

FPGA Implementation of an AES Processor

by
Kazi Shabbir Ahmed

MASTER OF ENGINEERING

IN
INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

2010

 2

This project titled,“FPGA Implementation of an AES Processor” submitted by Kazi

Shabbir Ahmed, Roll No: M04053109P, Session April, 2005 has been accepted as

satisfactory in partial fulfillment of the requirement for the degree of Master of

Engineering in Information and Communication Technology on the 5th September,

2010.

BOARD OF EXAMINERS

1. Chairman
 Dr. Md. Liakot Ali
 Associate Professor, IICT
 BUET,Dhaka-1000

2. Member
 Dr. S.M.Lutful Kabir
 Professor and Director, IICT
 BUET,Dhaka-1000

3. Member
 Md. Ashraful Anam
 Assistant Professor, IICT
 BUET,Dhaka-1000

 3

CANDIDATE’S DECLARATION

It is hereby declared that this report or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

Kazi Shabbir Ahmed

 4

TABLE OF CONTENTS

Board of Examiners ii

Candidate's Declaration iii

Table of Content iv

List of Figures vii

List of Tables ix

List of abbreviations, Symbol and Technical Terms x

Acknowledgement xi

Abstract xii

 Chapter 1: Introduction 1.1

1.1 Introduction 1.1

1.2 Objectives 1.3

Chapter 2 : Background of Cryptography 2.1

 2.1 Introduction 2.1

 2.2 Security issue of the information and different Cryptographic 2.1

 Algorithm.

 2.3 Data Encryption Standard (DES) and AES 2.4

 2.4 Types Of Cryptanalytic Attacks and AES 2.5

 2.5 Summary 2.7

Chapter 3 : AES Algorithm 3.1

 3.1 Introduction 3.1

 3.2 Inputs and Outputs 3.1

 3.2.1 Bytes 3.1

 3.2.2 Arrays of Bytes 3.2

 3.2.3 The State 3.3

 3.2.4 The State as an Array of Columns 3.3

 3.3 Mathematical Preliminaries 3.4

 3.3.1 Addition 3.4

 5

 3.3.2 Multiplication 3.4

 3.4 AES Operational Structure 3.5

 3.5 Encryption Process of AES 3.7

 3.5.1 SubBytes()Transformation 3.8

 3.5.2 ShiftRows () Transformation 3.10

 3.5.3 MixColumns() Transformation 3.10

 3.5.4 AddRoundKey () Transformation 3.12

 3.6 Key Expansion 3.12

 3.7 Decryption Process of AES 3.14

 3.7.1 InvSubByte Transformation 3.14

 3.7.2 InvShiftRows() Transformation 3.15

 3.7.3 InvAddround key Transformation 3.15

 3.7.4 InvMixColumns() Transformation 3.15

Chapter 4 : FPGA Implimentation 4.1

 4.1 Introduction 4.1

 4.2 Verilog HDL (Hardware Definition Language) 4.1

 4.3 Implementation using FPGA 4.2

 4.4 FPGA Cyclone II Device 4.3

 4.5 Development Tool Quartus II 4.3

 4.6 Design Partitioning 4.5

 4.7 Design Components 4.5

 4.8 The Operational diagram of Main module of 4.12

 Encryption (AES_Encryption)

Chapter 5 : Results and Performances 5.1

 5.1 Introduction 5.1

 5.2 Simulation results 5.1

 5.2.1 Simulation of Aes_Sub_Byte Module 5.2

 5.2.2 Simulation of Aes_Shift_Row Module 5.2

 5.2.3 Simulation of AES_Mix_Column Module 5.3

 5.2.4 Simulation of onetonine Module 5.3

 5.2.5 Simulation of AES_encryption Module 5.4

 5.2.6 Simulation of AES_Decryption Module 5.4

 6

 5.3 Implementation on FPGA 5.5

 5.4 Comparison with other related works 5.6

Chapter 6 : Conclusion 6.1

 6.1 Conclusion 6.1

 6.2 Future work 6.1

References 7.1

Appendix A ENCRYPTION MODULE 8.1

Appendix B SUBSTITUTION BYTE MODULE 8.6

Appendix C SHIFT ROW MODULE 8.9

Appendix D MIX COLUMN MODULE 8.10

Appendix E ONE TO NINE (STANDARD ROUND) MODULE 8.11

Appendix F DECRYPTION MOUDLE 8.12

Appendix G INVERSE SUBSTITUTION BYTE MODULE 8.16

Appendix H INVERSE SHIFT ROW MODULE 8.19

Appendix I INVERSE MIX COLUMN MODULE 8.20

Appendix J INVERSE ONE TO NINE MODULE 8.23

 7

LIST OF FIGURES

FIGURES Page No

Figure 3.1: Mapping of input bytes, state array and output bytes 3.3

Figure 3.2: AES Encryption and Decryption 3.6

Figure 3.3: Key and Expanded Key 3.7

Figure 3.4: Pseudo code for AES encryption 3.8

Figure 3.5: Transformation of S-box matrix 3.9

Figure 3.6: Shift Row Transformation 3.10

Figure 3.7: Mix Column Transformation 3.10

Figure 3.8: Example of Mix column operation 3.11

Figure 3.9: Add Round Key Transformation 3.12

Figure 3.10: Pseudo Code for Key Expansion 3.13

Figure 3.11: Transformation of Inverse S-box matrix 3.14

Figure 3.12: Transformation of inverse Mix Column matrix 3.16

Figure 3.13: Pseudo code for the Decryption 3.16

Figure 4.1: Design Components of AES 4.6

Figure 4.2: Block diagram of AES Encryption module 4.7

Figure 4.3: Block diagram of Onetonine module 4.7

Figure 4.4: Block diagram of AES_SUB_BYTE module 4.8

Figure 4.5: Block diagram of AES_SHIFT_ROW module 4.8

Figure 4.6: Block diagram of AES_MIX_COLUMN module 4.8

Figure 4.7: Block diagram of AES decryption module 4.9

Figure 4.8: Block diagram of Onetonined module 4.10

Figure 4.9: Block diagram of AES_ISUB_BYTE module 4.10

Figure 4.10: Block diagram of AES_ISHIFT_ROW module 4.10

Figure 4.11: Block Diagram of AES_IMIX_COLUMN module 4.11

Figure 4.12: Block diagram of integrated AES Encryption and Decryption 4.11

 module.

Figure 4.13: Operational Diagram of modules of AES 4.13

Figure 5.1: Simulation of Sub_Byte Operation 5.2

Figure 5.2: Simulation of Shift_Row Operation 5.2

Figure 5.3: Simulation of Mix_Column_Operation 5.3

Figure 5.4: Simulation of one Standard round (one to nine round) 5.3

Figure 5.5: Simulation of full Encryption Module 5.4

Figure 5.6: Simulation of full Decryption Module 5.5

 8

FIGURES Page No

Figure 5.7: Seven segment output of FPGA 5.5

 (1st 32 bit cipher & 2nd 32 bit cipher)

Figure 5.8: Seven segment output of FPGA 5.6

 (3rd 32 bit cipher & 4th 32 bit cipher)

 9

LIST OF TABLES

TABLES Page No.

Table 3.1: S-box 3.9

Table 3.2 : Round constants 3.13

Table 3.3: Inverse S-box 3.15

Table 5.1: Comparison of the design with other FPGA implementation 5.6

 10

LIST OF ABBREVIATIONS, SYMBOLS AND TECHNICAL TERMS

AES Advanced Encryption Standard

ALUT Adaptive Look-UP Table

ASIC Application Specific Integrated Circuit

CBC Cipher Block Chaining

CLB Configurable Logic Block

CPLD Computer Programmable Logic Device

DES Data Encryption Standard

DSA Digital Signature Algorithm

DSP Digital Signal Procesor

e.g. For example

EDA Electronic Design Automation

FIPS Federal Information Processing Standards

FIPS PUB Federal Information Processing Standards Publication

FPGA Field Programmable Gate Array

GF Galois Field

HDL Hardware Description Language

InvSubByte() Inverse Substitution Byte operation

InvShiftrows() Inverse Shift row operation

InvAddround Key() Inverse Addround key operation

InvMixColumn() Inverse Mix Column operation

LUT Look-UP Table

NIST National Institute of Standards and Technology

Rcon[] The Round Constant word array

RotWord() A function that perform a cyclic byte shift operation

RSA Rivest-Shamir-Adelman

S-Box A lookup table that holds non-linear substitute byte

 values

VHDL Very High Speed Integrated Circuit Hardware

 Description Language

Xor Exclusive-OR

 11

Acknowledgement

At first I would like to express my heartiest thanks to my supervisor, Dr. Md.

Liakot Ali, for giving me the opportunity to do my masters project under his

supervision. I am also grateful to him for all his support, advice and

encouragement over throughout this project.

I gratefully acknowledge the valued advice and support from Professor &

Director Dr. S.M. Lutful Kabir, and Assistant Professor Mr. Mohammad

Ashraful Anam, IICT, BUET.

I also express my gratitude to Bangladesh University of Engineering and

Technology for allowing conducting the research project using its all kinds of

facilities.

Finally, I want to thank all my parents and family who helped me, making this

work a nice experience.

 12

ABSTRACT

Information security is now a burning issue in this era. A number of algorithms on

cryptography have been proposed in the literatures. However Advanced Encryption

Standard (AES) outperforms all other existing techniques for protecting data. AES

can be implemented in software or in hardware. The hardware implementation offers

high speed and better physical security than that of software implementation.

This report presents the design of an AES processor using Verilog HDL and its

implementation on FPGA hardware. The simulation results of the processor are also

presented to show its proper functionality. The performance of the processor in

terms of logic cell, latency and speed is measured and shown in this report. The

proposed processor can be used as an Intellectual Property (IP) for developing

various security applications.

 13

CHAPTER 1

INTRODUCTION

1.1 Introduction

With the growth of information and communication technology, the processing of

data and transferring the same through different media involve security. The

importance of cryptography in electronic data transactions has acquired an essential

relevance during the last few years [1]. Rapid growth of computer systems and their

interconnections via network have increased the risk of data being stolen or hacked

by the third party which may worth a huge cost for the organizations. So to enforce

security and privacy to information that is being processed and transferring to other

systems through network gathers enormous importance. Keeping pace with maturity

of the security technology the hackers, the electronic eavesdroppers, virus and the

electronic frauds have been coming into the field with new sophisticated techniques

to attack the security mechanism [2]. So to protect any unusual attack to the

valuable information source and their transmission there must be strong

cryptographic algorithm that is sufficient and reliable to ensure the security of the

information [3].

In cryptography, the AES also known as Rijndael is a symmetric block cipher

adopted as an encryption standard by the US government which specifies an

encryption algorithm capable of protecting sensitive information [4].

Now Information and communication technology plays an important role in the field

of e-commerce where customers, organization and business people needs a high

speed communication network and processing of information to achieve both the

business needs and customer satisfaction. So in order to fulfill the requirements and

ensure security to this field specially to produce data security and privacy of

information it needs a high speed security algorithm [3]. Although AES is the latest

encryption algorithm approved by the US government to be the strongest security

algorithm but speed is concerned in the present environment [5,6].

On November, 2001 Advanced Encryption Standard (AES) was chosen by the

National Institute of Standards and Technology(NIST) to be the replacement of Data

Encryption Standards(DES), the most used and analyzed cryptographic algorithm

 14

for the last 25 years. NIST explains “Assuming that one could build a machine that

could recover a DES key in a second, then it would take that machine approximately

149 trillion years to crack a 128 bit AES key. For this out performing features AES

plays a crucial role in the field of IT security against all known attacks. So this

algorithm is chosen to implement in this project [4,7,8,9].

There are two flavors in implementing AES algorithm, which are software and

hardware. Software implementation has some benefits like easy to install and run in

the system but has limited physical security. But on the other hand hardware

implementation is more secured as they cannot be easily read and modified by

outside attacker [6,10,11]. The most significant disadvantage of software based

implementation is that the speed is slower than the hardware based implementation.

There are also two types of hardware based implementation. FPGA (Field

Programmable Gate Array) based implementation is chosen in this project as FPGA

offers lower cost, flexibility and reasonable performance than ASIC (Application

Specific Integrated Circuit) implementation. Previously researcher proposed

implementation of AES processor on FPGA hardware dropping many security

features since earlier version of the FPGA available in the market was low capacity.

Now high capacity FPGA from different vendor is coming in the market. Recently

design of an AES processor using VHDL and its implementation on Xillinx FPGA

without sacrificing any security feature of the algorithm is reported [6]. Altera’s FPGA

is another famous FPGA to the customers. It offers a lot of high capacity FPGAs

under different families. Literatures [10],[12],[13],[18],[21-23] describe design and

implementation of AES processor in the FPGA platform where maximum throughput

achieved is 21.54 Gbps with latency 71 clock cycle. However reduced latency is

essential for developing real time applications. So a research project can be

conducted to implement the AES processor on this FPGA to achieve minimum

latency with suitable speed performance.

