
i

Compression Enhancement of HIBASE Technique Using

HUFFMAN Coding

by

Ahsan Habib

MASTER OF SCIENCE IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

February, 2012

ii

The thesis titled “Compression Enhancement of HIBASE Technique Using

HUFFMAN Coding”, submitted by Ahsan Habib, Roll No. 10063111P, Session:

October 2006 has been accepted as satisfactory for the partial fulfillment of the

requirements for the degree of Master of Science in Information and Communication

Technology on February 25, 2012.

Board of Examiners

1. Dr. Abu Sayed Md. Latiful Hoque

Professor & Head

Department of Computer Science and Engineering

BUET, Dhaka-1000

Chairman

(Supervisor)

2. Dr. S. M. Lutful Kabir

Professor & Director

Institute of Information and Communication Technology

BUET, Dhaka-1000

Member

(Ex-Officio)

3. Dr. Md. Saiful Islam

Professor

Institute of Information and Communication Technology

BUET, Dhaka-1000

Member

4. Dr. Mohammad Zahidur Rahman

Professor

Department of Computer Science and Engineering

Jahangirnagar University, Savar, Dhaka

Member

(External)

iii

Candidate’s declaration

It is hereby declared that this thesis or any part of it has not been submitted

elsewhere for the award of any degree or diploma, does not contain any unlawful

statements.

 Signature

(Ahsan Habib)

iv

Acknowledgement

First of all, I want to express my sincere gratitude to my supervisor, Professor Dr.

Abu Sayed Md. Latiful Hoque, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka for making the

research as an art of exploiting new ideas and technologies on top of the existing

knowledge in the field of database compression. He provides me moral courage and

excellent guideline that make it possible to complete the work. His profound

knowledge and expertise in this field provide me many opportunities to learn new

things to build my career as a researcher.

I also express my gratitude to Professor Dr. S. M. Lutful Kabir, Director of Institute

of Information and Communication Technology (IICT), BUET for providing me

enough lab facilities to make necessary experiments of my research. I am grateful to

my Board of Examiners, their valuable comments helps me a lot to improve my

work.

I am also grateful to my mother, wife, other family members and colleagues for

giving continuous support.

v

Abstract

Storage requirement for database system is a problem for many years. Storage

capacity is being increased continually, but the enterprise and service provider data

need double storage every six to twelve months. It is a challenge to store and

retrieve this increased data in an efficient way. Reduction of the data size without

losing any information is known as loss-less data compression.

In this thesis we have presented a loss-less compression technique namely H-

HIBASE (further compression of HIBASE technique using HUFFMAN Coding).

Due to disk based compression H-HIBASE support very large database with

acceptable storage volume. Insertion, deletion and update mechanisms on the

architecture have been presented and analyzed. The architecture executes query

directly on compressed data and it is capable of executing all types of SQL queries.

The experimental evaluation has been performed with synthetic and real data. The

experimental result has been compared with DHIBASE and widely used Oracle

database. Our target was to handle relations and justify the storage requirements and

query time in comparison with DHIBASE and Oracle database.

We evaluated the storage performance in comparison with DHIBASE and Oracle

database. The storage performance that has been achieved in H-HIBASE is 25 to 40

percent better than the Oracle database for real and synthetic data. The query

performance that has been achieved in H-HIBASE is 10 to 25 percent better than

that of DHIBASE.

vi

Table of Contents

Title page…………………………………………………………………..................i

Board of Examiners……………………………………………………….................ii

Candidate’s Declaration………………………………………………….................iii

Acknowledgement………………………………………………………..................iv

Abstract………………………………………………………....................................v

Table of Contents…………………………………………………………................vi

List of Figures……………………………………...……………………..................ix

List of Tables………………………………………...…………………....................x

Introduction ...1

1.1 Background..1

1.2 Problem Definition ..2

1.3 Objective..3

1.4 Research Approach and Methodology...3

1.5 Organization of the thesis ..4

Literature Survey ...5

2.1 Compression Techniques...5

2.1.1 Loss-Less Compression Methods ...6

2.1.2 Lossy Compression Methods..7

2.1.3 Lightweight Compression Methods ..7

2.1.4 Heavyweight Compression Methods ..7

2.2 Compression on Database Processing ...8

2.2.1 Compression of Relational Structures...8

2.2.2 HIBASE Architecture ...10

2.2.3 The DHIBASE Technique ..15

2.2.4 The HUFFMAN Technique ..15

2.2.5 Arithmetic Coding...17

2.2.6 Three Layer Model..17

2.2.7 Columnar Multi Block Vector Structure (CMBVS)18

2.2.8 Compression in Oracle ..19

vii

2.3 Query Processing ...20

2.3.1 Uncompressed Query Processing..20

2.3.2 Compressed Query Processing..22

2.4 Summary..23

H-HIBASE Architecture ...24

3.1 H-HIBASE: Enhancement of HIBASE Model Using HUFFMAN Coding

 24

3.2 H-HIBASE: Analysis ..25

3.3 H-HIBASE: Storage Complexity...30

3.4 H-HIBASE: Implementation ...31

3.4.1 H-HIBASE Dictionary ..31

3.4.2 H-HIBASE: Encoding...33

3.4.3 Query Operation: Selection...35

3.4.4 Query Operation: Insertion ...36

3.4.5 Query Operation: Deletion..36

3.4.6 Query Operation: Update ..37

3.4.7 Query Operation: Aggregate Function..37

3.4.7.1 Count ..37

3.4.7.2 Sum/Avg...38

3.4.7.2 Max/Min ...38

3.5 Summary..39

Result and Discussion..40

4.1 Experimental Environment ..40

4.1.1 Data Set ...40

4.1.2 Data Generation Algorithm...42

4.2 Storage Requirement..42

4.2.1 Synthetic Data ...42

4.2.2 Real Data...45

4.3 Query Performance ..47

4.3.1 Single Column Projection ...47

viii

4.3.2 Two Column Projection ..48

4.3.3 Three Column Projection ..49

4.3.4 Full Table Scan ...49

4.3.5 Single Predicate Selection...50

4.3.6 Five Percent Selectivity...51

4.3.7 Ten Percent Selectivity ...51

4.3.8 Aggregate Function: Count ...52

4.3.9 Aggregation: Max/ Min/ Sum/ Avg ..53

4.4 Worst Case Analysis..53

4.5 Summary..54

Conclusion and Future Research...55

5.1 Fundamental Contributions of the Thesis..55

5.2 Future Research ...56

Bibliography ..57

ix

List of Figures

Fig. 2.1: Compression of Distributor relation ……………. 13

Fig. 2.2: Column-wise storage of a relation ……………. 14

Fig. 2.3: Construction of a HUFFMAN Tree ……………. 16

Fig. 2.4: The Three Layer Model ……………. 18

Fig. 2.5: Querying a database in compressed form ……………. 22

Fig. 3.1: H-HIBASE Architecture ……………. 24

Fig. 3.2: Experimental design at a glance ……………. 26

Fig. 3.3: Construction of Huffman Tree for Last Name ……………. 27

Fig. 3.4: Compression of Distributor relation ……………. 29

Fig. 3.5: Column-wise storage of a relation ……………. 30

Fig. 3.6: Construction of Huffman Tree for Division ……………. 33

Fig. 4.1: Storage in H-HIBASE, DHIBASE and Oracle

10g.

……………. 43

Fig. 4.2: Storage in H-HIBASE and DHIBASE ……………. 44

Fig. 4.3: Code size in DHIBASE and H-HIBASE ……………. 44

Fig. 4.4: Storage of real data in H-HIBASE, DHIBASE

and Oracle 10g.

……………. 46

Fig. 4.5: Storage of Real Data in H-HIBASE and

DHIBASE

……………. 46

Fig. 4.6: Code size in DHIBASE and H-HIBASE ……………. 47

Fig. 4.7: Single column projection ……………. 48

Fig. 4.8: Two column projection ……………. 48

Fig. 4.9: Three column projection ……………. 49

Fig. 4.10: Full Table Scan ……………. 50

Fig. 4.11: Single predicate selection ……………. 50

Fig. 4.12: 5% selectivity ……………. 51

Fig. 4.13: 10% selectivity ……………. 52

Fig. 4.14: Aggregate function: Count ……………. 52

Fig. 4.15: Aggregate function: Max/Min/Sum/Avg. ……………. 53

x

List of Tables

Table 2.1: Distributor relation ……………. 10

Table 2.2: Field length and tuple size for Distributor

relation

……………. 11

Table 2.3: Compressed table in HIBASE ……………. 11

Table 3.1: Distributor relation ……………. 26

Table 3.2: Binary relational database ……………. 27

Table 3.3: H-HIBASE dictionary ……………. 28

Table 3.4: H-HIBASE storage ……………. 28

Table 4.1: Compression achieved in different techniques

for synthetic data (KB)

……………. 43

Table 4.2: Compression achieved in different techniques

for real data (KB)

……………. 45

1

Chapter 1

Introduction

Storage requirement for database system is a problem for many years. Storage capacity

is being increased continually, but the enterprise and service provider data need double

storage every six to twelve months [1]. It is a challenge to store and retrieve this

increased data in an efficient way. Reduction of the data size without losing any

information is known as loss-less data compression. This is potentially attractive in

database systems for two reasons:

• Storage cost reduction

• Performance improvement

 The reduction of storage cost is obvious. The performance improvement arises as

the smaller volume of compressed data may be accommodated in faster memory

than its uncompressed counterpart. Only a smaller amount of compressed data needs

to be transferred and/or processed to effect any particular operation.

Most of the large databases are often in tabular form. The operational databases are

of medium size whereas the typical size of fact tables in a data warehouse is

generally huge [2]. These data are write once-read many type for further analysis.

Problem arises for high-speed access and high-speed data transfer. The conventional

database technology cannot provide such performance. We need to use new

algorithms and techniques to get attractive performance and to reduce the storage

cost. High performance compression algorithm, necessary retrieval and data transfer

technique can be a candidate solution for large database management system. It is

difficult to combine a good compression technique that reduces the storage cost

while improving performance.

1.1 Background

A number of research works [3, 4, 5, 6] are found on compression based Database

Management Systems (DBMS). Commercial DBMS uses compression to a limited

extent to improve performance [7]. Compression can be applied to databases at the

2

relation level, page level and the tuple or attribute level. In page level compression

methods the compressed representation of the database is a set of compressed tuples.

An individual tuple can be compressed and decompressed within a page. An

approach to page level compression of relations and indices is given in [8]. The

Oracle Corporation introduces disk-block based compression technique [9] to

manage large database. Complex SQL (Structured Query Language) queries cannot

be carried out on these databases in compressed form.

