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List of principal symbols

E = Electric field intensity =~ Volts/m.

H = Magnetic field intensity Amps/m.

ko = I‘W&we number in free space.

n = Refractive index.

n = Aﬁerage value of refractive index in an index corrugated layer.

An = Maximum variation of the refractive index in an
index corrugated semiconductor layer, An << .

X = Dielectric susceptibility; a complex quantity.

Ay = Maximum variation of the dielectric susceptibility; a complex quantity.

§ = Phase change experienced by a reflected wave within the external cavity.

Y | = Phase difference (in radians) between index corrugation «, and gain
corrugation (corrugation of dielectric susceptibility) ,.

¢ = Initial phase of index corrugation at z=0, radian.

#1,¢2 = The values of ¢, the initial phase of corrugation
at z==0 for regions 1 and 2 of a DFB laser, radian.

Kn = -E%A—"l = index coupling coefficient.

Ky = "°,f‘”‘ = gain coupling coefficient.

v = The complex propagation constant.

g = wn/g, the propagation constant in free space.

8z = /A, the propagation constant at the Bragg frequency.

Ag = Deviation from the propagation constant corresponding to the Brégg
wavelength.
~ (4 _@@ |

(§—a) = Relative gain minus attenuation in a semiconductor laser.

r =  The reflection coefficient at the inside of the left facet of a DFB semiconductor
laser.
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R

Is the reflection coefficient at the inside of the right facet of a DFB
semiconductor laser.

Power reflection coefficient at z = & = [, VRa = r,

if there is no reflection from external cavity.

Power reflection coefficient at the surface of a device external to the laser.
Coupling coefficient inside the Jaser for light entering from outside.

The effective relfected light entering into the laser from

external reflection of the laser cavity. .

2n/k = 2mc/w = 2mep/nw.

Grating period.

Conductivity of the active layer of the laser.

o + JwepX.

Critical feedback ratio above which the external cavity modes appear.
Phase velocity of EM wave in vaculim = velocity of light = 3 x 10® m/s.
w/2n, the frequency of output light.

Lenigth of laser (single section).

Length of the external cavity.

(viid)



Abstract

A general form of analytic expression for the oscillation condition of a pure index
coupled distributed feedback (DFB) semiconductor laser has been derived following
a recent work on DFB lasers. For this derivation a sinusoidal variation of refractive
index corrugation along the length has been assumed and finite values of reflection
at the front and back facets of the DFB semiconductor Jaser has been assumed.

Following the derivation of the equation for oscillation condition of a pure index
coupled DFB laser, an equation representing oscillation condition for a ‘gain plus
index’ coupled DFB semiconductor laser has been derived. In this type of laser, si-
nusoidal variation has been assumed for both index and gain coupling. An equation
representing dispersion relation for such a laser has been presented. The equations
for ‘gain plus index’ coupled DFB laser have been taken as a more general form of
equation, since this can be used for (i) pure index coupled case by assuming zero
value for gain coupling coefficient, (ii) pure gain coupled case by assuming zero
value for index coupling coefficient and (iii) for a ‘gain plus index’ coupled case by
assuming finite values for index as well as gain coupling coefficients.

Next, the generalized equations for ‘gain plus index’ coupled DFB semiconductor
laser has been modified for teking into account of the effect of laser output signal
entering back into the laser after facing partial reflection from a surface external to
the laser. Such a reflection has been termed as external feedback.

A computer programme has been prepared using Quick Basic on 386 and 486
microcomputers for obtaining numerical solutions of the generalized equation rep-
resenting oscillation in a ‘gain plus index’ coupled' DFB semiconductor injection
laser. The programme has been prepared in a way so that numerical computations
and plots of relative gain vs. relative frequency of the results are obtained simulta-

‘neously. Solutions and plots for real part of the equation are obtained at first, and
the solutions and plots of the imaginary part of the equation are obtained next on
the same screen.

A number of combinations of parameters for (i) index coupled, (ii) gain coupled
and (iii) ‘gain plus index’ coupled laser have been used for computation work with-
out any external feedback. Then the computations for these examples have been
repeated for various values of external feedback ratio. The values of critical feedback
ratios of each type of DFB semiconductor laser have been obtained through com-
putation work for lasers producing minimum value of threshold gain. The results
for the three types of lasers have been analyzed and compared with each other.



CHAPTER 1

Introduction

1.1 Historical background of lasers

The introduction of ruby laser in 1960 [2] [4] and subsequent work on intense
coherent optical sources during the following decades have stimulated researches in
optical communication. Lasers of different types e.g., Vgas type, liquid type, solid-
state ion type, semiconductor for both pulsed and continuous operations have been

tried in optical communication besides various other applications.

The maser principle, which was originally developed in the microwave frequency
range, is the basis for lasers [4]. Application of this principle to optical transitions
provided the first method of achieving net gain at optical frequencies. Extension
of the maser principle to optics was first proposed by Schawlow and Townes (1] in
1958. In 1960 Maiman [2] used maser principle in optical transitions to produce the
first pulsed ruby laser.

Maiman’s demoristration [2] was the beginning of a number of successes. Shortly
after this, a second type of solid-state laser was reported by Sorokin and Stevenson
(1960) at the IBM corporation. Trivalent uranium ions in calcium fluoride was used
as a material in this solid-state laser. Approximately one year later, Javan et. al.
[3] of Bell teleptione Laboratories reported the first continuous wave (CW) He-Ne
laser. This CW laser operated in the near infrared region.

The laser boom started in 1961. In this year, Johnson and Nassau [8] demon-
strated the first solid-state Neodymium laser, in which the neodymium ion was
a dopant in Calcium tungstate (CaWO,) [4). Johnson [5}, Kiss and Pressley [6],
and Goodwin and Heavens [7] reviewed various optically pumped crystalline lasers
operated utilizing (i) transition metal ions such as Cr®*, Ni**, and Co**; (ii) rare-
earth ions such as Nd**, Pr*t, Er’t, Ho®, Tm3*, Yb*, Sm*, Dy**; and (iii)

1



the actanide ion U3*. Room temperature operation of a continuously pumped solid
state laser was first reported in 1962 by Johnson et. al. [8] using Nd** in CaW Oy.
Since then a number of CW solid state ion laser operation have been reported. Of
these, solid-staté ion lasers made of Cr3+ in AlOs (ruby) [9] (10], Nd®* in glass [11)
and CaMO, '[12] are worth mentioning. Among these the most highly developed
continuous solid state ion laser is the one made of Nd:YAG [13].

The first semiconductor diode laser was demonstrated nearly simultaneously
by three separate groups in the fall of 1962 [4]. All three teams, one from the
General Flectric Research Laboratories in Schenectady (New York); another from
the IBM Watson Research Centre in Yorktown Heights (New York), and the third
from the MIT’s Lincoin Laboratories in Lexington (Massachusetts) demonstrated
similar Gallium Arsenide diodes cooled at 70°K temperature of liquid Nitrogen [4].

During the next few years several more of today’s most important lasers emerged.

Bridges [4] in (1964) observed laser transitions in the blue and green parts of the
gpectrum from singly ionized argon. This is the basis of today’s argon ion lasers.
Kumar and Patel [4] (1964) obtained a 10.6um laser emission from carbon dioxide.
Lasers of‘ this type are still used as high power source in industry.

Sorokin and Lankard [29] at IBM Watson Research Centre in 1966 demonstrated
the first organic dye laser, they used a giant pulse ruBy laser to excite solutions of
the dyes chloroaluminium phthalocynaine (CAP) which is a standard tool of laser
spectroscopy now a days. The first chemical laser is the hydrogen chloride type
which emitted at 3.7um and was demonstrated in 1965 by Kaspar and Pimentel [4]

A simple p-n junctioil type semiconductor laser needs large forward currents
and high dissipation, which required for cooling and pulsed operation. These dis-
advantages were overcome by using heterojunction laser structures. A further im-
provement was obtained with a double heterojunction (DH) structure (figure 1.1)
in which an active GaAs layer is sandwiched between two layers of higher-band gap
GaAs. The two most important DH lasers are (i) one with the active region made
of Ga,_, Al As, (ii) the other one with the active region made of Ga;_,In,As; ,P,.
The first one emits light of wavelength ranging between .75um and .88um. This

spectral region is convenient for short-haul (<2 km) optical communication in silica
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fibres. The second type iaser has the wavelength between 1.1pm and 1.6um de-
pending on x and y. The region near 1.55um is suitable in optical communication
due to its low loss (0.15 dB/Km ) {14]. -

Due to difficulties in confining current and radiation in the lateral (y) direction
in heterojunction lasers more than one transverse (y) modes appeared thus mode
hopping as well as spatial and temporal instabilities result. In order to circumvent
these difficulties a new type of laser structure called buried heterostructure (BH)
laser has been developed. The first of this kind of laser was successfully operated
by Tsukada [15] in 1974. A basic structure of BH laser is shown in figure 1.2. Here
the active region is surrounded on all sides by the lower index GaAlAs, so that
electromagnetically the structure is that of a rectangular dielectric wave guide. The
transverse dimensions of the active region and the index discontinuities (i.e. the
molar fractions x, y, z) are so chosen that only the lower order transverse mode can
propagate in the waveguide.

Usually, lasers contain three key elements, one is the laser medium itself, which
generates the laser light. The second is the power supply, which delivers energy to
the laser medium in the form needed to excite it (medium) to emit light. The third
is the optical cavity or resonator, which concentrates the light to stimulate emission
of laser radiation [4]. The laser oscillation is constructed by utilizing the laser gain
medium inside an opticé.[ cavity as shown in figure 1.3. Optical regenerativé gain
occurs for light travelling along the cavity axis. The cavity length { is typically 10°
to 10® times larger than the laser wavelength. Typically more than one axial or
lonigitudirial cavity resonance fall within the laser gain profile. Oscillation occurs
| [16] at those cavity resonance lying within the inhomogeneous width of the laser
transition for which the laser gain exceeds the cavity losses. This is depicted in
figure 1.4, where the laser peak gain exceeds the single pass cavity losses for the
two lowest order transition modes. The optical and temporal coherence of a laser
source arises from the regenerative character of the combined laser gain medium and
optical cavity. In the subsequent section we shall be dealing with semiconductor
lasers as a result a discussion on the semiconductor materials is necessary at this

stage.
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1.2 Semicondiictor laser materials

A semiconductor laser consists of an appropriate type of semiconductor material
within a suitable resonator having two reflecting mirrors. The semiconductor ma-
terial should be such that one can get significant population inversion for obtaining
stimuilated emission. The very high population inversion obtainable in a semicon-
ductor resilts in a large gain. The gain can be so large that the path lengfh for the
stimulated emission need not be long and the ends of the cavity need not be highly
reflecting. Thus with cavity lengths of only a few hundred microns, semiconductor
lasers are extremely small. In cortrast to other types of lasers where the transi-
tions occurs between discrete states of excited atoms, in a semiconductor laser, the
transitions involve sets of banded states. The boundary of states results from the
close packing of activated atoms. Hence a high density of pdpulation inversion is
required to reach threshold conditions. The high gain required for laser action in
semiconductor materials is observed in direct semi_conductdr than indirect semicon-
ductor. The favourite direct semiconductor materials are GaAs, InGaP, AlGaAs,
Ga(As, Py_.) etc.

The high gain associated with the direct gap semiconductor can be understood
from the energy diagram of figure 1.5. Here, a minimum in the conduction band, at
A for example, corresponds in the momentum scale to a minimum in the conduction
band, at B. Hence, an electron can be elevated from the conduction band at A into
the valance band at B with minimum energy and there is no change in momentum
during the process. Similarly, the direct transition in the other direction i.e., from B
to A, causes the emission of a photon without changing the momentum, Fﬁr indirect-
gap semicondictors, of which Si is the principle member, one gets a simplified energy
band diagram as shown in figure 1.6. In this case, an electron transferred across the
minimum energy gap from C to D dr vice versa must also experience a simultaneous
change in momentum as shown in the diagram. This momentum change is achieved
by interaction with lattice phonon vibration. Such an indirect process is less likely
than the direct transitions involving no bhange in momentﬁm. In this section, we
have disciussed about the necessity of direct band gap semiconductor materials for

- constructing any type of semiconductor laser. In the next section we will discuss
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about a basic semiconductor laser diode structure.
i.3 Basic GaAs laser diode stricture

When a photon interact with an electron, the electron can absorb energy to
move to a higher excited state or alternatively with an equal probability, the elec-
tron can lose energy and in doing so emit a further photon, which leads to photon
amplification [41]. Depending on the initiai energy state of the interacting electron
either absorption or amplification will occur. If it is a low energy state E, as shown
in figure 1.7, an impinging photon with energy hr > E, will be absorbed, elevating
the electron to an available higher energy state Es. By pumping the lower energy
electrons with energy to raise them to the excited state it is possible to have an
unusually large number of electrons at the higher level. Such a situation is called a
population inversion. This condition is illustrated in figure 1.7, the corresponding
energy vs. density of state for an intrinsic semiconductor at equilibrium~and at
inverted condition is shown in figure 1.8. At this stage, an incident photon of the
correct wavelength Ay = hc/E can stimulate an electron to fall to thé lower energy
state, resulting in a stimulated emission as shown in figure 1.9. In such stimulated
emission the emitted photon has the same wavelength \,, phase, polarization and
direction of propagation as the incident one. Devices that rely on this mechanism
to generate coherent radiation are called lasers, which is an acronym for light am-
plification by stimulated emission of radiation [41]. 1t is to be noted that the highly

coherent stimulated emission is the only responsible for laser.

The pumping mechanism for population inversion for semicondiictor laser can
easily be achieved by forward biasing the p-n junction as shown in figure 1.10. The
energy band diagram without bias is shown in figure 1.11. When a forward bias
voltage Vpp is applied, such that eVrp > E,, all levels at the n* side are raised
in energy, all those at the r* side are lowered, the barrier height is considerably
reduced from its equilibrium value Vp, and the concept of Fermi energy is strictly
no longer valid but it is constructive.to consider quasi Fermi level shown as Ep, and
Ep,. Large number of carriers are injected across the junction to create an active

region of population inversion in the vicinity of the junction as shown in ﬁgufe 1.12
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:n which radiation transitions of electrons from the conduction band can occur. For
this active region to exist, with consequential stimulated emission, the forward bids
voltage must be e‘_/pg > E,.

A schematic diagram of the structure of a laser diode is showni in figire 1.10. The
GaAs crystal is very precisely cleaved on its end faces as shown to create smooth,
parallel, semitransparent, reflecting surfaces, which are essential for lasing action.
When small forward bias voltage, Vrp is applied, no population inversion occurs
and there is only weak incoherent light output due to spontaneous emission as
shown in figure 1.13. As soon as eVpp becomes > E; and a critical current flows, an
inverted population of carriers is produced, which is first resporsible for spontaneous
emission of photon. These photons reach the cleaved surfaces, internally reflected
due to the high reflective index of the medium (around 3.6) and back into the
. active region. The photons then make a pass tl}fough the active region, stimulating
additional coherent photon emissions as they traverse it. On reaching the far cleaved
surface photons are again reflected and pass the active region and release more

photons, all coherent with each other.

