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ABSTRACT

System–on-a-chip (SoC) is now a trend in digital design because it gives a lot of advantages over 

discrete electronic based product such as higher speed, lower power consumption, smaller size, 

lower cost etc.  Reconfigurable platform such as FPGA, CPLD, and PLD etc. is now being used 

for designing and implementing SoC due to its low cost and high capacity and tremendous speed. 

In this project single chip Orthogonal Frequency Division Multiplexing (OFDM) transmitter and 

receiver has been designed using Verilog HDL. OFDM is a multi carrier modulation technique 

used in the various digital communication systems like 3G GSM, WiMAX, and LTE etc. The 

main advantage of this transmission technique is their robustness to channel fading in wireless 

communication environment. There are many applications of OFDM in communication such as 

digital audio Broadcasting, asynchronous digital subscriber line (ADSL) and high bit-rate digital 

subscriber line (HDSL) systems etc. In OFDM, two digital signal processing algorithm Fast 

Fourier transform (FFT) and Inverse Fast Fourier Transform (IFFT) are mainly involved. The 8-

points IFFT/FFT decimation-in-frequency (DIF) with radix-2 algorithm have been analyzed and 

incorporated in the design. The design has been simulated on the FPGA platform under Altera’s 

Quartus II environment. Simulation results show that each of the modules of the proposed 

OFDM is working as desired. The test output achieved from the simulation result of the OFDM 

has been verified with that of the MATLAB output.  
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Chapter 1

Introduction

1.1 Introduction

In this modern world wireless technology is becoming the main important things not only for 
communication but also in the field of industry day by day.  In early 1990, a mobile phone was 
still expensive for a single man but today we see it at every hand even most teenagers have. They 
use it not only for calls but also for various multimedia and educational purposes. It has become 
possible only for the technological development in the field of digital communication and 
applied electronics. Now a day’s most of the communication systems are digital like mobile 
communication, TV & Radio Communication, Wired and Wireless Internet, satellite 
communication and so on. Many of these communication systems use one of the most 
sophisticated techniques known as orthogonal frequency division multiplexing (OFDM) for its 
strong immunity against noise and other advantages.

1.2 Overview of Digital Communication System

Communication means to exchange information (voice, audio, video, text, picture etc.) from one 
place to another place. Communication system is regarding some things which involve these 
processes of information. The main parts of the communication system are transmitter, channel 
and receiver. 

Figure 1.1 Digital Communication Systems

Figure 1.1 shows the block diagram of a basic communication system. The source of information 
is the messages that are to be transmitted to the other end in the receiver.  A transmitter consists
of formatter, source encoder, channel encoder and modulator.  Firstly formatter transforms the 
signal from one type to another type suitable for the transmitter operation like transducer. Source 
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encoder is employed for an efficient representation of the information such that resources can be 
conserved.  The main purpose of the channel encoder is for error correction and detection. The 
aim is to increase the redundancy in the data to improve the reliability of transmission. A 
modulation process converts the base band signal into band pass signal before transmission. 
When the signal is transferring through media (wired or wireless) it faces various noises which 
attenuate the signal amplitude and distort signal phase.  Also, the signals transmitting through a 
channel also impaired by noise, which is assumed to be Gaussian distributed component.

In the receiver section, the opposite steps in the transmitter are occurred. The process in the 
receiving section is to be in such a way that same information could be recovered which is 
similar to the transmitted information.

1.3 Motivation of the project

Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique 
used in the various digital communication systems like 3G GSM, WiMAX, and LTE etc. OFDM 
is based on a mathematical process called Fast Fourier Transform (FFT) and Inverse Fast Fourier 
Transform (IFFT), which enables number of channels to overlap without losing their individual 
characteristics (orthogonality) [1]. This is a more efficient use of the spectrum and enables the 
channels to be processed at the receiver more efficiently. When the data is transmitted at high 
data/bit rates over mobile radio channels then the channels may cause severe fading of transmitted 
signal when passed through channel and inter symbol interference (ISI).The focus of the fourth 
generation (4G) mobile system is on supporting higher data rates. Orthogonal Frequency Division 
Multiplexing (OFDM) is one of the promising techniques for 4G to mitigate ISI and fading in 
multi-path environment [2]. However, the main constraints nowadays for FFT processors used in 
wireless communication systems for OFDM are execution time and lower power consumption [3-
4]. In conventional computer systems, the instructions are stored in the program memory and it is 
executed in sequential fashion. So inherently the whole process of operation becomes slow. FPGA 
technology is now an emerging technology which offers huge number of parallel processing in a 
single clock. The cost of the platform is also low. Due to availability of huge gate counts in a 
single chip, FPGA is now being used in various signal processing applications. It facilitates the 
implementation of the whole process in s single chip which in turn offers improved performance, 
lower power consumption, shorter time to market and higher reliability than the conventional 
computer platforms. Due to these attractive features, the proposed OFDM system has been 
implemented using the FPGA technology.   
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1.4 Project objectives

The project has the following objectives:

i. To design an OFDM base band transmitter and receiver using Verilog HDL

ii. To simulate the design using Quartus II simulator 

iii. To verify the output with that generated using Mat lab Software

iv. To implement the design using DE2 Altera FPGA Education board

The outcome of this project will be a prototype OFDM base band transmitter and receiver..  

1.5 Organization of the Project

The project is organized into five chapters, namely introduction, Fundamental concepts of OFDM 
and FPGA, Design of 8 point IFFT/ FFT for OFDM Transmitter/Receiver, Result of Verilog HDL 
Simulation and Conclusion.

Chapter 1 discusses the general idea of the project which covers the overview, project objective, 
project background and scope of the project. 

Chapter 2 focuses the literature review of the OFDM system.  The history and principle of the 
OFDM system, Fast Fourier Transform introduction, FPGA and Verilog programming basic idea 
is explained in this chapter. 

Chapter 3 derives the Fast Fourier Transform and Inverse Fourier Transform algorithm using 
direct mathematical method.  The equations are optimized for digital implementation. 

Chapter 4 shows the Verilog simulation output.  The results are presented in their sub-modules 
and then all the modules are combined to give the final output.  Then, the Verilog output is 
compared with MATLAB simulation output. 

Chapter 5 consists of conclusion, problems encountered in completing this project and 
suggestion to further improve this project.



2.1 Introduction

OFDM is a multi carrier high speed modulation technique used in the various digital 
communication systems like 3G GSM, WiMAX, and LTE etc.
communication technology is to provide universal personal and multimedia communication 
irrespective of mobility and location with high data rates. Orthogonal Frequency Division 
Multiplexing (OFDM) is one of the promising technique for 4G to mitiga
multi-path environment. 

2.1.1 OFDM overview

The Orthogonal Frequency Division Multiplexing (OFDM) is developed to support high data rate 

and can handle multi carrier signals. Its specialty is that, it can minimize the Inter Symbol 

Interference (ISI) much more compared to other multiplexing schemes. It is more likely improved 

Frequency Division Multiplexing (FDM) as FDM uses guard band to minimize interference 

between different frequencies which wastes

carrier guard band which can handle the interference more efficiently than FDM. On top of that, 

OFDM handles multipath effect by converting serial data to several parallel data using Fast 

Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT).   

2.1.2 Data transmission  

Data transmission in OFDM is high enough compared to FDM as OFDM follows multicarrier 

modulation. For this, OFDM splits high data bits into low data bits and sends each sub

several parallel sub-channels, known as OFDM subcarriers. These subcarriers are orthogonal to 

each other and the each subcarrier bandwidth is much lesser than the total bandwidth. Inter 

Symbol Interference is reduced in OFDM technique as the symbol t

higher than the channel delay spread 

                    Fig 2.1: Time and Frequency diagram of Single and Multi
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OFDM is a multi carrier high speed modulation technique used in the various digital 
communication systems like 3G GSM, WiMAX, and LTE etc. The ultimate goal of 
communication technology is to provide universal personal and multimedia communication 
irrespective of mobility and location with high data rates. Orthogonal Frequency Division 
Multiplexing (OFDM) is one of the promising technique for 4G to mitigate ISI and f

The Orthogonal Frequency Division Multiplexing (OFDM) is developed to support high data rate 

and can handle multi carrier signals. Its specialty is that, it can minimize the Inter Symbol 

erference (ISI) much more compared to other multiplexing schemes. It is more likely improved 

Frequency Division Multiplexing (FDM) as FDM uses guard band to minimize interference 

between different frequencies which wastes a lot of bandwidth but OFDM does not contain inter

carrier guard band which can handle the interference more efficiently than FDM. On top of that, 

OFDM handles multipath effect by converting serial data to several parallel data using Fast 

) and Inverse Fast Fourier Transform (IFFT).   

is high enough compared to FDM as OFDM follows multicarrier 

modulation. For this, OFDM splits high data bits into low data bits and sends each sub

channels, known as OFDM subcarriers. These subcarriers are orthogonal to 

each other and the each subcarrier bandwidth is much lesser than the total bandwidth. Inter 

Symbol Interference is reduced in OFDM technique as the symbol time Ts of each sub

higher than the channel delay spread ς.  

1: Time and Frequency diagram of Single and Multi-carrier signals 
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Chapter 2

Fundamental Concept of OFDM and FPGA

OFDM is a multi carrier high speed modulation technique used in the various digital 
The ultimate goal of wireless 

communication technology is to provide universal personal and multimedia communication 
irrespective of mobility and location with high data rates. Orthogonal Frequency Division 

te ISI and fading in 

The Orthogonal Frequency Division Multiplexing (OFDM) is developed to support high data rate 

and can handle multi carrier signals. Its specialty is that, it can minimize the Inter Symbol 

erference (ISI) much more compared to other multiplexing schemes. It is more likely improved 

Frequency Division Multiplexing (FDM) as FDM uses guard band to minimize interference 

of bandwidth but OFDM does not contain inter-

carrier guard band which can handle the interference more efficiently than FDM. On top of that, 

OFDM handles multipath effect by converting serial data to several parallel data using Fast 

is high enough compared to FDM as OFDM follows multicarrier 

modulation. For this, OFDM splits high data bits into low data bits and sends each sub-stream in 

channels, known as OFDM subcarriers. These subcarriers are orthogonal to 

each other and the each subcarrier bandwidth is much lesser than the total bandwidth. Inter 

of each sub-channel is 



In the Fig 2.1, it is clear that OFDM resists the multipath effect by adopting
bandwidth and longer period of time which leads to get better spectral efficiency.

2.1.3 Parameters 

The implementation of OFDM physical layer is different for two types of WiMAX. For fixed 

WiMAX, FFT size is fixed for OFDM

OFDMA-PHY can be 128, 512, 1024 and 2048 bits [

spread. Other difference between OFDM

bit rate data into several low bit rate of data sub

whereas OFDMA accepts several users’ data and multiplex those onto downlink sub

Uplink multiple accesses are provided through uplink sub

PHY parameters are discussed briefly in the following subsection.   

2.1.4 Sub-channelization 

WiMAX divides the available subcarriers into several groups of subcarriers and allocates to 

different users based on channel conditions and requirement of users. This process is called sub

channelization. Sub-channeling concentrates the transmit power to different smaller g

subcarrier to increase the system gain and widen up the coverage area with less penetration 

losses that cause by buildings and other obstacles. Without sub

would be asymmetric and bandwidth management would be poor 

OFDM-PHY permits a little amount of sub

standard sub-channels, transmission can take

uplink of the Security Sub-layer

depending on allotted sub-channels. When the allotted sub

transmitted power level increases and when the power level decreases, it means the allotted sub

channels decreased. The transmitted power level is always kept below the maximum level. In 

fixed WiMAX, to improve link budget and the performance of the battery of the SS, the uplink 

sub-channelization permits SS to transmit only a fraction of the bandwidth usually 

allocated by the BS Mobile WiMAX's OFDMA

and downlink channels. The BS allocates the minimum frequency and sub

users based on multiple access technique. That is why this kind of OFDM is

(Orthogonal Frequency Division Multiple Access). For mobile application, frequency diversity is 

provided by formation of distributed subcarriers. Mobile WiMAX has several distributed carrier 

based sub-channelization schemes. The mandatory one

(PUSC).

ig 2.1, it is clear that OFDM resists the multipath effect by adopting smaller frequency 
bandwidth and longer period of time which leads to get better spectral efficiency.

The implementation of OFDM physical layer is different for two types of WiMAX. For fixed 

WiMAX, FFT size is fixed for OFDM-PHY and it is 256 but for mobile WiMAX, the FFT size for 

PHY can be 128, 512, 1024 and 2048 bits [16]. This helps to combat ISI and Doppler 

spread. Other difference between OFDM-PHY and OFDMA-PHY is, OFDM splits a single high 

rate of data sub-stream in parallel which are modulated

whereas OFDMA accepts several users’ data and multiplex those onto downlink sub

Uplink multiple accesses are provided through uplink sub-channel. OFDM-PHY and OFDMA

are discussed briefly in the following subsection.   

available subcarriers into several groups of subcarriers and allocates to 

different users based on channel conditions and requirement of users. This process is called sub

channeling concentrates the transmit power to different smaller g

subcarrier to increase the system gain and widen up the coverage area with less penetration 

losses that cause by buildings and other obstacles. Without sub-channelization, the link budget 

would be asymmetric and bandwidth management would be poor [17]. Fixed WiMAX based 

PHY permits a little amount of sub-channelization only on the uplink. Among 16 

, transmission can take place in 1, 2, 4, 8 or all sets of subchannels in the 

layer (SS). SS controls the transmitted power level up and down 

channels. When the allotted sub-channels increase for uplink users, the 

transmitted power level increases and when the power level decreases, it means the allotted sub

The transmitted power level is always kept below the maximum level. In 

fixed WiMAX, to improve link budget and the performance of the battery of the SS, the uplink 

channelization permits SS to transmit only a fraction of the bandwidth usually 

Mobile WiMAX's OFDMA-PHY permits sub-channelization in both uplink 

and downlink channels. The BS allocates the minimum frequency and sub-channels for different 

users based on multiple access technique. That is why this kind of OFDM is

(Orthogonal Frequency Division Multiple Access). For mobile application, frequency diversity is 

provided by formation of distributed subcarriers. Mobile WiMAX has several distributed carrier 

channelization schemes. The mandatory one is called Partial Usage of Sub
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smaller frequency 
bandwidth and longer period of time which leads to get better spectral efficiency.