 15

1.2 Objectives:

The objectives of this project are to:-

• To design the AES processor using Verilog HDL,

• To simulate the AES processor Quartus II simulator,

• To implement the AES processor using Altera FPGA,

• To test the design for ensuring the desired functionality of the AES

processor,

• To evaluate the performance of the processor.

 16

CHAPTER 2

BACKGROUND OF CRYPTOGRAPHY

2.1 Introduction

 Cryptography is a technique used to hide the meaning of a message and is derived

from the Greek word kryptos. Kryptos is used to define anything that is hidden,

obscured, veiled, secret or mysterious. Typically the sender and receiver agree

upon a message scrambling protocol for encrypting and decrypting messages [1,3].

From the very earlier people had a need to keep their information private from any

other unauthorized recipients. As such thousand of year ago Egyptian rulers,

diplomats and especially defense personnel used different procedure to make their

information hidden and private. Now in this modern age of information the growth of

computer and communication network raise the risk of privacy of the information

system to a certain extent. So for the demand of cryptosystem various crypto

algorithms are developed time to time. Now not only the defense personnel but the

entire people involves in the sharing information also needs to protect their

information.

2.2 Security issue of the information and different Cryptographic Algorithm

The main objectives of cryptography are to protect the information or data that are

playing a crucial role in everyday life and also in business. Necessary measures are

to be taken depending on the nature of data.

Types of data are as follows:

• Public data: This type of data has no security restrictions and may be read

by anyone. Such data should, however, be protected from unauthorised

tempering or modifications.

• Copyright data: This type of data is under copyright but not secret. The

owner of the data is willing to provide it, but wishes to be paid for it. In order

to maximize revenue, security must be tight.

 17

• Confidential data: This type of data contains content that is secret, but the

existence of the data is not secret. Such data include bank account

statements and personal files.

• Secret data: The existence of this type of data is very secret and must be

kept confidential at all times. It is necessary to monitor and keep log of all

attempt to access secret data.

So requirements of type of security for these data or information are as follows:-

� Integrity: Ensuring that information will not be accidentally or maliciously

altered or destroyed during transmission. In order to electronic commerce to

be succeed, data transmission must be tamper proof in the sense that no

one can add, delete or modify any part of message during transit. Methods

for ensuring information integrity include error detection codes for

checksums, sequence numbers and encryption techniques. Normally

Integrity is checked by some kind of hash function.

� Confidentiality: It is important for transactions involving sensitive data such

as credit card numbers. Message confidentiality is accomplished using

encryption, which secure the communication link between computers. While

Integrity prevents active attacks involving the modification of data when the

transaction is in progress, confidentiality guards against the monitoring of

data.

� Authentication: It indicates the method to verify the identity of the source of

data or sender. A data will be treated as valid when it is received from an

authorized source.

� Nonrepudiation: Protection against denial of service like customer’s denial

of orders placed and against merchants’ denial of payments made where a

trusted third party is required to solve the dispute.

For the total Cryptographic process, there are two main processes which are

encryption and decryption. The creator or owner of data/information encrypts

 18

message and the authorized person/entity decrypts the message with the

correct algorithm.

The cryptographic systems are classified as:

i) Symmetric Cipher Model or Secret-Key Algorithms

ii) Asymmetric Cipher Model or Public Key Algorithms

iii) Hash Function

Symmetric Cipher Model or Secret-Key Algorithms: In this model plaintext is

encrypted by an encryption algorithm using a specific encryption key producing

the cipher text while plaintext is produced by the authorized entity using the

same algorithm in reverse using the same key. As both the encryption and

decryption process share the same key, it is called symmetric key cryptography

where the key is kept secret between the both authorities who are authorized to

access the information. Symmetric ciphering follows two ciphering techniques

which are stream ciphers and block ciphers. Stream ciphers encrypt a small

number of bits as a stream whereas block ciphers encrypt data as a block which

have a large number of bits. Data Encryption Standard (DES), Triple Data

Encryption Standard (3DES), and Advanced Encryption Standard (AES) are the

example of symmetric cipher [1-3].

Asymmetric Cipher Model or Public Key Algorithms :

In this model encryption and decryption are performed using the different keys

which are public key and private key.

Asymmetric encryption transforms plaintext into cipher text using one of two

keys (public/private) and an encryption algorithm. Decryption is performed using

the paired key and a decryption algorithm where a plaintext is recovered from

cipher text. Asymmetric encryption can be used for confidentiality, authentication

or both. The most widely used public key cryptosystem are RSA (Rivest-Shamir-

Adelman) and Elliptical curve algorithm.

 19

The essential steps of Public-key Cryptography are as follows:

1. Each user generates a pair of keys to be used for the encryption and

decryption of messages.

2. Each user place one of the two keys in a public register or other accessible

file. This is the public key. The companion key is kept private. However each

user maintains a collection of public keys obtained from others.

3. If a user A wishes to send a confidential message to user B, user A encrypts

the message using user B’s public key.

4. When user B receives the message, he decrypts it using his private key. No

other recipient can decrypt the message because only user B knows user

B’s private key.

Hash Function:

Cryptographic hash function is a third type of cryptographic algorithm which

does not use key. They take a message of any length as input, and output a

short, fixed length hash value which can be used in a digital signature where

digital signature is a cryptographic mechanism used to verify the origin and

contents of message that the message is from the proper sender and had not

been altered.

2.3 Data Encryption Standard (DES) and AES

Originally developed by IBM, The American NSA (National Security Agency) and the

National Institute of Standards and Technology played a substantial role for

developing DES. DES is the most well known and widely used symmetric algorithm

in the world. The NIST has re-certified DES every five years and it was last certified

in 1993.But NIST have indicated that they would not re-certify DES again; AES

(Advanced Encryption Standard) has replaced DES [4,7].

DES has a 64-bit block size and uses a 56-bit key during encryption. DES is a 16-

round feistel cipher and was originally designed for implementation in hardware. As

it is a single-key cryptosystem, when used for communication both sender and

receiver must know the same secret key which can be used to encrypt or decrypt

the message. DES can also be used by a single-user, for example to store files on a

hard disk securely.

 20

In Jan 1997 US NIST called for a new proposal for algorithm to replaces DES.

Initially five competitors were selected and at last NIST selected Rijndael as the

proposed AES algorithm. Rijndael was proposed by Dr. Vincent Rijmen and Dr.

Joan Daemen from Belgium to replace DES which is a symmetric key algorithm and

use block cipher. Data block size is 128 bits and key size is 128/192/256 bits. In this

research 128 bit key is chosen to implement because it will faster the processing

than 192 or 256 bit key.

In the development of AES, following issues are accommodated properly:

• Security

– Effort required for cryptanalysis

– Mathematical Basis of the algorithm

– Security Issues raised by public.

• Cost

– Licensing requirements

– Computational efficiency

– Memory requirements

• Algorithm & Implementation Characteristics

– Flexibility

– Hardware & Software suitability

– Simplicity

2.4 Types Of Cryptanalytic Attacks and AES

A standard cryptanalytic attack is to determine the key which maps a known

plaintext to a known cipher text [9,14]. This plaintext can be known because it is

standard or because it is guessed. If the plaintext segment is guessed it is unlikely

that its exact position is known however a message is not generally short enough for

a cryptanalyst to try all possible positions in parallel. In some systems a known

cipher text-plaintext pair will compromise the entire system however a strong

encryption algorithm will be unbreakable under this type of attack.

A brute force attack requires a large amount of computing power and a large

amount of time to run. It consists of trying all possibilities in a logical manner until

the correct one is found. For the majority of encryption algorithms a brute force

attack is impractical due to the large number of possibilities.

 21

Another type of brute force attack is a dictionary attack. This essentially involves

running through a dictionary of words in the hope that the key (or the plaintext) is

one of them. This type of attack is often used to determine passwords since people

usually use easy to remember words.

In a cipher text only attack the cryptanalyst has only the encoded message from

which to determine the plaintext, with no knowledge whatsoever of the actual

message. A cipher text only attack is presumed to be possible. In fact, an encryption

techniques resistance to a cipher text only attack is considered the basis for its

cryptographic security.

In a chosen plaintext attack the cryptanalyst has the capability to find the cipher text

corresponding to an arbitrary plaintext message of his or her own choice. The

likelihood of this type of attack being possible is not much. Codes which can survive

this attack are considered to be very secure.

In a chosen cipher text attack the cryptanalyst can choose an arbitrary cipher text

and find the corresponding decrypted plaintext. This attack can be used in public

key systems, where it may reveal the private key.

In an adaptive chosen plaintext attack the cryptanalyst can determine the cipher text

of chosen plaintexts in an iterative process based on previous results. This is the

general name for a method of attacking product ciphers called "differential

cryptanalysis".

Different cryptographic attacks and cryptanalysis in terms of AES are as follows:

• Differential Cryptanalysis – This technique study of how differences in

input (Plain text) affect differences in output (Cipher text).

– It is greatly reduced in AES due to high number of rounds.

• Linear Cryptanalysis – This is the study of correlations between input and

output.

– Substitution Byte & Mix Columns operation are designed to frustrate

Linear Analysis in AES.

 22

• XSL Cryptanalysis (eXtended Sparse Linearization)– A new attack

method developed in 2002, Analyze ciphers internal workings and

generates a system of nonlinear simultaneous equations to break the

cipher..

– Suppose for AES analyze to 8000 equations and 1600 unknowns.

– It is arguable if this can be solved any faster than a brute force attack.

• Side Channel Attacks – In cryptography, a side channel attack is any attack

based on information gained from the physical implementation of a

cryptosystem, rather For example, timing information, power

consumption[15], electromagnetic leaks or even sound can provide an extra

source of information which can be exploited to break the system. Many

side-channel attacks require considerable technical knowledge of the internal

operation of the system on which the cryptography is implemented.

2.5 Summary

Advanced Encryption Standard (AES), a federal information processing standard

(FIPS) is an approved standard which is proved to be the strongest algorithm in

cryptography. So proper implementation of the algorithm is an issue in the field

of information technology.

 23

CHAPTER 3

AES ALGORITHM

3.1 Introduction

The Advanced Encryption Standard (AES) is a FIPS-approved cryptographic

algorithm that can be used to protect electronic data. It is a symmetric block cipher

that can encrypt (encipher) and decrypt (decipher) information. Encryption converts

data to an unintelligible form called cipher text; decrypting the cipher text converts

the data back into its original form, called plaintext.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits

to encrypt and decrypt data in blocks of 128 bits [4].

3.2 Inputs and Outputs

The input and output for the AES algorithm each consists of sequences of 128 bits

(digits with values of 0 or 1). These sequences will sometimes be referred to as

blocks and the number of bits they contain will be referred to as their length. The

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other input,

output and Cipher Key lengths are not permitted by this standard.

The bits within such sequences will be numbered starting at zero and ending at one

less than the sequence length (block length or key length). The number

i attached to a bit is known as its index and will be in one of the ranges 0 ≤ i < 128,

0 ≤ i < 192 or 0 ≤ i < 256 depending on the block length and key length.

3.2.1 Bytes

The basic unit for processing in the AES algorithm is a byte, a sequence of eight bits

treated as a single entity. The input, output and Cipher Key bit sequences are

processed as arrays of bytes that are formed by dividing these sequences into

groups of eight contiguous bits to form arrays of bytes. For an input, output or

Cipher Key denoted by a, the bytes in the resulting array will be referenced using

one of the two forms, an or a[n], where n will be in one of the following ranges:

 24

Key length = 128 bits, 0≤ n < 16; Block length = 128 bits, 0 ≤ n <16;

Key length = 192 bits, 0≤ n < 24;

Key length = 256 bits, 0 ≤  n < 32.

All byte values in the AES algorithm will be presented as the concatenation of its

individual bit values (0 or 1) between braces in the order {b7, b6, b5, b4, b3, b2, b1, b0}.

These bytes are interpreted as finite field elements using a polynomial

representation:

b7x
7+ b6x

6+b5x
5 +b4x

4+b3x
3+b2x

2+b1x+b0 = ∑7
i=0bix

i

For example, {01100011} identifies the specific finite field element x6 + x5 + x +1.

It is also convenient to denote byte values using hexadecimal notation with each of

two groups of four bits being denoted by a single character.

Hence the element {01100011} can be represented as {63}, where the character

denoting the four-bit group containing the higher numbered bits is again to the left.

Some finite field operations involve one additional bit (b8) to the left of an 8-bit byte.

Where this extra bit is present, it will appear as ‘{01}’ immediately preceding the 8-bit

byte; for example, a 9-bit sequence will be presented as {01}{1b}.

