
i

Automated Vehicle License Plate Detection System Using FRIT Algorithm

by

Faruq Ahmed Jewel

MASTER OF SCIENCE IN INFORMATION AND COMMUNICATION
TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

2013

ii

The thesis titled “Automated Vehicle License Plate Detection System Using FRIT
Algorithm” submitted by Faruq Ahmed Jewel, Roll no: M10063103P, Session October
2006 has been accepted as satisfactory in fulfillment of the requirement for the degree of
Master of Science in Information and Communication Technology on 31st December,
2013.

BOARD OF EXAMINERS

1. Dr. MD. Liakot Ali Chairman
Professor (Supervisor)
Institute of Information and Communication Technology
BUET, Dhaka-1000.

2. Dr. Md. Saiful Islam Member
Professor and Director
Institute of Information and Communication Technology
BUET, Dhaka-1000.

3. Dr. Md. Saiful Islam Member
Professor and Director (Ex-Officio)
Institute of Information and Communication Technology
BUET, Dhaka-1000.

4. Dr. Khosru M. Salim
Associate Professor Member
School of Engineering & Computer Science, (External)
Independent University, Bangladesh.
Baridhara, Dhaka-1212.

iii

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

Faruq Ahmed Jewel

iv

DEDICATED TO MY DAUGHTER "TASNIA AHMED NILOM"

v

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Md. Liakot

Ali for the continuous support of my Masters Study and research from my heart, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. This is my realization that, I could not

have imagined having a better advisor and mentor for my Masters study and complete

the research work.

I also really thankful to Maruf Ahmed and Md. Rezaur Rahman my colleagues, for

being with my side from start to end of this thesis.

My sincere thanks also goes to IICT Office staffs for provide logistic support to me to

successfully complete the thesis work.

Last but not the least, I would like to thank my family: my parents Md. Arshad Mia and

Nilima Akter, for giving birth to me at the first place and supporting me spiritually

throughout my life and My Wife Maksuda Begum for mental support.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

-Faruq Ahmed Jewel

vi

Table of Contents

Title page i

Board of Examiners ii

Candidate’s Declaration iii

Dedication iv

Acknowledgement v

Table of Contents vi

Abstract ix

Chapters

1 Introduction 1-5

 1.1 Introduction 1

 1.2 Review of Previous Works and Observation 2

 1.3 Thesis Objectives 5

 1.4 Outline of the Thesis 5

2 Fundamentals of License Plate Detection 6-25

 2.1 Introduction 6

 2.2 Image Description 6

 2.3 Types of Image 6

 2.4 RGB Color Model 9

vii

 2.5 Gray Level 9

 2.6 Binary Level 9

 2.7 Histogram / Histogram Distribution 9

 2.8 Histogram Equalization 10

 2.9 Morphological Operators 11

 2.9.1 Erosion and Dilation 11

 2.9.2 Image Opening and Closing 15

 2.10 Finite Radon Transform-FRAT 17

 2.11 Finite Ridgelet Transform – FRIT 19

 2.12 Haar Wavelet 21

 2.12.1 The Haar transform 22

 2.13 Geometric Mean 23

 2.14 Chapter Summary 25

3 License Plate Detection 26-45

 3.1 Introduction 26

 3.2 Principles of Number Plate Detection 26

 3.3 License Plate Detection Using FRIT 28

 3.3.1 Steps for FRIT Based Thresholding 33

 3.4 Work flow of the Proposed Technique 33

 3.5 License Plate Localization and detection 35

 3.6 Chapter Summary 45

viii

4 Results and Discussion 46-61

 4.1 Introduction 46

 4.2 Simulation Results and Comparison with Other Systems 46

 4.2.1 Overall Performance 46

 4.2.2 MATLAB based simulation results 47

 4.2.3 Performance and Time Comparison with Other Systems 60

 4.3 Chapter Summary 61

5 Conclusion 62-63

 5.1 Conclusion 62

 5.2 Suggestion for Future Work 62

References 64

APPENDIX 68

ix

Abstract

Automatic vehicle number plate recognition (AVNPR) is an important research area in

intelligent transportation system and it plays an important role in numerous applications.

In AVNPR system license plate detection from the original image is the most critical

part. It is quite challenging due to the diversity of plate formats and the non-uniform

outdoor illumination conditions during image acquisition. Image transformation

technique is widely used for license plate location and detection. A number of

techniques are proposed in the literature but they are having accuracy problem while

plate size is minimum, computationally very expensive and slow. In this thesis a novel

technique has been developed for the license plate detection system using Finite

Ridgelet Transform (FRIT) algorithm. The proposed technique is simple and effective

which outperforms other existing methods for License Plate Detection (LPD). To verify

the effectiveness of the proposed technique, experiments have been conducted using

benchmark vehicle images. This gives remarkable success of detection in real time

processing. Experiments result shows that the proposed technique is capable of detecting

license plate successfully in various lighting condition. This technique is completely

language, font, color and size independent. It is rotation invariant and capable of

detecting license irrespective of poor illumination condition, multiple license plates in a

same image and low quality noisy image. It is also effective in the shadow condition or

the plate image is blurred. Achieved from the proposed technique the results have been

compared with those off other research and shows that our technique. We also compare

the results and efficiency of this work with other existing systems/techniques which

gives better result.

1

2

In this system first an image is captured by a capturing device and then the process of

license plate detection method is performed. After detecting the license plate the

segmented image is stored in a database. Then from the database the process of

character segmentation is performed. The processed information then can be used for

several applications and can be controlled from a central control room.

Computer vision and character recognition algorithms for License Plate Recognition

(LPR) are used as core modules for Automatic Vehicle Number plate Recognition

(AVNPR) system [2]. An AVNPR system consists of three main parts: license plate

detection (LPD), character segmentation (CS), and character recognition (CR). Among

these three parts, the LPD is the most important stage and also the most difficult part [2].

This is mostly because during this stage we need to overcome various undesired input

image conditions such as out of focus (blur) images, undesired illumination conditions,

small size plates, rotations, shadows, and different weather conditions. Different LPD

techniques are introduced in the literatures. Although the detection accuracy from those

research is in the acceptable range but they are burdened with computational

complexities the research work presented in this thesis focuses to overcome the

limitations of the existing research on LPD and find a solution for the problem. In this

thesis, a novel technique has been developed using FRIT for image representation

algorithm for license plate detection which shows that it is capable of handling all the

challenging scenarios in LPD and the computation speed is also real time.

1.2 Review of Previous Works and Observation

LPD is one of the important components in the Intelligent Road Transportation System

and it has a lot of practical applications such as in automatic toll collections, parking fee

payment, detection of vehicle crossing speed limits and thereby reducing road accidents

etc. Due to these demanding applications for modern intelligent road transportation

system, LPD is a challenging research area to the researchers all over the world since the

last decade. Literature [1] presents a feature-based license plate localization algorithm

that copes with multi-object problem in different image capturing conditions. It extracts

3

license plate candidates using edge statistics, morphological operations, color analysis

and removes the incorrect candidates according to the determined features of license

plates. But this solution does not provide a high degree of accuracy in natural scenery,

since color is not stable when the lighting conditions change. In addition, as these

methods are color based, they are country specific.

In the literatures [2-3] VLPD is based on edge statistics analysis. The authors used the

statistical information of license plate regions based on the license plate edge analysis.

This process is good for LPD but they are not robust in term of real-time detection. All

the time the license plate may not available in the selected regions, then finding the

edges in that region take long time but result become zero; Therefore these proposed

methods are not suitable for real-time AVNPR systems.

The proposed approach in the literature [4] can only recognize license plate recognition

systems when the plate orientation is straight to the camera and also the proposed

system can tolerate slight tilting of the license plate, but the reality is that all the time it

is not easy to get the right oriented license plate. So this approach is not applicable for

the real time license plate detection.

Literatures [5-6] use morphological filtering as their base method. Morphological

operations are inexpensive and robust, but this method suffers from various image

conditions such as, illumination condition, blurriness of images, skew conditions, etc.

which in-turn decrease the efficiency of detection (maximum success rate is 97.86%).

So the approach is not good for real-time AVNPR system.

Image transformation method based on Hough and Radon transformations (HT and RT)

for VLPD is proposed on the literatures [7-8]. In this method, edges in the input image

are detected first. Then, HT is applied to detect the LP regions. However the authors

acknowledge that the execution time of the HT requires too much due to computational

complexities when applied to a binary image with great number of pixels.

4

In the literatures [9-11] authors proposed VLPD methods based on neural network and

combination of plate features. But all these proposed techniques suffer from the trade-

off between efficiency and effectiveness in terms of success rate and computational cost.

In this literature [12-13] presents the method of detection of license plate from an image

based on Maximally Stable Extremal Region (MSER). This is a good process when the

image size is small. The computational complexity is very high because of this

algorithm is completely depends on the numbers of pixels. So this type of method is not

suitable for real time license plate detection.

The proposed approach in the literature [14] is template matching which is good for still

image, offline image processing, when image processing time is not concern. This type

of method is not perfect for any real-time image processing.

In this literature [15] authors proposed Wavelets based method for license plate

detection and this is good approach for still image. But problem is that wavelet alone is

not enough for detecting license plate when any car is moving due to the algorithms

complexity.

The proposed method in the literature [16-18] is AdaBoost (GAB) algorithm and

vertical boundary pairs both have a higher detection rate and a lower false positive rate.

But these types of algorithms are taken much time for detection due to the algorithmic

complexity. These algorithms are not applicable for real time object detection.

From the above literatures we see that there occurs significant progress in the research in

LPD, but the proposed researches in this area are typically restricted to well-defined

working conditions to obtain predictable scene features such as fixed illumination, fixed

color, fixed country, limited vehicle speed, designated routes, and stationary

backgrounds. Accurately and efficiently detection of license plates from images is

always challenging due to the following reasons: (1) the size, shape and position

(rotation) of the plate may vary. (2) The illumination condition in the image may vary.

(3) The plate may be of any color, any type and color of font and the background color

may be very similar to that of the plate. (4) The image may contain a number of noises.

5

(5) The image may be blurred which is a common scenario for motion compensated

pictures. (6) Obstacles such as shadows, dirt and dust may make the system too difficult

to detect the license plate. Again increased mobility and internationalization set the

challenge of developing an effective LPD system that could handle plates from various

countries with different character sets and syntax. So there are still a lot of scopes in

conducting research for developing robust, accurate and country independent LPD

system.

1.3 Thesis Objectives

The aim of this project is to develop fast and accurate automated vehicle license plate

detection system for real time application. To achieve this goal the thesis has the

following objectives:

(i) To develop a novel technique for License Plate Detection (LPD) for an

AVNPR system, which should full-fill the requirement of a real-time

system and efficient in general sense.

(ii) To design and simulate the proposed LPD system

(iii) To verify the functionality and effectiveness of the technique in

different scenarios using benchmark images of license plate.

