithm,” International Journal of Cooperative

Information Systems, vol. 10, no. 3, pp. 327-353, 2001.

[31] Kalnis, P., Mamoulis, N., and Papdias, D., “View selection using randomized

search,” Data and Knowledge Engineering, vol. 42, no. 1, pp. 89-111, 2002.

[32] Yu, J. X., Yao, X., Choi, C., and Gou, G., “Materialized view selection as

constrained evolutionary optimization,” IEEE Transactions on Systems, Man and

Cybernetics, part. C, vol. 33, no. 4, pp. 458-467, 2003.

[33] Wang, Z., and Zhang, D., “Optimal genetic view selection algorithm under space

constraint,” International Journal of Information Technology, vol. 11, no. 5, pp. 44-

51, 2005.

119

[34] Aouiche, K., Jouve, P., and Darmont, J., “Clustering-based materialized view

selection in data warehouses,” Advances in Databases Information Systems

(ADBIS’06), LNCS, vol. 4152, pp. 81-95, 2006.

[35] Ashadevi, B., and Balasubramanian R., “Optimized cost effective approach for

selection of materialized views in data warehousing,” Journal of Computer Science

and Technology, vol. 9, no. 1, pp. 21-26, April 2009.

[36] Silberschatz, A., Korth, H. F., and Sudarshan, S., Database system concepts.

Fourth Edition, McGraw-Hill Companies Inc., New York, USA, chap. 14, pp. 529-

562, 2002.

[37] Lane, P., Oracle® database data warehousing guide 11g release 1 (11.1), Part.

B28313-02, September, 2007.

[38] Urbano, R., Oracle® database advanced replication 11g release 1 (11.1), Part.

B28326-01, July, 2007.

[39] Cunningham, C., Legaria, C. A. G., and Graefe, G., “PIVOT and UNPIVOT:

optimization and execution strategies in an RDMS,” Proceedings of the 30th VLDB

Conference, Toronto, Canada, pp. 998-1009, 2004.

[40] Shafey, M. A. L., Performance Evaluation of Database Design Approaches for

Object Relational Data Management, M. Sc. Engg. Thesis, Institute of Information

and Communication Technology, Bangladesh University of Engineering and

Technology, 2008.

APPENDICES

A P P E N D I X A

DATABASE SCHEMA TABLES WITH COLUMN DEFINITIONS

Table A.1 SALES HISTORY SCHEMA TABLES

a. CHANNELS (small dimension table)

Column Name Pk Null? Data Type Comments

channel_id 1 N number primary key column

channel_desc N varchar2(20) e.g., telesales, internet, catalog

channel_class N varchar2(20) e.g., direct, indirect

channel_class_id N number

channel_total N varchar2(13)

channel_total_id N number

b. COUNTRIES (dimension table)

Column Name Pk Null? Data Type Comments

country_id 1 N number primary key

country_iso_code N char(2)

country_name N varchar2(40) country name

country_subregion N varchar2(30) e.g. Western Europe, to allow

hierarchies

country_subregion_id N number

country_region N varchar2(20) e.g. Europe, Asia

country_region_id N number

country_total N varchar2(11)

country_total_id N number

country_name_hist Y varchar2(40)

c. COSTOMERS (dimension table)

Column Name Pk Null? Data Type Comments

cust_id 1 N number primary key

cust_first_name N varchar2(20) first name of the customer

cust_last_name N varchar2(40) last name of the customer

122

cust_gender N char(1) gender; low cardinality

attribute

cust_year_of_birth N number(4) Customer year of birth

cust_marital_status Y varchar2(20) customer marital status

cust_street_address N varchar2(40) Customer street address

cust_postal_code N varchar2(10) postal code of the customer

cust_city N varchar2(30) city where the customer lives

cust_city_id N number

cust_state_province N varchar2(40) customer geography: state or

province

cust_state_province_id N number

country_id N number foreign key to the countries

table (snowflake)

cust_main_phone_number N varchar2(25) customer main phone

number

cust_income_level Y varchar2(30) customer income level

cust_credit_limit Y number customer credit limit

cust_email Y varchar2(30) customer email id

cust_total N varchar2(14)

cust_total_id N number

cust_src_id Y number

cust_eff_from Y date

cust_eff_to Y date

cust_valid Y varchar2(1)

d. PRODUCTS (dimension table)

Column Name Pk Null? Data Type Comments

prod_id 1 N number(6) primary key

prod_name N varchar2(50) product name

prod_desc N varchar2(4000) product description

prod_subcategory N varchar2(50) product subcategory

prod_subcategory_id N number

123

prod_subcategory_desc N varchar2(2000) product subcategory description

prod_category N varchar2(50) product category

prod_category_id N number

prod_category_desc N varchar2(2000) product category description

prod_weight_class N number(3) product weight class

prod_unit_of_measure Y varchar2(20) product unit of measure

prod_pack_size N varchar2(30) product package size

supplier_id N number(6) this column

prod_status N varchar2(20) product status

prod_list_price N number(8,2) product list price

prod_min_price N number(8,2) product minimum price

prod_total N varchar2(13)

prod_total_id N number

prod_src_id Y number

prod_eff_from Y date

prod_eff_to Y date

prod_valid Y varchar2(1)

e. PROMOTIONS (dimension table)

Column Name Pk Null? Data Type Comments

promo_id 1 N number(6) primary key column

promo_name N varchar2(30) promotion description

promo_subcategory N varchar2(30) investigate promotion hierarchies

promo_subcategory_id N number

promo_category N varchar2(30) promotion category

promo_category_id N number

promo_cost N number(10,2) promotion cost, to do promotion

effect calculations

promo_begin_date N date promotion begin day

promo_end_date N date promotion end day

promo_total N number(3) product weight class

promo_total_id Y varchar2(20) product unit of measure

124

Table A.6 SALES (fact table)