3.2.2 Arrays of Bytes

Arrays of bytes will be represented in the following form:

a0a1a2a3……..a15

The bytes and the bit ordering within bytes are derived from the 128-bit input
sequence:

input0 input1 input2 … input126 input127
are as follows:

a0 = {input0, input1, …, input7};

a1 = {input8, input9, …, input15};
.
.
.

a15 = {input120, input121, …, input127}.

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit keys),
so that, in general,

an = {input8n, input8n+1, …, input8n+7}

 25

3.2.3 The State

Internally the AES algorithm’s operations are performed on a two dimensional array

of bytes called State, and each byte consists of 8 bits. The State consists of 4 rows

of bytes and each row has 4 bytes. Each byte is denoted by Si, j (0 ≤i < 4, 0 ≤j < 4).

The four bytes in each column of the State array form a 32-bit word, with the row

number as the index for the four bytes in each word. At the beginning of encryption

or decryption, the array of input bytes is mapped to the State array as illustrated in

Figure 3.1, assuming a 128-bit block can be expressed as 16 bytes: in0, in1, in2 …

in15. The encryption and decryption are performed on the state, at the end of which

the final value is mapped to the output bytes array out0, out1, out2 … out15.

Input Bytes State Array Output Bytes

Hence, the relation of the input array, state array and output array follows the

following scheme: S[i, j] = in[i + 4j] and out[i + 4j] = s[i, j] for 0 ≤ i < 4 and

0 ≤ j < 4,

3.2.4 The State as an Array of Columns

The four bytes in each column of the State array form 32-bit words, where the row

number i provides an index for the four bytes within each word. The state can hence

be interpreted as a one-dimensional array of 32 bit words (columns), w0...w3, where

the column number c provides an index into this array. Hence, for the example in

Figure. 3.1 , the State can be considered as an array of four words, as follows:

w0 = s0,0 s1,0 s2,0 s3,0 w2 = s0,2 s1,2 s2,2 s3,2

w1 = s0,1 s1,1 s2,1 s3,1 w3 = s0,3 s1,3 s2,3 s3,3 .

Figure 3.1: Mapping of input bytes, state array and output bytes [4]

in0 In4 In8 In12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

 26

3.3 Mathematical Preliminaries

All bytes in the AES algorithm are interpreted as finite field elements. Finite field

elements can be added and multiplied, but these operations are different from those

used for numbers [1].

3.3.1 Addition

The addition of two elements in a finite field is achieved by “adding” the coefficients

for the corresponding powers in the polynomials for the two elements. The addition

is performed with the XOR operation (denoted by ⊕) - i.e., modulo 2 - so that

1⊕1 = 0, 1⊕0 = 1, and 0⊕0=0.Consequently, subtraction of polynomials is identical

to addition of polynomials.

Alternatively, addition of finite field elements can be described as the modulo 2

addition of corresponding bits in the byte. For two bytes {a7a6a5a4a3a2a1a0} and

{b7b6b5b4b3b2b1b0}, the sum is {c7c6c5c4c3c2c1c0}, where each ci = ai ⊕ bi (i.e.,

c7 = a7 ⊕ b7, c6 = a6 ⊕b6, ...c0 = a0 ⊕b0).

For example, the following expressions are equivalent to one another:

(x6 + x4 + x2 + x +1) + (x7 + x +1) = x7 + x6 + x4 + x2 (polynomial notation);

{01010111} ⊕{10000011} = {11010100} (binary notation);

{57} ⊕ {83} = {d4} (hexadecimal notation).

3.3.2 Multiplication

In the polynomial representation, multiplication in GF(28) (denoted by ·) corresponds

with the multiplication of polynomials modulo an irreducible polynomial of degree 8.

A polynomial is irreducible if its only divisors are one and itself. For the AES

algorithm, this irreducible polynomial is

m(x) = x8 + x 4 + x3 + x +1,

For example, {57} · {83} = {c1}, because

 27

(x 6 + x 4 + x 2 + x +1) (x 7 + x +1) = x13 + x11 + x9 + x8 + x7 +

 x7 + x5 + x3 + x 2 + x +

 x6 + x 4 + x 2 + x +1

 = x13 + x11 + x9 + x8 + x6 + x5 + x 4 + x3 +1

and

x13 + x11 + x9 + x8 + x6 + x5 + x 4 + x3 +1 modulo (x8 + x 4 + x3 + x +1)

= x7 + x 6 +1.

The modular reduction by m(x) ensures that the result will be a binary polynomial of

degree less than 8, and thus can be represented by a byte. Unlike addition, there is

no simple operation at the byte level that corresponds to this multiplication.

3.4 AES Operational Structure

Figure 3.2 describes the overall operational structure of AES algorithm. In the

diagram both Encryption and decryption process have been shown parallel where

decryption is just the reverse of encryption. In the encryption process 128 bit data

block is taken in to the input state. Then processing on the data is performed

through ten round of complex mathematical and algebraically operation such as

substitution Bytes, Shift rows, Mix Columns and Add round key operation. Then

cipher text is produced and copied to the output state [4].

In the Encryption process at first it begins with add round key operation where

plaintext is XORED with the symmetric key which is supplied initially. Then the

encryption process goes through first to ninth round where for each round four

operation such as Substitution byte, Shift rows, Mix Column and Add round Key are

performed sequentially. In the last round or tenth round only Substitution Bytes, Shift

rows and Addround key operation are done producing the cipher text which is

copied to the output array. As all the basic operations such as substitution Bytes,

Shift rows, Mix Columns and Add round key are in one to ninth round, so these

rounds are treated as standard rounds.

 28

SubBytes

MixColumns

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

Ciphertext (128 bits)

InvSubBytes

InvShiftRows

Ciphertext (128 bits)

RoundKey (9)

RoundKey (10)

Figure 3.3 : AES Encryption and Decryption

Encryption Decryption

R
o

u
n

d
 1

0

R
o

u
n

d
 1

R

o
u

n
d

 9

R
o

u
n

d
 1

0

R
o

u
n

d
 2

R

o
u

n
d

 1

InvSubBytes

InvShiftRows

InvMixColumns

InvSubBytes

InvShiftRows

InvMixColumns

RoundKey (1)

Plaintext (128 bit)

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

Ciphertext (128 bits)

InvSubBytes

InvShiftRows

Ciphertext (128 bits)

RoundKey (9)

RoundKey (10)

Figure 3.3 : AES Encryption and Decryption

Encryption Decryption

RoundKey (1)

ShiftRows

RoundKey (9)

ShiftRows

RoundKey (0)

Plaintext (128 bit)

R
o

u
n

d
 1

0

R
o

u
n

d
 1

InvSubBytes

InvShiftRows

InvMixColumns

Plaintext (128 bit)

SubBytes

MixColumns

RoundKey (1)

R
o

u
n

d
 9

R
o

u
n

d
 2

InvSubBytes

InvShiftRows

InvMixColumns

SubBytes

ShiftRows

MixColumns

R
o

u
n

d
 1

0

R
o

u
n

d
 1

SubBytes

ShiftRows

Ciphertext (128 bits)

InvSubBytes

InvShiftRows

Ciphertext (128 bits)

RoundKey (10)

Figure 3.2 : AES Encryption and Decryption [1]

Encryption Decryption

 29

As AES is a symmetric block cipher which shares same key for both encryption and

decryption. A key of 128 bit is given in the input state of the algorithm. At first in the

encryption process the supplied symmetric key is used and ten cipher key is

produced from this key by key expansion operation which are to be used by next ten

rounds. Each key having 128 bit forms a key matrix for each encryption/decryption

round where each column of the matrix is called a word of 32 bit/4 byte. Hence input

symmetric key have four word and ten expanded keys each having 4 word forms 44

words (w0 to w43) shown in Figure 3.3.

3.5 Encryption Process of AES

 Four different stages are used, one is permutation and three are substitution. The

stages together provide confusion, diffusion and nonlinearity. The stages are as

follows:

• Substitute bytes: Uses an S-box(16 x 16 byte look up table) to

perform a byte-by-byte substitution of the block. For encryption and

decryption, this function is indicated by SubBytes() and

InvSubBytes () respectively.

• Shift rows: A simple permutation. For encryption and decryption, this

function is indicated by ShiftRows () and InvShiftRows () respectively.

• Mix Columns: A substitution that makes use of arithmetic over

GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x +1. For

encryption and decryption, this function is indicated by MixColumns ()

and InvMixColumns () respectively.

• Add round key: A simple bitwise XOR operation of the current block

with a portion of the expanded key. For both encryption and

decryption this function is indicated by AddRoundKey ().

k0 K4 K8 K12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

w0 w1 w2 W3 - - - - - - - - - w42 w43

Figure 3.3 : Key and Expanded Key [1]

 30

The Pseudo code for Encription is as below:

The individual transformation of SubBytes(), ShiftRows(), MixColumns(), and

AddRoundKey() process are described as follows:

3.5.1 SubBytes()Transformation

The SubBytes() transformation is a non-linear byte substitution that operates

independently on each byte of the State using a substitution table (S-box). This S-

box (Table. 3.1), which is invertible, is constructed by composing two

transformations:

1. Take the multiplicative inverse of each byte in the finite field GF(28), like the

 element {00} is mapped to itself.

2. Apply the following affine transformation (over GF(2)):

 b’i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ Ci

Encryption(byte in[16], byte out[16], word w[44])
begin

byte state[16]

state = in

AddRoundKey(state, w[0, 3])
for round = 1 step 1 to 9

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*4, (round+1)*3])

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[40, 43])

out = state

end

Figure 3.4 : Pseudo code for AES encryption [1]

 31

for 0 ≤ i < 8 , where bi is the ith bit of the byte, and ci is the ith bit of a byte c

with the value {63} or {01100011}. Here and elsewhere, a prime on a variable

(e.g., b’i) indicates that the variable is to be updated with the value on the right.

In matrix form, the affine transformation element of the S-box can be expressed as:

Figure 3.5 : Transformation of S-box matrix [1]

The S-box used in the SubBytes() transformation is presented in hexadecimal form

in Table. 3.1. For example, if s1,1 = {53}, then the substitution value would be

determined by the intersection of the row with index ‘5’ and the column with index ‘3’

in Fig. below. This would result in s`1,1 having a value of {ED}.

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1

1

0

0

0

1

1

0

b0

b1

b2

b3

b4

b5

b6

b7

= +

b'0

b'1

b'2

b'3

b'4

b'5

b'6

b'7

Table 3.1: S-box [1]

 y

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

x

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

 32

3.5.2 ShiftRows () Transformation

In this transformation, the bytes in the first row of the State do not change. The

second, third, and fourth rows shift cyclically to the left one byte, two bytes, and

three bytes, respectively, as illustrated in Figure 3.6.

3.5.3 MixColumns() Transformation

The MixColumns transformation operates on each column individually. Each byte of

a column is mapped into a new value that is a function of all four bytes in the

column. The transformation can be defined by the following matrix multiplication on

state where the output state S’ of the transformation is the current state S multiplied

by a constant matrix C:

 Matrix C Matrix S Matrix S’
 Figure 3.7: Mix Column Transformation

As a result the 4 byte of the first column are replaced by following calculation:

s’0,3= ({02}. s0,3) ⊕ ({03}. s1,3) ⊕ s2,3 ⊕ s3,3

s’1,3= s0,3 ⊕ ({02}. s1,3) ⊕ ({03}. s2,3) ⊕ s3,3

s’2,3= s0,3 ⊕ s1,3 ⊕ ({02}. s2,3) ⊕ ({03}. s3,3)

s’3,3= ({03}. s0,3) ⊕ s1,3 ⊕ s2,3 ⊕ ({02}. s3,3)

others column of the output state are calculated by the same procedure.

S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

Figure 3.6: Shift Row Transformation

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

S'0,0 S'0,1 S'0,2 S'0,3

S1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S3,0 S'3,1 S'3,2 S'3,3

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

=

 33

The following is an example of Mixcolumn operation

87

F2

4D

97
47 40 A3 4C

6E

4C

90

EC

37 D4 70 9F

46

E7

4A

C3

94 E4 3A 42

A6 8C D8 95

ED A5 A6 BC

 Figure 3.8 : Example of Mixcolumn operation

In mix column operation multiplication operation are performed by xtime() operation.

Each byte of the input matrix is expressed as binary polynomial as :

 b7x
7+ b6x

6+b5x
5 +b4x

4+b3x
3+b2x

2+b1x+b0

When multiply by 02 or in polynomial 00000010 which would be expressed as x

then the result would be with polynomial expression is

 b7x
8 + b6x

7+ b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x

The result x · b(x) is obtained by reducing the above result modulo

m(x)= x8 + x 4 + x3 + x +1 to ensure that the result will be a binary polynomial of

degree less than 8,

 If b7 = 0, the result is already in reduced form. If b7 = 1, the reduction is

accomplished by subtracting (i.e. XORing) the polynomial m(x). It follows that

multiplication by x (i.e.{00000010} or {02}) can be implemented at the byte level as a

left shift and a subsequent conditional bitwise XOR with {1b}. This operation on

bytes is denoted by xtime(). Multiplication by higher powers of x can be implemented

by repeated application of xtime(). By adding intermediate results, multiplication by

any constant can be implemented.

