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ABSTRACT

The general MOS structure, it's operation, the oxide .trap creation and the effects

of interface traps and oxide trapped charge on the ideal MOS characteristics are discussed.

In this work, the umneling of electrons between the conduction band of a semiconductor

(or metal) and a trap center in the insulator for an MOS structure is studied. The present

analysis use the quantum mechanical wave impedance concept in solving the one

dimensional time independent Schrodinger wave equation.

The general physics of coherent resonant tunneling IS discussed.

A simple analytical model is developed to calculate the life time of oxide trapped charge

using stationary state wave function. This model is developed under no applied electric

field. This analytical model is developed considering the tunneling probability of trapped

charge through both the metal-oxide and semiconductor-oxide interface. TIle results shows

reasonable agreement with other reported results.

A simple analytical formulation is also developed to calculate the effective life tinle

of oxide trapped charge in an MOS structure under different gate voltages and at different

time intervals after switching.
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Very Large Scale Integration ( VLSI ) technology has re uce the size of

Metal,. Oxide - Semiconductor (MOS) devices to a remarkable extent without reducing

the supply voltage. This often causes generation of hot carriers and injection of a fraction

of this hot carriers into the insulating films of MOS devices during nornlal operation.

Charge carriers are injected into the oxide if they acquire sufficient energy to overcome

the energy barrier during operation under high electric field. While most of the injected

carriers are collected at the gate ternlinal as gate current, a small portion of them are

captured by intrinsic trap centers in the insulating (oxide) layer. Charge carriers may also

be captured by trap centers created during high field stressing. These trapped charges

affect device performance through threshold voltage shift and cause transconductance

.variation by their involvement in the creation of interface states at the Si / SiOz interface

[1]. The recovery of the device is very slow after the removal of the external bias. The

recovery, however, is accelerated under proper gate bias [2]. Against a good number of

experimental reports on charge trapping and subsequent relaxation phenomena in the

oxide of MOS structures [3-8], very few reports are available in the literature on

theoretical analysis on charge transport through the SiOz films [7-9]. Most of the reports

describe that relaxation of trapped charge occurs through a tunneling process. However,

the charge transport through the insulating films of MOS structures is not clear due to a

wide variety of assumptions and nature of treatments among the reports. In tllis study,



electron transport through thin SiOz films of an MOS structure has been discussed

elaborately, wherein the trap centers are considered one dimensional delta fimction and the

general formula for life time of trapped electron is obtained from the relationship between

position probability density and current density using Green's theorem [10].

1.1 General review:

Experimental investigations on the relaxation of charges trapped in the insulating

layer of MOS structures have been carried out extensively during recent years and

described 'tunneling discharge' as the most probable mechanism for the relaxation [2,3,8].

Tsu et. al. investigated the resonant tunneling phenomena in heterostruCtures

incorporating multiple quantum. wells [11,12]. 11leoretical treatment of the resonant

tunneling phenomena include Bolml's theory [13] which uses Wentzel- Kramers-Brillouin

(WKB) approximation in solving the Schrodinger wave equatioil and Kane's rigorous

analysis [14] which uses the method of wave function matching. Recenttreatment is Tsu

and Esaki's transfer matrix model [11], which involves the solution of Schrodinger wave

equation in each region of the device with the assumptions that the applied bias is small

and the. effective mass is constant throughout. Later the transfer matrix model is extended

to make it directly applicable to arbitrary potential energy profiles. Then Brelman and

Summer developed a simple metllod [15] based on an exact Airy function solution to the

Schrodinger wave equation for calculating the transmission probability and current

through RT structures. 1bis model is mathematically similar to tlmt of Tsu and Esaki in

which a transfer matrix approach is used to couple the incident wave vector to the

outgoing wave vector of the resonant tIinneling structure.

Ricco and Azbel [16] suggested that the occurrence of resonance involve some

complicated physical effects which have so far been overlooked. They showed that
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resonant tunneling under the usual experimental conditions implies carrier trapping in the

quantum well, hence a build up of space charge available for modifYing the potential

energy barrier. The tunneling current must then be calculated in a self consistent way,

taking into account the contribution due to the trapped electrons. Lundstrom and Svensson

derived the analytical formula [9] for life time of oxide trapped charge considering the

. trap as a 3-dimensional delta function and using the direct tUlmeling probability for a

conduction band electron to the ground state of a trap located at some distance from the

interface.