Column Name Pk Null? Data Type Comments

prod_id N number FK to the products dimension table

cust_id N number FK to the customers dimension table

time_id N date FK to the times dimension table

channel_id N number FK to the channels dimension table

promo_id N number promotion identifier, without FK

constraint (intentionally) to show outer

join optimization

quantity_sold N number(10,2) product quantity sold with the

transaction

amount_sold N number(10,2) invoiced amount to the customer

f. TIMES (dimension table)

Column Name Pk Null? Data Type Comments

time_id 1 N date primary key; day date, finest

granularity, CORRECT ORDER

day_name N varchar2(9) Monday to Sunday, repeating

day_number_in_week N number(1) 1 to 7, repeating

day_number_in_month N number(2) 1 to 31, repeating

calendar_week_number N number(2) 1 to 53, repeating

fiscal_week_number N number(2) 1 to 53, repeating

week_ending_day N date date of last day in week,

CORRECT ORDER

week_ending_day_id N number

calendar_month_number N number(2) 1 to 12, repeating

fiscal_month_number N number(2) 1 to 12, repeating

calendar_month_desc N varchar2(8) e.g. 1998-01, CORRECT ORDER

calendar_month_id N number

fiscal_month_desc N varchar2(8) e.g. 1998-01, CORRECT ORDER

fiscal_month_id N number

days_in_cal_month N number e.g. 28,31, repeating

125

days_in_fis_month N number e.g. 25,32, repeating

end_of_cal_month N date last day of calendar month

end_of_fis_month N date last day of fiscal month

calendar_month_name N varchar2(9) January to December, repeating

fiscal_month_name N varchar2(9) January to December, repeating

calendar_quarter_desc N char(7) e.g. 1998-Q1, CORRECT ORDER

calendar_quarter_id N number

fiscal_quarter_desc N char(7) e.g. 1999-Q3, CORRECT ORDER

fiscal_quarter_id N number

days_in_cal_quarter N number e.g. 88,90, repeating

days_in_fis_quarter N number e.g. 88,90, repeating

end_of_cal_quarter N date last day of calendar quarter

end_of_fis_quarter N date last day of fiscal quarter

calendar_quarter_number N number(1) 1 to 4, repeating

fiscal_quarter_number N number(1) 1 to 4, repeating

calendar_year N number(4) e.g. 1999, CORRECT ORDER

calendar_year_id N number

fiscal_year N number(4) e.g. 1999, CORRECT ORDER

fiscal_year_id N number

days_in_cal_year N number 365,366 repeating

days_in_fis_year N number e.g. 355,364, repeating

end_of_cal_year N date last day of cal year

end_of_fis_year N date last day of fiscal year

Table A.2 ORDER ENTRY SCHEMA TABLES

a. COSTOMERS

Column Name Pk Null? Data Type Comments

customer_id 1 N number(6) primary key

cust_first_name N varchar2(20) first name of the customer

cust_last_name N varchar2(20) last name of the customer

Gender Y varchar2(1) gender

date_of_birth Y Date customer date of birth

126

cust_marital_status Y varchar2(20) customer marital status;

low cardinality attribute

cust_address Y CUST_ADDRESS

_TYP
customer address

phone_numbers Y PHONE_LIST

_TYP
customer phone numbers

income_level Y varchar2(20) customer income level

credit_limit Y number(9,2) customer credit limit

cust_email Y varchar2(30) customer email id

nls_language Y varchar2(3)

nls_territory Y varchar2(30)

account_mgr_id Y number(6)

cust_geo_location Y SDO_GEOMETRY

b. COUNTRIES

Column Name Pk Null? Data Type Comments

country_id 1 N char(2) primary key

country_name Y varchar2(40) name of the country

region_id Y number

c. INVENTORIES

Column Name Pk Null? Data Type Comments

product_id 1 N number(6) primary key

warehouse_id 2 N number(3) primary key

quantity_on_hand N number(8)

d. WAREHOUSES

Column Name Pk Null? Data Type Comments

warehouse_id 1 N number(3) primary key

warehouse_spec Y XMLTYPE

warehouse_name Y varchar2(35)

location_id Y number(4)

wh_geo_location Y SDO_GEOMETRY

127

e. ORDER_ITEMS

Column Name Pk Null? Data Type Comments

order_id 1 N number(12) primary key

line_item_id 2 N number(3)

product_id N number(6)

unit_price Y number(8,2)

Quantity Y number(8)

f. ORDERS

Column Name Pk Null? Data Type Comments

order_id 1 N number(12) primary key

order_date N timestamp(6)

with local time

zone

order_mode Y varchar2(8)

customer_id N number(6)

order_status Y number(2)

order_total Y number(8,2)

sales_rep_id Y number(6)

promotion_id Y number(6)

g. PRODUCT_INFORMATION

Column Name Pk Null? Data Type Comments

product_id 1 N number(6) primary key

product_name Y varchar2(50)

product_description Y varchar2(2000)

category_id Y number(2)

weight_class Y number(1)

warranty_period Y interval

year(2) to

month

supplier_id Y number(6)

128

product_status Y varchar2(20)

list_price Y number(8,2)

min_price Y number(8,2)

catalog_url Y varchar2(50)

h. PRODUCT_DESCRIPTION

Column Name Pk Null? Data Type Comments

product_id 1 N number(6) primary key

language_id 2 Y varchar2(3) primary key

translated_name N nvarchar2(50)

translated_description N nvarchar2(2000)

A P P E N D I X B

QUERIES FOR INCREMENTAL MAINTENANCE PERFORMANCE
EVALUATION

Table B.1 List of the queries used for selectivity experiments

Selectivity Query Statements

0.2 Joins Only Query:

Query: Find the daily total sales and amount of each product and

for each customer in the store whose customer id is less than or

equal to 400.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id AND cs.cust_id <= 400;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of the customers whose customer id is less than or equal to

400.