1.4 Distributed feedback (DFB) semiconductor lasers

A theoretical analysis of distributed feedback (DFB) laser was proposed by
_ Kogelnik and Shank [17]{18]. They proposed that the conventional resonator con-
sisting of two {or more) end mirrors terminating the laser medium, can be made
mirrorless by providing the feedback mechanism distributed throughout and inte-
grated with the gain (lasing) medium. In particular, the feedback mechanism is
provided by Bragg scattering from a periodic spatial variation of the gain medium
or of the gain itself [17].

A DFB laser can be made in double-heterostructure (DH) At the beginning,
optical feedback in such a DFB laser used to be provided by a corrugated surface
between the active layer and the outer p-GaAlAs layer. The fabrication of the
grating in such an active layer caused the interface recombinatioﬁ centers which
increases the threshold current density substantially at higher temperatures. For

this reason it was impossible to operate such lasers at around 300°K at low current

11
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densities. This problem has been overcome by separate optical and carrier con-
finement heterostructure (SCH) jointly proposed by Aiki, Nakamura, Umeda from
Central Research Laboratories, Hitachi Ltd. Japan and Yariv, Katzir and Yen at
California Institute Of Technology, Pasadena, Calif. USA [19]. Here, the carriers
are confined to the p-GaAlAs active layer while it extend to the p — Ga;_, Al As
(y ~ 0.17) layer and the p — Ga,_,Al,As (z ~ 0.07) layer grown successivelly
on the active layer. The grating is made on the p — Ga;_, Al, As layer to obtain
the optical feedback. Since the active layer is separated from the corrugated inter-
face, the threshold current density has been found to be low enough to operate the
diode at higher temperature. Numerous other realizations of DFB lasers have been
reported in literatures [20]-[23]. DFB structures have the advantage of providing
better frequency stability of mode of oscillation than cavities formed by partially

transmitting mirrors at the ends of the structures.

Periodic structures with DFB have other applications. Bandpass transmission
and reflection filters may be constructed using passive structures that utilize Bragg
reflection [24] [25]. The reflection filter formed by such a structure is the equivalent
of a mirror reflecting a band of frequencies . In surface acoustic applications [26]

[27], such mirrors are utilized to build high-Q cavities.

1.5 Objective of this research

The technique of distributed feedback semiconductor lasers is now known
[17][18][19)(32](33][35]. Some theoretical analysis of index and gain coupling have
been presented by Kogelnik and Shenk (17] in 1972, Islam et. al. [32] in 1991
and Suhara et. al. [33] in 1992. Detailed analysis of pure gain coupled and ‘gain
plus index’ coupled [32] semiconductor lasers are yet to be done. Recently, some
techniques .of fabrication of gain coupled lasers have been reported in [39]. After
this, it seems to be worthwhile in working on developing analytical expressions for
the desigh of gain and ‘gain plus index’ coupled DFB semiconductor lasers.

In this work, three types distributed feedback corrugation in semiconducfor
lasers will be studied. These cotrugations are: (i) pure index coupling type, (ii)

pure gain coupling type, (iii) ‘gain plus index’ coupling type. The equations repre-
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senting the oscillation condition will be derived following recent researches [32]-[34].
For each case numerical computations will be performed using microcomputers to
obtain threshold gain, the frequency at which thréshold gain occurs for variois com-
binations of DFB semiconductor laser parameters. The above computation work
will then be done for differerit amount of external reflections. The proposed research

work thus will be an investigation of some new structures of semiconductor lasers

to deal with applications having external reflections.
1.6 A brief introduction to the chapters of this thesis

The main objective of this work is to study the bahaviours of a semiconductor
injection laser having distributed periodic corrugations. To explain the necessity of
periodic corrugation in a semiconductor laser, it is necessary to briefly introduce
the working principle of the conventional Fabry-Perot semiconductor laser. Such
an inttoduction is provided in chapter 2.

In chapter 3, equations for pure index corrugated DFB semiconductor laser
without any reflection from outside are presented. The derivation statrts off with
the Maxwell's équations for Electric and Magnetic fields. The equatior representing
the oscillation condition for such a laser is presented in this chapter.

Chapter 4 deals with pure index corrugated DFB semiconductor laser with ex-
ternal feedback. In this analysis it is assumed that a portion of the laser output
entering into an Fibre optic cable or going towards an optical disk is reflected back
and enters into the DFB laser. Under this condition the equations derived in chap-
ter 3 are modified in this chapter.

In chapter 5, it is assumed that both index and gain corrugations are present
in a DFB semiconductor laser. For such a complex coupling, necessary equations
are derived following the procedures of chapter 3. Also, following the procedures of
chapter 4, the effect of external feedback is taken into account and the equations
are derived for such a case. The equatibns representing the oscillation condition,
derived for a ‘gain plus index' corrugated DFB semiconductor laser with external

feedback, are general forms of equations.

A computer method is presented, in chapter 6, for obtaining the solutions of the

14



general complex equations representing the oscillation condition of a DFB semi-
conductor laser. Numerical solutions and graphical plots for various values of the
pa.raméters are presented in this chapter. Comments on the obtained results are
also presented in this chapter.

Discussions on the total work are presented in chapter 7. Some suggestions for

future work are also presented in this chapter.
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CHAPTER 2

Fabry-Perot laser

2.1 Introduction

This work deals with distributed feedback type of semiconductor laser. In order
to explain the operation of such a laser it is necessary to explain the operation of a
basic Fabry-Perot laser first, since the theory of laser oscillation can be explained
with the help of a Fabry—Pefot laser. For this reason a simple treatment of Fabry-
Perot laser is necessary at this stage. In this chapter, the physical construction of a
simple Fabry-Perot laser and its mechanism of operation will be briefly discussed.
The structure of a simple Fabry-Perot laser is briefly explained in section 2.2. Also,'
using a model of reflection and transmission of waves at the two cavity mirrors of
a Fabry-Perot laser the equations representing the amplitude and phase conditions
of oscillation in such a laser are deduced in section 2.2. The equation for obtaining

the frequency of oscillation of a Fabry-Perot laser is presented in section 2.3.

2.2 Fabry-Perot Laser

From the very beginning of laser invention, it is known that for laser generation
it is necessary to have population inversion in a laser medium i.e. the higher energy
state of ttie material will contain more atoms than the lower energy state. If such
a medium is placed inside an optical resonator containing two reflectors, then an
electromagnetic wave bounces back and forth between the two reflectors and passes
through the laser medium and gets amplified [14]. If the amplification exceeds the
losses caused by the imperfect reflection in the mirrors and scattering in the laser
medium, the field energy stored in the resonator increases with time. This causes

the amplification constant to decreases as a result of gain saturation [14]. The
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Figure 2.1: Schematic diagram of a Fabry-Perot laser.
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oscillation level keeps on increasing until the saturated gain per pass just equals the
losses. At this point the net gain per pass is unity and no firther increase in the
radiation intensity is possible; that is the steady-state oscillation is obtained. This
type of laser is khown as Fabry-Perot laser. A schematic representation of such a
Fabry-Perot laser is shown in figure 2.1. In such a case an amplification medium
with an inverted atomic population is placed betweer two mirrors as shown in figure
2.1. _

Let us consider the model of figure 2.1 which is a Fabry-Perot laser containing
two mirrors and the laser medium with an inverted atomic population in between.

For such a case the complex propagation constant of the medium may be written

[14] as

2n? n?

K(w) =k + £ ka;(“’) —f2 (2.1)

In this case, o accounts for the distributed passive losses of the medium. Thus,
the intensity loss-factor per pass is ezp(—jc). In equation (2.1), (k — ja/2) is the
" propagation constant of the medium at frequencies well removed from that of the
laser transition, and x(w) = x'(w) — 7x () is the complex dielectric susceptibility
due to the laser transition. The imaginary part of x(w) is given [14] by

. Ny — No)A? 1 '
X = 87(r3timngjjf)Av,, 1+ [4(v — ,)?/(AV)?] (22)

where, v = w/2n is the frequency of laser output light. The relation between x/(v)

and x (v) can be written [14] as
)= 2=V | (2.3

In the example of figure 2.1, a plane wave of amplitude E; is incident. on the Jeft
mirror of a Fabry—Pérot etalon containing a laser medium. The ratio of transmitted
to incident field at the left mirror is taken as t; (mirror transmission coefficient) and
that at the right mirror is t;. The ratios of reflected to incident field inside the laser
medium at the left and right boundaries are r; and r; (facet.reﬂection coefficient)
respectively. | |
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Here, the propagation factor corresponding to a single transition is exp(—7¢/)
where, k' is given by equation (2.1) and | is the length of the etalon. Therefore,
adding the partial waves at the outpit one can write [14] the total outgoing wave

Etaﬁ

E, = tity Ese 1 4 rirae Ak +rirde REALIE S ]
— E.[,t_hfL
! 1¥r1rge 72Kl
= F; - (2.4)

by~ kAR Glr=a)l/2
" - 172 e-—_ﬂ(k-}-Ak)le('r—a)l

In equation (2.4), the following relations have been tised

K o= (k+Ak)+3(y—a)/2 (2.5)

Ak = k’;é;") (2.6)
vy = —kxﬁ%)l (2.7)

— (M—M)mg(u) (29

If the atomic transition is inverted (i.e. N, > Nj), then v > 0 and the de-
nominator of equation (2.4) can become very small. The transmitted wave E; can
thus become larger than the incident wave F;. The Fabry-Perot etalon (with laser
medium) in this case acts as an amplifier with a power gain I%P

if the denominator of equation (2.4) becomes zero, which happens when

- rge—g2[k+Ak(u))]Ie['r(w)—a]l — 1 | (2'9)

then the ratio E;/E; becomes infinite. This corresponds to a finite transmitted wave
E, with a zero incident wave (E; = 0)-that is to oscillation coridition. Physically
condition (2.9) represents.the case in which a wave making a complete round trip
inside the resonator returns to the starting plane with the same .ampli'tude and with
the same phase. It is possible to split the oscillation condi tioﬁ (2.9) into an equation
for amplitude condition and an equation for the phase condition |

Thus, for the threshold gain constarit fy:(w) we get
rirpelt@)-ell — , (2.10)
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Similarly, after separation, we get th’e-following equation for the phase condition.
2[k + Ak(w))l =2mm m=1,2,3.. (2.11)
The amplitude cordition (2.10) can be written as
1.
Y(w) =a-lonr _ (2.12)

Using equation (2.8) to replace y;(w)in the above equation we get

Bﬂnztapaﬂg
g(¥)»\?

| 1 | |
Nt = (Ng - Nl)t = (Cl — T 1]1 T']T'g) (213)

This is the population inversion density at threshold.

2.3 The frequency of oscillation

The phase coudit.;ion (2.11) is satisfied at an inﬁnite set of frequencies for
different values of m. If iri addition, the gain condition is satisfied at one or more
of these frequencies, the laser actually will oscillate at this frequency.

In order, to solve for the oscillation frequency, we put the value of Ak from

equation (2.6) in phese condition equation (2.11) and obtain the equation

X)), - |
ki[1+ ot ) -— mm (2.14)
We now introduce
mc

go that it corresponds to the mth resonance frequency of the passive [V; — N; = 0]

resonator. It has been shown in [14] that the propagation constant y(w) can be

written as
—kx (w |
1wy = X 2.16)
n
For this case we can write y(v) as
_k " I/
v(v) = —w-—ig( ) (2.17)
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So, putting thie value of x (¥) from (2.17) in equation (2.3) and then using the
value of x/(1)- of the resulting equation in equation (2.14) we get

V(1 — (VOA—V ) fyi:‘;)] i (2.18)

In the above eqiiation v, is the centre frequency of the atomic lineshape function.
By adjusting the laser fength such that one of its resonarice frequencies vy, is very
near to v, which will result in a slowly varying gain constant g(v) with respect to
v. Replacing y(v) in (2.14) by y(vm) and (v, — ) by (v, — vm) we get [14] |

Y(m)e (2.19)

R 0wy en

2.4 Summary

A brief introduction to a simple Fabry-Perot laser has been presented. The
equations for amplitude and phasé conditions for obtaining oscillations in a Fabry-
Perot laser tiave been presented. The equations for the frequency of oscillation for |
such a laser is also presented. The discussions of this chapter will help in explaining

the operation of DFB lasers in the rext 3 chapters.
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CHAPTER 3

DFB semiicondiictor laser having pure index
corrugation and without any reflection from
outside

3.1 Introdud:-ion

The principles of a simple Fabry-Perot laser has been presented in the
previous chapter. In this chapter, the equations for a DFB semiconductor laser is
developed. Starting with the Maxweil’s equations and considering the laser cavity
as a resonant waveguide cavity the equation for a simple semiconductor laser is
developed in section 3.2.

it is now well-known that three types of corrugations are possible in a DFB
semiconductor laser. These are: (i) pure refractive index corrugation, (ii) pure gain
corrugation and (iii} a combination of refractive index and gain corrugation. In
the first case, the refractive index of the active layer of & semiconductor laser is
periodically corrugated. In the second case, the gain of the medium of the active
" layer is varied periodically, arnd in the third case, both refractive index and gain are
varied in the active layer.

In this work, at first only index corrugation is considered and the equations for
such a case are derived. This chapter deals with index corruagation ohly which is
termed as pure index corrugation or pure index coupling. In section 3.3, the equa-
tions of a simpie semiconductor iaser of section 3.2 are then extended for & semi-
conductor laser with refractive index corrugation only. In section 3.4, the boundary
conditions for a DFB laser are applied to the solutions obtained in section 3.3. Thus,
the equations for forward ard backward waves for a DFB semiconductor laser with

refractive index corrugation and no optical feedback from outside are derived in
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section 3.4. Using the equations of the two waves of section 3.4 the oscillation con-

dition for a DFB semiconductor laser with refractive index corrugation is deduced

in section 3.5.
3.2 Wave equation for a semiconductor laser

It is well-known that a semicoriductor laser consists of a layered semiconductor
structure placed inside arn optical resonator. In such a resonator two opposite
field waves propagate back and forth inside the cavity. In a distributed feedback
(DFB) laser, reflection occurs from the backscattering of therperiodic perturbation
as showri in figure 31 As a result, such a laser does not need end reflectors. The
propagation of electromagnetic waves in semicondictor material is given [32][14][31]

by the Maxwell’s equations.