For example s0,4 = 57 ,

Then, {57} · {02} = xtime({57}) = {ae}

In binary expression of 57= 01010111 and polynomial expression

is x6+x4+x2+x+1

Shifting each bit left or xtime operation results=10101110 =ae

 34

Which is equal to multiplication of 57 by 02 or multiplication of x with the polynomials

of 57 which is (x6+x4+x2+x+1) . x

Again {57} . {03}={57}⊕({02}.{57})

3.5.4 AddRoundKey () Transformation

In this transformation, a RoundKey is added to the state by bitwise Exclusive-OR

(XOR) operation. Each RoundKey consists of 4 words (128 bits)

Initially this round key is supplied with the 128 bit data block and in the subsequent

round the new key of 4 word or 128 bit size is generated from the previous key by

the key expansion operation which is XORED with the state in the AddRoundKey

operation of the round.

 3.6 Key Expansion

Key expansion operation is one of the important operation of this algorithm which

takes 4 word or 128 bit as input key. This key used in the algorithm for first

AddRoundkey operation and generates rest of the 10 key which would be used for

rest of the 10 rounds for AddRoundKey operation of each round. So there is 44

words or 11 round key in the AES operation. The output of Key Expansion is an

array of 4-byte words denoted by wi, where 0 ≤ i < 44. Each RoundKey is a

concatenation of 4 words form the output of Key Expansion, RoundKey(i) = (w4i,

w4i+1, w4i+2, w4i+3). The Key Expansion scheme can be expressed by the pseudo

code as in Figure 3.10 .

S

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 3.9: Add Round Key Transformation

RoundKey

wi wi+1 wi+2 wi+3

⊕⊕⊕⊕ =

 35

In the above pseudo code the key expansion operation is shown. As it is described

that each key has a length of 128 bit block of 4 x 4 array. Each column of 32 bit key

is called word. So for 10 round there is 40 words. In the key generation process key

is generated in words and when 4 words is generated that form a key. At first the

last word of the previous key is taken as input which is kept in temp variable. First

key index i is checked. if i mod 4 = 0 then a complex operation is performed other

wise the the current word is computed by XORING the temp with the (i-4)th word.

Complex Operation: In the complex operation of key generation the first operation

is rot word(). In the rot word operation temp is shifted 1 byte left. Then sub word

operation is done on the output of rot word operation which is substitution each byte

from substitution byte operation described earlier in the Subbyte transformation.

Then the output is XORED with the Round constant Rcon(j) which has a constant

value for each round of AES. The values of round constant is given in Table 3.2.

Table 3.2: Round Constants

J 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

Rcon(j) is the round constant word array and is defined as Rcon(j) = [RC(j), {00},

{00}, {00}].Means for first round the Rcon(j) will be 01000000.After Xoring the value

KeyExpansion (byte key[16], word w[44])

begin
word temp

i = 0

while (i < 4)

w[i] = (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i = i+1

end while

i = 4

while (i < 44)

temp = w[i-1]
if (i mod 4 = 0)

temp = SubWord(RotWord(temp)) xor Rcon[i/4]
end if
w[i] = w[i-4] xor temp
i = i + 1

end while
end

Figure 3.10: Pseudo Code for Key Expansion

 36

of Round constant the output is XORED with the (i-4)th word or word(i-4).Then the

output word is the desired word.

By this way complexity is added in the key generation process for each of 4th word

of the key to make the algorithm strong.

3.7 Decryption Process of AES

Decryption process of the AES algorithm is the same as the encryption process but

in the reverse order or in opposite direction. Decryption process has also 10 rounds

and each round has the operation of Inv SubByte(), InvShiftrows(), InvMix columns

and InvAdd round key operation which are just reverse to the SubByte(),

Shiftrows(),Mix columns and add roundkey operation of the encryption process.

The four Transformatiom in the Decryption process are as follows:

InvSubByte() Transformation

InvShiftrows() Transformation

InvAddround key Transformation

InvMixColumn Transformaion

3.7.1 InvSubByte Transformation

This transformation makes use of the inverse of the SubByte transformation. This is

obtained by applying the inverse of the affine transformation followed by taking the

multiplicative inverse in GF(28).:

The inverse transformation which is applied before taking the multiplicative inverse

in GF(28). Which produce the output element of Inverse S-Box is :

 b’i = bi ⊕ b(i+2)mod8 ⊕ b(i+5)mod8 ⊕b(i+7)mod8 ⊕ di

This transformation is depicted in matrix form as follows

Figure 3.11 : Transformation of Inverse S-box matrix

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

1

0

1

0

0

0

0

0

b0

b1

b2

b3

b4

b5

b6

b7

= +

b'0

b'1

b'2

b'3

b'4

b'5

b'6

b'7

 37

The inverse S-Box Table 3.3 is as below:

3.7.2 InvShiftRows() Transformation

 Inv Shift rows operation perform the circular shift operation just reverse of the shift

row operation which was done for encryption process. This performs the circular

shift for each of the last three rows with one byte circular right shift for the second

row, two byte circular right shift for the third row and three byte circular right for the

fourth row.

3.7.3 InvAddround key Transformation

 Inv Add roundKey operation is same as AddRoundKey Operation where key are

used in reverse order like the last generated key used first and then then the other

key are used in this manner. But the key generation process is same as encryption

round.

3.7.4 InvMixColumns() Transformation

It is the inverse of the MixColumns() transformation. InvMixColumns() operates on

the State column-by-column, treating each column as a four term polynomial. The

InvMixColumns() transformation operates on each column individually. Each byte of

a column is mapped into a new value that is a function of all four bytes in the

column.

Table 3.3: Inverse S-box

 Y

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

x

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

 38

Figure 3.12 : Transformation of inverse Mix Column matrix

The Pseudo code for Decryption is as below

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S3,0 S'3,1 S'3,2 S'3,3

=

Decryption(byte in[16], byte out[16], word w[44])
begin

byte state[16]

state = in

AddRoundKey(state, w[40,43])

for round = 1 step 9 to 1
 InvShiftRows(state)

InvSubBytes(state)
AddRoundKey(state, w[round*4, (round+1)*4-1])
InvMixColumns(state)

end for

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[0, 4])

out = state

end

Figure 3.13: Pseudo code for the Decryption

 39

CHAPTER 4

FPGA IMPLIMENTATION

4.1 Introduction

In the previous chapter the brief description of the AES algorithm is provided. In this

chapter, design procedure of the proposed AES processor using Verilog HDL and

FPGA Implementation details will be described.

4.2 Verilog HDL (Hardware Definition Language)

In the earlier, the conventional approach such as hand-draw and schematic based

design technique was the only choice to the designer to design a digital system. But

now millions of transistors are being integrated on a single chip integrated circuit

(IC) where the conventional design technique is insufficient to be used. It points

towards having a new approach for designing today’s complex digital system and

that is Hardware Description Language (HDL).

HDL based design technique has been emerged as the most efficient solution. It

offers the following advantages over conventional based design approaches.

• It is technology independent. If a particular IC fabrication process becomes

outdated, it is possible to synthesize a new level design by only changing the

technology file but using the same HDL code.

• HDL shortens the design cycle of a chip by efficiently describing and

simulating the behavior of the chip. A complex circuit can be designed using

a few lines of HDL code.

• It lowers the cost of design of an IC.

• It improves design quality of a chip. Area and timing of the chip can be

optimized and analyzed in different stages of design.

There are different types of HDL available in the market. Some of these are vendor

dependent where the HDL code is only useable under the software provided by the

specific vendor. For example, AHDL (Altera hardware description language) from

Altera company, Lola (Logic Language) from European Silicon Structure (ES2)

company etc. However Verilog and VHDL (very high speed IC hardware description

language) are the two vendor independent HDL which are now widely accepted

industry standard Electronic Design Automation (EDA) tool for designing digital

 40

system. Verilog HDL is introduced by Cadence Data Systems, Inc. and later its

control is transferred to a consortium of companies and universities known as open

Verilog international (OVI) whereas VHDL is used primarily by defense contractors.

Currently Verilog is widely used by IC designers. Verilog HDL is IEEE standard and

easier than VHDL. It is less error prone. It has many pre-defined features very

specific to IC design (Lee 1999).For this reason Verilog is chosen to design and

implement AES processor.

4.3 Implementation using FPGA

Field programmable gate array (FPGA) is a semiconductor device containing

programmable logic components and programmable interconnects. It contains up to

thousands of gates. The programmable logic components can be programmed to

duplicate the functionality of basic logic gates such as AND, OR, XOR, NOT or more

complex combinational functions such as decoders or simple math functions. In

most FPGAs, these programmable logic components (or logic blocks, in FPGA

parlance) also include memory elements, which may be simple flip-flops or more

complete blocks of memories. These logic blocks and interconnects can be

programmed after the manufacturing process by the customer/designer (hence the

term "field programmable", i.e. programmable in the field) so that the FPGA can

perform whatever logical function is needed.

There are various vendor manufacturers for different types of FPGA chip such as

Altera, Xilinx, Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor,

Atmel, Achronix Semiconductor etc. Among them Altera and Xilinx are the most

famous FPGA companies since both of the companies have lot of varieties of FPGA

device from small number of gate counts to higher number of gate counts. However

Altera devices offer the general benefits of PLDs as innovative architectures,

advanced process technologies, state-of-the-art development tools, and a wide

selection of mega function. The common advantages of Altera devices include: High

performance, High-density logic integration, Cost-effectiveness, Short development

cycles with the Quartus II software, Mega Core functions, Benefits of in-system

programming. In this work the FPGA device used is Altera provided EP2C35F672C6

from Cyclone II family.

 41

4.4 FPGA Cyclone II Device

Altera’s low-cost CycloneTM II FPGA family is based on a 1.2-V, 90-nm SRAM

process with densities over 68K logic elements (LEs) and up to 1.1 Mbits of

embedded RAM. With features like embedded 18 × 18 multipliers to support high-

performance DSP applications, phase-locked loops (PLLs) for system clock

management, and high-speed external memory interface support for SRAM and

DRAM devices, Cyclone II devices are a cost-effective solution for high-volume

applications. Cyclone II devices support differential and single-ended I/O standards,

including LVDS at data rates up to 805 megabits per second (Mbps) for the receiver

and 640 Mbps for the transmitter, and 64-bit, 66-MHz PCI and PCI-X for interfacing

with processors and ASSP and ASIC devices. Altera also offers low-cost serial

configuration devices to configure Cyclone II devices. The Cyclone II FPGA family

offers commercial grade, industrial grade, and lead-free devices.

The Cyclone II device family offers the following features:

� High-density architecture with 4,608 to 68,416 LEs

� M4K embedded memory blocks

� Embedded multipliers

� Advanced I/O support

� Flexible clock management circuitry

� Device configuration

� Intellectual property

4.5 Development Tool Quartus II

The AES processor is designed using Quartus II EDA tool (provided by Altera

Company) which provides Graphical User Interface (GUI) to download the digital

design AES into the Cyclone II FPGA.

Quartus II software provides a simple, automated mechanism to allow designers to

obtain the best performance for their designs. This software provides the way to

design the solution through Verilog HDL and complile the design to ensure the

workability and efficiency logically. The tool Programmer allows using files

generated by the Compiler to program and/or configuring all devices supported by

the Quartus II software. Programmer and supported programming hardware tool is

 42

used to easily program or configure a working device in minutes. After a successful

compilation, download configuration data into a device through the, ByteBlaster or

USB-Blaster communications cables, or through the Altera Programming Unit

(APU).The program or configure devices can be in Passive Serial mode, Active

Serial Programming mode, JTAG mode, or In-Socket Programming mode.

Program an Altera Device: When the design is ready to program or configure a

device, it needs to open the Programmer and create a Chain Description File (.cdf)

that stores device name, device order, programming and hardware setup

information. CDFs can be used to program or configure one or more devices in a

JTAG chain or a Passive Serial chain.

Compiling mode: The Quartus II Compiler consists of a set of independent

modules that check the design for errors, synthesize the logic, fit the design into an

Altera device, and generate output files for simulation, timing analysis, software

building, and device programming. The basic Compiler consists of the Analysis &

Synthesis, Fitter, Assembler, and Timing Analyzer modules. Each of the Compiler

modules can be run individually or together from the Quartus II user interface.

Alternatively, these modules can be run independently with the appropriate

command line executable.