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id

<= 400 GROUP BY ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name;

0.4 Joins Only Query:

Query: Find the daily total sales and amount of each product and

for each customer in the store whose customer id is less than or

equal to 800.

130

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id AND cs.cust_id <= 800;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of the customers whose customer id is less than or equal to

800.

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id

<= 800 GROUP BY ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name;

0.6 Joins Only Query:

Query: Find the daily total sales and amount of each product and

for each customer in the store whose customer id is less than or

equal to 1200.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id AND cs.cust_id <= 1200;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of the customers whose customer id is less than or equal to

1200.

131

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id

<= 1200 GROUP BY ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name;

0.8 Joins Only Query:

Query: Find the daily total sales and amount of each product and

for each customer in the store whose customer id is less than or

equal to 1600.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id AND cs.cust_id <= 1600;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of the customers whose customer id is less than or equal to

1600.

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id

<= 1600 GROUP BY ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name;

1.0 Joins Only Query:

Query: Find the daily total sales and amount of each product and

132

for each customer in the store whose customer id is less than or

equal to 2000.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id AND cs.cust_id <= 2000;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of the customers whose customer id is less than or equal to

2000.

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id AND c.cust_id

<= 1600 GROUP BY ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name;

Table B.2 List of the queries used for complexity experiments

Complexity Query Statements

CV1 Joins Only Query:

Query: Find the daily total sales amount.

SQL: SELECT t.calendar_year year, s.amount_sold sale FROM sales

s, times t WHERE s.time_id = t.time_id;

Aggregate Query:

Query: Find the total sales amount and number of sales in each

calendar month.

SQL: SELECT t.calendar_month_desc, SUM(s.amount_sold) SALES$,

count (s.amount_sold) total FROM sales s, times t WHERE

s.time_id=t.time_id GROUP BY t.calendar_month_desc;

133

CV2 Joins Only Query:

Query: Find the daily total sales amount for each customer.

SQL: SELECT t.calendar_year year, s.amount_sold sale FROM sales

s, times t, customers cs WHERE s.time_id = t.time_id AND s.cust_id =

cs.cust_id;

Aggregate Query:

Query: Find the total sales amount and number of sales for every

customer in each calendar month.

SQL: SELECT t.calendar_month_desc, c.cust_id, SUM(s.amount_sold)

SALES$, count (s.amount_sold) total FROM sales s, times t, customers c

WHERE s.time_id=t.time_id AND s.cust_id=c.cust_id GROUP BY

t.calendar_month_desc, c.cust_id;

CV3 Joins Only Query:

Query: Find the daily total sales amount for each customer with

their country name.

SQL: SELECT cn.country_name country, t.calendar_year year,

s.amount_sold sale FROM sales s, times t, customers cs, countries cn

WHERE s.time_id = t.time_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id;

Aggregate Query:

Query: Find the total sales amount and number of sales for every

customer and for every country international standard code in each

calendar month.

SQL: SELECT t.calendar_month_desc, c.cust_id, cn.country_iso_code,

SUM(s.amount_sold) SALES$, count (s.amount_sold) total FROM sales

s, times t, customers c, countries cn WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND c.country_id=cn.country_id GROUP BY

t.calendar_month_desc, c.cust_id, cn.country_iso_code;

CV4 Joins Only Query:

Query: Find the daily total sales amount of each product and for

each customer with their country name.

134

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, s.amount_sold sale FROM sales s, times t,

customers cs, countries cn, products p WHERE s.time_id = t.time_id

AND s.prod_id = p.prod_id AND s.cust_id = cs.cust_id AND

cs.country_id = cn.country_id;

Aggregate Query:

Query: Find the total sales amount and number of sales for every

customer and for every country international standard code in each

calendar month and in each channel.

SQL: SELECT t.calendar_month_desc, ch.channel_desc, c.cust_id,

cn.country_iso_code, SUM(s.amount_sold) SALES$, count

(s.amount_sold) total FROM sales s, times t, customers c, countries cn,

channels ch WHERE s.time_id=t.time_id AND s.cust_id=c.cust_id AND

c.country_id=cn.country_id AND s.channel_id=ch.channel_id GROUP

BY t.calendar_month_desc, ch.channel_desc, c.cust_id,

cn.country_iso_code;

CV5 Joins Only Query:

Query: Find the daily total sales amount of each product and for

each customer with their country name and channel of sales.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, ch.channel_desc, s.amount_sold sale FROM sales

s, times t, customers cs, countries cn, products p, channels ch WHERE

s.time_id = t.time_id AND s.prod_id = p.prod_id AND s.cust_id =

cs.cust_id AND cs.country_id = cn.country_id AND s.channel_id =

ch.channel_id;

Aggregate Query:

Query: Find the total sales amount and number of sales for every

customer and for every country international standard code in each

calendar month and in each channel and in product.

SQL: SELECT t.calendar_month_desc, ch.channel_desc, c.cust_id,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count (s.amount_sold) total FROM sales s, times t, customers c,

135

countries cn, channels ch, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND c.country_id=cn.country_id AND

s.channel_id=ch.channel_id AND s.prod_id=p.prod_id GROUP BY

t.calendar_month_desc, ch.channel_desc, c.cust_id,

cn.country_iso_code, p.prod_name;

Table B.3 List of the queries used for database size experiments

Database

Size
Query Statements

DSizeView Joins Only Query:

Query: Find the daily total sales amount of each product and for

each customer with their country name.