- 8B ,
VxE. = -2 (3.1)
VxH = af+2£' (3.2)
VB =0 (3.3)
VD =0 (3.4)

Here, o is the conductivity of the medium.
In the above equation D is the electric flux density which is related to the electric

field intensity E by [32][14][31]
D=¢n*E+P | (3.5)

In equation (3.5), &, is the free space permittivity, n is the refractive index. Here

P(r,t) is electric polarization, which can be written [32][14](31] as
P =e,xE (3.6)

Here, x is the dielectric susceptibility of the medium. From equation (3.1) and
(3.2)

— o ' |
VxVxE:—a(Vxﬁ)z—yagE(Vxﬁ) (3.7)
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In this case, Vx V x E = V(V.E) — V?E = —V2E (since V.D = 0 and thusE — 0).
Therefere, from equations {3.1)-(3.7)

_ ,0F dF
— 2 f— r— .
V*E Hoge (aE—l— Eont’ B + EoX—— o ) (3.8)
or,
— dF SFE OF
—V’E = —po— i — 3.
v E . #Do- 8t MOEOn 82t W#OEOX at ( 9)
Now, by defining ¢’ as (32]
o' = o+ jwe,x (3.10)
equation (3.9) can be written as [32]
—  ,JE OE ‘
i~ = —
71 V°E — p,o B — HeE on’ o =0 (3.11)

This is the generalized wave equation of a semiconductor laser without any corru-

- gation. The soliition of equation (3.11) may be written in the form
E= A(2)F(z,y)e™=P* + B(z)F(z, Yt Lo e, (3.12)

Now, considering a semiconductor laser without any corrugation and also ¢’ = 0
equation {3.11) reduces to

2755

17 298
VAE — poeon e 0 {3.13)
or).
(V2 + ot Pt Fz, y)e? =0 - (3.14)
or,
i 7 ox .
[6:1:2 + — a5 + poton?w? — ]F(:c y)e’* =0 (3.15)

In the above equation F (:c,y) is as deﬁned in equation (3.12).
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3.3 Wave equations for a semlconductor laser having re-
fractive index corrugation only

In the previous section the effect of index corrugation has not been taken

into consideration. Let us now consider that a refractive index corrugation of the

form [32](33][34]
n=n4+ (%1323"?”"4‘"“5 + cc) (3.16)

is present in the semiconductor laser with periodic variation in the z direction.
Here, we assume that ¢ is the initial phase of corrugation and An <« 7. In this
equation of corrugation, g is the propagation constant -satisfying Bragg condition
(Bn - 7/A). The c.c. (complex conjugate) term is present because the physical
terms are real. Figure 3.1 and ﬁgme 3.2 are two schematic representation of DFB

lasers having such a corrugation. However, for this section we refer to figure 3.2

From eqﬁa.tion (3.16) the square of n can be written as

n? = [m4 ({-e”fﬂv””’ +ee)? . (3.17)
or,
n2 — ﬁﬂ + (A;) 408pr+351 + (A:) —4;8px--52¢
+nAne®Por+ib L gAne~ P03 | o0, (3.18)

Here, the terms containing higher power of An may be neglected since An < 7.

With this approximation equation (3.18) reduces to

n’ = n’ 4 nAne¥Portit | oo (3.19)

It may be noted that after considering the index corrugation, fz is to be replaced

by fpz and eqiiation (3.12) may be written as
E = A(z)F(z,y)e™#o* 4. B(2)F (z,y)e™ o | cc. (3.20)

Using equation (3.19) and (3.20) we replace 7 and F in equation (3.11) and

obtain the following equation.
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VHA(2) F(z,y)e*Por 4 B(.z)F(a:, y)erttihot 4 c.c.]
—pod%[A(z)F(z, Y)eM Pt 4 B(2)F(z, y)e P 4 cc

—pioE [ + (Ane®Por+ié 4 c.c.)]%[A(z)F(I’ y)ert P
+B(2)F(z,y)e™*Pe* L cc] =0 : (3.21)

Splitting into x, y and z direction variations we get

& iy t-30pt
(G + @)A(Z)F(x, y)er
32 i wi--38px
+ o5l AR) F(z, y)em 7]
a9 )
et 555)3 (2)F(z, y)e™t+Fo
8% . s
+§.Z_2{B(Z)F(?’ y)eﬂt-'-Jﬁn ]
. _JW,UOO"A (Z)F(I, y)e-'f’-“'g_.?ﬂnt
—-quoa'B (z) F(x, y)ewfﬂﬂuz
+ 1ot w7 A(2) F(z, y)et-Fox
+ﬁzB(Z)F(2, y)eJWHJﬂnz
+1AnA (2)F(z, y)ezvtﬂﬂnujqb
+nAnB(z) F(x, y)e™t+73Por+it
+rAnA(z)F(z, y)ept-ys,enz_qu

+1ARB(2) F(z, y)e! —Pos-19) +cec =0 (3.22)

After further simplification the above equation can be written as

4? 8? tmsB
R — F Jwt—20p £
(81'2 + 8y2 )A('z) (I!y)e

A
az(,z)F(x,y)e’“’“”’”f

o, 0A

— P A(2) F(z, y)e= o
_|_(éa_ + Ei)B(z)F(z y)eﬂtﬂﬂﬂt
gz = Oy? ’

8 B(2)
+ 322

+

F(z, y)er"+oot
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Y. '
+210p g(") F(z, y)er+sbor
z .

. —ﬁgB(Z)F(I, y)eritihor
— g0’ A(2)F(z, y)ert-1Poz
~Jpte0’ B(z) F(z, y)e+7Por
ot o [ A(2) F (2, )&~ ot
+72 B(2) F(z, y)e™t+Por
+nAnA (z)F(z, y)ept+;,egz+j¢
+RANRB(z) F(z, y)e*+30nr+ib
+RANA(2) F(z, y)ert-738o1-54
+RARB(2)F(z, y)er P9 4 ce. =0 (3.23)

In a semiconductor laset the lowest order hode can be obtained by the variations

of x and y direction. Actually this can be obtained by controlling the thickness.

The variation of field amplitudes is usually very small in the z direction. As a re-
sult, in the above equation, the second order derivatives in the z direction may be ne-
glected. Now to obtain spatial average, we multiply both sides by F*(z,y)ePrre-mt

and perform integration for x, y and z within the limits -00 to oo, —o0 to oo, and

- —27/PBp to +2r/fp respectively. In addition the time average of both sides are

also taken over a period of AT — 1/w. Now, we choose [ oo | F(z, y)*dzdy = 1.

After these operations the c.c. terms vanish because of the time averaging of the

e~?** terms.
Thus we get,
& 5 o oo
o Yo = e [ [P sy + et )
aA . ) ,
—23/p aiz) + Lok ANE I B(2) = 0 (3.24)
Substituting equation (3.15) into the above equation, we get
JA(z) 1 ' © oo
9z 238p 8" - - Jw,uof_m [_m 7| F(z,y)| dzdy + froEo W A(2) -
 UE W T ANne I ‘
B(z)=0 3.25
278 (2) ( )
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L)

or,

, 3:;122) _ ﬂzjﬁﬁn (- Wito f f | F(z, y)[ dedy + poe w7 A(2)
o ottt nAne‘”’ , .
g, 2@ =0 - (3.26)

The factor in the first term of the r.h.s of equatlon (3. 26) may be approximated as

follows
BBy _ (B+Ba)(B— Bo) . _
2Pp 98 —3(8—Bp)=—3A8 (3.27)
where [40],
(ﬁ ﬁB) - g_"i:l ‘—-% ' ) (328) -

Taking the factor in the second term of equation (3.26)

w,ua
s [ [ \F @, y)azdy

- _2:;‘:% f_mf_mo’lF(z,y)lzdrdy

- —éﬁ [ 7 1P sy
250_2 aver [ [ olFe,yPdzay
= —*‘—_,“ﬁ\/m f ) fm o|F(z, y)|*dzdy
235— Ve, / / " weox| F(z, y)dzdy

= 5(? — ) - (3.29)

Here, o’ = o + jwe,x, § = relative gain and o = loss, Bp = Wi/HoE = Nw,/IL,E,
and 71 = /g, [32]. Next, taking the factor in the third term of equatin (3.26)

HoE W I AnE 4 _ MeEwiTiAneT¢
2788 B 2T, [E 10,
Wy /€, Ane/*
23
k,Ane=7%
e
= —Ju"e_”" (3.30)
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Here, n =711 + (%’iemﬂHﬁ + cc.), Kn = ._?" , and k, = the wave number in free

space.
From equations (3.26)-(3.30) we get
L) — [-0A0+ 5@~ AR ~ w7 B(2) (3.31)

Here, the term AJ appears due to the index cor'rugétion:. Following the above
procedure, in a similar manner, the equation for B(z) is obtained as
dB(z)
dz
Since equation (3.31) contains both A(z) and B{(z) terms and equation (3.32) al-

so contains A(z) and B(z) terms therefore, the forward and backward waves are

—[jAB - -(g ) B() + jreaePA() (3.32)

coupled
Next, dlﬁ’erentlatmg both sides of equation (3. 31) the following equationis ob-
tained
. dPA(z) dA(z) _;dB(2)
iz g =[-yA0+ 5 (g - o) ( — JKnE 3“’————~di (3.33)
Substituting the expression of —dE,—'l from eqiation (3.32)
d?* A(z) 1 dA(z _ 1 .
A0 _ (s L@ ) TAD e Hpnp - (G- IB()
+R2A() | (3:34)

Next, the expression of B(z) obtained from equation (331) is replaced in the

above equation. The resulting equation is

TAC) s+ hg- ey
80— 2l a6+ 2 a))aca)
412 A(z) (3.35)°
Thus,
TAE) — [pa6- La- )+ KA 336

By writing the complex propagation constant <y as [32][38]

¥ = AB— (- o+ (337)
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equation (3.36) may be written as

d? A(z)

e v A(2) (3.38)

The solution of this equation may be written as

A(Z) = Ale""' -} Age_” (339)

where"y is given by équa,tion (3.37). Again equation (3.31) can be written as

e (oA + 57— A - A2y (3.40)

B(z) =

Replacing A(z) from equation (3.39) into the above equation we get

. e’ , 1 ' . 1 oy
Blz) = ZA-1A0+ 5(F — o) — 2 Aie™ + [-5AB + S (3 — @) +1]Ae™") (3.41)
This equation is in the form of

B(z) = Bye™ + Bye™* (3.42)

Equation (3.39) and (3.42) are the two general wave equations for a semicon-

ductor laser having refractive index corrugation only.

3.4 Wave equations for DFB semiconductor lasers having
refractive index corrugation only and no reflection from
outside | |

The wave equations of a particular type of laser may be obtained by applying
the boundary conditiors of that laser to equations (3.39) and (3.42). For this section
let us consider the DFB laser of figure 3.2 with refractive index corrugation only.
Here, z = 0 plane is chosen to coincide with the left facet and z = { plane with
the right facet.

Putting z=0 in equation (3.39)

A(D) = A, + A, (3.43)
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Writing eqiiation (3.39) in terms of A(0)

: A Agem e+ (AyfA)e T
(Z) ( ) A1+Aj ( ) 1+A3/A1

(3.44)

The reverse travelling wave B(z) of electric field at z=I[ plane is equal to the prod-
uct of the forward wave A(z) and the relfection coefficient at z=l plane (plane 2).

So

¥

| r(A)e P = B(e??t (3.45)

Here, ro is the reflection co-efficient at'z = [ plane.
Putting the valies of A(l) from equation (3.39) and B (1) from equation (3.41}

in the above equation
- o yBipl e’ 1, o
ro[ A" + Age "]eT = ;{[—Jﬂﬁ‘*‘ 5(9 ~a) — 7]Ae
‘ i A .
+[—3A8 + -2—(:9' - ar) + 'y]A;e“"!}633'6“’I (3.46)
Dividing both sides by A; and e 0! and multiplying by 7
i (oW ] Az -l 2:8pi+29 ¢ | 1___ !
grirg(e™ + 1.e )} =oAL + §(Q —a) — e’
1

+[—1A8+ %(ﬁ —a)+ 'y]j:—je_"’z} (3.47)

{3rrge™ ™ — [—3A8 + %(fq“ —a)+ 7]83””'+’¢e"’1}§3
1
1 ' - ‘
= —grree™ + [—jAL + 5(‘9‘ — @) — yle/MPoltitert (3.48)

Ar  —grrae’ +[=AB + §(F — @) — y]ePPot e

A grrae — [—AB+ LG — a) + e e (3.49)

Putting the value of %} in equation (3.44) the numerator of A(z) can be written
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Num. =  A(D) x
{jnrge—‘rl — [—3AB8+ %(g -~ ) + rﬂeﬂﬁu'“-#e-“rl } e’
H —gripe™ + [—1A8 + %(*g’ —a) — ,-Y]eﬂﬂulﬂq&e-ﬂ} e (3.50)
= A(0) x y]e"*"9 4 ¢~ r=-D)ePri-24
Howry — [-3A8 + 5@ — a)]}[e"(”‘l) — e_T(‘_l)]e—Jzﬂul~J¢ (3.51)

and the denominator of A(z) as
Denom. = {jxre™ —[—A8 + %(g — a) + y|ePritHel}
1 ) :

+{—grre + [—3A8 + 5(§ — a) — y]ePPrlR ety (3.52)
— _,.Y[e—'ri + eﬂ]e’zﬂ”””
R . — }_ 7 — oY Ve? . o= o~28nl+ 14
Huwre + [0AB+ (7 — )]} — e (3.53)

Eliminating ™7+ from both numerator and denominator the equation of A(z)

is -

Az) = A@D) x

 —yeoshly(z — D) + {grrse 5 ~ [3AB 1 }(g— o))} sinhlr(z — D)
—y coshfyl] + {—jxrye-12Pnl-s + [~7A8 + 3(F ~ )]} sinh[yl]

(3.54)

Since, sinhz = £=#= and coshz =

g e ™
2

Now after multiplying the numerator by A(D) and the denominator by Aj 4 A,
of the R.H.S of (3.41)

B(z) = A(0) x |
=988+ 3@ — ) —Ale” + [0+ Sg—a) + ) Be ) 8.55)

144
Putting the value of fll from equation (3.49), replacing [-7AQ + 2@—a)P -
by —«? and after simplifying, we get

B(z) = A(D) x
—yrae? coshy(z — )] + {rse?[—3A8 + 3G — @)] — gre=72Pal+26) sinh(y(z — )]
A€o coshlol] + {~gwrs + [—3AB T 1(5 — o)) simhin]

S (3.56)




Dividing both numerator and denominator by eWPni+3% the equation of B(z)
becomes
B(z) = A(0) x

—fyrge‘”ﬁ”‘ cosh[y(z — 1)) + {re ¥ AR+ 3G — )] — ke’ sinh{y(z — )]
7y coshiyl] + {—gnrs +e-2Bol-38 1+ [—AB + 3(g — )]} sinh{vl]

(3.57)

Equations (3.54) and (3.57) are the two wave equations which contain the in-
formation of the location of the facets, reflection coefficient r3, relative gain g and
loss cr. These equdtions may be equally applied to DFB and DBR lasers. In a DBR
laser g=0 i.e., zero gain in the corrugation area, but in a DFB laser both gain and

loss are present.

3.5 The equation representing the oscillation condition of
a pure index corrugated DFB semiconductor laser with
no reflection from outside

Consider a DFB semiconductor laser with its left facet at z=-I; and the right
facet at z = I; having reflection coefficients of ry at the left facet (plane 1) and r; at
the right facet (plane 2) as shown in figure 3.3. It may be recalled that the solution

of wave equation is of the form
'E = A(2)F(z,y)e* P + B(2)F(x, y)e™t P e - (3.58)

Consider the section 0 to lz-of the laser where 0 < z < l; named as region 2.
Following equations (3.54) and (3.57) the exptessions for the forward and reverse

wave amplitudes for this section may be written as

Az(z) = AQ(O) Pt
—ycosh[y(z — Ip)] + {grrae el — [ A8 + 1(@ — @)]} sinh[v(z —13)]
T Zycoshlyly] + {—gKrie-?Pol-1$s 4 [—3AB + 3(§ — )]} sinh[yly]

(3.59)
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Figura 3.3: Forward and reverse travelling waves in a DFB semiconductor laser
with longitudinal dimensions extending from z = ~{; to . ‘

™ Ty

Figura 3.4: Forward and reverse travelling waves in a DFB semiconductor laser
with longitudinal dimensions extending from z = 0 to {.
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BQ(Z) = Ag(O) X
—~rqe~ WPl cosh(y(z — lp)] + {r2e” wﬂ"[—yﬁﬁ + (g — a)] — gre’™}
“ycoshlyly] + {—gxr2 + e ol 4 [3A8 + 3G — @)}

sinh[y(z — [3)] : '
X nhwz]’ , | (3.60)

where,
SOV R A S BRI

and ¢, is the phase shift of index corrugation at the z=0 plane. Equation (3.16) is

the same equation as (3.37).