The implementation of OFDM physical layer is different for two types of WiMAX. For fixed 

s 256 but for mobile WiMAX, the FFT size for 

]. This helps to combat ISI and Doppler 

PHY is, OFDM splits a single high 

modulated using IFFT 

whereas OFDMA accepts several users’ data and multiplex those onto downlink sub-channel. 

PHY and OFDMA-

available subcarriers into several groups of subcarriers and allocates to 

different users based on channel conditions and requirement of users. This process is called sub-

channeling concentrates the transmit power to different smaller groups of 

subcarrier to increase the system gain and widen up the coverage area with less penetration 

channelization, the link budget 

7]. Fixed WiMAX based 

channelization only on the uplink. Among 16 

place in 1, 2, 4, 8 or all sets of subchannels in the 

s the transmitted power level up and down 

channels increase for uplink users, the 

transmitted power level increases and when the power level decreases, it means the allotted sub-

The transmitted power level is always kept below the maximum level. In 

fixed WiMAX, to improve link budget and the performance of the battery of the SS, the uplink 

channelization permits SS to transmit only a fraction of the bandwidth usually below 1/16 

channelization in both uplink 

channels for different 

users based on multiple access technique. That is why this kind of OFDM is called OFDMA 

(Orthogonal Frequency Division Multiple Access). For mobile application, frequency diversity is 

provided by formation of distributed subcarriers. Mobile WiMAX has several distributed carrier 

is called Partial Usage of Sub-Carrier 



Another sub-channelization scheme based on unbroken subcarrier is called Adaptive 

Modulation and Coding (AMC) in which multiuser diversity got the highest priority. In this, 

allocation of sub-channels to users is done based on their frequency response. It is a fact that, 

contiguous sub-channels are best suited for fixed and low mobility application, but it can give 

certain level of gain in overall system capacity [

Fig 2. 2: Downstream transmission of OFDM spectrum 

Fig 2. 3: Upstream transmission of OFDM spectrum 

Figure 2.3 shows the upstream transmission of OFDM spectrum from a
equipment ( CPE) where the carriers are quarter in size compared to fig 2.2 downstream 
transmission from BS 

          Fig 2. 4: Upstream transmission of OFDM spectrum from the 

Figure 2.4 illustrates the transmitted upstream OFDM spectrum from a CPE where the carriers are 
as same as BS in size and range but with small capacity

channelization scheme based on unbroken subcarrier is called Adaptive 

Modulation and Coding (AMC) in which multiuser diversity got the highest priority. In this, 

users is done based on their frequency response. It is a fact that, 

channels are best suited for fixed and low mobility application, but it can give 

certain level of gain in overall system capacity [16].  

Fig 2. 2: Downstream transmission of OFDM spectrum 

Fig 2. 3: Upstream transmission of OFDM spectrum 

2.3 shows the upstream transmission of OFDM spectrum from a customer premises 
where the carriers are quarter in size compared to fig 2.2 downstream 

Fig 2. 4: Upstream transmission of OFDM spectrum from the CPE 

2.4 illustrates the transmitted upstream OFDM spectrum from a CPE where the carriers are 
as same as BS in size and range but with small capacity. [13]
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2.1.5 Basic OFDM implementation

Figure 2.5 shows the block diagram of basic OFDM communication system model. The Figure

2.5 indicates the step by step operation of each functional block. At the transmitter side, the input 

binary data stream obtained from the source. The retrieved binary data stream is passed through 

to the other required steps (source of encoder, channel coder) as the signal has to transmit. 

Transmitter section

Receiver Section

Figure-2.5:  OFDM communication system Block Diagram

In OFDM system, the carriers are sinusoidal. Two periodic sinusoidal signals are called 
orthogonal when their integral product is equal to zero over a single period. Each orthogonal 
subcarrier has an integer number of cycles in a single period of OFDM system. To avoid inter 
channel interference these zero carriers are used as a guard band in this system.

The first step of the OFDM transmitter is to split up the data stream into K parallel sub-streams, 
and is modulated on its own subcarrier at frequency fk in the complex baseband. Actually, we do 
not modulate the data stream, rather then we are just mapping the symbols for further operation. 
Different types of Digital modulation are available to do this as for example Amplitude shift 
keying (ASK), frequency shift keying (FSK), Phase Shift Keying (PSK), and Quadrature
Amplitude modulation (QAM) etc. The data is being modulated depending on their size and on 
the basis of different modulation scheme like BPSK, QPSK, 16 QAM and 64 QAM. The 
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Out 
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modulation has done on the basis of incoming bits by dividing among the groups of i. That is 
why there are 2l points. The total number of bits represented according to constellation mapped 
of different modulation techniques. The size of i for BPSK, QPSK, 16QAM and 64 QAM is 1, 2, 
4, and 16 respectively

The next block of the Figure 2.5 in the OFDM transmitter is IFFT part which is the major part of 
the OFDM transmitter. In OFDM Transmitter, IFFT (Inverse Fast Fourier Transform) used to 
create OFDM waveform or symbol  with the help of modulated data streams. IFFT converts the 
data streams of frequency domain into time domain in the discrete form. Then again convert the 
signal parallel into serial. 

Before transmit the OFDM signal in the wireless media, the signal must be converted into analog 
signal and pass it through the low pass filter. Then the OFDM signals transmit by the antenna to 
the multipath channel.

On the other hand in OFDM receiver end the FFT (Fast Fourier Transform)used to demodulate 
the data streams as time domain into frequency domain in the discrete from and take just the 
opposite operation step by step as well.

In wireless transmission the transmitted signals might be distort by the effect of echo signals due 
to presence of multipath delay for multichannel propagation which is called Inter-symbol 
Interference (ISI). To avoid Inter-symbol Interference (ISI) the Cyclic Prefix (CP) is inserted in 
OFDM system before each transmitted symbol. After performing Inverse Fast Fourier Transform 
(IFFT) the CP will be added with each OFDM symbol. The ISI is totally eliminated by the design 
when the CP length is greater than multipath delay. The time duration of the OFDM symbol   is 
defined as symbol time, Tb. A copy of symbol period, Tg which is termed of Cyclic Prefix (CP) 
used to collect multipath where maintaining the orthogonality of the codes. 

2.1.6 Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform 
(IFFT)

The OFDM symbol threats the source symbols to perform frequency-domain into time domain. If 
we chose the N number of subcarriers for the system the basic function of IFFT receives the N 
number of sinusoidal and N symbols at a time. The output of IFFT is the total N sinusoidal 
signals and makes a single OFDM symbol. 

The mathematical model of OFDM symbol defined by Inverse Discrete Fourier Transform IDFT 
which would be transmitted as given bellow:  
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x(n)  = 1 ( ) 2 /
−

0
x (n) represents the IDFT time domain output at the n-th spectral point where n ranges from 0 to N-1. 
The N represents the number of sample points in the IDFT data frame. The quantity X(k)represents 
the k-th time sample, where k also ranges from 0 to N-1. In general equation, X(k) could be real or 
complex.

And the corresponding Discrete Fourier Transform (DFT) operates on sample time domain signal 
which is periodic. The sequence x(n) gives a sequence X(k) defined only on the interval from 0 to N-
1 .The equation for DFT is:

( )  = ( ) − 2 /
−

0
The DFT equation is:

( )  = ( )−

0
The factor is defined as:

=  − 2 /

It is called twiddle factor. It is mainly a sinusoidal function written in the polar form.

By analyzing the first equation we found that the computation of each point of FFT requires 
the following computation, (N-1) complex multiplication, (N-1) complex addition (the first 
term in sum involves ej0=1). Thus, to compute N points in FFT require N(N-1) complex 
multiplication and N(N-1) complex multiplication and N(N-1) complex addition.

And as the number of FFT/IFFT point (N) increases, the number of multiplications and 
addition required is significant because the multiplication function requires a relatively large 
amount of processing time even using computer. Thus, many methods for reducing the 
number of multiplication have been investigated over the last 50 years. The next section 
discussed in detail one of the method made popular by Cooly and Tukey.[8]

The twiddle factor is the combination of sine and cosine basis functions. By taking the 
advantages of the symmetric and periodic of the twiddle factors as shown:

+ /2 =  
+ =  
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The twiddle factor for N=8 is calculated as shown in Table 2.1

Table 2.1 symmetric properties of  

M

0 +1
1 +0.7071-j0.7071
2 -j
3 -0.7071+j0.7071
4 -1
5 -0.7071+j0.7071
6 +j
7 0.7071-j0.7071

2.1.7 Analysis FFT and IFFT algorithm for OFDM

This is a "decimation in time" FFT, because the input value to the FFT is the time wave, x(t). 

The time wave could be a sound wave, for example. The only reason to use FFT rather than 

DFT is for speed. For example if we use 1024 sample

For a DFT O (N2) operations are required and for FFT only O (N Log2 (N)) operations are 

required, where N is the number of samples.

For example 1024 samples a straight DFT requires = 10242 = 1048576 operations.

For the same number of samples an FFT requires only 1024* Log2 (1024) = 10240 operations

This means that a 1024 sample FFT is 102.4 times faster than the "straight" DFT. For larger 

numbers of samples the speed advantage improves. For example, for 4096 samples the FFT is 

over 340 times faster.

The first step to convert the FFT we should know the "Danielson-Lanczos Lemma" (D-L 

Lemma). This will require long equation writing, but it's a vital component of the FFT. 
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Here is the Danielson-Lanczos Lemma:

It is a DFT broken up into two summations of half the size of the original. The first 

summation is the "even terms", E, and the second is the "odd terms", O. W is the "twiddle 

factor", and understanding it is another key to understanding the FFT. Consider the DFT 

equation     ( ) = ∑ ( )1=    ( . .1)
The DFT equation 1 can be divided into first half and last half in the following manner.

( ) = ( )
−

0
( )       

− ( . . )

( ) = ( )
−

0
( / ) ( + )        ( . .3)

/2−

0

( ) = ( )
−

0
      ( . .4)

/2−

0

( ) = [ ( )  ( 1) ]
−

0
          ( . 5)

Now, consider k as even and odd separately. Let K=2r(even) and k=(2r+1) (odd).

( ) = [ ( ) ( / )] 2 ( . .6)
−

0

( 1) = ( ) (2 + ) ( . .7)
−

0
Given 

2 =  /2
(2 + ) =  

Equation 6 and Equation 7 can be simplified into: 

( ) = [ ( ) ( / )] /2   
−

0
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The above two equations are recognizeed as (N/2)-point DFT. The (N/2) –point DFT can be 

subdivided until only two points are left in each DFT. The result flowgraph  als

for this method for 8-point data shown in figure 2.6. The Butterfly 

diagram is a diagrammatic representation of an FFT algorithm where the outputs were 

subdivided to obtain. It is referred to as decimation -in – frequency (DIF) FFT algorithm or 

Figure 2.6: 8-Point DIF FFT flow chart
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required.  So we can say that for N point sequence there is log2N stages and each stage 

requires N/2 complex multiplication hence a total of N/2 log2N complex multiplications are 

required. Number of additions required is N log2N. Table 2.2 shows the comparison on the 

computation basis between the direct method and decimation-in-frequency.

Table 2.2 Computation of DFT in direct method and decimation-in-frequency 

algorithm

Direct Method Decimation –in-frequency FFT

N Complex 
Multiplications 

N(N-1)

Complex
Additions

N(N-1)

Complex 
Multiplications 

N/2 log2 N

Complex
Additions
N log2 N

4 12 12 4 8
8 56 56 12 24

16 240 240 32 64
32 992 992 80 160

Hence, from the Table 2.2, definitely we can say that DIF FFT algorithm achieves
considerable reduction in the computation of DFT

2.1.8 Pros and Cons of OFDMA

There are certain pros and cons of OFDMA which made mobile WiMAX to choose OFDMA 
as its multiplexing schemes. It would be clear if we just have a look description below.  

Pros 
1. Can fights much better against multipath with less computational complexity and more 

robustness than other techniques.  
2. OFDMA permits portions of spectrum to be used to transmit data by different users.  
3. Divides channels into narrow band flat fading sub-channels.  
4. More resistant to frequency selective flat fading.    
5. Easy to filter out noise.
6. Shorter and constant delay.
7. Cyclic prefix helps to eliminate Inter Symbol Interference and Inter Frequency 

Interference.  
8. Channel equalization is simpler than single carrier channel.  
9. Computational efficient as it uses FFT and IFFT.    
10. It degrades its performance gracefully when the system delay reaches its highest limit.
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11. Provides benefit of transmitting low power for low data rate users.  
12. Narrowband interference can be reduced through spectral efficiency.  
13. Suitable for coherent demodulation.  
14. Accepts simultaneous low data rates from multiple users .  
15. Provides different channel quality to different users depending on the requirement and 

condition of the channel. 

Cons 
1. Strong synchronization is required between users and FFT receiver.  
2. For synchronization purpose, OFDMA technique uses pilot signals.  
3. Very much sensitive to phase noise and frequency offset.  
4. Delay in co-channel interference is more complex in OFDMA than CDMA.  
5. Inefficient power consumption as FFT algorithm and FEC is constantly active.  
6. If very few sub-carriers are allotted to each user, the diversity gain of OFDM and    

frequency Selective fading might be vanished. Much complex adaptive sub-carrier 
channel assignment compared to CDMA Power control system.    