1.2 Overview of the work:

The general physics of resonant tunneling and also the tunneling through the

oxide layer of MOS structure is discussed. TIle calculations are based on the quantum

mechanical wave impedance concept developed by Khondker et. al. [17]. The teclmiques.

of generating oxide trapped charge is also discussed. An analytical formulation is

presented to estimate the life time of oxide trapped charge when the potential stress is

withdrawn. It is extended to estimate the effective life tinle of oxide trapped charge when

gate voltage is switched from one to another voltage which is less than the initial applied

voltage. The calculation of effective life time for certain delay time after switchilig is also

presented. The effective. life time makes use of the distribution of probability density

corresponding to the trapped electron due to the initial applied voltage.

The whole analysis have been carried out in n-channel MOS structuJe. The

general formula for life time of oxide trapped charge is obtained by showing. similarity

with trapped charge carriers for double barrier resonant tunneling (DBRT)structure. At

fIrst the life time of oxide trapped charge is formulated without potential stress i.e., the

3 .



oxide conduction band is flat. But under extemal gate bias the oxide conduction band

bends linearly. In this case the analytical formula is developed by dividing the total oxide

.length into pieces so that each small part can be assumed to be flat. Therefore, the

techniques discussed above C<Jll well be used to estimate the life tinle. of oxide trapped

charge at various distance from the interface and the effective life time of oxide trapped

charge can also be estimated under applied potential.

4



CHAPTER-2

GENERAL REVIEW ON MOS STRUCTURE

AND OXIDE TRAPPED CHARGE

2.1 Introduction:

MOS diode is the most useful device in the study of semiconductor surfaces.

Since the reliability and stability of all semiconductor devices are intimately related to

their surface conditions, a understanding of the surface physics with the help of MOS

diodes is of great importance to device operation[18]. The MOS has a simple structure

and low fabrication cost. For this reason, MOS is very popular device for very large scale

integration(VLSI) technology. In this chapter, the basic principle of operation, various

oxide charges and the effects of oxide charge on the characteristics of MOS devices are

discussed.

2.2 MOS structure:

A MOS transistor is a four terminal device (shown in Fig. 2.1) in which the

lateral current flow is controlled by an externally applied vertical electric field. A typical

n-channel enhancement type MOS field-effect-transistor (MOSFET) consists of a



relatively lightly doped p type substrate into which two heavily doped. n+ regions are

diffused which act as source and drain respectively. The region of inversion layer of

mobile electrons between source and drain is the channel and a thin layer of insulating

material separates the chalmel from the metal gate electrode. The metal, oxide and

semiconductor chalUlel foous a parallel plate capacitor. The voltage applied t6 the gate

controls the carriers in the conduction cha1l1leland thus controls the conductivity of the

device.

Source Gate

SiOz

Drain

Substrate (p type)

Substrate

Fig. 2.1 A basic MOS structure.
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Inversion Depletion
region regIOn

Neutral
regIon

Metal Oxide

Fig. (a)

Ec

Semiconductor (P type)

.p(x), space charge density

-tax 0:

L.J.
Qs QB

x

Fig. (b) .

. Fig. 2.2 (a) Energy band diagram and (b) Charge distribution diagram of an ideal MOS

structure.
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The threshold voltage VT of a MOSFET is defmed as the minimum voltage

which is required to induce the conduction channel [18]. When a gate voltage equal to VT

is applied to a MOSFET it produces a downward bending of the energy band diagram at

semiconductor / oxide interface and cause the intrinsic energy level Ej to cross over the

constant fermi level by <I>f at or, near the Si surfaces ( Fig. 2.2, 2.3 ). Then an inversion

"layer of width Wi is formed at the silicon surface. This region has conduction properties. ,
typically of n type material. This region is called tlle conducting channel of MOS

structure. q'P, represents the band bending at the surface and 'P, represents the surface

potential.

q'P.

" SiOz Si (p type)

Ec

Ej

Ev

x

Fig. 2.3 Energy band diagram at the onset of strong inversion
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If,

'P, < 01 the bands bend up at the surface, hole is accumulated at the surface which

happens for (-)ve gate voltage.

'P, = 0, flat band condition.

l1>f> 'P, > 0, holes are depleted which happens for (+) ve gate voltage.