For convenience equations (3 59) and (3 60) may be written as follows

Az(2) = A(0)P(2) | (3.62)
By(z) = A,(0)Q(2) . (3.63)

For the other section of the laser the value of z is —I; < z < 0. We call this
section as region 1. The expressions for A(z) and Bi(z) of this section may be
obtained by fepla,cing A2(0) with A1(0) , z with -z, ¢, with ¢y, lp with [; and
with r; ini the above equations of As(z) and Bq(z).

So, '

Ay(z) = A(0) x ‘
—ycoshfy(—z — 1)) + {xr1®oh =% — [—3AB + }(g — o))} sinh[y(—z — 1)]
= ycoshiyh] + {~gurse PP 4 (908 + 3(g — @]} simhDrd)]
(3.64)

and

Bl(z) = A](U) X
—yryeBoh ostify(—z — )] + {rie™Ph[—3AB + (g — o)] = gre)
 ycoshih] + {—grrre e h 1 [5A8+ 3@ — )]}
sinh[y(—z — )]
sinh[vl;]

(3.65)

In the above equations, A;(%) and By(z) are the expressions for waves A(z) and

B(z) in region 2 (figire 3.3) and A;(z) and Bi(z) are the expressions for waves
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A(z) and B(z) in region 1 (ﬁgure'3.3). For convenierice, equations (3.64) and (3.65)
may be written as follows .
Ai(2) = ALO)R(2) (3.66)
Bi(2) = A(0)5(2) (387)

At z=0 the boundary conditions are

Ax(0) = B;(0) _ (3.68)
A1(0) = B4(0) , (3.69)

Now, putting the valie of B 1(0) from equation (3.67) in equation (3.68) results
in
A0)=AOSO) (3.70)
" Next, putting the _Value of A,(0) from equation (3.65) in the above equation
A (0) = By (0)5(0) (3.71)
Substituting B,(0) from equation (3.59) i the above equation results in

A(0) = A (0)Q(0)S(0)
ie, QMOS0 = 1 (3.72)

Replacing Q(0) and S(0) by their expressions in the above equation the following

equation is obtained
1 . ,
[—~re”2Poh cosh(—ly) —~ {rie PP [—3A8 + 5@ — a)] — yxe } sinh(vyl))]
X [—yrae~ 2P0l cosh(—yly) 4 {rae 70— AL + %(g — a)] - jxe’®) sinh(—~ly)]

= [—ycosh(yl)) + {—gx e Pra=% L [3A8 + %(? — a)]} sinli(~yiy)]

X[~ cosh(yly) + {—gr ree™Pol=I% [ AR + 51(57 — a)]} sinh(vi3)]
(3.73)

This equatiosi represents the oscillation condition for a DFB semiconduictor laser. .
In this equatioii index corrugation is considered. It will be shown later that for
considering index as well as gain corrugation this equation is to be modified by

replacing « by «a + 1, [17]{40]. B
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3.6 Summary

Starting with the Maxwell’s equations the wave equations of a simple semicon-
ductor laser have been derived. Using a sinusoidal index corrugation the equations
for the forward and reverse waves in an index corrugét_ed D¥FB semiconductor laser
have been derived. The equation representing the resonance condition of an index

corrugated DFB semiconductor laser has been derived.
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CHAPTER 4

DFB semicondiictor laser hav_iﬂg pure ‘ind'ex
corrugation with external feedback

4.1 Introduction

The wave equations and the oscillation condition for a DFB type semiconductor
laser with refractive index corrugation and without external feedback has been
presented in chapter 3. In this chapter, the effect of external feedback in a DFB
semiconductor laser is considered. It has been observed that the behaviour of a
semiconductor laser could be significantely affected by external optical feedback
ie., feedbabk of a portion of the laser output back into the laser cavity from a
reflecting surface external to it {30]. Such feedback appears from the surface of a
connecting device such as a collimate lens, optical disk or optical fibre [31]. The
effect of external feedback depends on the distance of the reflecting surface from
the laser cavity, the phase change of the teflected wave at the reflecting surface and
the value of the power reflection coefficient at the reflecting surface.

In section 4.2, the effect of external feedback in terms of wave reflection is
explained. An expression for the effective reflection coefficient at the right facet

' (output facet) of a DFB semiconduictor laser is derived with the help of a simple

model following previous researches [30][32][34]

In section 4.3, the equation of an index coupled DFB semiconductor laser are
‘modified by taking into account of the effect of the external feedback. The equationﬁ
representing the oscillation condition have been presented for four combinations of
’leﬂ; facet reflection coefficient, right facet reflection coefficient and the lengths of

the right and left halves of the generalized DFB laser model,
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4.2 The effect of external féedback in a DFB semiconductor
laser '

in the previous chapter, equations have been developed without taking into
account of the effect of external feedback. Here, exterral feedback refers to the
portion of the laser output entering back into the laser after facing a reflection from
the surface of a device external to the laser. A schematic diagram illustrating such
a reflection is presented in figure 4.1 [30](32][33](34]. In this model it is assumed
that output of the laser is taken out through the right facet. Thus the left facet is
the back port and the right facet is the front port of the laser. '
Here, it is considered that a laser output wave of amplitude 1 is incident on the
right facet (figure 4.1) and a portion VR, of this wave is reﬂeéted back into the
jaser. Therefore, v/T — R; of the incident wave is transinitted through the facet. A
portion (VT) of this transmitted wave then faces reflection at the surface of another
device at B. The reflected wave after travelling backward over the distance of length
l... meter (§/2 radians) then enters into the laser through the right facet. At this
time, v/1 — R portion of the reflected wave enters into the laser. Thus, ultimate-
ly v1— BvTe#y1— Ry /M = (1 — Ry)v/qle™? fraction of the unity amplitude
incident wave is now entering into the laser. We now have \/Rg fraction of the inci-
dent wave due to the reflection at the right facet plus (1 — Ra)y/nTe 7 fraction of
the incident wave through the process of reflection from the surface of an external

device. Thus, the effective reflection coefficient is changed from ry to r, where,

= VPt (1 BT o

This 'expressibﬁ for fhle el’fectiv;re reflection coefficient has also been used by Suhara
et. al [33)[34]. Therefore, for taking into account of the effects of the external
cavity reflection entering into the laser cavity i.e., external feedback the reflection
coefficient r, at the right facet of a DFB semiconduictor laser will be replaced by

the expression of 4 of equation (4.1).
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DFB semiconductor laser

, Surface of an
\ 21 ——‘Rz.\/l - Rz\/ﬁ\/feﬁo‘ external device
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Figure 4.1: A schematic diagram of a DFB laser illustrating the effect of exter-
nal feedback. An wave having an amplitude of 1 is incident at the right facet of
the laser experiances reflection. /R, portion of this wave is reflected back into
4he laser and /1 — K, portion passes outward and later experiances reflection at

the surface of another external device, ultimatemately (1 — R,)+/%Te7® portion
of the wave comes back into the laser. Thus the effective reflection coefficient is

ry = Ra + (1 ~ Ry)\/nTe 70,
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4.3 The equation representing the oscillation condition for
an index coupled DFB laser taking into account of the

effect of external feedback

The schematic diagram of a DFB semicondtctor laser extending from z = —{;
to z = I is shown in figure 4.2. In this secfion, one half of the DFB semicoriductor
{aser of figure 4.2 will be considered for ana.llysis. This will simplify the equations
significantly. The modified DFB semiconductor laser is shown in figure 4.3.

Since, the left half of the laser is absent, we may write

I] = O, A](Z) = O, B](Z) = 0 (42)

Also, we assume r; = 1 ie., 100% reflection from the ieft facet. The boundary

conditions for this DFB semiconductor laser is
A2(0) = B;(0) : (4.3)

Putting the values of A;(0) and B,(0) from equations (3.59) and (3.60) in the above

equatlon the following equation is obtained
—ry cosh[—yly] + {grrge P [—3AB + - (9 a)]} sinh[—~l]
— —yrpe~ 2P0l cosh[—nyly] 4 {re”PPP8[—3AB + i(g — a)] — gxe’} sinh[—ylp}
(4.4)
. Dividing both sides of equation (4.3) by sinh(y — I3) we can write
—ry coth{—ls] + {grre2Prh=r _. [—3A8 + %(9 — o)}
_ —yrae~¥P0h coth[—aly] + {ree”PPoh [—jAﬁ + %(g —a)]— ;,'rlcem}
(4.5)
After rearranging the above equation, we can write
—[~9AB + %(g —o)] - [—AB+ %(g — a)lr2e” Pl 4 grrge PP 4 gt
= {—yrse”¥Prh | 4} coth[—l,] - (48)

Here, 3 is the reflection coefficient on the right- facet of the semiconductor laser

medinm.
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Figure 4.2: Schematic diagram of a pure index corrugated DFB semiconductor
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conductor laser considering a length of / (from z =010 z = ).
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We now consider reflection of the laser output from the surface of an external
device as shown ir figure 4.4. In order to consider the effect of this reflection or

feedback from the external cavity we replace 2 by r} where

vy = JRy+ (1 — Ra)y/nle? (4.7)
and LY Rz = Ta. . ' . .

4.4 The oscillation condition for a pire index coupled DFB
laser considering foiir combinations of ry, 79, I; and I,
and considering external reflection

Let us now consider the DFB laser of figiire 4.2 which is the same as figure 3.1
of chapter 3 consisting of two halves extending from —I; to I3. 1t lias already been
shown in chapter 3 that equation (3.73) represents the oscillation condition for such

a laser in the absence of any external feedback. Here, we see that we can have a

combination of values of ry, m, {; and l,. In this section we shall derive a DFB

semiconductor laser for four cases taking into accourit of external feedback.
First of all, let us assume the simple case i.e., 7y = r; = 0 but {; #0, I, £0.
Putting this value in equation (3.73) we get

—xe’® sinh(yli) x {—jre s'in'_h('yll'l)'}
= [~y cosh(—h) + [~9A8 + 5(g — )] sinh(—vh)
%[~y cosh(yl) + [—7A8 + %(g — a)]_ sinh(—{;)]
(4.8)

Secondly, we consider #; = 0, r3 = 0, §, = 0and{;# 0. Equation (3.73)

then becomes
(~) % {-yeosh(rl) +[~3AB+ 5o —e)simh(rl)} =0 (49)
Since v # 0, the above equation rediices to
yeosh(1h) + JAF — 2(g — o)]sink(l) = 0 (4.10)
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In the third case, let us consider ry = 0,1li = 0, ra # 0 and l; #0. In this

case, equation (3.73) becomes

(=) x {—coshi(vlz)} + {—grrye=MPol=th [ AR+ %(9 — )]} sinh(y) = 0
(4.11)

Again, since v # 0 then the above equation results in
| . 1 o -
ycosh(rls) + {grrse Hob [ JAB+ (g — )]} sinb(aty) = 0 (4.12)

In the fourth case, let us assume fj = 0, r1 #0, L #0 dnd r; # 0. For
these values of parameters the equation representing the oscillation condition may
be obtained from equation (3.73) by putting the above mentioned values. Thus this

equation may be written as
. . o
[—ryryrae 2Pol cosh(vl) + rl{rge_’?’ﬁ"h[-z—(g — @) — JAB) — gxe’®} sinh(vyl3)]

— [ycosh(xls) — {—wrse 27 1. [ (3 — @) ~ 3Af] sinh(vls)
| (4.13)

After simplification of this equatior we can write

. 1 ] :
v(1 — rire” 7% cosh(yly) + (raree 0" 4 1){5(57 — o) = jAB} sinh(vla)
—j(ry + rye” 08"k sinh(yly) = 0 (4.14)

This is a practical case, since in this model reflection terms for both left and right
facets are present.

Here, we recall that for taking into account of the effect of reflection from the sur-
face of another device external to the laser we have to replace r; in equations (4.7),

(4.9), (4.11) and (4.13) by #, where

Ty = Rg+(1—Rz)\/nl“6"9 - (4.15).
Here, the phase term is
261 AAB- - _
0 = By = Dt o WOP )l (4.16)
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and I is the length of the external cavity. In the above equation ¢; is the initial
phase shift of the index grating at z = O for region 1 and ¢, is the initial phase shift
of the index grating for region 2. |

In equations (4.7)-(4.13) « is the coupling term for pure index coupling DFB
laser (i.e., k = k,). It will be shown in the next section that while considering

both index and gain coupling thé coupling coefficient x can be written as

ko= Kkn + e (4.17)
4.5 Suminary

The phenomena of external feedback in a DFB semiconductor laser has been
explained by coﬁsidering a simple model. An expression for the effective reflection
coefficient at the right facet has been presented by this model. By considering the
effect of external feédback the equation representing the oscillation condition of an

index corrugated DFB semiconductor laser has been derived.
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CHAPTER 5

DFB semicondiictor laser having ‘gain plus index’
corriigation and pure gain corrugation with
external feedback

5.1 Introduction

In the previous two chapters, wave eqﬁations and the equation represent-
ing the oscillation condition have been presented for a pure index coupled DFB
semiconduictot laser. In this chapter, equa.tions are derivgd for a DFB laser havirg
refractive index corrugation as well as gain corrugation. Sﬁch a DFB semiconductor
laser having both index and gain corrugations will be termed as ‘gain plus index’
corrugated DFB laser [32]. |

In section 5.2, generalized wave equations for a ‘gain plus index’ corrugated
DFB semiconductor laser are derived. This derivation is similar to the deductions
presented in the previous chapters. ~

In section 5.3, the equation representing the oscillation condition for the above
mentioned ‘gain plus index’ corrugated type of laser is dediiced by assuming the
generalized type of DFB laser model extending from z = —l; to ;. The equation
is then simplified for the simplified model of a DFB semiconductor laser extending

from z=0to z = .