2.1.9 Applications of OFDM

In the beginning, the implementation of the OFDM was very complicated task, so their 

applications were very limited.  But at present, OFDM has been adopted as the new European 

digital audio broadcasting (DAB) standard and for terrestrial digital video broadcasting (DVB) 

[16]. In fixed-wire applications, OFDM is employed in asynchronous digital subscriber line 

(ADSL) and high bit-rate digital subscriber line (HDSL) systems.  It has been proposed for 

power line communications systems as well due to its resilience to dispersive channel and 

narrow band interference. 

Beside these applications , OFDM is also used in Digital Audio Broadcasting (DAB) , 

Terrestrial Digital Video Broadcasting (DVB) , Magic WAND (Wireless ATM Network 

Demonstrator) , IEEE802.11a/HiperLAN2 and MMAC Wireless LAN etc. 

2.2 Hardware Description Language (HDL)

The impact of digital electronics in our daily life is so much now a days, the current period is 

named as digital age. Digital solutions are being observed in all areas such as 

telecommunications, consumer electronics, controls, data manipulations etc. To design a digital 

system, once the conventional approach such as hand-draw, schematic based design technique 
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2/1 
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Y

Figure 2.7: (a) Block diagram of aA 2/1 Mux (b) Example of RTL Code Showing a 2/1 Mux

etc. was the only choice to the designer. However the scenario has been changed. Now millions 

of transistors are being integrated on a single chip integrated circuit (IC) where the conventional 

design technique is impossible to be used. It points towards a new approach for designing 

today’s complex digital system and that new approach is designing VLSI chip using Hardware 

Description Language (HDL).

2.2.1 Types of HDL Coding Style

There are three types of Verilog coding style as follows:

 RTL Verilog Code: Digital circuit can be represented in different ways such as gate level 

representation, transistor level representation etc. RTL, acronym of Register transfer Level 

(RTL), is also another type of representation style for digital circuit. The reason why it is 

named as RTL is that any complex digital system can be partitioned into different modules 

where each module is basically consists of registers and gates. Information is stored in the 

registers and specific operation is performed using the information, and then it is transferred 

among the registers. Hence the said representation style is known as RTL. For example, we 

may define an addition event: X=A+B; It means that the sum of the content of register A and 

register B is transferred to the storage device X. Figure 2.7 shows the example of RTL code 

of a 2/1 Mux.

 Structural Verilog Code: It describes the components and interconnections present in a 

design. Electronic Design Automation (EDA) tool compiles and synthesizes the RTL code 

of a design and produces the netlist of the design in the form of structural code. Table 2.3 

shows the example of structural code for a circuit of a 2/1 Mux as shown in Figure 2.8.

module mux_21(A, B, S, Y);
input A, B, S;
output Y;
reg Y;
always @ (S or A or B) begin

if (S= =1) Y=A;
else Y=B;

endmodule
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Table 2.3 : Example of Structural Code Showing a 2/1 Mux

module mux (A, B, S, Out);
input A, B, S;
output Out;
wire M, N, P;
and g1 (N, B, S);
and g2 (P, M, A);
not g3 (M, S);
or g4 (Out, N, P);
endmodule

Behavioral Verilog code: Behavioral code describes the functionality and behavior of the 

functional block diagram of a design. It is often used for system level modeling and simulation 

of a design. Table 2.4 shows an example of behavioral Verilog code (using fork and join). 

Usually many of the commands in behavioral code are not synthesizable (for example, wait 

command as shown in Table 2.4) and the code length of a design is much smaller than to write 

for RTL code of the same design because it is only for simulation purpose.

Table 2.4: Example of Behavioral Verilog Code

fork
  // start of fork block 1
  begin
    wait (y != 0);
    a = y;
  end
  // start of fork block 2
  begin
    wait (z != 0);
    b = z;
  end
join

Figure 2.8: Logic diagram of a 2/1 Mux
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2.2 Synthesis Process in Verilog HDL

Verilog HDL is a hardware description language that allows designers to model a circuit at 
different level of abstraction, ranging from the gate level, RTL level, and behavioral level to 
the algorithmic level. Synthesis process is to construct a gate-level net list from a model of a 
circuit described in Verilog HDL. The synthesis process is described in diagram below. [7]

A synthesis program may alternately generate a RTL net list, which is consists of register-

transfer level blocks such as flip-flops, arithmetic-logic-units, and multiplexers interconnected 

by wires.  All these are performed by RTL module builder.  This builder is to build or acquire 

from a library predefined components, each of the required RTL blocks in the user-specified 

target technology. 

The above synthesis process produced an unoptimized gate level net list. A logic optimizer can 

used the produced net list and the constraint specified to produce an optimized gate level net 

list. This net list can be programmed directly into a FPGA chip. 

Synthesis

Area and Timing 
constraints

Unoptimized gate level 
netlist

Verilog HDL Model

Optimized gate level 
netlist

RTL 
Model 
Builder

Logic Optimizer

Target technology

Figure 2.9: Synthesis Process in Verilog HDL Environment.
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2.3 Field Programmable Gate Arrays (FPGA)

By modern standards, a logic circuit with 20000 gates is common. In order to implement large 

circuit, it is convenient to use a type of chip that has a large logic capacity. A field-

programmable gate arrays (FPGA) is a programmable logic device that support 

implementation of relatively large logic circuits. FPGA is different from other logic 

technologies like CPLD and SPLD because FPGA do not contain AND or OR planes. Instead, 

FPGA consists of logic blocks for implementing required functions.  [10]

A FPGA contain 3 main types of resources: logic blocks, I/O blocks for connecting to the pins 

of the package, and interconnection wires and switches. The logic blocks are arranged in a two-

dimensional array, and the interconnection wires are organized as horizontal and vertical 

routing channels between rows and columns of logic blocks. The routing channels contain wires 

and programmable switches that allow the logic blocks to be interconnected in many ways. 

FPGA can be used to implement logic circuits of more than a few hundred thousand equivalent 

gates in size. Equivalent gates is a way to quantify a circuit’s size by assume the circuit is to be 

built using only simple logic gates and then estimate how many of these gates are needed.  

Each logic block in a FPGA typically has a small number of inputs and one output. The FPGA 

products on the market feature different types of logic blocks. The most commonly used logic 

block is a lookup table (LUT), which contains storage cells that are used to implement a small 

logic function. Each cell is capable of holding a single logic value, either 0 or 1. The stored 

value is produced as the output of the storage cell. LUT of various sizes may be created, where 

the size is defined by the number of inputs.

For a logic circuit to be realized in a FPGA, each logic function in the circuit must be small 

enough to fit within a single logic block. In practice, a user’s circuit is automatically translated 

into the required form by using CAD tools. When a circuit is implemented in an FPGA, the 

logic blocks are programmed to realize the necessary functions and the routing channels are 

programmed to make the required interconnections between logic blocks.

FPGA is configured by using the in-system programming (ISP) method; the FPGA can be 

programmed while the chip is still attached to its circuit board. The storage cells in the LUTs 

in an FPGA are volatile, which means that they lose their stored contents whenever the power 

supply for the chip is turned off. Hence the FPGA has to be programmed every time power is 
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applied. Of this, a small memory chip that holds its data permanently, called a programmable 

read-only memory (PROM) is included on the circuit board that houses the FPGA. The storage 

cells in the FPGA are loaded automatically from the PROM when power is applied to the 

chips.

2.3.1 FPGA Implementation of a Design

Design of a digital system can be realized into hardware using FPGA device. It reduces the 

time to market, reduces the cost and offers the design flexibility. There are many FPGA 

vendors such as Altera, Xilinx, Latice, Philips etc. The vendors provide the Electronic Design 

Automation (EDA) software for compilation, synthesis and simulation. Figure   shows flow 

diagram of a design to be realized into FPGA hardware. Once the sub-modules of a design are 

identified, each of the modules is designed, compiled and synthesized using FPGA vendor 

provide software. Then functional simulation is performed upon each module. The correct 

simulation result ensures the proper functionality of a design. Once the simulation result of all 

the sub modules are as desired then they are integrated and simulated again. Then for 

hardware realization, suitable FPGA device is selected for the design, inputs and outputs are 

assigned to specific pins of the FPGA, It is again compiled and synthesized. After that timing 

simulation of the design is performed to ensure that the design functions in real time. Then the 

design is downloaded into the FPGA. [9]
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Figure 2.10: Digital system design and implementation using FPGA
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Chapter 3

     Design of an 8-point IFFT/FFT for OFDM Transmitter /Receiver

3.1 Introduction

This chapter focuses the technique and method for designing the core processing block in an 

OFDM transmitter. The computational time of FFT is faster than that of DFT because the 

number of multiplications and additions operation in FFT is less compared to DFT method as 

shown in Table 2.2.  The computational time between FFT and IFFT is assumed to be same 

because of their operations which are almost similar except for scaling and conjugation of the 

twiddle factor. There are two techniques to implement the OFDM transmitter, namely structural 

method and direct computation method. Both methods will be discussed in the following section.

3.2 Proposed technique of an 8-point Inverse Fast Fourier Transform 
(IFFT) and Fast Fourier Transform (FFT)

The core processing block in an OFDM transmitter is the Inverse Fast Fourier Transform.  The 

IFFT can be implemented using two methods, structural method or direct mathematical 

method. 

In our total project work, we consider here only 8-point IFFT /FFT calculations for simplicity. 

Otherwise if want to use 16, 32, 64…..2n (n= 4, 5, 6…) point IFFT /FFT calculations, it would 

increase much complexity of our project work.

3.2.1 Implementing structural method of an 8-point IFFT

Structural method implements a single butterfly computation.

3. 3

Figure 3.1 Single Butterfly Flow Chart in IFFT
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The single butterfly computation is implemented in the data path unit for IFFT operation. A 

control unit controlling the data path and determine the stage of operations. The control unit 

coordinates the appropriate pairs of inputs into the butterfly computation and the output pairs are

store in the memory. Each pair of random input bits will undergo multiples of butterfly 

computation in stage 1. Assume the input string bits are x0, x1, x2, x3, x4, x5, x6, and x7 

respectively, Stage 1 computation will store its result in certain memory location, assume 

memory M.

At stage 2, the result in memory M is feed into butterfly computation in pairs. The control unit 

acts as a selector to select the correct input for the butterfly computation in every stage.  The 

output from Stage 2 is stored in the same memory location at M.

For 8-point IFFT, the process ends at Stage 3.  The output of the Stage 3 is divided by 8 and 

hence the final output is the computed Inverse Fast Fourier Transform.
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Figure 3.2 Structural Implementation of IFFT

Figure 3.2 shows that there are 3 stages in an 8-point IFFT where Stage 1 accepts the input 
data directly.

3.2.2 Expanding Direct Method of an 8-point IFFT 

To make simplicity of the implementation we can use direct method where the final output is 

derived from the input directly.  In a structural method, the single butterfly and summation 

has to be carried out 12 times for an 8-point IFFT.  The multiplication and summation has to 

be carried out, although some twiddle factor has value of 0 or 1.  This introduces redundancy 

in the implementation.

For example, the implementation of structural approach is X= (0) a+ (1) b, where in the 

direct mathematical approach, the implementation is simply X=b.  Multiplication of the 

twiddle factor is skipped to avoid redundancy in and reduce computation time. Thus, this 

method is optimized.
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The Figure 3.3 shows the computation in Stage 1. It is shown the even samples and odd 

samples are processed separately.  The outputs of Stage 1 are feed as the inputs of the Stage 

2. Stage 2 computation take place and this process repeats at the final stage, Stage 3.

The output of Stage 1 is connected to the input of Stage 2.  The complexity of the output 

equations increases as the Stage number increases because twiddle factor computations are 

involved.  The twiddle factor includes multiplication and additions operations.

Figure 3.3 Stage 1 Computation Flow Chart of an 8-point IFFT Computation
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Figure 3.4 Stage 2 Computation Flow Chart of an 8-point IFFT Computation

Figure 3.4 shows the Stage 2 computation.  The even inputs are grouped together and 

summed up in pairs.  The other inputs are multiplied with their respective twiddle factor.  

Each of these inputs will undergo butterfly operation.  Some of the outputs will have to 

multiply again with the twiddle factor.  The outputs of the Stage 2 are fed into Stage 3.  At 

Stage 3, the butterfly computations are repeated.  The computations complexity is increased.



35

Figure 3.5: Stage 3 Computation Flow Chart of an 8-Point IFFT Computation

The final output equations derived from Figure 3.5 is shown as below (before divide 8):
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By using Verilog HDL the final equations are implemented to make an 8-point IFFT processor 

which is shown Table 3.1. Using direct method the equations have been optimized for an 

efficient implementation.  The twiddle factors are represented by 8 bit binary number.  There 

will be slight error percentage in this design due to the approximation of the twiddle factor 

values.

Table 3.1 Final equations for an 8-point IFFT processor

X(0) = x(0)+ x(4)+ x(2)+ x(6)+ x(1)+ x(5)+ x(3)+ x(7)

X(4) = x(0)+ x(4)+ x(2)+ x(6)- x(1)- x(5)- x(3)- x(7)

X(2) = x(0)+ x(4)- x(2)- x(6)+ jx(1)+ jx(5)- jx(3)- jx(7)

X(6) = x(0)+ x(4)- x(2)- x(6)- jx(1)- jx(5)+ jx(3)+ jx(7)

X(1) = x(0)- x(4)+ jx(2)- jx(6)+ 0.7071x(1)+ j0.7071x(1) -  0.7071x(5)- j0.7071x(5) -

0.7071x(3)- j0.7071x(3)  + 0.7071x (7) + j0.7071x (7)

X(5) = x(0)- x(4)+ jx(2)- jx(6)- 0.7071x(1)- j0.7071x(1)  + 0.7071x(5)+ j0.7071x(5)

          + 0.7071x (3) + j0.7071x (3) - 0.7071x (7) - j0.7071x (7)

X(3) = x(0)- x(4)- jx(2)- jx(6)- 0.7071x(1)+ j0.7071x(1)    + 0.7071x(5)- j0.7071x(5)

          + 0.7071x(3)- j0.7071x(3) - 0.7071x(7)+ j0.7071x(7)

X(7) =x(0)- x(4)- jx(2)- jx(6)+ 0.7071x(1)- j0.7071x(1) - 0.7071x(5)+ j0.7071x(5) -  

0.7071x(3)+ j0.7071x(3)   + 0.7071x(7)- j0.7071x(7)
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Now we implement the 8-point IFFT processor
modules are joined together to produce an 8 point IFFT processor.  Figure 3
IFFT block diagram and their interconnections. 