SQL:2003 [10] supports many different types of operations. Compression based

systems like High Compression Database System (HIBASE) [11], Three Layer

Model [12] and Columnar Multi Block Vector Structure (CMBVS) [2] have limited

number of query statements compared to SQL.

1.2 Problem Definition

The HIBASE (High Compression Database System) [13] approach is a compression

technique for Main Memory Database Management System (MMDBMS) [14],

supports high performance query operations on relational structure [15]. Disk-based

system (DHIBASE) is an extension of HIBASE architecture [15]. The structure

stores database in column wise format so that the unnecessary columns need not to

be accessed during query processing and also restructuring the database schema will

be easy. The dictionary space overhead is excessive for both HIBASE and

DHIBASE systems. HIBASE and DHIBASE compression techniques simply

replaces the attribute values in a tuple with fixed length code-words [16][17].

However, fixed length coding system is not an optimal compression technique it

does not consider the frequency of occurrence of the values. Thus HIBASE and

DHIABSE require higher space in the compressed database. This higher storage

requirement can be avoided if we use Huffman code-words [18]. Moreover, using

Huffman code-word will ensure optimal compression as well as High performance

operation [19][20]. As we know Huffman algorithm generates an optimal tree

[18][19], hence the compression will be optimized. However, the use of Huffman

coding could increase the query complexity in HIBASE and DHIBASE, but this

complexity can be reduced by designing proper algorithm.

3

 1.3 Objective

HIBASE compression technique achieves query performance by sacrificing the

storage requirement by using equal length codeword. The objectives of the research

are to:

���� develop a dictionary by applying the principle of Huffman coding,

���� further compress the relational storage of HIBASE by applying dynamic

Huffman coding,

���� develop algorithm to perform query operation on the compressed storage,

���� and, analyze the performance of the proposed system in terms of both storage

and queries.

1.4 Research Approach and Methodology

Further compression using Huffman coding reduces each field to just sufficient bits

to encode all the values that occur within the domain of that field. Experimental

design has been carried out using following steps:

Step 1: The database has been sorted according to the number of occurrences of

same values and the sorted database has been used in Huffman algorithm to generate

the dictionary. In this dictionary the codeword with number of occurrences has been

stored according to particular keyword.

Step 2: A compression algorithm has been developed to compress the database

using Huffman dictionary.

Step 3: Algorithm has been developed to process all kinds of SQL queries using the

compressed database only. The result has been decompressed using the Huffman

dictionary. Analysis of the algorithm has been given.

Step 4: Synthetic and real datasets has been used to analyze the performance of the

system. The storage and performance of the proposed system has been compared

with the existing HIBASE and DHIBASE systems.

4

1.5 Organization of the thesis

In chapter 2, a survey of the research in compression methods and query processing

in database systems is presented. We have developed a new system which is an

extension of HIBASE architecture. The dictionary organization and compressed

relational structure of HIBASE are discussed.

Chapter 3 presents the overview of our proposed architecture, Enhancement of

HIBASE Using HUFFMAN Coding (H-HIBASE). The structure stores database in

column wise format so that the unnecessary columns need not to be accessed during

query processing and also restructuring the database schema will be easy. Each

attribute is associated with a domain dictionary. Attributes of multiple relations with

same domain share the same dictionary. The detailed analysis of query processing of

H-HIBASE system has also been given in this chapter. SQL-like query operators in

compressed format have been defined and algorithm of each operator and analysis of

the algorithms has been provided as well.

Chapter 4 describes the experimental work that has been carried out. Results

obtained have been thoroughly discussed.

Chapter 5 presents conclusions and suggestions for future work.

5

Chapter 2

Literature Survey

 The amount of information does not strictly depend on the volume of data. Insight

depends on information; the volume of data depends on its own representation. For

cost and performance reason the data should be made as concise as possible. Over the

last decade computer memory cost has been significantly reduced. But at the same

time, storage size of data and information has also been increased. Therefore, storage

cost for large-scale databases is still a great problem [5].

Combining compression with data processing provides performance improvement.

Database systems need to provide efficient addressability for data, and generally must

provide dynamic update. It is difficult to incorporate these features with good

compression techniques [21]. Many research works [3, 4, 5, 6] have been done in

database systems to exploit the benefit of compression in storage reduction and

performance improvement.

 2.1 Compression Techniques

Based on the ability of the compressed data to be decompressed into the original

data, data compression techniques can be classified as either loss-less or lossy. A

loss-less technique means that the compressed data can be decompressed into the

original without any loss of information. On the other side, a compression method

that cannot reconstruct the original data from the compressed form is called lossy

compression. This type of compression is appropriate for compressing image, voice

or video data.

Based on how the input data is treated during compression, we can categorize the

compression techniques as lightweight or heavyweight scheme. Lightweight scheme

compresses a sequence of values. Heavyweight scheme compresses a sequence of

bytes. This scheme is based on patterns found in the data, ignoring the boundaries

between values, and treating the input data as an array of bytes.

6

2.1.1 Loss-Less Compression Methods

The loss-less property is essential for many types of application e.g., word-

processing and database applications. The loss-less compression methods can be

further classified as follows:

• Statistical encoding

• Dictionary Based Methods

 Statistical Encoding

Statistical encoding uses the probabilities of occurrence of each character and each

group of characters, assigns short codes to frequently occurring characters or groups

of characters while assigns longer codes to less frequently encountered characters or

groups of characters [22]. The widely used statistical compression methods are

Huffman [23] and Shannon-Fano [24,25] encoding. These methods are static and

require a prior knowledge of the probability of occurrence of each character in the

input string. Performance degrades if the frequency of occurrences changes. Static

methods require at least two passes: one pass to determine the probability of

occurrences of the input alphabet and the other pass to encode the string. To maintain

the efficiency of the resulting code obtained by compressing data, adaptive or

dynamic compression schemes have been developed by many researchers [26, 27].

Dictionary Based Methods

In dictionary based compression methods, the encoder operates on-line, inferring its

dictionary of available phrases from previous parts of the message and adjusting its

dictionary after the transmission of each phrase. This allows the dictionary to be

transmitted implicitly, since the decoder simultaneously makes similar adjustment to

its dictionary after receiving each phrase. The Lempel-Ziv families of compression

methods [28, 29, 30] are of this type and are used in many file storage and archiving

systems. These methods perform better than the character-based methods in terms of

speed and space. The main drawback of these methods for database applications is the

locality of reference. The encoded data using the initial part of the dictionary is not the

same as the encoded data using the later part of the dictionary. Therefore the

7

compressed data is not directly addressable in these methods [11]. These techniques

require decompression all, or a large amount of the data even if only a small part of

that data is required. Alternatively, a complete dictionary is created in advance using

the full message. The dictionary is included explicitly as part of the compressed

message. This scheme is highly efficient for decompression, and the compressed data

can be searched directly [31].

2.1.2 Lossy Compression Methods

All real world measurement of audio-visual data inherently contains a certain

amount of noise. If the compression method includes a small amount of additional

noise, no harm is done. Compression techniques that result in this sort of

degradation are called lossy. This phenomenon is important because lossy

compression techniques can give greater compression ration over the loss-less

methods. The higher the compression ratio, the more noise added to the data. Lossy

compression is advantageous for image, voice and video data because the additional

noise has little effect on the user’s perception. JPEG (Joint Photographic Expert

Group) and MPEG (Moving Picture Expert Group) are standards for compression of

image, voice and video data using lossy compression methods.

2.1.3 Lightweight Compression Methods

Lightweight compression techniques work on the basis of some relationship between

values, such as when a particular value occurs often, or if we encounter long runs of

repeated values. Run length encoding [32], delta encoding and dictionary encoding

[5, 6, 33] are some examples of lightweight compression techniques. In a light-

weight compression technique, the compression algorithm is simple and fast. The

compression and decompression time is more important than the amount of

compression.

2.1.4 Heavyweight Compression Methods

LZO (Lempel Ziv Oberhummer) [34] is a modification of the original Lempel Ziv

[28] dictionary coding algorithm. [28] works by replacing byte patterns with tokens.

Each time the algorithm recognizes a new pattern, it outputs the pattern and then it

8

adds it to a dictionary. The next time it encounters that pattern, it outputs this token

from the table. The first 256 tokens are assigned to possible values of a single byte.

Subsequent tokens are assigned to larger patterns.

Details on the particular algorithm modifications added by LZO are undocumented,

although the LZO code is highly optimized and hard to decipher. LZO is heavily

optimized for decompression speed. It provides the following features:

• Decomposition is simple and very fast.

• Requires no memory for decomposition.

• Compression is fast.

• The algorithm is thread safe.

• The algorithm is loss-less.

2.2 Compression on Database Processing

Compression has now become an essential part of many large information systems

where large amount of data is processed, stored or transferred. This data may be of

any type e.g., voice, video, text, tables etc. No single compression technique is

suitable for all types of data. Lossy compression is appropriate for voice or video

data where as loss-less compression is suitable for other data types. Cormack [3] has

used a modified Huffman code [23] for the IBM IMS database system. Westmann et

al. [4] has developed a lightweight compression method based on LZW [30] for

relational databases. Moffat et al. [35] use the Run Length Encoding [32] method for

a parameterized compression technique for sparse bitmaps of a digital library.

2.2.1 Compression of Relational Structures

We shall certainly get some benefits if we compress relational databases. We can

improve the index structures such as B-trees by reducing the number of leaf pages.

We can reduce the storage requirements for information. We have reduction in

transaction turnaround time and user response time as a result of faster transfer

between disk and main memory in I/O bound systems. In addition, since this will

also reduce I/O channel loading, the CPU can process many more I/O requests and

thus increase channel utilization. We may have better efficiency of backup since

9

copies of the database could be kept in compressed form. This reduces the number

of tapes required to store the data and reduces the time of reading from, and writing

to, these tapes. The whole or the major portion of processing data in compressed

form may be memory resident. Main memory access time is several orders of

magnitude faster than the secondary storage access time. This improves

performance.

Compression can be applied to databases at the relation level, page level and the

tuple or attribute level. In page level compression the database is represented as a set

of compressed tuples. An individual tuple can be compressed and decompressed

within a page. When a particular tuple is required, the corresponding page is

transferred to the memory and decompression is necessary only if the decompressed

tuple is required. An approach to page level compression of relations and indexes is

given in [8]. The important aspects of the technique are that each compressed data

page is independent of the other pages and each tuple can be decompressed based on

the information found on that specific page. A compressed tuple can be referred by a

page-no and an offset. The degree of compression greatly depends on the range of

values in each field for the set of tuples stored on a page.

Wee et al. [36] has proposed a tuple level compression scheme using Augmented

Vector Quantization. Vector quantization is a lossy data compression technique used

in image and speech coding [37]. However Wee et al. [36] has developed a loss-less

method for database compression to improve performance of I/O intensive

operations.

