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ABSTRACT 

 
 

Information security is now a burning issue in this era. A number of algorithms on 

cryptography have been proposed in the literatures. However Advanced Encryption 

Standard (AES) outperforms all other existing techniques for protecting data. AES 

can be implemented in software or in hardware. The hardware implementation offers 

high speed and better physical security than that of software implementation.  

 

This report presents the design of an AES processor using Verilog HDL and its 

implementation on FPGA hardware. The simulation results of the processor are also 

presented to show its proper functionality. The performance of the processor in 

terms of logic cell, latency and speed is measured and shown in this report. The 

proposed processor can be used as an Intellectual Property (IP) for developing 

various security applications.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction                           

With the growth of information and communication technology, the processing of 

data and transferring the same through different media involve security. The 

importance of cryptography in electronic data transactions has acquired an essential 

relevance during the last few years [1]. Rapid growth of computer systems and their 

interconnections via network have increased the risk of data being stolen or hacked 

by the third party which may worth a huge cost for the organizations. So to enforce 

security and privacy to information that is being processed and transferring to other 

systems through network gathers enormous importance. Keeping pace with maturity 

of the security technology the hackers, the electronic eavesdroppers, virus and the 

electronic frauds have been coming into the field with new sophisticated techniques 

to attack the security mechanism [2]. So to protect any unusual attack to the 

valuable information source and their transmission there must be strong 

cryptographic algorithm that is sufficient and reliable to ensure the security of the 

information [3].  

 

In cryptography, the AES also known as Rijndael is a symmetric block cipher 

adopted as an encryption standard by the US government which specifies an 

encryption algorithm capable of protecting sensitive information [4]. 

 

Now Information and communication technology plays an important role in the field 

of e-commerce where customers, organization and business people needs a high 

speed communication network and processing of information to achieve both the 

business needs and customer satisfaction. So in order to fulfill the requirements and 

ensure security to this field specially to produce data security and privacy of 

information it needs a high speed security algorithm [3]. Although AES is the latest 

encryption algorithm approved by the US government to be the strongest security 

algorithm but speed is concerned in the present environment [5,6]. 

 

On November, 2001 Advanced Encryption Standard (AES) was chosen by the 

National Institute of Standards and Technology(NIST) to be the replacement of Data 

Encryption Standards(DES), the most used and analyzed cryptographic algorithm 
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for the last 25 years. NIST explains “Assuming that one could build a machine that 

could recover a DES key in a second, then it would take that machine approximately 

149 trillion years to crack a 128 bit AES key. For this out performing features AES 

plays a crucial role in the field of IT security against all known attacks. So this 

algorithm is chosen to implement in this project [4,7,8,9]. 

 

There are two flavors in implementing AES algorithm, which are software and 

hardware. Software implementation has some benefits like easy to install and run in 

the system but has limited physical security. But on the other hand hardware 

implementation is more secured as they cannot be easily read and modified by 

outside attacker [6,10,11]. The most significant disadvantage of software based 

implementation is that the speed is slower than the hardware based implementation. 

 
There are also two types of hardware based implementation. FPGA (Field 

Programmable Gate Array) based implementation is chosen in this project as FPGA 

offers lower cost, flexibility and reasonable performance than ASIC (Application 

Specific Integrated Circuit) implementation. Previously researcher proposed 

implementation of AES processor on FPGA hardware dropping many security 

features since earlier version of the FPGA available in the market was low capacity. 

Now high capacity FPGA from different vendor is coming in the market. Recently 

design of an AES processor using VHDL and its implementation on Xillinx FPGA 

without sacrificing any security feature of the algorithm is reported [6]. Altera’s FPGA 

is another famous FPGA to the customers. It offers a lot of high capacity FPGAs 

under different families. Literatures [10],[12],[13],[18],[21-23] describe design and 

implementation of AES processor in the FPGA platform where maximum throughput 

achieved is 21.54 Gbps with latency 71 clock cycle. However reduced latency is 

essential for developing real time applications. So a research project can be 

conducted to implement the AES processor on this FPGA to achieve minimum 

latency with suitable speed performance. 
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1.2 Objectives: 

The objectives of this project are to:- 

• To design the AES processor using Verilog HDL, 

• To simulate the AES processor Quartus II simulator, 

• To implement the AES processor using Altera FPGA, 

• To test the design for ensuring the desired functionality of the AES 

processor, 

• To evaluate the performance of the processor. 
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CHAPTER 2 
 

BACKGROUND OF CRYPTOGRAPHY 
 

 
2.1 Introduction 

 Cryptography is a technique used to hide the meaning of a message and is derived 

from the Greek word kryptos. Kryptos is used to define anything that is hidden, 

obscured, veiled, secret or mysterious. Typically the sender and receiver agree 

upon a message scrambling protocol for encrypting and decrypting messages [1,3]. 

 

From the very earlier people had a need to keep their information private from any 

other unauthorized recipients. As such thousand of year ago Egyptian rulers, 

diplomats and especially defense personnel used different procedure to make their 

information hidden and private. Now in this modern age of information the growth of 

computer and communication network raise the risk of privacy of the information 

system to a certain extent. So for the demand of cryptosystem various crypto 

algorithms are developed time to time. Now not only the defense personnel but the 

entire people involves in the sharing information also needs to protect their 

information.  

 
2.2 Security issue of the information and different Cryptographic Algorithm 

The main objectives of cryptography are to protect the information or data that are 

playing a crucial role in everyday life and also in business. Necessary measures are 

to be taken depending on the nature of data. 

 

Types of data are as follows: 

 

• Public data: This type of data has no security restrictions and may be read 

by anyone. Such data should, however, be protected from unauthorised 

tempering or modifications. 

 

• Copyright data: This type of data is under copyright but not secret. The 

owner of the data is willing to provide it, but wishes to be paid for it. In order 

to maximize revenue, security must be tight. 
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• Confidential data: This type of data contains content that is secret, but the 

existence of the data is not secret. Such data include bank account 

statements and personal files. 

 

• Secret data: The existence of this type of data is very secret and must be 

kept confidential at all times. It is necessary to monitor and keep log of all 

attempt to access secret data. 

 
So requirements of type of security for these data or information are as follows:- 

 

� Integrity: Ensuring that information will not be accidentally or maliciously 

altered or destroyed during transmission. In order to electronic commerce to 

be succeed, data transmission must be tamper proof in the sense that no 

one can add, delete or modify any part of message during transit. Methods 

for ensuring information integrity include error detection codes for 

checksums, sequence numbers and encryption techniques. Normally 

Integrity is checked by some kind of hash function. 

 

� Confidentiality: It is important for transactions involving sensitive data such 

as credit card numbers. Message confidentiality is accomplished using 

encryption, which secure the communication link between computers. While 

Integrity prevents active attacks involving the modification of data when the 

transaction is in progress, confidentiality guards against the monitoring of 

data. 

 

� Authentication: It indicates the method to verify the identity of the source of 

data or sender. A data will be treated as valid when it is received from an 

authorized source. 

 

� Nonrepudiation: Protection against denial of service like customer’s denial 

of orders placed and against merchants’ denial of payments made where a 

trusted third party is required to solve the dispute. 

 

For the total Cryptographic process, there are two main processes which are 

encryption and decryption. The creator or owner of data/information encrypts  
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message and the authorized person/entity decrypts the message with the 

correct algorithm. 

 
The cryptographic systems are classified as: 

 

i)   Symmetric Cipher Model or Secret-Key Algorithms 

ii)  Asymmetric Cipher Model or Public Key Algorithms 

iii) Hash Function 

 

Symmetric Cipher Model or Secret-Key Algorithms: In this model plaintext is 

encrypted by an encryption algorithm using a specific encryption key producing 

the cipher text while plaintext is produced by the authorized entity using the 

same algorithm in reverse using the same key. As both the encryption and 

decryption process share the same key, it is called symmetric key cryptography 

where the key is kept secret between the both authorities who are authorized to 

access the information. Symmetric ciphering follows two ciphering techniques 

which are stream ciphers and block ciphers. Stream ciphers encrypt a small 

number of bits as a stream whereas block ciphers encrypt data as a block which 

have a large number of bits. Data Encryption Standard (DES), Triple Data 

Encryption Standard (3DES), and Advanced Encryption Standard (AES) are the 

example of symmetric cipher [1-3]. 

 
Asymmetric Cipher Model or Public Key Algorithms : 

In this model encryption and decryption are performed using the different keys 

which are public key and private key. 

 

Asymmetric encryption transforms plaintext into cipher text using one of two 

keys (public/private) and an encryption algorithm. Decryption is performed using 

the paired key and a decryption algorithm where a plaintext is recovered from 

cipher text. Asymmetric encryption can be used for confidentiality, authentication 

or both. The most widely used public key cryptosystem are RSA (Rivest-Shamir-

Adelman) and Elliptical curve algorithm. 
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The essential steps of Public-key Cryptography are as follows: 

1. Each user generates a pair of keys to be used for the encryption and 

decryption of messages. 

2. Each user place one of the two keys in a public register or other accessible 

file. This is the public key. The companion key is kept private. However each 

user maintains a collection of public keys obtained from others.  

3. If a user A wishes to send a confidential message to user B, user A encrypts 

the message using user B’s public key. 

4. When user B receives the message, he decrypts it using his private key. No 

other recipient can decrypt the message because only user B knows user 

B’s private key.  

Hash Function: 

Cryptographic hash function is a third type of cryptographic algorithm which 

does not use key. They take a message of any length as input, and output a 

short, fixed length hash value which can be used in a digital signature where 

digital signature is a cryptographic mechanism used to verify the origin and 

contents of message that the message is from the proper sender and had not 

been altered. 

2.3 Data Encryption Standard (DES) and AES 

Originally developed by IBM, The American NSA (National Security Agency) and the 

National Institute of Standards and Technology played a substantial role for 

developing DES. DES is the most well known and widely used symmetric algorithm 

in the world. The NIST has re-certified DES every five years and it was last certified 

in 1993.But NIST have indicated that they would not re-certify DES again; AES 

(Advanced Encryption Standard) has replaced DES [4,7]. 

DES has a 64-bit block size and uses a 56-bit key during encryption. DES is a 16-

round feistel cipher and was originally designed for implementation in hardware. As 

it is a single-key cryptosystem, when used for communication both sender and 

receiver must know the same secret key which can be used to encrypt or decrypt 

the message. DES can also be used by a single-user, for example to store files on a 

hard disk securely. 
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In Jan 1997 US NIST called for a new proposal for algorithm to replaces DES. 

Initially five competitors were selected and at last NIST selected Rijndael as the 

proposed AES algorithm. Rijndael was proposed by Dr. Vincent Rijmen and Dr. 

Joan Daemen from Belgium to replace DES which is a symmetric key algorithm and 

use block cipher. Data block size is 128 bits and key size is 128/192/256 bits. In this 

research 128 bit key is chosen to implement because it will faster the processing 

than 192 or 256 bit key. 

In the development of AES, following issues are accommodated properly: 

• Security 

– Effort required for cryptanalysis 

– Mathematical Basis of the algorithm 

– Security Issues raised by public. 

• Cost 

– Licensing requirements 

– Computational efficiency 

– Memory requirements 

• Algorithm & Implementation Characteristics 

– Flexibility 

– Hardware & Software suitability 

– Simplicity 

2.4 Types Of Cryptanalytic Attacks and AES 

A standard cryptanalytic attack is to determine the key which maps a known 

plaintext to a known cipher text [9,14]. This plaintext can be known because it is 

standard or because it is guessed. If the plaintext segment is guessed it is unlikely 

that its exact position is known however a message is not generally short enough for 

a cryptanalyst to try all possible positions in parallel. In some systems a known 

cipher text-plaintext pair will compromise the entire system however a strong 

encryption algorithm will be unbreakable under this type of attack. 

A brute force attack requires a large amount of computing power and a large 

amount of time to run. It consists of trying all possibilities in a logical manner until 

the correct one is found. For the majority of encryption algorithms a brute force 

attack is impractical due to the large number of possibilities. 
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Another type of brute force attack is a dictionary attack. This essentially involves 

running through a dictionary of words in the hope that the key (or the plaintext) is 

one of them. This type of attack is often used to determine passwords since people 

usually use easy to remember words. 