Figure 3.6 Block diagram of an 8 point IFFT processor

Figure 3.6 shows the full functional block diagram
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shows an 8 point 
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From the Table 2.1 we see that, in the even outputs, the twiddle factor at the output equations 

has been simplified.  

In the sub-modules, few digital circuitries are implemented.  The most important 

components are adder, subtractor and unsigned divider.  Multiplexers are used to approximate 

the decimal values to the nearest integer.  They are also used to convert the summation to 

unsigned numbers which are connected to the divider.  If the signed bit is ‘1’, then the 

quotient value will be converted into unsigned number.  Conversion of signed and unsigned 

numbers is not required for positive summation values.

The input range is from -15 to 15 to avoid overflow from occurring in Xout(0). The maximum 

summation (before division) value which can be supported ranges from 128 to +127.  Any 

value which exceeds this range will contribute to overflow problem. 

3.3.1 Store module of an 8-point IFFT processor

The first step of an 8-point IFFT processor is to store the input for other sub-module. This module 

passes the inputs to the sub-modules that do the IFFT computations.  The Store module consists 

of 8 D type flip flop registers.  The outputs of this block are 8 lines of 8 bit output which are 

connected to Channel 0, Channel 1, Channel 2, Channel 3, Channel 4, Channel 5, Channel 6 

and Channel 7.

3.3.2 Channel 0 and Channel 4 module of an 8-point IFFT processor

The purpose of Channel 0 and Channel 4 is to compute and display the result of these 

computations.  The outputs are Xout(0) and Xout(4) respectively.  The arithmetic operation for 

Xout(0) is summation.  The Xout(4) arithmetic involves summation, subtraction and division.  

X(0)=x(0)+ x(4)+ x(2)+ x(6)+ x(1)+ x(5)+ x(3)+ x(7) 
X(4)=x(0)+ x(4)+ x(2)+ x(6)- x(1)- x(5)- x(3)- x(7) 
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3.3.3 Channel 2 and Channel 6 module of 8 point IFFT processor 

The work of Channel 2 and Channel 6 is to compute and display the result of these 

computations.  The outputs are Xout(2) and Xout(6) respectively.  The arithmetic operation for 

Xout(2) and Xout(6) involves real and imaginary operation. They are performed separately.  

The arithmetic operation involves summation, subtraction and division.  The twiddle factor for 

this output is either j or –j which contributes to the imaginary component for this path. 

X(2)=x(0)+ x(4)- x(2)- x(6)+ jx(1)+ jx(5)- jx(3)- jx(7) 

X(6)=x(0)+ x(4)- x(2)- x(6)- jx(1)- jx(5)+ jx(3)+ jx(7) 

3.3.4 Channel 1, Channel 3, Channel 5, Channel 7 modules of an 8 point 
IFFT processor 

The function of Channel 1, Channel 3, Channel 5 and Channel 7 is to compute and display 

the result of these computations.  The outputs are Xout(1), Xout(3), Xout(5) and Xout(7) 

respectively.  The arithmetic operations for all of these modules involve real and imaginary 

operation. They are performed separately.  The arithmetic operation involves summation, 

subtraction and division.  

The twiddle factor for all these modules consists of a real and an imaginary value of sine 45 

degree or cos 45 degree.  The output of the twiddle factor is approximated to 0.7071 in our

proposed design.  

The output equations implemented are as below: 

X(0) = x(0)+ x(4)+ x(2)+ x(6)+ x(1)+ x(5)+ x(3)+ x(7)

X(4) = x(0)+ x(4)+ x(2)+ x(6)- x(1)- x(5)- x(3)- x(7)

X(2) = x(0)+ x(4)- x(2)- x(6)+ jx(1)+ jx(5)- jx(3)- jx(7)

X(6) = x(0)+ x(4)- x(2)- x(6)- jx(1)- jx(5)+ jx(3)+ jx(7)

X(1) = x(0)- x(4)+ jx(2)- jx(6)+ 0.7071x(1)+ j0.7071x(1) -  0.7071x(5)- j0.7071x(5) -

0.7071x(3)- j0.7071x(3)  + 0.7071x (7) + j0.7071x (7)

X(5) = x(0)- x(4)+ jx(2)- jx(6)- 0.7071x(1)- j0.7071x(1)  + 0.7071x(5)+ j0.7071x(5)
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          + 0.7071x (3) + j0.7071x (3) - 0.7071x (7) - j0.7071x (7)

X(3) = x(0)- x(4)- jx(2)- jx(6)- 0.7071x(1)+ j0.7071x(1)    + 0.7071x(5)- j0.7071x(5)

          + 0.7071x(3)- j0.7071x(3) - 0.7071x(7)+ j0.7071x(7)

X(7) =x(0)- x(4)- jx(2)- jx(6)+ 0.7071x(1)- j0.7071x(1) - 0.7071x(5)+ j0.7071x(5) -  

0.7071x(3)+ j0.7071x(3)   + 0.7071x(7)- j0.7071x(7)

3.4 Implementation of an of an 8-point Fast Fourier Transform (FFT) 
processor

In the preceding section, we developed the algorithm for 8-point IFFT by using direct 
method. Now we develop 8-point FFT processor. The equation for FFT is similar to IFFT 
equation except for the negative sign in the twiddle factor and the scaling factor.  Thus, the 
algorithm developed for the IFFT in the previous section can be used for FFT algorithm 
development with minor modification.

The FFT equation is shown below.

( )  = ( )−

0
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3.4.1 Expanding direct method of an 8 point FFT 

In the Figure 3.6, it is shown that there are 3 stages in an 8-point FFT.  Stage 1 accepts the 
input data directly. The Figure 3.7 shows the computation in Stage 1. 

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Figure 3.7 8-point FFT flow chart

Table 3.2 symmetric properties of  

M

0 +1
1 +0.7071+j0.7071
2 +j
3 -0.7071-j0.7071
4 +1
5 -0.7071-j0.7071
6 -j
7 0.7071+j0.7071

X (4)

X (2)

X (6)

X (1)

X (5)

X (3)

X (7)

X (0)
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Figure 3.8: Stage 1 computation flow chart of an 8-point FFT Computation.

Figure 3.8 shows the even samples and odd samples which are processed separately.  The 
outputs of Stage 1 are feed as the inputs of the Stage 2. Stage 2 computation take place and 
this process repeats at the final stage, Stage 3. 

The output of Stage 1 is connected to the input of Stage 2.  The complexity of the output 

equations increases as the Stage number increases because twiddle factor computations are 

involved.  The twiddle factor includes multiplication and additions operations.

X (0) + X (4)

X (0) - X (4)

X (2) + X (6)

X (2)-+ X (6)

X (0) + x (5)

X (1)-x (5)

X (2) + x (7)

X (3)-x (7)
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Figure 3.9 shows the Stage 2 computation.  The even inputs are grouped together and 

summed up in pairs.  The other inputs are multiplied with their respective twiddle factor.  

Each of these inputs will undergo butterfly operation.  Some of the output will have to 

multiply again with the twiddle factor.  The outputs of the Stage 2 are fed into Stage 3.  

Figure 3.9 Stage 2 Computation Flow Chart of an 8-point FFT Computation

x(0) + x(4) +  [x(2) + x(6)]

x(0) - x(4) +  [x(2) -x(6)]

x(0) + x(4) -  [x(2) + x(6)]

x(0) - x(4) -  [x(2) -x(6)]

x(1) + x(5) +  [x(3) + x(7)]

x(1) - x(5) +  [x(3) -x(7)]

x(1) + x(5) -  [x(3) + x(7)]

x(1) - x(5) -  [x(3) -x(7)]

x(1) - x(5) 

x(1) + x(5)

x(3) + x(7)

x(3) -x (7)

x(2) -x(6)

x(2) + x(6)

x(0) -x(4) 

x(0) + x(4) 
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Figure 3.10 Stage 3 computation flow chart of an 8-point FFT Computation

At Stage 3, the butterfly computations are repeated and the computations complexity is 

increased. Therefore from Figure 3.10 which is the stage 3 computation, we get the final 

output.

The final output equations derived from Figure 3.10 is shown as below:

X(0) = x(0) + x(4) +  [x(2) + x(6)] +  [x(1) + x(5) +  {x(3) + x(7)}]

X(4) = x(0) - x(4) +  [x(2) -x(6)] + [x(1) - x(5) +  {x(3) -x(7)}]

X(2) =  x(0) + x(4) -  [x(2) + x(6)] + [x(1) + x(5) -  {x(3) + x(7)}]

X(6) =  x(0) - x(4) -  [x(2) -x(6)] + [x(1) - x(5) -  {x(3) -x(7)}]

X(1) =  x(0) + x(4) +  [x(2) + x(6)] -  [x(1) + x(5) +  {x(3) + x(7)}]

X(5) = x(0) - x(4) +  [x(2) -x(6)] - [x(1) - x(5) +  {x(3) -x(7)}]

X(3) = x(0) + x(4) -  [x(2) + x(6)] - [x(1) + x(5) -  {x(3) + x(7)}]

x(0) + x(4) +  {x(2) + x(6)}                     

x(0) - x(4) +  [x(2) -x(6)]

x(0) + x(4) -  [x(2) + x(6)]

x(0) - x(4) -  [x(2) -x(6)]

x(1) + x(5) +  {x(3) + x(7)}

x(1) - x(5) +  [x(3) -x(7)]

x(1) + x(5) -  [x(3) + x(7)]

x(1) - x(5) -  {x(3) -x(7)}
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Table 3.1 shows the final equations that are implemented using Verilog HDL to produce an 8-

point IFFT processor.  The equations have been optimized for an efficient implementation.  The 

twiddle factors are represented b 8 bit binary number. There will be slight error percentage in 

this design due to the approximation of the twiddle factor values. 

Table 3.3 Final equations for an 8-point FFT processor

X(0) = x(0) + x(4) +  x(2) + x(6) + x(1) + x(5) + x(3) + x(7)

X(4) = x(0) - x(4) -j[x(2) -x(6)] +[0.7071-0.7071j] [x(1) - x(5) -  j {x(3) -x(7)}]

X(2) =  x(0) +  x(4) -  x(2) - x(6) - j [x(1) +  x(5) -   x(3) - x(7)]

X(6) =  x(0) - x(4) +j [x(2) -x(6)] + [0.7071-j0.7071][x(1) - x(5) +j {x(3) -x(7)}]

X(1) =  x(0) + x(4) +  x(2) + x(6) –[x(1) + x(5) + x(3) + x(7)]

X(5) = x(0) - x(4) -j[x(2) -x(6)] - [0.7071-0.7071j] [x(1) - x(5) -  j {x(3) -x(7)}]

X(3) = x(0) +  x(4) -  x(2) - x(6) +j [x(1) +  x(5) -   x(3) - x(7)]

X(7) = x(0) - x(4) +j [x(2) -x(6)] -  [0.7071-j0.7071][x(1) - x(5) +j {x(3) -x(7)}]
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  Chapter 4

Result of Verilog HDL Simulation     

4.1 Introduction

In the previous chapter we have designed the core processing block of IFFT and FFT for an 
OFDM transmitter and receiver. We showed there are two techniques to implement the 
design and we use direct method of an 8-pont IFFT and FFT for simplicity.

This chapter discusses the results and simulation which are carried by Altera Quartus -II 
simulator with various input samples.  Each of the input samples contains 4-bits of input.  The 
accuracy of the output is also verified to the output from MATLAB simulation. The result is 
divided into 2 different sections, for FFT processor and IFFT processor.  The output from 
each of the modules is shown and followed to the overall output.

4.2 FFT Processor Result 

In this sub section, the output of FFT processor is presented. This module is combined of 
eight sub-modules.

4.2.1 Store Module Simulation Result for FFT Processor 

This module is to pass the input data at each positive clock edge to the different modules of 
FFT processor with the condition that the load signal is active high.  One clock signal is 
required to pass the data in. The result is shown in Figure 4.1
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Figure 4.1 Store Module Simulation Output for FFT Processor

The above Figure 4.1 shows that each data in the corresponding input is successfully pass to 
the output buffer out_x0,out_x1,out_x2,out_x3,out_x4,out_x5,out_x6, and out_x7, 
respectively. This simulation and other rest of simulations we use five (5) different 8-input 
data (ASCII) which is provided for corresponding 8-point FFT operation at every positive
clock.

4.2.2 Channel 0 and Channel 4 Module Simulation Result for FFT 
Processor 

These modules implement almost the identical mathematical operation except the mathematical 

operators are different.  The equations are shown in Chapter 3.  There is no imaginary 

component present at the output. The result is shown in Figure 4.2 and Figure 4.3. 
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Figure 4.2: Channel 0 Module Simulation Output for FFT Processor

Figure 4.2 indicates the first output out_reg0 by calculating eight(8) input data in the 8-
point FFT operation.

Figure 4.3: Channel 4 Module Simulation Output for FFT Processor

Figure 4.3 shows the fifth output out_reg4 by calculating eight (8) input data in the 8-
point FFT operation.
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4.2.3 Channel 2 and Channel 6 Module Simulation Result for FFT 
Processor 

These modules implement almost the identical mathematical operation except the 
mathematical operators are different.  The equations are shown in Chapter 3.  There is a 
imaginary component present at the output.  Thus, Channel 2 and Channel 6 have more 
complex mathematical expressions rather than Channel 1 and Channel 4. The result is 
shown in Figure 4.4 and Figure 4.5 

Figure 4.4: Channel 2 Module Simulation Output for FFT Processor

Figure 4.4 shows the third output which consists of one real output out_reg2 and one 
imaginary output outim2 by calculating eight (8) input data in the 8-point FFT operation.
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Figure 4.5: Channel 6 Module Simulation Output for FFT Processor

Figure 4.5 shows the seventh output which consists of one real output out_reg6 and one 
imaginary output outim6 by calculating eight (8) input data in the 8-point FFT operation.