A similar compression scheme has been given in [4] with a different approach. The

work presented a set of very simple and light-weight compression techniques and

shows how a database system can be extended to exploit these compression

techniques. Numeric compression is done by suppressing zeros; string compression

is done by classical Huffman [23] or LZW [30]. Dictionary-based compression

methods, however, are used for any field containing a small number of different

values.

10

2.2.2 HIBASE Architecture

The HIBASE [11] approach is a more radical attempt to model the data

representation that is supported by information theory. The architecture represents a

relation table in storage as a set of columns, not a set of rows. Of course, the user is

free to regard the table as a set of rows. However, the operation of the database can

be made considerably more efficient when the storage allocation is by columns.

Table 2.1: Distributor relation

ID

First

Name

Last

Name Area

1 Abdul Bari Dhaka

2 Abdur Rahman Sylhet

3 Md Alamin Chittagong

4 Abdul Gafur Dhaka

5 Salam Bari Sylhet

6 Md Tuhin Rajshahi

7 Salam Mia Rajshahi

8 Chan Mia Dhaka

9 Ghendhu Mia Chittagong

10 Abdur Rahman Sylhet

The database is a set of relations. A relation is a set of tuples. A tuple in a relation

represents a relationship among a set of values. The corresponding values of each

tuple belong to a domain for which there is a set of permitted values. If the domains

are D1, D2, ……., Dn respectively. A relation r is defined as a subset of the Cartesian

product of the domains. Thus r is defined as nDDDr ×××⊆21 .

An example of a relation is given in Table 2.1 In the conventional database

technology, we have to allocate enough space to fit the largest value of each field of

the records. When the database designer does not know exactly how large the

individual values are, he/she must err on the side of caution and make the field

larger than is strictly necessary. In this instance, a designer should specify the width

in bytes as shown in Table 2.2 Each tuple is occupying 18 bytes, so that 10 tuples

occupy 180 bytes.

11

Table 2.2: Field length and tuple size for Distributor relation

Attribute No Attribute Name Bytes

0 First Name 6

1 Last Name 6

2 Area 6

 Total 18

The HIBASE architecture by Cockshot, McGregor and Wilson [11, 38] is a more

radical approach to model the data representation. The HIBASE architecture can be

derived from a conventional record structure using the following steps:

1. A dictionary per domain is employed to store the string values and to

provide integer identifiers for them. This achieves a lower range of

identifier, and hence a more compact representation than could be achieved

if a single dictionary was provided for the whole database.

2. Replace the original field value of the relation by identifiers. The range of

the identifiers is sufficient to distinguish string of the domain dictionary.

In the relational approach, the database is a set of relations [39]. A relation

represents a set of tuples. In a table structure, the rows represent tuples and the

columns contain values drawn from domains. Queries are answered by the

application of the operations of the relational algebra, usually as embodied in a

relational calculus-based language such as SQL.

Table 2.3: Compressed table in HIBASE

First

Name

Last

Name Area

000 001 00

010 010 01

011 011 10

000 100 00

001 001 01

011 101 11

001 000 11

100 000 00

101 000 10

010 010 01

12

The objective of the compression architecture is to trade off cost and performance

between that of conventional DBMS and main memory DBMS. Costs should be less

than the second, and processes faster than the first [11]. The architecture’s compact

representation can be derived from a traditional record structure in the following

steps:

Creating dictionaries: A dictionary for each domain is created which stores string

values and provides integer identifiers for them. This achieves a lower range of

identifiers, and hence a more compact representation than could be achieved if only

a single dictionary was generated for the entire database.

Replacing field values by integer identifiers: The range of the identifiers need

only be sufficient to unambiguously distinguish which string of the domain

dictionary is indicated. In Fig. 2.1, since there are only 6 distinct First Names, only

six identifiers are required. This range can be represented by only a 3-bit binary

number.

Therefore in the compressed table each tuple requires only (3 bits: First Name, 3

bits: Last Name, 2 bits: Area) a total of 8 bits instead of the 18 bytes (6 bytes: First

Name, 6 bytes: Last Name, 6 bytes: Area) for the uncompressed relation. This

achieves a compression of the table by a factor of over 22. The actual compression

ratio is somewhat lower due to the space requirements of domain dictionaries.

Generally some domains are present in several relations and this reduces the

dictionary overhead by sharing them among different attributes. In a domain a

specific identifier always refers to the same field value and this fact enables some

operations to be carried out directly on compressed table data without examining

dictionary entries until string values are essential (e.g. for output). This is not the

overall storage; however, we must take account of the space occupied by the domain

dictionaries and indexes. Typically, a proportion of domain is present in several

relations and this reduces the dictionary overhead by sharing it by different

attributes.

13

Fig. 2.1: Compression of Distributor relation

Dictionary structure: All distinct attribute values (lexemes) are stored in an end-to-

end format in a string heap. A hashing mechanism is used to achieve a contiguous

integer identifier for the lexemes. This reduces the size of the compressed table. It

has three important characteristics:

1. It maps the attribute values to their encoded representation during the

compression operation: encode(lexeme) →token

2. It performs the reverse mapping from codes to literal values when parts of

the relation are decompressed: decode(token) → lexeme.

3. The mapping is cyclic such that lexeme = decode(encode(lexeme)) and also

token = encode(decode(token)).

14

The structure is attractive for low cardinality data. For high cardinality and primary

key data, the size of the string heap grows considerably and contributes very little or

no compression.

Column-wise storage of relations: The architecture stores a table as a set of

columns (Fig. 2.2), not as a set of rows. This makes some operations on the

compressed database considerably more efficient. A column-wise organization is

much more efficient for dynamic update of the compressed representation. A general

database system must support dynamic incremental update, while maintaining

efficiency of access. The processing speed of a query is enhanced because queries

specify operations only on a subset of domains. In a column-wise database only the

specified values need to be transferred, stored and processed. This requires only a

fraction of the data that required during processing by rows.

Fig. 2.2: Column-wise storage of a relation

15

2.2.3 The DHIBASE Technique

Disk-based system (DHIBASE) is an extension of HIBASE architecture [15]. The

structure stores database in column wise format so that the unnecessary columns

need not to be accessed during query processing and also restructuring the database

schema will be easy. Each attribute is associated with a domain dictionary.

Attributes of multiple relations of same domain share a single dictionary. DHIBASE

have presented a sorting mechanisms according to sorting the compressed database

for both string and code order. DHIBASE perform high performance SQL queries

on single or multiple tables in compressed form. It has been designed and

implemented all basic relational algebra operations e.g. selection, projection, join

operation, set operations, aggregation, insertion, deletion and update on the

architecture [15].

2.2.4 The HUFFMAN Technique

In computer science and information theory, Huffman coding is an entropy encoding

algorithm used for lossless data compression. The term refers to the use of a

variable-length code table for encoding a source symbol (such as a character in a

file) where the variable-length code table has been derived in a particular way based

on the estimated probability of occurrence for each possible value of the source

symbol. It was developed by David A. Huffman while he was a Ph.D. student at

MIT, and published in the 1952 paper "A Method for the Construction of Minimum-

Redundancy Codes"[18, 40].

Huffman coding is widely used and very effective technique for compressing data;

1. Savings of 20% to 90% are typical, depending on the characteristics of the

file being compressed.

2. Huffman coding involves the use of variable-length codes to compress long

string of text.

3. By assigning shorter codes to more frequent characters, Huffman encoding

can compression text by as much as 80%.

16

The simplest construction algorithm uses a priority queue where the node with

lowest probability is given highest priority [40]:

1. Create a leaf node for each symbol and add it to the priority queue.

2. While there is more than one node in the queue:

a. Remove the two nodes of highest priority (lowest probability) from the

queue

b. Create a new internal node with these two nodes as children and with

probability equal to the sum of the two nodes' probabilities.

c. Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.

Since efficient priority queue data structures require O(log n) time per insertion, and

a tree with n leaves has 2n−1 nodes, this algorithm operates in O(n log n) time.

Huffman tree generated from the exact frequencies of the text "this is an example of

a Huffman tree". The frequencies and codes of each character are shown in Fig. 2.3.

Encoding the sentence with this code requires 135 bits, as opposed to 288 bits if 36

characters of 8 bits were used.

Char Freq Code

space 7 111

a 4 010

e 4 000

f 3 1101

h 2 1010

i 2 1000

m 2 0111

n 2 0010

s 2 1011

t 2 0110

l 1 11001

o 1 00110

p 1 10011

r 1 11000

u 1 00111

x 1 10010

Fig. 2.3: Construction of a HUFFMAN Tree.

17

2.2.5 Arithmetic Coding

In Huffman coding, each character is encoded into an integral number of bits. This

means that the codes may often be longer than that strictly required for the character.

For example a character with probability of occurrence 0.9 can be coded minimally

in 0.135 bits (from information-theoretic considerations), but requires 1 full bit in

this scheme.

Arithmetic coding attempts to address the above shortcoming of Huffman coding.

Here, the compressed version of the input data is represented by the interval between

two real numbers of arbitrary precision, (x, y), where 0<=x< y<=1. At the start the

range is initialized to the entire interval [0,1), and this range is progressively

refined. During the encoding process, each character is assigned an interval within

the current range, the width of the interval being proportional to the probability of

occurrence of that character. The range is then narrowed to that portion of the

current range which is allocated to this character. So, as encoding proceeds and more

data is scanned, the interval needed to represent the data becomes smaller and

smaller, and the number of bits needed to specify the interval grows. The more

likely characters reduce the range less than the unlikely characters and hence add

fewer bits to the compressed data. The implementation details of this scheme are

given in [41, 42].

Arithmetic coding also has adaptive and non-adaptive versions, in exactly the same

manner as that described previously for Huffman coding.

2.2.6 Three Layer Model

The Three Layer Model was developed by Hoque et al. [12]. This database

architecture was designed for storage and querying of structured relational

databases, sparsely populated e-commerce data and semi-structured XML. They

have proved the system in practice with a variety of data. They have achieved

significant improvement over the basic HIBASE model [11] for relational data.

Their system performs better than the Ternary model [43] for the sparsely populated

data. They compared their results with UNIX utility compress. The system performs

a factor of two to six more in reduction of data than compress, maintaining the direct

18

addressability of the compressed form of data.

The architecture has three layers:

 Layer 1: The lowest layer is the vector structures to store the compressed form of

data. As queries are processed on the compressed form of data, indexing is allowed

on the structure such that we can access any element in the compressed form without

decompression. The size of the element can vary during database update. The vector

can adapt dynamically as data is added incrementally to the database. This dynamic

vector structure is the basic building block of the architecture.