In a cipher text only attack the cryptanalyst has only the encoded message from 

which to determine the plaintext, with no knowledge whatsoever of the actual 

message. A cipher text only attack is presumed to be possible. In fact, an encryption 

techniques resistance to a cipher text only attack is considered the basis for its 

cryptographic security. 

In a chosen plaintext attack the cryptanalyst has the capability to find the cipher text 

corresponding to an arbitrary plaintext message of his or her own choice. The 

likelihood of this type of attack being possible is not much. Codes which can survive 

this attack are considered to be very secure. 

In a chosen cipher text attack the cryptanalyst can choose an arbitrary cipher text 

and find the corresponding decrypted plaintext. This attack can be used in public 

key systems, where it may reveal the private key. 

In an adaptive chosen plaintext attack the cryptanalyst can determine the cipher text 

of chosen plaintexts in an iterative process based on previous results. This is the 

general name for a method of attacking product ciphers called "differential 

cryptanalysis". 

Different cryptographic attacks and cryptanalysis in terms of AES are as follows: 

• Differential Cryptanalysis – This technique study of how differences in 

input (Plain text) affect differences in output (Cipher text). 

– It is greatly reduced in AES due to high number of rounds. 

• Linear Cryptanalysis – This is the study of correlations between input and 

output. 

– Substitution Byte & Mix Columns operation are designed to frustrate 

Linear Analysis in AES. 
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• XSL Cryptanalysis (eXtended Sparse Linearization)– A new attack 

method developed in 2002, Analyze  ciphers internal workings and 

generates a system of nonlinear simultaneous equations to break the 

cipher.. 

– Suppose for AES analyze to 8000 equations and 1600 unknowns.   

– It is arguable if this can be solved any faster than a brute force attack. 

• Side Channel Attacks – In cryptography, a side channel attack is any attack 

based on information gained from the physical implementation of a 

cryptosystem, rather For example, timing information, power 

consumption[15], electromagnetic leaks or even sound can provide an extra 

source of information which can be exploited to break the system. Many 

side-channel attacks require considerable technical knowledge of the internal 

operation of the system on which the cryptography is implemented. 

2.5 Summary  

Advanced Encryption Standard (AES), a federal information processing standard 

(FIPS) is an approved standard which is proved to be the strongest algorithm in 

cryptography. So proper implementation of the algorithm is an issue in the field 

of information technology.  
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CHAPTER 3 

AES ALGORITHM 

3.1 Introduction  

The Advanced Encryption Standard (AES) is a FIPS-approved cryptographic 

algorithm that can be used to protect electronic data. It is a symmetric block cipher 

that can encrypt (encipher) and decrypt (decipher) information. Encryption converts 

data to an unintelligible form called cipher text; decrypting the cipher text converts 

the data back into its original form, called plaintext. 

 

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits 

to encrypt and decrypt data in blocks of 128 bits [4]. 

 

3.2 Inputs and Outputs 

The input and output for the AES algorithm each consists of sequences of 128 bits 

(digits with values of 0 or 1). These sequences will sometimes be referred to as 

blocks and the number of bits they contain will be referred to as their length. The 

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other input, 

output and Cipher Key lengths are not permitted by this standard. 

 

The bits within such sequences will be numbered starting at zero and ending at one 

less than the sequence length (block length or key length). The number                     

i attached to a bit is known as its index and will be in one of the ranges 0 ≤ i < 128,   

0 ≤ i < 192 or 0 ≤ i < 256 depending on the block length and key length. 

 
3.2.1 Bytes 

The basic unit for processing in the AES algorithm is a byte, a sequence of eight bits 

treated as a single entity. The input, output and Cipher Key bit sequences are 

processed as arrays of bytes that are formed by dividing these sequences into 

groups of eight contiguous bits to form arrays of bytes. For an input, output or 

Cipher Key denoted by a, the bytes in the resulting array will be referenced using 

one of the two forms, an or a[n], where n will be in one of the following ranges: 
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Key length = 128 bits, 0≤ n < 16;                 Block length = 128 bits, 0  ≤ n <16; 

Key length = 192 bits, 0≤ n < 24; 

Key length = 256 bits, 0 ≤  n < 32. 

All byte values in the AES algorithm will be presented as the concatenation of its 

individual bit values (0 or 1) between braces in the order {b7, b6, b5, b4, b3, b2, b1, b0}. 

These bytes are interpreted as finite field elements using a polynomial 

representation: 

b7x
7+ b6x

6+b5x
5 +b4x

4+b3x
3+b2x

2+b1x+b0 = ∑7
i=0bix

i 

 

For example, {01100011} identifies the specific finite field element  x6 + x5 + x +1. 

 

It is also convenient to denote byte values using hexadecimal notation with each of 

two groups of four bits being denoted by a single character. 

 

Hence the element {01100011} can be represented as {63}, where the character 

denoting the four-bit group containing the higher numbered bits is again to the left. 

Some finite field operations involve one additional bit (b8) to the left of an 8-bit byte. 

Where this extra bit is present, it will appear as ‘{01}’ immediately preceding the 8-bit 

byte; for example, a 9-bit sequence will be presented as {01}{1b}. 

 
3.2.2 Arrays of Bytes 
 
Arrays of bytes will be represented in the following form: 
 

a0a1a2a3……..a15 

 
The bytes and the bit ordering within bytes are derived from the 128-bit input 
sequence: 

input0 input1 input2 … input126 input127 
are as follows: 
 

a0 = {input0, input1, …, input7}; 
 

a1 = {input8, input9, …, input15}; 
. 
. 
. 

a15 = {input120, input121, …, input127}. 
 

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit keys), 
so that, in general, 
    

an = {input8n, input8n+1, …, input8n+7} 
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3.2.3 The State 

Internally the AES algorithm’s operations are performed on a two dimensional array 

of bytes called State, and each byte consists of 8 bits. The State consists of 4 rows 

of bytes and each row has 4 bytes. Each byte is denoted by Si, j (0 ≤i < 4, 0 ≤j < 4). 

The four bytes in each column of the State array form a 32-bit word, with the row 

number as the index for the four bytes in each word. At the beginning of encryption 

or decryption, the array of input bytes is mapped to the State array as illustrated in 

Figure 3.1, assuming a 128-bit block can be expressed as 16 bytes: in0, in1, in2 … 

in15. The encryption and decryption are performed on the state, at the end of which 

the final value is mapped to the output bytes array out0, out1, out2 … out15. 

Input Bytes State Array Output Bytes 

 

 

 

 

 

 

 

 

 

 
 

Hence, the relation of the input array, state array and output array follows the 

following scheme:   S[i, j] = in[i + 4j]   and out[i + 4j] = s[i, j] for 0 ≤ i < 4 and  

0 ≤ j < 4, 

 

3.2.4 The State as an Array of Columns 

 

The four bytes in each column of the State array form 32-bit words, where the row 

number i provides an index for the four bytes within each word. The state can hence 

be interpreted as a one-dimensional array of 32 bit words (columns), w0...w3, where 

the column number c provides an index into this array. Hence, for the example in 

Figure. 3.1 , the State can be considered as an array of four words, as follows: 

 

w0 = s0,0 s1,0 s2,0 s3,0  w2 = s0,2 s1,2 s2,2 s3,2 

 

w1 = s0,1 s1,1 s2,1 s3,1 w3 = s0,3 s1,3 s2,3 s3,3 . 

 

Figure 3.1: Mapping of input bytes, state array and output bytes [4] 

in0 In4 In8 In12 

in1 in5 in9 in13 

in2 in6 in10 in14 

in3 in7 in11 in15 

 

out0 out4 out8 out12 

out1 out5 out9 out13 

out2 out6 out10 out14 

out3 out7 out11 out15 

 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 
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3.3 Mathematical Preliminaries 

 

All bytes in the AES algorithm are interpreted as finite field elements. Finite field 

elements can be added and multiplied, but these operations are different from those 

used for numbers [1]. 

3.3.1 Addition 

 

The addition of two elements in a finite field is achieved by “adding” the coefficients 

for the corresponding powers in the polynomials for the two elements. The addition 

is performed with  the XOR operation (denoted by ⊕) - i.e., modulo 2 - so that      

1⊕1 = 0, 1⊕0 = 1, and 0⊕0=0.Consequently, subtraction of polynomials is identical 

to addition of polynomials. 

 

Alternatively, addition of finite field elements can be described as the modulo 2 

addition of corresponding bits in the byte. For two bytes {a7a6a5a4a3a2a1a0} and 

{b7b6b5b4b3b2b1b0}, the sum is {c7c6c5c4c3c2c1c0}, where each ci = ai ⊕ bi (i.e.,            

c7 = a7 ⊕ b7, c6 = a6 ⊕b6, ...c0 = a0 ⊕b0). 

For example, the following expressions are equivalent to one another: 

(x6 + x4 + x2 + x +1) + (x7 + x +1) = x7 + x6 + x4 + x2 (polynomial notation); 

{01010111} ⊕{10000011} = {11010100} (binary notation); 

{57} ⊕ {83} = {d4} (hexadecimal notation). 

 

3.3.2 Multiplication 

 

In the polynomial representation, multiplication in GF(28) (denoted by ·) corresponds 

with the multiplication of polynomials modulo an irreducible polynomial of degree 8. 

A polynomial is irreducible if its only divisors are one and itself. For the AES 

algorithm, this irreducible polynomial is 

 

m(x) = x8 + x 4 + x3 + x +1, 

 

For example, {57} · {83} = {c1}, because 
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(x 6 + x 4 + x 2 + x +1) (x 7 + x +1) = x13 + x11 + x9 + x8 + x7 + 

                                                        x7 + x5 + x3 + x 2 + x + 

                                                        x6 + x 4 + x 2 + x +1 

 

                                                       = x13 + x11 + x9 + x8 + x6 + x5 + x 4 + x3 +1 

and 

x13 + x11 + x9 + x8 + x6 + x5 + x 4 + x3 +1 modulo ( x8 + x 4 + x3 + x +1) 

= x7 + x 6 +1. 

 

The modular reduction by m(x) ensures that the result will be a binary polynomial of 

degree less than 8, and thus can be represented by a byte. Unlike addition, there is 

no simple operation at the byte level that corresponds to this multiplication. 

 

 

3.4 AES Operational Structure 
 
Figure 3.2 describes the overall operational structure of AES algorithm. In the 

diagram both Encryption and decryption process have been shown parallel where 

decryption is just the reverse of encryption. In the encryption process 128 bit data 

block is taken in to the input state. Then processing on the data is performed 

through ten round of complex mathematical and algebraically operation such as 

substitution Bytes, Shift rows, Mix Columns and Add round key operation. Then 

cipher text is produced and copied to the output state [4]. 

 

In the Encryption process at first it begins with add round key operation where 

plaintext is XORED with the symmetric key which is supplied initially. Then the 

encryption process goes through first to ninth round where for each round four 

operation such as Substitution byte, Shift rows, Mix Column and Add round Key are 

performed sequentially. In the last round or tenth round only Substitution Bytes, Shift 

rows and Addround key operation are done producing the cipher text which is 

copied to the output array. As all the basic operations such as substitution Bytes, 

Shift rows, Mix Columns and Add round key are in one to ninth round, so these 

rounds are treated as standard rounds. 
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Figure 3.2 : AES Encryption and Decryption [1] 
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As AES is a symmetric block cipher which shares same key for both encryption and 

decryption. A key of 128 bit is given in the input state of the algorithm. At first in the 

encryption process the supplied symmetric key is used and ten cipher key is 

produced from this key by key expansion operation which are to be used by next ten 

rounds. Each key having 128 bit forms a key matrix for each encryption/decryption 

round where each column of the matrix is called a word of 32 bit/4 byte. Hence input 

symmetric key have four word and ten expanded keys each having 4 word forms 44  

words (w0 to w43) shown in Figure 3.3. 