Compile the Design: The Compiler automatically locates and uses all non-design

files associated with the design, such as Include Files (.inc) containing AHDL

Function Prototype Statements; Memory Initialization Files (.mif) or Hexadecimal

Intel-format Files (.hex) containing the initial content of memories; as well as

Quartus II Project Files (.qpf) and Quartus II Settings Files (.qsf) containing project

and setting information. During compilation, the Compiler generates information,

warning, and error messages that appear automatically in the Messages window.

Simulation mode: Simulation allows testing a design thoroughly to ensure that it

responds correctly in every possible situation before configuring a device.

Depending on the type of information need, functional or timing simulation can be

performed with the Simulator. Functional simulation tests only the logical operation

of a design by simulating the behavior of flattened netlist extracted from the design

files, while timing simulation uses a fully compiled netlist containing timing

information to test both the logical operation and the worst-case timing for the

 43

design in the target device. Before running a simulation, it is necessary to specify

input vectors as the stimuli for the Quartus II Simulator. The Simulator uses these

input vectors to simulate the output signals that a programmed device would

produce under the same conditions. The Simulator supports input vector stimuli in

the form of a Vector Waveform File (.vwf), Vector Table Output File (.tbl), Power

Input File (.pwf), or a Quartus II generated Vector File (.vec) or Simulator Channel

File (.scf).

4.6 Design Partitioning

It is a standard practice to partition a complex design into different modules based

on their specific functionality and features. So the project is partitioned in to modules

based on four basic operation and one key expansion operation for Encryption and

same for decryption cycle. The four basic operations are Substitution byte, Shift

rows, Mix Columns, Add round key. There are individual module for Substitution

Byte operation named as aes_sub_byte module, Shift rows operation named as

aes_shift_row module and Mix Column operation named as aes_mix_column

module. Key expansion operation is performed inside the main module which is

named as aes_key_encryption to generate 10 keys for next rounds from the

supplied symmetric key. Add round key operation is also performed inside the main

module aes_key_encryption and aes standard module to add key to the state. AES

has nine standard rounds. Each round contain four basic operations (Substitution

byte,shift rows,mix column and add round key sequentially. These standard rounds

are 1 to 9th round. So a standard module is designed in the project to complete the

operation of a standard round which is named as onetonine module.

4.7 Design Components

The components of the AES processor are different for encryption and decryption

system. The components of the Encryption and decryption module along with the

entire AES processor are shown in Figure 4.1.

 44

Figure 4.1: Design Components of AES

AES processor consists of main two segments such as processing unit and memory

units. In processing unit there are three operation such as Encryption, Decryption &

key expansion. Encryption module performs the four operations like Sub_Byte,

Shift_rows, Mix_columns and Add_Round_key operation as per algorithm require.

Encryption module require S-Box memory where a 16 x 16 lookup table is provided

for Sub_Byte operation and Round key memory where 10 key is stored by key

expansion operation which is used by Add_Round_key operation of each round.

Key expansion operation calculates the key for 10 rounds from the starting key

which is stored in round key memory. Round Constant values are used to generate

round key of a specific round.

The main module of Encryption and sub modules are as follows:-

AES Encryption Module: AES encryption module is the main module of encryption

which holds the round module onetonine and round module hold the other

operational module like AES_SUB_BYTE,AES_SHIFT_ROWS and

AES_MIX_COLUMN module. Figure 4.1 shows the block diagram of the AES

encryption module named as aes_encryption. Input data block of 128 bit given as

input which is plain text. Start bit is activated to start the operation. After completion

 Processing Units Memory Units

 Encryption Processor

Includes: i)Sub_Byte

 ii)Shift_row

 iii)Mix_column

 iv)Add_Round_key

 Decryption Processor

Includes: i)Inv Sub_Byte

 ii)Inv Shift_row

 iii)Inv Mix_column

 iv)Add_Round_key

Key Expansion Operation

Inv S-Box

S-Box

Round Key

Round

Constant

 45

of the module operation output of 128 bit cipher is generated. Beside this output

‘keyout’ of 128 bit shows the last key of the encryption process, ‘key ready’ flag

indicates the completion of key expansion process and ‘encr_ready flag’ indicates

the ending of the encryption. Quartus II generated block diagram of encryption

process is shown in Figure 4.2.

plaintext[127..0]

clk

start

key out[127..0]

key ready

encr_ready

cipher[127..0]

aes_encry ption

inst

VCC
INPUT(128 Bit) INPUT

VCC
CLOCK INPUT

VCC
START INPUT

OUTPUT(128 Bit)OUTPUT

OUTPUT FLAGOUTPUT

KEY READY FLAGOUTPUT

LAST KEYOUTPUT

Figure 4.2: Block diagram of AES Encryption module

Onetonine Module: This module is treated as standard module in AES which

performs the operation of a standard round in AES. There are 9 standard rounds

each includes all four operation of AES such as substitution byte, shift row,

AddRoundKey, Mix column operation. In this module 128 bit input is given and the

key of the round is given as input.128 bit output is generated with output flag which

represent the completion of the process. The block diagram of the round module

which is named as onetonine is shown in Figure 4.3

onein[127..0]

roundkey [127..0]

clk

round_ready

oneout[127..0]

onetonine

inst

VCC
INPUT(128 Bit) INPUT

VCC
INPUT KEY(128 Bit) INPUT

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT

Figure 4.3: Block diagram of Onetonine module

AES_SUB_BYTE Module: This module performs the Substitution byte operation of

AES algorithm. In the previous chapter it is described that the substitution byte

transformation of input state to the output state involves basically two algebraic

calculations for each byte which is responsible for huge processing time. So for this

reason a 16 x 16 byte lookup table is used in this module for substitution to eliminate

complex algebraic operation which will increase throughput. In this work 128 bit data

block is given input to the AES_SUB_BYTE Module as ‘boxin’ .After initiating the

 46

clock as ‘clk’ output produced as ‘boxout’ which is byte by byte substitution of the

input data block ‘boxin’ which is shown in Figure 4.4.

VCC
CLOCK INPUT

boxin[127..0]

clk

sub_ready

boxout[127..0]

aes_sub_by te

inst

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT
VCC

INPUT(128 Bit) INPUT

Figure 4.4: Block diagram of AES_SUB_BYTE module

AES_SHIFT_ROW Module: This module is used for performing shift row operation

of the AES.The block diagram of the module is shown in Figure 4.5. The operation is

very simple just to alter the position of the bytes in the 2nd, 3rd and 4th row on the

state matrix.128 bit data block is given input to this module and output 128 bit data

is produced by the shift operation of the module and output flag represent that the

output is ready.

shif tin[127..0]

clk

shif t_ready

shif tout[127..0]

aes_shif t_row

inst

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT
VCC

INPUT(128 Bit) INPUT

OUTPUT(128 Bit)OUTPUT

Figure 4.5: Block diagram of AES_SHIFT_ROW module

AES_MIX_COLUMN Module: This is a operation in AES to multiply the present

state of AES to a constant matrix by the multiplication rules used in GF(28) Field.

128 bit input is given to this module. After the operation 128 bit output is produced.

Output flag represent the ending of module operation. Figure 4.6 shows the

generated block diagram of the module.

mixin[127..0]

clk

mix_ready

mixout[127..0]

aes_mix_column

inst

VCC
INPUT(128 Bit) INPUT

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT

Figure 4.6: Block diagram of AES_MIX_COLUMN module

 47

There is another AES operation which is AddRoundKey where key is XORED with

the state. There is no separate module for AddRoundKey but this is done inside

main module of encryption and Standard Modules named as Onetonine Module

where other AES operation are done simultaneously.

The main module of Decryption and sub modules are as follows:-

AES Decryption Module: AES decryption module is the main module of decryption

which holds the round module onetonined and round module hold the other

operational module like AES_ISUB_BYTE, AES_ISHIFT_ROWS and

AES_IMIX_COLUMN module. Figure 4.7 shows the block diagram of the AES main

module for decryption named as aes_decryption. Input data block of 128 bit given as

input which is cipher. Start bit is activated to start the operation. After completion of

the module operation output of 128 bit plaintext is generated. Beside this output ‘last

key’ of 128 bit shows the last key of the decryption process, ‘key ready’ flag

indicates the completion of key expansion process and ‘decr_ready’ flag indicates

the ending of the decryption. Quartus II generated block diagram of decryption

process is shown in Figure 4.7.

cipher[127..0]

clk

start

lastkey [127..0]

key ready

decr_ready

plaintext[127..0]

aes_decry ption

inst

VCC
Cipher Text(128 Bit) INPUT

VCC
Clock INPUT

VCC
Start Flag INPUT

Last Key (128 Bit)OUTPUT

Key Ready FlagOUTPUT

Decry ption Ready FlagOUTPUT

Plain Text Output(128 Bit)OUTPUT

Figure 4.7: Block diagram of AES decryption module

Onetonined Module: This module is treated as standard module in AES which

performs the operation of a standard round in AES. There are 9 standard rounds in

AES decryption process each includes all four operation of AES decryption such as

inverse substitution byte, inverse shift row, AddRoundKey and inverse mix column

operation. In this module 128 bit input and the key (128 Bit) of the round is given as

input.128 bit output is generated with output flag which represent the completion of

the process. The block diagram of the round module of AES decryption which is

named as onetonined is shown in Figure 4.8.

 48

onedin[127..0]

roundkey [127..0]

clk

onedout[127..0]

onetonined

inst

VCC
Round Key (128 Bit) INPUT

VCC
Round Input(128 Bit) INPUT

VCC
Clock INPUT

Round Output(128 Bit)OUTPUT

Figure 4.8: Block diagram of Onetonined module

AES_ISUB_BYTE Module: This module performs the inverse substitution byte

operation of AES decryption module which is opposite to the substitution byte

operation of the encryption module. A 16 x 16 byte lookup table is used in this

module for substitution of each byte of the input. In this work 128 bit data block is

given input to the AES_ISUB_BYTE Module as ‘boxin’ .After initiating the clock as

‘clk’ output produced as ‘boxout’ which is byte by byte substitution of the input data

block ‘boxin’ which is shown in Figure 4.9.

boxin[127..0]

clk

isub_ready

boxout[127..0]

aes_sub_by te

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT Output(128 Bit)OUTPUT

Output FlagOUTPUT

Figure 4.9: Block diagram of AES_ISUB_BYTE module

AES_ISHIFT_ROW Module: This module is used for performing inverse shift row

operation of the AES decryption module which is opposite to the AES shift operation

of the encryption module. The block diagram of the module is shown in Figure 4.10.

The operation is very simple just to alter the position of the bytes in the 2nd, 3rd and

4th row on the state matrix.128 bit data block is given input to this module and output

128 bit data is produced by the shift operation of the module.

shif tin[127..0]

clk

shif tout[127..0]

aesi_shif t

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT

Output(128 Bit)OUTPUT

Figure 4.10: Block diagram of AES_ISHIFT_ROW module

 49

AES_IMIX_COLUMN Module: AES inverse mix column is a operation in AES

decryption module to multiply the present state of AES to a constant matrix by the

multiplication rules used in GF(28) Field. The operation is just the reverse of AES

mix column operation which is performed in AES_MIX_COLUMN module.128 bit

input is given to this module. After the operation 128 bit output is produced. Output

flag represent the ending of module operation. Figure 4.11 shows the generated

block diagram of the module.

imixin[127..0]

clk

imix_ready

imixout[127..0]

aesi_mix_column

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT Output(128 Bit)OUTPUT

Output Ready FlagOUTPUT

Figure 4.11: Block Diagram of AES_IMIX_COLUMN module

There is another operation in AES decryption module like AES encryption module

which is AddRoundKey where key is XORED with the state. There is no separate

module for AddRoundKey but this is done inside main module of decryption and

standard modules named as Onetonined module where other AES operation are

done simultaneously. It is different from AES encryption module in this respect that

key are used in the rounds in reverse order.

cipher[127..0]

clk

start

lastkey [127..0]

key ready

decr_ready

plaintext[127..0]

aes_decry ption

inst

plaintext[127..0]

clk

start

key out[127..0]

key ready

encr_ready

cipher[127..0]

aes_encry ption

inst1

VCC
PlainText/Cipher INPUT

VCC
Clock INPUT

VCC
Start Flag INPUT

Last KeyOUTPUT

Ket Ready FlagOUTPUT

Encr/Decr ReadyOUTPUT

Plaintext/Cipher OutputOUTPUT

VCC
Encr/Decr Selector INPUT

Figure 4.12: Block diagram of integrated AES Encryption and Decryption module

 50

Figure 4.12 shows the block diagram of AES encryption and decryption module

where encryption and decryption are performed simultaneously based on the

selector input mode. System input is 128 bit plaintext or cipher, clock and start flag.