Fig. 2.4: The Three Layer Model

Layer 2: The second layer is the explicit representation of the off-line dictionary in

compact form. They have presented a phrase selection algorithm for off-line

dictionary method in linear time and space [44].

Layer 3: The third layer consists of the data models to represent structured relational

data, sparsely populated data and semi-structured XML.
2.2.7 Columnar Multi Block Vector Structure (CMBVS)

The proposed compression based data management system architecture [2] can be

used to handle terabyte level of relational data. The existing compression schemes

e.g. Hibase [11] or Three Layer Database Compression Architecture [12] work well

for memory resident data and provide good performance. These are low cost

solution for highperformance data management system but are not scalable to

19

manage terabyte level of data. CMBVS is a disk based columnar multi-block vector

structure that can be used to store relational data in a compressed representation with

direct addressability. Parallel data access can be achieved by distributing the vector

structure into multiple servers to improve the scalability. The structure is capable of

carrying out query directly on the compressed data. This reduces query time

drastically. The system has been compared with the conventional relational DBMS.

The architecture is significantly efficient in storage reduction and also faster than

conventional systems in retrieval time performance.

2.2.8 Compression in Oracle

The Oracle RDBMS has introduced a compression technique [9] for reducing the

size of relational tables. This compression algorithm is specifically designed for

relational data. Using this compression technique, Oracle is able to compress data

much more effectively than standard compression techniques. More significantly,

Oracle incurs virtually no performance penalty for SQL queries accessing

compressed tables. In fact, Oracle's compression may provide performance gains

for queries accessing large amounts of data, as well as for certain data management

operations like backup and recovery.

The compression algorithm used in Oracle compresses data by eliminating duplicate

values in a database block. The algorithm is a loss-less dictionary-based

compression technique. One dictionary (symbol table) is created for each database

block. Therefore, compressed data stored in a database block is self-contained.

That is, all the information is available within the block to recreate the

uncompressed data in that block. This compression technique has been chosen to

achieve local optimality of compression ratio. The algorithm is greedy, meaning

that it tries to load as many rows as possible into each block. It does not attempt to

achieve any form of global compression ratio optimality.

The problem of global compression ratio optimality is highly computationally

intensive. If global compression ratio optimality is desired, the entire set of rows to

be compressed needs to be buffered before blocks can be populated. For large data

warehouses this is not feasible because it would potentially require to buffer

20

terabytes of data, which is not practical.

2.3 Query Processing

Query processing refers to the range of activities involved in extracting data from a

database. The basic steps involved in query processing are

1. Parsing and translation

2. Optimization

3. Evaluation

The first action the system must take in query processing is to translate a given

query into its internal form. Given a query, there are generally a variety of methods

for computing the answer. In SQL, a query could be expressed in several different

ways. Each SQL query can itself be translated into one relational-algebra expression

in one of several ways. We can execute each relational-algebra operation by many

different algorithms. To specify fully how to evaluate a query, we need not only to

provide the relational-algebra expression, but also to annotate it with instructions

specifying how to evaluate each operation. Annotation may state the algorithm to be

used for a specific operation, or the particular index or indices to use. Different

query-evaluation plans for a given query have different costs. Based on these cost

estimates, a particular plan is accepted. The given query is evaluated with that plan

and the result of the query is output.

2.3.1 Uncompressed Query Processing

Parsing of query languages differs little from parsing of traditional programming

languages. Main parsing techniques were covered in [45], but here optimization is

presented from a programming language point of view. A excellent description of

external sorting algorithms, including an optimization that create initial runs that are

(on the average) twice the size of the memory, is described in [46].

Query optimization: Much work has been done in query optimization. Access-path

selection in the System R optimizer is described in [47], which was one of earliest

relational query optimizers. Volcano, an equivalence-rule based query optimizer, is

21

described in [48]. Query processing in Starburst is described in [49]. Query

optimization in Oracle is briefly outlined in [50].

The SQL language poses several challenges for query optimization, including the

presence of duplicates and nulls, and the semantics of nested sub-queries. Extension

of relational algebra to duplicates is described in [51]. Optimization of nested sub-

queries is discussed in [52].

Multi-query optimization, which is the problem of optimizing the execution of

several queries as group, is described in [53]. If an entire group of queries is

considered, it is possible to discover common sub-expressions that can be evaluated

once for the entire group. Optimization of a group of queries and the use of common

sub-expressions are considered in [54]. Optimization issues in pipelining with

limited buffer space combined with sharing of common sub-expression are

discussed in [55].

Join operation: In the mid 1970s, database systems used only nested-loop join and

merge join. These systems, which were related to the development of System R,

determined that either the nested-loop join or merge join nearly always provided the

optimal join method [56]; hence, these two were the only join algorithms

implemented in System R. The System R study did not include an analysis of hash

join algorithms. Today hash join algorithms are considered to be highly efficient.

Hash join algorithms were initially developed for parallel database systems. Hash

join techniques are described in [57], and extensions including hybrid hash join are

described in [58]. Hash join techniques that can adapt to the available memory is

important in systems where multiple queries may be running at the same time. This

issue is described in [59]. The use of hash joins and hash teams, which allow

pipelining of hash joins by using the same partitioning for all hash joins in a pipeline

sequence in the Microsoft SQL Server is presented in [60].

Aggregation: An early work on relational algebra expressions with aggregate

functions is found in [61]. More recent work in this area includes [62]. Optimization

of queries containing outer joins is described in [63].

22

Views: A survey of materialized view maintenance is presented in [64].

Optimization of materialized view maintenance plans is described in [65]. Query

optimization in the presence of materialized views is addressed in [66].

2.3.2 Compressed Query Processing

Very few systems execute queries directly on compressed data without any

decompression. HIBASE Architecture [11], Three Layer Model [12], Columnar

Multi Block Vector Structure (CMBVS) [2] are the systems that execute queries

directly on compressed data (Fig. 2.5). The query is translated to compressed form

and then processed directly against the compressed relational data. Less data needs

to be manipulated and this is more efficient than the conventional alternative of

processing an uncompressed query against uncompressed data.

The final answer will be converted to a normal uncompressed form. However, the

computational cost of this decompression is low because the amount of data to be

decompressed is only a small fraction of the processed data. All these systems are

capable of executing queries on single compressed relation. Queries on multiple

compressed relations have not been designed so far.

Fig. 2.5: Querying a database in compressed form

23

Compression technique used in Oracle is different than that used in Hibase

Architecture [11], Three Layer Model [12] and CMBVS [2]. As separate symbol

table is created for each database block, the compressed data is not directly

addressable in compressed form.

Therefore, it is hard to implement queries directly on multiple compressed relations.

In fact, Oracle's compression algorithm is particularly well suited for data

warehouses environment, which contains large volumes of historical data with heavy

query workloads. The system is targeted mostly for read-only applications where

simple queries are involved.

2.4 Summary

This chapter described different types of existing compression techniques,

compression of relational database, development in query processing both in

uncompressed and compressed form. We have thoroughly discussed the HIBASE

architecture and HUFFMAN architecture because we taken these model as the basis of

our architecture (which we call H-HIBASE). But there are fundamental differences

between HIBASE and H-HIBASE. Differences are observable in storage structure of

compressed data, number and types of query processing.

24

Chapter 3

H-HIBASE Architecture

 This chapter describes the details of the proposed H-HIBASE architecture for

storage of compressed relational data. The chapter also illustrates the details of the

query processing techniques of the proposed system. We have developed the system

for single processor system. Query is evaluated directly on compressed data.

3.1 H-HIBASE: Enhancement of HIBASE Model Using HUFFMAN

Coding

The basic HIBASE architecture is memory based. We have developed a more

general architecture (Fig. 3.1) that supports both memory and disk based operations.

We have made two assumptions:

a. The architecture stores relational database only

b. Single processor system architecture

Fig. 3.1: H-HIBASE Architecture

Although the architecture is designed for single processor system, it can easily be

expanded for other architectures. The Input Manager (IM) takes input from different

sources and passes to Compression Manager (CM). CM compresses the input, make

necessary update to appropriate dictionaries and stores the compressed data into

respective column storage.

25

Query Manager (QM) takes user query and passes to Query Compression and

Execution Unit (QCEU). QCEU translates the query into compressed form and then

applies it against compressed data. Then it passes the compressed result to

Decompression Unit (DU) that converts the result into uncompressed form.

Each compressed column is stored across multiple disk blocks. Each disk block has

fixed size. Compressed data are stored in end-to-end position in disk block. No data

is split over two disk blocks. The total database is kept into the main memory when

the database is small enough to be placed into the memory. For large databases,

recently active parts are placed into the main memory. The last disk block of each

column and each dictionary is always kept into main memory.

All insertions are committed in this memory block. The Insert or Update operation

in H-HIBASE model requires ’string’ look up in the dictionary. Efficient decoding

[9] from code to ‘string’ may be achieved by two ‘table look-up’ operations. So we

do not need to search the entire dictionary in the worst case. If the ’string’ is present

in the dictionary the operation does not need a reorganization of the vector structure.

If the ’string’ is not present in the dictionary it is inserted into the dictionary. This

insertion might result an increase of the element width. In this case the operation

requires a reorganization of the vector structure. Deletion is performed by replacing

the desired record with the last record and then reducing number of records by one.

Dictionary entries are not deleted.

3.2 H-HIBASE: Analysis

As we know Huffman algorithm generates an optimal tree, hence the compression

has been optimized. Moreover high performance has been ensured as most repeated

attribute values get more weight and has been entered first in the dictionary i.e.

domain dictionary values has been sorted in such a way that frequently occurred

values has been accessed first then the rare values. Fig. 3.2 shows the whole analysis

at a glance. It has been shown in Fig. 3.2 that five steps are necessary to complete

whole process. Steps are explained below:

26

Fig. 3.2: Experimental Design at a glance.

Step 1: Take synthetic and real data as input (Consider the database shown in table

3.1):

Table 3.1: Distributor Relation

ID First Name Last Name Area

1 Abdul Bari Dhaka

2 Abdur Rahman Sylhet

3 Md Alamin Chittagong

4 Abdul Gafur Dhaka

5 Salam Bari Sylhet

6 Md Tuhin Rajshahi

7 Salam Mia Rajshahi

8 Chan Mia Dhaka

9 Ghendhu Mia Chittagong

10 Abdur Rahman Sylhet

The H-HIBASE approach is a more radical attempt to model the data representation

that is supported by information theory. The architecture represents a relation table

in storage as a set of columns, not a set of rows. Of course, the user is free to regard

the table as a set of rows. However, the operation of the database can be made

considerably more efficient when the storage allocation is by columns.

