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Abstract 

 

Storage requirement for database system is a problem for many years. Storage 

capacity is being increased continually, but the enterprise and service provider data 

need double storage every six to twelve months. It is a challenge to store and 

retrieve this increased data in an efficient way. Reduction of the data size without 

losing any information is known as loss-less data compression. 

 

In this thesis we have presented a loss-less compression technique namely H-

HIBASE (further compression of HIBASE technique using HUFFMAN Coding).  

Due to disk based compression H-HIBASE support very large database with 

acceptable storage volume. Insertion, deletion and update mechanisms on the 

architecture have been presented and analyzed. The architecture executes query 

directly on compressed data and it is capable of executing all types of SQL queries. 

The experimental evaluation has been performed with synthetic and real data. The 

experimental result has been compared with DHIBASE and widely used Oracle 

database. Our target was to handle relations and justify the storage requirements and 

query time in comparison with DHIBASE and Oracle database.   

 

We evaluated the storage performance in comparison with DHIBASE and Oracle 

database. The storage performance that has been achieved in H-HIBASE is 25 to 40 

percent better than the Oracle database for real and synthetic data. The query 

performance that has been achieved in H-HIBASE is 10 to 25 percent better than 

that of DHIBASE.  
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Chapter 1  

Introduction  

Storage requirement for database system is a problem for many years. Storage capacity 

is being increased continually, but the enterprise and service provider data need double 

storage every six to twelve months [1]. It is a challenge to store and retrieve this 

increased data in an efficient way. Reduction of the data size without losing any 

information is known as loss-less data compression. This is potentially attractive in 

database systems for two reasons: 

• Storage cost reduction 

• Performance improvement  

 The reduction of storage cost is obvious. The performance improvement arises as 

the smaller volume of compressed data may be accommodated in faster memory 

than its uncompressed counterpart. Only a smaller amount of compressed data needs 

to be transferred and/or processed to effect any particular operation.    

 

Most of the large databases are often in tabular form. The operational databases are 

of medium size whereas the typical size of fact tables in a data warehouse is 

generally huge [2]. These data are write once-read many type for further analysis. 

Problem arises for high-speed access and high-speed data transfer. The conventional 

database technology cannot provide such performance. We need to use new 

algorithms and techniques to get attractive performance and to reduce the storage 

cost. High performance compression algorithm, necessary retrieval and data transfer 

technique can be a candidate solution for large database management system. It is 

difficult to combine a good compression technique that reduces the storage cost 

while improving performance. 

 

1.1 Background  

A number of research works [3, 4, 5, 6] are found on compression based Database 

Management Systems (DBMS). Commercial DBMS uses compression to a limited 

extent to improve performance [7]. Compression can be applied to databases at the 
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relation level, page level and the tuple or attribute level. In page level compression 

methods the compressed representation of the database is a set of compressed tuples. 

An individual tuple can be compressed and decompressed within a page. An 

approach to page level compression of relations and indices is given in [8]. The 

Oracle Corporation introduces disk-block based compression technique [9] to 

manage large database. Complex SQL (Structured Query Language) queries cannot 

be carried out on these databases in compressed form.  

  

SQL:2003 [10] supports many different types of operations. Compression based 

systems like High Compression Database System (HIBASE) [11], Three Layer 

Model [12] and Columnar Multi Block Vector Structure (CMBVS) [2] have limited 

number of query statements compared to SQL.   

  

1.2 Problem Definition  

The HIBASE (High Compression Database System) [13] approach is a compression 

technique for Main Memory Database Management System (MMDBMS) [14], 

supports high performance query operations on relational structure [15]. Disk-based 

system (DHIBASE) is an extension of HIBASE architecture [15]. The structure 

stores database in column wise format so that the unnecessary columns need not to 

be accessed during query processing and also restructuring the database schema will 

be easy. The dictionary space overhead is excessive for both HIBASE and 

DHIBASE systems. HIBASE and DHIBASE compression techniques simply 

replaces the attribute values in a tuple with fixed length code-words [16][17]. 

However, fixed length coding system is not an optimal compression technique it 

does not consider the frequency of occurrence of the values. Thus HIBASE and 

DHIABSE require higher space in the compressed database. This higher storage 

requirement can be avoided if we use Huffman code-words [18]. Moreover, using 

Huffman code-word will ensure optimal compression as well as High performance 

operation [19][20]. As we know Huffman algorithm generates an optimal tree 

[18][19], hence the compression will be optimized. However, the use of Huffman 

coding could increase the query complexity in HIBASE and DHIBASE, but this 

complexity can be reduced by designing proper algorithm.   
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 1.3 Objective  

HIBASE compression technique achieves query performance by sacrificing the 

storage requirement by using equal length codeword. The objectives of the research 

are to: 

���� develop a dictionary by applying the principle of Huffman coding, 

���� further compress the relational storage of HIBASE by applying dynamic 

Huffman coding, 

���� develop algorithm to perform query operation on the compressed storage,  

���� and, analyze the performance of the proposed system in terms of both storage 

and queries. 

 

1.4 Research Approach and Methodology  

Further compression using Huffman coding reduces each field to just sufficient bits 

to encode all the values that occur within the domain of that field. Experimental 

design has been carried out using following steps: 

Step 1: The database has been sorted according to the number of occurrences of 

same values and the sorted database has been used in Huffman algorithm to generate 

the dictionary. In this dictionary the codeword with number of occurrences has been 

stored according to particular keyword.  

Step 2: A compression algorithm has been developed to compress the database 

using Huffman dictionary.  

Step 3: Algorithm has been developed to process all kinds of SQL queries using the 

compressed database only. The result has been decompressed using the Huffman 

dictionary. Analysis of the algorithm has been given. 

Step 4: Synthetic and real datasets has been used to analyze the performance of the 

system. The storage and performance of the proposed system has been compared 

with the existing HIBASE and DHIBASE systems. 
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1.5 Organization of the thesis 

In chapter 2, a survey of the research in compression methods and query processing 

in database systems is presented. We have developed a new system which is an 

extension of HIBASE architecture. The dictionary organization and compressed 

relational structure of HIBASE are discussed.   

 

Chapter 3 presents the overview of our proposed architecture, Enhancement of 

HIBASE Using HUFFMAN Coding (H-HIBASE). The structure stores database in 

column wise format so that the unnecessary columns need not to be accessed during 

query processing and also restructuring the database schema will be easy. Each 

attribute is associated with a domain dictionary. Attributes of multiple relations with 

same domain share the same dictionary. The detailed analysis of query processing of 

H-HIBASE system has also been given in this chapter. SQL-like query operators in 

compressed format have been defined and algorithm of each operator and analysis of 

the algorithms has been provided as well.   

 

Chapter 4 describes the experimental work that has been carried out. Results 

obtained have been thoroughly discussed.   

 

Chapter 5 presents conclusions and suggestions for future work. 
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Chapter 2  

Literature Survey  

 

 The amount of information does not strictly depend on the volume of data. Insight 

depends on information; the volume of data depends on its own representation. For 

cost and performance reason the data should be made as concise as possible. Over the 

last decade computer memory cost has been significantly reduced. But at the same 

time, storage size of data and information has also been increased. Therefore, storage 

cost for large-scale databases is still a great problem [5].   

Combining compression with data processing provides performance improvement. 

Database systems need to provide efficient addressability for data, and generally must 

provide dynamic update. It is difficult to incorporate these features with good 

compression techniques [21]. Many research works [3, 4, 5, 6] have been done in 

database systems to exploit the benefit of compression in storage reduction and 

performance improvement.   

 

 2.1 Compression Techniques  

Based on the ability of the compressed data to be decompressed into the original 

data, data compression techniques can be classified as either loss-less or lossy. A 

loss-less technique means that the compressed data can be decompressed into the 

original without any loss of information. On the other side, a compression method 

that cannot reconstruct the original data from the compressed form is called lossy 

compression. This type of compression is appropriate for compressing image, voice 

or video data.   

 

Based on how the input data is treated during compression, we can categorize the 

compression techniques as lightweight or heavyweight scheme. Lightweight scheme 

compresses a sequence of values. Heavyweight scheme compresses a sequence of 

bytes. This scheme is based on patterns found in the data, ignoring the boundaries 

between values, and treating the input data as an array of bytes.  
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2.1.1 Loss-Less Compression Methods  

The loss-less property is essential for many types of application e.g., word-

processing and database applications. The loss-less compression methods can be 

further classified as follows:  

• Statistical encoding  

• Dictionary Based Methods  

 

 Statistical Encoding   

Statistical encoding uses the probabilities of occurrence of each character and each 

group of characters, assigns short codes to frequently occurring characters or groups 

of characters while assigns longer codes to less frequently encountered characters or 

groups of characters [22]. The widely used statistical compression methods are 

Huffman [23] and Shannon-Fano [24,25] encoding. These methods are static and 

require a prior knowledge of the probability of occurrence of each character in the 

input string. Performance degrades if the frequency of occurrences changes. Static 

methods require at least two passes: one pass to determine the probability of 

occurrences of the input alphabet and the other pass to encode the string. To maintain 

the efficiency of the resulting code obtained by compressing data, adaptive or 

dynamic compression schemes have been developed by many researchers [26, 27].   