SQL: SELECT cn.country_name country, p.prod_name prod,

t.calendar_year year, ch.channel_desc, s.amount_sold sale FROM sales

s, times t, customers cs, countries cn, products p, channels ch WHERE

s.time_id = t.time_id AND s.prod_id = p.prod_id AND s.cust_id =

cs.cust_id AND cs.country_id = cn.country_id AND s.channel_id =

ch.channel_id;

Aggregate Query:

Query: Find the total sales amount and number of sales amount

with respect to the channel used and for each product and calendar

month of each customer.

SQL: SELECT ch.channel_desc, t.calendar_month_desc,

cn.country_iso_code, p.prod_name, SUM(s.amount_sold) SALES$,

count(s.amount_sold) total FROM sales s, customers c, times t, channels

ch, countries cn, products p WHERE s.time_id=t.time_id AND

s.cust_id=c.cust_id AND s.channel_id= ch.channel_id AND

s.prod_id=p.prod_id AND c.country_id=cn.country_id GROUP BY

ch.channel_desc, t.calendar_month_desc, cn.country_iso_code,

p.prod_name;

A P P E N D I X C

QUERIES FOR DYNAMIC SELECTION OF VIEWS

Table C.1 List of the queries used for dynamic selection of views in experiment 01

Query No. Query Statements

Q1 Query: Find the daily total sales and amount of each product in the

store.

SQL: SELECT s.prod_id, s.time_id, COUNT(*) AS count_grp,

SUM(s.amount_sold) AS sum_dollar_sales, COUNT(s.amount_sold) AS

count_dollar_sales, SUM(s.quantity_sold) AS sum_quantity_sales,

COUNT(s.quantity_sold) AS count_quantity_sales FROM sales s

GROUP BY s.prod_id, s.time_id;

Q2 Query: Find the daily sales quantity and amount of the customer

including those customers that don’t buy any item and the days in

which there is no sale.

SQL: SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid

"customers_rid", c.cust_id, c.cust_last_name, s.amount_sold,

s.quantity_sold, s.time_id FROM sales s, times t, customers c WHERE

s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Q3 Query: Find the sales information of the customers “Smith” and

“Brown” and marking differently their purchase.

SQL: (SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1

marker FROM sales s, customers c WHERE s.cust_id = c.cust_id AND

c.cust_last_name = 'Smith') UNION ALL (SELECT c.rowid crid, s.rowid

srid, c.cust_id, s.amount_sold, 2 marker FROM sales s, customers c

WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Q4 Query: Find the yearly, quarterly and daily total sales amount and

number of sales.

SQL: (SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,

SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*) FROM

sales s, times t WHERE s.time_id = t.time_id GROUP BY t.fiscal_year)

UNION ALL (SELECT 'Quarter' umarker, NULL, NULL,

137

t.fiscal_quarter_number, SUM(s.amount_sold) amt, COUNT

(s.amount_sold), COUNT(*) FROM sales s, times t WHERE s.time_id =

t.time_id and t.fiscal_year = 2001 GROUP BY t.fiscal_quarter_number)

UNION ALL (SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2,

t.day_number_in_week, s.amount_sold amt, 1,1 FROM sales s, times t

WHERE s.time_id = t.time_id AND t.time_id between '01-Jan-01' AND

'01-Dec-31');

Q5 Query: Find the country, product and time wise total sales and

amount of each product in the store.

SQL: SELECT country_name country, prod_name prod, calendar_year

year, SUM(amount_sold) sale, COUNT(amount_sold) cnt, COUNT(*)

cntstr FROM sales, times, customers, countries, products WHERE

sales.time_id = times.time_id AND sales.prod_id = products.prod_id

AND sales.cust_id = customers.cust_id AND customers.country_id =

countries.country_id GROUP BY country_name, prod_name,

calendar_year;

Q6 Query: Find the total sales amount and number of sales of each

product and each customer for a particular time period.

SQL: SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,

SUM(amount_sold) AS sum_amount_sold, SUM(quantity_sold) AS

sum_quantity_sold FROM sales s, products p WHERE s.prod_id =

p.prod_id AND s.time_id = TRUNC(SYSDATE-3000) GROUP BY

s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Q7 Query: Find the monthly product wise total sales amount and

number of sales quantity.

SQL: SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM

(s.amount_sold), p.prod_name, t.calendar_month_name, COUNT(*),

COUNT(s.quantity_sold), COUNT(s.amount_sold) FROM sales s,

products p, times t WHERE s.time_id = t.time_id AND s.prod_id =

p.prod_id GROUP BY t.calendar_month_name, s.prod_id,

p.prod_name, s.time_id;

138

Q8 Query: Find the weekend product sub category wise total sales

amount and quantity.

SQL: SELECT p.prod_subcategory, t.week_ending_day, SUM

(s.amount_sold) AS sum_amount_sold FROM sales s, products p, times t

WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id GROUP BY

p.prod_subcategory, t.week_ending_day;

Q9 Query: Find the weekend product and customer wise total sales

amount.

SQL: SELECT p.prod_id, t.week_ending_day, s.cust_id, SUM

(s.amount_sold) AS sum_amount_sold FROM sales s, products p, times t

WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id GROUP BY

p.prod_id, t.week_ending_day, s.cust_id;

Q10 Query: Find the monthly city and product wise total sales amount

and quantity.

SQL: SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,

SUM(s.amount_sold) AS sum_amount_sold, COUNT(s.amount_sold) AS

count_amount_sold FROM sales s, products p, times t, customers c

WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND s.cust_id

=c.cust_id GROUP BY p.prod_subcategory, t.calendar_month_desc,

c.cust_city;

Q11 Query: Find the daily sales history of the products including those

products that have not been sold.