Step 2: Split the relational database as binary relational databases (Shown in table

3.2):

27

Table 3.2: Binary Relational Database

Binary relational database is a database with two columns in each table and it is very

efficient where column wise searching is regular. The Table 3.1 has been split to

three Binary relation tables which are shown in Table 3.2.

Step 3: Generate dictionary using HUFFMAN algorithm (Shown in Table 3.3):

The range of the identifiers need only be sufficient to unambiguously distinguish

which string of the domain dictionary is indicated. In Fig. 3.3, since there are only 6

distinct Last Names, only six variable length codeword are required. This range can

be represented by only a 3-bit or 2 bit binary number.

Name Freq Code

Mia 3 00

Rahman 2 010

Bari 2 10

Alamin 1 011

Gafur 1 110

Tuhin 1 111

Fig. 3.3: Construction of Huffman Tree for Last Name column.

28

A dictionary for each domain has been created which stores string values and

provides Huffman codeword for them. This achieves a lower range of codeword,

and hence a more compact representation could be achieved.

Table 3.3: H-HIBASE Dictionary

In Table 3.3 three different dictionaries are shown which has been generated by

Huffman principle. From above table it has been shown that most repetitive values

give smaller codeword, hence further compression has been achieved. In the above

table it has been shown that Mia most repeated string in the LastName column need

just two bits (10) in the dictionary. Whereas Tuhin the less repeated string need three

bits (110) to represent it in the dictionary.

Step 4: Develop algorithm to encode data (Shown in Table 3.4):

Table 3.4: H-HIBASE Storage

29

In the compressed table each tuple requires only (First Name required minimum 2

maximum 3 bits, Last Name required minimum 2 maximum 3 bits, Area required 2

bits) a total of maximum 8 bits. This achieves a compression of the table by a factor

of over 15. This is not the overall storage; however, we must take account of the

space occupied by the domain dictionaries. Typically, a proportion of domain is

present in several relations and this reduces the dictionary overhead by sharing it by

different attributes.

Step 5: Develop algorithm to perform query operation on the compressed storage:

After encoding data it is challenging to retrieve those codes from compressed

storage. Fig. 3.4 shows how compressed data can be accessed. Dictionary access and

compressed storage access are necessary to perform every query. From the

following figure it has been shown that the searched value has been look in the

dictionary first, if it is available than calculate its position and length. According to

the position and length it can easily be accessed from the compressed storage.

Fig. 3.4: Compression of Distributor relation

30

Column-wise storage of relations: The architecture stores a table as a set of

columns (Fig. 3.5), not as a set of rows. This makes some operations on the

compressed database considerably more efficient. A column-wise organization is

much more efficient for dynamic update of the compressed representation. A general

database system must support dynamic incremental update, while maintaining

efficiency of access. The processing speed of a query is enhanced because queries

specify operations only on a subset of domains. In a column-wise database only the

specified values need to be transferred, stored and processed. This requires only a

fraction of the data that required during processing by rows.

Fig. 3.5: Column-wise storage of a relation

3.3 H-HIBASE: Storage Complexity

HIBASE:

SCi =n * Ci bits

Where SCi = space needed to store column i in compressed form

31

n = number of records in the relation

Ci = number of bits needed to represent i
th

 attribute in compressed form

 = lg(m) ; where m is no of entries in the corresponding domain dictionary

Total space to store compressed table, SHIBASE = ∑
=

p

i

Ci
S

1

 bits; where p is the number

of column

If we assume that domain dictionaries occupy an additional 25% of S = 1.25 S, then

total space in compressed relation, SCRHIBASE = 1.25 SHIBASE

H-HIBASE:

SH-HIBASE = ∑
=

m

i 1

 ∑
=

n

j 1

aij bits

aij represents the number of bits in a particular position of two dimensional matrix,

where i is the number of row and j is the number of column. From equation it has

been shown that the first iteration counts all bits within a row and second iteration

counts all columns. Hence total bits of entire storage have been counted by the

equation.

If we assume that domain dictionaries occupy an additional 25% of S = 1.25 S, then

total space to store the compressed relation, SCRH-HIBASE = 1.25 SH-HIBASE

Compression Enhancement:

Compression Enhancement = ((SCRHIBASE - SCRH-HIBASE)*100 / SCRHIBASE) %

3.4 H-HIBASE: Implementation

3.4.1 H-HIBASE Dictionary

To translate to and from the compressed form it is necessary to go through a

dictionary. A dictionary is a list of values that occur in the domain. Huffman

dictionary is comparable to Huffman table where two pieces of information has been

stored namely lexeme and token. Lexeme corresponds to discrete values in a domain

whereas token corresponds to code-word. Short code-words have been placed first

for a domain dictionary which ensures faster dictionary access. Hence there has been

32

a significant improvement in database performance during compression,

decompression and query operations. As Huffman coding gives more weight to most

repeated value, it is likely to have shortest code-word to most repeated value.

Huffman algorithm have been generated the position of values in the dictionary as

well. Table 3.3 shows dictionaries for distributor relationship. The Huffman

dictionary has generated as per following algorithm.

Algorithm 3.1: Huffman(C)

HUFFMAN (C)

1. n ← |C|

2. Q ← C

3. for i ← 1 to n -1

4. do allocate a new node z

5. left[z] ← x ← EXTRACT-MIN (Q)

6. right[z] ← y ← EXTRACT-MIN (Q)

7. f[z] ← f[x] + f[y]

8. INSERT (Q, z)

9. return EXTRACT-MIN (Q)

In the pseudocode that follows, we assume that C is a set of n strings and each string

c € C is an object with a defined frequency f[c]. The algorithm builds the tree T

corresponding to the optimal code in a bottom-up manner. It begins with a set of |C|

leaves and performs a sequence of |C| - 1 “meaning” operations to create the final

tree. A min-priority queue Q, keyed on f, is used to identify the two least-frequent

objects to merge together. The result of the merger of two objects is a new object

whose frequency is the sum of the frequencies of the two objects that were merged

[67].

In algorithm 3.1 n is the initial queue size, line 2 initializes the min-priority queue Q

with the character in C. The for loop in line 3-8 repeatedly extracts the two nodes x

and y of lowest frequency from the queue, and replaces them in the queue with a

new node z representing their merger. The frequency of z is computed as the sum of

33

the frequencies of x and y in line 7. The node z has x as its left child and y as its

right child. After n-1 mergers, the node left in the queue-the root of the code tree

returned in line 9.

The for loop in lines 3-8 is executed exactly n-1 times, and since each heap

operation requires time O (lg n), the loop contributes O (n lg n) to the running time.

Thus, the total running time of HUFFMAN on a set of n characters is O (n lg n).

3.4.2 H-HIBASE: Encoding

Consider a set of source symbols S = { s0, s1, ….. , sn-1}= {Dhaka, Sylhet,

Chittagong, ….. , Rajshahi} with frequencies W = { w0, w1, ….. , wn-1} for

w0>=w1>=…..>=wn-1, where the symbol si has frequency wi. Using the Huffman

algorithm to construct the Huffman tree T, the codeword ci, 0<=i<=n-1, for symbol

si can then can be determined by traversing the path from the root to the left node

associated with the symbol si, where the left branch is corresponding to ‘0’ and the

right branch is corresponding to ‘1’. Let the level of the root be zero and the level of

the other node is equal to summing up its parents level and one. Codeword length li

for si can be known as the level of si.

Division Freq Code

Dhaka 3 00

Sylhet 3 01

Rajshahi 2 10

Chittagong 2 11

Fig. 3.6: Construction of Huffman Tree for Division column.

The wighted external path length ∑wili is minimum. For example, the Huffman tree

corresponding to the source symbols { s0, s1, ……..,s7} with the frequencies {3, 3,

2, 2} is shown in the Fig.3.6. the codeword set C{c0,c1,…….,c7} is derived as {10,

34

11, 00, 01}. In addition, the codeword set compose of a space with 2
d
 addresses,

where d=2 is the depth of the Huffman tree.

In the following, the detailed algorithm to generate the intervals is presented. For

each Huffman tree, the required storage for the interval representation is n entries.

Each entry contains two fields: address and symbol. The length of address is d bits,

and the storage complexity is O (n).

Both C and C++ allow integer members to be stored into memory spaces smaller

than the compiler would ordinarily allow [68]. These space-saving structure

members are called bit fields, and their width in bits can be explicitly declared. The

following structure has three bit-field members: kingdom, phylum, and genus,

occupying 2, 6, and 12 bits respectively.

struct taxonomy {

 unsigned kingdom: 2;

 unsigned phylum: 4;

 unsigned genus: 12;

 };

To store codeword we have declared an array of structure with bit field where data

can be stored with 1 bit storage. This structure have 32 members variable named

a,b,c,…..,z,A,B,…,F and every member can be stored 1 bit. To put databits in this

structure we have a function named putvalue (index_of_structure, data_variable,

databit) which store bit into the structure after reading the input from the dictionary.

Algorithm 3.2: Encode (index, name, databit, frequency)

ENCODE (Huffman_Dictionary hd)

1. Input: Huffman_Dictionary (index, name, databit, frequency)

2. Output: Encoded Bit Stream

3. BEGIN

4. for i ←1 to total_number_of_rows

5. for j ← 0 to codeword [i].lenght

6. putvalue (index_of_structure, data_variable, databit)

35

7. if (data_variable == ‘z’)

8. data_variable ← ‘A’

9. else if (data_variable == ‘F’)

10. data_variable ← ‘a’; index_of_structure ++

11. else data_variable ++

12. END

In algorithm 3.2 it has been shown that index, frequency and codeword of a

particular record has been read from the dictionary first. After that it store in the

storage bitwise with the repetition of number of frequencies. And this process has

continued until the last record of the dictionary. The required storage for the interval

representation is n entries and the storage complexity is O (n).

3.4.3 Query Operation: Selection

To search a value in the compressed storage it is necessary to access the dictionary

first. The start position of the searched value has been calculated from the dictionary

by a function named findstartposition (searchedvalue). The end position of the

searched value can also be calculated by another function named findendposition

(searchedvalue). By using start and end position of searched value it can easily be

found from the array.

Algorithm 3.3: Searching (Searched value)

SEARCH (string searchedvalue)

1. Input: The Searched Value

2. Output: The matching interval

3. BEGIN

4. for I ← 1 to number_of_coderword_in_dictionary

5. if (inputdata=userdata)

6. position ← i

7. sp ← findstartposition (position)

8. ep ← findendposition (position)

9. if the searched codeword is matched between the codeword of sp and ep

10. print Found

36

11. else

12. print Not found

13. END

The details algorithm is listed above. The time complexity for decoding is O (n).