 
   
 
 
   

 

 

 

 

 

 
3.5 Encryption Process of AES 

 Four different stages are used, one is permutation and three are substitution. The 

stages together provide confusion, diffusion and nonlinearity. The stages are as 

follows: 

• Substitute bytes: Uses an S-box(16 x 16 byte look up table) to 

perform a byte-by-byte substitution of the block. For encryption and 

decryption, this function is indicated by SubBytes() and    

InvSubBytes () respectively.  

 

• Shift rows: A simple permutation. For encryption and decryption, this 

function is indicated by ShiftRows () and InvShiftRows () respectively. 

 
• Mix Columns: A substitution that makes use of arithmetic over 

GF(28), with the irreducible polynomial m(x) = x8 + x4 + x3 + x +1. For 

encryption and decryption, this function is indicated by MixColumns () 

and InvMixColumns () respectively. 

 
• Add round key: A simple bitwise XOR operation of the current block 

with a portion of the expanded key. For both encryption and 

decryption this function is indicated by AddRoundKey (). 

k0 K4 K8 K12 

k1 k5 k9 k13 

k2 k6 k10 k14 

k3 k7 k11 k15 

 

w0 w1 w2 W3 - - - - - - - - - w42 w43 

 

Figure 3.3 : Key and Expanded Key [1 ] 
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The Pseudo code for Encription is as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The individual transformation of SubBytes(), ShiftRows(), MixColumns(), and 

AddRoundKey() process are described as follows: 

3.5.1 SubBytes()Transformation 

The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box). This S-

box (Table. 3.1), which is invertible, is constructed by composing two 

transformations: 

 

1. Take the multiplicative inverse of each byte in the finite field GF(28), like the  

    element {00} is  mapped to itself. 

 

2. Apply the following affine transformation (over GF(2) ): 

 

   b’i = bi  ⊕  b(i+4)mod8 ⊕  b(i+5)mod8 ⊕b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ Ci 

 

Encryption(byte in[16], byte out[16], word w[44]) 
begin 

byte state[16] 
 
state = in 
 
AddRoundKey(state, w[0, 3])      
for round = 1 step 1 to 9 

SubBytes(state)      
ShiftRows(state)      
MixColumns(state)      
AddRoundKey(state, w[round*4, (round+1)*3])  

end for 
 
SubBytes(state) 
ShiftRows(state) 
AddRoundKey(state, w[40, 43]) 
 
out = state 

end 

Figure 3.4 : Pseudo code for AES encryption [1] 
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for 0 ≤ i < 8 , where bi is the ith bit of the byte, and ci is the ith bit of a byte c 

with the value {63} or {01100011}. Here and elsewhere, a prime on a variable 

(e.g., b’i) indicates that the variable is to be updated with the value on the right. 

In matrix form, the affine transformation element of the S-box can be expressed as: 

 

 

 

 

Figure 3.5 : Transformation of S-box matrix [1] 

 

The S-box used in the SubBytes() transformation is presented in hexadecimal form 

in Table. 3.1. For example, if s1,1 = {53}, then the substitution value would be 

determined by the intersection of the row with index ‘5’ and the column with index ‘3’ 

in Fig. below. This would result in s`1,1 having a value of {ED}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  0  0  0  1  1  1  1 

1  1  0  0  0  1  1  1 

1  1  1  0  0  0  1  1 

1  1  1  1  0  0  0  1 

1  1  1  1  1  0  0  0 

0  1  1  1  1  1  0  0 

0  0  1  1  1  1  1  0 

0  0  0  1  1  1  1  1 

1 

1 

0 

0 

0 

1 

1 

0 

b0 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

= + 

b'0 

b'1 

b'2 

b'3 

b'4 

b'5 

b'6 

b'7 

Table 3.1: S-box [1] 
 

  y 

  0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

x 

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 
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3.5.2 ShiftRows () Transformation 

In this transformation, the bytes in the first row of the State do not change. The 

second, third, and fourth rows shift cyclically to the left one byte, two bytes, and 

three bytes, respectively, as illustrated in Figure 3.6. 

 

 

 

 

 

 

 

 

 
 

 

3.5.3 MixColumns() Transformation 

 
The MixColumns transformation operates on each column individually. Each byte of 

a column is mapped into a new value that is a function of all four bytes in the 

column. The transformation can be defined by the following matrix multiplication on 

state  where the output state S’ of the transformation is the current state S multiplied 

by a constant matrix  C: 

                   

 

 

 

 

              
                 Matrix C               Matrix   S                        Matrix S’ 
        Figure 3.7: Mix Column Transformation 

 
As a result the 4 byte of the first column are replaced by following calculation: 
 

s’0,3= ({02}. s0,3) ⊕  ({03}. s1,3) ⊕  s2,3 ⊕  s3,3   
 

s’1,3= s0,3 ⊕  ({02}. s1,3) ⊕  ({03}. s2,3) ⊕  s3,3   
 

s’2,3= s0,3 ⊕  s1,3 ⊕  ({02}. s2,3) ⊕  ({03}. s3,3 ) 
 

s’3,3= ({03}. s0,3) ⊕  s1,3 ⊕  s2,3 ⊕  ({02}. s3,3 ) 
 
others column of  the output state are calculated by the same procedure. 

S 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 

S' 

S0,0 S0,1 S0,2 S0,3 

S1,1 S1,2 S1,3 S1,0 

S2,2 S2,3 S2,0 S2,1 

S3,3 S3,0 S3,1 S3,2 

 

 

    

 

    

 

    

 

Figure 3.6: Shift Row Transformation 

02 03 01 01 

01 02 03 01 

01 01 02 03 

03 01 01 02 

 

S'0,0 S'0,1 S'0,2 S'0,3 

S1,0 S'1,1 S'1,2 S'1,3 

S'2,0 S'2,1 S'2,2 S'2,3 

S3,0 S'3,1 S'3,2 S'3,3 

 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 

= 



 33 

 
The following is an example of Mixcolumn operation 

 

 

87 

 

F2 

 

4D 

 

97 
47 40 A3 4C 

6E 

 

4C 

 

90 

 

EC 

 
37 D4 70 9F 

46 

 

E7 

 

4A 

 

C3 

 
94 E4 3A 42 

A6 8C D8 95 

 

 

 

 

ED A5 A6 BC 

                                 
  Figure 3.8 : Example of  Mixcolumn operation 

                                  
In mix column operation multiplication operation are performed by xtime() operation. 

  

Each byte of the input matrix is expressed as  binary polynomial  as : 

                      b7x
7+ b6x

6+b5x
5 +b4x

4+b3x
3+b2x

2+b1x+b0  

When multiply by 02 or in polynomial  00000010 which would be expressed as x 

then the result would be with polynomial expression is   

                              b7x
8 + b6x

7+ b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x  

 

The result x · b(x) is obtained by reducing the above result modulo                     

m(x)= x8 + x 4 + x3 + x +1 to ensure that the result will be a binary polynomial of 

degree less than 8, 

 
 If b7 = 0, the result is already in reduced form. If b7 = 1, the reduction is 

accomplished by subtracting (i.e. XORing) the polynomial m(x). It follows that 

multiplication by x (i.e.{00000010} or {02}) can be implemented at the byte level as a 

left shift and a subsequent conditional bitwise XOR with {1b}. This operation on 

bytes is denoted by xtime(). Multiplication by higher powers of x can be implemented 

by repeated application of xtime(). By adding intermediate results, multiplication by 

any constant can be implemented. 

 

For example s0,4 = 57 ,  

Then, {57} · {02} = xtime({57}) = {ae} 

 

In binary expression of 57= 01010111 and polynomial expression  

is  x6+x4+x2+x+1 

Shifting each bit left or xtime operation results=10101110 =ae 
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Which is equal to multiplication of 57 by 02 or multiplication of x with the polynomials 

of 57 which is  (x6+x4+x2+x+1) . x 

Again   {57} . {03}={57}⊕({02}.{57}) 

 
3.5.4 AddRoundKey () Transformation 

In this transformation, a RoundKey is added to the state by bitwise Exclusive-OR 

(XOR) operation. Each RoundKey consists of 4 words (128 bits)  

 

 

 

 

 

   

 

Initially this round key is supplied with the 128 bit data block and in the subsequent 

round the new key of 4 word or 128 bit size is generated from the previous key by 

the key expansion operation which is XORED with the state in the AddRoundKey 

operation of the round. 

 

 3.6 Key Expansion 

Key expansion operation is one of the important operation of this algorithm which 

takes 4 word or 128 bit as input key. This key used in the algorithm for first 

AddRoundkey operation and generates rest of the 10 key which would be used for 

rest of the 10 rounds for AddRoundKey operation of each round. So there is 44 

words or 11 round key in the AES operation. The output of Key Expansion is an 

array of 4-byte words denoted by wi, where 0 ≤ i < 44. Each RoundKey is a 

concatenation of 4 words form the output of Key Expansion, RoundKey(i) = (w4i, 

w4i+1, w4i+2, w4i+3). The Key Expansion scheme can be expressed by the pseudo 

code as in Figure 3.10 . 

 
 
 
 
 
 

S 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 

S' 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 
Figure 3.9: Add Round Key Transformation 

RoundKey 

wi   wi+1 wi+2 wi+3 

 

⊕⊕⊕⊕ = 
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In the above pseudo code the key expansion operation is shown. As it is described 

that each key has a length of 128 bit block of 4 x 4 array. Each column of 32 bit key 

is called word. So for 10 round there is 40 words. In the key generation process key 

is generated in words and when 4 words is generated that form a key. At first the 

last word of the previous key is taken as input which is kept in temp variable. First 

key index i is checked. if  i mod 4 = 0 then a complex operation is performed other 

wise the the current word is computed by XORING the temp with the (i-4)th  word. 

Complex Operation: In the complex operation of key generation the first operation 

is rot word(). In the rot word operation temp is shifted 1 byte left. Then sub word 

operation is done on the output of rot word operation which is substitution each byte 

from substitution byte operation described earlier in the Subbyte transformation. 

Then the output is XORED with the Round constant Rcon(j) which has a constant 

value for each round of AES. The values of round constant is given in Table 3.2.  

Table 3.2: Round Constants 

J 1 2 3 4 5 6 7 8 9 10 

RC[j] 01 02 04 08 10 20 40 80 1B 36 

              
Rcon(j) is the round constant word array and is defined as Rcon(j) = [RC(j), {00}, 

{00}, {00}].Means for first round the Rcon(j) will be 01000000.After Xoring the value  

 

KeyExpansion (byte key[16], word w[44]) 

begin 
word temp 
 
i = 0 
 
while (i < 4) 

w[i] = (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]) 
i = i+1 

end while 
 
i = 4 
 
while (i < 44) 

temp = w[i-1] 
if (i mod 4 = 0) 

temp = SubWord(RotWord(temp)) xor Rcon[i/4] 
end if 
w[i] = w[i-4] xor temp 
i = i + 1 

end while 
end 

Figure 3.10: Pseudo Code for Key Expansion 
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of Round constant the output  is XORED with the (i-4)th  word  or word(i-4).Then the 

output word is the desired word. 

 

By this way complexity is added in the key generation process for each of 4th word 

of the key to make the algorithm strong. 

 

3.7 Decryption Process of AES 
 
Decryption process of the AES algorithm is the same as the encryption process but 

in the reverse order or in opposite direction. Decryption process has also 10 rounds 

and each round has the operation of Inv SubByte(),  InvShiftrows(),  InvMix columns 

and InvAdd round key operation which are just reverse to the SubByte(), 

Shiftrows(),Mix columns and add roundkey operation of the encryption process. 