 

Dictionary Based Methods   

In dictionary based compression methods, the encoder operates on-line, inferring its 

dictionary of available phrases from previous parts of the message and adjusting its 

dictionary after the transmission of each phrase. This allows the dictionary to be 

transmitted implicitly, since the decoder simultaneously makes similar adjustment to 

its dictionary after receiving each phrase. The Lempel-Ziv families of compression 

methods [28, 29, 30] are of this type and are used in many file storage and archiving 

systems. These methods perform better than the character-based methods in terms of 

speed and space. The main drawback of these methods for database applications is the 

locality of reference. The encoded data using the initial part of the dictionary is not the 

same as the encoded data using the later part of the dictionary. Therefore the 
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compressed data is not directly addressable in these methods [11]. These techniques 

require decompression all, or a large amount of the data even if only a small part of 

that data is required.  Alternatively, a complete dictionary is created in advance using 

the full message. The dictionary is included explicitly as part of the compressed 

message. This scheme is highly efficient for decompression, and the compressed data 

can be searched directly [31].   

 

2.1.2 Lossy Compression Methods  

All real world measurement of audio-visual data inherently contains a certain 

amount of noise. If the compression method includes a small amount of additional 

noise, no harm is done. Compression techniques that result in this sort of 

degradation are called lossy. This phenomenon is important because lossy 

compression techniques can give greater compression ration over the loss-less 

methods. The higher the compression ratio, the more noise added to the data. Lossy 

compression is advantageous for image, voice and video data because the additional 

noise has little effect on the user’s perception. JPEG (Joint Photographic Expert 

Group) and MPEG (Moving Picture Expert Group) are standards for compression of 

image, voice and video data using lossy compression methods.   

  

2.1.3 Lightweight Compression Methods  

Lightweight compression techniques work on the basis of some relationship between 

values, such as when a particular value occurs often, or if we encounter long runs of 

repeated values. Run length encoding [32], delta encoding and dictionary encoding 

[5, 6, 33] are some examples of lightweight compression techniques. In a light-

weight compression technique, the compression algorithm is simple and fast. The 

compression and decompression time is more important than the amount of 

compression.  

 

2.1.4 Heavyweight Compression Methods  

LZO (Lempel Ziv Oberhummer) [34] is a modification of the original Lempel Ziv 

[28] dictionary coding algorithm. [28] works by replacing byte patterns with tokens. 

Each time the algorithm recognizes a new pattern, it outputs the pattern and then it 
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adds it to a dictionary. The next time it encounters that pattern, it outputs this token 

from the table. The first 256 tokens are assigned to possible values of a single byte. 

Subsequent tokens are assigned to larger patterns. 

   

Details on the particular algorithm modifications added by LZO are undocumented, 

although the LZO code is highly optimized and hard to decipher. LZO is heavily 

optimized for decompression speed. It provides the following features: 

• Decomposition is simple and very fast. 

• Requires no memory for decomposition. 

• Compression is fast. 

• The algorithm is thread safe. 

• The algorithm is loss-less.  

 

2.2 Compression on Database Processing  

Compression has now become an essential part of many large information systems 

where large amount of data is processed, stored or transferred. This data may be of 

any type e.g., voice, video, text, tables etc. No single compression technique is 

suitable for all types of data. Lossy compression is appropriate for voice or video 

data where as loss-less compression is suitable for other data types. Cormack [3] has 

used a modified Huffman code [23] for the IBM IMS database system. Westmann et 

al. [4] has developed a lightweight compression method based on LZW [30] for 

relational databases. Moffat et al. [35] use the Run Length Encoding [32] method for 

a parameterized compression technique for sparse bitmaps of a digital library.   

  

2.2.1 Compression of Relational Structures  

We shall certainly get some benefits if we compress relational databases. We can 

improve the index structures such as B-trees by reducing the number of leaf pages. 

We can reduce the storage requirements for information. We have reduction in 

transaction turnaround time and user response time as a result of faster transfer 

between disk and main memory in I/O bound systems. In addition, since this will 

also reduce I/O channel loading, the CPU can process many more I/O requests and 

thus increase channel utilization. We may have better efficiency of backup since 
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copies of the database could be kept in compressed form. This reduces the number 

of tapes required to store the data and reduces the time of reading from, and writing 

to, these tapes. The whole or the major portion of processing data in compressed 

form may be memory resident. Main memory access time is several orders of 

magnitude faster than the secondary storage access time. This improves 

performance.    

 

Compression can be applied to databases at the relation level, page level and the 

tuple or attribute level. In page level compression the database is represented as a set 

of compressed tuples. An individual tuple can be compressed and decompressed 

within a page. When a particular tuple is required, the corresponding page is 

transferred to the memory and decompression is necessary only if the decompressed 

tuple is required. An approach to page level compression of relations and indexes is 

given in [8]. The important aspects of the technique are that each compressed data 

page is independent of the other pages and each tuple can be decompressed based on 

the information found on that specific page. A compressed tuple can be referred by a 

page-no and an offset. The degree of compression greatly depends on the range of 

values in each field for the set of tuples stored on a page.    

 

Wee et al. [36] has proposed a tuple level compression scheme using Augmented 

Vector Quantization. Vector quantization is a lossy data compression technique used 

in image and speech coding [37]. However Wee et al. [36] has developed a loss-less 

method for database compression to improve performance of I/O intensive 

operations.   

 

A similar compression scheme has been given in [4] with a different approach. The 

work presented a set of very simple and light-weight compression techniques and 

shows how a database system can be extended to exploit these compression 

techniques. Numeric compression is done by suppressing zeros; string compression 

is done by classical Huffman [23] or LZW [30]. Dictionary-based compression 

methods, however, are used for any field containing a small number of different 

values.   
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2.2.2 HIBASE Architecture 

The HIBASE [11] approach is a more radical attempt to model the data 

representation that is supported by information theory. The architecture represents a 

relation table in storage as a set of columns, not a set of rows. Of course, the user is 

free to regard the table as a set of rows. However, the operation of the database can 

be made considerably more efficient when the storage allocation is by columns. 

 

Table 2.1: Distributor relation 

ID 

First 

Name 

Last 

Name Area 

1 Abdul Bari Dhaka 

2 Abdur Rahman Sylhet 

3 Md Alamin Chittagong 

4 Abdul Gafur Dhaka 

5 Salam Bari Sylhet 

6 Md Tuhin Rajshahi 

7 Salam Mia Rajshahi 

8 Chan Mia Dhaka 

9 Ghendhu Mia Chittagong 

10 Abdur Rahman Sylhet 

 

The database is a set of relations. A relation is a set of tuples. A tuple in a relation   

represents a relationship among a set of values. The corresponding values of each 

tuple belong to a domain for which there is a set of permitted values. If the domains 

are D1, D2, ……., Dn respectively. A relation r is defined as a subset of the Cartesian 

product of the domains. Thus r is defined as  nDDDr ×××⊆ ........21 . 

 

An example of a relation is given in Table 2.1 In the conventional database 

technology, we have to allocate enough space to fit the largest value of each field of 

the records. When the database designer does not know exactly how large the 

individual values are, he/she must err on the side of caution and make the field 

larger than is strictly necessary. In this instance, a designer should specify the width 

in bytes as shown in Table 2.2 Each tuple is occupying 18 bytes, so that 10 tuples 

occupy 180 bytes. 
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Table 2.2: Field length and tuple size for Distributor relation 
 

Attribute No Attribute Name Bytes 

0 First Name 6 

1 Last Name 6 

2 Area 6 

            Total 18 

 

The HIBASE architecture by Cockshot, McGregor and Wilson [11, 38] is a more 

radical approach to model the data representation. The HIBASE architecture can be 

derived from a conventional record structure using the following steps:  

1. A dictionary per domain is employed to store the string values and to 

provide integer identifiers for them. This achieves a lower range of 

identifier, and hence a more compact representation than could be achieved 

if a single dictionary was provided for the whole database. 

2. Replace the original field value of the relation by identifiers. The range of 

the identifiers is sufficient to distinguish string of the domain dictionary.  

 

In the relational approach, the database is a set of relations [39]. A relation 

represents a set of tuples. In a table structure, the rows represent tuples and the 

columns contain values drawn from domains. Queries are answered by the 

application of the operations of the relational algebra, usually as embodied in a 

relational calculus-based language such as SQL. 