SQL: SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,

s.channel_id, s.promo_id, s.cust_id, s.amount_sold FROM sales s,

products p, times t WHERE s.time_id=t.time_id AND s.prod_id

=p.prod_id(+);

Q12 Query: Find the weekend product and city wise sales total amount.

SQL: SELECT p.prod_name, t.week_ending_day, c.cust_city, SUM

(s.amount_sold) FROM sales s, products p, times t, customers c WHERE

s.time_id=t.time_id AND s.prod_id = p.prod_id AND s.cust_id =

c.cust_id GROUP BY p.prod_name, t.week_ending_day, c.cust_city;

139

Q13 Query: Find the weekend total sales amount for the month of August

1999.

SQL: SELECT t.week_ending_day, SUM(s.amount_sold) FROM sales s,

times t WHERE s.time_id = t.time_id AND t.week_ending_day

BETWEEN TO_DATE ('01-AUG-1999', 'DD-MON-YYYY') AND

TO_DATE('10-AUG-1999', 'DD-MON-YYYY') GROUP BY

week_ending_day;

Q14 Query: Find the total sales amount and quantity based on product

subcategory and city for each month.

SQL: SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,

SUM(s.amount_sold) AS sum_amount_sold, COUNT(s.amount_sold) AS

count_amount_sold FROM sales s, products p, times t, customers c

WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND s.cust_id

=c.cust_id GROUP BY p.prod_subcategory, t.calendar_month_desc,

c.cust_city;

Q15 Query: Find the total sales amount and quantity based on product

subcategory and city for each month.

SQL: SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,

AVG(s.amount_sold) FROM sales s, products p, times t, customers c

WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND s.cust_id

=c.cust_id GROUP BY p.prod_subcategory, t.calendar_month_desc,

c.cust_city;

Q16 Query: Find the sales history of the country USA, Argentina, Japan,

India, France, Spain and Ireland.

SQL: SELECT t.calendar_year, t.calendar_month_number,

t.day_number_in_month, c1.country_name, s.prod_id, s.quantity_sold,

s.amount_sold FROM times t, countries c1, sales s, customers c2

WHERE s.time_id = t.time_id and s.cust_id = c2.cust_id and

c2.country_id = c1.country_id and c1.country_name IN ('United States

of America', 'Argentina', 'Japan', 'India', 'France', 'Spain', 'Ireland');

Q17 Query: Find the total sales amount by grouping first product

subcategory and month and then customer city and product sub

140

category wise.

SQL: SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,

SUM(s.amount_sold) AS sum_amount_sold FROM sales s, customers c,

products p, times t WHERE s.time_id=t.time_id AND s.prod_id =

p.prod_id AND s.cust_id = c.cust_id GROUP BY GROUPING SETS

((p.prod_subcategory, t.calendar_month_desc), (c.cust_city,

p.prod_subcategory));

Q18 Query: Find the total sales amount by grouping product,

subcategory, state, city wise.

SQL: SELECT p.prod_category, p.prod_subcategory,

c.cust_state_province, c.cust_city, GROUPING_ID(p.prod_category,

p.prod_subcategory, c.cust_state_province,c.cust_city) AS gid,

SUM(s.amount_sold) AS sum_amount_sold FROM sales s, products p,

customers c WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id

GROUP BY GROUPING SETS ((p.prod_category, p.prod_subcategory,

c.cust_city), (p.prod_category, p.prod_subcategory,

c.cust_state_province, c.cust_city), (p.prod_category,

p.prod_subcategory));

Q19 Query: Find the product, month wise, monthly and product sub

category wise total sales amount and then combine all the results

together.

SQL: SELECT null, p.prod_subcategory, null, t.calendar_month_desc,

SUM(s.amount_sold) AS sum_amount_sold FROM sales s, products p,

customers c, times t WHERE s.prod_id = p.prod_id AND s.cust_id =

c.cust_id GROUP BY p.prod_subcategory, t.calendar_month_desc

UNION ALL SELECT null, null, null, t.calendar_month_desc,

SUM(s.amount_sold) AS sum_amount_sold FROM sales s, products p,

customers c, times t WHERE s.prod_id = p.prod_id AND s.cust_id =

c.cust_id GROUP BY t.calendar_month_desc UNION ALL SELECT

p.prod_category, p.prod_subcategory, c.cust_state_province, null,

SUM(s.amount_sold) AS sum_amount_sold FROM sales s, products p,

customers c, times t WHERE s.prod_id = p.prod_id AND s.cust_id =

c.cust_id GROUP BY p.prod_category, p.prod_subcategory,

141

c.cust_state_province UNION ALL SELECT p.prod_category,

p.prod_subcategory, null, null, SUM(s.amount_sold) AS

sum_amount_sold FROM sales s, products p, customers c, times t

WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id GROUP BY

p.prod_category, p.prod_subcategory;

Q20 Query: Find the total sales amount for each channel, customer city

and for each quarter.

SQL: SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,

SUM(s.amount_sold) sales_amount FROM sales s, times t, customers c,

channels ch WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id

AND s.channel_id = ch.channel_id GROUP BY ch.channel_class,

c.cust_city, t.calendar_quarter_desc;

Q21 Query: Find the channel and country standard code wise total sales

amount and compute the sales amount for each channel and sales

for all channels.

SQL: SELECT channels.channel_desc, countries.country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales,

customers, times, channels, countries WHERE sales.time_id

=times.time_id AND sales.cust_id=customers.cust_id AND

sales.channel_id= channels.channel_id AND customers.country_id

=countries.country_id GROUP BY CUBE(channels.channel_desc,

countries.country_iso_code);

Q22 Query: Find the channel and country standard code wise total sales

amount and compute the sales amount for each channel.