4.2.4 Channel 1, Channel 3, Channel 5 and Channel 7 Module Simulation 
Result for FFT Processor

These blocks are the most complicated among all the modules in the FFT processors 
because it involves number of mathematical operators, like, addition, subtraction, and 
multiplication.  The outputs contain real and imaginary components.  The imaginary 
components are resulted from the twiddle factor which involves sin 45 degree and cos 45 
degree.  This value is approximated to 0.70703125 which is equivalent to 0.10110101 in 
binary form. The result is shown in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. 
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Figure 4.6: Channel 1 Module Simulation Output for FFT Processor

Figure 4.6 shows the second output which consists of one real output out_reg1 and one 
imaginary outputoutim1by calculating eight (8) input data in the 8-point FFT operation.

Figure 4.7: Channel 3 Module Simulation Output for FFT Processor

Figure 4.7 shows the fourth output which consists of one real output out_reg3 and one 
imaginary output outim3 by calculating eight (8) input data in the 8-point FFT operation.
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Figure 4.8: Channel 5 Module Simulation Output for FFT Processor

Figure 4.8 shows the sixth output which consists of one real output out_reg5 and one 
imaginary output outim5 by calculating eight (8) input data in the 8-point FFT operation.

Figure 4.9: Channel 7 Module Simulation Output for FFT Processor

Figure 4.9 shows the eighth output which consists of one real output out_reg7 and one 
imaginary output outim7 by calculating eight (8) input data in the 8-point FFT operation.
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4.2.5 8-Point FFT Simulation Result

Now the total simulation result obtained by combining all modules that has been 
presented previously step by step are shown here. The result is shown in Figure 4.10

Figure 4.10: FFT Processor output

Figure 4.10 is the final simulation of the 8-point FFT processor where we see that when 
we give data through the eight input point it will give eight output data respectively. The 
simulation also shows that Channel 0 and Channel 4 give only real output and rest of 
paths give both real and imaginary value. So, this simulation results is very close to the 
mathematical calculation and further we will compare these data with MATLAB
simulation.
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4.3 IFFT Processor Result
Due to the scaling factor (1/N), the mathematical operation of IFFT processor is more 
complex than FFT. In the digital domain, this translates a division operation.

This section presents the simulation result in a similar fashion as the earlier.

4.3.1 Store Module Simulation Result for IFFT Processor

This module performs the same function as the Pass module in the FFT processor. This 
module is to pass the input data at each positive clock edge to the different modules of 
IFFT processor with the condition the load signal is active high. One clock signal is 
required to pass the data in. The result is shown in figure 4.11

Figure 4.11 Store Module Simulation Output for IFFT Processor

Figure 4.11 shows that each data in the corresponding input is successfully pass to the 
output buffer out_x0,out_x1,out_x2,out_x3,out_x4,out_x5,out_x6, and out_x7, 
respectively. This simulation and other rest of simulations, we use five (5) different 8-
input data (ASCII) which is provided for corresponding 8-point IFFT operation at every 
positive clock.

4.3.2 Channel 0 and Channel 4 Module Simulation Result for IFFT 
Processor

These modules implement almost the similar mathematical operation except the 
mathematical operators are different. The equations are shown in chapter 3. There is no 
imaginary component present at the output.    The result is shown in figure 4.12 and 
figure 4.13.
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r

                             Figure 4.12 Channel 0 Module Simulation Output for IFFT Processo

Figure 4.12 indicates the first output out_re0 by calculating eight (8) input data in the 8-
point IFFT operation.

Figure 4.13 Path 4 Module Simulation Output for IFFT Processor

4.3.3 Path 2 and Path 6 Module Simulation Result for IFFT Processor

These modules implement almost the identical mathematical operation except the 
mathematical operators are different.  The equations are shown in Chapter 3.  There is 
imaginary component present at the output.  Thus, Path 2 and Path 6 have more complex 
mathematical expressions. 

Figure 4.13 Channel 4 Module Simulation Output for IFFT Processor

Figure 4.13 indicates the fifth output out_reg4 by calculating eight (8) input data in the 
8-point IFFT operation.
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4.3.3 Channel 2 and Channel 6 Module Simulation Result for IFFT 
Processor

These modules implement almost the identical mathematical operation except the 
mathematical operators are different.  The equations are shown in Chapter 3.  There is 
imaginary component present at the output.  Thus, Channel 2 and Channel 6 have more 
complex mathematical expressions. The result is shown in Figure 4.14 and Figure 4.15 

Figure 4.14 Channel 2 Module Simulation Output for IFFT Processor

Figure 4.14 shows the third output which consists of one real output out_re2 and one 
imaginary output outim2 by calculating eight (8) input data in the 8-point IFFT operation.

Figure 4.15 Channel 6 Module Simulation Output for IFFT Processor

Figure 4.15 shows the sixth output which consists of one real output out_reg6 and one 
imaginary output outim6 by calculating eight (8) input data in the 8-point IFFT operation.
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4.3.4 Channel 1, Channel 3, Channel 5 and Channel 7 Module 
Simulation Result for IFFT Processor

These blocks are the complex among all the modules in the IFFT processor because it 
involves a number of mathematical operators, like, addition, subtraction, and 
multiplication.  The outputs contain real and imaginary components.  The imaginary 
component is resulted from the twiddle factor which involves sin 45 degree and cos 45 
degree.  This value is approximated to 0.70703125 which is equivalent to 0.10110101 in 
binary form. The result is shown in Figure 4.16, Figure 4.17, Figure 4.18 and Figure 4.19.

Figure 4.16 Channel 1 Module Simulation Output for IFFT Processor

Figure 4.15 shows the second output which consists of one real output out_re1 and one 
imaginary output outim1by calculating eight (8) input data in the 8-point IFFT operation.
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Figure 4.17 Channel 3 Module Simulation Output for IFFT Processor

Figure 4.17 shows the fourth output which consists of one real output out_reg3 and one 
imaginary output outim3 by calculating eight (8) input data in the 8-point IFFT operation.

                      Figure 4.18 Channel 5 Module Simulation Output for IFFT Processor
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Figure 4.18 shows the fourth output which consists of one real output out_reg5 and one 
imaginary output outim5 by calculating eight (8) input data in the 8-point IFFT operation.

Figure 4.19 Channel 7 Module Simulation Output for IFFT Processor

Figure 4.19 shows the eighth output which consists of one real output out_reg7and one 
imaginary output outim7 by calculating eight (8) input data in the 8-point IFFT operation.
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4.3.5 8-Point IFFT Simulation Result

This part illustrates the overall simulation result obtained by combining all the modules at the 
IFFT section that has been presented earlier.  The result is shown in Figure 4.20.

Figure 4.20: IFFT processor output

Figure 4.20 is the final simulation of the 8-pointIFFT processor where we see that when we 
give random data through the eight input point it will give eight output data respectively. The 
simulation also shows that Channel 0 and Channel 4 give only real output and rest of Channel
give both real and imaginary value. So, this simulation results is very close to the 
mathematical calculation and further we will compare these data with MATLAB simulation.



61

4.4 Resources Used:

The design of the FFT and IFFT processor are compiled and simulated separately using Altera 
Quartus -II simulator software. The following resources are used by the module, when 
compiled and simulated using an Altera device of family Cyclone II, are as follows:

Resource Usage
Device Family: Cyclone II
Device: EP2C35U484C8
Total Logic elements: 745 (out of 33216) for FFT and 1146 for IFFT
Total combinational function: 641 (out of 33216) for FFT and 967 for IFFT
Dedicated log registers: 349 for FFT and 632 for IFFT
Total registers: 349 and 632 for IFFT
Total Pin: 178 (out of 362) for FFT and 179 for IFFT
Total memory bits: 0
Embedded Multiplier 9 -bit elements 3

4.5 Verification of Verilog HDL Simulation Output 

The result presented in this chapter has to be verified.  The Verilog HDL output and the 
MATLAB simulation output using same arbitrary input number are compared to measure the 
accuracy of the result. As shown in Table 4.1 and Table 4.2, the accuracy of the Verilog HDL
simulation output has been rounded to the nearest integer because of only 8 bit is used to 
represent the output value.
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Table 4.1: Comparison between Quartus II Vs MATLAB output for 8-point FFT

Sl No Input Quartus II
output

MATLAB
output

--- --- Real Imaginary Real Imaginary 

1 2 60 0 60 0 

2 1 247 12 246 19 

3 2 253 15 253 15 

4 9 247 12 248 252

5 11 224 0 254 0 

6 7 247 12 248 4.22 

7 14 253 241 253 241

8 14 247 244 246 237
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Table 4.2: Comparison between Quartus II Vs MATLAB output for 8-point IFFT

Sl No Input Quartus II
output

MATLAB
output

--- --- Real Imaginary Real Imaginary

1 2 7 0 7.50 0

2 1 255 255 255 254

3 2 255 253 255 254

4 9 255 253 255 255

5 11 253 1 255 0

6 7 254 253 255 251

7 14 0 1 0 1.875

8 14 254 249 255 2.472

Table 4.1 and Table 4.2 show the eight output values of FFT and IFFT operations obtained 
from Quartus-II and MATLAB simulator respectively using the same input values to the both 
simulators. The values are close to each other. The output of the Twiddle factor is 
approximated to 0.7071 in our proposed design whereas in MATLAB it is little bit more than 
this value. Again in our design any decimal value after summation is approximated to integer 
‘1’ when it is greater than 0.5 whereas MATLAB considers the exact value of the summation. 
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Chapter 5

Conclusion

5.1 Conclusion

In this modern era, OFDM (Orthogonal Frequency Division Multiplexing) is one of the best 

technologies which support the 3G and 4G standard of wireless communication. OFDM is 

mainly used in the WiMAX, LTE, WLAN etc. and providing tremendous speed.  The aim of 

this project is the implementing the core processing blocks of an OFDM system, namely the 

Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT). 

The core processing blocks of an OFDM system i.e. the FFT and the IFFT processors were 

successfully designed and implemented using common pass module and multiple path 

modules. Direct mathematical method was adopted as it was found to be an efficient and 

optimized method implementation which is based on butterfly operation instead of the 

structural. At the end functional simulation was performed from Altera Quartus II to generate 

the design net list file and translate the design into the target Altera FPGA device. The output 

of the functional simulation has been compared with the data calculated from pre synthesis 

MATLAB simulations and found that there is showing slightly error percentage due to the 

approximation of the twiddle factor. If we take the large value of the twiddle factor, then the 

percentage of error could be reduced and FFT / IFFT processor will show the better 

performance.

5.2 Future Work

The Author suggests the following research that could be carried out in the future.

1. In this work, FFT/IFFT block is implemented using FPGA device, in future by adding 

some resources like serial to parallel converter, channel coder and  A/D converter it 

could be made complete OFDM modem.

2. The FFT/IFFT block can be implemented to the higher order like 16/32/64 point to 

have the better accuracy.
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Flow chart for Path 1 in FFT processor 
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Flow chart for Path 3 in FFT processor 
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Flow chart for Path 5 in FFT processor 
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Flow chart for Path 7 in FFT processor 
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Flow chart for Path 0 and Path 4 in IFFT processor 



          

                                 

     

    Even Input                                                          Odd Input

          X2Re=x0- x2+ x4

           Concatenate bit ‘0’                                  

Yes
Sign bit -

          

           Unsigned Divider

Yes
Quo
              

             

            outre2

                                                            

Sign bit +ve

          Flow chart for Path 2 in IFFT processor 

                                 START

     Initialize input from Block Pass

Even Input                                                          Odd Input

x2+ x4- x6                                      X2Im=x1- x3+ x5 -x7

Concatenate bit ‘0’                                              Concatenate bit ‘0’

-ve

No Yes

Sign bit -ve

No

          Invert to +ve

Unsigned Divider

                                             Invert to +ve

            Unsigned Divider

              No Yes

   Quo

          No

             Invert to -ve

                                                            END

                            
Invert to 

Sign bit +veSign bit +ve

outre2

77

No

Invert to +ve

                            
Invert to -ve



Flow chart for Path 6 in IFFT processor 

                                   

          

          Even Input                                                      Odd Input

           X6Re=x0- x2+ x4

           Concatenate bit ‘0’                                           Concatenate bit ‘0’

Yes

Sign bit -

           

           Unsigned Divider

Yes
   Quo
                    

                  Sign bit +ve

               

           outre2

                                                        

Flow chart for Path 6 in IFFT processor 

                                   START

          Initialize input from Block Pass

Even Input                                                      Odd Input

x2+ x4- x6                                    X6Im=-x1+ x3- x5+ x7

ate bit ‘0’                                           Concatenate bit ‘0’

-ve

No Yes

Sign bit -ve

No

           Invert to +ve

Unsigned Divider

Invert to +ve

           Unsigned Divider

Quo
                    No 

Yes

Quo

            No 

Sign bit +ve

               Invert to -ve

                                                        END

Sisign bit +ve

                         Invert  to 

outre2

78

No

Invert to +ve

Invert  to -ve



Flow chart for Path 1 in IFFT processor 

Initialize input from Block 

Even Input                                                 Odd Input

                                                          

Re: X1Re= x0- x4 
Im: X1Re= x2- x6

Real                                          

       Yes
Sign bit -ve

             

               

Invert to +ve

Unsigned Divider

Yes         Quo

Sign bit +ve                    

                            Invert to 

outre1

Flow chart for Path 1 in IFFT processor 

START

Initialize input from Block Pass

Even Input                                                 Odd Input

                                                          Multiply with 0.70703125

X1dRe= x1- x3- x5+ x7 
X1dIm= x1-x3- x5+ x7

Real                                                     Imaginary
             Adder