 

Table 2.3: Compressed table in HIBASE 

First 

Name 

Last 

Name Area 

000 001 00 

010 010 01 

011 011 10 

000 100 00 

001 001 01 

011 101 11 

001 000 11 

100 000 00 

101 000 10 

010 010 01 
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The objective of the compression architecture is to trade off cost and performance 

between that of conventional DBMS and main memory DBMS. Costs should be less 

than the second, and processes faster than the first [11]. The architecture’s compact 

representation can be derived from a traditional record structure in the following 

steps:   

 

Creating dictionaries: A dictionary for each domain is created which stores string 

values and provides integer identifiers for them. This achieves a lower range of 

identifiers, and hence a more compact representation than could be achieved if only 

a single dictionary was generated for the entire database.   

 

Replacing field values by integer identifiers: The range of the identifiers need 

only be sufficient to unambiguously distinguish which string of the domain 

dictionary is indicated. In Fig. 2.1, since there are only 6 distinct First Names, only 

six identifiers are required. This range can be represented by only a 3-bit binary 

number. 

 

Therefore in the compressed table each tuple requires only (3 bits: First Name, 3 

bits: Last Name, 2 bits: Area) a total of 8 bits instead of the 18 bytes (6 bytes: First 

Name, 6 bytes: Last Name, 6 bytes: Area) for the uncompressed relation. This 

achieves a compression of the table by a factor of over 22. The actual compression 

ratio is somewhat lower due to the space requirements of domain dictionaries. 

Generally some domains are present in several relations and this reduces the 

dictionary overhead by sharing them among different attributes. In a domain a 

specific identifier always refers to the same field value and this fact enables some 

operations to be carried out directly on compressed table data without examining 

dictionary entries until string values are essential (e.g. for output). This is not the 

overall storage; however, we must take account of the space occupied by the domain 

dictionaries and indexes. Typically, a proportion of domain is present in several 

relations and this reduces the dictionary overhead by sharing it by different 

attributes. 
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Fig. 2.1: Compression of Distributor relation 

 

Dictionary structure: All distinct attribute values (lexemes) are stored in an end-to-

end format in a string heap. A hashing mechanism is used to achieve a contiguous 

integer identifier for the lexemes. This reduces the size of the compressed table. It 

has three important characteristics: 

1. It maps the attribute values to their encoded representation during the 

compression operation: encode(lexeme ) →token 

2. It performs the reverse mapping from codes to literal values when parts of 

the relation are decompressed: decode(token ) → lexeme. 

3. The mapping is cyclic such that lexeme = decode(encode(lexeme)) and also 

token = encode(decode(token)). 
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The structure is attractive for low cardinality data. For high cardinality and primary 

key data, the size of the string heap grows considerably and contributes very little or 

no compression. 

 

Column-wise storage of relations: The architecture stores a table as a set of 

columns (Fig. 2.2), not as a set of rows. This makes some operations on the 

compressed database considerably more efficient. A column-wise organization is 

much more efficient for dynamic update of the compressed representation. A general 

database system must support dynamic incremental update, while maintaining 

efficiency of access. The processing speed of a query is enhanced because queries 

specify operations only on a subset of domains. In a column-wise database only the 

specified values need to be transferred, stored and processed. This requires only a 

fraction of the data that required during processing by rows. 

 

Fig. 2.2: Column-wise storage of a relation 
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2.2.3 The DHIBASE Technique 

Disk-based system (DHIBASE) is an extension of HIBASE architecture [15]. The 

structure stores database in column wise format so that the unnecessary columns 

need not to be accessed during query processing and also restructuring the database 

schema will be easy. Each attribute is associated with a domain dictionary. 

Attributes of multiple relations of same domain share a single dictionary. DHIBASE 

have presented a sorting mechanisms according to sorting the compressed database 

for both string and code order.  DHIBASE perform high performance SQL queries 

on single or multiple tables in compressed form. It has been designed and 

implemented all basic relational algebra operations e.g. selection, projection, join 

operation, set operations, aggregation, insertion, deletion and update on the 

architecture [15].  

 

2.2.4 The HUFFMAN Technique 

In computer science and information theory, Huffman coding is an entropy encoding 

algorithm used for lossless data compression. The term refers to the use of a 

variable-length code table for encoding a source symbol (such as a character in a 

file) where the variable-length code table has been derived in a particular way based 

on the estimated probability of occurrence for each possible value of the source 

symbol. It was developed by David A. Huffman while he was a Ph.D. student at 

MIT, and published in the 1952 paper "A Method for the Construction of Minimum-

Redundancy Codes"[18, 40]. 

 

Huffman coding is widely used and very effective technique for compressing data; 

1. Savings of 20% to 90% are typical, depending on the characteristics of the 

file being compressed. 

2. Huffman coding involves the use of variable-length codes to compress long 

string of text. 

3. By assigning shorter codes to more frequent characters, Huffman encoding 

can compression text by as much as 80%. 
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The simplest construction algorithm uses a priority queue where the node with 

lowest probability is given highest priority [40]: 

1. Create a leaf node for each symbol and add it to the priority queue. 

2. While there is more than one node in the queue:  

a. Remove the two nodes of highest priority (lowest probability) from the 

queue 

b. Create a new internal node with these two nodes as children and with 

probability equal to the sum of the two nodes' probabilities. 

c. Add the new node to the queue. 

3. The remaining node is the root node and the tree is complete. 

 

Since efficient priority queue data structures require O(log n) time per insertion, and 

a tree with n leaves has 2n−1 nodes, this algorithm operates in O(n log n) time. 

 

Huffman tree generated from the exact frequencies of the text "this is an example of 

a Huffman tree". The frequencies and codes of each character are shown in Fig. 2.3. 

Encoding the sentence with this code requires 135 bits, as opposed to 288 bits if 36 

characters of 8 bits were used.  

 

 

 

Char Freq Code 

space 7 111 

a 4 010 

e 4 000 

f 3 1101 

h 2 1010 

i 2 1000 

m 2 0111 

n 2 0010 

s 2 1011 

t 2 0110 

l 1 11001 

o 1 00110 

p 1 10011 

r 1 11000 

u 1 00111 

x 1 10010 

Fig. 2.3: Construction of a HUFFMAN Tree. 
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2.2.5 Arithmetic Coding  

In Huffman coding, each character is encoded into an integral number of bits. This 

means that the codes may often be longer than that strictly required for the character. 

For example a character with probability of occurrence 0.9 can be coded minimally 

in 0.135 bits (from information-theoretic considerations), but requires 1 full bit in 

this scheme. 

 

Arithmetic coding attempts to address the above shortcoming of Huffman coding. 

Here, the compressed version of the input data is represented by the interval between 

two real numbers of arbitrary precision, (x, y), where   0<=x< y<=1. At the start the 

range is initialized to the entire interval [0,1),  and this range is progressively 

refined. During the encoding process, each character is assigned an interval within 

the current range, the width of the interval being proportional to the probability of 

occurrence of that character. The range is then narrowed to that portion of the 

current range which is allocated to this character. So, as encoding proceeds and more 

data is scanned, the interval needed to represent the data becomes smaller and 

smaller, and the number of bits needed to specify the interval grows. The more 

likely characters reduce the range less than the unlikely characters and hence add 

fewer bits to the compressed data. The implementation details of this scheme are 

given in [41, 42]. 

 

Arithmetic coding also has adaptive and non-adaptive versions, in exactly the same 

manner as that described previously for Huffman coding. 

 

2.2.6 Three Layer Model  

The Three Layer Model was developed by Hoque et al. [12]. This database 

architecture was designed for storage and querying of structured relational 

databases, sparsely populated e-commerce data and semi-structured XML. They 

have proved the system in practice with a variety of data. They have achieved 

significant improvement over the basic HIBASE model [11] for relational data. 

Their system performs better than the Ternary model [43] for the sparsely populated 

data. They compared their results with UNIX utility compress. The system performs 

a factor of two to six more in reduction of data than compress, maintaining the direct 
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addressability of the compressed form of data.  

 

The architecture has three layers:  

 Layer 1: The lowest layer is the vector structures to store the compressed form of 

data. As queries are processed on the compressed form of data, indexing is allowed 

on the structure such that we can access any element in the compressed form without 

decompression. The size of the element can vary during database update. The vector 

can adapt dynamically as data is added incrementally to the database. This dynamic 

vector structure is the basic building block of the architecture. 

 

Fig. 2.4: The Three Layer Model 
 

  

Layer 2: The second layer is the explicit representation of the off-line dictionary in 

compact form. They have presented a phrase selection algorithm for off-line 

dictionary method in linear time and space [44].   