SQL: SELECT channels.channel_desc, calendar_month_desc,

countries.country_iso_code, TO_CHAR(SUM(amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

countries WHERE sales.time_id=times.time_id AND sales.cust_id

=customers.cust_id AND customers.country_id = countries.country_id

AND sales.channel_id = channels.channel_id GROUP BY ROLLUP

(channels.channel_desc, calendar_month_desc,

countries.country_iso_code);

142

Q23 Query: Find the channel wise and monthly and country standard

code wise total sales amount and compute the sales amount for each

channel.

SQL: SELECT channel_desc, calendar_month_desc,

countries.country_iso_code, TO_CHAR(SUM(amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

countries WHERE sales.time_id=times.time_id AND

sales.cust_id=customers.cust_id AND customers.country_id =

countries.country_id AND sales.channel_id= channels.channel_id

GROUP BY channel_desc, ROLLUP(calendar_month_desc,

countries.country_iso_code);

Q24 Query: Find the channel, month and country standard code wise

total sales amount and compute the sales amount for each channel

and the total for all channels.

SQL: SELECT channel_desc, calendar_month_desc,

countries.country_iso_code, TO_CHAR(SUM(amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

countries WHERE sales.time_id=times.time_id AND sales.cust_id

=customers.cust_id AND sales.channel_id= channels.channel_id AND

customers.country_id = countries.country_id GROUP BY CUBE

(channel_desc, calendar_month_desc, countries.country_iso_code);

Q25 Query: Find the channel, month and country standard code wise

total sales amount and compute the sales amount for each channel

and the total for all channels.

SQL: SELECT channel_desc, calendar_month_desc,

countries.country_iso_code, TO_CHAR(SUM(amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

countries WHERE sales.time_id = times.time_id AND sales.cust_id =

customers.cust_id AND customers.country_id=countries.country_id

AND sales.channel_id = channels.channel_id GROUP BY

channel_desc, CUBE(calendar_month_desc,

countries.country_iso_code);

143

Q26 Query: Find the total sales amount of each of the channel, month

and country standard code group category.

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,

GROUPING(channel_desc) AS Ch, GROUPING(calendar_month_desc)

AS Mo, GROUPING(country_iso_code) AS Co FROM sales, customers,

times, channels, countries WHERE sales.time_id=times.time_id AND

sales.cust_id=customers.cust_id AND customers.country_id =

countries.country_id AND sales.channel_id= channels.channel_id

GROUP BY ROLLUP(channel_desc, calendar_month_desc,

countries.country_iso_code);

Q27 Query: Find the total sales amount of each channel and country

standard code wise details and computing channel 1 for multi

channel and country standard code 1 for multi country.

SQL: SELECT DECODE(GROUPING(channel_desc), 1, 'Multi-

channel sum', channel_desc) AS Channel, DECODE (GROUPING

(country_iso_code), 1, 'Multi-country sum', country_iso_code) AS

Country, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$

FROM sales, customers, times, channels, countries WHERE

sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND

customers.country_id = countries.country_id AND sales.channel_id=

channels.channel_id GROUP BY CUBE(channel_desc,

country_iso_code);

Q28 Query: Find the total sales amount of each channel, month and

country standard code of those groups for which the channel,

country standard code or the monthly grouping is 1.

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,

GROUPING(channel_desc) CH, GROUPING (calendar_month_desc)

MO, GROUPING(country_iso_code) CO FROM sales, customers,

times, channels, countries WHERE sales.time_id=times.time_id AND

sales.cust_id=customers.cust_id AND customers.country_id =

countries.country_id AND sales.channel_id= channels.channel_id

144

GROUP BY CUBE(channel_desc, calendar_month_desc,

country_iso_code) HAVING (GROUPING(channel_desc)=1 AND

GROUPING(calendar_month_desc)= 1 AND GROUPING

(country_iso_code)=1) OR (GROUPING(channel_desc)=1 AND

GROUPING (calendar_month_desc)= 1) OR (GROUPING

(country_iso_code)=1 AND GROUPING(calendar_month_desc)= 1);

Q29 Query: Find the summation of the sales of the group set country

standard code and customer state province.

SQL: SELECT country_iso_code, SUBSTR(cust_state_province,1,12),

SUM(amount_sold), GROUPING_ID(country_iso_code,

cust_state_province) GROUPING_ID, GROUP_ID() FROM sales,

customers, times, countries WHERE sales.time_id=times.time_id AND

sales.cust_id=customers.cust_id AND customers.country_id=

countries.country_id AND times.time_id= '30-OCT-00' AND

country_iso_code IN ('FR', 'ES') GROUP BY GROUPING SETS

(country_iso_code, ROLLUP(country_iso_code, cust_state_province));

Q30 Query: Find the all sales amount of the groups (channel, month,

country standard code), (channel, country standard code) and

(month, country standard code).

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales,

customers, times, channels, countries WHERE

sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND

sales.channel_id= channels.channel_id GROUP BY GROUPING SETS

((channel_desc, calendar_month_desc, country_iso_code),

(channel_desc, country_iso_code), (calendar_month_desc,

country_iso_code));

Q31 Query: Find the all sales amount of the channels, months and

country standard code wise customer having channels, months and

country standard code groupings is equal to 0, 2 or 4.

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$,

GROUPING_ID (channel_desc, calendar_month_desc,

145

country_iso_code) gid FROM sales, customers, times, channels,

countries WHERE sales.time_id=times.time_id AND sales.cust_id

=customers.cust_id AND sales.channel_id= channels.channel_id

GROUP BY CUBE(channel_desc, calendar_month_desc,

country_iso_code) HAVING GROUPING_ID(channel_desc,

calendar_month_desc, country_iso_code)=0 OR GROUPING_ID

(channel_desc, calendar_month_desc, country_iso_code)=2 OR

GROUPING_ID(channel_desc, calendar_month_desc,

country_iso_code)=4;

Q32 Query: Find the channels, months and country standard code wise

total sales and find channels, months and country standard code

wise total amount.