1.4 Outline of the Thesis

The thesis paper is organized as follows:

In chapter 1, Overview of the license plate detection system has been described. In

Chapter 2, concepts of the basics image processing are introduced. Chapter 2 also

includes a review of Finite Ridgelet Transform (FRIT). In chapter 3, the process of

License Plate Detection (LPD) system is discussed. Chapter 4 includes several tests and

results of this newly developed system. We have compared our technique with others

and showed the results. In this chapter we also showed several experiment results under

various difficulties and conditions. Finally, conclusion of the research work is given in

chapter 5.

6

Chapter 2

Fundamentals of License Plate Detection

2.1 Introduction

This chapter discusses the fundamentals of image processing, image processing

techniques used in Automated Vehicle Number Plate Recognition System. A brief

review of Finite Ridgelet Transform (FRIT) is also included.

2.2 Image Description

A digital image is a representation of a two-dimensional image using ones and zeros

(binary). Depending on whether or not the image resolution is fixed or not, it may be of

vector or raster type. The term "digital image" usually refers to raster images also called

bitmap images. Raster images have a finite set of digital values, called picture elements

or pixels. The digital image contains a fixed number of rows and columns of pixels.

Pixels are the smallest individual element in an image, holding quantized values that

represent the brightness of a given color at any specific point. Typically, the pixels are

stored in computer memory as a raster image or raster map, a two-dimensional array of

small integers. Raster images can be created by a variety of input devices and

techniques, such as digital cameras, scanners, coordinate-measuring machines,

seismographic profiling, airborne radar, etc. They can also be synthesized from arbitrary

non-image data, such as mathematical functions or three-dimensional geometric models;

the latter being a major sub-area of computer graphics.

2.3 Types of Image

There are different image representation techniques in computer graphics, a raster

graphics image or bitmap is a data structure representing a generally rectangular grid of

pixels, or points of color, viewable via a monitor, paper, or other display medium.

Raster images are stored in image files with varying formats. A bitmap is technically

characterized by the width and height of the image in pixels and by the number of bits

7

per pixel (a color depth, which determines the number of colors it can represent). Each

pixel of a raster image is typically associated to a specific 'position' in some 2D region,

and has a value consisting of one or more quantities (samples) related to that position.

Digital images can be classified according to the number and nature of those samples: (i

) Binary, (ii) Gray Scale, (iii) Color, (iv) False-color, (v) Multi-spectral, (vi)

Thematic, (vii) Picture function.

A binary image is a digital image that has only two possible values for each pixel.

Typically the two colors used for a binary image are black and white though any two

colors can be used. The color used for the object(s) in the image is the foreground color

while the rest of the image is the background color. Binary images are also called bi-

level or two-level. This means that each pixel is stored as a single bit (0 or 1). The

names black-and-white, B&W, monochrome or monochromatic are often used for this

concept,

A gray-scale digital image is an image in which the value of each pixel is a single

sample, it carries only intensity information. It is composed exclusively of shades of

gray, varying from black at the weakest intensity to white at the strongest [19]. Gray-

scale images are distinct from one-bit black-and-white images, which in the context of

computer imaging are images with only the two colors, black, and white (also called bi-

level or binary images). Gray-scale images have many shades of gray in between. Gray-

scale images are also called monochromatic, denoting the absence of any chromatic

variation (i.e.: no color). Gray-scale images are often the result of measuring the

intensity of light at each pixel in a single band of the electromagnetic spectrum (e.g.

infrared, visible light, ultraviolet, etc.), and in such cases they are monochromatic proper

when only a given frequency is captured. But also they can be synthesized from a full

color image.

A (digital) color image is a digital image that includes color information for each pixel.

For visually acceptable results, it is necessary (and almost sufficient) to provide three

samples (color channels) for each pixel, which are interpreted as coordinates in some

color space. The RGB color space is commonly used in computer displays, but other

8

9

2.4 RGB Color Model

Values of the Red, Green and Blue are between 0 - 255. Colors upgrade to darker

towards to 0 and upgrade to lighter when towards to 255. This situation is explained in

the Cartesian coordinate system. The (0, 0, 0) origin point is black, and (1, 1, 1) point is

white. Any color occurs as a result of the merger red, green, blue color with certain

coefficients in the coordinate system. Gray color is above the white and black level,

combining diagonal corners.

2.5 Gray Level

The image is converted to gray level to accelerate the image processing. Thus, in the

picture, there will remain only black, white and gray values. The process needs to be

done before the image is converted into binary level. A general equation for converting

a RGB color image into a Gray Level image is: 0.2989 * R + 0.5870 * G + 0.1140 * B,

where R, G, B correspond to current pixel’s R, G, B values respectively.

2.6 Binary Level

An image consists of numeric values between 0 - 255. The numerical value of the

picture is reduced to two values with binary level. Thus, an 8 - bit image is converted

into 2 - bit format. The threshold value must be determined for this conversion. Using a

fixed threshold value is not correct because of external factors such as sunlight, shadows

at real-plate images. A distribution histogram is useful for calculating threshold value. If

the pixel value in the image is greater than threshold value, then the pixel value is

assumed as "0"; and if the image pixel' value is less then threshold value, the pixel value

is assumed as "1". In this way the image is converted to the binary level.

2.7 Histogram / Histogram Distribution

A histogram uses a bar graph to profile the occurrences of each gray level present in an

image [20]. Figure 2.2 shows a simple histogram. The horizontal axis is the gray-level

values. It begins at zero and goes to the number of gray levels (256 in this example).

Each vertical bar represents the number of times the corresponding gray level occurred

10

in the image. In Figure 2.2 the bars “peak" at about 70 and 110 indicating that these gray

levels occur most frequently in the image. Among other uses, histograms can indicate

whether or not an image was scanned properly. Histograms also help to select thresholds

for object detection (an object being a house, road, or person). Objects in an image tend

to have similar gray levels. For example, in an image of a brick house, all the bricks will

usually have similar gray levels. All the roof shingles will share similar gray levels, but

differ from that of bricks. In Figure 2.2, for example, the valleys between the peaks at

about 60 and 190 might indicate that the image contains three major kinds of objects

perhaps bricks, roof, and a small patch of sky. Practical object identification is never

simply a matter of locating histogram peaks, but histograms have been important for the

research in object identification [20].

Figure 2.2: Simple Histogram

2.8 Histogram Equalization

Equalization causes a histogram with a mountain grouped closely together to “spread

out" into a flat or equalized histogram. Spreading or flattening the histogram makes the

dark pixels appear darker and the light pixels appear lighter. Histogram equalization

11

12

Figure 2.3.2: The Result of Eroding Figure 2.3.1

Figure 2.3: The Result of Erosion. Where Figure 2.3.1 is a binary image and applying

the erosion technique over the binary image we have found the figure 2.3.2 which is

smaller than the real binary image.

Figure 2.4.1: A Binary Image

13

Figure 2.4.2: The Result of Dilating Figure 2.4.1

Figure 2.4: The Result of Dilation. Where Figure 2.4.1 is a binary image and applying

the dilation technique over the binary image we have found the Figure 2.4.2 which is

larger than the real binary image. There are two general techniques for erosion and

dilation. One technique employs a threshold and the other technique uses masks to erode

and dilate in desired directions.

The threshold technique looks at the neighbors of a pixel and changes its state if the

number of differing neighbors exceeds a threshold. Figure 2.3.2 and Figure 2.4.2 used a

threshold parameter of three.

The masking technique lays an NxN (3x3, 5x5, etc.) array of 1s and 0s on top of an

input image and erodes or dilates the input. With masks we can control the direction of

erosion ordination. Figure 2.5 shows four 3x3 masks (5x5, 7x7, etc. masks are other

possibilities). The first two masks modify the input image in the vertical or horizontal

directions while the second two perform in both directions.

14

15

16

17

18

It can be seen that two very bright spots are found in the Radon transform, and the

positions show the parameters of the lines in the original image. A simple thresholding

algorithm could then be used to pick out the line parameters, and given that the

transform is linear many lines will just give rise to a a set of distinct point in the Radon

domain.

Let us denote = {0,1,…, −1} ,
 = {0,1,…, −1, } , where is a prime number.

Note that is a finite field with modulo operations. The FRAT [23] of a real

function (image) on the finite grid
 is defined as,

√
∑ , - ()

√
∑ ∑ , -

 (2.1)

where denotes FRAT lines on
 :

{
 {() () }

 {() }

 denotes the basis on
 corresponding to

, - {
 , -

 , -

√

From the definition of FRAT lines, one can easily obtain that slope (= corresponds

to the infinite slope or vertical lines) and intercept have finite possible values and all

FRAT lines have a common length of . FRAT maps an image of size × in the

image domain to a coefficientmatrix of × (+1), where the -th column represents

the FRAT coefficient sequence of the corresponding slope. FRAT is extraordinary

suitable for line singularity presentation for its good energy concentration property. It is

an invertible transform that can lead to perfect reconstruction. The inverse finite Radon

transform (IFRAT) can be obtained by the finite back-projection (FBP) operator. That

is, for any coefficient matrix { }

 in the FRAT domain.

 , - , -

√
∑ ()()

 (2.2)

19

where denotes the sets of indexes that all go through a point ()
 More

specifically, we can write {() () } *()+ .

Note that the modulo operator in eq. (2.1) leads to periodic “wrap around” which causes

FRAT lines to exhibit different appearances from natural lines. The “wrap around”

effect disperses energy distribution of natural lines in FRAT domain, thus representation

ability is weakened. The energy dispersion between FRAT coefficients caused by the

“wrap around” phenomenon is diverse, depending upon the locations, lengths of line

singularities in the image domain, etc. Elimination of the “wrap around” effect is among

the primary open problems in FRAT-based applications [25]. Do[23] constructed an

optimal ordering FRAT by selecting the optimal normal vector from the normal vector

parameter sets which all correspond to the same slice inspired by the projection slice

theorem. We assume the optimal ordering FRAT is adopted in this paper in the sequel,

where is regarded as an index in the set of optimal FRAT normal vectors rather than a

slope value. It could reduce the “wrap around” effect in some extent, but reordering of

intercepts may lead to energy dispersion in FRAT coefficients of smooth regions in

images. Xiao and Li tried to avoid probable “wrap-around” of certain lines by extending

the original image to a larger size [26] at the cost of high storage and computation

complexity.

2.11 Finite Ridgelet Transform - FRIT

Transformation methods provide the possibility to investigate signal in alternative

perspectives and have been widely used in many image processing tasks such as coding,

compression, de-noising, etc. The basic idea is if most information is packed into a

relatively small number of independent transformation coefficients, their reconstruction

provides a good approximation of the original signal. Wavelet transform has been

extensively discussed in image processing and gets adopted in the international still

image compression standard JPEG 2000. Its success is mainly due to the perfection of

mono-variant polynomial factorization theory in mathematical and the simplicity of

Mallat’s one-dimensional signal decomposition structure in signal analysis engineering.