'P, > l1>f, we get inversion for more (+)ve gate voltage.

At the on set of strong inversion the surface potential [Fig. 2:3],

'P, = 2l1>f = 'Psi ( 2.1)

At the right side of inversion layer a depletion layer . of width W (neglecting

inversion layer width since it is less than 100Ao ) is produced which extends up to the

bulk.

•
The depletion layer width W and the charges per unit area in depletion layer Qa 1S

given by

W = tE,IjJ,
qNA

and,

Where,

NA is the doping density of the substrate.

q is the magnitude of electron charge.

The charge balance equation is given by,

QS=QI+Qa =-OM

where,

Qs= total charges per unit area in semiconductor

OJ = charges per unit area in depletion layer

OM= charge per unit area on the metal.

9
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The applied gate voltage is given by,

Va = VFB + '1', + '1'0

= VFB + '1', - Qslco

= VFB + '1', + rfV,
where,

VFB = flat-band voltage

'1', = Surface potential

Co = Oxide layer capacitance per unit area.

VFB = 0 volt for ideal MOS structure.

J2QE,NAr=~--
C.

!o.= oxide thickness.,

Eo. = permittivity of oxide layer

E, =' permittivity of semiconductor

Therefore the threshold voltage can be represented as,

VT= VFB +\JI, - Qa/Co .

Since, at threshold voltage VT, Qs = Qa

where,

\JI, = 2<1>[at the on-set of strong inversion.

Again, at the onset of strong inversion <1« Qa

(2.5)

(2.6)

(2.7)

(2.8) .

so, Q, = <1+ Qa == Qa

So, for ideal MOS structure, VT=: 2<1>[-,Qa/Co (2.9)

The flat-band voltage is necessary due to workfimction difference between the

metal and semiconductor and also due to the interface traps and oxide charges.

10



2.3 Interface traps and oxide charges :

The exact nature of the Si / Si02 interface is not yet fully understood .

.Picture of the interface is that the chemical composition of the interfacial, as a

consequence of thennal oxidation is a single crystal silicon followed by a monolayer of

SiOx Le., incompletely oxidized silicon, then a strained region of Si02 and the remained

stoichiometric, strain free amorphous, Si02 (the compound Si is stoichiometric when x=2

and nonstoichiometric when 2> x >1 [16]. For a practical MOS structure, interface traps

and oxide charges exist that will affect the ideal MOS characteristics.

The basic classification of these traps and charges are (Fig.2.4):-

I) interface trapped charge Qit , which are charges located at the Si-Si02

interface with energy states in the Si forbidden bandgap and which can exchange charges

within a very short time; this charge can possibly be produced by excess silicon (trivalent

silicon), excess oxygen, and impurities.

2) fixed oxide charges Qr, which are located at or, near the interface and are

immobile under an applied electric field.

3) oxide trapped charges Qat, can be created, for example, by x-ray radiation or,

hot electron injection; these traps are distributed inside the oxide layer.

4) mobile ionic charge Qm, such as sodium ions, which are mobile within the oxide

under bias temperature aging conditions .. In this thesis, only the oxide trapped charge is

discussed.

11



Mobile ionic
charge

Oxide trapped
charge

Metal

++++++++

Fixed oxide
charge o 0

Si

SiOx

Intenace
trapped charge

Fig. 2.4 Terminology of charges associated with thenllally oxidized silicon

2.4 Creation of oxide traps:

The oxide traps are created during fabrication due to some loose bonds of Si

and these are intrinsic traps. Some traps are also created when high energy hot carrier

injected into the oxide and break the bonds of SiOz. The generation of intenace trap at the

Si/SiOz intenace and the oxide trapped charge are due to ionizing radiation as well as high

field stressing [1,3). Due to high electric field, caniers that are injected into the depletion

layer are accelerated and some of them may gain enough' energy to cause impact

ionization, [19]. These carriers have higher energy tllan the tllermal energy and are called

hot carriers.

12



Trap levels

Tmmeling
electrons

Ec
Er

Ev

SiOz Si (p type).

Fig. 2.5 A possible model for detrapping of trapped holes showing electrons turmeling

from silicon conduction band to trap levels applying positive gate voltage.