5.2 Generalized wave equations for a ‘gain plus index’ cou-
pled semiconductor DFB laser

'We now consider a DFB semiconductor laser in which, both gain and refractive
index corrugations are present which is termed here as ‘gain plus index’ coupled DFB

semiconductor laser [32). We recall the geiieral wave equation for a semiconductor
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jaser deduced fromn Maxwell's equations in section 3.2. From equation (3.9), this
wave equation can be rewritten as [32] -

VE — ﬂaa% - ”osanz?;i?' - ”oﬁoxg‘;—f_ =0 (5.1)
This equation will be used for a gain plus index corrigated DFB semiconductor
lager. We consider the index corrugation represeitted by equation (3.11). Thus the
‘refractive index can be written as '

An

n  =na4(—e¥rt¥ )
2 .
A .
=7+ (Tnegmm_”‘ﬁ + c.c.) (5.2)
Here, ¢ is the initial phase at z=0 and fp = n/A is the propagation constant .

corresponding to the Bragg wavelength and A is the spatial period of the index cor-
rugation. Here, 7 is the average refractive index and An is the maximum amplitude
variation. A DFB laser having the A/4 shifted region is equivalent to ¢ =0.57 in
the present model. This meodel is shown in figure 5.1. However, for the analysis of
this section the model of figure 5.2 is also acceptable. _

Assuming a similar variation of dielectric sisceptibility for gain corrugation we

can write [32][34]

A
x =%+ —"zxezjﬂ"””’”"’ + ec.c)
A
=X +(—“—2xe“f""“+ﬂ’+f¢ + ce) (5:3)

Here, x is the average dielectric susceptibility and Ay is the maximum amplitude
variation, 1 is the phase difference between the index and gain corrigation. Con-

sider An << 7i equation (5.2) can be written as
n? ~ 72 4 (MAne*Po =% 4 cc) : (5.4)
A sqlution of equation (5.1) may be written as
E = A(2)F(z, )™ + B(z)F(z, )™ +c.c. (5.5)

Putting the value of F from equation (5.5) in eqﬂatidn (5.1) and replacing n? and
x in equation (5.1) by (5.4) and (5.3) we get
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2 direction. As a result, the second o
h sides by F*(z, y)e?*¢~** and perform integration
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dB(z)  ttafor oios

+230n 92 F(z,y)e 7" — BLB(z)F(z, ) A

g A(D)F(z, gt — qupto B()F (z,y)e™" Pt
it A F(z, et + 7 B)F (2, ) 7
+RARA(Z) F(z, y)er P09  isnB(2) Flz, y)er it APar+sb
LHARA(R) F(z, y)ert P07 4 7iAnB(2) F(z, )=o)
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(5.6)

Ay CAx . -
+EX AR F (@, gy BX b (g, )]+ e = 0

in the above equation, the variation of fiel
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d amplitudes is very small in the

rdet derivatives in the z direction may be



After this operations the c.c. terms vanish because of the time averaging of the

e3¢ terms.
It may be tecalled that equation (3.13) represents & semiconductor laser having

no corrugation. The same equation is also valid for the present case if we consider

no corrugation. Thus
(V? + oot W) F(z, y)e?* =0 -~ (5.8)
Separating the z direction variation and the transvers plane variations we get

» & .
. [8 it 52 —— + HoEoTt w’]F(a:,y) = B F(z,y) (5.9)

In this equation, n may be replaced by 7 since 7 >> An.
Now, utilizing equation (5.9) ih the equation resulting after averaging of equa-

tion (5.7) mentioned above we get

G- o[ [ AP eyt et [ [l dIAC)

—~230p 8A (z)

Foeowe j j B\ f(z, y)|"dzdy) B(2) = (5.10)

+ [ua&‘.owge“” j [ aAn|F(z,y)|*dzdy

Next, dividing both sides by 230 and after rearranging we get

8A(2) _
8z
FIh e [ [ olFe sty 50 [ [ RF e PdediAG)
VT [ [ ranl G s
Thi. "E;‘;’;‘:‘:M L £X|F(z,y)dzdy) B(2) | (5.11)

After further rearrangement of this equation, we get

: 3A(z)
o |
16 _ﬁ oo
g “zjﬁ“; [ ] X\ F (=, )dedy ~ 35 bo [ [” o|F(z,u)Pdedy)AG)
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Lo 0‘-'-’2 0o foo . .
B f f AAn|F(z, y)| dzdy

2.7161;
b A o
Noeow € X 2
F dzdy] 5.12
e [ [ S F @ ldadyB - (5.12)
The first term of equation (5.12) may be simplified to define JAS as
-6y (B+Bs)B—Fr)
_ 8 — Bg) = —308 5.13
T 2207 ~:B —Bp) =—J (5.13)

Next, a quantity 3(g — o) may be defined as follows

060w2 00 p00 _
uzﬁu -[-oo [m Im(x)| F(z, )| dzdy

Wi [ % N2 _g—«
_ F dedy=9"% 5.14
281 ./_m.[_mal (z,y)l"dzdy 2 (5:14)

At this stage coupling for index corrugation will be denoted by &,, and defined
as [32]

= Fofo” [ / RAR|F(z,y)|*dzdy (5.15)
28n ‘
Similarly, coupling for gain corrugation will be denoted by g and defined as
' o Im(A
Kg = jrof " f f m X)|F(:r: y)|*dzdy (5.16)
_ 26p
Using equations (5.11)—(5.14) in equation (5.10) we get
dA 1 - .
diz) = [-988 + 5 (@ — @) A(z) — glkn + srge 7 ]eT ¥ B(2) (5.17)

In a similar manner, it is possible to obtain the equation for B(z) es

dB(z)
dz

= [3A08 - *12*(5 — a)|B(2) -+ jlkn + Jnge*’””]efﬁA(Z) (5.18)

From these two coupled wave equations the following wave equations may be

obtained |
LAG) {300 - 2g- ' + s+ mee™ ) s b mge VAR (519)
and,
diiﬁ") = [{3A6 — .%(gﬁ o))? -+ {kn + Jngewv,b}'{nn +orge™)B()  (5.20)
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The solutions of these equations are in the form of

A(z) = A" + Age™ (5.21)
B(z) = B,e™ + Bye™ (5.22)

From equations (5.19) and (5.20) it may be pointout that v is the complex

propagation constant which may be written as
2 1 — 2 —nh bl 2
v = [Ag - 5(9 — )}? + [rn + Jrge™ K0 + IRge ] (5.23)

The dispersion curves for a gain plus index corrugated DFB laser may be ob-
tained from this expression. By comparing equation (5.21) with equation (3.37)
it may be observed that, if the gain corrugation is absent then x, =0 then equa-

tion (5.21) reduces to (3.37).

5.3 Oscillation-condition of a ‘gain plus index’ corrugated
DFB laser taking the effect of reflection from an exter-
nal device surface

Let us first consider the model of the DFB laser shown in figure 5.1. We
now compare equation (5.19) with equation (3.38) and find that equation (5.19)
can be obtained from equation (3.38) if we replace «;, by x, + jre ¥ and &2 by
(Kot jre ) (r,+jre??). We also note that equations (5.21) and (5.22) are same as
equations (3.39) and (3.42). Bearing these in mind we can accept equation (3.73) as
the equation representing the oscillation condition for a ‘gain plus index’ corrugated
DFB laser of the geometry shown in figure 5.1. Thus following equation (3.73), we
can write the equation representing the oscillation condition for a ‘gain plus index'

corrigated DFB laser as
[—yrie” ¥4 cosh[yly] — {rie PP (—3AB + %(ﬁ — a)) = gre™® }-Sinh['rh]]
X[—yrae 0 coshlyl] — {rae PP —gAB + (7 — )] — e sinbla]
— [—ycoshrh] + {—gx rye P4 1 (A + 2 (5 — ) sinblyi]

X[~y cosh[yly] + {—gx ree™P070 + [—5A8 + %(ﬁ — o))} sinh[vyly]]
(5.24)
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where,

K=K, + jrge ¥ (5.25)

" Let us now consider the ‘gain plus index’ laser of figure 5.2 extending from z=0
to [. For this model we take ¢ = ¢, I, = I, I = 0 in the above equation.
The left facet has now moved to z = 0, so ri will remadin in the equation. With
these values the equation representing the oscillation condition of a ‘gain plus index’

corrugated DFB semicorductor laser becomes
wyr][~'yrge~jw”i cosh(yl) — {rge"jw"l[ijﬁ + %(_(7 — a)] — jre?} sinh(yl)]
— ey cosh(nl) + {—jrae P04 [GAB + 5(F — )]} sinh(1)](5.26)
After simplification thié equation becomes
y*rirae 0! cosh (i) +'7r1rge_j2ﬂ”l[~—jAﬁ + %(ﬁ - a)] sin.h(fy!) — jyrike!® sinh(yl)
= ~? cosh () + jyrrse - ginh(yl) — v[—FAB + %(g — )] sinh(vl)
| (5.27)
- After further simplification we get
(1 — ryre 7P0h)4/? closh(fyl) —y[—jAB+ %(ﬁ — a)](1 4 rir:e7 9 sinh(yl)
+jy[kre 03t 4 krie/*]sinh(yl) = 0(5.28)
For a ‘gain plus index’ cotrugated DFB semiconductor laser x in the above
equation is to be replaced by &, +jk,e~7¥. With this change equation (5.26) becofnes
(1 — rype ™22y cosh(yl) — [%(? — @) = JABY)1 + ryrae™ ) sinh(yl)
(ke Gr g€ )&+ (0 g )rae 0 ginh(vl) = 0 (5.29)

Due to reflection from the surface of another device entering into the laser cavity,

as shown in figure 5.3 r; is to be replaced by r in the above equation so that

rly = v/Ry + (1 — Ry)y/Ale™ 7 _ (5.30)
(5.31)

where,
\/}—22 =T2 (532)
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5.4 Summary

The generalized wave equations for a ‘gain plus index’ coupled DFB semicdn—
~ ductor laser have been deduced. Using this similarity between tliese wave equations
and the wave equation of chapter 3 the equation representing the oscillating condi-
tion of a ‘gain plué index’ corrugated DFB laser Lias been obtained for a laser cavity
extending from z = —I; to l;. This equation has been modified for a simplified
model of the DFB laser extending from z = 0 to [ assuming the reflection of r; at

the left facet and r; at the right facet and a power reflection coefficient of I' from

the external surface.
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CHAPTER 6

Niimerical soliitions of the general equation
representing oscillation in a DFB laser

6.1 Introduction

In this chapter, a compﬁter method is presented for obtaining the solutions of
the general complex equation representing the oscillation in a DFB semiconductor
laser. The computer programme can be used for' (i) pure index coupled (ii) for
pure gain coupled and (iii) for ‘gain plus index’ coupled DFB semiconductor laser.
Numerical solutions for various values of para.meters without external feedback are
presented in section 6.3. Considering external feedback solutions for critical feed- '

back are presented in section 6.4 and the effect of right facet reflection on critical

feedback are discussed in section 65

6.2 A computer method for solving tlie general equation
representing the oscillation

In chapter 3, an equation has been developed whichi represents the oscillation
condition of a pure index corrugated DFB semiconductor laser. In this section,
the effect of external feedback has not been considered. This equation has been
developed for a generalized DFB semiconductor laser model extending from z = —
to I, and having reflection coefficient r; at the left facet and r, at the right facet.
In chapter 4, the effect of external feedback is included in this equation. Besides
this, a simplified model of a pure index coupled DFB semiconductor laser extended
from z = 0 to [ having a reflection coefﬁci_'ent ry at the left facet and r; at the
right facet is considered in this chapter. In chapter 5, the presence of mixed type

of coilpling termed as ‘gain plus index’ coupling in a DFB semiconductor laser has
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been considered. It now appears that the equation for ‘gain plus index’ coupled
DFB semiconductor laser i.e., equation (5.24) can be treated as a general equation.
From this equation (equation 5.24) one can obtain the equatior (i) for pure index
coupled laser, (i) for pure gain coupled laser and (iii) for ‘gain plus index’ coupled
laser. For computation purpose it is necessary to use equation (5.25) and (5.30)
along with equation (5.24). |

It miay be noted that this equation is a complex one containing both real and
imaginary terms. After replacing ry of equation (5.24) by the expression of 5 of
equation (5.30) the resulting equation is still a complex equation. This equation
can be split into (i) an equation containing real terme and (ii) another equation
containing imaginary terms. In order to get total solutions we have to get solutions
of the real equation and also the solutions of the imaginary equation within a specific
range of both +ve and -ve AJ values. The two solutions will then be plotted on
the same graph. The intersections of the two curves will give us the final solutions.
- This is demonstrated in figure 6.1.

The solutions of the real equation and the imaginary equations are obtained by
iterative interval halving method of polynbmial solution. A computer program has
been developed for this purpose using Quick Basic in a personal computer. The
flowchart of the program is presented in figure 6.2. In this program, arra.ngeménts
have been made to obtain graphical plot of the solution while the computation
process goes on. This enables us to look into the plots while the computation
process is on. As a result it is possible to interrupt the computation and start
a new cycle if it is found that the input parameters are to be changed. Such a
process of computing and plotting simultaneously has been found to be essential
for this case. A listing of the computer programme is presented in Appendix A.
For obtainirig the solutions of the complex equation representing the oscillation
condition (equation 5.24) we provide input values for a number of parameters and
then specify the +ve and -ve ranges of Af values. At the same time it is necessary
to limit the +ve range of (g, — @) so that the computer does not waste time in
obtaining solutions beyond this range. The reason for doing so is that we can not
view the solutions beyond the above mentioned range because the plot window is

fixed by the programme.
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FOR Y=YMIN TO YNAX
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| oLogr=r
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~-FOR T=1 TO MM Y

CALL HALF.F
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-

Figure 6.2(a): Flowchart of the programme for computing and plotting.
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START

P=kP2-¥62-DB2+DG2/4
0=-DB.DG+2.KP.XB.COS{TH3}

o pr(p20)/2] | [CsdF 000 C=-072,
& 10, P4 0=0/2,8=0/2C
B=0/2 -5
L ,
, _
T e L set 172, SINA-{eo ~e-c- )/2, S.=SINH.COS(DLz), B2=COSH.SIN(DLs),
C,=COSH. COS(0La), Co=STNH.SIN(DLa),
By=l- RR,COS(THZ)- RiT{1-Rz)COS(TH2+2(BB+DRIL/NRY,
V= RyR-SIN(THZ)#R:L (1-Rz)SIN(TH2H2(BB+DBIL/NR)
UZEC, v::ﬂ, U3=C1, Y3=E2
ICALL PROBUCT
RR,=PROR, 11,=FR01 |
TTTTR7, V.06, UasIF RRACOSTTHE] Y Ryl (1-Re)CO8{ THZ#2(BB¥DR]L/AR},
V= RaRSSINITR2)-R.F (1-Re) SIN{TH2+2(BEHDBIL/NR)
U3=S;__. Va=8z .
[RR.=FROR, 11.=PROI]
. }
T TREOC(THE) Vo=KP PKBSTR (TS U= RLC0S{TRISTHE I+ T(1-R2)COS{THL+THZ+2(BB+DBIL/NR)

Yo=- RLSIN(THI+TH2)- T(1-R2)SIN{TH1+THZ+2{BB+DB)L/NR), Us=5,, Vs=52
+

CALL PRODUCT
RRz=PROR, [13=PROI :
v S
U,=-KGCOS(TH3}, V,=kP-KBSIN{TH3), U= R,COS(THL), V2= R.SIN(THL], Us251, v3=§31

ICALL PRDDUEII

RR.=FROR, 11.=PROI
FF=RR1'+RR2+RH3+RR4
§6=11,+112t11z+114

Figure 6.2(b): Flowchart of the subroutine FUNC.
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- ‘F'F(Eﬁ.ﬂ.!MzU;'U;VszUz'U1V3‘U3V1Vz
FRDI=UxUzV3+U1U3U2+U2U3V1~V1V2V3

(RETURN )

Figure 6.2(c): Flowchart of the subroutine PRODUCT.
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. ¢ ,
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Figure 6.2(d): Flowchait of the subroutine HALF.F.
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o)
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L -
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B2.L2)XHAY, DBZ.Lo4XNMI
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| T

CALL FUNC

!