 

The four Transformatiom in the Decryption process are as follows: 
 
InvSubByte() Transformation 
 
InvShiftrows() Transformation 
 
InvAddround key Transformation 
 

InvMixColumn Transformaion 
 

3.7.1 InvSubByte Transformation 

This transformation makes use of the inverse of the SubByte transformation. This is 

obtained by applying the inverse of the affine transformation  followed by taking the 

multiplicative inverse in GF(28).: 

The inverse transformation which is applied before taking the multiplicative inverse 

in GF(28). Which produce the output element of Inverse S-Box is : 

   b’i = bi  ⊕  b(i+2)mod8 ⊕  b(i+5)mod8 ⊕b(i+7)mod8 ⊕ di 

This transformation is depicted in matrix form as follows 

 
 
 
 
 
 
 
 
 

Figure 3.11 : Transformation of Inverse S-box matrix 

 

0  0  1  0  0  1  0  1 

1  0  0  1  0  0  1  0 

0  1  0  0  1  0  0  1 

1  0  1  0  0  1  0  0 

0  1  0  1  0  0  1  0 

0  0  1  0  1  0  0  1 

1  0  0  1  0  1  0  0 

0  1  0  0  1  0  1  0 

1 

0 

1 

0 

0 

0 

0 

0 

b0 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

= + 

b'0 

b'1 

b'2 

b'3 

b'4 

b'5 

b'6 

b'7 



 37 

The inverse S-Box Table 3.3 is as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.7.2 InvShiftRows() Transformation 

 Inv Shift rows operation perform the circular shift operation just reverse of the shift 

row operation which was done for encryption process. This performs the circular 

shift for each of the last three rows with one byte circular right shift for the second 

row, two byte circular right shift for the third row and three byte circular right for the 

fourth row. 

 

3.7.3 InvAddround key Transformation 

 Inv Add roundKey operation is same as AddRoundKey Operation where key are 

used in reverse order like the last generated key used first and then then the other 

key are used in this manner. But the key generation process is same as encryption 

round.  

 

3.7.4 InvMixColumns() Transformation  

It is the inverse of the MixColumns() transformation. InvMixColumns() operates on 

the State column-by-column, treating each column as a four term polynomial. The 

InvMixColumns() transformation operates on each column individually. Each byte of 

a column is mapped into a new value that is a function of all four bytes in the 

column. 

Table 3.3: Inverse S-box 
 
 

  Y 

  0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB 

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB 

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E 

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25 

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92 

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84 

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06 

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B 

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73 

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E 

A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B 

B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4 

C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F 

D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF 

E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61 

x 

F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D 
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Figure 3.12 : Transformation of inverse Mix Column matrix 

 

The Pseudo code for Decryption is as below 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

              

 

 

 

 

 

 

 

 

 

 

 

 

 

0E 0B 0D 09 

09 0E 0B 0D 

0D 09 0E      0B 

0B 0D 09 0E 

 

S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 

 

S'0,0 S'0,1 S'0,2 S'0,3 

S1,0 S'1,1 S'1,2 S'1,3 

S'2,0 S'2,1 S'2,2 S'2,3 

S3,0 S'3,1 S'3,2 S'3,3 

 

= 

Decryption(byte in[16], byte out[16], word w[44]) 
begin 

byte state[16] 
 
state = in 
 
AddRoundKey(state, w[40,43])      
 
for round = 1 step 9 to 1 
             InvShiftRows(state) 

InvSubBytes(state)  
AddRoundKey(state, w[round*4, (round+1)*4-1])    
InvMixColumns(state)      
  

end for 
 
InvShiftRows(state) 
InvSubBytes(state) 
AddRoundKey(state, w[0, 4]) 
 
out = state 

end 

Figure 3.13: Pseudo code for the Decryption 



 39 

CHAPTER 4 

FPGA IMPLIMENTATION 
 
4.1 Introduction 
 
In the previous chapter the brief description of the AES algorithm is provided. In this 

chapter, design procedure of the proposed AES processor using Verilog HDL and 

FPGA Implementation details will be described. 

 

4.2 Verilog HDL (Hardware Definition Language) 

In the earlier, the conventional approach such as hand-draw and schematic based 

design technique was the only choice to the designer to design a digital system. But 

now millions of transistors are being integrated on a single chip integrated circuit 

(IC) where the conventional design technique is insufficient to be used. It points 

towards having a new approach for designing today’s complex digital system and 

that is Hardware Description Language (HDL). 

 

HDL based design technique has been emerged as the most efficient solution. It 

offers the following advantages over conventional based design approaches. 

• It is technology independent. If a particular IC fabrication process becomes 

outdated, it is possible to synthesize a new level design by only changing the 

technology file but using the same HDL code. 

• HDL shortens the design cycle of a chip by efficiently describing and 

simulating the behavior of the chip. A complex circuit can be designed using 

a few lines of HDL code. 

• It lowers the cost of design of an IC. 

•  It improves design quality of a chip. Area and timing of the chip can be 

optimized and analyzed in different stages of design. 

 

There are different types of HDL available in the market. Some of these are vendor 

dependent where the HDL code is only useable under the software provided by the 

specific vendor. For example, AHDL (Altera hardware description language) from 

Altera company, Lola (Logic Language) from European Silicon Structure (ES2) 

company etc. However Verilog and VHDL (very high speed IC hardware description 

language) are the two vendor independent HDL which are now widely accepted 

industry standard Electronic Design Automation (EDA) tool for designing digital 
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system. Verilog HDL is introduced by Cadence Data Systems, Inc. and later its 

control is transferred to a consortium of companies and universities known as open 

Verilog international (OVI) whereas VHDL is used primarily by defense contractors. 

Currently Verilog is widely used by IC designers. Verilog HDL is IEEE standard and 

easier than VHDL. It is less error prone. It has many pre-defined features very 

specific to IC design (Lee 1999).For this reason Verilog is chosen to design and 

implement AES processor. 

 

4.3 Implementation using FPGA 

Field programmable gate array (FPGA) is a semiconductor device containing 

programmable logic components and programmable interconnects. It contains up to 

thousands of gates. The programmable logic components can be programmed to 

duplicate the functionality of basic logic gates such as AND, OR, XOR, NOT or more 

complex combinational functions such as decoders or simple math functions. In 

most FPGAs, these programmable logic components (or logic blocks, in FPGA 

parlance) also include memory elements, which may be simple flip-flops or more 

complete blocks of memories. These logic blocks and interconnects can be 

programmed after the manufacturing process by the customer/designer (hence the 

term "field programmable", i.e. programmable in the field) so that the FPGA can 

perform whatever logical function is needed. 

There are various vendor manufacturers for different types of FPGA chip such as 

Altera, Xilinx, Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, 

Atmel, Achronix Semiconductor etc. Among them Altera and Xilinx are the most 

famous FPGA companies since both of the companies have lot of varieties of FPGA 

device from small number of gate counts to higher number of gate counts. However 

Altera devices offer the general benefits of PLDs as innovative architectures, 

advanced process technologies, state-of-the-art development tools, and a wide 

selection of mega function. The common advantages of Altera devices include: High 

performance, High-density logic integration, Cost-effectiveness, Short development 

cycles with the Quartus II software, Mega Core functions, Benefits of in-system 

programming. In this work the FPGA device used is Altera provided EP2C35F672C6 

from Cyclone II family. 
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4.4 FPGA Cyclone II Device  

Altera’s low-cost CycloneTM II FPGA family is based on a 1.2-V, 90-nm SRAM 

process with densities over 68K logic elements (LEs) and up to 1.1 Mbits of 

embedded RAM. With features like embedded 18 × 18 multipliers to support high-

performance DSP applications, phase-locked loops (PLLs) for system clock 

management, and high-speed external memory interface support for SRAM and 

DRAM devices, Cyclone II devices are a cost-effective solution for high-volume 

applications. Cyclone II devices support differential and single-ended I/O standards, 

including LVDS at data rates up to 805 megabits per second (Mbps) for the receiver 

and 640 Mbps for the transmitter, and 64-bit, 66-MHz PCI and PCI-X for interfacing 

with processors and ASSP and ASIC devices. Altera also offers low-cost serial 

configuration devices to configure Cyclone II devices. The Cyclone II FPGA family 

offers commercial grade, industrial grade, and lead-free devices. 

The Cyclone II device family offers the following features: 

� High-density architecture with 4,608 to 68,416 LEs 

� M4K embedded memory blocks 

� Embedded multipliers 

� Advanced I/O support 

� Flexible clock management circuitry 

�  Device configuration 

� Intellectual property 

4.5 Development Tool Quartus II 

The AES processor is designed using Quartus II EDA tool (provided by Altera 

Company) which provides Graphical User Interface (GUI) to download the  digital 

design AES into the Cyclone II FPGA. 

Quartus II software provides a simple, automated mechanism to allow designers to 

obtain the best performance for their designs. This software provides the way to 

design the solution through Verilog HDL and complile the design to ensure the 

workability and efficiency logically. The tool Programmer allows using files 

generated by the Compiler to program and/or configuring all devices supported by 

the Quartus II software. Programmer and supported programming hardware tool is 
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used to easily program or configure a working device in minutes. After a successful 

compilation, download configuration data into a device through the, ByteBlaster or 

USB-Blaster communications cables, or through the Altera Programming Unit 

(APU).The program or configure devices can be in Passive Serial mode, Active 

Serial Programming mode, JTAG mode, or In-Socket Programming mode.  

Program an Altera Device: When the design is ready to program or configure a 

device, it needs to open the Programmer and create a Chain Description File (.cdf) 

that stores device name, device order, programming and hardware setup 

information. CDFs can be used to program or configure one or more devices in a 

JTAG chain or a Passive Serial chain. 

Compiling mode: The Quartus II Compiler consists of a set of independent 

modules that check the design for errors, synthesize the logic, fit the design into an 

Altera device, and generate output files for simulation, timing analysis, software 

building, and device programming. The basic Compiler consists of the Analysis & 

Synthesis, Fitter, Assembler, and Timing Analyzer modules. Each of the Compiler 

modules can be run individually or together from the Quartus II user interface. 

Alternatively, these modules can be run independently with the appropriate 

command line executable. 

Compile the Design: The Compiler automatically locates and uses all non-design 

files associated with the design, such as Include Files (.inc) containing AHDL 

Function Prototype Statements; Memory Initialization Files (.mif) or Hexadecimal 

Intel-format Files (.hex) containing the initial content of memories; as well as 

Quartus II Project Files (.qpf) and Quartus II Settings Files (.qsf) containing project 

and setting information. During compilation, the Compiler generates information, 

warning, and error messages that appear automatically in the Messages window.  

Simulation mode:  Simulation allows testing a design thoroughly to ensure that it 

responds correctly in every possible situation before configuring a device. 

Depending on the type of information need, functional or timing simulation can be 

performed with the Simulator. Functional simulation tests only the logical operation 

of a design by simulating the behavior of flattened netlist extracted from the design 

files, while timing simulation uses a fully compiled netlist containing timing 

information to test both the logical operation and the worst-case timing for the 
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design in the target device. Before running a simulation, it is necessary to specify 

input vectors as the stimuli for the Quartus II Simulator. The Simulator uses these 

input vectors to simulate the output signals that a programmed device would 

produce under the same conditions. The Simulator supports input vector stimuli in 

the form of a Vector Waveform File (.vwf), Vector Table Output File (.tbl), Power 

Input File (.pwf), or a Quartus II generated Vector File (.vec) or Simulator Channel 

File (.scf).  

4.6 Design Partitioning  

It is a standard practice to partition a complex design into different modules based 

on their specific functionality and features. So the project is partitioned in to modules 

based on four basic operation and one key expansion operation for Encryption and 

same for decryption cycle. The four basic operations are Substitution byte, Shift 

rows, Mix Columns, Add round key. There are individual module for Substitution 

Byte operation named as aes_sub_byte module, Shift rows operation named as 

aes_shift_row module and Mix Column operation named as aes_mix_column 

module. Key expansion operation is performed inside the main module which is 

named as aes_key_encryption to generate 10 keys for next rounds from the 

supplied symmetric key. Add round key operation is also performed inside the main 

module aes_key_encryption and aes standard module to add key to the state. AES 

has nine standard rounds. Each round contain four basic operations (Substitution 

byte,shift rows,mix column and add round key sequentially. These standard rounds 

are 1 to 9th round. So a standard module is designed in the project to complete the 

operation of a standard round which is named as onetonine module.   

 

4.7 Design Components 

The components of the AES processor are different for encryption and decryption 

system. The components of the Encryption and decryption module along with the 

entire AES processor are shown in Figure 4.1. 
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Figure 4.1: Design Components of AES 

 
AES processor consists of main two segments such as processing unit and memory 

units. In processing unit there are three operation such as Encryption, Decryption & 

key expansion. Encryption module performs the four operations like Sub_Byte, 

Shift_rows, Mix_columns and Add_Round_key  operation as per algorithm require. 