  

Layer 3: The third layer consists of the data models to represent structured relational 

data, sparsely populated data and semi-structured XML.   
2.2.7 Columnar Multi Block Vector Structure (CMBVS) 

The proposed compression based data management system architecture [2] can be 

used to handle terabyte level of relational data. The existing compression schemes 

e.g. Hibase [11] or Three Layer Database Compression Architecture [12] work well 

for memory resident data and provide good performance. These are low cost 

solution for highperformance data management system but are not scalable to 
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manage terabyte level of data. CMBVS is a disk based columnar multi-block vector 

structure that can be used to store relational data in a compressed representation with 

direct addressability. Parallel data access can be achieved by distributing the vector 

structure into multiple servers to improve the scalability. The structure is capable of 

carrying out query directly on the compressed data. This reduces query time 

drastically. The system has been compared with the conventional relational DBMS. 

The architecture is significantly efficient in storage reduction and also faster than 

conventional systems in retrieval time performance. 

 

2.2.8 Compression in Oracle 

The Oracle RDBMS has introduced a compression technique [9] for reducing the 

size of relational tables.  This compression algorithm is specifically designed for 

relational data. Using this compression technique, Oracle is able to compress data 

much more effectively than standard compression techniques.  More significantly, 

Oracle incurs virtually no performance penalty for SQL queries accessing 

compressed tables.  In fact, Oracle's compression may provide performance gains 

for queries accessing large amounts of data, as well as for certain data management 

operations like backup and recovery. 

 

The compression algorithm used in Oracle compresses data by eliminating duplicate 

values in a database block.  The algorithm is a loss-less dictionary-based 

compression technique.  One dictionary (symbol table) is created for each database 

block.  Therefore, compressed data stored in a database block is self-contained.  

That is, all the information is available within the block to recreate the 

uncompressed data in that block.  This compression technique has been chosen to 

achieve local optimality of compression ratio.  The algorithm is greedy, meaning 

that it tries to load as many rows as possible into each block.  It does not attempt to 

achieve any form of global compression ratio optimality. 
 

The problem of global compression ratio optimality is highly computationally 

intensive.  If global compression ratio optimality is desired, the entire set of rows to 

be compressed needs to be buffered before blocks can be populated.  For large data 

warehouses this is not feasible because it would potentially require to buffer 
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terabytes of data, which is not practical. 

 

2.3 Query Processing  
 

Query processing refers to the range of activities involved in extracting data from a 

database. The basic steps involved in query processing are   

1. Parsing and translation 

2. Optimization  

3. Evaluation  

 

The first action the system must take in query processing is to translate a given 

query into its internal form. Given a query, there are generally a variety of methods 

for computing the answer. In SQL, a query could be expressed in several different 

ways. Each SQL query can itself be translated into one relational-algebra expression 

in one of several ways. We can execute each relational-algebra operation by many 

different algorithms. To specify fully how to evaluate a query, we need not only to 

provide the relational-algebra expression, but also to annotate it with instructions 

specifying how to evaluate each operation. Annotation may state the algorithm to be 

used for a specific operation, or the particular index or indices to use. Different 

query-evaluation plans for a given query have different costs. Based on these cost 

estimates, a particular plan is accepted. The given query is evaluated with that plan 

and the result of the query is output.   

 

 

2.3.1 Uncompressed Query Processing  
 

Parsing of query languages differs little from parsing of traditional programming 

languages. Main parsing techniques were covered in [45], but here optimization is 

presented from a programming language point of view. A excellent description of 

external sorting algorithms, including an optimization that create initial runs that are 

(on the average) twice the size of the memory, is described in [46]. 

 

Query optimization: Much work has been done in query optimization. Access-path 

selection in the System R optimizer is described in [47], which was one of earliest 

relational query optimizers. Volcano, an equivalence-rule based query optimizer, is 
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described in [48]. Query processing in Starburst is described in [49]. Query 

optimization in Oracle is briefly outlined in [50]. 

 

The SQL language poses several challenges for query optimization, including the 

presence of duplicates and nulls, and the semantics of nested sub-queries. Extension 

of relational algebra to duplicates is described in [51]. Optimization of nested sub-

queries is discussed in [52]. 

 

Multi-query optimization, which is the problem of optimizing the execution of 

several queries as group, is described in [53]. If an entire group of queries is 

considered, it is possible to discover common sub-expressions that can be evaluated 

once for the entire group. Optimization of a group of queries and the use of common 

sub-expressions are considered in [54]. Optimization issues in pipelining with 

limited buffer space combined with sharing of common sub-expression are 

discussed in [55].   

 

Join operation: In the mid 1970s, database systems used only nested-loop join and 

merge join. These systems, which were related to the development of System R, 

determined that either the nested-loop join or merge join nearly always provided the 

optimal join method [56]; hence, these two were the only join algorithms 

implemented in System R. The System R study did not include an analysis of hash 

join algorithms. Today hash join algorithms are considered to be highly efficient.   

 

Hash join algorithms were initially developed for parallel database systems. Hash 

join techniques are described in [57], and extensions including hybrid hash join are 

described in [58]. Hash join techniques that can adapt to the available memory is 

important in systems where multiple queries may be running at the same time. This 

issue is described in [59]. The use of hash joins and hash teams, which allow 

pipelining of hash joins by using the same partitioning for all hash joins in a pipeline 

sequence in the Microsoft SQL Server is presented in [60].   

 

Aggregation: An early work on relational algebra expressions with aggregate 

functions is found in [61]. More recent work in this area includes [62]. Optimization 

of queries containing outer joins is described in [63].   
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Views: A survey of materialized view maintenance is presented in [64]. 

Optimization of materialized view maintenance plans is described in [65]. Query 

optimization in the presence of materialized views is addressed in [66]. 

 

2.3.2 Compressed Query Processing  

Very few systems execute queries directly on compressed data without any 

decompression. HIBASE Architecture [11], Three Layer Model [12], Columnar 

Multi Block Vector Structure (CMBVS) [2] are the systems that execute queries 

directly on compressed data (Fig. 2.5). The query is translated to compressed form 

and then processed directly against the compressed relational data. Less data needs 

to be manipulated and this is more efficient than the conventional alternative of 

processing an uncompressed query against uncompressed data. 

 

The final answer will be converted to a normal uncompressed form. However, the 

computational cost of this decompression is low because the amount of data to be 

decompressed is only a small fraction of the processed data. All these systems are 

capable of executing queries on single compressed relation. Queries on multiple 

compressed relations have not been designed so far. 

 

 

Fig. 2.5: Querying a database in compressed form 
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Compression technique used in Oracle is different than that used in Hibase 

Architecture [11], Three Layer Model [12] and CMBVS [2]. As separate symbol 

table is created for each database block, the compressed data is not directly 

addressable in compressed form. 

 

Therefore, it is hard to implement queries directly on multiple compressed relations. 

In fact, Oracle's compression algorithm is particularly well suited for data 

warehouses environment, which contains large volumes of historical data with heavy 

query workloads.  The system is targeted mostly for read-only applications where 

simple queries are involved.   

 

2.4 Summary  

This chapter described different types of existing compression techniques, 

compression of relational database, development in query processing both in 

uncompressed and compressed form. We have thoroughly discussed the HIBASE 

architecture and HUFFMAN architecture because we taken these model as the basis of 

our architecture (which we call H-HIBASE). But there are fundamental differences 

between HIBASE and H-HIBASE. Differences are observable in storage structure of 

compressed data, number and types of query processing. 
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Chapter 3 

H-HIBASE Architecture  

 

 This chapter describes the details of the proposed H-HIBASE architecture for 

storage of compressed relational data. The chapter also illustrates the details of the 

query processing techniques of the proposed system. We have developed the system 

for single processor system. Query is evaluated directly on compressed data.   

  

3.1 H-HIBASE: Enhancement of HIBASE Model Using HUFFMAN 

Coding 
 

The basic HIBASE architecture is memory based. We have developed a more 

general architecture (Fig. 3.1) that supports both memory and disk based operations. 

We have made two assumptions: 

a. The architecture stores relational database only  

b. Single processor system architecture  

 

Fig. 3.1: H-HIBASE Architecture 
 

Although the architecture is designed for single processor system, it can easily be 

expanded for other architectures. The Input Manager (IM) takes input from different 

sources and passes to Compression Manager (CM). CM compresses the input, make 

necessary update to appropriate dictionaries and stores the compressed data into 

respective column storage. 
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Query Manager (QM) takes user query and passes to Query Compression and 

Execution Unit (QCEU). QCEU translates the query into compressed form and then 

applies it against compressed data. Then it passes the compressed result to 

Decompression Unit (DU) that converts the result into uncompressed form. 

 

Each compressed column is stored across multiple disk blocks. Each disk block has 

fixed size. Compressed data are stored in end-to-end position in disk block. No data 

is split over two disk blocks. The total database is kept into the main memory when 

the database is small enough to be placed into the memory. For large databases, 

recently active parts are placed into the main memory. The last disk block of each 

column and each dictionary is always kept into main memory.  