3.4.4 Query Operation: Insertion

To insert a new record in the database multiple action is required. First of all data

has been inserted in the input file, dictionary has been updated by using function

HUFFMAN (C), storage has been refreshed with the function named ENCODE

(Huffman_Dictionary).

Algorithm 3.4: Insertion (Inserted value)

INSERT (string InsertedValue)

1. Take inserted value as input

2. BEGIN

3. Insert a new raw as the last tuple of input file

4. Call HUFFMAN (C)

5. Call ENCODE(Huffman_Dictionary)

6. END

3.4.5 Query Operation: Deletion

To delete a record from the database multiple actions is required. First of all data has

been deleted from the input file, dictionary has been updated according to the new

file by using function HUFFMAN (C), storage has been refreshed with the function

named ENCODE (Huffman_Dictionary).

Algorithm 3.5: Deletion (Deleted value)

DELETE (string DeletedValue)

1. Take deleted value as input

2. BEGIN

3. Search deleted item in the input database

37

4. if found delete the item by left shifting

5. Call HUFFMAN (C)

6. Call ENCODE(Huffman_Dictionary)

7. else print “data cannot be deleted”

8. END

3.4.6 Query Operation: Update

To update data in the database multiple actions is required. First of all data has been

updated from the input file, dictionary has been updated according to the new file by

using function HUFFMAN (C), storage has been refreshed with the function named

ENCODE (Huffman_Dictionary).

Algorithm 3.6: Update (Old value, New value)

UPDATE (string Oldvalue, string Newvalue)

1. Take updated value with old value as input

2. BEGIN

3. Search old value in the input file

4. If found update the input file by replacing new value with the old value

5. Call HUFFMAN (C)

6. Call ENCODE (Huffman_Dictionary)

7. Else print “data can not be updated”

8. END

3.4.7 Query Operation: Aggregate Function

Aggregate functions are functions that take a collection (a set or multiset) of values

as input and return a single value. SQL provides five different built-in aggregate

functions: count, max, min, sum and avg. The input of sum and avg must be a

collection of numbers, but other operators can operate on collections of non-numeric

data types, such as strings, alpha-numeric, as well.

For aggregation queries we have considered the following relation:

 account(account_no, branch_name, balance)

3.4.7.1 Count

Select branch_name, count (branch_name) from account.

38

Algorithm 3.7: Count ()

COUNT ()

1. Initialize count=0

2. Read dictionary

3. Loop until finish the number of tuple

4. Count++

5. Print Count

Algorithm 3.7 is indicated that record has been counted from the dictionary, for each

frequency it increases count by 1 until reach the last frequency.

3.4.7.2 Sum/Avg

Select branch_name, sum (balance) from account.

Algorithm 3.8: Sum ()/Avg ()

SUM/AVG ()

1. Read dictionary

2. Initialize sum=0

3. Put number in an array

4. For 1 to size of array (count)

5. Sum=sum + number

6. Print sum

In the above algorithm it has been shown that the every number has been added with

the previous number in the array, loop continues until reach the last entry.

3.4.7.2 Max/Min

Select branch_name, max (balance) from account.

Algorithm 3.9: Max ()/ Min ()

MAX/MIN ()

39

1. Read dictionary

2. Initialize maximum=0

3. Put number in an array

4. For 1 to size of array (count)

5. If (current value>maximum value)

6. Maximum = current value

7. Print maximum

Algorithm 3.9 has been used to find the maximum number. In the algorithm it has

been shown that any larger number replaced by smaller number in the array.

3.5 Summary

In this chapter we have presented an attractive compression-based architecture,

called H-HIBASE. Due to disk based compression H-HIBASE support very large

database with acceptable storage volume. Insertion, deletion and update mechanisms

on the architecture have been presented and analyzed. The architecture executes

query directly on compressed data and it is capable of executing most of SQL

queries. Algorithms of query operators given in this chapter have been thoroughly

analyzed.

40

Chapter 4

Result and Discussion
The objective of the experimental work is to verify the applicability and feasibility

of the proposed H-HIBASE architecture. The experimental evaluation has been

performed with synthetic and real data. The experimental results are compared with

DHIBASE and widely used Oracle 10g. Our target was to handle relations and

justify the storage requirements and query time in comparison with DHIBASE and

Oracle 10g.

4.1 Experimental Environment

H-HIBASE has been tested on a machine with 1.73 GHz Pentium IV processor and

1 GB of RAM, running on Microsoft Windows XP. Five different relations have

been created for synthetic data which are given below. Each query has been

executed five times and the average execution time has been taken.

4.1.1 Data Set

Data set for Synthetic data:

A random data generator has been used to generate synthetic data and large number

of records has been inserted into each table. There are five tables in synthetic data

set are given below, where first attribute of each table is the primary key. Synthetic

data generator has been generated 21035, 21120, 21214, 31422, 30455 records for

Distributor, Customer, Item, Employee and Store relations respectively. To store

same number of records using Oracle 10g it required 1 MB disk space. Table 4.1

shows overall compression rate of different technique for different number of

record. Compression rate has been calculated with respect to DHIBASE and Oracle

10g. Table 4.1 also shows overall CF’s for different relations, CF’s has been

calculated with respect to Oracle 10g. It has been observed that the proposed system

outperforms Oracle 10g by a factor of 11 to 13. Table 4.1 shows that the H-HIBASE

has greater compression capability than DHIBASE with enhancement rate between

9% to 15% as well.

41

Distributor (d_id, fname, lname, area)

Customer (c_id, name, street, city)

Item (i_id, type, description)

Employee (e_id, name, department)

Store (s_id, location, type)

Data set for real data:

Billing Management Software has been used to manage different types of Bills like

water bill, electricity bill. Different types of report like daily bill, monthly bill,

yearly bill has been produced by this software. Real data set of this software has

been shown below. Storage requirement in different technique for real data has been

shown in table 4.2. It has been observed that the proposed system has better than

Oracle 10g by a factor of 4 to 5. Table 4.2 also shows that the H-HIBASE has

greater compression capability than DHIBASE which is more than 30%.

Electricbill (issue_no, meterno, presentreading, surcharge, shop_id, tannent_id,

bill_month, unit_rate number, issue_date, paid_date, demand_charge,

meter_charge, last_date, ref_no, consume, vat, previousreading)

Electricbill_for_shop (meter_no, meter_rgd, prv_surcharge, prv_vat, prv_demand,

prv_from_date, prv_to_date, shop_id, tannent_id, paid_date, last_date,

prv_metercharge, unit_rate, prv_consume, issue_date, is_due, max_rgd, ref_no,

prv_arrear, meter_charge, demand_charge)

Floor (floor_id, floor_name)

Rate (rate_id, rate_title, charge)

Shop (shop_number, shop_name, shop_rent, shop_floor_number, shop_id,

tannent_id)

Tennant (tannent_id, tannent_name, account_no, address, phone)

Utility_bill (issue_no, bill_month, last_date, paid_date, shop_id, tannent_id,

issue_date, ref_no)

Utility_bill_detail (issue_no, utility_id, bill_amt, surcharge)

42

Utility_bill_for_shop (utility_id, default_amount, prv_amount, prv_surcharge,

prv_from_date, prv_to_date, shop_id, tannent_id, last_date, paid_date, is_due,

ref_no)

Utility_setup (utility_id, utility_title, default_bill)

4.1.2 Data Generation Algorithm

A random data generator has been used to generate synthetic data and large number

of records have been inserted into each table. There are five tables in synthetic data

set has been given below, where first attribute of each table is the primary key. Our

synthetic data generator has been generated 21035, 21120, 21214, 31422, 30455

records for Distributor, Customer, Item, Employee and Store relations respectively.

Algorithm 4.1: Synthetic Data Generator:

1 InsertRandomData (RowCount)

2 BEGIN

 LOOP

4 COL1 VAR1 dbms_randon.string(‘L’, 10)

5 COL2 VAR2 dbms_randon.string(‘L’, 10)

 .

 .

8 COLN VARN dbms_randon.string(‘L’, 10)

9 LOOP

10 IF mod(counter,50)=0 THEN

11 REPEAT step 4 to 8

12 END IF

13 InsertData (COL1, COL2, ...,COLN)

14 Counter counter+1

15 Exit when counter>=rowcount

16 END LOOP

 END LOOP

17 END

From the above algorithm it has been observed that the random data generation

function has been generated an amount of random data for a column, which has been

inserted into the database table.

4.2 Storage Requirement

4.2.1 Synthetic Data

 Table 4.1 shows the storage for some relation in different technique. It has also

43

indicated the Compression Factor (CF) for H-HIBASE and Oracle database system.

It shows compression enhancement of H-HIBASE with compare to DHIBASE as

well.

Table 4.1: Compression achieved in different techniques for synthetic data (KB)

Relation Record Oracle 10g. DHIBASE H-HIBASE Overall

CF

Enhancement

Rate (%)

Distributor 21035 1024 96.28 81.84 12.51 14.99

Customer 21120 1024 96.65 82.17 12.47 14.98

Item 21214 1024 97.10 82.54 12.40 14.99

Employee 31422 1024 95.88 86.30 11.86 10.02

Store 30455 1024 92.93 83.64 12.24 9.99

Fig. 4.1: Storage in H-HIBASE, DHIBASE and Oracle 10g.

Fig. 4.1 shows the storage comparison among H-HIBASE, DHIBASE and Oracle

10g. In the figure it has been indicated that DHIBASE can be compressed the oracle

storage with the rate of 90%, whereas H-HIBASE can be compressed the oracle

storage with the rate of 92%.

44

Fig. 4.2: Storage in H-HIBASE and DHIBASE

Fig. 4.2 indicates the storage comparison between H-HIBASE and DHIBASE. In the

figure it has been indicated that H-HIBASE has better compression capability with

the rate 30%. This is because DHIBASE has been used fixed length coding whereas

H-HIBASE has been used variable length Huffman coding which need a reduced

amount of storage.

Fig. 4.3: Code size in DHIBASE and H-HIBASE

The storage of code size in DHIBASE and H-HIBASE technique is shown in Fig.

4.3. From the figure, H-HIBASE produces minimum number of code to store entire

relation than that of DHIBASE system. DHIBASE has needed around 70 KB to

store code size, whereas H-HIBASE has needed around 60 KB to store code size for

the same number of records.

45

4.2.2 Real Data

Real data set has been shown below. Storage requirement in different technique for

real data has been shown in table 4.2. It has been observed that the proposed system

has better than Oracle 10g by a factor of 4 to 5. Table 4.2 also shows that the H-

HIBASE has greater compression capability than DHIBASE which is more than

30%. Higher storage requirement has been avoided by using Huffman code-words in

H-HIBASE technique. Moreover high performance has been ensured as most

repeated attribute values get more weight and entered first in the dictionary i.e.

domain dictionary values sorted in such a way that frequently occurred values

accessed first than the rare values.