               No

Invert to +ve

            Yes Sign bit –ve      NoNo

Invert to +ve

Unsigned Divide

                    No

Invert to -ve

                                         No

                         Invert  to -ve

outim1

END

Yes
Sign bit +ve

79



Flow chart for Path 3 in IFFT processor 

Initialize input from Block Pass

Even Input                                                 Odd Input

                                                          

Re: X3Re= x0- x4 
Im: X3Re=- x2- x6

Real                                          Imaginary

       Yes
Sign bit -ve

        

               

Invert to +ve

Unsigned Divider

Yes         Quo

Sign bit +ve                   

                          Invert to 

Outre3

Flow chart for Path 3 in IFFT processor 

START

Initialize input from Block Pass

Even Input                                                 Odd Input

                                                          Multiply with 0.70703125

X3dRe= -x1+ x3+x5--x7 
X3dIm= x1-x3- x5+ x7

Real                                          Imaginary
        Adder

               No

Invert to +ve

            Yes Sign bit –ve      NoNo

Invert to +ve

Unsigned Divide

                   No

Invert to -ve

                             No

                         Invert to -ve

Yes Sign bit +ve

Outim3

      End

Quo

80



Flow chart for Path 5 in IFFT processor 

Initialize input from Block Pass

Even Input                                                 Odd Input

                                                          

Re: X5Re= x0- x4 
Im: X5Re=-x2- x6

Real                                        

       Yes
Sign bit -ve

            

               

Invert to +ve

Unsigned Divider

Yes         Quo

Sign bit +ve                    

                           Invert to 

Outre5

Flow chart for Path 5 in IFFT processor 

START

Initialize input from Block Pass

Input                                                 Odd Input

                                                          Multiply with 0.70703125

X5dRe= -x1+ x3+x5--x7 
X5dIm= -x1+x3+ x5- x7

Real                                                  Imaginary
            Adder

               No

Invert to +ve

            Yes Sign bit –ve      NoNo

Invert to +ve

Unsigned Divide

                    No

Invert to -ve

    

                                 No

                         Invert to -ve

Yes

Sign bit +ve

Outim5

      End

Quo

81



Flow chart for Path 7 in IFFT processor 

Initialize input from Block Pass

Even Input                                                 

                                                          

Re: X7Re= x0- x4 
Im: X7Re=-- x2- x6

Real                                          

       Yes
Sign bit -ve

              

               

Invert to +ve

Unsigned Divider

Yes         Quo

Sign bit +ve                      

                             Invert to 

Outre7

Flow chart for Path 7 in IFFT processor 

START

Initialize input from Block Pass

                                     Odd Input

                                                          Multiply with 0.70703125

X7dRe= x1- x3-x5+-x7 
X7dIm= x1-x3- x5+ x7

Real                                                 Imaginary
              Adder

               No

Invert to +ve

            Yes Sign bit –ve      NoNo

Invert to +ve

Unsigned Divide

                      No

Invert to -ve

                                    No

                         Invert to -ve

Yes
Sign bit +ve

Outim7

      End

Quo

82



83

APPENDIX C
Verilog HDL SYNTHESIS CODE FOR FFT AND IFFT PROCESSOR

/// FFT 
module FFT(out_reg0,out_re1,out_reg2,outim2,out_reg6,outim6,out_reg4,
           outim1,out_x0,out_x1 ,out_re3,outim3,out_re5,outim5,out_re7,outim7,
           out_x2 ,out_x3 ,out_x4 ,out_x5 ,out_x6 ,out_x7 ,
           in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 ,rst,clk);
output [7:0] out_x0,out_x1 ,out_x2,out_x3 ,out_x4 ,out_x5 ,
out_x6,out_x7,out_reg0,out_reg2,outim2,out_reg4,out_reg6,outim6,out_re1,out1,out_re3,outim3,out
_re5,outim5,out_re7,outim7;
reg [16:0] x1cd, x3cd, x5cd, x7cd,    x51cd,x53cd, x55cd, x57cd,   x31cd,x33cd, x35cd, x37cd, 
x71cd,x73cd, x75cd, x77cd,  X1dRe, X1dIm, X3dRe, X3dIm, X5dRe, X5dIm,X7dRe, X7dIm;
reg [7: 0] X1Re, X1Im,X1dRe_jum,X1dIm_jum,            X5Re, X5Im,X5dRe_jum,X5dIm_jum,
            X3Re, X3Im,X3dRe_jum,X3dIm_jum,            X7Re, X7Im,X7dRe_jum,X7dIm_jum            ;
reg [7:0] out_x0,out_x1,out_x2,out_x3,out_x4,out_x5,out_x6,out_x7, outim2; 
input [7:0] in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 ;
input clk,rst;
reg [7:0] out_reg0,out_reg2,out_reg4,out_reg6,outim6, 
out_re1,outim1,out_re3,outim3,out_re5,outim5,out_re7,outim7;
always @ (posedgeclk or negedgerst)
// pass0 module
begin if (rst == 1'b0) out_x0 <= 8'b00000000 ;
   else out_x0 <= in_x0 ;
   if (rst == 1'b0) out_x1 <= 8'b00000000 ;
   else out_x1 <= in_x1 ;
   if (rst == 1'b0) out_x2 <= 8'b00000000 ;
   else out_x2 <= in_x2 ;
    if (rst == 1'b0) out_x3 <= 8'b00000000 ;
   else out_x3 <= in_x3 ;
    if (rst == 1'b0) out_x4 <= 8'b00000000 ;
   else out_x4 <= in_x4 ;
    if (rst == 1'b0) out_x5 <= 8'b00000000 ;
   else out_x5 <= in_x5 ;
    if (rst == 1'b0) out_x6 <= 8'b00000000 ;
   else out_x6 <= in_x6 ;
    if (rst == 1'b0) out_x7 <= 8'b00000000 ;
   else out_x7 <= in_x7 ;
   // end pass module
   // FFT path0
     if (rst ==1'b0) out_reg0 <= 0;         else 
        begin         out_reg0 <= (((out_x0 + out_x1) + (out_x2 + out_x3)) + ((out_x4 + out_x5) + (out_x6 + 
out_x7)))  ;         end
   /////////...........end path0
   // path 4
  if (rst ==1'b0) out_reg4 <= 0; else 
  begin   out_reg4 <= (out_x0 - out_x1) * (out_x2 - out_x3) * (out_x4 - out_x5) * (out_x6 - out_x7)  ;
  end
///......end of path 4
// path 02
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  if (rst ==1'b0) out_reg2 <= 0; else 
   begin  out_reg2 <= out_x0 + out_x4 - out_x2 - out_x6;  
       outim2 <= out_x3 + out_x7 - out_x1 - out_x5; 
   end
   ///.......end of path 02
  // path 06
   if (rst ==1'b0) out_reg6 <= 0; else 
   begin  out_reg6 <= out_x0 + out_x4 - out_x2 - out_x6;  
       outim6 <= out_x1 + out_x5 - out_x3 - out_x7; 
     end
// ......end of path 06
// FFT path 1
    if (rst ==1'b0) out_re1<= 0; 
      else 
    begin
     X1Re <= out_x0 - out_x4;
     X1Im <= out_x6-out_x2;
      x1cd    <= 9'b010110101* out_x1;                                                                                                                                                                                                                                          
    x3cd    <= 9'b010110101* out_x3; 
    x5cd    <= 9'b010110101* out_x5; 
    x7cd    <= 9'b010110101* out_x7; 
    X1dRe <= x1cd - x5cd - x3cd + x7cd ;
    X1dIm <= x5cd + x7cd - x1cd - x3cd;
    if (X1dRe[7] == 1'b1)   X1dRe_jum <= X1dRe[15 : 8]  + 1'b1 ;  
   else X1dRe_jum <= X1dRe[15 : 8];
   if (X1dIm [7]==1'b1)      X1dIm_jum <= X1dIm [15 :8 ] + 1'b1;  
   else  X1dIm_jum <= X1dIm [15 :8 ]; 
    out_re1 <= X1Re +  X1dRe_jum  ;
    outim1 <= X1Im + X1dIm_jum ;
    end
  /////.....End of path 1
  // path 5
    if (rst ==1'b0) out_re5<= 0; 
  else 
  begin
   X5Re <= out_x0 - out_x4;
   X5Im <= out_x6-out_x2;
   x51cd    <= 9'b010110101* out_x1;                                                                                                                                                 
   x53cd    <= 9'b010110101* out_x3; 
   x55cd    <= 9'b010110101* out_x5; 
   x57cd    <= 9'b010110101* out_x7; 
   X5dRe <= x53cd + x55cd-x51cd  - x57cd ;
   X5dIm <=  x51cd + x53cd-x55cd -x57cd;
  if (X5dRe[7] == 1'b1)   X5dRe_jum <= X5dRe[15 : 8]  + 1'b1 ;  
  else X5dRe_jum <= X5dRe[15 : 8];
if (X5dIm [7]==1'b1)      X5dIm_jum <= X5dIm [15 :8 ] + 1'b1;  
else  X5dIm_jum <= X5dIm [15 :8 ]; 
  out_re5 <= X5Re +  X5dRe_jum  ;
  outim5<= X5Im + X5dIm_jum ;
  end
  /// end of path 5
  // path 03
  if (rst ==1'b0) out_re3<= 0; 
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  else 
  begin
  X3Re <= out_x0 - out_x4;
   X3Im <= out_x6-out_x2;
   x31cd    <= 9'b010110101* out_x1;                                                                                                                                              
   x33cd    <= 9'b010110101* out_x3; 
   x35cd    <= 9'b010110101* out_x5; 
   x37cd    <= 9'b010110101* out_x7; 
   X3dRe <= x33cd + x35cd-x31cd  - x37cd ;
   X3dIm <= x35cd + x37cd - x31cd - x33cd;
  if (X3dRe[7] == 1'b1)   X3dRe_jum <= X3dRe[15 : 8]  + 1'b1 ;  
  else X3dRe_jum <= X3dRe[15 : 8];
if (X3dIm [7]==1'b1)      X3dIm_jum <= X3dIm [15 :8 ] + 1'b1;  
else  X3dIm_jum<= X3dIm [15 :8 ]; 
  out_re3 <= X3Re +  X3dRe_jum  ;
  outim3<= X3Im + X3dIm_jum ;
  end
  // end of path 03
  /// path of 07
  if (rst ==1'b0) out_re7<= 0; 
  else 
  begin
   X7Re <= out_x0 - out_x4;
   X7Im <= out_x2-out_x6;
   x71cd    <= 9'b010110101* out_x1;                                                                                                                                               
   x73cd    <= 9'b010110101* out_x3; 
   x75cd    <= 9'b010110101* out_x5; 
   x77cd    <= 9'b010110101* out_x7; 
   X7dRe <= x71cd + x77cd - x75cd - x73cd; 
   X7dIm <=  x71cd + x73cd - x75cd - x77cd; 
  if (X7dRe[7] == 1'b1)   X7dRe_jum <= X7dRe[15 : 8]  + 1'b1 ;  
  else X7dRe_jum <= X7dRe[15 : 8];
if (X7dIm [7]==1'b1)      X7dIm_jum <= X7dIm [15 :8 ] + 1'b1;  
else  X7dIm_jum <= X7dIm [15 :8 ]; 
  out_re7 <= X7Re +  X7dRe_jum  ;
  outim7<= X7Im + X7dIm_jum ;
  end
  /// end of path 07
end
endmodule
/// IFFT module
module IFFT_full(
  in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 , 
outre0,outre1,outim1,outre2,outim2,outre3,outim3,
   outre4,
  outre5,outim5,
  outre6,outim6,
  outre7,outim7,
rst,clk);
  parameter d = 4'b1000 ; 
output [7:0] outre0,outre1,outim1,outre2,outim2,
outre3,outim3,outre4,outre5,outim5,outre6,outim6,outre7,outim7;
reg [7:0] out_re0,Xout0 ;
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reg [8:0] Xout0_9, X0_QUOa,indiv,out_re0a,outre0;
reg [7: 0] X0_QUO;
reg [7:0] out_x0,out_x1,out_x2,out_x3,out_x4,out_x5,out_x6,out_x7;
input [7:0] in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 ;
input clk,rst;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x0 <= 8'b00000000 ;
   else out_x0 <= in_x0 ;
   if (rst == 1'b0) out_x1 <= 8'b00000000 ;
   else out_x1 <= in_x1 ;
   if (rst == 1'b0) out_x2 <= 8'b00000000 ;
   else out_x2<= in_x2 ;
    if (rst == 1'b0) out_x3 <= 8'b00000000 ;
   else out_x3 <= in_x3 ;
    if (rst == 1'b0) out_x4 <= 8'b00000000 ;
   else out_x4 <= in_x4 ;
    if (rst == 1'b0) out_x5 <= 8'b00000000 ;
   else out_x5 <= in_x5 ;
    if (rst == 1'b0) out_x6 <= 8'b00000000 ;
   else out_x6 <= in_x6 ;
    if (rst == 1'b0) out_x7 <= 8'b00000000 ;
   else out_x7 <= in_x7 ;
  if (rst ==1'b0) out_re0a<= 0; 
  else 
  begin
  Xout0<= (out_x0 + out_x1 + out_x2 + out_x3+ out_x4 + out_x5 + out_x6 + out_x7)  ;
  Xout0_9 <= {1'b0 , Xout0 }; 
   if (Xout0[7]==1'b1)    indiv<= 9'b100000000 - Xout0_9;  
    else   indiv<= Xout0_9;  
    X0_QUOa <= X0_QUO; 
   if (Xout0[7]==1'b1) outre0[7:0] <= 9'b100000000 - X0_QUO;   
         else   outre0 <=X0_QUO ; 
      end 
end
lpm_divideifftpath (.numer(Xout0_9), .denom (d), .quotient (X0_QUO),.remain (out_re0),.clock (clk));
defparamifftpath.LPM_WIDTHN = 8;
defparamifftpath.LPM_WIDTHD = 4; 
// module 01...
reg[7:0] outre1, out_re1,out_x01,out_x11 ,out_x21,out_x31 ,out_x41 ,out_x51 ,
out_x61 ,out_x71,outim1,X1_Im_Quo1,imag1, X1gt_Im,X1gt_Re,
X1_Re_Quo1,im_decil,re_decil,real1,X1_Re_Quo;
//output [3:0] X1_Re_Rem,  X1_Im_Rem; 
//reg [7:0]  X1_Re_Quo1,im_decil,re_decil,real1;
reg [16:0] x1cd, x3cd, x5cd, x7cd, X1dRe, X1dIm;
reg [7: 0]  X1_Im_Quo;
reg [7: 0] X1Re, X1Im, X1dRe_jum, X1dIm_jum;