1. 62
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Figure 6.2(e): Flowchart of the subroutine HALF.G.
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6.3 Numerical solutions for various combinations of cou-
pling coefficients to observe the effect of grating phase

angle

.For obtaining the solutioris of a DFB semiconductor laser, various combinations
of 'the values of the parameters Knl, kg $1,.11, T2, O, ﬁgt, nI are used. Actually, the
programme has been prepared for providing inputs for #,, x,, R1 =1 ? Ry =14 2,
¢, in radians, 28p! in even multiples of 7 i.e., 2pm {(where, p is an integer). In this
program, the value of { is taken as 0.0005 meter and the values of I, is cliosen as
0.1 meter. |

In order to obtain solutions of a pure index coupled DFB laser it is necessary
to make £y/=0 and for p‘Life gain coupling it is necessary to make x,l=0. For a
‘gain plus index’ coupling both &, and #, have finite values i.e., xnl # 0, kel # 0.
Thus we consider three cases of coupling i.e., (i) pure index coupled DFB laser, (ii)
pure gain coupled DFB laser and (iii) ‘gain plus index’ coupled DFB laser. In this

section we shall not consider the effect of external feedback.

i) Pure index coupled DFB semiconductor laser without external feedback:

For this case, we set x,/=0 and take four values of k, i.e., KI=1, 2, 3, 4. For
each of these cases, we take Ry =1, R, =0, { = 0.0005 meter, 265l =0, ¢ = On
and pI' = 0. This means that reflection from exter_nal cavity i.e., external feedback
is absent.

The solutioris of the oscillation condition are then obtained using the above
mentioned computer programme by varying the grating phase shift angle ¢;. The
threshold gain values obtained from the solutions are then plotted against grating
phase angle valies. Thus, four curves are obtained as shown in figute 6.3. From
this figure, it may be observed that for «,! = @, the minimum threshold gain occurs
at ¢; = 0{'?;57r radiaits and the maximum value océurs at ¢, = 1.57 radians. The
difference between the minimum and maximum gain is around 0.3 which is not
large. In the same figure (figure 6.3) it is found that for k.l = 2 this difference is

around 1.5 which is significant. For low vaiues of threshold gain within the range
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Figure 6.3: Gain vs. grating phase angle for o pure index coupled (kal # 0, ki =

0) DFB semiconductor laser for the values of index coupling coefficient «,l=1, 2, 3
and 4. Here By =1, K, =0 and 5" = 0.
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of ¢; = 0.27 to ¢, = 0.67 x,l=4, 3 and 2 are good choices.

ii) Pure gain coupled DFB semiconductor laser without external feedback:

For this case, we set k,{ = 0 and take four values of Kol i.e., kol=1, 2, 3, 4. For
each of these cases we take B, = i, R, = 0 and 7' = 0. This means that external
cavity reflection i.e., external feedback is absent. '

The solutions of the oscillation condition are then obtained using the generalized
computer progra.mme by varying the phase shift angle ¢,. The threshold gain values
obtained from the solutions are then plotted against grating phase angle values.
Here also, four curves are obtained as shown in figure 6.4. It is very difficult to
say which of these four coupling is the best. However, it may be observe that the
curve for x,{ = 3 has high threshold gain values for the whole range of vales of ¢,
between O to 2. It appears that for ¢, = O to 0.657 the curve for kol = 2 shows
lowest threshoid gain value. Alsd for ¢; =0.257 to 0.657 the curve for Kol = 4 shows
low value of threshold gain but these values are higher than those of the curve for

Kol = 2.

ii) ‘Gain plus index’ coupled DFB semiconductor laser without external feedback:

For a ‘gain plus index’ coupled DFB semiconductor laser, at first, we consider
knl = 1 and take four values of Ky i.e., kd=1, 2, 3, 4. For each of these four
combinations we take R; = 1, B, = 0 and " = 0. Thus, here also we do not take
into account of the effect of external feedback.

As before, the solutions of the oscillation conditjons are obtained using the
generalized computer programme by varying the grating phase shift angle ¢,. For
each case the threshold gain values are plotted against grating phése angle values.
The curves obtained in this way are shown in figure 6.5. The curves indicate that
the combination of x,! = 1 and kgl = 3 provides minimum threshold gain values
over the range of ¢, = 0.17 to 2. |

Next, we assume x,l = 1 and take four values of , i.e., Kl =1, 2, 3 and 4. For

these cases the other parameter values are chosen as before and the effect of external
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feedback is neglected. Solutions of the oscillation conditions are then obtained for
~ the four cases. The resulting four curves are shown in figure 6.6. From these curves
it may be observed that the average value of the threskiold gain over the range of

$1 = Ox to 27 is lowest for k.l =4 and k.l =1 at ¢, = Om.

6.4 Nuinerical solutions considering external feedback

It is now considered that external feedback is present. Due to the presence of
external feedback, external cavity modes will appear in addition to the main lasing
“mode. To demonstrate this let us take a particular example of pure index coupled

DFB laser having knl=3, =0, Ri=1, Ry =0, ¢ = 0.757, 28p! = On and ¢ = O~.
For this case three different curves are plotted in figure 6.7 for three different values
of feedback ratio (T'sss). The first one is plotted for I'psy = 0.0398. In this curve
we found that the plots of the real and imagjnary sohitions cross each other at one
point i.e., the laser has only onel mode, the main mode (figure 6.7(a)). The next
one is plotted for Tery = 0.0603. In this plot we find that the plots of real and
imaginary solutions cross each other at 6ne point and they touch at a second point
(figure 6.7(b)). The touching point indicates the appearance of a second lasing
mode in addition to the main lasing mode. This second lasing mode is the external
cavity mode. Since this mode appears when the feedback ratio has been increased
from 0.0398 to 0.0603 so I'syy = 0.0603 is the critical feedback ratio (T.). Next, we
increase the value of Tppy to Tesy == 0.1 which is grater than the critical feedback
ratio T',. Plots of the solutions for this case is shown in figure 6.7(c). In this
plot we find that the touching point in the previous plot now appears as croséing
point i.e., thé plots of the real and imaginary solutions intersect each other at two
“places in addition to the intersection corresponding to the main mode. The two
intersections appeared as a result of increésing the feedback ratio will correspond
to two external cavity modes. The mode with the lowest relative gain (0.03) is the
main mode {p — mode) [30][33]{34], the next mode with next higher gain (0.04) is
the external cavity mode (m — mode) [30][33][34] and the mode with highest gain is
the second external cavity mode (m' — mode) [33][34]. Following this procedure we
obtain the critical feedback ratios, the values of ABpl at which the external cavity
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modes appear and also the relative valies of gains for main mode plus the external
| cavity modes for different combinations of parameter values.

Similar to the examples considered in the last section, here also three cases i.e.,

(i) pure index coupling with external feedback, (ii) pure gain coupling with external

feedback and (ili) ‘gain plus index coupled’ with external feedback are considered.

i) Pure index coupled DFB semiconductor laser with external feedback:

Four values of pure index coupling are taken as example and éomputations are
performed for different values of grating phase shift angle #;. The values of index
coupling are wnd =1, ﬁ, 3 and 4 (with kgl = 0). For these cases the remaining
parameter values are Ry = 1, R; = 0, | = 0.0005 meter, and 20pl = O, qT" = 0
(i.e., no external reflection). The obtained threshold gain values for each of these
cases are plotted égainsb ¢1 and the plots are shown in figure 6.3. From these plots
we find that the lowest gain occurs for the laser with index coupling coefficient

Knl=3 at ¢ = 0.75m.
| With this finding (i.e., taking ¢; = 0.757 and «,! = 3) we continue compiitations
to find the external cavity modes by considering the external reflection and assuming
l;=0.1 meter. To do so, the effective feedback coefficient (#I') is increased gradually
from 0. For this case, the values of relative gain are plotted against feedback ratio.
These plots are shown in figure 6.8. From this figure we see that the critical feedback
ratio for this type of laser is 0.60 i.e., sy = 0.60 since, within the range of nI'=0
to 0.60 external cavity modes do not exist. The mode with the lowest relative gain
is the main mode (p — mode) and the external cavity mode with the lower relative
gain is the m — mode and the higher relative gain 1s for m’ — mode. From the plot
it is found that the main mode has nearly constant gain for the range of feedback
ratio values of 0.045 to 0.2. However the variation of gain at the begining is also not
significantly large. After the critical feedback ratio value the gain for the m — mode

decreases while for the m’ — mode increaﬁes with the feedBa.ck ratio.

For the same parameter values of k,, &,, ¢1, 20pl, ¥ the deviation from the
Bragg frequency (i.e., AfBpl) is plotted against feedback ratio. This plot is shown in
figure 6.9. In this plot it is also found that the frequency of the main mode is nearly
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constant over the considered values of nI" except for a very small range of values at
the begining. Figure 6.9 shows that one of the external cavity mode (m — mode)
has a values of of ABpl. Figure 6.9 shows that the (m’ -- mode) has a lower values

.Of Aﬂg-’. .

ii) Pure gain coupled DFB semiconductor laser with external feedback:

For pure gain coupled DFB semiconducter laser also four values of gain coupling
are taken as example. These values are x =1, 2, 3 and 4 (with k[ = 0). Here
also, the remaining parameter values are choosen to be By = 1, Ry =0, [ =
0.0005 meter, 285l = Om,nI’ = 0 (i.e., no external feedback) as in the pure index
coupling examples. The obtained threshold gain values for each of these cases are
plotted against ¢, in figure 6.4. From these plots, we find that the lowest threshold
gain occurs for the laser, with xnl =0, kgl = 2 at grating phase shift of ¢; =~ 0.07.
To find the critical feedback ratic and external cavity modes for this particular
_ type of laser, taking x.! =0, kol =2, ¢ - 0.0m, | = 0.0005 meter, [2¢=0.1 imeter,
 28pl =0m, ¢ =0m, Ry =1, R; = 0 the oscillation condition is solved for different

" values of feedback ratio. The resulting curves are shown in figure 6.10 and 6.11. In
figure 6.10, the relative gain values are plotted against feedback ratio (I'e 7) values.
From the plots we find that the external cavity modes appear after the value of
I'es; = .0023. Therefore, the critical feedback ratio for the present combination
is 0.0023. The main mode (p — mode) has the lowest relative gain. The external
cavity mode with the _lower relative gain is m — mode and the mode with higher
gain is m’' — mode. Figure 6.11 shows the plots of the deviation from the Bragg
frequency (i.e., ABpl). against ey, From this figure it may be obtained that the
critical feedback ratio is 0.002 (i.e., ', = 0.002). The external cavity mode with
lower relative gain (m — mode) hias higher values of AfBpl and the mode with higher

relative gain (m’ — mode) has lower values of Afpl.

iii) ‘Gain plus index coupled DFB semiconducter laser with external feedback:

For ‘gain plus index’ coupled DFB laser at first we take four combinations of

index and gain coupling values. The values are (i) xnl = 1, Kyl = 1, (ii) kal =
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1, rol =2, (ili) Kal = 1, Kyl =3 and (iv) kal = 1, Kyl = 4. For these cases also, we
take By =1, Rz =0, = 0.00Qjﬁ m, 28al = 0z, 5T = 0 (i.e., no external reflection).
The obtained threshold gain values for each of these cases are plotted against ¢,
and the.plots are shown in figure 6.5. From figire 6.5 we observe that the lJowest
gain appears for kI = 1, k.0 = 3 of coupling at ¢; = 0.25x.

We now take k[ = 1, k0 = 3 casé with ¢, = 0.257 and solve the oscillation
condition for different values of effective feedback ratio nI' assuming le¢=0.1 meter.
The plots are preserited in figure 6.12. As can be seen from figure 6.12, due to
the presence of externa] feedback, external cavity modes (m — mode and m’ —
mode) appear in addition to the main mode (p-mode) above critical feedback value.
From these curves it may be observed that external cavity modes appear when the
feedback ratio exceeds 0. 010 Therefore, this value is the critical feedback ratio for
the above mentioned parameter values of a DFB semiconductor laser. For the main
mode the value of relative gain falls by a small amount of 0.§5 over the range of
feedback ratio of 0 to 0.025. This falls is relatively faster at the beginning of this
range. '

For the same parameter values curves of Afpl against feedback ratio are also
plotted in figure 6.13. Here also, the appearance of exfernal cavity modes can be
seen beyond a valie of critical feedback ratio of 0. OO‘fE ‘It wrdy be observed that
for the main mode the value of Afpl remains constant throughout the range of

feedback ratio of 0 to 0.025.

6.5 Effect of reflection at the right facet on the performance
of a DFB semicondiictor laser |

In this section, we will vary the power reflection coefficient R; at the right
facet (transmitting facet) of a DFB semiconductor laser and obtain the solutions
of the oscillation cordition to observe the effect of R, on the performance of such
a laser. The solutions will be obtained only for critical values of feedback ratio
(i.e., ). Since a highly polished GaAs semicondictor structure has a reflection
coefficient as high as 0.3 [38], we will vary the reflection coefficient from zero to 0.3.

We shall study the effects of variation of R; on three types of DFB lasers e.g., (i)
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pure index coupled DFB laser, (ii) pure gain coupled DFB laser and (iii) ‘gain plus
index’ coupled DFB laser.

i) Pure index coupled DFB semiconductor laser with external feedback:

in the previous section the value of critical feedback is obtained from computing
solutions (for a particular set of parameters values) for a pure index coupled DFB
laser producing singie mode oscillation at the_lowest threshold gain with R;=0.
Following the same procedure we obtain the values.of critical feeback ratio for
values of M, within the range of R; = 0 to Ry = 0.3 keeping other parameters
unchanged. Using these results the plots of critical feedback ratio T, against right
facet reflection coefficient R, of figure 6.14 is obtained. For this plot the values of
other parameters are K, = 3, Kl = 0, ¢ = 0.75m, 2850 = Om, | = 0.0005 meter,
leze=0.1 meter, i = Ox, B = 1. From this figiire we find that this type of laser has
a stable operation for values of R; within the range from 0.03 to 0.1 with a slight

variation of feedback ratio, after which the feedback ratio has a sharp change.

From figure 6.3 we choose another DFB laser having parameters as Kol =
2, n:gl — 0 and Ry, = 0. For this case figure 6.3 shows a wide gap between its
minimum and maximum threshold gain (without external reflection). This case
shows that for this laser minimum gain occiirs at ¢; = 0.57. Now, taking k.l = 2,
kol = 0, ¢ = 057, 285l = Om, L = 0.0005m, I = 0.1m, ¢ = Om, By = 1 the
critical feedback ratio is found for various values of reflection coefficient f,;. The
plot of T', against R, for this case is shown in figure 6.15. From this plot we see that
the feedback ratio exponentially increases against the reflection coefficient. In this
case, for the choosen range of R, (i.e., 0 to 0.3) the values of T are smaller than

the example of figure 6.14.

if) Pure gain coupled DFB semiconductor laser with external feedback:

From figure 6.4, it is seen that the pure gain coupled DFB semiconductor laser
with the gain coupling coefficient ugl — 2 has both the lowest threshold gain and the

highest gap between itg minimum and maximum threshold gain. So only one type
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of pure gain coupled DFB jaser will be taken for observinglt'he effect of variation
of Ry on .. Now, taking knl = 0, #gl = 2, [ = 0.0005m, [ = 0.1m, ¢; = 0.0m,
2fpl = Om, p =0m, Ry =1 the critical feedback .ratio is found for different values
of reflection coefficient R;. The plot is shown in figure 6.16. From this plot we find
that the critical feedback ratio increases at a very low rate against ;. Comparing
this case with the two cases of figure 6.14 and 6.15 we observe that the values of I’

within the choosen range of Ry for the present case is miich lower than the other

two cases of pure index coupling.

iii) ‘Gain plus index’ coupled DFB semiconductor lager with external feedback:

For complex coupling i.e., ‘gain plus index-’ coupled DFB semiconductor laser a
plot of critical feedback ratio against reflection coefficient is presented in figure 6.17
for the combinations of parameters of knl = 1, Kol = 3, [ = 0.0005m, lgz = 0.1m,
$1 = 0257, 20pl = O, ¢ = Omr, Ry = 1. ¢y = 0.257 value is choqsen because for
this value minimum threshold gain is obtained (figure 6.5). In this case a dip in I
is observed at R;=0.5. However, the I, value varies from 1072 to 1.5X 10-? within
the range of R;.