Symmetric key of 128 bit is given to the module memory. Depending on the

input(plaintext or cipher), selector select the the encryption or decryption module to

perform operation. As a result cipher is produced as output if encryption performed

and plaintext produced if decryption performed. Output lastkey shows the last key

produced by key expansion process, key ready flag indicate that key expansion

operation is complete, Encr/Decr Ready flag indicates that encryption or decryption

operation is complete and plaintext or Cipher shows the 128 bit output of the total

operation.

4.8 The Operational diagram of Main module of encryption (AES_Encryption)

Figure 4.13 shows the operational diagram of AES encryption module. In the main

encryption module aes_encryption at first the key expansion operation is done

where 10 additional key is generated from the supplied symmetric key and saved in

memory which are to be used in the ten standard rounds of AES. Then

AddRoundKey operation (XORing the key with state) is performed. After then nine

standard rounds is completed by running the standard module onetonine for nine

times. 10th Round is different from standard round where substitution byte, shift row

and round key operation are performed skipping the mix column operation. For this

reason these operations are performed from main AES module AES_ENCRYPTION

without using round module onetonine.

Decryption module is same as Encryption module but the operation is just opposite

to the encryption process. Decryption module uses Inv S-Box memory instead of

S-Box and also collects round key generated by key expansion operation for

Add_Round_Key operation of the rounds. Key is stored in Round Key memory. In

decryption round key are used in the round in reverse order than encryption module.

 51

Is key

expansion

Done

Add Roundkey

Operation

State=Plaintext

XOR Symmetric

Key

Key Expansion Operation

Symmetric Key

Input(128 Bit)

Key Memory

10 Key[1-10]

Plain Text

Input

(128 Bit)

Round

Module(onetonine)

Aes_Sub_Byte(State)

AES_Shift_Row(State)

AES_Mix_column(State)

AES_Round_key(State)

Round=Round+1

Is it 10
th

Round

Yes

No

Aes_Sub_Byte(State)

AES_Shift_Row(State)

AES_Round_key(State)

Output Cipher

(128 Bit)

Yes

No

Symmetric

Key

Key (Round)

10th Key

Figure 4.13: Operational Diagram of modules of AES

 52

CHAPTER 5

RESULTS AND PERFORMANCES

5.1 Introduction

The design of the AES processor is coded using verilog HDL. Altera provided

Cyclone II FPGA is used. in this work the device used is EP2C35F672C6 from

Cyclone II family.

The Specification of the device is as follows:

Total Logic Elements : 33216

I/O Registers : 33216

Total Combinational functions : 33216

Dedicated logic registers : 33216

Total registers : 3142

Total memory bits : 483,840

Compilation results of Encryption module are as follows:

Total Logic Elements : 3405/33216

Total Combinational functions : 3405/33216

Dedicated logic registers: : 1

Total registers : 1

Total Pins : 388/475

Total memory bits : 327680/483,840

5.2 Simulation Results

 At first each module like substitution byte, shift row, mix column and onetonine

(round module) are simulated using Quartus II development software. NIST[4]

provided input vectors and keys are applied. It helps to compare the simulated

output with that from NIST.

 53

5.2.1 Simulation of Aes_Sub_Byte Module

 Figure 5.1: Simulation of Sub_Byte Operation

Figure 5.1 shows the simulation of Substitution Byte Module of AES algorithm where

‘boxin’ is given as input state. When the clock ‘clk’ is activated the output ‘boxout’

generated which is the byte by byte substitution of ‘boxin’ from the S-Box Table. It is

verified with NIST data.

5.2.2 Simulation of Aes_Shift_Row Module

Figure 5.2: Simulation of Shift_Row Operation

In the Figure 5.2 the simulation result of Shift_Row module of AES algorithm has

been shown where ‘shifin’ is the input state and ouput state ‘shiftout’ is generated

when the input supplied which is the output of shiftrow operation and verified by

NIST vectors.

 54

5.2.3 Simulation of AES_Mix_Column Module

 Figure 5.3 shows the simulation result of Aes_Mix_Column operation where the

output of mixcolumn operation is generated as ‘mixout’ when the input supplied

which is named as ‘mixin’. Inputs are taken from NIST input vector and output

results are verified.

 Figure 5.3: Simulation of Mix_Column_Operation

5.2.4 Simulation of onetonine Module

Figure 5.4: Simulation of one Standard round (one to nine round)

In encryption module each standard round is simulated and output is verified.

Figure 5.4 shows the simulation of one standard round where all basic operations

(Substitution bytes shift rows mix columns and add round key) are performed and

latency is observed which is 30ns.Input and output are verified by NIST provided

data.

 55

5.2.5 Simulation of AES_encryption Module

The simulation results of full encryption module is shown in Figure 5.5 where input

vectors and keys are given from NIST standard publication [4] and output was

verified.

Input Plain text: 3243f6a8885a308d313198a2e0370734

Input Cipher Key :2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Figure 5.5: Simulation of full Encryption Module

The output result of the encryption was found accurately after 11 clock cycle/210ns

from the starting of encryption process. So the latency of encryption is only 11 clock

cycle/210ns. In this Figure 5.5, the generated last key(10th key) is shown as keyout

and latency of key generation is observed by ‘keyready’ flag. As the device used is

Altera EP2C35F672C6 from Cyclone II family supports maximum clock frequency of

50MHz. So the encryption throughput will be 6.4Gbps as per clock cycle encrypt 128

bits data samples. If other device having more clock frequency is used then

throughput can be increased more.

5.2.6 Simulation of AES_Decryption Module

Simulation of decryption module is shown in Figure 5.6 where cipher found from the

encryption module is given as input and plaintext of the encryption operation is

observed as output of the decryption module. It proves that decryption is performed

accurately.

 56

Figure 5.6: Simulation of full Decryption Module

5.3 Implementation on FPGA

IICT,BUET owns a Altera’s DE2 FPGA board to implement any complex digital

design. The proposed processor has been implemented on the FPGA mounted on

the DE2 board. We have applied the following NIST provided plaintext input.128 bit

encryption key are also given to the code directly.

Plaintext input : 3243f6a8885a308d313198a2e0370734;

Input Cipher Key : 2b7e151628aed2a6abf7158809cf4f3c;

Expected Cipher text : 3925841d02dc09fbdc118597196a0b32

Result shown in 8 seven segment output of the FPGA is also same as expected

which 3925841d02dc09fbdc118597196a0b32 is shown in Figure 5.7 and 5.8. So it

shows that the AES processor is working correctly.

Figure 5.7: Seven segment output of FPGA (1st 32 bit cipher & 2nd 32 bit cipher)

 57

Figure 5.8: Seven segment output of FPGA (3rd 32 bit cipher & 4th 32 bit cipher)

Overall the simulation of Quartus II software and implementation results on the

FPGA board found accurate.

5.4 Comparison with other related works

The performance of the AES processor achieved in this research has been

compared with that of other researchers [12,13,18,21,22]. It has been shown in

Table 5.1. From Table 5.1 it is observed that maximum speed achieved is 21.54

Gbps with latency 71 clock cycle. However reduced latency is essential for real time

applications. To reduce the latency loop unrolling, pipelining, online key scheduling

etc. techniques are usually used. It is seen from Table 5.1 that minimum latency

achieved by the researcher [23] is 10 clock cycle with speed 1.4 Gbps. The latency

achieved from current research work is 11 clock cycle with throughput 6.4 Gbps.

Table 5.1: Comparison of the design with other FPGA implementation

Design FPGA Device Throughput Latency(Cycle)

Hodjat A et. Al.[12]
Pipelined

XC2VP20-7 21.54 Gbps 71

Jarvinen et al[13]
Pipelined

XC2V2000-5 17.8 Gbps 41

J. Zambreno et al[18]
XC2V4000

6.43 Gbps 11

Hui Qin et al [10] partial pipelined

Startix-C5 6.45 Gbps 21

 Kenney D. et al [21] Cyclone II 2.5 Gbps 40
Xiao S. et al[22] NIOS II 2.38 Gbps -

Mroczkowski P et. Al[19] FLEX 10K 268 Mbps 21
Helion et. Al[23] Startix- C5 1.4 Gbps 10

This Work Cyclone II 6.4 Gbps 11

 58

 So considering latency and speed, our work is superior to the research work [23].

Moreover the research works presented [12,13,18,21,22] are based on simulation

results only. Hardware level testing and verification of the AES processor is not

shown in their literatures. But this work shows the verification of the proposed AES

processor both in simulation environment as well as in the FPGA hardware using

different NIST approved test vectors.

 59

CHAPTER 6

CONCLUSION

6.1 Conclusion

The superiority of the AES algorithm over all other cryptographic techniques has

been proved by a number of literatures. The objective of the research proposed in

this report was to design an AES processor. The proposed processor has been

designed using Verilog HDL. The simulation result of each module and that of whole

integrated module of the processor verify its desired functionality. Hardware

implementation results also validate the truth. The performance of the processor in

terms of logic cell, latency and speed is evaluated. If the design is implemented on

higher frequency FPGA device then throughput will be increased. The design can be

used as an Intellectual Property (IP) core for using in different security applications.

6.2 Future work

The author recommends that the following research can be carried out in future to

enhance the proposed processor:-

1) Portable electronic system is the vision of this day where power is an

important issue. So power analysis of the processor can be carried out.

2) The proposed processor can be implemented on ASIC to improve its

performance.

 60

REFERENCES

[1] Stallings W. “Cryptography and Network Security: Principles and

 Practices. ”4th ed., Pearson Education, Inc. pp. 63-173. 2006.

[2] Pfleeger C. “ Security in Computing. ” Upper Saddle River, NJ: Prentice

 Hall, 1997.

[3] Schneier B. “Applied Cryptography,” 2nd Edition, Wiley, New York, 1996.

[4] “Advanced encryption standard (AES)”, Federal Information Processing

Standards Publication (FIPS PUB) 197, National Institute of Standards and

Technology (NIST), November, 2001.Available at:

http://csrc.nist.gov/publication/drafts/dfips-AES.pdf

[5] Daemen J. and Rijmen V., “AES Proposal: Rijndael, ” Version 2.

 Submission to NIST, March 1999, available at

 http://csrc.nist.gov/encryption/aes

[6] Ashwini M. D, Mangesh S. D and Devendra N. K “,FPGA Implementation

 of AES Encryption and Decryption”.

[7] Daemen J. and Rijmen V., “Rijndael: The Advanced Encryption Standard.” ,

 Dr. Dobb’s Journal, March 2001.

[8] NIST, “DRAFT NIST Special Publication 800-131, Recommendation for the

Transitioning of Cryptographic Algorithms and Key Sizes”, Federal

Information Processing Standards Publication (FIPS PUB) 197, National

Institute of Standards and Technology (NIST), January, 2010.

[9] Leopld G., “U.S. unveils advanced encryption standard,” EE Times

 December 10, 2001.

 Available at: http://www.eetimes.com/story/OEG20011205S0060.

[10] Qin H., Nonmember, SASAO T. and IGUCHI Y.,Members ,“A Design of

AES Encryption Circuit with 128 bit keys using Look-UP Table Ring on

FPGA”,IEICE TRANS. INF. & SYST.,VOL.E89-D,NO.3 MARCH 2006.

 61

[11] Rahman T., Pan S. and Zhang Q., “Design of a High Throughput 128-bit

 (Rijndael Block Cipher)”,Proceeding of International Multiconferrence of

Engineers and computer scientists 2010 Vol II IMECS 2010, March 17- 19,

2010 Hongkong.

[12] Hodjat A. and Varbauwhede I.,“A 21.54 Gbits Fully Pipelined AES

 Processor on FPGA”, IEEE Symposim on Field-Programmable Custom

 Computing Machines,April 2004.

[13] Jarvinen et al, “A fully pipelined memoryless 17.8 Gbps AES-128

 encrypter”,International Symposium on Field Programmable Gate

 arrays,pp.207-215.2003.

[14] Cheng K., Chang T. and Lo J., “Cryptanalysis of Security Enhancement

 for a Modified Authenticated Key Agreement Protocol”, International

 Journal of Network Security, Vol.11, No.1, PP.55- 57, July 2010.

[15] Salama D.A.M, Hatem M. A.K and Hadhoud M.M, “ Evaluating the effects

 of symmetric Cryptography Algorithms on Power Consumption for

 Different Data Types.”, International Journal of Network

 Security,Vol.11,No.2,PP.78-87,Sept.2010.

 [16] Ngo H. H, Wu X., Le D. P, Wilson C., and Srinivasan B., “Dynamic

 Key Cryptography and Applications”, International Journal of Network

 Security, Vol.10, No.3, PP.161-174, May 2010.

 [17] Selvaraju N. and Sekar G., “A Method to Improve the Security Level of

 ATM Banking Systems Using AES Algorithm”, International Journal of

 Computer Applications (0975 – 8887), Volume 3 – No.6, June 2010.