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales,

customers, times, channels, countries WHERE

sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND

customers.country_id = countries.country_id AND sales.channel_id=

channels.channel_id GROUP BY ROLLUP(channel_desc,

calendar_month_desc, country_iso_code);

Q33 Query: Find the channels, months and country standard code wise

total sales and find channels total amount.

SQL: SELECT channel_desc, calendar_month_desc, country_iso_code,

TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales,

customers, times, channels, countries WHERE

sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND

sales.channel_id= channels.channel_id GROUP BY

ROLLUP(channel_desc, (calendar_month_desc, country_iso_code));

Q34 Query: Find the total sales amount of each channel and of the

grouping sets (year, month) and (country standard code and

province).

SQL: SELECT channel_desc, calendar_year, calendar_quarter_desc,

country_iso_code, cust_state_province, TO_CHAR(SUM (amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

146

countries WHERE sales.time_id = times.time_id AND sales.cust_id =

customers.cust_id AND sales.channel_id = channels.channel_id AND

countries.country_id = customers.country_id GROUP BY channel_desc,

GROUPING SETS (ROLLUP (calendar_year, calendar_quarter_desc),

ROLLUP(country_iso_code, cust_state_province));

Q35 Query: Find the total sales amount of the grouping sets (country

standard code, province) and (year, quarter).

SQL: SELECT country_iso_code, cust_state_province, calendar_year,

calendar_quarter_desc, TO_CHAR(SUM(amount_sold),

'9,999,999,999') SALES$ FROM sales, customers, times, channels,

countries WHERE sales.time_id=times.time_id AND sales.cust_id

=customers.cust_id AND countries.country_id =customers.country_id

AND sales.channel_id= channels.channel_id GROUP BY GROUPING

SETS (country_iso_code, cust_state_province), GROUPING SETS

(calendar_year, calendar_quarter_desc);

Q36 Query: Find the total sales amount of each the (year, quarter,

month), (region, sub-region, standard code, province, city) and

(product category, subcategory and product name) sub totals.

SQL: SELECT calendar_year, calendar_quarter_desc,

calendar_month_desc, country_region, country_subregion,

countries.country_iso_code, cust_state_province, cust_city,

prod_category_desc, prod_subcategory_desc, prod_name, TO_CHAR

(SUM (amount_sold), '9,999,999,999') SALES$ FROM sales, customers,

times, channels, countries, products WHERE

sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND

sales.channel_id= channels.channel_id AND sales.prod_id=

products.prod_id AND customers.country_id=countries.country_id

GROUP BY ROLLUP(calendar_year, calendar_quarter_desc,

calendar_month_desc), ROLLUP(country_region, country_subregion,

countries.country_iso_code, cust_state_province, cust_city),

ROLLUP(prod_category_desc, prod_subcategory_desc, prod_name);

Q37 Query: Find the total sales amount of the year, quarter and month

wise subtotals.

147

SQL: SELECT calendar_year, calendar_quarter_number,

calendar_month_number, SUM(amount_sold) FROM sales, times,

products, customers, countries WHERE sales.time_id=times.time_id

AND sales.prod_id=products.prod_id AND customers.country_id =

countries.country_id AND sales.cust_id=customers.cust_id AND

calendar_year=1999 GROUP BY ROLLUP(calendar_year,

calendar_quarter_number, calendar_month_number);

Q38 Query: Find the total sales amount and quantity of each product

name, country name, and channel and of each quarter.

SQL: SELECT prod_name product, country_name country, channel_id

channel, SUBSTR(calendar_quarter_desc, 6,2) quarter,

SUM(amount_sold) amount_sold, SUM(quantity_sold) quantity_sold

FROM sales, times, customers, countries, products WHERE

sales.time_id = times.time_id AND sales.prod_id = products.prod_id

AND sales.cust_id = customers.cust_id AND customers.country_id =

countries.country_id GROUP BY prod_name, country_name,

channel_id, SUBSTR(calendar_quarter_desc, 6, 2);

Table C.2 List of the queries used for dynamic selection of views in experiment 02

Query No. Query Statements

Q1 Query: Find the total number of customers in country, state wise for

each account manager.

SQL: SELECT c.account_mgr_id acct_mgr, cr.region_id region,

c.cust_address.country_id country, c.cust_address.state_province

province, COUNT (*) num_customers FROM customers c, countries cr

WHERE c.cust_address.country_id = cr.country_id GROUP BY

ROLLUP (c.account_mgr_id, cr.region_id, c.cust_address.country_id,

c.cust_address.state_province);

Q2 Query: Find the product quantity in store.

SQL: SELECT p.product_id, p.product_name, i.quantity_on_hand

FROM inventories i, warehouses w, products p WHERE p.product_id =

i.product_id AND i.warehouse_id = w.warehouse_id;

148

Q3 Query: Find the all customer information.