Encryption module require S-Box memory  where a 16 x 16 lookup table is provided 

for Sub_Byte operation and Round key memory where 10 key is stored by key 

expansion operation  which is used by  Add_Round_key operation of each round. 

 

Key expansion operation calculates the key for 10 rounds from the starting key 

which is stored in round key memory. Round Constant values are used to generate 

round key of a specific round. 

 

 

The main module of Encryption and sub modules are as follows:- 

 

AES Encryption Module: AES encryption module is the main module of encryption 

which holds the round module onetonine and round module hold the other 

operational module like AES_SUB_BYTE,AES_SHIFT_ROWS and 

AES_MIX_COLUMN module. Figure 4.1 shows the block diagram of the AES 

encryption module named as aes_encryption. Input data block of 128 bit given as 

input which is plain text. Start bit is activated to start the operation. After completion 
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of the module operation output of 128 bit cipher is generated. Beside this output 

‘keyout’ of 128 bit shows the last key of the encryption process, ‘key ready’ flag 

indicates the completion of key expansion process and ‘encr_ready flag’  indicates 

the ending of the encryption. Quartus II generated block diagram of encryption 

process is shown in Figure 4.2. 

plaintext[127..0]

clk

start

key out[127..0]

key ready

encr_ready

cipher[127..0]

aes_encry ption

inst

VCC
INPUT(128 Bit) INPUT

VCC
CLOCK INPUT

VCC
START INPUT

OUTPUT(128 Bit)OUTPUT

OUTPUT FLAGOUTPUT

KEY READY FLAGOUTPUT

LAST KEYOUTPUT

 
 

Figure 4.2: Block diagram of AES Encryption module 

 

Onetonine Module: This module is treated as standard module in AES which 

performs the operation of a standard round in AES. There are 9 standard rounds 

each includes all four operation of AES such as substitution byte, shift row, 

AddRoundKey, Mix column operation. In this module 128 bit input is given and the 

key of the round is given as input.128 bit output is generated with output flag which 

represent the completion of the process. The block diagram of the round module 

which is named as onetonine is shown in Figure 4.3 

onein[127..0]

roundkey [127..0]

clk

round_ready

oneout[127..0]

onetonine

inst

VCC
INPUT(128 Bit) INPUT

VCC
INPUT KEY(128 Bit) INPUT

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT

 

Figure 4.3: Block diagram of Onetonine module 

 

AES_SUB_BYTE Module: This module performs the Substitution byte operation of 

AES algorithm. In the previous chapter it is described that the substitution byte 

transformation of input state to the output state involves basically two algebraic 

calculations for each byte which is responsible for huge processing time. So for this 

reason a 16 x 16 byte lookup table is used in this module for substitution to eliminate 

complex algebraic operation which will increase throughput. In this work 128 bit data 

block is given input to the AES_SUB_BYTE Module as ‘boxin’ .After initiating the 
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clock as ‘clk’ output produced as ‘boxout’ which is byte by byte substitution of the 

input data block ‘boxin’ which is shown in Figure 4.4.  

VCC
CLOCK INPUT

boxin[127..0]

clk

sub_ready

boxout[127..0]

aes_sub_by te

inst

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT
VCC

INPUT(128 Bit) INPUT

 

Figure 4.4: Block diagram of AES_SUB_BYTE module 

 

AES_SHIFT_ROW Module: This module is used for performing shift row operation 

of the AES.The block diagram of the module is shown in Figure 4.5. The operation is 

very simple just to alter the position of the bytes in the 2nd, 3rd and 4th row on the 

state matrix.128 bit data block is given input to this module and output 128 bit data 

is produced by the shift operation of the module and output flag represent that the 

output is ready.  

shif tin[127..0]

clk

shif t_ready

shif tout[127..0]

aes_shif t_row

inst

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT
VCC

INPUT(128 Bit) INPUT

OUTPUT(128 Bit)OUTPUT

 

Figure 4.5: Block diagram of AES_SHIFT_ROW module 

 

AES_MIX_COLUMN Module: This is a operation in AES to multiply the present 

state of AES to a constant matrix by the multiplication rules used in GF(28) Field. 

128 bit input is given to this module. After the operation 128 bit output is produced. 

Output flag represent the ending of module operation. Figure 4.6 shows the 

generated block diagram of the module.   

 

mixin[127..0]

clk

mix_ready

mixout[127..0]

aes_mix_column

inst

VCC
INPUT(128 Bit) INPUT

VCC
CLOCK INPUT

OUTPUT FLAGOUTPUT

OUTPUT(128 Bit)OUTPUT

 

 

Figure 4.6: Block diagram of AES_MIX_COLUMN module 
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There is another AES operation which is AddRoundKey where key is XORED with 

the state. There is no separate module for AddRoundKey but this is done inside 

main module of encryption and Standard Modules named as Onetonine Module 

where other AES operation are done simultaneously.  

 

The main module of Decryption and sub modules are as follows:- 

 

AES Decryption Module: AES decryption module is the main module of decryption 

which holds the round module onetonined and round module hold the other 

operational module like AES_ISUB_BYTE, AES_ISHIFT_ROWS and 

AES_IMIX_COLUMN module. Figure 4.7 shows the block diagram of the AES main 

module for decryption named as aes_decryption. Input data block of 128 bit given as 

input which is cipher. Start bit is activated to start the operation. After completion of 

the module operation output of 128 bit plaintext is generated. Beside this output ‘last 

key’ of 128 bit shows the last key of the decryption process, ‘key ready’ flag 

indicates the completion of key expansion process and ‘decr_ready’ flag  indicates 

the ending of the decryption. Quartus II generated block diagram of decryption 

process is shown in Figure 4.7. 

cipher[127..0]

clk

start

lastkey [127..0]

key ready

decr_ready

plaintext[127..0]

aes_decry ption

inst

VCC
Cipher Text(128 Bit) INPUT

VCC
Clock INPUT

VCC
Start Flag INPUT

Last Key (128 Bit)OUTPUT

Key  Ready  FlagOUTPUT

Decry ption Ready  FlagOUTPUT

Plain Text Output(128 Bit)OUTPUT

 
 

Figure 4.7: Block diagram of AES decryption module 

 

Onetonined Module: This module is treated as standard module in AES which 

performs the operation of a standard round in AES. There are 9 standard rounds in 

AES decryption process each includes all four operation of AES decryption such as 

inverse substitution byte, inverse shift row, AddRoundKey and inverse mix column 

operation. In this module 128 bit input and the key (128 Bit) of the round is given as 

input.128 bit output is generated with output flag which represent the completion of 

the process. The block diagram of the round module of AES decryption which is 

named as onetonined is shown in Figure 4.8. 
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onedin[127..0]

roundkey [127..0]

clk

onedout[127..0]

onetonined

inst

VCC
Round Key (128 Bit) INPUT

VCC
Round Input(128 Bit) INPUT

VCC
Clock INPUT

Round Output(128 Bit)OUTPUT

 

Figure 4.8: Block diagram of Onetonined module 

 

AES_ISUB_BYTE Module: This module performs the inverse substitution byte 

operation of AES decryption module which is opposite to the substitution byte 

operation of the encryption module. A 16 x 16 byte lookup table is used in this 

module for substitution of each byte of the input. In this work 128 bit data block is 

given input to the AES_ISUB_BYTE Module as ‘boxin’ .After initiating the clock as 

‘clk’ output produced as ‘boxout’ which is byte by byte substitution of the input data 

block ‘boxin’ which is shown in Figure 4.9.  

boxin[127..0]

clk

isub_ready

boxout[127..0]

aes_sub_by te

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT Output(128 Bit)OUTPUT

Output FlagOUTPUT

 

Figure 4.9: Block diagram of AES_ISUB_BYTE module 

 

AES_ISHIFT_ROW Module: This module is used for performing inverse shift row 

operation of the AES decryption module which is opposite to the AES shift operation 

of the encryption module. The block diagram of the module is shown in Figure 4.10. 

The operation is very simple just to alter the position of the bytes in the 2nd, 3rd  and 

4th row on the state matrix.128 bit data block is given input to this module and output 

128 bit data is produced by the shift operation of the module.  

shif tin[127..0]

clk

shif tout[127..0]

aesi_shif t

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT

Output(128 Bit)OUTPUT

 

 

Figure 4.10: Block diagram of AES_ISHIFT_ROW module 
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AES_IMIX_COLUMN Module: AES inverse mix column is a operation in AES 

decryption module to multiply the present state of AES to a constant matrix by the 

multiplication rules used in GF(28) Field. The operation is just the reverse of AES 

mix column operation which is performed in AES_MIX_COLUMN module.128 bit 

input is given to this module. After the operation 128 bit output is produced. Output 

flag represent the ending of module operation. Figure 4.11 shows the generated 

block diagram of the module.   

imixin[127..0]

clk

imix_ready

imixout[127..0]

aesi_mix_column

inst

VCC
Input(128 Bit) INPUT

VCC
Clock INPUT Output(128 Bit)OUTPUT

Output Ready  FlagOUTPUT

 

Figure 4.11: Block Diagram of AES_IMIX_COLUMN module 

 

There is another operation in AES decryption module like AES encryption module 

which is AddRoundKey where key is XORED with the state. There is no separate 

module for AddRoundKey but this is done inside main module of decryption and 

standard modules named as Onetonined module where other AES operation are 

done simultaneously. It is different from AES encryption module in this respect that 

key are used in the rounds in reverse order.  

cipher[127..0]

clk

start

lastkey [127..0]

key ready

decr_ready

plaintext[127..0]

aes_decry ption

inst

plaintext[127..0]

clk

start

key out[127..0]

key ready

encr_ready

cipher[127..0]

aes_encry ption

inst1

VCC
PlainText/Cipher INPUT

VCC
Clock INPUT

VCC
Start Flag INPUT

Last KeyOUTPUT

Ket Ready  FlagOUTPUT

Encr/Decr ReadyOUTPUT

Plaintext/Cipher OutputOUTPUT

VCC
Encr/Decr Selector INPUT

 

 

Figure 4.12: Block diagram of integrated AES Encryption and Decryption module 
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Figure 4.12 shows the block diagram of AES encryption and decryption module 

where encryption and decryption are performed simultaneously based on the 

selector input mode. System input is 128 bit plaintext or cipher, clock and start flag. 

Symmetric key of 128 bit is given to the module memory. Depending on the 

input(plaintext or cipher), selector select the the encryption or decryption module to 

perform operation. As a result cipher is produced as output if encryption performed 

and plaintext produced if decryption performed.  Output lastkey shows the last key 

produced by key expansion process, key ready flag indicate that key expansion 

operation is complete, Encr/Decr Ready flag  indicates that encryption or decryption 

operation is complete and plaintext or Cipher shows the 128 bit output of the total 

operation. 

 

 
4.8 The Operational diagram of Main module of encryption (AES_Encryption) 
 

Figure 4.13 shows the operational diagram of AES encryption module. In the main 

encryption module aes_encryption at first the key expansion operation is done 

where 10 additional key is generated from the supplied symmetric key and saved in 

memory which are to be used in the ten standard rounds of AES. Then 

AddRoundKey operation (XORing the key with state) is performed. After then nine 

standard rounds is completed by running the standard module onetonine for nine 

times. 10th Round is different from standard round where substitution byte, shift row 

and round key operation are performed skipping the mix column operation. For this 

reason these operations are performed from main AES module AES_ENCRYPTION 

without using round module onetonine. 

 

Decryption module is same as Encryption module but the operation is just opposite 

to the encryption process. Decryption module uses Inv S-Box memory instead of   

S-Box and also collects round key generated by key expansion operation for 

Add_Round_Key operation of the rounds. Key is stored in Round Key memory. In 

decryption round key are used in the round in reverse order than encryption module. 
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Figure  4.13: Operational Diagram of modules of AES 
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CHAPTER 5 

RESULTS AND PERFORMANCES 
 
5.1 Introduction 
 
The design of the AES processor is coded using verilog HDL. Altera provided 

Cyclone II FPGA is used. in this work the device used is EP2C35F672C6 from 

Cyclone II family. 