Wavelet is good at catching zero-dimensional or point singularities only. Two-

20

dimensional discrete wavelet transform (2D-DWT) generated by a tensor-product of two

perpendicular 1D wavelets is sensitive to horizontal, vertical and diagonal directions

only, thus encounters difficulty in effective image presentation. To overcome the

weakness of wavelet in higher dimensions, Candes et al. [21] pioneered Ridgelet

Transform for representation of liner singularities in images.

Figure 2.10: One dimensional wavelet transformation over FRAT domain is FRIT

The above image shows that finite radon transform only detect the line singularities and

wavelet transformation only detect dot singularities. It can be seen that after applying

FRAT and IFRAT all dots are removed from the images and only lines remain exist. In

the same way applying wavelet and inverse wavelet transform all linear singularities are

removed and only dots remain. From the definition of FRIT we know that applying

wavelet transform over FRAT domain of an image is called FRIT transformation. FRAT

transform converts all line into dots and wavelet work as a filter where it keeps all bright

dots. So after applying IFRIT only represent the lines of original images. License plates

are combination of line.

21

22

hand calculations. We shall illustrate many concepts by both simple hand calculations

and more involved computer computations.

2.12.1 The Haar transform

In this section we shall introduce the basic notions connected with the Haar transform,

which we shall examine in more detail in later sections. First, we need to define the type

of signals that we shall be analyzing with the Haar transform.

 A discrete signal is a function of time with values occurring at discrete instants.

Generally we shall express a discrete signal in the form ƒ = (ƒ1, ƒ 2, . . . , ƒN), where N

is a positive even integer which we shall refer to as the length of f. The values of f are

the N real numbers ƒ1, ƒ2, . . . , ƒN. These values are typically measured values of an

analog signal g, measured at the time values t = t1, t2, . . . , tN. That is, the values of f

are

ƒ1 = g(t1), f2 = g(t2), . . . , ƒN = g (tN) . - (2.3)

For simplicity, we shall assume that the increment of time that separates each pair of

successive time values is always the same. We shall use the phrase equally spaced

sample values, or just sample values, when the discrete signal has its values defined in

this way. An important example of sample values is the set of data values stored in a

computer audio file, such as a .wav file. Another example is the sound intensity values

recorded on a compact disc. A non-audio example, where the analog signal g is not a

sound signal, is a digitized electrocardiogram.

Like all wavelet transforms, the Haar transform decomposes a discrete signal into two

sub signals of half its length. One sub signal is a running average or trend; the other sub

signal is a running difference or fluctuation. Let’s begin by examining the trend sub

signal. The first trend sub signal, a1 = (a1, a2, . . . , aN/2), for the signal f is computed

by taking a running average in the following way. Its first value, a1, is computed by

taking the average of the first pair of values of f: (f1 + f2)/2, and then multiplying it by

√2. That is, a1 = (f1+f2)/ √2. Similarly, its next value a2 is computed by taking the

average of the next pair of values of f: (f3 +f4)/2, and then multiplying it by √2. That is,

23

a2 = (f3 + f4)/√2. Continuing in this way, all of the values of a1 are produced by taking

averages of successive pairs of values off , and then multiplying these averages by √2. A

precise formula for the values of a1 is

√
 - - - - - - - - - - - - -- (2.4)

for m = 1, 2, 3, . . . , N/2. For example, suppose f is defined by eight values, say

f = (4, 6, 10, 12, 8, 6, 5, 5); then its first trend sub signal is a1 = (5√2, 11√2, 7√2, 5√2).

This result can be obtained using Formula (2.3).

2.13 Geometric Mean

In mathematics, the geometric mean is a type of mean or average, which indicates the

central tendency or typical value of a set of numbers by using the product of their values

(as opposed to the arithmetic mean which uses their sum). The geometric mean is

defined as the nth root (where n is the count of numbers) of the product of the numbers.

For instance, the geometric mean of two numbers, say 2 and 8, is just the square root of

their product; that is √ =4.

A geometric mean is often used when comparing different items – finding a single

"figure of merit" for these items – when each item has multiple properties that have

different numeric ranges. For example, the geometric mean can give a meaningful

"average" to compare two companies which are each rated at 0 to 5 for their

environmental sustainability, and are rated at 0 to 100 for their financial viability. If an

arithmetic mean was used instead of a geometric mean, the financial viability is given

more weight because its numeric range is larger- so a small percentage change in the

financial rating (e.g. going from 80 to 90) makes a much larger difference in the

arithmetic mean than a large percentage change in environmental sustainability (e.g.

going from 2 to 5). The use of a geometric mean "normalizes" the ranges being

averaged, so that no range dominates the weighting, and a given percentage change in

any of the properties has the same effect on the geometric mean. So, a 20% change in

24

25

2.14 Chapter Summary

In this chapter I have described the fundamentals of image type, processing, image

processing techniques used in Automated Vehicle Number Plate Recognition System.

Also discussed about Histogram Equalization and Morphological Operation. Also

different types of Image transformation techniques like Finite Ridgelet Transform

(FRIT),Finite Radon Transform (FRAT), Haar wavelet, Geometric mean, Which will

help reader to understand next discussion clearly.

26

Chapter 3

License Plate Detection Systems

3.1 License Plate Detection

As earlier said, an LPR system consist of three main parts: license plate detection,

character segmentation, and character recognition. Among these three parts the license

plate detection (LPD) is the most challenging and crucial stage and also the most

difficult part of an LPR system. This is mostly because during this stage we need to

overcome various undesired input image conditions such as out of focus (blur) images,

undesired illumination conditions, small size plates, rotations, shadows, and different

weather conditions. The factors that influence the design of an LPR system include: i)

Vehicle speed, ii) Volume of traffic flow, iii) Camera to license plate distance, iv)

Ambient illumination, v) Types and variation of license plates, vi) Weather, etc. An

automatic number plate recognition solution typically addresses four key issues: 1.

Vehicle presence: Is a vehicle present?2. Plate location: Where is the number plate in

the image?3. Glyph location: Where are the number plate glyphs within the plate?4.

OCR (Optical Character Recognition): What are the characters on the plate?

Each of these issues can be addressed in many different ways, and some approaches

may address more than one issue at once. In this paper, a novel technique using Finite

Ridgelet Transform is presented. The proposed technique can detect plates of different

sizes, different illumination conditions, rotations, scales, shadows, and the real world

noise. Moreover this procedure was successful for many blurred images.

3.2 Principles of Number Plate Detection

The first step in a process of automatic vehicle number plate recognition (AVNPR)

system is the detection of a license/number plate area. This problematic includes

methods that are able to detect a tetra-lateral (as the license plate is not necessary to be a

rectangle) area of the number plate in an original image. Humans define a number plate

in a natural language as a “small plastic or metal plate attached to a vehicle for official

27

identification purposes”, but machines do not understand this definition as well as they

do not understand what “vehicle”, “road”, or whatever else is. Because of this, there is a

need to find an alternative definition of a number plate based on descriptors that will be

comprehensible for machines.

If we define a number plate by its color, a particular shape (eg. a 2:1 width-height ratio

rectangle) or the text type it contains then most of the problems discussed earlier would

arise and the technique would not be effective in a general sense. On the other hand if

we define a license plate by its edge characteristics then we can bypass most of the

issues related with the license plate detection technique. For example, we can think of a

license plate by a region bounded by edges of a rectangular type of shape which

contains a lot of horizontal and vertical edges because of the text inside it. If we think

like this then we need not necessary to take concern of any other characteristics of a

license plate. Moreover there is no impacts on the license plate detection where the

license plate is rotated/skewed on the image, if we take concern of edge analysis.

So, we have defined the number plate as a “rectangular area with increased

occurrence of horizontal and vertical edges”. The high density of horizontal and

vertical edges on a small area in many cases caused by contrast characters of a number

plate, but not in every case. This process can sometimes detect a wrong area that does

not correspond to a number plate. Because of this, we may detect several regions of

interests (RoI) for the plate by this technique, and then we choose the best one by a

further analysis.

Let an input image to the system be defined by a function f(x,y) where x and y are spatial

coordinates, and f is an intensity of light at that point. This function is always discrete on

digital computers, such as , where denotes the set of natural

numbersincluding zero. We define operations such as edge detection as mathematical

transformations of function f. The detection of a license plate area consists of a series of

convolution and modulo operations. Modified image is then thresholded by histogram

thresholding method and then a series of morphological operations are performed for

28

acquiring the regions of interests. These RoIs are used to determine an area of a license

plate.

3.3 License Plate Detection Using FRIT

Utilization of FRIT coefficients is based on the method of image de-noising using FRIT.

The motivation for the FRIT-based image de-noising method is that in the FRIT domain,

linear singularities of the image are represented by a few large coefficients, whereas

randomly located noisy singularities are unlikely to produce significant coefficients.

Therefore, a simple thresholding scheme for FRIT coefficients can be very effective in

de-noising images that are piece-wise smooth away from singularities along straight

edges [23]. Now our purpose is to detect the strong edges (not only the straight edges),

as we want to detect the boundary edges of the license plate including the text edges on

it. There is the freedom of manipulations FRIT domain according to the application

requirements. Our target is to find bounded regions by edges containing several small

size edges. In our case the image type is of natural scenery. In this type of images there a

lot of edges including strong straight and curvy edges. If we could find object edges

eliminating the background from image then we are one step ahead to detect license

plate regions. Unfortunately an edge is not always a straight line. Because orthonormal

ridgelet analysis amounts to a non-orthogonal wavelet analysis in Radon space in the

two-dimensional case, an object with curved singularities is still a curvilinear one after

Radon transform, not a point. Alternately, we can say that in analyzing an object which

exhibits curved singularities, the ridgelet coefficients are not sparse, because the wavelet

coefficients of Radon transform of the curved singularities are not sparse. For our

purpose we need to find a threshold value. In this case we cannot use the universal

threshold value given in [23] as this is for de-noising images and representing them. If

we can find a threshold for which there are edges strongly in the image rather than the

objects our purpose is served.

Several analytical analyses are performed on column and row wise FRIT coefficients

(Figure 3.1(a, b, c, d) and Figure 3.2(a, b, c, d)) to find the threshold value, like their

mean, variance, entropy, standard deviation. In many of these analyses, good results are

29

found by choosing a threshold value roughly greater than the geometric mean value of

row and column wise FRIT coefficients. From a lot of trial and error it is found that the

best result is achieved if we perform column wise scanning using the threshold value Tc

and row wise scanning using the threshold value Tr , where, Tc= Column-wise

geometric mean of FRIT coefficients, and Tr= Row-wise geometric mean of FRIT

coefficients.

So if we threshold the FRIT coefficients and discard the significant coefficients we can

find an image where there are strong large edges and strong small edges but dispersed

objects with edges. Thresholding the FRIT coefficients results an abstract image where

the objects are not totally eliminated and the strong large and small edges are shown

clearly. Therefore, the output image is basically an abstract image of the input image

where the sharp objects are shown clearly with overall sharpness and image clearness

decreased.. In Figure: 3.3 several results are shown using this thresholding method.