Similarly, another graph is plotted for ‘gain plus index' coupled DFB laser with
the following parameters xnl = 4, 5 = 1, I = 0.0005m, ly: = 0.1m, ¢; = 0.0,
- 928pl = Om, 1 = Om, Ry = 1. The choice of ¢ is made on the same basis of minimum
threshold gain (figure 6.6). The plot is shown in figure 6.18.. This graph shows a
large value of . at R;=0.03. The value of T, falls at a fast rate to a low value at
0.04 and after which I, values swing within a small range for the range of values of
reflection coefficient from .04 to .3.

Comparing figure 6.5 and 6.6 we find that for ‘gain plus index’ coupled with
coupling coefficients x,l=1, and k=4 has the largest gap between its minimum
and maximum threshold gain without feedback. The critical feedback ratio against
power reflection coefficient for this case with k,l=1, ngi:fi, ¢y = 1,757, | = ,0,005m,
I, = 0.1m, 28pl = Om, ¢ = Or is presented in figure 6.19. Here also, the value
of ¢, is choosen on the basis of minimum threshojd gain (figure 6.5). The plot of

figure 6.19 shows that a sudden change of I'. occurs for R,=0.8 to 0.9 and a smooth
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change occurs within R,=0.1 to 0.3. This type of laser shows the lowest critical

feedback ratio among the types of DFB semiconductor laser considered.

6.6 Suminary

Numerical sohitions of the oscillation cordition for pure index, pure gain and
‘gain plus index’ coupled DFB sefniconductor laser without external feedback have
been obtained. The various results have been analyzed. Also, nuimerical solutions
of the oscillation condition for pure index, pure gain and ‘gain plus index’ coupled
DFB semiconductor laser with external feedback have been obtained for various
combinations of parameters. The results have been presented in graphical form.
The obtained results have been aﬁalyzed. Critical feedback ratio values have been
obtained for the above mentioned cases and plots of critical feedback ratio against

power reflection coefficient at the right facet of a DFB semiconductor laser have

. been presented.
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CHAPTER 7

Discussions and suggestions

7.1 Discussions

Using Maxwell’s equations for Electric and Magnetic fields, the equations rep-
resenting the oscillation condition for a DFB semiconductor laser have been derived
following previous publications [14]{17][18]. At first, Equations have been derived
for pure index coupled DFB semiconductor laser. Then, equations for ‘gain plus
index’ coupled DFB semiconductor laser have been derived by following the same
technique used for the above mentioned index coupled case. One of the purpose
of this study is to observe the behaviour of a D@ laser under situations when a
portion of laser output, after getting reflected from an external surface, enters into
the laser. Such a situation has been termed as external reflection. The equations
representing the oscillation condition for the ‘gain plus index’ coupled DFB semicon-
ductor laser have been derived after taking into account of the external reflection.
For taking into account of the effect of external feedback the arrangement of ex-
“ternal feedback and the method of computation used in [32][33][34][39] have been
accepted. Using this method the equations representing the oscillation condition
have been mo&iﬁed to take into account of the external feedback. The equations
for ‘gain plus index’ coupled DFB semiconductor laser with external reflection have
been taken as general equations since by putting coupling coefficient kg/=0 we can
get the equations for pure index coupled case, and by putting k,l=0 we can get
the equations for pure gain coupled case from the same generalized equations. If
external feedback does not exist then we have to set exterral reflection coefficient
I'=0. '

The equation representing the oscillation condition contains real as well as imag-

inary terms. As a result it was necessary to split the complex equation into a real
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equation and an imaginary equation. Solutions for real and imaginary equation-
s were obtained separately by numerical computations. The intersections of the
curves containing real solutions and the curves containing imaginary solutions were
taken as the. final solutions of the coinplex equation representing the oscillation
condition. Computer programmes have beer developed for the generalized ‘gain
plus inde:.c’ coupled case and numerical solutions were obtained for different set of
parameters. During the computation process we have found that the plots of re-
al solutions and the plots of imagirary solutions sometimes tend to be a touching
point rather than a crossig point (figure 6.1). Often, after the magnification of
that region, we find that they do not mieet at all although the meeting point is also
a solution (because both the real and imaginary parts are zero).

Solutions of three types (i.e., (i) pure index coupled, (ii) pure gain coupled
and (iii) ‘gain plus index’ coupled) of DFB semiconductor laser have been obtained
using the generalized equations representing the oscillating condition. For each case
numerical computations have been performed at first without taking into account of
the external feedback and next taking the effect of external feedback into account.
The minimum threshold gain for various set of parameters for the above mentioned
three types of laser have been obtained with the help of the computer programine
mentioned above. The value of minimum threshold gain is important because it
indicates which laser will oscillate at the lowest value of injection current.

Kogelnik and Shank [17] showed theoretically that the gain coupled DFB laser
would work better than the index coupled DFB laser because the index coupled
laser has no oscillation at Bragg frequency but the pure gain coupled laser oscillate
at Bragg frequency [17). This result has been confirmed by Eli Kapon et. al. in
[37]. We have also observed the same results during the computation (figure 6.11).

. In the operation of a DFB laser in presence of external feedback the critical feed-
back ratio indicates the highest feedback ratio after which single mode operation
is not possible. Therefore, for a DFB laser operation in presence of external feed-
back, it is necessary to know the value of critical feedback ratio in addition to the
jowest threshold gain. A DFB semiconductor laser having a high critical feedback
ratio wiil be very much useful for applications where external feedback exists. It is

found that critical feedback ratio changes with the variation of R;. The sensitivity
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of this variation is different for different set of parameters. For observation of this
sensitivity we have taken a range of values of the right (front) end facet reflection
coefficient R; =0.03 to 0.3. A number of combinations of coupling coefficients have
been taken for computation of threshold gains. For each set of coupling coefficients
the sensitivity due to variation of corrugation phase shift angle ¢, have been com-
puted. From each of these obtained curves the value of ¢; at which minimum value
of threshold gain occurs has been obtained. With this value of ¢ critical feedback
ratio I'. has been computed. The sensitivities of I'. due to the variation of the front
(right) end facet reflection are then computed and plotted.

Our computations show that for .pure index coupled DFB semiconductor laser
having the coupling coefficient k=3, Ry = 1, R = 0, 205l = 0, ¥ = 0, [ =
0.0005m and the lowest value of threshold gain obtained at a value of corrugation
phase shift angle of ¢; = 0.75x (figure 6.3). For this laser the effect of external
feedback was taken into consideration and it found that the oscillation frequency
has a deviation from the Bragg frequency by about 2.52 radian at lower value of '
feedback ratio and decreases with the higher of value feedback ratio (figure 6.9)
and it has the highest value of deviation from the Bragg frequency amiong the three
examples considered here. Computations also show that for pure gain coupled DFB
semiconductor laser with kol = 2, By = 1, H; =0, 28pl = 0, 1 = 0 the value of
grating phase shift angle ¢; = 0 produces lowest possibl.e gain (figure 6.4). Here, for
this case the deviation from the Bragg frequency at lower value of feedback ratio is
very small around 0.008 and increases to 0.013 for a higher value of feedback ratio
(figure 6.11). For a ‘gain plus iridex’ coupled DFB semiconductor laser having the
parameters as k,l = 1, gl == 3, Ri =1, Ry, =0, 26pl = 0, ¥p = 0 the lowest
threshold gain is obtained at a grating phase shift angle of ¢; = 0.257 (figure 6.5).
This ‘gain plus index' coupled laser has a deviation from the Bragg frequancy by
about .408 radian. It appears from these examples that the pure gain coupled DFB
laser will have minimum deviation between the oscillation frequency and the Bragg
frequency. This deviation has significant value for pure index and ‘gain plus index’
coupled DFB lasers. For some combinations of parameters the deviation may be
higher in index coupled case and for another combination (assumning same value of

k,l for both index coupled and ‘gain plus index’ coupled cases) this deviation may
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be higher in ‘gain plus iridex’ coupled lasers.

Among the three types of laser considered here the pure index coupled DFB
laser shows the highest critical feedback ratio over the selected variation range of
R,=0.03 to 0.3, but a highest critical feedback ratio Is ot the only criterion for the
selection of a laser. The range of variation of critical feedback ratio with the change
in reflection coefficient of the transmitting (front) end facet of the laser is also a
significant factor. It is desirable that due to the variation of transmitting end facet
reflection the changes in critical feedback ratio should be very small. Therefote,
a DFB laser having high values of cr1t1cal feedback ratio and very small changes
in critical feedback values should be a good choice. Froin this view point, for pure
index coupled DFB laser having knl = 3, k{ =0, ¢, = 0.757, 20p{=10, ¢ =0, [ =
0.0005m, e = 0.177 has a minimum value of I'. = 0.1 over the range of R,=0.03 to
0.3 and appears to give good resuits (figure 6.14). Following the above guide line,
the pure gain coupled DFB laser having «,! _ 2, kel =0, =0, 205l =0, ¢ =
0, { =0.0005m, . — 0.17 has a minimum value of T', = 0.008 over the range of
R,=0.03 to 0.3 and appears to give good results (figure 6.16). On the same basis

“the ‘gain plus index’ coupled laser having xul =4, &l =1, ¢ =0, 20pl =0, ¢ =
0, { = 0.0005m, le == 0.1m has a minimum value of I', = 0.002 over the range of
R2=0.03 to 0.3 and appears to give good performance over the Trange of Hp==0.04
to 0.3. At this stage it seems that further computations need to be done with
the help of the same computer programme and by varying the coupling coefficients
as well as the remaining parameters to search for better set of parameters. Durlng
computations it has been observed that using the developed computer program on a
486 microcomputer approximately 15 sec is required (2min by a 286 microcomputer)
for obtaining the complete plot including the computations for real and imaginary

parts of the equation.

7.2 Suggestions for future work

In the present work an analytical expression for critical feedback could not be
presented. An analytical expression for critical feedback ratio will be very useful for

studying the effects of various parameters e.g., Kol, ®Kal, @1, 71, T2, (T—0)etc. on
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the critical feedback ratio. With the help of sich an expression it is expected that
computation time can be reduced significantly. Therefore, deducing an analytical
expression for critical feedback ration can be done in future. 7

We have stidied the ‘gain pius index’ coupled DFB semiconductor laser having.-
the coupling coefficient (i) knl=1, k=1, 2, 3, 4 and (ii) k=1, kal=1, 2, 3, 4.
The other combinations of coupling coefficients may be stidied for a better DFB
laser. Instead of selecting individually &, and &, for searching 4 good and useful
combination it might be worthwhile treating &, + jx, as |x|e”® and varying both
[k| and 6. The obtained results may be presented in some other forms for easy
interpretation and analysis.

In the present work sinusoidal variation has beer assumed for both index a.ndl
gain corrugations. It may be worthwhile studying a sawtooth wave type of periodic
variation of corrugations and square wave type of periodic variation of corruga-
tions. The effect of having sinusoidal variation for index corrugation and square
wave variation for gain corrugation, and square wave variation for index corruga-
tion and sinusoidal variation for gain corrygation may be studied. Similarlgg other
combinations may also be studied. 7

It is expected that by using a different algorithm for the complete solutioﬁs of
real and imaginary parts of the generalized equation representing the oscillation
condition of a DFB semiconductor laser computation time could be minimized.
Thus some work on the development of a new computer programme for this purpose

needs to be done.
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APPENDIX A
List of the compiiter programine

1110 SCREEN 12 "CONSOLE,,O0,1

1120 " ———mm———mm e mm e CONSTANTS -~ -~ ——mm—m —— = —

1130 "COLF = 5: COLG = 1

1140 1.2 = .{005

1150 LMD = .0000008 / 2

11680 BB = 3.141592654# / LMD

1170 L = .1

1180 NR = 3 :

1190 DIM DBINI(Z21)

1200 "*START

1210 ‘LOCATE 1, 2: INPUT "CLS(Y/N)"; A%

1220 IF A$ = "Y" OR A$ = "y" THEN CLS 2

1230 "COLOR 7

1240 "If you would like to see dispersion relations.

1250 * remove a single-quotation mark in the next line!