The Specification of the device is as follows: 

 

Total Logic Elements    : 33216  

I/O Registers     : 33216  

Total Combinational functions  : 33216  

Dedicated logic registers   : 33216  

Total registers     : 3142 

Total memory bits     : 483,840 

 
Compilation results of Encryption module are as follows: 

Total Logic Elements    : 3405/33216  

Total Combinational functions  : 3405/33216 

Dedicated logic registers:   : 1 

Total registers     : 1 

Total Pins     : 388/475 

Total memory bits               : 327680/483,840 

 

5.2 Simulation Results 

 At first each module like substitution byte, shift row, mix column and onetonine 

(round module) are simulated using Quartus II development software. NIST[4] 

provided input vectors and keys are applied. It helps to compare the simulated 

output with that from NIST. 
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5.2.1 Simulation of Aes_Sub_Byte Module 

 

 

                                Figure 5.1: Simulation of Sub_Byte Operation 

Figure 5.1 shows the simulation of Substitution Byte Module of AES algorithm where 

‘boxin’ is given as input state. When the clock ‘clk’ is activated the output ‘boxout’ 

generated which is the byte by byte substitution of ‘boxin’ from the S-Box Table. It is 

verified with NIST data. 

 

5.2.2 Simulation of Aes_Shift_Row Module 

 

Figure 5.2: Simulation of Shift_Row Operation 

In the Figure 5.2 the simulation result of Shift_Row module of AES algorithm has 

been shown where ‘shifin’ is the input state and ouput state ‘shiftout’ is generated 

when the input supplied which is the output of shiftrow operation and verified by 

NIST vectors. 
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5.2.3 Simulation of AES_Mix_Column Module 

 Figure 5.3 shows the simulation result of Aes_Mix_Column operation where the 

output of mixcolumn operation is generated as ‘mixout’ when the input supplied 

which is named as ‘mixin’. Inputs are taken from NIST input vector and output 

results are verified. 

 

 
                                     Figure 5.3: Simulation of Mix_Column_Operation 

 
5.2.4 Simulation of onetonine Module 
 

 
Figure 5.4: Simulation of one Standard round (one to nine round) 

 
In encryption module each standard round is simulated and output is verified.  

Figure 5.4 shows the simulation of one standard round where all basic operations 

(Substitution bytes shift rows mix columns and add round key) are performed and 

latency is observed which is 30ns.Input and output are verified by NIST provided 

data. 
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5.2.5 Simulation of AES_encryption Module 
 
The simulation results of full encryption module is shown in Figure 5.5 where input 

vectors and keys are given from NIST standard publication [4] and output was 

verified. 

Input Plain text: 3243f6a8885a308d313198a2e0370734 

Input Cipher Key :2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c 

 
Figure 5.5:  Simulation of full Encryption Module 

 
The output result of the encryption was found accurately after 11 clock cycle/210ns 

from the starting of encryption process. So the latency of encryption is only 11 clock 

cycle/210ns. In this Figure 5.5, the generated last key(10th key) is shown as keyout 

and latency of key generation is observed by ‘keyready’ flag. As the device used is 

Altera EP2C35F672C6 from Cyclone II family supports maximum clock frequency of 

50MHz. So the encryption throughput will be 6.4Gbps as per clock cycle encrypt 128 

bits data samples. If other device having more clock frequency is used then 

throughput can be increased more. 

5.2.6 Simulation of AES_Decryption Module 

Simulation of decryption module is shown in Figure 5.6 where cipher found from the 

encryption module is given as input and plaintext of the encryption operation is 

observed as output of the decryption module. It proves that decryption is performed 

accurately. 
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Figure 5.6:  Simulation of full Decryption Module 
 

5.3 Implementation on FPGA 

IICT,BUET owns a Altera’s DE2 FPGA board to implement any complex digital 

design. The proposed processor has been implemented on the FPGA mounted on 

the DE2 board. We have applied the following NIST provided plaintext input.128 bit 

encryption key are also given to the code directly. 

Plaintext input    :  3243f6a8885a308d313198a2e0370734; 

Input Cipher Key    : 2b7e151628aed2a6abf7158809cf4f3c; 

Expected Cipher text  : 3925841d02dc09fbdc118597196a0b32 

Result shown in 8 seven segment output of the FPGA is also same as expected 

which 3925841d02dc09fbdc118597196a0b32 is shown in Figure 5.7 and 5.8. So it 

shows that the AES processor is working correctly. 

   
    

Figure  5.7: Seven segment output of FPGA (1st 32 bit cipher & 2nd  32 bit cipher) 
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Figure  5.8: Seven segment output of FPGA (3rd   32 bit cipher & 4th    32 bit cipher) 
 
Overall the simulation of Quartus II software and implementation results on the 

FPGA board found accurate. 

5.4 Comparison with other related works 

The performance of the AES processor achieved in this research has been 

compared with that of other researchers [12,13,18,21,22]. It has been shown in 

Table 5.1. From Table 5.1 it is observed that maximum speed achieved is 21.54 

Gbps with latency 71 clock cycle. However reduced latency is essential for real time 

applications. To reduce the latency loop unrolling, pipelining, online key scheduling 

etc. techniques are usually used. It is seen from Table 5.1 that minimum latency 

achieved by the researcher [23] is 10 clock cycle with speed 1.4 Gbps. The latency 

achieved from current research work is 11 clock cycle with throughput 6.4 Gbps.  

 

Table 5.1: Comparison of the design with other FPGA implementation 

Design FPGA Device Throughput Latency(Cycle) 

Hodjat A et. Al.[12] 
Pipelined 

XC2VP20-7 21.54 Gbps 71 

Jarvinen et al[13] 
Pipelined 

XC2V2000-5 17.8 Gbps 41 

J. Zambreno et al[18] 
XC2V4000 

 
6.43 Gbps 11 

Hui Qin et al [10] partial pipelined 
 

Startix-C5 6.45 Gbps 21 

 Kenney D. et al [21] Cyclone II 2.5 Gbps 40 
Xiao S. et al[22] NIOS II 2.38 Gbps - 

Mroczkowski P et. Al[19] FLEX 10K 268 Mbps 21 
Helion et. Al[23] Startix- C5 1.4 Gbps 10 

This Work Cyclone II 6.4 Gbps 11 
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 So considering latency and speed, our work is superior to the research work [23]. 

Moreover the research works presented [12,13,18,21,22] are based on simulation 

results only. Hardware level testing and verification of the AES processor is not 

shown in their literatures. But this work shows the verification of the proposed AES 

processor both in simulation environment as well as in the FPGA hardware using 

different NIST approved test vectors.   
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CHAPTER 6 

CONCLUSION 

 

6.1 Conclusion 
 
The superiority of the AES algorithm over all other cryptographic techniques has 

been proved by a number of literatures. The objective of the research proposed in 

this report was to design an AES processor. The proposed processor has been 

designed using Verilog HDL. The simulation result of each module and that of whole 

integrated module of the processor verify its desired functionality. Hardware 

implementation results also validate the truth. The performance of the processor in 

terms of logic cell, latency and speed is evaluated. If the design is implemented on 

higher frequency FPGA device then throughput will be increased. The design can be 

used as an Intellectual Property (IP)  core for using in different security applications. 

 

6.2 Future work  
 
The author recommends that the following research can be carried out in future to 

enhance the proposed processor:- 

1) Portable electronic system is the vision of this day where power is an 

important issue. So power analysis of the processor can be carried out. 

2) The proposed processor can be implemented on ASIC to improve its 

performance. 
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APPENDIX A 

ENCRYPTION MODULE 

// AES_Encrypion Module 

module  aes_encryption(keyout,keyready,encr_ready,cipher,plaintext,clk,start); 

output[127:0] cipher,keyout; 

output encr_ready,keyready; 

 

input [127:0] plaintext; 

input clk,start; 

 

integer i,j,k=0; 

 

wire [127:0] shiftout,subout[0:10],modout[0:8]; 

 

reg [127:0] key[0:10]; 

reg [127:0] newround[0:8]; 

reg [127:0] shiftin,subin[0:10],newcipher[10:0],cipher,modin[0:8],keyout=0; 

reg encr_ready=0,keyready=0; 

reg [95:0] dummy; 

reg [31:0] rc[10:0]; 

reg [31:0] a[43:0]; 

reg [7:0] b0,b1,b2,b3; 

 

aes_sub_byte asb1(subout[1],subin[1],clk); 

aes_sub_byte asb2(subout[2],subin[2],clk); 

aes_sub_byte asb3(subout[3],subin[3],clk); 

aes_sub_byte asb4(subout[4],subin[4],clk); 

aes_sub_byte asb5(subout[5],subin[5],clk); 

aes_sub_byte asb6(subout[6],subin[6],clk); 

aes_sub_byte asb7(subout[7],subin[7],clk); 

aes_sub_byte asb8(subout[8],subin[8],clk); 

aes_sub_byte asb9(subout[9],subin[9],clk); 

aes_sub_byte asb10(subout[10],subin[10],clk); 
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// Round constants value for Key Expansion module 

assign 

{rc[1],rc[2],rc[3],rc[4],rc[5],rc[6],rc[7],rc[8],rc[9],rc[10]}=320'h01000000020000000400

000008000000100000002000000040000000800000001B00000036000000; 

 

// Start of key expansion  

always @(posedge clk) begin 

keyout=0; 

//input of 128 bit Symmetric Key 

{a[0],a[1],a[2],a[3]}=128'H2b7e151628aed2a6abf7158809cf4f3c; 

begin 

 

for(j=4;j<44;j=j+1) 

   if(j%4==0) 

    begin 

    //{b3,b2,b1,b0}=a[i-1]; 

    subin[j/4]={a[j-1],dummy}; 

    {b3,b2,b1,b0,dummy}=subout[j/4]; 

    a[j]=({b2,b1,b0,b3}^rc[j/4])^a[j-4]; 

    end 

 

  else a[j]=a[j-1]^a[j-4]; 

 

 end 

 

for(k=0;k<11;k=k+1)begin 

key[k]={a[4*k],a[4*k+1],a[4*k+2],a[4*k+3]}; 

keyout=key[k]; 

if(keyout==128'hd014f9a8c9ee2589e13f0cc8b6630ca6)begin 

keyready=1; 

end 

end  

 

end  //end of key expansion  
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//start of encryption  

aes_sub_byte asb(subout[0],subin[0],clk); 

aes_shift_row asr(shiftout,shiftin,clk); 

 

onetonine otn1(modout[0],modin[0],newround[0],clk); 

onetonine otn2(modout[1],modin[1],newround[1],clk); 

onetonine otn3(modout[2],modin[2],newround[2],clk); 

onetonine otn4(modout[3],modin[3],newround[3],clk); 

onetonine otn5(modout[4],modin[4],newround[4],clk); 

onetonine otn6(modout[5],modin[5],newround[5],clk); 

onetonine otn7(modout[6],modin[6],newround[6],clk); 

onetonine otn8(modout[7],modin[7],newround[7],clk); 

onetonine otn9(modout[8],modin[8],newround[8],clk); 

 

always @(start or plaintext or newcipher or modin or newround or subout or shiftout 

or key or modout or shiftin or subin)  begin 

encr_ready=0; 

if(start)begin 

         for(i=0;i<11;i=i+1)begin 

           case(i) 

               0:begin 

                 newcipher[i]=plaintext^key[0]; 

                 end   

              1:begin 

                 modin[i-1]=newcipher[i-1]; 

  newround[i-1]=key[i]; 

  newcipher[i]=modout[i-1]; 

  end 

 2:begin 

   modin[i-1]=newcipher[i-1]; 

   newround[i-1]=key[i]; 

   newcipher[i]=modout[i-1]; 

  end 
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   3:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[i]; 

     newcipher[i]=modout[i-1]; 

     end   

      4:begin 

      modin[i-1]=newcipher[i-1]; 

      newround[i-1]=key[i]; 

      newcipher[i]=modout[i-1]; 

      end   

       5:begin 

       modin[i-1]=newcipher[i-1]; 

       newround[i-1]=key[i]; 

       newcipher[i]=modout[i-1]; 

       end   

      6:begin 

       modin[i-1]=newcipher[i-1]; 

       newround[i-1]=key[i]; 

       newcipher[i]=modout[i-1]; 

       end   

    7:begin 

                  modin[i-1]=newcipher[i-1]; 

        newround[i-1]=key[i]; 

        newcipher[i]=modout[i-1]; 

        end   

       8:begin 

                  modin[i-1]=newcipher[i-1]; 

        newround[i-1]=key[i]; 

        newcipher[i]=modout[i-1]; 

        end 

    9:begin 

      modin[i-1]=newcipher[i-1]; 

      newround[i-1]=key[i]; 

      newcipher[i]=modout[i-1]; 

      end 
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    10:begin 

                    subin[0]=newcipher[i-1]; 

         shiftin=subout[0]; 

         newcipher[i]=shiftout; 

         cipher=key[i]^newcipher[i]; 