The type of thresholded output image is very useful to us, because when the image will

be binarized by performing a histogram thresholding method, we shall acquire an image

where the strong edges are shown by scattered pixels along their edges. This type of

edges for LP can be overcome the problem of blurriness, rotation of LPs. Moreover it is

not necessary to perform image enhancement operations (enhance brightness, contrast,

reduce blurriness, etc.) before FRIT based thresholding technique, though it might

increase the performance of the technique.

30

31

32

33

This thresholding method can be performed during the image transform and the process

is fast since it consists of some logical operations When we are done with

thisthresholding, we can start our procedure for LP detection. Since the processed

transformed image is gray image, we have to convert it into a binary image for further

operations. The next sections describe these procedures for LP detection.

3.3.1 Steps for FRIT Based Thresholding

In summary, for this thresholding all the significant FRIT coefficients are pulled to zero

according to the thresholding values and others are remained intact. The outcome is an

abstract image of the original input image where there are strong large and small edges.

The necessary steps for performing the FRIT based thresholding is given below:

Step 1: Compute the column-wise geometric mean, Tc of the FRIT coefficients.

Step 2: Compute the row-wise geometric mean, Tr of FRIT coefficients.

Step 3:Threshold each original FRIT coefficients with Tc by performing a column-wise

 scanning of the FRIT coefficient array.

Step 4: Threshold each original FRIT coefficients with Tr by performing a row-wise

scanning of the FRIT coefficient array.

Parameters for FRIT Thresholding Used in the Technique:

1) The input image size is 257x257, but the size can be extended to any NxN size image

2) We use Haar-Wavelet with DWT extension mode to zero padding.

3) The input image has to be normalized gray-level of double type.

3.4 Work Flow of the Proposed Technique

In this thesis, an LPD method is presented to overcome the issues raised in the literature,

which include complex environment, rotation, lighting, low contrast, and blurriness. The

proposed method also has high degree of freedom about license plate size and

34

orientation. Here we have declared the steps for the proposed technique for license plate

detection using FRIT. Figure: 3.4below shows the work flow for the proposed method.

Figure: 3.4: Work Flow of the Proposed Technique

Step 1

Acquire Image

Step 2

Resize the
input image to

257x257

Step 3

Convert the
image to Gray-

scale and
normalize it and

make type of
double

Step 4

Apply FRIT to
the gray image

Step 5

Apply the new
thresholding

technique to the
FRIT coefficients

Step 6

Apply
Inverse

FRIT

Step 7

Make the image a
binary one by

applying histogram
thresholding

method

Step 8

Grow regions inside the
edges, and find minimum
rectangle of width-height
15-by-5 from the objects

by perform morphological
operations (erosion,

dilation, opening, closing).

Step 9

Detect Region
of Interests

(RoIs).

Step 10

Detect
License
Plate(s)

35

3.5 License Plate Localization and detection

This section provides methods performed to detect LP regions and verify them. A series

of morphological operations are performed first to find the regions of interests. Then

several verification methods are performed to detect the license plate correctly. The

main theme is that after performing FRIT thresholding we convert the thresholded

image into a binary image by histogram thresholding method, where the image is

represented by scattered pixels closely together where the edges are. Next we erode this

image by a thresholded erosion method so that the “salt and pepper” like pixels are

gone. Then we perform dilation by a thresholded dilation method to connect the edges

and grow solid region bounded by edges. In this stage we find several objects of various

shapes. Now we discard the objects which are not in the shape of a tetra-lateral and are

less than a width of 15 pixels and height of 5 pixels by performing a series of

morphological erosions and dilations with various structuring elements(See Figure:

3.5below). Finally the output is an image with object(s) like tetra-laterals. This gives us

the regions of interests (RoIs) (See Figure: 3.6 below). We can merge this image with

the input gray level image or resized original image to verify the regions. Figure:

3.7shows the images of several sample images at several steps. The full MATLAB

source code of the process is given in APENDIX.

 (a) Structuring elements for thresholded erosion

36

 (b) Structuring elements for thresholded dilation

 (c) Structuring elements for masked dilation

 (d) Structuring elements for masked erosion

Figure 3.5:Various Structuring elements for performing morphological operations.

37

Figure: 3.6: Regions of interests at left and verified original input image license plates at

right.

38

 i) Input Image ii) Converted Gray Image

 iii) Image After Applying FRIT iv) Thresholded Image

v) Image output after performing morphological operations and verifications.

39

Figure 3.7: (a)

 i) Input Image ii) Converted Gray Image

 iii) Image After Applying FRIT iv) Thresholded Image

40

v) Image output after performing morphological operations and verifications.

Figure 3.7: (b)

 i) Input Image ii) Converted Gray Image

 iii) Image After Applying FRIT iv) Thresholded Image

41

v) Image output after performing morphological operations and verifications.

Figure 3.7: (c)

 i) Input Image ii) Converted Gray Image

42

iii) Image After Applying FRIT iv) Thresholded Image

v) Image output after performing morphological operations and verifications.

Figure 3.7: (d)

43

 i) Input Image ii) Converted Gray Image

 iii) Image After Applying FRIT iv) Thresholded Image

v) Image output after performing morphological operations and verifications.

44

Figure 3.7: (e)

 i) Input Image ii) Converted Gray Image

 iii) Image After Applying FRIT iv) Thresholded Image

45

v) Image output after performing morphological operations and verifications.

Figure 3.7: (f)

Figure: 3.7: Several stages of sample images for the LP detection method.

Localizing and detecting a license plate consists these several steps and finding the

regions of interest is a key step. After finding RoI, we can verify this/these regions to

satisfy that it is a license plate by using methods mentioned above. From our sample

images we have found many images with multiples RoI. By filtering them we were able

to find the correct region for license plate and also found several regions for several

number plates.

3.6 Chapter Summary

In this thesis, the method of a novel technique for Automatic Vehicle License Plate

Detection System using Finite Ridgelet Transform is discussed. To detect the license

plates by using FRIT we introduced a new thresholding technique for the FRIT

coefficients and then perform several operations. We showed all the steps necessary to

detect a license plate by several figures and discussed those steps.

46

Chapter 4

Results and Discussion

4.1 Introduction

This chapter discusses the result, findings and outcome of the thesis. We have discussed

all the simulation results and compare them with other methods discussed in the

literature.

4.2 Simulation Results and Comparison with Other Systems

The ultimate goal of this thesis is to take an image containing a vehicle’s license plate as

input and detect the license plate by introducing a new method: Finite Ridgelet

Transform (FRIT), to the Automatic Vehicle License Plate Recognition (AVNPR)

System.

4.2.1 Overall Performance

We did not impose any restriction on the image as well as the license plate only to see

how well our new technique is performed.

We tested our system on a laptop running on Intel Core 2 Duo 1.86GHz Processor and

1GB of RAM by using MATLB R2010a. Total of 140 images from the internet and by

capturing devices are taken as sample images. We could detect license plates of 138

sample images which give us a success rate of about98.60%. But this could be reached

up to 100% since there are few parameters in the process which can increase the

performance by alternating values upon some conditions. Moreover if we pre-processed

our input image like histogram equalization, brightness enhancement, contrast

enhancement, color correction, reducing blurriness, the performance of the system

would increase dramatically. The verification techniques, earlier said can be applied to

eliminate the unwanted objects detected by the system. The core algorithm along with

FRIT to detect license plates only took about 510ms, which is almost real-time. This

47

time stamp is for the system which is not optimal. In the process there are many places

where we can optimize and make this system more robust. To detect the license plate of

all size we first did not impose any restriction on the license plate size, but from the

literatures from previously discussed we found that very small sized license plates are

useless to AVNPR system since they are poor for character segmentations. Therefore we

were only concerned about license plates of size greater than 15x5 pixels. Though this

size is also very small we chose it as a benefit of us. Below we represent significant

results and outcomes of this newly proposed method and comparison of the proposed

method by other existing methods.

4.2.2 MATLAB based simulation results

The outcomes of MATLAB simulations are significant. We have simulated the system

for a large number of sample input images. The input images were of various kinds like

blurred image, image containing picture of dirty and dusty cars, image of multiple cars,

low contrast image, etc. The results are discussed below.

Figure 4.1 a. shows a sample input image and its output. b. shows the same input image

but 90 degree rotated and the output is also a license plate but 90 degree rotated, means

that the technique is rotation invariant. c, d, e are same input images but with lower

brightness, lower contrast and higher contrast correspondingly. The output is always the

license plate but lower brightness, lower contrast and higher contrast meaning that the

technique is much more effective for a poor illumination conditioned input image.

a) Original Image,

48

b)Rotated Image

c)Lower Brightness

d) Lower Contrast

e)Higher Contrast

Figure 4.1: License Plate Detection of Same Input Image under Various Conditions

Figure 4.2 a., b. below reveals the fact that the technique is effective if we enhance the

input image. In both cases at first time license plate was unable to be detected. But after

enhancing the input image the license plates were able to detected using the proposed

technique.

49

Figure 4.2:(a-1): Original Image and Output

Figure 4.2:(a-2): Enhanced Image and Output

Figure 4.2: (b-1): Original Image and Output

Figure 4.2: (b-2): Enhanced Image and Output

Figure 4.2: License Plate Detection after Enhancing Brightness/Contrast

50

Figure 4.3 shows an example where the input image contains a license plate shadow on
it. It is very difficult for most of the existing methods discussed in the literatures while
there is shadow on the license plate. This example shows that our technique is very
effective in such cases.

a) Input Image

b) Output Image

51

Figure 4.3: License Plate Detection While Shadows on the Plate

Figure 4.4 shows a detected license plate by using the proposed technique where there
is dust and dirt on the license plate. It is almost impossible by the methods discussed in
the literatures but as we can see our technique is much more effective here.

a) Input Image

b) Output Image

Figure 4.4: Effects on Dirty and Dusty License Plates

52

Figure 4.5: a.b.c.d.e.f shows examples of detected license plates of some blurred input
image. Most of the existing techniques discussed in the literatures suffer from the fact
that that in most cases they are unable to detect license plates of blurred input image.
Image enhancement is required for detection of license plates from blurry images. This
example shows that our technique does not require image enhancement of input images
for blurriness, although image enhancement would increase the performance of the
technique.

a) Input and Output Image

53

b) Input and Output Image

54

c) Input and Output Image

55

d) Input and Output Image

56

e) Input and Output Image

57

f) Input and Output Image

Figure 4.5: Effects on Blurred Image

58

Figure 4.6shows that our proposed technique is capable of multiple license plate
detection from a single input image. Figure 4.6.a shows a sample input image
and the detected license plate. Figure 4.6.bhas the same input image but with
some extra license plates, and the output shows extra license plates detected with
the original one.