//reg [7:0] out_x0,out_x1,out_x2,out_x3,out_x4,out_x5,out_x6,out_x7 ; 

reg [8: 0] X1gt_Re9, X1gt_Im9, indivR1, indivI1, outre1a, outim1a;

always @ (posedgeclk or negedgerst)
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begin

   if (rst == 1'b0) out_x01 <= 8'b00000000 ;
   else out_x01 <= in_x0 ;
   if (rst == 1'b0) out_x11 <= 8'b00000000 ;
   else out_x11 <= in_x1 ;
   if (rst == 1'b0) out_x21 <= 8'b00000000 ;
   else out_x21 <= in_x2 ;
    if (rst == 1'b0) out_x31 <= 8'b00000000 ;
   else out_x31 <= in_x3 ;
    if (rst == 1'b0) out_x41 <= 8'b00000000 ;
   else out_x41 <= in_x4 ;
    if (rst == 1'b0) out_x51 <= 8'b00000000 ;
   else out_x51 <= in_x5 ;
    if (rst == 1'b0) out_x61 <= 8'b00000000 ;
   else out_x61 <= in_x6 ;
    if (rst == 1'b0) out_x71 <= 8'b00000000 ;
   else out_x71 <= in_x7 ; 
  if (rst ==1'b0) out_re1<= 0; 
   else 
  begin
             X1Re <= out_x01 - out_x41;  
            X1Im <= out_x21 - out_x61; 
            x1cd <= 9'b010110101 * out_x11;  
            x3cd <= 9'b010110101 * out_x31;  
            x5cd <= 9'b010110101 * out_x51;  
            x7cd <= 9'b010110101 * out_x71; 
           X1dRe <=x1cd - x5cd - x3cd + x7cd;  
           X1dIm <=-x5cd + x1cd - x3cd + x7cd; 
           if (X1dRe[7]==1'b1)   X1dRe_jum <= X1dRe[15 : 8] +1'b1;  
           else   X1dRe_jum <= X1dRe[15 : 8]; 
           if (X1dIm[7]==1'b1)     X1dIm_jum <= X1dIm[15 : 8] +1'b1;  
           else   X1dIm_jum <= X1dIm[15 : 8];  
           real1 <=X1Re;  
           imag1 <=X1Im;  
re_decil<= X1dRe_jum;  
im_decil<= X1dIm_jum; 
          X1gt_Re <= X1Re + X1dRe_jum;  
          X1gt_Im <= X1Im + X1dIm_jum; 

  X1gt_Re9 <= {1'b0 , X1gt_Re};  
          X1gt_Im9 <= {1'b0 , X1gt_Im}; 
if (X1gt_Re[7]==1'b1)  indivR1 <= 9'b1000_00000 - X1gt_Re9;  
else   indivR1 <= X1gt_Re9;  
if (X1gt_Im[7]==1'b1)  indivI1 <= 9'b1000_00000 - X1gt_Im9;  
else   indivI1 <= X1gt_Im9;  
if (X1gt_Re[7]==1'b1)  begin
                        outre1a <=9'b1000_00000 - X1_Re_Quo;   
                        outre1 <= outre1a [7 : 0]; 
                        end
  else   outre1 <=X1_Re_Quo [7 : 0];  
if (X1Im[7]==1'b1)  begin
                     outim1a <=9'b1000_00000 - X1_Im_Quo;   
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                    outim1 <= outim1a [7 : 0];  
                     end
else   outim1 <=X1_Im_Quo [7 : 0];  

X1_Re_Quo1 <= X1_Re_Quo;  
X1_Im_Quo1 <= X1_Im_Quo;  
  end
end
lpm_divide ifftpath11 (.numer(indivR1), .denom (d), .quotient (X1_Re_Quo),.remain 
(X1_Re_Rem),.clock (clk));
defparam ifftpath11.LPM_WIDTHN = 8;
defparam ifftpath11.LPM_WIDTHD = 4; 
lpm_divide ifftpath12 (.numer(indivI1), .denom (d), .quotient (X1_Im_Quo),.remain (X1_Im_Rem),.clock 
(clk));
defparam ifftpath12.LPM_WIDTHN = 8;
defparam ifftpath12.LPM_WIDTHD = 4;
        // module two......
reg [3:0] X2_Re_Rem,  X2_Im_Rem; 
reg [7:0]  X2_Re_Quo2,real2;
reg [7: 0] X2Re, X2Im, X2Re_jum,  X2Im_jum, X2_Re_Quo, X2_Im_Quo;
reg [7:0] out_x02,out_x12,out_x22,out_x32,out_x42,out_x52,out_x62,out_x72 ; 
reg [8: 0] X2Re9, X2Im9, indivR2, indivI2, outre2a, outim2a;
reg [7:0] X2_Im_Quo2,imag2, X2gt_Im,X2gt_Re ;
//input [7:0] in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 ;
reg [7:0] outre2,outim2;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x02 <= 8'b00000000 ;
   else out_x02 <= in_x0 ;
  if (rst == 1'b0) out_x12 <= 8'b00000000 ;
   else out_x12 <= in_x1 ;
   if (rst == 1'b0) out_x22 <= 8'b00000000 ;
   else out_x22 <= in_x2 ;
    if (rst == 1'b0) out_x32 <= 8'b00000000 ;
   else out_x32 <= in_x3 ;
    if (rst == 1'b0) out_x42 <= 8'b00000000 ;
   else out_x42 <= in_x4 ;
    if (rst == 1'b0) out_x52 <= 8'b00000000 ;
   else out_x52 <= in_x5 ;
    if (rst == 1'b0) out_x62 <= 8'b00000000 ;
   else out_x62 <= in_x6 ;
    if (rst == 1'b0) out_x72 <= 8'b00000000 ;
   else out_x72 <= in_x7 ;
  if (rst ==1'b0) outre2<= 0; 
   else 
  begin

X2Re <= out_x02 + out_x42 - out_x22 - out_x62;  
          X2Im <= out_x12 + out_x52 - out_x32 - out_x72;  
          real2 <=X2Re;  
          imag2 <=X2Im;  
          X2Re9 <= {X2Re,1'b0};  
          X2Im9 <= {X2Im,1'b0}; 
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if (X2Re[7]==1'b1)     indivR2 <= 9'b100000000 - X2Re9;  
else   indivR2 <= X2Re9; 
if (X2Im[7]==1'b1)     indivI2 <= 9'b100000000 - X2Im9;  
else   indivI2 <= X2Im9;  
if (X2Re[7]==1'b1)   outre2[7 : 0] <=9'b100000000 - X2_Re_Quo;  
  else   outre2 <=X2_Re_Quo [7 : 0];  
if (X2Im[7]==1'b1)    outim2[7 : 0] <=9'b100000000 - X2_Im_Quo; 
else   outim2 <=X2_Im_Quo [7 : 0]; 
        X2_Re_Quo2 <= X2_Re_Quo;  
       X2_Im_Quo2 <= X2_Im_Quo; 
  end
end
lpm_divide ifftpath21 (.numer(indivR2), .denom (d), .quotient (X2_Re_Quo),.remain 
(X2_Re_Rem),.clock (clk));
defparam ifftpath21.LPM_WIDTHN = 8;
defparam ifftpath21.LPM_WIDTHD = 4; 
lpm_divide ifftpath22 (.numer(indivI2), .denom (d), .quotient (X2_Im_Quo),.remain (X2_Im_Rem),.clock 
(clk));
defparam ifftpath22.LPM_WIDTHN = 8;
defparam ifftpath22.LPM_WIDTHD = 4;
// module 3.......
reg [3:0] X3_Re_Rem,  X3_Im_Rem; 
reg [7:0]  X3_Re_Quo3,im_deci3,re_deci3,real3;
reg [16:0] x31cd, x33cd, x35cd, x37cd, X3dRe, X3dIm;
reg [7: 0] X3_Re_Quo, X3_Im_Quo;
reg [7: 0] X3Re, X3Im, X3dRe_jum, X3dIm_jum;
reg [7:0] out_x03,out_x13,out_x23,out_x33,out_x43,out_x53,out_x63,out_x73 ; 
reg [8: 0] X3gt_Re9, X3gt_Im9, indivR3, indivI3, outre3a, outim3a;
reg [7:0] X3_Im_Quo3,imag3, X3gt_Im,X3gt_Re;
//input [7:0] in_x0,in_x1,in_x2,in_x3,in_x4,in_x5,in_x6,in_x7 ;
reg [7:0] outre3,out_re3,outim3 ;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x03 <= 8'b00000000 ;
   else out_x03 <= in_x0 ;
   if (rst == 1'b0) out_x13 <= 8'b00000000 ;
   else out_x13 <= in_x1 ;
   if (rst == 1'b0) out_x23 <= 8'b00000000 ;
   else out_x23 <= in_x2 ;
    if (rst == 1'b0) out_x33 <= 8'b00000000 ;
   else out_x33 <= in_x3 ;
    if (rst == 1'b0) out_x43 <= 8'b00000000 ;
   else out_x43 <= in_x4 ;
    if (rst == 1'b0) out_x53 <= 8'b00000000 ;
   else out_x53 <= in_x5 ;
    if (rst == 1'b0) out_x63 <= 8'b00000000 ;
   else out_x63 <= in_x6 ;
    if (rst == 1'b0) out_x73 <= 8'b00000000 ;
   else out_x73 <= in_x7 ;
  if (rst ==1'b0) out_re3<= 0; 
   else 
  begin
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         X3Re  <= out_x03 - out_x43;  
         X3Im  <= -out_x23 -out_x63; 
         x31cd <=9'b010110101 * out_x13;  
         x33cd <=9'b010110101 * out_x33;  
         x35cd <=9'b010110101 * out_x53;  
         x37cd <=9'b010110101 * out_x73; 
         X3dRe <=x35cd + x33cd - x31cd - x37cd;  
         X3dIm <=-x35cd + x37cd + x31cd - x33cd; 
        if (X3dRe[7]==1'b1)  X3dRe_jum <= X3dRe[15 : 8] +1'b1;  
        else   X3dRe_jum <= X3dRe[15 : 8];  
       if (X3dIm[7]==1'b1)    X3dIm_jum <= X3dIm[15 : 8] +1'b1;  
       else   X3dIm_jum <= X3dIm[15 : 8];  
       real3 <=X3Re;  
       imag3 <=X3Im;  
       re_deci3 <= X3dRe_jum;  
       im_deci3 <= X3dIm_jum; 
       X3gt_Re <= X3Re + X3dRe_jum;  
       X3gt_Im <= X3Im + X3dIm_jum; 
       X3gt_Re9 <= {1'b0 , X3gt_Re};  
       X3gt_Im9 <= {1'b0 , X3gt_Im};
       if (X3gt_Re[7]==1'b1)     indivR3 <= 9'b1000_00000 - X3gt_Re9; 
        else   indivR3 <= X3gt_Re9;  
         if (X3gt_Im[7]==1'b1)     indivI3 <= 9'b1000_00000 - X3gt_Im9;  
        else   indivI3 <= X3gt_Im9;  
        if (X3gt_Re[7]==1'b1)    begin 
        outre3a <=9'b1000_00000 - X3_Re_Quo;   
        outre3 <= outre3a [7 : 0];   end
        else   outre3 <=X3_Re_Quo [7 : 0];  
        if (X3Im[7]==1'b1)  begin  outim3a <=9'b1000_00000 - X3_Im_Quo;   
        outim3 <= outim3a [7 : 0]; end
        else   outim3 <=X3_Im_Quo[7 : 0];
       X3_Re_Quo3 <= X3_Re_Quo;  
       X3_Im_Quo3 <= X3_Im_Quo;   
  end
end
lpm_divide ifftpath31 (.numer(indivR3), .denom (d), .quotient (X3_Re_Quo),.remain 
(X3_Re_Rem),.clock (clk));
defparam ifftpath31.LPM_WIDTHN = 8;
defparam ifftpath31.LPM_WIDTHD = 4; 
lpm_divide ifftpath32 (.numer(indivI3), .denom (d), .quotient (X3_Im_Quo),.remain (X3_Im_Rem),.clock 
(clk));
defparam ifftpath32.LPM_WIDTHN = 8;
defparam ifftpath32.LPM_WIDTHD = 4;
        // module 4.......
reg [7:0]  Xout4_9,Xout4,indiv4;
reg [7: 0] X4_Quo, X4_Quoa, X4_Rem;
reg [7:0] out_x04,out_x14,out_x24,out_x34,out_x44,out_x54,out_x64,out_x74 ; 
reg [8: 0] outre4a;
reg [7:0] outre4;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x04 <= 8'b00000000 ;
   else out_x04 <= in_x0 ;
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   if (rst == 1'b0) out_x14 <= 8'b00000000 ;
   else out_x14 <= in_x1 ;
   if (rst == 1'b0) out_x24 <= 8'b00000000 ;
   else out_x24 <= in_x2 ;
    if (rst == 1'b0) out_x34 <= 8'b00000000 ;
   else out_x34 <= in_x3 ;
    if (rst == 1'b0) out_x44 <= 8'b00000000 ;
   else out_x44 <= in_x4 ;
    if (rst == 1'b0) out_x54 <= 8'b00000000 ;
   else out_x54 <= in_x5 ;
    if (rst == 1'b0) out_x64 <= 8'b00000000 ;
   else out_x64 <= in_x6 ;
    if (rst == 1'b0) out_x74 <= 8'b00000000 ;
   else out_x74 <= in_x7 ;
  if (rst ==1'b0) outre4<= 0; 
   else 
  begin
       Xout4 <= out_x04 - out_x14 + out_x24 - out_x34 + out_x44 - out_x54 +out_x64 - out_x74;  
       Xout4_9 <= {1'b0 , Xout4}; 
     if (Xout4[7]==1'b1)   indiv4 <= 9'b1000_00000 - Xout4_9;  
     else   indiv4 <= Xout4_9;  
       X4_Quoa <= X4_Quo; 
       if (Xout4[7]==1'b1)  begin outre4a <= 9'b1000_00000 - X4_Quo;  
                             outre4 <= outre4a [7 : 0];  end
       else   outre4 <=X4_Quo [7 : 0];
  end
end
lpm_divide ifftpath41 (.numer(indiv4), .denom (d), .quotient (X4_Quo),.remain (X4_Rem),.clock (clk));
defparam ifftpath41.LPM_WIDTHN = 8;
defparam ifftpath41.LPM_WIDTHD = 4; 
//module 5.........
reg [7:0]  X5_Re_Quo5,im_deci5,re_deci5,real5;
reg [16:0] x51cd, x53cd, x55cd, x57cd, X5dRe, X5dIm;
reg [7: 0] outre5a, outim5a,X5_Re_Quo, X5_Im_Quo;
reg [7: 0] X5Re, X5Im, X5dRe_jum, X5dIm_jum;
reg [7:0] out_x05,out_x15,out_x25,out_x35,out_x45,out_x55,out_x65,out_x75 ; 
reg [8: 0] X5gt_Re9, X5gt_Im9, indivR5, indivI5;
reg [7:0] X5_Im_Rem,X5_Im_Quo5,imag5, X5gt_Im,X5gt_Re,X5_Re_Rem ;
reg [7:0] outre5,outim5 ;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x05 <= 8'b00000000 ;
   else out_x05 <= in_x0 ;
   if (rst == 1'b0) out_x15 <= 8'b00000000 ;
   else out_x15 <= in_x1 ;
   if (rst == 1'b0) out_x25 <= 8'b00000000 ;
   else out_x25 <= in_x2 ;
    if (rst == 1'b0) out_x35 <= 8'b00000000 ;
   else out_x35 <= in_x3 ;
    if (rst == 1'b0) out_x45 <= 8'b00000000 ;
   else out_x45 <= in_x4 ;
    if (rst == 1'b0) out_x55 <= 8'b00000000 ;
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   else out_x55 <= in_x5 ;
    if (rst == 1'b0) out_x65 <= 8'b00000000 ;
   else out_x65 <= in_x6 ;
    if (rst == 1'b0) out_x75 <= 8'b00000000 ;
   else out_x75 <= in_x7 ;
  if (rst ==1'b0) outre5<= 0; 
   else 
  begin
    X5Re <= out_x05 - out_x45;  
        X5Im <= out_x25 - out_x65; 
x51cd <=9'b010110101 * out_x15;  
x53cd <=9'b010110101 * out_x35; 
  x55cd <=9'b010110101 * out_x55;  
  x57cd <=9'b010110101 * out_x75; 
X5dRe <=x55cd + x53cd - x51cd - x57cd;  
X5dIm <=-x51cd + x53cd + x55cd - x57cd; 
if (X5dRe[7]==1'b1)   X5dRe_jum <= X5dRe[15 :8] +1'b1;  
else   X5dRe_jum <= X5dRe[15 :8];  
if (X5dIm[7]==1'b1)     X5dIm_jum <= X5dIm[15 :8] +1'b1;  
else   X5dIm_jum <= X5dIm[15 :8];  
real5 <=X5Re;  
imag5 <=X5Im;  
re_deci5 <= X5dRe_jum;  
im_deci5 <= X5dIm_jum; 
X5gt_Re <= X5Re + X5dRe_jum;  
X5gt_Im <= X5Im + X5dIm_jum; 
X5gt_Re9 <={ X5gt_Re,1'b0 }; 
  X5gt_Im9 <={ X5gt_Im,1'b0 }; 
if (X5gt_Re[7]==1'b1)    indivR5 <= 9'b1000_00000 - X5gt_Re9;  
else   indivR5 <= X5gt_Re9;  
if (X5gt_Im[7]==1'b1)
   indivI5 <= 9'b1000_00000 - X5gt_Im9; 
   else   indivI5 <= X5gt_Im9;  
if (X5gt_Re[7]==1'b1)       outre5[7:0] <=9'b1000_00000 - X5_Re_Quo;   
                               else   outre5 <=X5_Re_Quo [7 :0];  
if (X5Im[7]==1'b1)   outim5[7:0] <= 9'b1000_00000- X5_Im_Quo;   
else   outim5 <=X5_Im_Quo [7 :0];   
X5_Re_Quo5 <= X5_Re_Quo; 
  X5_Im_Quo5 <= X5_Im_Quo;     