     

if(cipher==128'h3925841d02dc09fbdc118597196a0b32)begin 

        encr_ready=1;  

    end    //end if 

           end 

                            

            endcase  //End case 

 

         end  //End for 

  end       End if  

   end    //end always    

             

endmodule 
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APPENDIX B 

SUBSTITUTION BYTE MODULE 

// AES Sub_Byte Module 

module aes_sub_byte(boxout,boxin,clk); 

 

output [127:0] boxout; 

 

input clk; 

input [127:0] boxin; 

 

wire [7:0] s[0:255]; 

 

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin, 

          

         aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout,pout; 

 

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = boxin; 

 

assign 

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}=128'H

637C777BF26B6FC53001672BFED7AB76, 

 

{s[16],s[17],s[18],s[19],s[20],s[21],s[22],s[23],s[24],s[25],s[26],s[27],s[28],s[29],s[30],

s[31]}=128'HCA82C97DFA5947F0ADD4A2AF9CA472C0, 

 

{s[32],s[33],s[34],s[35],s[36],s[37],s[38],s[39],s[40],s[41],s[42],s[43],s[44],s[45],s[46],

s[47]}=128'HB7FD9326363FF7CC34A5E5F171D83115, 

 

{s[48],s[49],s[50],s[51],s[52],s[53],s[54],s[55],s[56],s[57],s[58],s[59],s[60],s[61],s[62],

s[63]}=128'H04C723C31896059A071280E2EB27B275, 

 

{s[64],s[65],s[66],s[67],s[68],s[69],s[70],s[71],s[72],s[73],s[74],s[75],s[76],s[77],s[78],

s[79]}=128'H09832C1A1B6E5AA0523BD6B329E32F84, 
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{s[80],s[81],s[82],s[83],s[84],s[85],s[86],s[87],s[88],s[89],s[90],s[91],s[92],s[93],s[94],

s[95]}=128'H53D100ED20FCB15B6ACBBE394A4C58CF, 

 

{s[96],s[97],s[98],s[99],s[100],s[101],s[102],s[103],s[104],s[105],s[106],s[107],s[108],

s[109],s[110],s[111]}=128'HD0EFAAFB434D338545F9027F503C9FA8, 

 

{s[112],s[113],s[114],s[115],s[116],s[117],s[118],s[119],s[120],s[121],s[122],s[123], 

s[124],s[125],s[126],s[127]}=128'H51A3408F929D38F5BCB6DA2110FFF3D2, 

 

{s[128],s[129],s[130],s[131],s[132],s[133],s[134],s[135],s[136],s[137],s[138],s[139], 

s[140],s[141],s[142],s[143]}=128'HCD0C13EC5F974417C4A77E3D645D1973, 

 

{s[144],s[145],s[146],s[147],s[148],s[149],s[150],s[151],s[152],s[153],s[154],s[155], 

s[156],s[157],s[158],s[159]}=128'H60814FDC222A908846EEB814DE5E0BDB, 

 

{s[160],s[161],s[162],s[163],s[164],s[165],s[166],s[167],s[168],s[169],s[170],s[171], 

s[172],s[173],s[174],s[175]}=128'HE0323A0A4906245CC2D3AC629195E479, 

 

{s[176],s[177],s[178],s[179],s[180],s[181],s[182],s[183],s[184],s[185],s[186],s[187], 

s[188],s[189],s[190],s[191]}=128'HE7C8376D8DD54EA96C56F4EA657AAE08, 

 

{s[192],s[193],s[194],s[195],s[196],s[197],s[198],s[199],s[200],s[201],s[202],s[203], 

s[204],s[205],s[206],s[207]}=128'HBA78252E1CA6B4C6E8DD741F4BBD8B8A, 

 

{s[208],s[209],s[210],s[211],s[212],s[213],s[214],s[215],s[216],s[217],s[218],s[219], 

s[220],s[221],s[222],s[223]}=128'H703EB5664803F60E613557B986C11D9E, 

 

{s[224],s[225],s[226],s[227],s[228],s[229],s[230],s[231],s[232],s[233],s[234],s[235], 

s[236],s[237],s[238],s[239]}=128'HE1F8981169D98E949B1E87E9CE5528DF, 

 

{s[240],s[241],s[242],s[243],s[244],s[245],s[246],s[247],s[248],s[249],s[250],s[251], 

s[252],s[253],s[254],s[255]}=128'H8CA1890DBFE6426841992D0FB054BB16; 
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always @(posedge clk) begin 

aout<=s[ain]; 

bout<=s[bin]; 

cout<=s[cin]; 

dout<=s[din]; 

eout<=s[ein]; 

fout<=s[fin]; 

gout<=s[gin]; 

hout<=s[hin]; 

iout<=s[iin]; 

jout<=s[jin]; 

kout<=s[kin]; 

lout<=s[lin]; 

mout<=s[min]; 

nout<=s[nin]; 

oout<=s[oin]; 

pout<=s[pin]; 

 

end 

assign 

boxout={aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout, 

pout}; 

 

 

endmodule 
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APPENDIX C 

SHIFT ROW MODULE 

// AES Shift_Row Module 

module aes_shift_row(shiftout,shiftin,clk); 

 

output [127:0] shiftout; 

 

input clk; 

input [127:0] shiftin; 

 

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin; 

 

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = shiftin; 

 

assign shiftout={ain,fin,kin,pin,ein,jin,oin,din,iin,nin,cin,hin,min,bin,gin,lin}; 

 

 

endmodule 
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APPENDIX D 

MIX COLUMN MODULE 

// AES Mix_Column Module 

module aes_mix_column (mixout,mixin, clk); 

 

output [127:0] mixout; 

input clk; 

input [127:0] mixin; 

 

integer i; 

reg [7:0] s[0:15],s_shift[0:15],sout[0:15]; 

 

assign 

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}= 

mixin; 

 

always @(mixin or s or s_shift or sout or i) begin 

for(i=0;i<16;i=i+1) 

if (s[i]>=8'b10000000) begin 

s_shift[i] = s[i]<<1^8'b00011011; 

end 

else s_shift[i]= s[i] << 1; 

 

for(i=0;i<=12;i=i+4)begin 

sout[i]=s_shift[i]^s_shift[i+1]^s[i+1]^s[i+2]^s[i+3]; 

sout[i+1]=s[i]^s_shift[i+1]^s_shift[i+2]^s[i+2]^s[i+3]; 

sout[i+2]=s[i]^s[i+1]^s_shift[i+2]^s_shift[i+3]^s[i+3]; 

sout[i+3]=s_shift[i]^s[i]^s[i+1]^s[i+2]^s_shift[i+3]; 

end 

end 

assign 

mixout={sout[0],sout[1],sout[2],sout[3],sout[4],sout[5],sout[6],sout[7],sout[8],sout[9], 

sout[10],sout[11],sout[12],sout[13],sout[14],sout[15]}; 

endmodule 
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APPENDIX E 

ONE TO NINE(STANDARD ROUND) MODULE 

// AES onetonine Module     

module onetonine(oneout,onein,roundkey,clk); 

output[127:0] oneout; 

 

input [127:0] onein,roundkey; 

input clk; 

 

wire [127:0] subout,shiftout,mixout; 

reg [127:0]shiftin,subin,mixin,oneout; 

 

aes_sub_byte asb3(subout,subin,clk); 

aes_shift_row asr1(shiftout,shiftin,clk); 

aes_mix_column amc(mixout,mixin,clk); 

 

always @(onein or subout or shiftout or mixout or roundkey)  begin 

                        

              

               subin=onein; 

               shiftin=subout; 

               mixin=shiftout; 

               oneout=mixout^roundkey; 

                

           

                  end //always        

             

endmodule 
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APPENDIX F 

DECRYPTION MODULE 

//AES_Decryption Module 

 

module aes_decryption(lastkey,keyready,decr_ready,plaintext,cipher,clk,start); 

output[127:0] plaintext,lastkey; 

output decr_ready,keyready; 

input [127:0] cipher; 

input clk,start; 
 

integer i,j,k=0; 
 

wire [127:0] shiftout,subout[0:10],modout[0:8]; 

reg [127:0] key[0:10]; 

reg [127:0] newround[0:8],keyout; 

reg [127:0] shiftin,subin[0:10],newcipher[10:0],modin[0:8],plaintext,lastkey; 

reg decr_ready=0,keyready=0; 

reg [95:0] dummy; 

reg [31:0] rc[10:0]; 

reg [31:0] a[43:0]; 

reg [7:0] b0,b1,b2,b3; 
 

aes_sub_byte asb1(subout[1],subin[1],clk); 

aes_sub_byte asb2(subout[2],subin[2],clk); 

aes_sub_byte asb3(subout[3],subin[3],clk); 

aes_sub_byte asb4(subout[4],subin[4],clk); 

aes_sub_byte asb5(subout[5],subin[5],clk); 

aes_sub_byte asb6(subout[6],subin[6],clk); 

aes_sub_byte asb7(subout[7],subin[7],clk); 

aes_sub_byte asb8(subout[8],subin[8],clk); 

aes_sub_byte asb9(subout[9],subin[9],clk); 

aes_sub_byte asb10(subout[10],subin[10],clk); 

// Round constants value for Key Expansion module 

assign 

{rc[1],rc[2],rc[3],rc[4],rc[5],rc[6],rc[7],rc[8],rc[9],rc[10]}=320'h01000000020000000400

000008000000100000002000000040000000800000001B00000036000000; 
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// Start of key expansion  

always @(posedge clk) begin 

keyout=0; 

//assignment of primary key 

{a[0],a[1],a[2],a[3]}=128'H2b7e151628aed2a6abf7158809cf4f3c; 

begin 

for(j=4;j<44;j=j+1) 

   if(j%4==0) 

    begin 

    subin[j/4]={a[j-1],dummy}; 

    {b3,b2,b1,b0,dummy}=subout[j/4]; 

    a[j]=({b2,b1,b0,b3}^rc[j/4])^a[j-4]; 

    end 

  else a[j]=a[j-1]^a[j-4]; 

 end 

for(k=0;k<11;k=k+1)begin 

key[k]={a[4*k],a[4*k+1],a[4*k+2],a[4*k+3]}; 

keyout=key[k]; 

if(keyout==128'hd014f9a8c9ee2589e13f0cc8b6630ca6)begin 

lastkey=key[10]; 

keyready=1; 

end 

end  

end  //end of key expansion  

//Start of Decryption 

onetonined otn1(modout[0],modin[0],newround[0],clk); 

onetonined otn2(modout[1],modin[1],newround[1],clk); 

onetonined otn3(modout[2],modin[2],newround[2],clk); 

onetonined otn4(modout[3],modin[3],newround[3],clk); 

onetonined otn5(modout[4],modin[4],newround[4],clk); 

onetonined otn6(modout[5],modin[5],newround[5],clk); 

onetonined otn7(modout[6],modin[6],newround[6],clk); 

onetonined otn8(modout[7],modin[7],newround[7],clk); 

onetonined otn9(modout[8],modin[8],newround[8],clk); 

aesi_shift asr(shiftout,shiftin,clk); 
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aesi_sub_byte asb(subout[0],subin[0],clk); 

always @(cipher or newcipher or modin or newround or subout or shiftout or key or 

modout or shiftin or subin)  begin 

if(start) begin 

decr_ready=0; 

         for(i=0;i<11;i=i+1)begin 

           case(i) 