 Figure 4.6: a)Original Image and the Detected License Plate

59

Figure 4.6: b)Image with Multiple License Plates and the Detected Plates

Figure 4.6: Examples of Multiple License Plates Detection

60

4.2.3 Performance and Time Comparison with Other Systems

Table 4.1 shows license plate detection performance and minimum resolution of various

methods in several literatures.

Table 4.1: Plate Detection Performance and Minimum Plate Resolution

References Size Success Rate
S. Kim [10] 65x20 96.50%
P. Comelli [27] 100x25 84.20%
E. Kayafas [28] 61x20 87.80%
Kahraman [29] 173x37 98%
K. I. Kim [30] 79x38 ~90%
N. Zimic [31] 100x25 97%
D. Yan [32] 100x20 87%
R. S. Venema [33] 100x25 75.40%
T. Naito [34] 160x80 97%
D. Llorens [35] 200x40 88%
Proposed
Technique

15x5 98.60

Table 4.1 shows that our method is capable of detecting very much minimum plate size
with higher accuracy than that of other researchers.

Table 4.2 shows time required for different methods.

Table 4.2: Elapsed time using different methods for test (In Milliseconds)

Detection
Method

Generic
Algorithm

Artificial
Neural

Network

Fuzzy
C-

means

Support
Vector

Machine

Method
of

Feature
Salience

Method
applying

FRIT

Computational
Cost

712 1026 878 903 612 510

Table 4.2 shows that computational time for LPD using our method is lower than that of
other researchers and it is also in real time.

Table 4.3 shows that summary of the field test results

61

Table 4.3: Summary of the field test
Case Working Condition Result

1 Night Succeed

2 Day Succeed

3 Moving Car Succeed

From the above result as shown in table 4.3 we can see that our proposed method can
successfully detect the license plate in various working condition.

4.3 Chapter Summary

In this chapter we have represented the analysis and their results of the proposed

techniques in a variety of fashions. We have shown that the proposed technique can

detect plates of different sizes, different illumination conditions, rotations, scales,

shadows, and the real world noise. These are obviously the plus points among the

existing AVNPR systems discussed in the literatures. We had compared our technique

with several others of different methods in terms of performance and computational

costs, and found that our proposed technique outperforms most of them. Finally we have

shown the simulation based results under various conditions and showed how our

proposed technique can beat the other existing techniques.

62

Chapter 5

Conclusion

5. Conclusion

Automatic vehicle number plate recognition (AVNPR) is plays an important role in

intelligent transportation system and it has huge number of practical applications such as

automatic toll collections, parking fee payment, detection of vehicle crossing speed

limits and thereby reducing road accidents etc. LPD is one of the most crucial

components of total solution of AVNPR. Literatures have been extensively reviewed

and found the challenges in this area due to the varying size, shape and position

(rotation) of the plate, varying illumination condition, varying color, type and noises in

the image. Again the image may be blurred which is a common scenario for motion

compensated pictures. Obstacles such as shadows, dirt and dust may make the system

too difficult to detect the license plate. This thesis presents FRIT based effective LPD

system that can overcome all of these limitations. Experimental results over a number of

benchmark images presented in this thesis shows that it can process the computational

work for license plate detection in real time. Detection accuracy of the research work is

also compared with that of others researches where it is shown that our work

outperforms all the existing techniques. A field test has also been conducted to prove the

proper functionality of the proposed technique and test the performance, which shows

that our work is also effective in this case.

Suggestion for Future Work:

The author recommends the following suggestions for the enhancement of the research

work presented in this thesis.

Character recognition:-Next part of the License plate detection is the character

recognition. An efficient algorithm of character recognition can take place to find

numbers written in the license plate.

63

FPGA Implementation: The technique for LPD presented in this thesis can be

implemented in FPGA platform for further improvement of the speed and other

performance parameters.

64

References

[1] M. Hamid, K. Shohreh, D. Faezeh, D. Fatemeh, “An Efficient Features–Based

License PlateLocalization Metho”, 18th International Conference on Pattern

Recognition, 2006.

[2] A.E. Christos-Nikolaos, A.E. Ioannis and others, “License Plate Recognition

from Still Images and Video Sequences: A Survey“, IEEE Transactions on

Intelligent Transportation Systems, vol. l.9, no. 3, pp. 377-391 2008.

[3] S. A. Boroujeni, “Design and implementation of automatic system of image

recording of vehicles license plate“, Master’s thesis, Amirkabir University of

Technology(Tehran Polytechnic), 2000.

[4] B. Hongliang and L. Changping, “A hybrid license plate extraction method

based on edge statistics and morphology“, 17th International Conference on

Pattern Recognition, 2004.

[5] M. Sarfraz, M. J. Ahmed, and S. A. Ghazi, “Saudi Arabian license plate

recognition system”, International Conference on Geometric Modeling and

Graphics, 2003.

[6] J. W. Hsieh, S. H. Yu, and Y. S. Chen, “Morphology based license plate

detection from complex scenes”, 16th International Conference On Pattern

Recognition, 2002.

[7] F. Mart´ın, M. Garc´ıa, and J. L. Alba, “New methods for automatic reading of

vlps (vehicle license plates”, Signal Processing Patten Recognition and

Application, 2002.

[8] V. Kamat and S. Ganesan, “An efficient implementation of hough transform

for detecting vehicle lcense plate using dsp’s”, 1st IEEE Real-Time Technology

and Applications Symposium, 1995.

65

[9] V. Shapiro, D. Dimov, S. Bonchev, V. Velichkov, and G. Gluhchev, “Adaptive

license plate imageextraction”, International Conference on Computer Systems

and Technologies, 2003.

[10] S. Kim, D. Kim, Y. Ryu, and G. Kim, “A robust license-plate extraction

method under complex image conditions”, 16th International Conference on

Pattern Recognition, 2002.

[11] Y. Cui and Q. Huang, “Automatic license extraction from moving vehicles”,

International conference on Image Processing, 1997.

[12] W. Wang, O. Jiang, Zhou, X, W. Wan, ”Car license plate detection based on

MSER”, International Conference on Consumer Electronics, Communications

and Networks, pp. 3973 – 3976, 2011.

[13] L. Bo, T. Bin,Y. Qingming and W. Kunfeng, “A vehicle license plate

recognition system based on analysis of maximally stable extremal regions”,

9th IEEE International Conference on Networking, Sensing and Control, 2012.

[14] G. Divya andR. Kumudha,“License Plate Recognition- A Template Matching

Method”, International Journal of Engineering Research and Applications

(IJERA) vol. 3, no. 2, pp.1240-1245, 2013.

[15] S. Dheeraj andM. Ajay,“Vehicle Licence Plate Recognition Using Gaussian

Hermite Moments and Wavelets”, International Journal of Advanced Research

in Computer Science and Software Engineering. Vol. 3, no 7, 2013.

[16] C. Dong, G. Dongbing, G. Hua and S. Junxi, ”License plate detection algorithm

based on gentle AdaBoost algorithm with a cascade structure”, IEEE

International Conference on Robotics and Biometrics, 2009.

[17] L. Liang, H. Youngjoon and H. Hernsoo, ”License plate detection method using

vertical boundary pairs and geometric relationships”, Computer Engineering

and Technology (ICCET), 2010.

66

[18] W. Ying, L. Yue, Y. Jingqi, Z. Zhenyu, D. von andS. Pengfei, ”An Algorithm

for License Plate Recognition Applied to Intelligent Transportation System”,

IEEE Transactions on Intelligent Transportation Systems, vol.12 , no. 3, p.830-

845, 2011.

[19] Stephen Johnson, “Stephen Johnson on Digital Photography”, 16th

International Conference on Pattern Recognition, 1999.

[20] Dwayne Phillips, “Image Processing in C Analyzing and Enhancing Digital

Image”, 14th International Conference on Pattern Recognition, 1997.

[21] Candes E J, Donoho D L, “Ridgelets: a key to higher-dimensional

intermittency”, Philos Trans R Soc A-Math PhysEngSci, 1999.

[22] Starck J -L, Candes E J, Donoho D L. “The curvelet transform for image de-

noising”, IEEE Trans on Image Process, 2002.

[23] Minh, N. Do and Vetterli, M., “The Finite Ridgelet Transform for Image

Representation”, IEEE Transactions on image processing, vol.12, no.1, 2003.

[24] Matus F, Flusser J. “Image representation via a finite Radon transform”, IEEE

Trans Pattern Anal Mach Intell, 1993.

[25] Liu Y.X, Peng Y.H., QuHuaiJing& Yin Yong. “Energy-based adaptive

orthogonal FRIT and itsapplication in image denoising”, China, 2012.

[26] Xiao X K, Li S F. “Edge-preserving image denoising method using

Curvelettransform”, J Commun(in Chinese), pp:9―15, 2004.

[27] P. Comelli, P. Ferragina,M. N. Granieri, and F. Stabile, “Optical recognition of

motor vehiclelicense plates,” IEEE Trans. Veh. Technol., vol. 44, no. 4, pp.

790–799, Nov. 1995.

[28] C. Anagnostopoulos, I. Anagnostopoulos, E. Kayafas, and V. Loumos, “A

license plate recognition system for intelligent transportation system

67

applications,” IEEE Trans. Intel. Transp. Syst., vol. 7, no. 3, pp. 377–392, Sep.

2006.

[29] Kahraman, F., Kurt, B., Gökmen, M., “License Plate Character Segmentation

Based on the Gabor Transform and Vector Quantization”, vol. 2869, New

York: Springer-Verlag, pp. 381–388, 2003.

[30] K. I. Kim, K. Jung, and J. H. Kim, “Color Texture-Based Object Detection:An

Application to LicensePlate Localization”, New York: Springer-Verlag, vol.

2388, pp. 293–309, 2002.

[31] N. Zimic, J. Ficzko, M. Mraz, and J. Virant, “The fuzzy logic approach to the

car number plate locating problem,” in Proc. IIS, Grand Bahama Island, The

Bahamas, , pp. 227–230, 1997.

[32] D. Yan, M. Hongqing, L. Jilin, and L. Langang, “A high performance license

plate recognition system based on the web technique,” in Proc. Conf. Intell.

Transp. Syst, pp. 325–329, 2001.

[33] J. A. G. Nijhuis, M. H. terBrugge, K. A. Helmholt, J. P. W. Pluim, L.

Spaanenburg, R. S. Venema,and M. A.Westenberg, “Car license plate

recognition with neural networks and fuzzy logic,” in Proc. IEEE Int. Conf.

Neural Netw, vol. 5, pp. 2232–2236, 1995.

[34] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, and S. Yamamoto, “Robust

license-plate recognition method for passing vehicles under outside

environment,” IEEE Trans. Veh.Technol., vol. 49, no.6, pp. 2309–2319, Nov.

2000.