 

All insertions are committed in this memory block.  The Insert or Update operation 

in H-HIBASE model requires ’string’ look up in the dictionary. Efficient decoding 

[9] from code to ‘string’ may be achieved by two ‘table look-up’ operations. So we 

do not need to search the entire dictionary in the worst case. If the ’string’ is present 

in the dictionary the operation does not need a reorganization of the vector structure. 

If the ’string’ is not present in the dictionary it is inserted into the dictionary. This 

insertion might result an increase of the element width. In this case the operation 

requires a reorganization of the vector structure. Deletion is performed by replacing 

the desired record with the last record and then reducing number of records by one. 

Dictionary entries are not deleted. 

 

3.2 H-HIBASE: Analysis 
 

As we know Huffman algorithm generates an optimal tree, hence the compression 

has been optimized. Moreover high performance has been ensured as most repeated 

attribute values get more weight and has been entered first in the dictionary i.e. 

domain dictionary values has been sorted in such a way that frequently occurred 

values has been accessed first then the rare values. Fig. 3.2 shows the whole analysis 

at a glance. It has been shown in Fig. 3.2 that five steps are necessary to complete 

whole process. Steps are explained below: 
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Fig. 3.2: Experimental Design at a glance. 

 

Step 1: Take synthetic and real data as input (Consider the database shown in table 

3.1): 

Table 3.1: Distributor Relation 

ID First Name Last Name Area 

1 Abdul Bari Dhaka 

2 Abdur Rahman Sylhet 

3 Md Alamin Chittagong 

4 Abdul Gafur Dhaka 

5 Salam Bari Sylhet 

6 Md Tuhin Rajshahi 

7 Salam Mia Rajshahi 

8 Chan Mia Dhaka 

9 Ghendhu Mia Chittagong 

10 Abdur Rahman Sylhet 

  

The H-HIBASE approach is a more radical attempt to model the data representation 

that is supported by information theory. The architecture represents a relation table 

in storage as a set of columns, not a set of rows. Of course, the user is free to regard 

the table as a set of rows. However, the operation of the database can be made 

considerably more efficient when the storage allocation is by columns.   

 

Step 2: Split the relational database as binary relational databases (Shown in table 

3.2):  
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Table 3.2: Binary Relational Database 

 

Binary relational database is a database with two columns in each table and it is very 

efficient where column wise searching is regular. The Table 3.1 has been split to 

three Binary relation tables which are shown in Table 3.2.  

 

Step 3: Generate dictionary using HUFFMAN algorithm (Shown in Table 3.3): 

The range of the identifiers need only be sufficient to unambiguously distinguish 

which string of the domain dictionary is indicated. In Fig. 3.3, since there are only 6 

distinct Last Names, only six variable length codeword are required. This range can 

be represented by only a 3-bit or 2 bit binary number. 

 

 

 

Name Freq Code 

Mia 3 00 

Rahman 2 010 

Bari 2 10 

Alamin 1 011 

Gafur 1 110 

Tuhin 1 111 

Fig. 3.3: Construction of Huffman Tree for Last Name column. 
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A dictionary for each domain has been created which stores string values and 

provides Huffman codeword for them. This achieves a lower range of codeword, 

and hence a more compact representation could be achieved.  

 

Table 3.3: H-HIBASE Dictionary 
  

 

In Table 3.3 three different dictionaries are shown which has been generated by 

Huffman principle. From above table it has been shown that most repetitive values 

give smaller codeword, hence further compression has been achieved. In the above 

table it has been shown that Mia most repeated string in the LastName column need 

just two bits (10) in the dictionary. Whereas Tuhin the less repeated string need three 

bits (110) to represent it in the dictionary.  

 

Step 4: Develop algorithm to encode data (Shown in Table 3.4): 

Table 3.4: H-HIBASE Storage 
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In the compressed table each tuple requires only (First Name required minimum 2 

maximum 3 bits, Last Name required minimum 2 maximum 3 bits, Area required 2 

bits) a total of maximum 8 bits. This achieves a compression of the table by a factor 

of over 15. This is not the overall storage; however, we must take account of the 

space occupied by the domain dictionaries. Typically, a proportion of domain is 

present in several relations and this reduces the dictionary overhead by sharing it by 

different attributes. 

 

Step 5: Develop algorithm to perform query operation on the compressed storage: 

After encoding data it is challenging to retrieve those codes from compressed 

storage. Fig. 3.4 shows how compressed data can be accessed. Dictionary access and 

compressed storage access are necessary to perform every query. From the 

following figure it has been shown that the searched value has been look in the 

dictionary first, if it is available than calculate its position and length. According to 

the position and length it can easily be accessed from the compressed storage. 

 

Fig. 3.4: Compression of Distributor relation 
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Column-wise storage of relations: The architecture stores a table as a set of 

columns (Fig. 3.5), not as a set of rows. This makes some operations on the 

compressed database considerably more efficient. A column-wise organization is 

much more efficient for dynamic update of the compressed representation. A general 

database system must support dynamic incremental update, while maintaining 

efficiency of access. The processing speed of a query is enhanced because queries 

specify operations only on a subset of domains. In a column-wise database only the 

specified values need to be transferred, stored and processed. This requires only a 

fraction of the data that required during processing by rows. 

 

Fig. 3.5: Column-wise storage of a relation 

3.3 H-HIBASE: Storage Complexity 
  

HIBASE: 

SCi =n * Ci  bits  

Where SCi = space needed to store column i in compressed form   
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n = number of records in the relation   

Ci = number of bits needed to represent i
th

  attribute in compressed form 

    =   lg(m)   ; where m is no of entries in the corresponding domain dictionary  

Total space to store compressed table, SHIBASE  = ∑
=

p

i

Ci
S

1

 bits; where p is the number 

of column 

 

If we assume that domain dictionaries occupy an additional 25% of S = 1.25 S, then 

total space in compressed relation, SCRHIBASE = 1.25 SHIBASE 

 

H-HIBASE: 

SH-HIBASE  = ∑
=

m

i 1

 ∑
=

n

j 1

aij bits 

aij represents the number of bits in a particular position of two dimensional matrix, 

where i is the number of row and j is the number of column. From equation it has 

been shown that the first iteration counts all bits within a row and second iteration 

counts all columns. Hence total bits of entire storage have been counted by the 

equation. 

 

If we assume that domain dictionaries occupy an additional 25% of S = 1.25 S, then 

total space to store the compressed relation, SCRH-HIBASE = 1.25 SH-HIBASE 

  

Compression Enhancement: 

Compression Enhancement = ((SCRHIBASE - SCRH-HIBASE)*100 / SCRHIBASE) % 

 

3.4 H-HIBASE: Implementation 

3.4.1 H-HIBASE Dictionary 

To translate to and from the compressed form it is necessary to go through a 

dictionary. A dictionary is a list of values that occur in the domain. Huffman 

dictionary is comparable to Huffman table where two pieces of information has been 

stored namely lexeme and token. Lexeme corresponds to discrete values in a domain 

whereas token corresponds to code-word. Short code-words have been placed first 

for a domain dictionary which ensures faster dictionary access. Hence there has been 
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a significant improvement in database performance during compression, 

decompression and query operations. As Huffman coding gives more weight to most 

repeated value, it is likely to have shortest code-word to most repeated value. 

Huffman algorithm have been generated the position of values in the dictionary as 

well. Table 3.3 shows dictionaries for distributor relationship. The Huffman 

dictionary has generated as per following algorithm. 

 

Algorithm 3.1: Huffman(C) 

 

HUFFMAN (C) 

1. n ← |C| 

2. Q ← C 

3. for i ← 1 to n -1 

4.        do allocate a new node z 

5.             left[z]  ← x ← EXTRACT-MIN (Q) 

6.             right[z] ← y ← EXTRACT-MIN (Q) 

7.             f[z] ← f[x] + f[y] 

8.             INSERT (Q, z) 

9. return EXTRACT-MIN (Q) 

 

In the pseudocode that follows, we assume that C is a set of n strings and each string 

c € C is an object with a defined frequency f[c]. The algorithm builds the tree T 

corresponding to the optimal code in a bottom-up manner. It begins with a set of |C| 

leaves and performs a sequence of |C| - 1 “meaning” operations to create the final 

tree. A min-priority queue Q, keyed on f, is used to identify the two least-frequent 

objects to merge together. The result of the merger of two objects is a new object 

whose frequency is the sum of the frequencies of the two objects that were merged 

[67]. 

 

In algorithm 3.1 n is the initial queue size, line 2 initializes the min-priority queue Q 

with the character in C. The for loop in line 3-8 repeatedly extracts the two nodes x 

and y of lowest frequency from the queue, and replaces them in the queue with a 

new node z representing their merger. The frequency of z is computed as the sum of 
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the frequencies of x and y in line 7. The node z has x as its left child and y as its 

right child. After n-1 mergers, the node left in the queue-the root of the code tree 

returned in line 9. 