  end
end
lpm_divide ifftpath51 (.numer(indivR5), .denom (d), .quotient (X5_Re_Quo),.remain 
(X5_Re_Rem),.clock (clk));
defparam ifftpath51.LPM_WIDTHN = 8;
defparam ifftpath51.LPM_WIDTHD = 4; 
lpm_divide ifftpath52 (.numer(indivI5), .denom (d), .quotient (X5_Im_Quo),.remain (X5_Im_Rem),.clock 
(clk));
defparam ifftpath52.LPM_WIDTHN = 8;
defparam ifftpath52.LPM_WIDTHD = 4;
///module 6.....
reg [7:0]  X6_Re_Quo6,real6;
reg [7: 0] X6Re, X6Im, X6Re_jum,  X6Im_jum, X6_Re_Quo, X6_Im_Quo;



93

reg [7:0] out_x06,out_x16,out_x26,out_x36,out_x46,out_x56,out_x66,out_x76 ; 
reg [8: 0] X6Re9, X6Im9, indivR6, indivI6, outre6a, outim6a;
reg [7:0] X6_Im_Rem,X6_Im_Quo6,imag6, X6gt_Im,X6gt_Re,X6_Re_Rem ;
reg [7:0] outre6,outim6 ;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x06 <= 8'b00000000 ;
   else out_x06 <= in_x0 ;
   if (rst == 1'b0) out_x16 <= 8'b00000000 ;
   else out_x16 <= in_x1 ;
   if (rst == 1'b0) out_x26 <= 8'b00000000 ;
   else out_x26 <= in_x2 ;
    if (rst == 1'b0) out_x36 <= 8'b00000000 ;
   else out_x36 <= in_x3 ;
    if (rst == 1'b0) out_x46 <= 8'b00000000 ;
   else out_x46 <= in_x4 ;
    if (rst == 1'b0) out_x56 <= 8'b00000000 ;
   else out_x56 <= in_x5 ;
    if (rst == 1'b0) out_x66 <= 8'b00000000 ;
   else out_x66 <= in_x6 ;
    if (rst == 1'b0) out_x76 <= 8'b00000000 ;
   else out_x76 <= in_x7 ;
  if (rst ==1'b0) outre6<= 0; 
   else 
  begin

X6Re <= out_x06 + out_x46 - out_x26 - out_x66;  X6Im <= out_x36 + out_x76 - out_x16 -
out_x56;  

real6 <=X6Re;  
imag6 <=X6Im; 
X6Re9 <={1'b0 , X6Re};
   X6Im9 <={1'b0 , X6Im};

        if (X6Re[7]==1'b1 )     indivR6 <= 9'b1000_00000 - X6Re9;  
        else   indivR6 <= X6Re9;  
     if (X6Im[7]==1'b1 )   indivI6 <= 9'b1000_00000  - X6Im9;  
     else   indivI6 <= X6Im9;  
     if (X6Re[7]==1'b1 )  outre6[7 : 0] <=9'b1000_00000  - X6_Re_Quo;   
     else   outre6 <=X6_Re_Quo [7 : 0];  
     if (X6Im[7]==1'b1 )  outim6[7 : 0] <=9'b1000_00000  - X6_Im_Quo;   
     else   outim6 <=X6_Im_Quo [7 : 0];  
     X6_Re_Quo6 <= X6_Re_Quo;  
     X6_Im_Quo6 <= X6_Im_Quo;  
  end
end
lpm_divide ifftpath61 (.numer(indivR6), .denom (d), .quotient (X6_Re_Quo),.remain 
(X6_Re_Rem),.clock (clk));
defparam ifftpath61.LPM_WIDTHN = 8;
defparam ifftpath61.LPM_WIDTHD = 4; 
lpm_divide ifftpath62 (.numer(indivI6), .denom (d), .quotient (X6_Im_Quo),.remain (X6_Im_Rem),.clock 
(clk));
defparam ifftpath62.LPM_WIDTHN = 8;
defparam ifftpath62.LPM_WIDTHD = 4;
// module 7........
reg [7:0]  X7_Re_Quo7,im_deci7,re_deci7,real7;
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reg [16:0] x71cd, x73cd, x75cd, x77cd, X7dRe, X7dIm;
reg [7: 0] outre7a, outim7a,X7_Re_Quo, X7_Im_Quo;
reg [7:0] X7Re,X7Im,X7dRe_jum,X7dIm_jum ;
reg [7:0] out_x07,out_x17,out_x27,out_x37,out_x47,out_x57,out_x67,out_x77 ; 
reg [8: 0] X7gt_Re9, X7gt_Im9, indivR7, indivI7;
// output [8:0] X7gt_Re9, indivR;
reg [7:0] X7_Im_Rem,X7_Im_Quo7,imag7, X7gt_Im, X7gt_Re, X7_Re_Rem ;
//output [7:0] X7gt_Re;
reg [7:0] outre7,outim7;
always @ (posedgeclk or negedgerst)
begin
if (rst == 1'b0) out_x07 <= 8'b00000000 ;
   else out_x07 <= in_x0 ;
   if (rst == 1'b0) out_x17 <= 8'b00000000 ;
   else out_x17 <= in_x1 ;
   if (rst == 1'b0) out_x27 <= 8'b00000000 ;
   else out_x27 <= in_x2 ;
    if (rst == 1'b0) out_x37 <= 8'b00000000 ;
   else out_x37 <= in_x3 ;
    if (rst == 1'b0) out_x47 <= 8'b00000000 ;
   else out_x47 <= in_x4 ;
    if (rst == 1'b0) out_x57 <= 8'b00000000 ;
   else out_x57 <= in_x5 ;
    if (rst == 1'b0) out_x67 <= 8'b00000000 ;
   else out_x67 <= in_x6 ;
    if (rst == 1'b0) out_x77 <= 8'b00000000 ;
   else out_x77 <= in_x7 ;
  if (rst ==1'b0) outre7<= 0; 
   else 
  begin
       X7Re <= out_x07 - out_x47;  
       X7Im <= -out_x27 - out_x67; 

x71cd <=9'b010110101 * out_x17;  
x73cd <=9'b010110101  * out_x37;  
x75cd <=9'b010110101  * out_x57;  
x77cd <=9'b010110101  * out_x77; 

        X7dRe <=x71cd + x77cd - x75cd - x73cd;  
        X7dIm <=-x1cd + x3cd + x5cd -x7cd; 
   if (X7dRe[7]==1'b1)    X7dRe_jum <= X7dRe[15 :8] +1'b1;    
  else  
    X7dRe_jum <= X7dRe[15 :8] ;   
if (X7dIm[7]==1'b1)   X7dIm_jum <= X7dIm[15 :8] +1'b1;   
else  
  X7dIm_jum <= X7dIm[15 :8] ;   
          real7 <=X7Re;  
          imag7 <=X7Im;  
          re_deci7 <= X7dRe_jum;  
          im_deci7 <= X7dIm_jum; 
     X7gt_Re <= X7Re + X7dRe_jum; //4
      X7gt_Im <= X7Im + X7dIm_jum; 
     X7gt_Re9 <={X7gt_Re, 1'b0};  
     X7gt_Im9 <={X7gt_Im, 1'b0};
if (X7gt_Re[7]==1'b1)   indivR7 <=  9'b1000_00000 - X7gt_Re9;  
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else   
indivR7 <= X7gt_Re9;  
if (X7gt_Im[7]==1'b1)    indivI7 <=9'b1000_00000 - X7gt_Im9;  
else   indivI7 <= X7gt_Im9;  
       if (X7gt_Re[7]==1'b1)  outre7[7 : 0]<= 9'b1000_00000 - X7_Re_Quo;   
       else   
       outre7 <= X7_Re_Quo[7 : 0]; 
if (X7Im[7]==1'b1)  outim7[7 : 0]<= 9'b1000_00000 - X7_Im_Quo;   
  else   outim7 <=X7_Im_Quo [7 : 0];
X7_Re_Quo7 <= X7_Re_Quo;  
X7_Im_Quo7 <= X7_Im_Quo;   
  end
end
lpm_divide ifftpath07 (.numer(indivR7), .denom (d), .quotient (X7_Re_Quo),.remain 
(X7_Re_Rem),.clock (clk));
defparam ifftpath07.LPM_WIDTHN = 8;
defparam ifftpath07.LPM_WIDTHD = 4; 
lpm_divide ifftpath70 (.numer(indivI7), .denom (d), .quotient (X7_Im_Quo),.remain (X7_Im_Rem),.clock 
(clk));
defparam ifftpath70.LPM_WIDTHN = 8;
defparam ifftpath70.LPM_WIDTHD = 4;     
endmodule