[35] D. Llorens, A. Marzal, V. Palazon, and J. M. Vilar, “Car License Plates

Extraction and Recognition Based on Connected Components Analysis and

HMM Decoding”, New York: Springer-Verlag, vol. 3522, pp. 571–578, 2005.

68

APPENDIX

MATLAB Codes:

/***/

avnpr_final_a_v4.m

%% FILE List
% avnpr_final_a_v4.m
% frito_avnpr.m
% process_ri_row.col.m
% ifrito_avnpr.m
% calculate_histo.m
% find_cutoff_point.m
% erode_imrecs.m
% mask_erode_imrecs3.m
% mask_erode_imrecs.m
% find_rectangle.m
% process_main_image2.m
% process_main_image3.m
% frat_frito_avnpr.m
% isprime.c
% mean_frito_avnpr.m
% isdyadic_frito_avnpr.m
% bestdir_frat_frito_avnpr.m
% angle_bestdir_frat_frito_avnpr.m
% fratc.c
% ifratc.c
% dwtmode_frito_avnpr.m
% wavedecc_frito_avnpr.m
% waverecc_ifrito_avnpr.m
% ifrat_ifrito_avnpr.m
%% Image acquisition
%%%

%%
%%%%->>>>>100,7,9,11,15,1,2,12,10
% myImg3 = imread('Images/100.JPG');%****
myImg3 = imread('Images/100 (1).JPG');%****
%%%

%%%
%%%%->>>>>200,1,2,18,13,15,9,5
% myImg3 = imread('Images/200.jpg');%****
% myImg3 = imread('Images/200 (1).jpg');
%%%

%%%

%%%
%%%%->>>>>4,4.2,4.3,4.4,4.5,

5,8,8.2,12,12.2,12.3,12.4,12.5,15,16,17,23*,26,26.2,27,28,30,31,32,34,3

5,37,38,42,45,46,49,50,51,53,54,55*,

69

%%%%-

>>>>>57,58,59,60,61,62,64,65,68,70,71,73,74,79,80,81,82,84,48.2*,75.2*,

6,10,11,76,78,600, 21.2, 21.3,101.2*,21*,48*,75*,85,101*,
% myImg3 = imread('Images/600.jpg');
% myImg3 = imread('Images/600 (78).JPG');
% myImg3 = imread('Images/600 (100).BMP');
% myImg3 = imread('Images/600 (101).BMP');
% myImg3 = imread('Images/600 (101.2).BMP');
%%%

%%%

%%%
%%%%->>>>>1,2,3,5*,5.2,11*,11.2,13
% myImg3 = imread('Images/700 (13).jpg');
%%%

%%%

%%%
figure(1),
imagesc(myImg3);%,colormap('gray');
title('Input Image');
%
%
%% Image Processing
[p,q,r] = size(myImg3);
if((p~=257) || (q~=257))
% display('Image size is not 257x257')
 p=257;
 q=257;
 myImg4 = imresize(myImg3, [p q]);
% display('Image size is changes to 257x257')
else
 myImg4 = myImg3;
% display('Image size is 257x257')
end;

if (ndims(myImg4) == 3) % 'ndims' built in function
 R_myImg4 = myImg4(:,:,1);
 G_myImg4 = myImg4(:,:,2);
 B_myImg4 = myImg4(:,:,3);
 myImg2 = rgb2gray(myImg4); % 0.2989 * R + 0.5870 * G + 0.1140 * B
 myImg1 = double(myImg2);
 im3 = myImg1/255;
elseif (ndims(myImg4) == 2)
 myImg2 = myImg4;
 myImg1 = double(myImg4);
 im3 = myImg1/255;
end;
for j_row=1:1:257
 for i_col=1:1:257
 if (im3(j_row,i_col)>=1)
 im3(j_row,i_col)=1;
 end;
 if (im3(j_row,i_col)<=0)
 im3(j_row,i_col)=0;
 end;

70

 end;
end;
%
im = im3;
figure(2),%**

imagesc(im, [0,1]), colormap('gray'),
title('Converted Gray Image');
%% Wavelet parameters FRITO
wname = 'haar';
maxR = 258;
DWTMODE = 'zpd';
% 'zpd' , 'Zero Padding'
% {'sym','symh'} , 'Symmetrization (half-point)'
% 'symw' , 'Symmetrization (whole-point)'
% {'asym','asymh'} , 'Antisymmetrization (half-point)'
% 'asymw' , 'Antisymmetrization (whole-point)'
% 'sp0' , 'Smooth Padding of order 0'
% {'spd','sp1'} , 'Smooth Padding of order 1'
% 'ppd' , 'Periodized Padding'
% 'per' , 'Periodization'
%
%
%% FRITO >>>>> FRITO >>>>> FRITO >>>>> FRITO >>>>> FRITO >>>>> FRITO

>>>>> FRITO >>>>> FRITO >>>>> FRITO >>>>> FRITO >>>>> FRITO >>>>>
%***111111111111111111111
%***
[ri_fritm, l_fritm, m_fritm] = frito_avnpr(im,wname,DWTMODE);
[ri_row,ri_col] = size(ri_fritm);
process_ri_row_col_flag = 1;
tr = 0.0500;
tc = 0.0500;
G=1;
r_m=1;
c_m=1;
r_start = 1;
r_end = ri_row;
c_start = 1;
c_end = ri_col-1;
[ri_fritm,~,~,~,~,~,~] =

process_ri_row_col(ri_fritm,ri_row,ri_col,process_ri_row_col_flag,tr,tc

,G,r_m,c_m,r_start,r_end,c_start,c_end);
%
%% IFRITO >>>>> IFRITO >>>>> IFRITO >>>>> IFRITO >>>>> IFRITO >>>>>

IFRITO >>>>> IFRITO >>>>> IFRITO >>>>> IFRITO >>>>> IFRITO >>>>> IFRITO

>>>>>
if(m_fritm >= 100)
 m_fritm2 = 150;
else
 m_fritm2=m_fritm;
end;
imrec_frito2 = ifrito_avnpr(ri_fritm, l_fritm, m_fritm, wname,DWTMODE);

71

%% IMRECFRITO >>>>> IMRECFRITO >>>>> IMRECFRITO >>>>> IMRECFRITO >>>>>

IMRECFRITO >>>>> IMRECFRITO >>>>> IMRECFRITO >>>>> IMRECFRITO >>>>>

IMRECFRITO
%***44444444444444444

4444444444444444444444444444
% making [0,255]
im3 = im3.*255;
imrec_frito2 = imrec_frito2.*255;
% Rounding and making integer - [0,255]
im3 = round(im3);
imrec_frito2 = round(imrec_frito2);
% Limitting - [0,255]
for j_row=1:1:257
 for i_col=1:1:257
 if(im3(j_row,i_col)>=255)
 im3(j_row,i_col) = 255;
 end;
 if(im3(j_row,i_col)<=0)
 im3(j_row,i_col) = 0;
 end;
 end;
end;
for j_row=1:1:257
 for i_col=1:1:257
 if(imrec_frito2(j_row,i_col)>=255)
 imrec_frito2(j_row,i_col) = 255;
 end;
 if(imrec_frito2(j_row,i_col)<=0)
 imrec_frito2(j_row,i_col) = 0;
 end;
 end;
end;

figure(3),%**

imagesc(imrec_frito2, [0,255]), colormap('gray'),
title('Image After Applying FRIT');

% Thresholding -

>>>

>>>
set_value1 = 255;
set_value2 = 128;
set_value3 = 0;
FORGET_IT1 = -50;
image_row = 257;
image_col = 257;
%find cutoff point-

>>
hist_imrecfrito2=calculate_histo(imrec_frito2);
percent_cutoff_point1 = 0.0500;
percent_cutoff_point2 = 0.9350;
% percent_cutoff_point1 = 0.01199;
% percent_cutoff_point2 = 0.8700;

72

cutoff_point1 =

find_cutoff_point(imrec_frito2,percent_cutoff_point1,image_row,image_co

l);
cutoff_point2 =

find_cutoff_point(imrec_frito2,percent_cutoff_point2,image_row,image_co

l);
for j_row=1:1:257
 for i_col=1:1:257
 if ((imrec_frito2(j_row,i_col) >= cutoff_point1) &&

(imrec_frito2(j_row,i_col) <= cutoff_point2))
 imrec_frito2(j_row,i_col) = set_value3;
 else
 imrec_frito2(j_row,i_col) = set_value1;
 end;
 end;
end;

for j_row=1:1:257
 for i_col=1:1:257
 if((j_row <= 30) || (j_row >= 227))
% if((j_row <= 15) || (j_row >= 242))
 imrec_frito2(j_row,i_col) = 0;
 end;
 if((i_col <= 30) || (i_col >= 227))
% if((i_col <= 15) || (i_col >= 242))
 imrec_frito2(j_row,i_col) = 0;
 end;
 end;
end;
% H = fspecial('unsharp',0.5);
% H = fspecial('gaussian',[3 3],0.3);
% sharpened = imfilter(B,H,'replicate');
% % B=medfilt2(sharpened,[3 3]);
% SE = strel('rectangle',[40 30]);
% BW2 = imerode(imrec_frito98,SE);
% BW3 = imdilate(BW2,SE);

figure(4),%**

imagesc(imrec_frito2, [0,255]), colormap('gray'),
title('Thresholded Image');

%Thresholded Eroded Image -

>>>

>>
erode_value = set_value1; % 255
SE = 8;
 % SE:8-> 9x9->max_erode_threshold = 80
 % 0 0 0 -> 1st check row wise
 % 0 1 0 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
erode_threshold = 70;
imrec_frito3 =

erode_imrecs(imrec_frito2,erode_value,erode_threshold,SE,image_row,imag

e_col);% imrecFRITO3: ErodedImage

73

figure(5),%**

imagesc(imrec_frito3, [0,255]), colormap('gray'),
title('Performing Morphological Operation-1');

% Masked Dilated Image-

>>>

>>
erode_value = set_value3;
SE = 18;%5x5
imrec_frito3_2 =

mask_erode_imrecs3(imrec_frito3,erode_value,SE,image_row,image_col);%

imrecFRITO3:

% Masked Eroded Image Horizontal-

>>>

>>
erode_value = set_value1;
SE = 6;%mask = [1 1 1 1 1 1 1];
imrec_frito9_4_1 =

mask_erode_imrecs(imrec_frito3_2,erode_value,SE,image_row,image_col);%

imrecFRITO3:

% Masked Eroded Image Vertical-

>>>

>>
erode_value = set_value1;
SE =7;%mask = [1;1;1;1;1;1;1];
imrec_frito9_4_2 =

mask_erode_imrecs(imrec_frito9_4_1,erode_value,SE,image_row,image_col);

% imrecFRITO3:

% Thresholded Erosion-

>>>

>>
erode_value = set_value1; % 255
SE = 8;
erode_threshold = 50;
imrec_frito9_5 =

erode_imrecs(imrec_frito9_4_2,erode_value,erode_threshold,SE,image_row,

image_col);% imrecFRITO3: ErodedImage
figure(6),%**

imagesc(imrec_frito9_5, [0,255]), colormap('gray'),
title('Performing Morphological Operation-2');

74

% Find Minimum Width Rectangle-

>>>

>>
check_value = set_value1;
write_value = set_value1;
width = 21;
height = 7;
imrec_frito9_5_2 =

find_rectangle(imrec_frito9_5,image_row,image_col,check_value,write_val

ue,width,height);

% [cc_imrec_frito9_5,num_ccimrec_frito9_5]=bwlabel(imrec_frito9_5,8);

% Masked Dilation Horizontal-

>>>

>>
erode_value = 0;
SE = 12;% 1x31
imrec_frito9_6 =

mask_erode_imrecs3(imrec_frito9_5_2,erode_value,SE,image_row,image_col)

;% imrecFRITO3:

% Masked Dilation Vertical-

>>>

>>
erode_value = 0;
% SE =20;%mask = [1;1;1;1;1];
% SE = 26;%mask = [1;1;1;1;1;1];
% SE = 7;%mask = [1;1;1;1;1;1;1];
SE = 22;%mask = [1;1;1;1;1;1;1;1;1]
% SE = 32;%11x1
imrec_frito9_7 =

mask_erode_imrecs3(imrec_frito9_6,erode_value,SE,image_row,image_col);%

imrecFRITO3:
figure(7),%**

imagesc(imrec_frito9_7, [0,255]), colormap('gray'),
title('Performing Morphological Operation-3');

% Merge into main image-

>>>

>>
imrec_frito20 = imrec_frito9_7;
% nchk_value = set_value1;
chk_value = set_value3;
wrt_value = FORGET_IT1;
enc_flag = 0;
enc=10;

75

th_flag = 0;
th_val3=65;
val3=0;
th_val4=66;
val4=255;
nth_flag=0;
nth_val5=45;
val5=0;
nth_val6=46;
val6=255;
img1 =

process_main_image2(imrec_frito20,im3,chk_value,wrt_value,image_row,ima

ge_col,enc_flag,enc,th_flag,th_val3,val3,th_val4,val4,nth_flag,nth_val5

,val5,nth_val6,val6);
% img1=img1.*(3/2);
figure(8),%**

imagesc(img1, [0,255]), colormap('gray'),
title('Output Image');

/***/

frito_avnpr.m

function [r, l, m] = frito_avnpr(a, wname,DWTMODE)
% tic
% mlock;
% A_AA = 100000000;
% FRITO Orthonormal finite ridgelet transform
% [r, l, m] = frito(a, wname)
%
% Input:
% a: image matrix of size P by P, P is a prime number
% wname: wavelet name
%
% Output:
% r: ridgelet coefficients in a (P-1) by (P+1) matrix,
% one column for each direction
% l: structure of the wavelet decomposition that is
% needed for reconstruction
% m: normalized mean value of the image
%
% Note:
% This implement the orthonormal version of finite ridgelet
% transform. The result (P-1)x(P+1) coefficients in r together
% with m makes up total of exactly PxP coefficients.
%
% However there is a restriction on the size P: P+1 must be dyadic
% number (the method can easily be extended for P = 2^n - m, though).
% The typical size of the input image for FRITO is 257 by 257.
%
% The wavelet transform takes the maximum posible number of

76

% decomposition levels.
%
% See also: IFRITO, FRIT
% load im2;
% a = im2;
% wname ='db4';
if ndims(a) ~= 2 % 'ndims' built in function
 error('Input must be a matrix of 2 dimensions');
end

[p, q] = size(a); % 'size' is a built-in function.
if (p ~= q) | ~isprime(p)
 error('Input must be a P by P matrix, P is a prime number')
end

% Subtract the DC component
m = mean_frito_avnpr(a(:));
a = a - m;
% Normalize for unit norm
m = p * m;

% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% a = a.*(3/2);
% for j_row=1:1:257
% for i_col=1:1:257
% if (a(j_row,i_col)>=1)
% a(j_row,i_col)=1;
% end;
% end;
% end;
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test

% Finite Radon transform
ra = frat_frito_avnpr(a);
% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% ri_row = 256;
% ri_col = 258;
% [ra,~,~,~,~,~,~] = process_ri_row_col(ra,ri_row,ri_col);
% [ra,~,~,~] = process_ri_col(ra,ri_row,ri_col);
% ra = ra.*2;
% ra = ra.*(5/4);
% cutoff_point_ra_frito_1 = find_cutoff_point_ri(ra,0.9999,256,258);%

this is greater than the below
% cutoff_point_ra_frito_2 = find_cutoff_point(ra,0.9999,256,258);
% cutoff_point_ra_mean =

(cutoff_point_ra_frito_1+cutoff_point_ra_frito_2)/2;
% for j_row=1:1:257
% for i_col=1:1:258
% if((ra(j_row,i_col) <= -cutoff_point_ra_mean) ||

(ra(j_row,i_col) >= cutoff_point_ra_mean))
% ra(j_row,i_col) = 0;
% end;

77

% end;
% end;
% for j_row=1:1:257
% for i_col=1:1:258
% % if ((ra(j_row,i_col) >= 200) || (ra(j_row,i_col) >= 200))
% % ra(j_row,i_col) = 0;
% % end;
% % if ((ra(j_row,i_col) >= 0) && (ra(j_row,i_col) <= 200))
% % ra(j_row,i_col) = 0;
% % end;
% if((i_col >= 129) && (i_col <= 500))
% ra(j_row,i_col) = 0;
% end;
% end;
% end;
%

figure(100),%**

% hist(ra),
% title('Histogram: raORIGINAL');
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test

% 1D wavelet transform at each column of the Radon transform
% -> "Ridgelets". Care is taken for the non-dyadic size to ensure
% orthonormal condition

if isdyadic_frito_avnpr(p - 1)
 % Number of wavelet decomposition levels
 % n = log2(p - 1); % 'log2' is a built-in function.
 n=8;
 % Make sure using the periodic extension mode
 st = dwtmode_frito_avnpr('status', 'nodisp');
 if ~strcmp(st, DWTMODE) % 'strcmp' is a built-in function.

 dwtmode_frito_avnpr(DWTMODE);
 end

 % Take wavelet transform at each direction except the last

coefficients
 [r, l] = wavedecc_frito_avnpr(ra(1:end-1, :), n, wname);

 % Incooperate the Radon coefficient to the waveklet approx. coeff
 r(1, :) = (r(1, :) - sqrt(p-1) * ra(end, :)) / sqrt(p); % 'sqrt' is

a built-in function.
% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% r = r.*2;
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test
else
 error('Have not support this size of image yet!');
end
% toc

78

/***/

process_ri_row.col.m

% function

[ri2,row_max1,col_max1,row_mean_geometric,col_mean_geometric] =

process_ri_row_col(ri,row,col)
function

[ri2,row_max1,col_max1,row_mean_geometric,col_mean_geometric,row_mean_s

ampling,col_mean_sampling] =

process_ri_row_col(ri,row,col,flag,TR,TC,G,r,c,r_start,r_end,c_start,c_

end)
Ro_W = row;
Co_L = col;
ri2 = ri;
row_mean_geometric = zeros(Ro_W,1);
col_mean_geometric = zeros(1,Co_L);
row_mean_sampling = zeros(Ro_W,1);
col_mean_sampling = zeros(1,Co_L);

%%
row_max1 = zeros(Ro_W,1);
for j=1:1:Ro_W
 row_max1(j,1) = max(ri2(j,:));
end;
col_max1 = zeros(1,Co_L);
for i=1:1:Co_L
 col_max1(1,i) = max(ri2(:,i));
end;

%%
for j=1:1:Ro_W
 row_mean_geometric(j,1) = (sum(abs(ri2(j,:))))/Co_L;
end;
for i=1:1:Co_L
 col_mean_geometric(1,i) = (sum(abs(ri2(:,i))))/Ro_W;
end;
for j=1:1:Ro_W
 row_mean_sampling(j,1) = (sum(ri2(j,:)))/Co_L;
end;
for i=1:1:Co_L
 col_mean_sampling(1,i) = (sum(ri2(:,i)))/Ro_W;
end;

%%
if(flag == 1)

79

 tr = TR;
else
 tr = 0;
end;
if(flag == 1)
 tc = TC;
else
 tc = 0;
end;
if(r==1)
for j=r_start:1:r_end
 for i=c_start:1:c_end
% if(i~=129)
 if(G==1)
 if((abs(ri(j,i))) > (row_mean_geometric(j,1)+tr))
% if((abs(ri(j,i))) >=

(row_mean_geometric(j,1)+var_ri2(1,i)))

 ri2(j,i) = 0;
% ri2(j,i) = ri2(j,i);
 end;
 else
 if((abs(ri(j,i))) < (row_mean_geometric(j,1)+tr))
% if((abs(ri(j,i))) <=

(row_mean_geometric(j,1)+var_ri2(1,i)))

 ri2(j,i) = 0;
% ri2(j,i) = ri2(j,i);
 end;
 end;
% end;
 end;
end;
end;
if(c==1)
for j=r_start:1:r_end
 for i=c_start:1:c_end
% if(i~=130)

 if(G==1)
 if((abs(ri(j,i))) > (col_mean_geometric(1,i)+tc))
% if((abs(ri(j,i))) >=

(var_ri2(1,i)+col_mean_geometric(1,i)))

 ri2(j,i) = 0;
% ri2(j,i) = ri2(j,i);
 end;
 else
 if((abs(ri(j,i))) < (col_mean_geometric(1,i)+tc))
% if((abs(ri(j,i))) <=

(var_ri2(1,i)+col_mean_geometric(1,i)))
 ri2(j,i) = 0;
% ri2(j,i) = ri2(j,i);
 end;
 end;

80

% end;
 end;
end;
end;

/***/

ifrito_avnpr.m

function a = ifrito_avnpr(r, l, m, wname,DWTMODE)
% IFRITO Inverse orthogonal finite ridgelet transform
% a = ifrito(r, l, m, wname)
%
% Input:
% r: ridgelet coefficients in a (P-1) by (P+1) matrix,
% one column for each direction
% l: structure of the wavelet decomposition that is
% needed for reconstruction
% m: normalized mean value of the image
% wname: wavelet name
%
% Output:
% a: reconstructed image
%
% See also: FRITO

p = size(r, 2) - 1; % 'size'is a built-in function.
if (size(r, 1) ~= (p - 1)) | ~isprime(p)
 error('Ridgelet coefficients must be in a (P-1) by (P+1) matrix.');
end

% Back to Radon domain by inverting the wavelet transform.
% By definition, Radon coefficients should have zero mean
% at each direction

ra = zeros(p, p + 1); % 'zeros'is a built-in function.

if isdyadic_frito_avnpr(p - 1)
 % Number of wavelet decomposition levels
% n = log2(p - 1); % 'log2'is a built-in function.
 n=8;
 % Recorrect the wavelet approx. cofficients
 r(1, :) = sqrt(p) * r(1, :) / p; % 'sqrt'is a built-in function.