              0:begin 

               newcipher[i]=cipher^key[10-i]; 

                end   

              1:begin 

                modin[i-1]=newcipher[i-1]; 

              newround[i-1]=key[10-i]; 

    newcipher[i]=modout[i-1]; 

    end 

  2:begin 

     modin[i-1]=newcipher[i-1]; 

                newround[i-1]=key[10-i]; 

   newcipher[i]=modout[i-1]; 

   end 

  3:begin 

    modin[i-1]=newcipher[i-1]; 

    newround[i-1]=key[10-i]; 

    newcipher[i]=modout[i-1]; 

   end 

  4:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[10-i]; 

     newcipher[i]=modout[i-1]; 

     end 

  5:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[10-i]; 

     newcipher[i]=modout[i-1]; 

     end 
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  6:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[10-i]; 

     newcipher[i]=modout[i-1]; 

     end 

  7:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[10-i]; 

     newcipher[i]=modout[i-1]; 

     end 

 

  8:begin 

     modin[i-1]=newcipher[i-1]; 

     newround[i-1]=key[10-i]; 

     newcipher[i]=modout[i-1]; 

     end 

   9:begin 

      modin[i-1]=newcipher[i-1]; 

      newround[i-1]=key[10-i]; 

      newcipher[i]=modout[i-1]; 

      end 

  10:begin 

      shiftin=newcipher[i-1]; 

      subin[0]=shiftout; 

      plaintext=key[10-i]^subout[0];  

                if(plaintext==128'h3243f6a8885a308d313198a2e0370734)begin 

      decr_ready=1;  

       end 

      end 
          endcase 

         end 

end 

     end //always       

endmodule 
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APPENDIX G 

INVERSE SUBSTITUTION BYTE MODULE 

//AES Inverse Sub_Byte Module(For Decryption) 

module aesi_sub_byte(boxout,boxin,clk); 

input clk; 

input [127:0] boxin; 

output [127:0] boxout; 

wire [7:0] s[0:255]; 

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin, 

         

aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,oout,pout

; 

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = boxin; 

assign 

{s[0],s[1],s[2],s[3],s[4],s[5],s[6],s[7],s[8],s[9],s[10],s[11],s[12],s[13],s[14],s[15]}

=128'H52096AD53036A538BF40A39E81F3D7FB, 

 

{s[16],s[17],s[18],s[19],s[20],s[21],s[22],s[23],s[24],s[25],s[26],s[27],s[28], 

s[29],s[30],s[31]}=128'H7CE339829B2FFF87348E4344C4DEE9CB, 

 

{s[32],s[33],s[34],s[35],s[36],s[37],s[38],s[39],s[40],s[41],s[42],s[43],s[44], 

s[45],s[46],s[47]}=128'H547B9432A6C2233DEE4C950B42FAC34E, 

 

{s[48],s[49],s[50],s[51],s[52],s[53],s[54],s[55],s[56],s[57],s[58],s[59],s[60], 

s[61],s[62],s[63]}=128'H082EA16628D924B2765BA2496D8BD125, 

 

{s[64],s[65],s[66],s[67],s[68],s[69],s[70],s[71],s[72],s[73],s[74],s[75],s[76], 

s[77],s[78],s[79]}=128'H72F8F66486689816D4A45CCC5D65B692, 

 

{s[80],s[81],s[82],s[83],s[84],s[85],s[86],s[87],s[88],s[89],s[90],s[91],s[92], 

s[93],s[94],s[95]}=128'H6C704850FDEDB9DA5E154657A78D9D84, 
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{s[96],s[97],s[98],s[99],s[100],s[101],s[102],s[103],s[104],s[105],s[106],s[107],

s[108],s[109],s[110],s[111]}=128'H90D8AB008CBCD30AF7E45805B8B3450

6, 

 

{s[112],s[113],s[114],s[115],s[116],s[117],s[118],s[119],s[120],s[121],s[122], 

s[123],s[124],s[125],s[126],s[127]}=128'HD02C1E8FCA3F0F02C1AFBD0301

138A6B, 

 

{s[128],s[129],s[130],s[131],s[132],s[133],s[134],s[135],s[136],s[137],s[138], 

s[139],s[140],s[141],s[142],s[143]}=128'H3A9111414F67DCEA97F2CFCEF0

B4E673, 

 

{s[144],s[145],s[146],s[147],s[148],s[149],s[150],s[151],s[152],s[153],s[154], 

s[155],s[156],s[157],s[158],s[159]}=128'H96AC7422E7AD3585E2F937E81C

75DF6E, 

 

{s[160],s[161],s[162],s[163],s[164],s[165],s[166],s[167],s[168],s[169],s[170], 

s[171],s[172],s[173],s[174],s[175]}=128'H47F11A711D29C5896FB7620EAA1

8BE1B, 

 

{s[176],s[177],s[178],s[179],s[180],s[181],s[182],s[183],s[184],s[185],s[186], 

s[187],s[188],s[189],s[190],s[191]}=128'HFC563E4BC6D279209ADBC0FE78

CD5AF4, 

 

{s[192],s[193],s[194],s[195],s[196],s[197],s[198],s[199],s[200],s[201],s[202], 

s[203],s[204],s[205],s[206],s[207]}=128'H1FDDA8338807C731B1121059278

0EC5F, 

 

{s[208],s[209],s[210],s[211],s[212],s[213],s[214],s[215],s[216],s[217],s[218], 

s[219],s[220],s[221],s[222],s[223]}=128'H60517FA919B54A0D2DE57A9F93

C99CEF, 

 



 80 

{s[224],s[225],s[226],s[227],s[228],s[229],s[230],s[231],s[232],s[233],s[234], 

s[235],s[236],s[237],s[238],s[239]}=128'HA0E03B4DAE2AF5B0C8EBBB3C8

3539961, 

 

{s[240],s[241],s[242],s[243],s[244],s[245],s[246],s[247],s[248],s[249],s[250], 

s[251],s[252],s[253],s[254],s[255]}=128'H172B047EBA77D626E1691463552

10C7D; 

 

always @(posedge clk) begin 

aout<=s[ain]; 

bout<=s[bin]; 

cout<=s[cin]; 

dout<=s[din]; 

eout<=s[ein]; 

fout<=s[fin]; 

gout<=s[gin]; 

hout<=s[hin]; 

iout<=s[iin]; 

jout<=s[jin]; 

kout<=s[kin]; 

lout<=s[lin]; 

mout<=s[min]; 

nout<=s[nin]; 

oout<=s[oin]; 

pout<=s[pin]; 

 

end 

assign 

boxout={aout,bout,cout,dout,eout,fout,gout,hout,iout,jout,kout,lout,mout,nout,

oout,pout}; 

endmodule 
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APPENDIX H 

INVERSE SHIFT ROW MODULE 

//AES Inverse Shift_Row Module(For Decryption) 

module aesi_shift(shiftout,shiftin,clk); 

input clk; 

 

input [127:0] shiftin; 

output [127:0] shiftout; 

 

reg [7:0]ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin; 

 

assign {ain,bin,cin,din,ein,fin,gin,hin,iin,jin,kin,lin,min,nin,oin,pin} = shiftin; 

 

assign shiftout={ain,nin,kin,hin,ein,bin,oin,lin,iin,fin,cin,pin,min,jin,gin,din}; 

 

 

endmodule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 82 

APPENDIX I 

INVERSE MIX COLUMN MODULE 

//AES Inverse Mix_Column Module(For Decryption) 

 

module aesi_mix_column(imixout,imixin,clk); 

output [127:0] imixout; 

input [127:0] imixin; 

input clk; 

reg [7:0] temp2,temp4,temp8,carry2,carry4,carry8; 

reg [7:0] shift9[0:15],shiftB[0:15],shiftD[0:15],shiftE[0:15]; 

reg [7:0] mixin[0:15],shift2[0:15],shift4[0:15],shift8[0:15],result[0:15]; 

integer i; 

reg [127:0] imixout; 

 

always @(imixin or temp2 or temp4 or temp8 or carry2 or carry4 or carry8 or 

shift2 or shift4 or shift8 or shift9 or shiftB or shiftD or mixin or shiftE ) begin 

temp2=0;temp4=0;temp8=0;carry2=0;carry4=0;carry8=0; 

for(i=0;i<16;i=i+1) begin 

mixin[i]=0; 

shift2[i]=0; 

shift4[i]=0; 

shift8[i]=0; 

shift9[i]=0; 

shiftB[i]=0; 

shiftD[i]=0; 

shiftE[i]=0; 

end //for 

{mixin[0],mixin[1],mixin[2],mixin[3],mixin[4],mixin[5],mixin[6],mixin[7],mixin[8],

mixin[9],mixin[10],mixin[11],mixin[12],mixin[13],mixin[14],mixin[15]}=imixin; 
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for(i=0;i<16;i=i+1)begin 

 

{carry2,temp2}=mixin[i]<<1; 

if(carry2) 

shift2[i]=temp2^8'b00011011; 

else 

shift2[i]=temp2; 

 

{carry4,temp4}=shift2[i]<<1; 

if(carry4) 

shift4[i]=temp4^8'b00011011; 

else 

shift4[i]=temp4; 

 

{carry8,temp8}=shift4[i]<<1; 

if(carry8) 

shift8[i]=temp8^8'b00011011; 

else 

shift8[i]=temp8; 

shift9[i]=shift8[i]^mixin[i]; 

shiftB[i]=shift9[i]^shift2[i]; 

shiftD[i]=shift9[i]^shift4[i]; 

shiftE[i]=shift8[i]^shift4[i]^shift2[i]; 

end 

 

result[0]=shiftE[0]^shiftB[1]^shiftD[2]^shift9[3]; 

result[1]=shift9[0]^shiftE[1]^shiftB[2]^shiftD[3]; 

result[2]=shiftD[0]^shift9[1]^shiftE[2]^shiftB[3]; 

result[3]=shiftB[0]^shiftD[1]^shift9[2]^shiftE[3]; 
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result[4]=shiftE[4]^shiftB[5]^shiftD[6]^shift9[7]; 

result[5]=shift9[4]^shiftE[5]^shiftB[6]^shiftD[7]; 

result[6]=shiftD[4]^shift9[5]^shiftE[6]^shiftB[7]; 

result[7]=shiftB[4]^shiftD[5]^shift9[6]^shiftE[7]; 

 

result[8]=shiftE[8]^shiftB[9]^shiftD[10]^shift9[11]; 

result[9]=shift9[8]^shiftE[9]^shiftB[10]^shiftD[11]; 

result[10]=shiftD[8]^shift9[9]^shiftE[10]^shiftB[11]; 

result[11]=shiftB[8]^shiftD[9]^shift9[10]^shiftE[11]; 

 

result[12]=shiftE[12]^shiftB[13]^shiftD[14]^shift9[15]; 

result[13]=shift9[12]^shiftE[13]^shiftB[14]^shiftD[15]; 

result[14]=shiftD[12]^shift9[13]^shiftE[14]^shiftB[15]; 

result[15]=shiftB[12]^shiftD[13]^shift9[14]^shiftE[15]; 

 imixout={result[0],result[1],result[2],result[3],result[4],result[5],result[6], 

result[7],result[8],result[9],result[10],result[11],result[12],result[13],result[14], 

result[15]}; 

 

end //always 

 

endmodule 
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APPENDIX J 

INVERSE ONE TO NINE MODULE 

//AES Inverse onetonined Module(Standard round module for 

decryption) 

 

module onetonined(onedout,onedin,roundkey,clk); 

output[127:0] onedout; 

input [127:0] onedin,roundkey; 

 

input clk; 

 

wire [127:0] subout,shiftout,mixout; 

 

reg [127:0]shiftin,subin,mixin,onedout; 

 

aesi_sub_byte asb3(subout,subin,clk); 

aesi_shift asr1(shiftout,shiftin,clk); 

aesi_mix_column amc(mixout,mixin,clk); 

 

always @(onedin or subout or shiftout or mixout)  begin 

                   

               shiftin=onedin; 

               subin=shiftout; 

               mixin=subout^roundkey; 

    onedout=mixout; 

                         

              

                  end //always        

             

endmodule 