 [18] Zambreno J., Nguyen D. and Choudhary A., “Exploring Area/Delay

 Tradeoffs in an AES FPGA Implementation”,FPL 2004, LNCS 3203, pp.

 575–585, 2004.

 [19] Mroczkowski P., “Implementation of the block cipher Rijndael using Altera

 FPGA”, May 2000. [Online]. Available WWW:
 http://csrc.nist.gov/archive/aes/round2/.../20000510-pmroczkowski.pdf

 62

 [20] Altera Corp. (2007, February). “Cyclone II device family data sheet

 [Online]”.

 Available: http://www.altera.com/literature/hb/cyc2/cyc2_cii51001.pdf

 [21] Kenny D., “Energy Efficiency Analysis and Implementation of AES on an

 FPGA”, University of Waterloo,2008.

 [22] Xiao S.,Chen y. and Luo P., “The Optimized Design of Rijndael Algorithm

 Based on SOPC”, International Conference on Information and Multimedia

 Technology,2009

 [23] Helion Technology Limited, “High performance AES cores for Altera FPGA”,

 Available at: http://www.heliontech.com/core2.htm.

 63

APPENDIX A

ENCRYPTION MODULE

// AES_Encrypion Module

module aes_encryption(keyout,keyready,encr_ready,cipher,plaintext,clk,start);

output[127:0] cipher,keyout;

output encr_ready,keyready;

input [127:0] plaintext;

input clk,start;

integer i,j,k=0;

wire [127:0] shiftout,subout[0:10],modout[0:8];

reg [127:0] key[0:10];

reg [127:0] newround[0:8];

reg [127:0] shiftin,subin[0:10],newcipher[10:0],cipher,modin[0:8],keyout=0;

reg encr_ready=0,keyready=0;

reg [95:0] dummy;

reg [31:0] rc[10:0];

reg [31:0] a[43:0];

reg [7:0] b0,b1,b2,b3;

aes_sub_byte asb1(subout[1],subin[1],clk);

aes_sub_byte asb2(subout[2],subin[2],clk);

aes_sub_byte asb3(subout[3],subin[3],clk);

aes_sub_byte asb4(subout[4],subin[4],clk);

aes_sub_byte asb5(subout[5],subin[5],clk);

aes_sub_byte asb6(subout[6],subin[6],clk);

aes_sub_byte asb7(subout[7],subin[7],clk);

aes_sub_byte asb8(subout[8],subin[8],clk);

aes_sub_byte asb9(subout[9],subin[9],clk);

aes_sub_byte asb10(subout[10],subin[10],clk);

 64

// Round constants value for Key Expansion module

assign

{rc[1],rc[2],rc[3],rc[4],rc[5],rc[6],rc[7],rc[8],rc[9],rc[10]}=320'h01000000020000000400

000008000000100000002000000040000000800000001B00000036000000;

// Start of key expansion

always @(posedge clk) begin

keyout=0;

//input of 128 bit Symmetric Key

{a[0],a[1],a[2],a[3]}=128'H2b7e151628aed2a6abf7158809cf4f3c;

begin

for(j=4;j<44;j=j+1)

 if(j%4==0)

 begin

 //{b3,b2,b1,b0}=a[i-1];

 subin[j/4]={a[j-1],dummy};

 {b3,b2,b1,b0,dummy}=subout[j/4];

 a[j]=({b2,b1,b0,b3}^rc[j/4])^a[j-4];

 end

 else a[j]=a[j-1]^a[j-4];

 end

for(k=0;k<11;k=k+1)begin

key[k]={a[4*k],a[4*k+1],a[4*k+2],a[4*k+3]};

keyout=key[k];

if(keyout==128'hd014f9a8c9ee2589e13f0cc8b6630ca6)begin

keyready=1;

end

end

end //end of key expansion

 65

//start of encryption

aes_sub_byte asb(subout[0],subin[0],clk);

aes_shift_row asr(shiftout,shiftin,clk);

onetonine otn1(modout[0],modin[0],newround[0],clk);

onetonine otn2(modout[1],modin[1],newround[1],clk);

onetonine otn3(modout[2],modin[2],newround[2],clk);

onetonine otn4(modout[3],modin[3],newround[3],clk);

onetonine otn5(modout[4],modin[4],newround[4],clk);

onetonine otn6(modout[5],modin[5],newround[5],clk);

onetonine otn7(modout[6],modin[6],newround[6],clk);

onetonine otn8(modout[7],modin[7],newround[7],clk);

onetonine otn9(modout[8],modin[8],newround[8],clk);

always @(start or plaintext or newcipher or modin or newround or subout or shiftout

or key or modout or shiftin or subin) begin

encr_ready=0;

if(start)begin

 for(i=0;i<11;i=i+1)begin

 case(i)

 0:begin

 newcipher[i]=plaintext^key[0];

 end

 1:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 2:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 66

 3:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 4:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 5:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 6:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 7:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 8:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 9:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[i];

 newcipher[i]=modout[i-1];

 end

 67

 10:begin

 subin[0]=newcipher[i-1];

 shiftin=subout[0];

 newcipher[i]=shiftout;

 cipher=key[i]^newcipher[i];

if(cipher==128'h3925841d02dc09fbdc118597196a0b32)begin

 encr_ready=1;

 end //end if

 end

 endcase //End case

 end //End for

 end End if

 end //end always

endmodule

 68

APPENDIX B

SUBSTITUTION BYTE MODULE

// AES Sub_Byte Module

module aes_sub_byte(boxout,boxin,clk);

output [127:0] boxout;

input clk;

input [127:0] boxin;

wire [7:0] s[0:255];

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin,

 aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout,pout;

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = boxin;

assign

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}=128'H

637C777BF26B6FC53001672BFED7AB76,

{s[16],s[17],s[18],s[19],s[20],s[21],s[22],s[23],s[24],s[25],s[26],s[27],s[28],s[29],s[30],

s[31]}=128'HCA82C97DFA5947F0ADD4A2AF9CA472C0,

{s[32],s[33],s[34],s[35],s[36],s[37],s[38],s[39],s[40],s[41],s[42],s[43],s[44],s[45],s[46],

s[47]}=128'HB7FD9326363FF7CC34A5E5F171D83115,

{s[48],s[49],s[50],s[51],s[52],s[53],s[54],s[55],s[56],s[57],s[58],s[59],s[60],s[61],s[62],

s[63]}=128'H04C723C31896059A071280E2EB27B275,

{s[64],s[65],s[66],s[67],s[68],s[69],s[70],s[71],s[72],s[73],s[74],s[75],s[76],s[77],s[78],

s[79]}=128'H09832C1A1B6E5AA0523BD6B329E32F84,

 69

{s[80],s[81],s[82],s[83],s[84],s[85],s[86],s[87],s[88],s[89],s[90],s[91],s[92],s[93],s[94],

s[95]}=128'H53D100ED20FCB15B6ACBBE394A4C58CF,

{s[96],s[97],s[98],s[99],s[100],s[101],s[102],s[103],s[104],s[105],s[106],s[107],s[108],

s[109],s[110],s[111]}=128'HD0EFAAFB434D338545F9027F503C9FA8,

{s[112],s[113],s[114],s[115],s[116],s[117],s[118],s[119],s[120],s[121],s[122],s[123],

s[124],s[125],s[126],s[127]}=128'H51A3408F929D38F5BCB6DA2110FFF3D2,

{s[128],s[129],s[130],s[131],s[132],s[133],s[134],s[135],s[136],s[137],s[138],s[139],

s[140],s[141],s[142],s[143]}=128'HCD0C13EC5F974417C4A77E3D645D1973,

{s[144],s[145],s[146],s[147],s[148],s[149],s[150],s[151],s[152],s[153],s[154],s[155],

s[156],s[157],s[158],s[159]}=128'H60814FDC222A908846EEB814DE5E0BDB,

{s[160],s[161],s[162],s[163],s[164],s[165],s[166],s[167],s[168],s[169],s[170],s[171],

s[172],s[173],s[174],s[175]}=128'HE0323A0A4906245CC2D3AC629195E479,

{s[176],s[177],s[178],s[179],s[180],s[181],s[182],s[183],s[184],s[185],s[186],s[187],

s[188],s[189],s[190],s[191]}=128'HE7C8376D8DD54EA96C56F4EA657AAE08,

{s[192],s[193],s[194],s[195],s[196],s[197],s[198],s[199],s[200],s[201],s[202],s[203],

s[204],s[205],s[206],s[207]}=128'HBA78252E1CA6B4C6E8DD741F4BBD8B8A,

{s[208],s[209],s[210],s[211],s[212],s[213],s[214],s[215],s[216],s[217],s[218],s[219],

s[220],s[221],s[222],s[223]}=128'H703EB5664803F60E613557B986C11D9E,

{s[224],s[225],s[226],s[227],s[228],s[229],s[230],s[231],s[232],s[233],s[234],s[235],

s[236],s[237],s[238],s[239]}=128'HE1F8981169D98E949B1E87E9CE5528DF,

{s[240],s[241],s[242],s[243],s[244],s[245],s[246],s[247],s[248],s[249],s[250],s[251],

s[252],s[253],s[254],s[255]}=128'H8CA1890DBFE6426841992D0FB054BB16;

 70

always @(posedge clk) begin

aout<=s[ain];

bout<=s[bin];

cout<=s[cin];

dout<=s[din];

eout<=s[ein];

fout<=s[fin];

gout<=s[gin];

hout<=s[hin];

iout<=s[iin];

jout<=s[jin];

kout<=s[kin];

lout<=s[lin];

mout<=s[min];

nout<=s[nin];

oout<=s[oin];

pout<=s[pin];

end

assign

boxout={aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout,

pout};

endmodule

 71

APPENDIX C

SHIFT ROW MODULE

// AES Shift_Row Module

module aes_shift_row(shiftout,shiftin,clk);

output [127:0] shiftout;

input clk;

input [127:0] shiftin;

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin;

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = shiftin;

assign shiftout={ain,fin,kin,pin,ein,jin,oin,din,iin,nin,cin,hin,min,bin,gin,lin};

endmodule

 72

APPENDIX D

MIX COLUMN MODULE

// AES Mix_Column Module

module aes_mix_column (mixout,mixin, clk);

output [127:0] mixout;

input clk;

input [127:0] mixin;

integer i;

reg [7:0] s[0:15],s_shift[0:15],sout[0:15];

assign

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}=

mixin;

always @(mixin or s or s_shift or sout or i) begin

for(i=0;i<16;i=i+1)

if (s[i]>=8'b10000000) begin

s_shift[i] = s[i]<<1^8'b00011011;

end

else s_shift[i]= s[i] << 1;

for(i=0;i<=12;i=i+4)begin

sout[i]=s_shift[i]^s_shift[i+1]^s[i+1]^s[i+2]^s[i+3];

sout[i+1]=s[i]^s_shift[i+1]^s_shift[i+2]^s[i+2]^s[i+3];

sout[i+2]=s[i]^s[i+1]^s_shift[i+2]^s_shift[i+3]^s[i+3];

sout[i+3]=s_shift[i]^s[i]^s[i+1]^s[i+2]^s_shift[i+3];

end

end

assign

mixout={sout[0],sout[1],sout[2],sout[3],sout[4],sout[5],sout[6],sout[7],sout[8],sout[9],

sout[10],sout[11],sout[12],sout[13],sout[14],sout[15]};

endmodule

 73

APPENDIX E

ONE TO NINE(STANDARD ROUND) MODULE

// AES onetonine Module

module onetonine(oneout,onein,roundkey,clk);

output[127:0] oneout;

input [127:0] onein,roundkey;

input clk;

wire [127:0] subout,shiftout,mixout;

reg [127:0]shiftin,subin,mixin,oneout;

aes_sub_byte asb3(subout,subin,clk);

aes_shift_row asr1(shiftout,shiftin,clk);

aes_mix_column amc(mixout,mixin,clk);

always @(onein or subout or shiftout or mixout or roundkey) begin

 subin=onein;

 shiftin=subout;

 mixin=shiftout;

 oneout=mixout^roundkey;

 end //always

endmodule

 74

APPENDIX F

DECRYPTION MODULE

//AES_Decryption Module

module aes_decryption(lastkey,keyready,decr_ready,plaintext,cipher,clk,start);

output[127:0] plaintext,lastkey;

output decr_ready,keyready;

input [127:0] cipher;

input clk,start;

integer i,j,k=0;

wire [127:0] shiftout,subout[0:10],modout[0:8];

reg [127:0] key[0:10];

reg [127:0] newround[0:8],keyout;

reg [127:0] shiftin,subin[0:10],newcipher[10:0],modin[0:8],plaintext,lastkey;

reg decr_ready=0,keyready=0;

reg [95:0] dummy;

reg [31:0] rc[10:0];

reg [31:0] a[43:0];

reg [7:0] b0,b1,b2,b3;

aes_sub_byte asb1(subout[1],subin[1],clk);

aes_sub_byte asb2(subout[2],subin[2],clk);

aes_sub_byte asb3(subout[3],subin[3],clk);

aes_sub_byte asb4(subout[4],subin[4],clk);

aes_sub_byte asb5(subout[5],subin[5],clk);

aes_sub_byte asb6(subout[6],subin[6],clk);

aes_sub_byte asb7(subout[7],subin[7],clk);

aes_sub_byte asb8(subout[8],subin[8],clk);

aes_sub_byte asb9(subout[9],subin[9],clk);

aes_sub_byte asb10(subout[10],subin[10],clk);