Table 4.2: Compression achieved in different techniques for real data (KB)

Relation Column Record Oracle

10g.

DHIBASE H-HIBASE Enrichment

Rate (%)

Electric bill 17 1505019

Electric_bill_

for_shop

17 570

Floor 3 8

Rate 3 8

Shop 6 583

Tennant 6 292

Utility_bill 8 1550987

Utility_bill_d

etail

4 6206961

Utility_bill_f

or_shop

13 2266

Utility_setup 3 6

381424 126347.42 88152.89 30.23

46

Fig. 4.4: Storage of real data in H-HIBASE, DHIBASE and Oracle 10g.

Fig. 4.4 shows the comparison of storage size among Oracle database, DHIBASE,

and H-HIBASE. To store same number of record it is required approximately 380

MB, 125 MB, and 85 MB in Oracle 10g, DHIBASE, and H-HIBASE respectively.

H-HIBASE technique has more compression capability than any other existing

systems.

Fig. 4.5: Storage of Real Data in H-HIBASE and DHIBASE

Fig. 4.5 indicates the storage comparison between H-HIBASE and DHIBASE. In

this figure H-HIBASE has better compression capability with the rate of more than

30%.

47

Fig. 4.6: Code size in DHIBASE and H-HIBASE

Fig. 4.6 shows the code size comparison between H-HIBASE and DHIBASE. H-

HIBASE is space efficient, this is because DHIBASE has used fixed length coding

whereas H-HIBASE has used variable length Huffman coding. Variable length

coding required smaller amount storage than fixed length coding.

4.3 Query Performance

To assess query performance, we carried out queries on both DHIBASE and H-

HIBASE. The performed queries and obtained results are described in the following

sub-sections. In all cases Distributor relation contains 0.1, 0.4, 0.7, 1.0 million

records. Item, Employee, Store and Customer relations contain 1000, 2000, 100,

10000 records respectively. All queries executed in H-HIBASE system are directly

applied on compressed data. Given query is first converted into compressed form

and compressed query is executed.

4.3.1 Single Column Projection

We have executed the following query and the result is shown in figure 4.7.

select Name from Customer

48

 Fig. 4.7: Single column projection

Figure 4.7 shows that H-HIBASE is faster than that of DHIBASE in case of

projection operation. This is obvious because H-HIBASE stores data in compressed

form with minimum storage. Therefore, to find a particular record it required to

search a smaller amount space. This is the main reason of speed-gain in H-HIBASE

system.

4.3.2 Two Column Projection

We have executed the following query and the result is shown in figure 4.8.

select Name, Street from Customer

 Fig. 4.8: Two column projection

49

Figure 4.8 shows that H-HIBASE is quicker than that of DHIBASE in case of two

column projection operation. This is obvious because H-HIBASE stores data in

compressed form with minimum storage. The processing speed of a query is

enhanced because queries specify operations only on a subset of domains. In a

column-wise database only the specified values need to be transferred, stored and

processed. This requires only a fraction of the data that required during processing

by rows.

4.3.3 Three Column Projection

We have executed the following query and the result is shown in figure 4.9.

select Name, Street, City from Customer

 Fig. 4.9: Three column projection

Figure 4.9 shows that H-HIBASE has better performance than that of DHIBASE in

case of three column projection operation. H-HIBASE stores data in compressed

form with minimum storage. In three column projection it has taken more execution

time than single column projection operation. It requires more access time to collect

data from the dictionary.

4.3.4 Full Table Scan

We have executed the following query and the result is shown in figure 4.10.

select * from Customer

50

Fig. 4.10 shows that the performance of H-HIBASE and DHIBASE shows similar

result of three column projection which is shown in Fig. 4.9. This is because the

Customer relation has three columns.

 Fig. 4.10: Full Table Scan

4.3.5 Single Predicate Selection

We have executed the following query and the result is shown in figure 4.11.

select Name from Customer where City = “Dhaka”

 Fig. 4.11: Single predicate selection

51

Figure 4.11 shows that H-HIBASE does not better performance than DHIBASE in

case 0.1 million to 0.4 million records but faster in case 0.7 million and 1.0 million

records. In case of 1 million records, it reads most repetitive values first from the

dictionary, and takes a reduced amount of time to access it from the storage. The

processing speed of predicate selection query is enhanced because queries specify

operations only on a subset of domains. In a column-wise database only the

specified column need to be accessed. This requires only a fraction of the data that

required during processing by rows.

4.3.6 Five Percent Selectivity

We have executed the following query and the result is shown in figure 4.12.

select * from distributor where rownum < (((select count(*) from distributor)/100) *

5)

 Fig. 4.12: 5% selectivity

Figure 4.12 shows that H-HIBASE performs better performance than DHIBASE in

case of 5% selectivity. This is because within this 5% data there are large number of

repetition.

4.3.7 Ten Percent Selectivity

We have executed the following query and the result is shown in figure 4.13.

select * from distributor where rownum < (((select count(*) from distributor)/100) *

10)

52

Figure 4.13 show that H-HIBASE show better performance than DHIBASE in case

of 10% selectivity, but it is not as efficient as 5% selectivity, because of lower

repetition.

 Fig. 4.13: 10% selectivity

4.3.8 Aggregate Function: Count

For aggregation queries we have considered the following relation:

account(account_no, branch_name, balance).

We have executed the following query and the result is shown in figure 4.14.

Select branch_name, count (branch_name) from account.

Fig. 4.14: Aggregate function: Count

53

We assume that the relation account is already sorted by account_no according to

dictionary code. In case of 0.1 to 1 million records, H-HIBASE read all distinct

values from dictionary to calculate the result. Hence the performance is almost same

with DHIBASE.

4.3.9 Aggregation: Max/ Min/ Sum/ Avg

We have calculated the following queries and the result is shown in figure 4.15

select account_no, max (balance) from account group by account_no

select account_no, sum (balance) from account group by account_no

select account_no, avg (balance) from account group by account_no

Fig. 4.15: Aggregate function: Max/Min/Sum/Avg.

H-HIBASE read all distinct values from dictionary to calculate the result. In case of

fewer amounts of data performance is almost same in both techniques, and when

storage increases H-HIBASE perform better because of its repetition.

4.4 Worst Case Analysis

In the above analysis we have observed that the H-HIBASE technique perform

better than that of DHIBASE in case of storage and query time. It just because H-

HIBASE has been used Huffman Principle to generate its dictionary and H-HIBASE

store its code-words into column wise format into the disk. As Huffman Principles

generate shorter code-word for most repetitive values, hence compression has been

optimized where repetition is regular. If there is no repetition than Huffman generate

a codeword for every string value and require more space to store these bigger

54

length code-words in the disk. In the worst case scenario, the performance of H-

HIBASE is same with DHIBASE; both of them require same space to store all

random code-words.

4.5 Summary

In this chapter we have presented the experimental evaluation of the H-HIBASE

architecture. We evaluated the storage performance in comparison with DHIBASE

and Oracle 10g. The storage performance that is achieved in H-HIBASE is 25 to 40

percent better than the Oracle 10g for real and synthetic data. It has also been shown

that the storage performance that is achieved in H-HIBASE is 15 to 35 percent better

than the DHIBASE. The query performance that is achieved in H-HIBASE is 10 to

25 percent better than that of DHIBASE.

55

Chapter 5

Conclusion and Future Research

Database compression is attractive for two reasons: storage cost reduction and

performance improvement. Both are essential for management of large databases.

Direct addressability of compressed data is necessary for faster query processing. It

is also important for queries to be processed in compressed form without any

decompression. Literature survey shows that compression techniques used in

memory resident databases are not suitable for large databases when database cannot

fit into memory. We have improved the basic HIBASE model and DHIBASE model

for disk support. We have also improved query processing capability of the basic

system. We have defined a number of operators for querying compression-based

relational database system, designed algorithms for these operators and thoroughly

analyzed these algorithms.

5.1 Fundamental Contributions of the Thesis

� The main contribution of this research is to develop a compression technique

that is enhancement of HIBASE technique using HUFFMAN coding (H-

HIBASE) with better compression capability.

� Compressed data are stored using the H-HIBASE architecture with disk

support. This overcomes the scalability problems of the memory resident

DBMS.

� Considerable storage reduction has been achieved using the H-HIBASE

architecture. The experimental results show that H-HIBASE architecture is 15

to 35 times space efficient than that of HIBASE and DHIBASE.

� We have designed algorithms for most of the relational algebra operations that

support most of the commercial database systems. Experimental results show

that the H-HIBASE system has better performance for insertion, deletion,

update operations on single relation compared to Oracle database. In case of

selection operation, H-HIBASE is significantly better than DHIBASE.

56

 5.2 Future Research

The H-HIBASE architecture has been implemented in a single processor system and

achieved significant performance improvement over existing compression based

systems. H-HIBASE is disk based database compression architecture. The future

expansion of this research is to explore the following issues:

� The architecture can be used for parallel database environment to achieve

scalable performance for data warehouse application.

� We have not considered any back-up and recovery mechanism for H-

HIBASE architecture. These features may be included.

� To achieve concurrent access to H-HIBASE architecture, a multi-threaded

 algorithm can be considered to support multi-user DBMS.

� To achieve faster query performance for multiple relation join, set and

aggregation operations, better algorithm may be designed.

57

Bibliography

[1] Tashenberg, C. B., “Data management isn’t what it was,” Data Management

Direct Newsletter, May 24, 2002.

[2] Rouf, M. A., “Scalable storage in compressed representation for terabyte data

management,” M. Sc. Thesis, Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology, Dhaka,

Bangladesh, 2006.

[3] Cormack, G. V., “Data compression on a database system,” Communication of

the ACM, Vol-28, No. 12, pp 1336–1342, 1985.

[4] Helmer, S., Westmann, T., Kossmann, D. and Moerkotte, G., “The

implementation and performance of compressed databases,” SIGMOD Record,

Vol-29, No. 3, pp 55–67, 2000.

[5] Roth, M. A. and Horn, S. J. V., “Database compression,” SIGMOD Record,

Vol22, No. 3, pp 31–39, 1993.

[6] Graefe, G. and Shapiro, L., “Data compression and database performance,”

ACM/IEEE-CS Symposium on Applied Computing, pp 22-27, April 1991.

[7] Oracle Corporation, “Table compression in Oracle 9i: a performance analysis,

an Oracle whitepaper,” http://otn.oracle.com/products/bi/pdf/o9ir2_

compression_performance_twp.pdf.

[8] Ramakrishnan, R., Goldstein, J. and Shaft, U., “Compressing relations and

indexes,” Proceedings of the IEEE Conference on Data Engineering, pp 370–

379, Orlando, Florida, USA, February 1998.