 

The for loop in lines 3-8 is executed exactly n-1 times, and since each heap 

operation requires time O ( lg n), the loop contributes O ( n lg n) to the running time. 

Thus, the total running time of HUFFMAN on a set of n characters is O ( n lg n). 

  

3.4.2 H-HIBASE: Encoding 

Consider a set of source symbols S = { s0, s1, ….. , sn-1}= {Dhaka, Sylhet, 

Chittagong, ….. , Rajshahi} with frequencies W = { w0, w1, ….. , wn-1} for 

w0>=w1>=…..>=wn-1, where the symbol si has frequency wi. Using the Huffman 

algorithm to construct the Huffman tree T, the codeword ci, 0<=i<=n-1, for symbol 

si can then can be determined by traversing the path from the root to the left node 

associated with the symbol si, where the left branch is corresponding to ‘0’ and the 

right branch is corresponding to ‘1’. Let the level of the root be zero and the level of 

the other node is equal to summing up its parents level and one. Codeword length li 

for si can be known as the level of si.  

 

 

Division Freq Code 

Dhaka 3 00 

Sylhet 3 01 

Rajshahi  2 10 

Chittagong 2 11 

Fig. 3.6: Construction of Huffman Tree for Division column. 

 

The wighted external path length ∑wili is minimum. For example, the Huffman tree 

corresponding to the source symbols { s0, s1, ……..,s7} with the frequencies {3, 3,  

2, 2} is shown in the Fig.3.6. the codeword set C{c0,c1,…….,c7} is derived as {10, 
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11, 00, 01}. In addition, the codeword set compose of a space with 2
d
 addresses, 

where d=2 is the depth of the Huffman tree. 

 

In the following, the detailed algorithm to generate the intervals is presented. For 

each Huffman tree, the required storage for the interval representation is n entries. 

Each entry contains two fields: address and symbol. The length of address is d bits, 

and the storage complexity is O (n). 

 

Both C and C++ allow integer members to be stored into memory spaces smaller 

than the compiler would ordinarily allow [68]. These space-saving structure 

members are called bit fields, and their width in bits can be explicitly declared. The 

following structure has three bit-field members: kingdom, phylum, and genus, 

occupying 2, 6, and 12 bits respectively. 

 

struct taxonomy { 

         unsigned kingdom: 2; 

         unsigned phylum: 4; 

         unsigned genus: 12; 

     }; 

To store codeword we have declared an array of structure with bit field where data 

can be stored with 1 bit storage. This structure have 32 members variable named 

a,b,c,…..,z,A,B,…,F and every member can be stored 1 bit. To put databits in this 

structure we have a function named putvalue (index_of_structure, data_variable, 

databit) which store bit into the structure after reading the input from the dictionary.  

 

Algorithm 3.2: Encode (index, name, databit, frequency) 

 

ENCODE (Huffman_Dictionary hd) 

1. Input: Huffman_Dictionary ( index, name, databit, frequency) 

2. Output: Encoded Bit Stream 

3. BEGIN 

4. for i ←1 to total_number_of_rows 

5.      for j ← 0 to codeword [i].lenght 

6.           putvalue (index_of_structure, data_variable, databit) 
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7.      if (data_variable == ‘z’) 

8.           data_variable ← ‘A’ 

9.      else if (data_variable == ‘F’)  

10.                 data_variable ← ‘a’; index_of_structure ++       

11.      else data_variable ++ 

12.  END 

 

In algorithm 3.2 it has been shown that index, frequency and codeword of a 

particular record has been read from the dictionary first. After that it store in the 

storage bitwise with the repetition of number of frequencies. And this process has 

continued until the last record of the dictionary. The required storage for the interval 

representation is n entries and the storage complexity is O (n). 

 

3.4.3 Query Operation: Selection 

To search a value in the compressed storage it is necessary to access the dictionary 

first. The start position of the searched value has been calculated from the dictionary 

by a function named findstartposition (searchedvalue). The end position of the 

searched value can also be calculated by another function named findendposition 

(searchedvalue). By using start and end position of searched value it can easily be 

found from the array.  

 

Algorithm 3.3: Searching (Searched value) 

 

SEARCH (string searchedvalue) 

1. Input: The Searched Value 

2. Output: The matching interval  

3. BEGIN 

4.    for  I ← 1 to number_of_coderword_in_dictionary 

5.           if (inputdata=userdata) 

6.     position ← i  

7.     sp ← findstartposition (position) 

8.     ep ← findendposition (position)    

9.     if the searched codeword is matched between the codeword of sp and ep 

10.        print Found 
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11.     else 

12.         print Not found 

13.  END 

 

The details algorithm is listed above. The time complexity for decoding is O (n). 

 

3.4.4 Query Operation: Insertion 

To insert a new record in the database multiple action is required. First of all data 

has been inserted in the input file, dictionary has been updated by using function 

HUFFMAN (C), storage has been refreshed with the function named ENCODE 

(Huffman_Dictionary).  

 

Algorithm 3.4: Insertion (Inserted value) 

 

INSERT (string InsertedValue) 

1. Take inserted value as input 

2. BEGIN 

3. Insert a new raw as the last tuple of input file 

4. Call HUFFMAN (C) 

5. Call ENCODE(Huffman_Dictionary) 

6. END 

 

3.4.5 Query Operation: Deletion 

To delete a record from the database multiple actions is required. First of all data has 

been deleted from the input file, dictionary has been updated according to the new 

file by using function HUFFMAN (C), storage has been refreshed with the function 

named ENCODE (Huffman_Dictionary).  

 

Algorithm 3.5: Deletion (Deleted value) 

 

DELETE (string DeletedValue) 

1. Take deleted value as input 

2. BEGIN 

3.   Search deleted item in the input database  
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4.      if found delete the item by left shifting 

5.           Call HUFFMAN (C) 

6.           Call ENCODE(Huffman_Dictionary) 

7.       else print “data cannot be deleted” 

8. END 

 

3.4.6 Query Operation: Update 

To update data in the database multiple actions is required. First of all data has been 

updated from the input file, dictionary has been updated according to the new file by 

using function HUFFMAN (C), storage has been refreshed with the function named 

ENCODE (Huffman_Dictionary).  

 

Algorithm 3.6: Update (Old value, New value) 

 

UPDATE (string Oldvalue, string  Newvalue ) 

1. Take updated value with old value as input 

2. BEGIN 

3. Search old value in the input file 

4.       If found update the input file by replacing new value with the old    value 

5.            Call HUFFMAN (C)  

6.            Call ENCODE (Huffman_Dictionary) 

7.      Else print “data can not be updated” 

8. END 

 

3.4.7 Query Operation: Aggregate Function 

Aggregate functions are functions that take a collection (a set or multiset) of values 

as input and return a single value. SQL provides five different built-in aggregate 

functions: count, max, min, sum and avg. The input of sum and avg must be a 

collection of numbers, but other operators can operate on collections of non-numeric 

data types, such as strings, alpha-numeric, as well.   

For aggregation queries we have considered the following relation:  

 account(account_no, branch_name, balance) 
 

 

 

3.4.7.1 Count 

Select branch_name, count (branch_name) from account. 
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Algorithm 3.7: Count () 

 

COUNT () 

1. Initialize count=0 

2. Read dictionary 

3. Loop until finish the number of tuple 

4.         Count++ 

5. Print Count 

 

Algorithm 3.7 is indicated that record has been counted from the dictionary, for each 

frequency it increases count by 1 until reach the last frequency. 

 

3.4.7.2 Sum/Avg 

Select branch_name, sum (balance) from account. 

 

Algorithm 3.8: Sum ()/Avg () 

 

SUM/AVG () 

1. Read dictionary 

2. Initialize sum=0 

3. Put number in an array 

4. For 1 to size of array (count) 

5.         Sum=sum + number 

6. Print sum 

 

In the above algorithm it has been shown that the every number has been added with 

the previous number in the array, loop continues until reach the last entry. 

 

3.4.7.2 Max/Min 

Select branch_name, max (balance) from account. 

 

Algorithm 3.9: Max ()/ Min () 

 

MAX/MIN () 
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1. Read dictionary 

2. Initialize maximum=0 

3. Put number in an array 

4. For 1 to size of array (count) 

5.         If (current value>maximum value) 

6.         Maximum = current value 

7. Print maximum 

 

Algorithm 3.9 has been used to find the maximum number. In the algorithm it has 

been shown that any larger number replaced by smaller number in the array. 