// Round constants value for Key Expansion module

assign

{rc[1],rc[2],rc[3],rc[4],rc[5],rc[6],rc[7],rc[8],rc[9],rc[10]}=320'h01000000020000000400

000008000000100000002000000040000000800000001B00000036000000;

 75

// Start of key expansion

always @(posedge clk) begin

keyout=0;

//assignment of primary key

{a[0],a[1],a[2],a[3]}=128'H2b7e151628aed2a6abf7158809cf4f3c;

begin

for(j=4;j<44;j=j+1)

 if(j%4==0)

 begin

 subin[j/4]={a[j-1],dummy};

 {b3,b2,b1,b0,dummy}=subout[j/4];

 a[j]=({b2,b1,b0,b3}^rc[j/4])^a[j-4];

 end

 else a[j]=a[j-1]^a[j-4];

 end

for(k=0;k<11;k=k+1)begin

key[k]={a[4*k],a[4*k+1],a[4*k+2],a[4*k+3]};

keyout=key[k];

if(keyout==128'hd014f9a8c9ee2589e13f0cc8b6630ca6)begin

lastkey=key[10];

keyready=1;

end

end

end //end of key expansion

//Start of Decryption

onetonined otn1(modout[0],modin[0],newround[0],clk);

onetonined otn2(modout[1],modin[1],newround[1],clk);

onetonined otn3(modout[2],modin[2],newround[2],clk);

onetonined otn4(modout[3],modin[3],newround[3],clk);

onetonined otn5(modout[4],modin[4],newround[4],clk);

onetonined otn6(modout[5],modin[5],newround[5],clk);

onetonined otn7(modout[6],modin[6],newround[6],clk);

onetonined otn8(modout[7],modin[7],newround[7],clk);

onetonined otn9(modout[8],modin[8],newround[8],clk);

aesi_shift asr(shiftout,shiftin,clk);

 76

aesi_sub_byte asb(subout[0],subin[0],clk);

always @(cipher or newcipher or modin or newround or subout or shiftout or key or

modout or shiftin or subin) begin

if(start) begin

decr_ready=0;

 for(i=0;i<11;i=i+1)begin

 case(i)

 0:begin

 newcipher[i]=cipher^key[10-i];

 end

 1:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 2:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 3:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 4:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 5:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 77

 6:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 7:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 8:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 9:begin

 modin[i-1]=newcipher[i-1];

 newround[i-1]=key[10-i];

 newcipher[i]=modout[i-1];

 end

 10:begin

 shiftin=newcipher[i-1];

 subin[0]=shiftout;

 plaintext=key[10-i]^subout[0];

 if(plaintext==128'h3243f6a8885a308d313198a2e0370734)begin

 decr_ready=1;

 end

 end
 endcase

 end

end

 end //always

endmodule

 78

APPENDIX G

INVERSE SUBSTITUTION BYTE MODULE

//AES Inverse Sub_Byte Module(For Decryption)

module aesi_sub_byte(boxout,boxin,clk);

input clk;

input [127:0] boxin;

output [127:0] boxout;

wire [7:0] s[0:255];

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin,

aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout,pout

;

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = boxin;

assign

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}

=128'H52096AD53036A538BF40A39E81F3D7FB,

{s[16],s[17],s[18],s[19],s[20],s[21],s[22],s[23],s[24],s[25],s[26],s[27],s[28],

s[29],s[30],s[31]}=128'H7CE339829B2FFF87348E4344C4DEE9CB,

{s[32],s[33],s[34],s[35],s[36],s[37],s[38],s[39],s[40],s[41],s[42],s[43],s[44],

s[45],s[46],s[47]}=128'H547B9432A6C2233DEE4C950B42FAC34E,

{s[48],s[49],s[50],s[51],s[52],s[53],s[54],s[55],s[56],s[57],s[58],s[59],s[60],

s[61],s[62],s[63]}=128'H082EA16628D924B2765BA2496D8BD125,

{s[64],s[65],s[66],s[67],s[68],s[69],s[70],s[71],s[72],s[73],s[74],s[75],s[76],

s[77],s[78],s[79]}=128'H72F8F66486689816D4A45CCC5D65B692,

{s[80],s[81],s[82],s[83],s[84],s[85],s[86],s[87],s[88],s[89],s[90],s[91],s[92],

s[93],s[94],s[95]}=128'H6C704850FDEDB9DA5E154657A78D9D84,

 79

{s[96],s[97],s[98],s[99],s[100],s[101],s[102],s[103],s[104],s[105],s[106],s[107],

s[108],s[109],s[110],s[111]}=128'H90D8AB008CBCD30AF7E45805B8B3450

6,

{s[112],s[113],s[114],s[115],s[116],s[117],s[118],s[119],s[120],s[121],s[122],

s[123],s[124],s[125],s[126],s[127]}=128'HD02C1E8FCA3F0F02C1AFBD0301

138A6B,

{s[128],s[129],s[130],s[131],s[132],s[133],s[134],s[135],s[136],s[137],s[138],

s[139],s[140],s[141],s[142],s[143]}=128'H3A9111414F67DCEA97F2CFCEF0

B4E673,

{s[144],s[145],s[146],s[147],s[148],s[149],s[150],s[151],s[152],s[153],s[154],

s[155],s[156],s[157],s[158],s[159]}=128'H96AC7422E7AD3585E2F937E81C

75DF6E,

{s[160],s[161],s[162],s[163],s[164],s[165],s[166],s[167],s[168],s[169],s[170],

s[171],s[172],s[173],s[174],s[175]}=128'H47F11A711D29C5896FB7620EAA1

8BE1B,

{s[176],s[177],s[178],s[179],s[180],s[181],s[182],s[183],s[184],s[185],s[186],

s[187],s[188],s[189],s[190],s[191]}=128'HFC563E4BC6D279209ADBC0FE78

CD5AF4,

{s[192],s[193],s[194],s[195],s[196],s[197],s[198],s[199],s[200],s[201],s[202],

s[203],s[204],s[205],s[206],s[207]}=128'H1FDDA8338807C731B1121059278

0EC5F,

{s[208],s[209],s[210],s[211],s[212],s[213],s[214],s[215],s[216],s[217],s[218],

s[219],s[220],s[221],s[222],s[223]}=128'H60517FA919B54A0D2DE57A9F93

C99CEF,

 80

{s[224],s[225],s[226],s[227],s[228],s[229],s[230],s[231],s[232],s[233],s[234],

s[235],s[236],s[237],s[238],s[239]}=128'HA0E03B4DAE2AF5B0C8EBBB3C8

3539961,

{s[240],s[241],s[242],s[243],s[244],s[245],s[246],s[247],s[248],s[249],s[250],

s[251],s[252],s[253],s[254],s[255]}=128'H172B047EBA77D626E1691463552

10C7D;

always @(posedge clk) begin

aout<=s[ain];

bout<=s[bin];

cout<=s[cin];

dout<=s[din];

eout<=s[ein];

fout<=s[fin];

gout<=s[gin];

hout<=s[hin];

iout<=s[iin];

jout<=s[jin];

kout<=s[kin];

lout<=s[lin];

mout<=s[min];

nout<=s[nin];

oout<=s[oin];

pout<=s[pin];

end

assign

boxout={aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,

oout,pout};

endmodule

 81

APPENDIX H

INVERSE SHIFT ROW MODULE

//AES Inverse Shift_Row Module(For Decryption)

module aesi_shift(shiftout,shiftin,clk);

input clk;

input [127:0] shiftin;

output [127:0] shiftout;

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin;

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = shiftin;

assign shiftout={ain,nin,kin,hin,ein,bin,oin,lin,iin,fin,cin,pin,min,jin,gin,din};

endmodule

 82

APPENDIX I

INVERSE MIX COLUMN MODULE

//AES Inverse Mix_Column Module(For Decryption)

module aesi_mix_column(imixout,imixin,clk);

output [127:0] imixout;

input [127:0] imixin;

input clk;

reg [7:0] temp2,temp4,temp8,carry2,carry4,carry8;

reg [7:0] shift9[0:15],shiftB[0:15],shiftD[0:15],shiftE[0:15];

reg [7:0] mixin[0:15],shift2[0:15],shift4[0:15],shift8[0:15],result[0:15];

integer i;

reg [127:0] imixout;

always @(imixin or temp2 or temp4 or temp8 or carry2 or carry4 or carry8 or

shift2 or shift4 or shift8 or shift9 or shiftB or shiftD or mixin or shiftE) begin

temp2=0;temp4=0;temp8=0;carry2=0;carry4=0;carry8=0;

for(i=0;i<16;i=i+1) begin

mixin[i]=0;

shift2[i]=0;

shift4[i]=0;

shift8[i]=0;

shift9[i]=0;

shiftB[i]=0;

shiftD[i]=0;

shiftE[i]=0;

end //for

{mixin[0],mixin[1],mixin[2],mixin[3],mixin[4],mixin[5],mixin[6],mixin[7],mixin[8],

mixin[9],mixin[10],mixin[11],mixin[12],mixin[13],mixin[14],mixin[15]}=imixin;

 83

for(i=0;i<16;i=i+1)begin

{carry2,temp2}=mixin[i]<<1;

if(carry2)

shift2[i]=temp2^8'b00011011;

else

shift2[i]=temp2;

{carry4,temp4}=shift2[i]<<1;

if(carry4)

shift4[i]=temp4^8'b00011011;

else

shift4[i]=temp4;

{carry8,temp8}=shift4[i]<<1;

if(carry8)

shift8[i]=temp8^8'b00011011;

else

shift8[i]=temp8;

shift9[i]=shift8[i]^mixin[i];

shiftB[i]=shift9[i]^shift2[i];

shiftD[i]=shift9[i]^shift4[i];

shiftE[i]=shift8[i]^shift4[i]^shift2[i];

end

result[0]=shiftE[0]^shiftB[1]^shiftD[2]^shift9[3];

result[1]=shift9[0]^shiftE[1]^shiftB[2]^shiftD[3];

result[2]=shiftD[0]^shift9[1]^shiftE[2]^shiftB[3];

result[3]=shiftB[0]^shiftD[1]^shift9[2]^shiftE[3];

 84

result[4]=shiftE[4]^shiftB[5]^shiftD[6]^shift9[7];

result[5]=shift9[4]^shiftE[5]^shiftB[6]^shiftD[7];

result[6]=shiftD[4]^shift9[5]^shiftE[6]^shiftB[7];

result[7]=shiftB[4]^shiftD[5]^shift9[6]^shiftE[7];

result[8]=shiftE[8]^shiftB[9]^shiftD[10]^shift9[11];

result[9]=shift9[8]^shiftE[9]^shiftB[10]^shiftD[11];

result[10]=shiftD[8]^shift9[9]^shiftE[10]^shiftB[11];

result[11]=shiftB[8]^shiftD[9]^shift9[10]^shiftE[11];

result[12]=shiftE[12]^shiftB[13]^shiftD[14]^shift9[15];

result[13]=shift9[12]^shiftE[13]^shiftB[14]^shiftD[15];

result[14]=shiftD[12]^shift9[13]^shiftE[14]^shiftB[15];

result[15]=shiftB[12]^shiftD[13]^shift9[14]^shiftE[15];

 imixout={result[0],result[1],result[2],result[3],result[4],result[5],result[6],

result[7],result[8],result[9],result[10],result[11],result[12],result[13],result[14],

result[15]};

end //always

endmodule

 85

APPENDIX J

INVERSE ONE TO NINE MODULE

//AES Inverse onetonined Module(Standard round module for

decryption)

module onetonined(onedout,onedin,roundkey,clk);

output[127:0] onedout;

input [127:0] onedin,roundkey;

input clk;

wire [127:0] subout,shiftout,mixout;

reg [127:0]shiftin,subin,mixin,onedout;

aesi_sub_byte asb3(subout,subin,clk);

aesi_shift asr1(shiftout,shiftin,clk);

aesi_mix_column amc(mixout,mixin,clk);

always @(onedin or subout or shiftout or mixout) begin

 shiftin=onedin;

 subin=shiftout;

 mixin=subout^roundkey;

 onedout=mixout;

 end //always

endmodule