[9] Poess, M. and Potapov, D., “Data compression in Oracle,” Proceedings of the

29 VLDB Conference, pp 937-947, Berlin, Germany, September 2003.

[10] Silberschatz, A., Korth, H. F. and Sudarshan, S., “Database system concepts,”

5th Edition, McGraw-Hill, 2006.

[11] McGregor, D., Cockshott, W. P. and Wilson, J., “High-performance

operations using a compressed architecture,” The Computer Journal, Vol-41,

No. 5, pp 283– 296, 1998.

[12] Hoque, A. S. M. L., “Compression of structured and semi-structured

information,” Ph. D. Thesis, Department of Computer and Information

58

Science, University of Strathclyde, Glasgow, UK, 2003.

[13] Cockshott, W. P., McGregor, D. and Wilson, J., “High-Performance Operation

Using a Compressed Database Architecture,” The Computer Journal, Vol. 41,

No. 5, pp. 285-296, 1998.

[14] Lehman, T. J., Carey, M. J., “A Study of Index Structures for Main Memory

Database Management Systems,” Proceedings of the Twelfth International

Conference on Very Large Databases, pp. 294-303, August 1986.

[15] Bhuiyan, M. M., Hoque, A. S. M. L., “High Performance SQL Queries on

Compressed Relational Database,” Journal of Computers, Vol. 4, No. 12, pp

1263-1274, December 2009.

[16] Hoque, A. S. M. L., “Compression-Based Models for Processing of Structured

and Semi-stuctured Data,” Proceedings of the Workshop DATESO 2003, pp 1-

20, ISBN 80-248-0330-5, 2003.

[17] Alom, B. M. M., Henskens, F. and Hannaford, M., “Single Vector Large Data

Cardinality Structure to Handle Compressed Database in a Distributed

Environment,” Springer Berlin Heidelberg 2009, pp 147-160, ISBN 978-3-

642-05200-2, 2009.

[18] Huffman, D. A., “A Method for the Construction of Minimum Redundancy

Codes,” Proceedings of the I.R.E., vol. 40, pp. 1098-1101, September 1952.

[19] Kavousianos, X., Kalligeros, E. and Nikolos, D., “Multilevel Huffman Coding:

An Efficient Test-Data Compression Method for IP Cores,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 6,

pp 1070-1083, June 2007.

[20] Hashemian, R., “Memory Efficient and High-Speed Search Huffman Coding,”

IEEE Transactions on Communication, Vol. 43, No. 10, pp 2576-2581,

October 1995.

[21] McGregor, D. R. and Hoque, A. S. M. L., “Improved compressed data

representation for computational intelligence systems,” In UKCI-01,

Edinburgh, UK, September 2001.

[22] Held, G. and Marshel, T. R. , “Data and Image Compression,” Number 0-

47195247-8, John Wiley and Sons Ltd, West Sussex, England, 1996.

[23] Huffman, D.A., “A method for the construction of minimum-redundancy

code,” In Proceedings of IRE, Vol-40, No. 9, pp 1098–1101, 1952.

[24] Fano, R.M., “The transmission of information,” In Research Laboratory for

Electronics, MIT Technical Report, (65), 1949.

59

[25] Shannon, C.E., “A mathematical theory of communications,” In Bell system

Technical Journal, Vol-27, pp 379–423 and 623–656, 1948.

[26] Vitter, J.S., “Design and analysis of dynamic Huffman code,” In Journal of the

ACM, Vol-34, No. 4, pp 825–845, October 1987.

[27] Gallager, R.G., “Variations on a theme by Huffman,” In IEEE Transaction on

Information Theory, Vol-24, No. 6, pp 668–674, November 1978.

[28] Lampel, A. and Ziv, J., “A universal algorithm for sequential data

compression,” In IEEE Transaction on Information Theory, Vol-23, pp 337–

343, 1977.

[29] Lampel, A. and Ziv, J., “Compression of individual sequences via variable rate

coding,” In IEEE Transaction on Information Theory, Vol-24, pp 530–536,

1978.

[30] Welch, T. A, “A technique for high-performance data compression,” In IEEE

Computer, Vol-17, No. 6, pp 8–19, 1984.

[31] Larson, N. J. and Moffat, A., “Off-line dictionary-based compression,” In

Proceedings of the IEEE Data Compression Conference, Snowbird, Utah,

March 2000.

[32] Golomb, S. W., “Run-length encodings,” In IEEE Transaction on Information

Theory, Vol-12, No. 3, pp 399-401, 1966.

[33] Chen, Z., Gehrke, J. and Korn, F., “Query optimization in compressed

database systems,” In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data, pp 271–282, ACM Press,

2001.

[34] Oberhummer, M. F. X. J. , “LZO: A real-time data compression library,” 2002,

http://www.oberhumer.com/opensource/lzo/lzodoc.php.

[35] Moffat, A. and Zobel, J., “Parameterised compression for sparse bitmap,” In

Proceedings of the 15 Annual International SIGIR 92, pp 274–285, ACM,

1992.

[36] Wee, K. N. and Ravishankar, C. V., “Relational database compression using

augmented vector quantization,” In Proceedings of the 11th International

Conference on Data Engineering, pp 540–550, Taipei, Taiwan, 1995. IEEE.

[37] Cuperman, V. and Gersho, A., “Vector quantization: A pattern-matching

60

technique for speech coding,” In IEEE Communication Magazine, Vol. 21, pp

15–21, December 1983.

[38] Kotsis, N., Wilson, J., Cockshott, W. P. and McGregor, D., “Data compression

in database systems,” In Proceedings of the IDEAS, pp 1–10, July 1998.

[39] Codd, E. F., “A relational model of data for large shared data banks,”

Communication of the ACM, Vol-13, No. 6, pp 377–387, 1970.

[40] Short history of HUFFMAN Coding: http://en.wikipedia.org/wiki/ Huffman_

coding last access on 31 July 2011.

[41] Jones, D. W, “Application of Splay Trees to Data Compression,”

Communication of ACM, August 1988.

[42] Witten, I. H, “Arithmetic Coding for Data Communication,” Communication

of ACM, June 1987.

[43] Xu, Y., Agrawal, R. and Somani, A., “Storage and querying of e-commerce

data,” In Proceedings of the 27 VLDB Conference, pp 149–158, Roma, Italy,

2001.

[44] Wilson, J., Hoque, A. S. M. L. and McGregor, D. R., “Database compression

using an off-line dictionary method,” ADVIS, LNCS, Vol-24, pp 11–20,

October 2002.

[45] Aho, A. V., Sethi, R. and Ullman, J. D., “Compilers: Principles, Techniques,

and Tools,” Addison Wesley, 1986.

[46] Knuth, D. E., “The art of computer programming,” Vol-3, Addison Wesley,

Sorting and Searching, 1973.

[47] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T.

G., “Access path selection in a relational database system,” Proc. of the ACM

SIGMOD Conf. on Management of Data, pp 23-34, 1979.

[48] Graefe, G. and McKenna, W., “The Volcano optimizer generator,” Proc. of the

International Conf. on Data Engineering, pp 209-218, 1993.

[49] Haas, L. M., Freytag, J. C., Lohman, G. M. and Pirahesh, H., “Extensible

query processing in Starburst,” Proc. of the ACM SIGMOD Conf. on

Management of Data, pp 377-388, 1989.

[50] Oracle 8 concepts manual, Oracle Corporation, Redwood Shores, 1997.

[51] Dayal, U., Goodman, N. and Katz, R. H., “An extended relational algebra with

61

control over duplicate elimination,” Proc. of the ACM Symposium on

Principles of Database Systems, 1982.

[52] Seshadri, P., Pirahesh, H. and Lueng, T. Y. C., “Complex query decorrelation,”

Proc. of the International Conf. on Data Engineering, pp 450-458, 1996.

[53] Roy, P., Seshadri, S., Sudarshan, S. and Bhobhe, S., “Efficient and extensible

algorithms for multi-query optimization,” Proc. of the ACM SIGMOD Conf.

on Management of Data, 2000.

[54] Hall, P. A. V., “Optimization of a single relational expression in a relational

database system,” IBM Journal of Research and Development, vol-20, No. 3,

pp 244-257, 1976.

[55] Dalvi, N. N., Sanghai, S. K., Roy, P. and Sudarshan, S., ”Pipelining in multi-

query optimization,” Proc. of the ACM Symposium on Principles of Database

Systems, 2001.

[56] Blasgen, M. W. and Eswaran, K. P., “On the evaluation of queries in a

relational database system,” IBM Systems Journal, Vol-16, pp 363-377, 1976.

[57] Kitsuregawa, M., Tanaka, H. and MotoOka, T., “Application of hash to a

database machine and its architecture,” New Generation Computing, No. 1, pp

62-74, 1983.

[58] Shapiro, L. D., “Join processing in database systems with large main

memories,” ACM Transactions on Database Systems, Vol-11, No. 3, pp 239-

264, 1986.

[59] Davison, D. L. and Graefe, G., “Memory-contention responsive hash joins,”

Proceedings of VLDB Conference, 1994.

[60] Graefe, G., Bunker, R. and Cooper, S., “Hash joins and hash teams in

Microsoft SQL Server,” Proceedings of VLDB Conference, pp 86-97, 1998.

[61] Klug, A., “Equivalence of relational algebra and relational calculus query

languages having aggregate functions,” ACM Press, Vol-29, No. 3, pp 699-

717, 1982.

[62] Chaudhuri, S. and Shim, K., “Including group-by in query optimization,” In

Proceedings of VLDB Conference, 1994.

[63] Galindo-Legaria, C., “Outerjoins as disjunctions,” Proc. of the ACM SIGMOD

Conf. on Management of Data, 1994.

62

[64] Gupta, A. and Mumick, L. S., “Maintenance of materialized views: problems,

techniques and applications,” IEEE Data Engineering Bulletin, Vol-18, No. 2,

1995.

[65] Mistry, H., Roy, P., Sudarshan, S. and Ramamritham, K., “Materialized view

selection and maintenance using multi-query optimization,” Proc. of the ACM

SIGMOD Conf. on Management of Data, 2001.

[66] Dar, S., Jagadish, H. V., Levy, A. and Srivastava, D., “Answering queries with

aggregation using views,” Proceedings of VLDB Conference, 1996.

[67] Coreman, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., “Introduction to

Algorithms,” second edition, page 387-388.

[68] Declaring and Using Bit Fields in Structures: http://publib.boulder.ibm.com

/infocenter/macxhelp /v6v81/index.jsp?%20 topic=%2Fcom.ibm.vacpp6m.doc

%2Flanguage%2Fref%2Fclrc03defbitf.htm last access on 31 July 2011.