 

3.5 Summary  

In this chapter we have presented an attractive compression-based architecture, 

called H-HIBASE. Due to disk based compression H-HIBASE support very large 

database with acceptable storage volume. Insertion, deletion and update mechanisms 

on the architecture have been presented and analyzed. The architecture executes 

query directly on compressed data and it is capable of executing most of SQL 

queries. Algorithms of query operators given in this chapter have been thoroughly 

analyzed. 
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Chapter 4 

Result and Discussion  
The objective of the experimental work is to verify the applicability and feasibility 

of the proposed H-HIBASE architecture. The experimental evaluation has been 

performed with synthetic and real data. The experimental results are compared with 

DHIBASE and widely used Oracle 10g. Our target was to handle relations and 

justify the storage requirements and query time in comparison with DHIBASE and 

Oracle 10g.   

 

4.1 Experimental Environment 
  

H-HIBASE has been tested on a machine with 1.73 GHz Pentium IV processor and 

1 GB of RAM, running on Microsoft Windows XP. Five different relations have 

been created for synthetic data which are given below. Each query has been 

executed five times and the average execution time has been taken. 

 

4.1.1 Data Set  

Data set for Synthetic data: 

A random data generator has been used to generate synthetic data and large number 

of records has been inserted into each table. There are five tables in synthetic data 

set are given below, where first attribute of each table is the primary key. Synthetic 

data generator has been generated 21035, 21120, 21214, 31422, 30455 records for 

Distributor, Customer, Item, Employee and Store relations respectively. To store 

same number of records using Oracle 10g it required 1 MB disk space. Table 4.1 

shows overall compression rate of different technique for different number of 

record. Compression rate has been calculated with respect to DHIBASE and Oracle 

10g. Table 4.1 also shows overall CF’s for different relations, CF’s has been 

calculated with respect to Oracle 10g. It has been observed that the proposed system 

outperforms Oracle 10g by a factor of 11 to 13. Table 4.1 shows that the H-HIBASE 

has greater compression capability than DHIBASE with enhancement rate between 

9% to 15% as well.  
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Distributor (d_id, fname, lname, area) 

Customer (c_id, name, street, city) 

Item (i_id, type, description) 

Employee (e_id, name, department) 

Store (s_id, location, type) 

 

Data set for real data: 

Billing Management Software has been used to manage different types of Bills like 

water bill, electricity bill. Different types of report like daily bill, monthly bill, 

yearly bill has been produced by this software. Real data set of this software has 

been shown below. Storage requirement in different technique for real data has been 

shown in table 4.2. It has been observed that the proposed system has better than 

Oracle 10g by a factor of 4 to 5. Table 4.2 also shows that the H-HIBASE has 

greater compression capability than DHIBASE which is more than 30%. 

 

Electricbill (issue_no, meterno, presentreading, surcharge, shop_id, tannent_id, 

bill_month, unit_rate number, issue_date, paid_date, demand_charge, 

meter_charge, last_date, ref_no, consume, vat, previousreading) 

Electricbill_for_shop (meter_no, meter_rgd, prv_surcharge, prv_vat, prv_demand, 

prv_from_date, prv_to_date, shop_id, tannent_id, paid_date, last_date, 

prv_metercharge, unit_rate, prv_consume, issue_date, is_due, max_rgd, ref_no, 

prv_arrear, meter_charge, demand_charge)  

Floor (floor_id, floor_name) 

Rate (rate_id, rate_title, charge) 

Shop (shop_number, shop_name, shop_rent, shop_floor_number, shop_id, 

tannent_id) 

Tennant (tannent_id, tannent_name, account_no, address, phone) 

Utility_bill (issue_no, bill_month, last_date, paid_date, shop_id, tannent_id, 

issue_date, ref_no) 

Utility_bill_detail (issue_no, utility_id, bill_amt, surcharge) 
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Utility_bill_for_shop (utility_id, default_amount, prv_amount, prv_surcharge, 

prv_from_date, prv_to_date, shop_id, tannent_id, last_date, paid_date, is_due, 

ref_no) 

Utility_setup (utility_id, utility_title, default_bill) 

 

4.1.2 Data Generation Algorithm  

A random data generator has been used to generate synthetic data and large number 

of records have been inserted into each table. There are five tables in synthetic data 

set has been given below, where first attribute of each table is the primary key. Our 

synthetic data generator has been generated 21035, 21120, 21214, 31422, 30455 

records for Distributor, Customer, Item, Employee and Store relations respectively.  

 

Algorithm 4.1: Synthetic Data Generator: 

1 InsertRandomData (RowCount) 

2  BEGIN 

    LOOP 

4     COL1       VAR1         dbms_randon.string(‘L’, 10) 

5     COL2       VAR2         dbms_randon.string(‘L’, 10) 

            . 

           .    

8     COLN        VARN         dbms_randon.string(‘L’, 10) 

9           LOOP 

10              IF mod(counter,50)=0 THEN 

11                     REPEAT step 4 to 8 

12              END IF 

13             InsertData (COL1, COL2, ...,COLN) 

14             Counter        counter+1 

15             Exit when counter>=rowcount 

16          END LOOP   

      END LOOP   

17   END 
 

From the above algorithm it has been observed that the random data generation 

function has been generated an amount of random data for a column, which has been 

inserted into the database table. 

 

4.2 Storage Requirement  

4.2.1 Synthetic Data 

 Table 4.1 shows the storage for some relation in different technique. It has also 



43 

 

indicated the Compression Factor (CF) for H-HIBASE and Oracle database system. 

It shows compression enhancement of H-HIBASE with compare to DHIBASE as 

well. 

  

Table 4.1: Compression achieved in different techniques for synthetic data (KB) 

Relation Record Oracle 10g. DHIBASE H-HIBASE Overall 

CF 

Enhancement 

Rate (%) 

Distributor 21035 1024 96.28 81.84 12.51 14.99 

Customer 21120 1024 96.65 82.17 12.47 14.98 

Item 21214 1024 97.10 82.54 12.40 14.99 

Employee 31422 1024 95.88 86.30 11.86 10.02 

Store 30455 1024 92.93 83.64 12.24 9.99  

 
Fig. 4.1: Storage in H-HIBASE, DHIBASE and Oracle 10g. 

 

Fig. 4.1 shows the storage comparison among H-HIBASE, DHIBASE and Oracle 

10g. In the figure it has been indicated that DHIBASE can be compressed the oracle 

storage with the rate of 90%, whereas H-HIBASE can be compressed the oracle 

storage with the rate of 92%.  
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Fig. 4.2: Storage in H-HIBASE and DHIBASE 

 

Fig. 4.2 indicates the storage comparison between H-HIBASE and DHIBASE. In the 

figure it has been indicated that H-HIBASE has better compression capability with 

the rate 30%. This is because DHIBASE has been used fixed length coding whereas 

H-HIBASE has been used variable length Huffman coding which need a reduced 

amount of storage. 

 

Fig. 4.3:  Code size in DHIBASE and H-HIBASE 

 

The storage of code size in DHIBASE and H-HIBASE technique is shown in Fig. 

4.3. From the figure, H-HIBASE produces minimum number of code to store entire 

relation than that of DHIBASE system. DHIBASE has needed around 70 KB to 

store code size, whereas H-HIBASE has needed around 60 KB to store code size for 

the same number of records.  



45 

 

4.2.2 Real Data 

Real data set has been shown below. Storage requirement in different technique for 

real data has been shown in table 4.2. It has been observed that the proposed system 

has better than Oracle 10g by a factor of 4 to 5. Table 4.2 also shows that the H-

HIBASE has greater compression capability than DHIBASE which is more than 

30%. Higher storage requirement has been avoided by using Huffman code-words in 

H-HIBASE technique. Moreover high performance has been ensured as most 

repeated attribute values get more weight and entered first in the dictionary i.e. 

domain dictionary values sorted in such a way that frequently occurred values  

accessed first than the rare values. 

  

Table 4.2: Compression achieved in different techniques for real data (KB) 

Relation Column Record Oracle 

10g. 

DHIBASE H-HIBASE Enrichment 

Rate (%)  

Electric bill 17 1505019 

Electric_bill_

for_shop 

17 570 

Floor 3 8 

Rate 3 8 

Shop 6 583 

Tennant 6 292 

Utility_bill 8 1550987 

Utility_bill_d

etail 

4 6206961 

Utility_bill_f

or_shop 

13 2266 

Utility_setup 3 6 

381424 126347.42 88152.89 30.23 
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Fig. 4.4: Storage of real data in H-HIBASE, DHIBASE and Oracle 10g. 

 

Fig. 4.4 shows the comparison of storage size among Oracle database, DHIBASE, 

and H-HIBASE. To store same number of record it is required approximately 380 

MB, 125 MB, and 85 MB in Oracle 10g, DHIBASE, and H-HIBASE respectively. 

H-HIBASE technique has more compression capability than any other existing 

systems. 