1260 "GOSUB 4390: END *DISPERSION

1270 LOCATE 1, 2: INPUT "Keep parameters (v/n)"; B$

1280 IF B$ = "Y" OR B$ = "y" THEN GOTO 1380 "*kSTARTZ

1290 LOCATE 2, 1: INPUT "k nL,k gL"; KNL, KGL: KP = EBL / LZ:

. KRG = KGL / L2

1300 INPUT "R1,R2"; R1, RZ _

1310 INPUT "¢1 (AT LEFT FACET) Xm "; xxx: TH1 = xxx *
3.141592654#

1320 INPUT "2@ BL (AT RIGHT FACET) Xm "; xxx: THZ = xxx *
3.141592654#

1330 °~ ¢ ;Phase difference between index and gain

1340 INPUT "¢ Xr"; xxx: TH3 = xxx ¥ 3.1415926544%

1350 "*START?Z

13680 INPUT "XMIN,XMAX,YMIN,YMAX"; XMIN, XMAX, YMIN, YMAX

1370 INPUT "T eff=10"X X"; GAMEFF: GAM = 10 ~ GAMEFF

1380 CLS 1

1390 LOCATE 2, 7: PRINT YMAX: LOCATE 26, 7: PRINT YHMIN

1400 LOCATE 27, 12: PRINT XMIN: LOCATE 27, 76: PRINT ¥MAX

1410 LOCATE 16, 6: PRINT "(g-a)": LOCATE 27, 40: FRINT "& B L"

1420 LOCATE 28, 6: PRINT "Ri="; R1; "R2="; RZ; "k nL="; KP * L2; "

' 7 : KG * LZ;

1430 PRINT USING "& &"; " ¢1="; :

1440 PRINT USING "#.##"; TH1 / 3.141592654#;

1450 PRINT "m ";

1460 PRINT USING "& R"; "2B BL=";

1470 PRINT USING "#.##"; THZ / 3.141592654%;

1480 PRINT "n ";

1490 LOCATE 29, 25: PRINT USING "& &"; © ¢=";

1500 PRINT USING “#.##"; TH3 / 3.141592654#;

1510 PRINT "m  "; .



1520 PRINI USING "& &"; "I eff=";

1530 PRINT USING "##f . ##~"""" ; GAM;

1540 PRINT "(=10""; GAMEFF; ")"

1550. ©  (XMIN, -YMAX)

1560 -

1570 °

1580 ~ ( g-a)

1590 (DG)

1600 °

1610 -

1620 -~ (XMAX, -YMIN)

1630 -~ 5B L

640 ° _ - (bB)

1650 °

1660 °

1670 WINDOW (GMIN, YMAX)-(XMAX, YMIN): VIEW (91, 1)-(618,
400), , 7

1680 FOR J = XMIN TO XMAX STEP (XMAX — XMIN) / 10

1690 LINE (J, YMIN)-(J, YMAX), , , &HB88B

1700 NEXT J '

1710 FOR J = YMIN TO YMAX STEP (YMAX - YMIN) / 10

1720 LINE (ZMIN, J)-(XMAX, J), , , &HB8888

1730 NEXT J

1740 LINE (XMIN, 0)-(XMAX, 0)

1750 LINE (0, YMIN)-(O, YMAX)

1760 LINE (XMIN, YMAX)-(XMAX, YMIN), , B

1770 "CCOL = 2: CCOLZ = 1

1780 /////////////////////////////////////////////

1790 ‘Find the solution of G(DB,DG)=0

1800 “/////7 //////////////////////////////////////

1810 FOR Y = YMIN TO YMAX QTEP (YMAX - YMIN) / 50

1820 DG =Y / L2 _

1830 NUM = O

1840 FOR X = XHIN TO XMAX STEP (XMAX - XMIN) / 50
1850 DB = X / L2
1860 GOSUB 2440 "*FUNC
1870 IF X = XMIN THEH GOTO 19407+ZZ1
1880 IF SGN(GG) = SGN{OLDGG) THEN GOTO 19407*ZZ1
1820 FOR X=XMIN TO XMAX STEP (XMAX-XMIN)/50
1900 IF DR=DBINI(I) THEN GOTO *ZZ1
1910 "NEXT
1920 " NUM = NUM + 1
1930 DBINI(NUM) = DB
1940 KZZ1
1950 OLDGG = GG
1960 NEXT X
1970 ’
1980 FOR i = 1 TO NUH
. 1990 DB1 = DBINI(i)
2000 GOSUB 3850 "*HALF.G
2010 NEXT
2020 NEXT Y



2030
2040
2050
2080
2070

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210

/////////////////////////////////////////
‘Find the solution of F{DB,DG)

gl
FOR Y = YMIN TO YMAX STEP (YMAX - YMIN) / 50

DG =Y / L2

2220 7

2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340

2350
2360
2370

NUM = 0
FOR ¥ = XMIN TO XMAX STEP (XMAX - XHIN) / 50
DB = X / L2
(OSUB 2440 “¥FUNC
IF ¥ = ¥MIN THEN GOTO 218907"%Z1
TF SGN(FF) = SGN(OLDFF) THEN GOTO 2180*Z1
‘FOR X=XMIN TO XMAX STEP (XMAX-XMIN)/50
’ IF DB=DBINI(I» THEN GOTQ *ZZ1
"NEXT :
HUM = NUM + 1
DBINT(NUM) = LB
“*Z1
QLDFF =
NEXT X
FOR i = 1 TO NUM
- DB1 =" DBINI(i)
GOSUR 3320 'XHALF.F
NEXT
NEXT Y
“RAXTS
JJJ = JJJ + 1: BEEP: BEEP

LOCATE 30, 1: INPUT "(x/v)>"; X, Y

IF ¥ = -1 THEN GOTO 1200 *START

"COLOR (JJJ MOD 6) + 1

LOCATE 30, 15: PRINT "("; XMIN + X % (XMAX - XMIN) / 10;
PRINT YMIN + Y * (YMAX - YMIN) / 10; ")"
GOTO 2290 "XAXI1S

END

2380 °

2390
2400
2410

g T L s S R R a2
‘# SUB ROUTINES
HHHHHHH S R R

2420 -

2430

2440 -

2450
2460

2470

'///éﬁg///////////////////////////////

*FUNC

WiV I iviss
‘Caleculation of the function F(DB,DG),G(DB,DG)

2480 ‘T2z

2490 °

2500
2510

= KP *KP - KG ¥ KG - DB * DB + DG * DG / 4
Q = -DG ¥ DB + 2 * RP * KG * COS(TH3)

. 2520 7



2530 IF P = 0 THEN GOTO 2600 +T1

2540 IFQ =0ANDP < OTHEN C = 0: D = SQR(-P): GOTO 2840 *TZ

2950 IFQ =0 AND P > 0 THER C = S@R(P)Y: D = 0: GOTO 2640 "%TZ2

2560 C = SQR(ABS(P + SQR(P * P + Q@ * R)) / 2)

2570 IF C = 0 AND P < O THEN D = SQR(-P): GOTO 2640 "XT2

2530 D=@a/2/C

2590 GOTO 2640 "*T2

2600 "*T2 :

26810 IFQ =0 THEN C = 0: D = O: GOTO 2640 °%T2

2620 IFQ < O THEN C = S@R(-Q / 2): D =@ / 2/ C: GOTO 2640 T2

2630 IF Q@ > OTHEN C = SQR(Q / 2): D =@ / 2 / C: GOTO 2840°%T2

2640 "*T2

2650 COSH = (EXP(-C * L2) + EXP(C * L2}) / 2

2660 SINH = (EXP(C * L2) - EXP(-C ¥ L2)) / 2

2870 °

2680 “sinh

2890 -

2700 S1 = SINH * COS(D * LZ)

2710 52 = COSH * SIN{(D * LZ)

272( mmmm—m—m e —— e S

2730 cosh(F L2 )=851+352

274(] e T

2750 C1 = COSH * COS(D.* LZ)

2760 C2 = SINH * SIN(D * LZ)

A1 -

2780 Ul = 1 - S@QR(R1 * R2) * COS(THZ) - SAR(R1 * GAM) * (1 -

RZ2) * COS(THZ + 2 * (BB + DB) * L / RR)
2790 V1 = SAR(R1 * R2) * SIN{TH2) + SAQR(R1 * GAM) * (1 - RZ) *
SIN(THZ + 2 * (BB + DB) # L / NR)

2800 U2 = C

2810 v2 = D

2820 U3 = C1

2830 V3 = C2

2840 GOSUB 3250 "*PRODUCT

2850 RR1 = PROR

2660 II1 = PROT

=4 8

2880 U1 = -DG / 2

2890 V1 = DB

2900 U2 = 1 + SAR(R1 * R2) % COS(TH2) + SQR(RI1 * GAM)Y * (1 -
R2) * COS(TH2 + 2 * (BB + DB) * L / NR)

2910 V2 = -S@R(R1 * R2) % SIN(THZ) - SQR(R1 * GAH) * (1 - RZ)
* SIN(THZ + 2 * (BB + DB) * L / NR)

2920 U3 = 51

2930 V3 = 82

2940 GOSUB 3250 "*PRODUCT

2950 RRZ = PROR

2980 IIZ = PROI

21 4 o [ s

2980 Ul = ~KG * COS(TH3)

2990 V1 = KP + KG * SIN(TH3)



3000 U2 = SAR(RZ) * COS(TH1 + THZ) + (1 - R2) * SQR(GAM) * COS(TH1 + THZ +
' 2 % (BB + DB) * L / HR)

3010 V2 = -SAR(RZ) * SIN¢(TH1 + THZ) - (1 - RZ) * SQR(GAM) *
SIN(TH1 + TRZ + 2 * (BB + DB) ¥ L / NR)

3020 U3 = 51

3030 V3 = 52

3040 (GOSUB 3250 PRODUCT
3050 RR3 = PROR
3060 1I3 = PROIL

A0TD oo S ST T T
3080 U1 = -KG * COS(TH3)
2060 V1 = KP - KG % SIN(TH3)

3100 U2 = SQR(R1) * COS(TH1)

3110 V2 = SQR(R1) * SIN(TH1)

3120 U3 = S1 '

3130 V3 = 52

3140 GOSUB 3250 ~PRODUCT

3150 RR4 = PROR

31680 114 = PROIL ,

5170 =mmommmm e oSS T T T

3180 FTF = RR1 + RRZ + RR3 + RRd

3190 ¢ = 111+ II2 + II3 + 114

3200 RETURN

3210 "*T4

3220 RETURN

3230 -

3240 " //1100110000010000700007001001777

3250 “*PRODUCT

3280 /1100111100001 '

3270 PROR = U1 * U2 * U3 - U1 % V2 % V3 - U2 X V1 % V3 - U3 X
' ' V1 * V2 '

3280 PROI = UL * U2 % V3 + U1 % U3 % V2 + U2 X U3 * V1 - V1 %

V2 % V3

3290 RETURN

3300 °

3310 '/////////////////////////////////
3320 "*HALF.F

3330 ‘Half devided search along X axis to wolve F=0
3340 '///////////////////f////////////
3350 WX = (XMAX - XMIN) / 200 / L2

3360 COUNT = O

3370 DB2 = DB1 + WX

3380 "*ML1

3390 COUNT = COUNT + 1

3400 IF COUNT = 20 THEN GOTO 3800 “*ML5

3410 DB = DB1

3420 GOSUB 2440 "*FURC
3430 F1 = FF

3440

3450 DB = DBZ



v

- “'—-ms:"-J—- ":

3460
3470
3480
34920
3500
3510
3520
3530
3540
3550
3560
3370
3580
3520
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720

3730

3740
3750
3760
3770
3780
3790

3800
3810
3820
3830
3840
3850
3860
3870
3880
3630
3400
3910
3920
3930
3940
3950

COSUB 2440 "*FUNC

F2 = FF

1F DB2 * L2 > XMAX OR DB2 * L2 < XMIN THEN GOTC 3800 *ML5
IF F1 % F2 < 0 THEN GOTO 3520 "*MLZ

IF ABS(F1) > ABS(F2) THEN DB1 = DBZ: DB2
IF ABS(F1) < ABS(F2) THEN DB2 = DBl: DBl
“*MLZ2

COUNT = COUNT + 1

IF COUNT = 20 THEN GOTO 3800 *MLS

DB3 = (DB1 + DB2) / Z ‘

DB = DB3

GOSUB 2440

F3 = FF

(R

IF (F1 ¥ F3) <O THEN GOTO 3700 *HL3

DB1 = DB3

DB = DB1

GOSUB 2440

F1 = FF

JI1717/777 /777 /3udgement of convergence///// /1 /1 /11111177
IF ABS(F1 - F2) < 10 THEN GOTO 3780°ML4

GOTO 3520 "MLZ

“¥ML3

DBZ = DB3

DB = DBZ

GOSUB 2440 "*FUNC

F2 = FF

IF ABS(F1 - F2) < 10 THEN GOTO 3780 #ML4
GOTO 3520 "#MLZ

"*ML4 : ,

CIRCLE (DB3 * L2, DG * 12), (XMAX - XMIN) / 300 ~
ccoLz C, , F '

"*ML5

RETURN

I iissisiis
“#HALF .G

"Half devided search along ¥ axis to solve G=0

LILIILIS SIS 7S

WX = (XMAX - XMIN) / 200 / LZ

COUNT = O

DBZ2 = DB1 + WX

“kMN1

COUNT = COUNT + 1

IF COUNT = 20 THEN GOTO 4340 *MNS

bB = DB31

GOSUB 2440 "*FUNC
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DB1 + WX: GOTO 3380°*HML1
DB2 - WX: GOTO 3380 *ML1



3960

Gl = GG

3970

3980
3980
4000
4010
4020
4030
4040

DB = DB2
GOSUB 2440 “*FUNC

G2 =
IF DBZ * L2 > XHAX OR DBZ2 * L2 < XMIN THEN GOTO 4340 +#HMND

IF 31 * G2 < 0 THEN GOTO 4080 *MN2

4050 -

4080
4070
4080
4030
4100
4110
4120

IF ABS(G1) > ABS(GZ2) THEN DB1 = DBZ: DBZ = DBl + WX: GOTO 3910 kHN1
IF ABS(G1) < ABS(GZ) THEN DB2 = DB1: DB1 = DBZ - WX: GOTO 3910
KHND

COUNT = COUNT + 1
IF COUNT = 20 THEN GOTO 4340 *MN5

DB3 = (DB1 + DB2) / 2 .

4130 °

4140

4150 -

4160
4170
4180
4130
4200
4210
4220

DB = DB3
GOSUB 2440
a3 = GG
IF G1 % G3 < O THEN GOTO 4240 MN3
DB1 = DB3
DB = DB1
GOSUB 2440 "FUNC
Gl =

////////////////JUDGEHENT QF CONVERGENCE/////////////
IF ABS(G1 - G2) < 10 THEN GOTO 4320"*MN4
GOTO 4060 "*MNZ

4230

4240
4250
4260
4270
4280
42380
4300

“kMN3

DB2 = DB3

DB = DBZ

GOSUB 2440 "*FUNC

G2 = GG

IF ABS(G1 - G2) < 10 THEN GOTO 4320° *HN4

"LOCATE 23, 1: PRINT ABI(G1 - GZ): GOTO 4060 *MNZ

4310

4320
4330

4340
4350

“¥MN4 _

CIRCLE (DB3 * L2, DG *x L2), (XMAX - XMIN) / 200 °
: CCOL" 1

"¥MNS

RETURN

4360 -

4370 -

4380
4330
4400
4410
4420
4430
4440
4450

'//////////////////////////////////)/////
*DISPERSION

//////////////////////////////// /1
INFUT "XMIN,XMAX"; XMIN, XMAX

WINDOW (XMIN, —}MAX)—(X]*lAX, -XHIN)
VIEW (1, 1)-(300, 300}, , 7
FOR X = XMIN TO XMAX
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Foro el b

4460

4470
4480
4490

4510
4520
4530
4540
4550
4580
4570
4580
4530
4800
4610
4820
4830
4640
4850

LINE. (X, -XMIN)-(X, -XMAX), ,
LINE (XMIN, -X)-(XMAX, -X), ,
NEXT X

, &HB888
, &HBess

LINE (XMIN, 0)-(XMAX, 0): LINE (0, -XMIN)-(D, -XMAX)
4500 °

VIEW (310, 1)-(610, 23003}, , 7
FOR X = XMIN TO XMAX
LINE (X, -XMIN)-(X, -XMAX), ,
LINE (XMIN, -X)-(XMAX, -XD, ,
NEXT X

, &8888
, k18888

LINE (XMIN, 0)-(XMAX, 0): LINE (0, -XMIN)-(0, —-XMAX)

LOCATE 1, 19

"INPUT "Select a color number from 1 to B."; col

INPUT "Input a value (g-a)L =";

INPUT "“Input a value k ilL"; ikp:
INPUT " k gL"; ike:
INPUT " d Xn";
FOR X = XMIN TO XMAX STEP (XMAX
DB = X / L2

GOSUB 2440 "*func

4860 -

4870
4680

4700
4710
4720

VIEW (1, 1)-(300, 300)

idg: DG = idg / LZ

KP = ikp / L2

KG = ikg / L2

TH3 = xxx % 3.141592854#
- XMIN) / 400

PSET (X, -D x L2): PSET (X, D * L2)
4630 ’

VIEW (310, 1)-(810, 300)

PSET (X, -C * L2): PSET (X, C * L2Z)

NEXT X

4730 -

4740

RETURN
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