 % Make sure using the periodic extension mode
 st = dwtmode_frito_avnpr('status', 'nodisp');
 if ~strcmp(st, DWTMODE) % 'strcmp'is a built-in function.
 dwtmode_frito_avnpr(DWTMODE);
 end

81

 % Inverse the wavelet transform
 ra(1:end-1, :) = waverecc_ifrito_avnpr(r, l, wname);

 % Compute the last Radon coefficients
 ra(end, :) = -sqrt(p-1) * r(1, :); % 'sqrt'is a built-in function.

else
 error('Have not support this size of image yet!');
end

% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% ra = ra.*(1/2);
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test

% Inverse the finite Radon transform with the mean corrected
% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% ra = ra.*(2/3);
% ra = ra.*(5/4);
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test
a = ifrat_ifrito_avnpr(ra, 0);

% Add back the DC component ->>>>>>>>>>> commented by myself
a = a + m / (size(r, 2) - 1); % 'sqrt'is a built-in function.

% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST% TEST%

TEST% TEST% TEST% TEST% TEST% TEST
% a = a.*(2/3);
% end of test% end of test% end of test% end of test% end of test% end

of test% end of test% end of test

/***/

calculate_histo.m

%% Calculate histogram of imrec_frito2/3
function histogram_calculated = calculate_histo(input_imrec)
%
p = size(input_imrec, 1); % 'size' is a built-in function.
q = size(input_imrec, 2); % 'size' is a built-in function.
%
histogram_calculated = zeros(p,1);
% input_imrec = input_imrec * 255;
% input_imrec = round(input_imrec);
% input_imrec = uint8(input_imrec);

% loop over i ROWS of input image
for i_row_calc_hist_loop=1:1:p
 % loop over j COLS of input image
 for j_col_calc_hist_loop=1:1:q
 k = input_imrec(i_row_calc_hist_loop,j_col_calc_hist_loop);

82

 if(k>=0)
 k = round(k);
 k = uint8(k);
 if (k == 0)
 k = 1;
 end;
 histogram_calculated(k) = (histogram_calculated(k) + 1);
 end;
 % end loop over j
 end;
% end loop over i
end;
%

/***/

find_cutoff_point.m

% /***
% *
% * find_cutoff_point(..
% *
% * This function looks at a histogram
% * and sets a cuttoff point at a given
% * percentage of pixels.
% * For example, if percent=0.6, you
% * start at 0 in the histogram and count
% * up until you've hit 60% of the pixels.
% * Then you stop and return that pixel
% * value.
% *
% **/

function cutoff_value = find_cutoff_point(input, percent, rows, cols)

 double fsum;
 double sum_div;
 int i;

 summ = 0;

 lr = rows;
 lc = cols;
 num = lr*lc;
 fd = num;

 GRAY_LEVELS = 255;
 cutoff = zeros(256,1);

for j=0:1:255
 cutoff(j+1,1) = j;
end;

83

 histogram = calculate_histo(input);

 i = 0;
 looking = 1;

 while looking
 fsum = summ;
 sum_div = fsum/fd;
 if(sum_div >= percent)
 looking = 0;
 else
 i = i+1;
 summ = summ + histogram(i,:);
 end;
 end; % /* ends while looking */

 if(i >= (GRAY_LEVELS+1))
 i = GRAY_LEVELS;
 end;
 if(i == 0)
 i = 1;
 end;
 cutoff_value = cutoff(i,1);
% } /* ends find_cutoff_point */

/***/

erode_imrecs.m

function output = erode_imrecs(input,value,threshold,SE,rows,cols)
% This function (erode_imrecs) erodes pixels. If a pixel
% equals erode_value and has more than or equal to erode_threshold
% neighbors equal to 0, then set that
% pixel in the output to 0.
output = input;
countings = 0;
se = SE;

switch(se)

 case 1
 % SE:1-> max_erode_threshold = 8
 % 0 0 0 -> 1st check row wise
 % 0 1 0 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
 for i=3:1:rows-3
 for j=3:1:cols-3
 if(input(i,j) == value)
 countings = 0;
 for a=-1:1:1
 for b=-1:1:1
 if(input(i+a,j+b) == 0)
 countings = countings+1;

84

 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 2
 % SE:2-> max_erode_threshold = 8
 % 0 0 0 -> 1st check row wise
 % 1 0 0 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
 for i=3:1:rows-3
 for j=3:1:cols-3
 if(input(i,j) == value)
 countings = 0;
 for a=-1:1:1
 for b=0:1:2
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 3
 % SE:3-> max_erode_threshold = 8
 % 0 0 0 -> 1st check row wise
 % 0 0 1 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
 for i=3:1:rows-3
 for j=3:1:cols-3
 if(input(i,j) == value)
 countings = 0;
 for a=-1:1:1
 for b=-2:1:0
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

85

 case 4
 % SE:4-> max_erode_threshold = 8
 % 0 0 0 -> 1st check row wise
 % 0 0 0 -> 2nd check row wise
 % 0 0 1 -> 3rd check row wise
 for i=3:1:rows-3
 for j=3:1:cols-3
 if(input(i,j) == value)
 countings = 0;
 for a=-2:1:0
 for b=-2:1:0
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 5
 % SE:5-> max_erode_threshold = 24
 % 0 0 0
 % 0 0 0
 % 0 0 0
 % 0 0 0 1 0 0 0
 % 0 0 0
 % 0 0 0
 % 0 0 0
 for i=3:1:rows-3
 for j=3:1:cols-3
 if(input(i,j) == value)
 countings = 0;
 for a=-3:1:3
 if(abs(a) == 3)
 for b=-3:3:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(abs(a) == 2)
 for b=-2:2:2
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(abs(a) == 1)
 for b=-1:1:1
 if(input(i+a,j+b) == 0)

86

 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(a == 0)
 for b=-3:1:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 6
 % SE:6-> max_erode_threshold = 40
 % 0 0 0 0 0 0 0
 % 0 0 0 0 0
 % 0 0 0 0 0
 % 0 0 0 1 0 0 0
 % 0 0 0 0 0
 % 0 0 0 0 0
 % 0 0 0 0 0 0 0
 for i=4:1:rows-4
 for j=4:1:cols-4
 if(input(i,j) == value)
 countings = 0;
 for a=-3:1:3
 if(abs(a) == 3)
 for b=-3:1:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(abs(a) == 2)
 for b=-2:2:2
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 for b=-3:6:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b

 end;
 if(abs(a) == 1)
 for b=-1:1:1

87

 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 for b=-3:6:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(a == 0)
 for b=-3:1:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 7
 % SE:7-> max_erode_threshold = 17
 % 0 0 0
 % 0 0 0
 % 0 0 1 0 0
 % 0 0 0
 % 0 0 0
 for i=4:1:rows-4
 for j=4:1:cols-4
 if(input(i,j) == value)
 countings = 0;
 for a=-2:1:2
 if(abs(a) == 2)
 for b=-2:2:2
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(abs(a) == 1)
 for b=-1:1:1
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end;
 if(a == 0)
 for b=-3:1:3
 if(input(i+a,j+b) == 0)
 countings = countings+1;

88

 end;
 end; % ends loop over b
 end;
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 8
 % SE:8-> 9x9->max_erode_threshold = 80
 % 0 0 0 -> 1st check row wise
 % 0 1 0 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
 for i=5:1:rows-5
 for j=5:1:cols-5
 if(input(i,j) == value)
 countings = 0;
 for a=-4:1:4
 for b=-4:1:4
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 9
 % SE:9-> max_erode_threshold = 9
 % 1 0 0 0 0 0 0 0 0 0
 for i=1:1:rows-4
 for j=1:1:cols-10
 if(input(i,j) == value)
 countings = 0;
 for b=0:1:9
 if(input(i,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 10

89

 % SE:10-> max_erode_threshold = 10
 % 0 0 0 0 0 1 0 0 0 0 0
 for i=1:1:rows
 for j=6:1:cols-6
 if(input(i,j) == value)
 countings = 0;
 for b=-5:1:5
 if(input(i,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 11
 % SE:11-> max_erode_threshold = 10
 % (0 0 0 0 0 1 0 0 0 0 0)'
 for i=1:1:cols
 for j=6:1:rows-6
 if(input(j,i) == value)
 countings = 0;
 for b=-5:1:5
 if(input(j+b,i) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(j,i) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 12
 % SE:12-> max_erode_threshold = 20
 % (0 0 0 0 0 1 0 0 0 0 0)'
 for i=1:1:cols
 for j=11:1:rows-11
 if(input(j,i) == value)
 countings = 0;
 for b=-10:1:10
 if(input(j+b,i) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(j,i) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

90

 case 14
 % SE = max_erode_threshold = 75
 %5x15
 for i=3:1:rows-3
 for j=8:1:cols-8
 if(input(i,j) == value)
 countings = 0;
 for a=-2:1:2
 for b=-7:1:7
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 15
 % SE = max_erode_threshold = 147
 %7x21
 for i=4:1:rows-4
 for j=11:1:cols-11
 if(input(i,j) == value)
 countings = 0;
 for a=-3:1:3
 for b=-10:1:10
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 16
 % SE:16-> max_erode_threshold = 20
 % (0 0 0 0 0 1 0 0 0 0 0)'
 for i=1:1:cols
 for j=11:1:rows-11
 if(input(j,i) == value)
 countings = 0;
 for b=-10:1:10
 if(input(j+b,i) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b

91

 end; % ends if the_image == value */
 if(countings >= threshold)
 output(j,i) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 case 17
 % SE:17-> max_erode_threshold = 20
 % (0 0 0 0 0 1 0 0 0 0 0)' R
 for i=4:1:cols-4
 for j=1:1:rows
 if(input(j,i) == value)
 countings = 0;
 for b=-3:1:3
 if(input(j,i+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(j,i) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

 otherwise
 % SE:1-> max_erode_threshold = 8
 % 0 0 0 -> 1st check row wise
 % 0 1 0 -> 2nd check row wise
 % 0 0 0 -> 3rd check row wise
 for i=11:1:rows-11
 for j=11:1:cols-11
 if(input(i,j) == value)
 countings = 0;
 for a=-1:1:1
 for b=-1:1:1
 if(input(i+a,j+b) == 0)
 countings = countings+1;
 end;
 end; % ends loop over b
 end; % ends loop over a
 end; % ends if the_image == value */
 if(countings >= threshold)
 output(i,j) = 0;
 end; %ends if count>threshold
 end; % ends loop over j */
 end; % ends loop over i */

end;
/***/

	Automated Vehicle License Plate Detection System Using FRIT Algorithm 1st part
	Automated Vehicle License Plate Detection System Using FRIT Algorithm 2nd part