 
Fig. 4.5: Storage of Real Data in H-HIBASE and DHIBASE 

 

Fig. 4.5 indicates the storage comparison between H-HIBASE and DHIBASE. In 

this figure H-HIBASE has better compression capability with the rate of more than 

30%.  
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Fig. 4.6: Code size in DHIBASE and H-HIBASE 
 

Fig. 4.6 shows the code size comparison between H-HIBASE and DHIBASE. H-

HIBASE is space efficient, this is because DHIBASE has used fixed length coding 

whereas H-HIBASE has used variable length Huffman coding. Variable length 

coding required smaller amount storage than fixed length coding. 

 

4.3 Query Performance 

To assess query performance, we carried out queries on both DHIBASE and H-

HIBASE. The performed queries and obtained results are described in the following 

sub-sections. In all cases Distributor relation contains 0.1, 0.4, 0.7, 1.0 million 

records. Item, Employee, Store and Customer relations contain 1000, 2000, 100, 

10000 records respectively. All queries executed in H-HIBASE system are directly 

applied on compressed data. Given query is first converted into compressed form 

and compressed query is executed.   

 

4.3.1 Single Column Projection  

We have executed the following query and the result is shown in figure 4.7.   

select Name from Customer  
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                                    Fig. 4.7: Single column projection 

             

Figure 4.7 shows that H-HIBASE is faster than that of DHIBASE in case of 

projection operation. This is obvious because H-HIBASE stores data in compressed 

form with minimum storage. Therefore, to find a particular record it required to 

search a smaller amount space. This is the main reason of speed-gain in H-HIBASE 

system.  

 

4.3.2 Two Column Projection  

We have executed the following query and the result is shown in figure 4.8.   

select Name, Street from Customer  

 

                                         Fig. 4.8: Two column projection 
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Figure 4.8 shows that H-HIBASE is quicker than that of DHIBASE in case of two 

column projection operation. This is obvious because H-HIBASE stores data in 

compressed form with minimum storage. The processing speed of a query is 

enhanced because queries specify operations only on a subset of domains. In a 

column-wise database only the specified values need to be transferred, stored and 

processed. This requires only a fraction of the data that required during processing 

by rows. 

 

4.3.3 Three Column Projection  

We have executed the following query and the result is shown in figure 4.9.   

select Name, Street, City from Customer  

 

                                    Fig. 4.9: Three column projection 

             

Figure 4.9 shows that H-HIBASE has better performance than that of DHIBASE in 

case of three column projection operation. H-HIBASE stores data in compressed 

form with minimum storage. In three column projection it has taken more execution 

time than single column projection operation. It requires more access time to collect 

data from the dictionary.   

 

4.3.4 Full Table Scan  

We have executed the following query and the result is shown in figure 4.10.   

select * from Customer  
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Fig. 4.10 shows that the performance of H-HIBASE and DHIBASE shows similar 

result of three column projection which is shown in Fig. 4.9. This is because the 

Customer relation has three columns.    

 

 

                                     Fig. 4.10: Full Table Scan 

 

4.3.5 Single Predicate Selection  

We have executed the following query and the result is shown in figure 4.11.    

select Name  from Customer where City = “Dhaka”  

 

                                Fig. 4.11: Single predicate selection 
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Figure 4.11 shows that H-HIBASE does not better performance than DHIBASE in 

case 0.1 million to 0.4 million records but faster in case 0.7 million and 1.0 million 

records. In case of 1 million records, it reads most repetitive values first from the 

dictionary, and takes a reduced amount of time to access it from the storage. The 

processing speed of predicate selection query is enhanced because queries specify 

operations only on a subset of domains. In a column-wise database only the 

specified column need to be accessed. This requires only a fraction of the data that 

required during processing by rows.  

 

4.3.6 Five Percent Selectivity  

We have executed the following query and the result is shown in figure 4.12.    

select * from distributor where rownum < (((select count(*) from distributor)/100) * 

5) 
 

 

                                Fig. 4.12: 5% selectivity 
 

Figure 4.12 shows that H-HIBASE performs better performance than DHIBASE in 

case of 5% selectivity. This is because within this 5% data there are large number of 

repetition.  

 

4.3.7 Ten Percent Selectivity  

We have executed the following query and the result is shown in figure 4.13.    

select * from distributor where rownum < (((select count(*) from distributor)/100) * 

10) 



52 

 

Figure 4.13 show that H-HIBASE show better performance than DHIBASE in case 

of 10% selectivity, but it is not as efficient as 5% selectivity, because of lower 

repetition. 

 

 

                                 Fig. 4.13: 10% selectivity 
 

4.3.8 Aggregate Function: Count  

For aggregation queries we have considered the following relation:  

account(account_no, branch_name, balance).  

 

We have executed the following query and the result is shown in figure 4.14.    

Select branch_name, count (branch_name) from account. 

 

Fig. 4.14: Aggregate function: Count 
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We assume that the relation account is already sorted by account_no according to 

dictionary code. In case of 0.1 to 1 million records, H-HIBASE read all distinct 

values from dictionary to calculate the result. Hence the performance is almost same 

with DHIBASE. 

 

4.3.9 Aggregation: Max/ Min/ Sum/ Avg 

We have calculated the following queries and the result is shown in figure 4.15 

select account_no, max (balance) from account group by account_no  

select account_no, sum (balance) from account group by account_no  

select account_no, avg (balance) from account group by account_no  

 

Fig. 4.15: Aggregate function: Max/Min/Sum/Avg. 

 

H-HIBASE read all distinct values from dictionary to calculate the result. In case of 

fewer amounts of data performance is almost same in both techniques, and when 

storage increases H-HIBASE perform better because of its repetition.  

 

4.4 Worst Case Analysis 

In the above analysis we have observed that the H-HIBASE technique perform 

better than that of DHIBASE in case of storage and query time. It just because H-

HIBASE has been used Huffman Principle to generate its dictionary and H-HIBASE 

store its code-words into column wise format into the disk. As Huffman Principles 

generate shorter code-word for most repetitive values, hence compression has been 

optimized where repetition is regular. If there is no repetition than Huffman generate 

a codeword for every string value and require more space to store these bigger 
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length code-words in the disk. In the worst case scenario, the performance of H-

HIBASE is same with DHIBASE; both of them require same space to store all 

random code-words.      

 

4.5 Summary 

In this chapter we have presented the experimental evaluation of the H-HIBASE 

architecture. We evaluated the storage performance in comparison with DHIBASE 

and Oracle 10g. The storage performance that is achieved in H-HIBASE is 25 to 40 

percent better than the Oracle 10g for real and synthetic data. It has also been shown 

that the storage performance that is achieved in H-HIBASE is 15 to 35 percent better 

than the DHIBASE. The query performance that is achieved in H-HIBASE is 10 to 

25 percent better than that of DHIBASE. 
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Chapter 5  

Conclusion and Future Research  

 

Database compression is attractive for two reasons: storage cost reduction and 

performance improvement. Both are essential for management of large databases. 

Direct addressability of compressed data is necessary for faster query processing. It 

is also important for queries to be processed in compressed form without any 

decompression. Literature survey shows that compression techniques used in 

memory resident databases are not suitable for large databases when database cannot 

fit into memory. We have improved the basic HIBASE model and DHIBASE model 

for disk support. We have also improved query processing capability of the basic 

system. We have defined a number of operators for querying compression-based 

relational database system, designed algorithms for these operators and thoroughly 

analyzed these algorithms.   

 

5.1 Fundamental Contributions of the Thesis  

� The main contribution of this research is to develop a compression technique 

that is enhancement of HIBASE technique using HUFFMAN coding (H-

HIBASE) with better compression capability. 

 

� Compressed data are stored using the H-HIBASE architecture with disk 

support. This overcomes the scalability problems of the memory resident 

DBMS. 

 

� Considerable storage reduction has been achieved using the H-HIBASE 

architecture. The experimental results show that H-HIBASE architecture is 15 

to 35 times space efficient than that of HIBASE and DHIBASE. 

 

� We have designed algorithms for most of the relational algebra operations that 

support most of the commercial database systems. Experimental results show 

that the H-HIBASE system has better performance for insertion, deletion, 

update operations on single relation compared to Oracle database. In case of 

selection operation, H-HIBASE is significantly better than DHIBASE.      
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 5.2 Future Research  

The H-HIBASE architecture has been implemented in a single processor system and 

achieved significant performance improvement over existing compression based 

systems. H-HIBASE is disk based database compression architecture. The future 

expansion of this research is to explore the following issues: 

   

� The architecture can be used for parallel database environment to achieve 

scalable performance for data warehouse application. 

 

� We have not considered any back-up and recovery mechanism for H-

HIBASE architecture. These features may be included. 
 

� To achieve concurrent access to H-HIBASE architecture, a multi-threaded  

   algorithm can be considered to support multi-user DBMS. 

 

� To achieve faster query performance for multiple relation join, set and 

aggregation operations, better algorithm may be designed. 
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