SQL: SELECT c.customer_id, c.cust_first_name, c.cust_last_name,

c.cust_address.street_address street_address, c.cust_address.

postal_code postal_code, c.cust_address.city city, c.cust_address.

state_province state_province, co.country_id, co.country_name,

co.region_id, c.nls_language, c.nls_territory, c.credit_limit,

c.cust_email, SUBSTR (get_phone_number_f (1, phone_numbers), 1, 25)

primary_phone_number, SUBSTR (get_phone_number_f (2,

phone_numbers), 1, 25) phone_number_2, SUBSTR

(get_phone_number_f (3, phone_numbers), 1, 25) phone_number_3,

SUBSTR (get_phone_number_f (4, phone_numbers), 1, 25)

phone_number_4, SUBSTR (get_phone_number_f (5, phone_numbers),

1, 25) phone_number_5, c.account_mgr_id, c.cust_geo_location.

sdo_gtype location_gtype, c.cust_geo_location.sdo_srid location_srid,

c.cust_geo_location.sdo_point.x location_x, c.cust_geo_location.

sdo_point.y location_y, c.cust_geo_location.sdo_point.z location_z

FROM countries co, customers c WHERE c.cust_address.country_id =

co.country_id(+);

Q4 Query: Find all the customer information with their orders.

SQL: SELECT c.customer_id, c.cust_first_name, c.cust_last_name,

c.cust_address, c.phone_numbers, c.nls_language, c.nls_territory,

c.credit_limit, c.cust_email, CAST(MULTISET(SELECT o.order_id,

o.order_mode, make_ref (oc_customers, o.customer_id), o.order_status,

o.order_total, o.sales_rep_id, CAST(MULTISET(SELECT l.order_id,

l.line_item_id, l.unit_price, l.quantity, make_ref

(oc_product_information, l.product_id) FROM order_items l WHERE

o.order_id = l.order_id) AS order_item_list_typ) FROM orders o

WHERE c.customer_id = o.customer_id) AS order_list_typ) order_type,

c.account_mgr_id FROM customers c;

Q5 Query: Find the product quantity in store for each warehouse.

SQL: SELECT i.product_id, warehouse_typ (w.warehouse_id,

w.warehouse_name, w.location_id) ware_typ, i.quantity_on_hand FROM

inventories i, warehouses w WHERE i.warehouse_id = w.warehouse_id;

149

Q6 Query: Find the orders with the customer reference type.

SQL: SELECT o.order_id, o.order_mode, make_ref (oc_customers,

o.customer_id) cust_ref, o.order_status, o.order_total, o.sales_rep_id,

CAST (MULTISET (SELECT l.order_id, l.line_item_id, l.unit_price,

l.quantity, make_ref (oc_product_information, l.product_id)

FROM order_items l WHERE o.order_id = l.order_id) AS order_item_list_typ

) order_type FROM orders o;

Q7 Query: Find all the product information.

SQL: SELECT p.product_id, p.product_name, p.product_description,

p.category_id, p.weight_class, p.warranty_period, p.supplier_id,

p.product_status, p.list_price, p.min_price, p.catalog_url, CAST (MULTISET

(SELECT i.product_id, i.warehouse, i.quantity_on_hand

FROM oc_inventories i WHERE p.product_id = i.product_id) AS

inventory_list_typ) inv_typ FROM product_information p;

Q8 Query: Find the product information for each user logged separately.
SQL: SELECT i.product_id, d.language_id, CASE WHEN d.language_id IS
NOT NULL THEN d.translated_name ELSE TRANSLATE (i.product_name
USING NCHAR_CS) END AS product_name, i.category_id, CASE
WHEN d.language_id IS NOT NULL THEN d.translated_description
ELSE TRANSLATE (i.product_description USING NCHAR_CS) END AS
product_description, i.weight_class, i.warranty_period, i.supplier_id,
i.product_status, i.list_price, i.min_price, i.catalog_url FROM
product_information i, product_descriptions d WHERE d.product_id(+) =
i.product_id AND d.language_id(+) = SYS_CONTEXT ('USERENV', 'LANG');

Q9 Query: Find the total order amount and quantity of each customer.
SQL: select c.customer_id, sum(a.order_total), count(quantity) from(

SELECT o.order_id, o.order_mode, o.order_status, o.order_total,
o.sales_rep_id, l.order_id, l.line_item_id, l.unit_price, l.quantity, o.customer_id
from order_items l, orders o WHERE o.order_id = l.order_id) a, customers c
where a.customer_id=c.customer_id group by c.customer_id;

Q10 Query: Find the total order total amount of each customer.
SQL: select c.customer_id, sum(a.order_total) from(SELECT o.order_id,

o.order_mode, o.order_status, o.order_total, o.sales_rep_id, l.order_id,
l.line_item_id, l.unit_price, l.quantity, o.customer_id from order_items l, orders
o WHERE o.order_id = l.order_id) a, customers c where
a.customer_id=c.customer_id group by c.customer_id;

	Overview of Database Management System
	Object Relational Database Management System
	Database Query, View and Materialized View
	Database query
	Database view
	Materialized view

	Materialized View Maintenance
	Literature Review
	Objective and Aims of the Research
	Organization of the Thesis
	What is Materialized View?
	The Need for Materialized Views
	Summary Management
	Materialized View Management Tasks
	Materialized View Creation
	Types of Materialized View
	Read-only, updatable and writable materialized views
	Primary key, object, ROWID and complex materialized views
	Materialized views with aggregates, containing only joins an

	Materialized View Maintenance
	Incremental materialized view maintenance
	Materialized view selection

	Query Rewrite
	How oracle rewrites queries?
	General query rewrite method
	Types of query rewrite

	Introduction
	Brief Description of the Factors
	Performance Evaluation Measurement
	Methodology to Determine View Materialization
	Dynamic Cost Model for Selection of Views for Materializatio
	Dynamic selection of views for materialization
	Dynamic removal of old materialized views

	Experimental Background
	Experiments Results on View Materialization Determination Me
	Varying view selectivity
	Varying view structural complexity
	Varying database size
	Comparison with related work

	Experiments Results on Dynamic Selection of Views and Remova
	Dynamic selection of views
	Dynamic removal of materialized views
	Comparison with related work

	Conclusion
	Recommendation for Future Work