If the hot electrons have energies larger than the Si-SiOz energy barrier (3.2 eV)

then they can get injected from Si conduction band into the gate oxide. Even if these

electrons have energies greater than 1.5 eV tlley may be able to tmmel into the oxide from

inversion layer [19]. Both electron and hole traps results from hole injection, altllOugh

traps are initially neutral and hence not seen [20]. A fraction of the itljected electrons are

captured by electron traps in the oxide resulting in trapped negative charges in the oxide

[3]. These negative charges itrlluence the device characteristics producitlg positive shift of .

threshold voltage. The amount of trapped charge can be calculated from the shift of the

threshold voltage if the position of charge centroid is known. Due to oxide trapped charge

the transconductance becomes smaller because of reduced charmel mobility [18].

A possible microscopic mechanism for trap generation is that a hot electron

(having energies lager than 3.7 eV) breaks a silicon-hydrogen bond [21]. Iftlle trivalent Si

atom recombine with hydrogen, no interface trap is generated. If the hydrogen atom

I'}



diffuses away from the interface, a new interface trap is generated [21]. In insulator •

semiconductor device structures, the bonds that can be readily broken are[22]: (1) the

strained intrinsic bonds, such as Si-Q-Si--D-Si where, - indicates a strained bond, in the

sense that the bond length - is stretched or longer than the average and hence susceptible

to rupture or breakup by an impinging energetic electron; (2) the hydrogen bond at a

proton trap such as SiO-H, Si-H and Si.HX=Si3 where X is a group II~ acceptor such as

B, AI, Ga, or In; and (3) weak impurity bonds.

"2.5 Effects of oxide trapped charge:

The main effect of oxide trapped charge is a deftnite shift in threshold voltage of the

device. It causes also a voltage shift of the MOS Capacitance-Voltage (C-V) curve.

These oxide traps are associated with defects in SiOz . These oxide traps are usually

electrically neutral and are charged by introducing electrons and holes into the oxide. Fig.

2.6 shows the band diagram and the charge distribution for an MOS diode with both ftxed

oxide charge and oxide trapped charge. Comparing this Fig. 2.6 with Fig.2.2, it can be

noted that for the same surface potential 0/, , the applied voltage VG is reduced which

makes the threshold voltage shift .

The shift due to the oxide trapped charge is given by [18],

(2.10)

where,

Qot= effective net charge in the bulk oxide traps per unit area at the Si-SiOz
interface.

Pot(x)= volume oxide trap density.

14



Ec

Metal OXide

Fig. (a)

Ej

Er.
Ev

Semiconductor (P type)

po,(x) .••

o

Fig. (b) .

p(x), space charge density

w

Qs

x

Fig. 2.6 (a) Band diagram and (b) Charge distribution with fixed oxide charge and oxide

trapped charge of a MOS diode.
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Even after detrapping of oxide trapped charge on the application of an electric field, tile

remaining flat band voltage shift ~Vet) is given by [7]

where,

t(x,F) = time constant of oxide trapped charge on tlIe applied electric field.

n,,(x) = initial diStribution offilled traps.

2.6 Discussion:

16
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CHAPTER-3

QUANTUM MECHANICAL TUNNELING PHENOMENA

AND THE METHOD OF SOLUTION

3.1 Introduction:

An estimation of the quantum mechanical transmission coefficient (QMTC)

across the arbitrary quan~m-barrier and quantum-well structures are required to

understand the physical mechanisms and the major features of resonant tunneling process.

The .quantum mechanical transmission coefficient and hence the quantum mechanical

reflection coefficient (QMRC) c~ be calculated by solving the single particle, one

dimensional time independent Schrodinger wave equation with scattering wave conditions.

[11]. The closed form analytic solutions in terms of known functions can be obtained only

for certain special forms of potential energy profiles. When an exact analytic solution of

the Schrodinger equation across a particular potential is not available, approximate

method applicable to general potentials is required.

The WKB approximation is the conventional method of determining QMTC

[13]. Although it is conceptually elegant, it is nevertheless an approximation scheme that

does not take into account, for example, the detailed structure of a given potential below

the penetrating electron energy level. The WKB method fails to show the fme structure of



the QMTC. Furthennore, it predicts incorrect resonant energies of a resonant system. The

WKB method is a quasi-classical approximation and is valid when the De-Broglie

wavelengths of electrons are small compared to the distance over which the potential

changes appreciably.

The QMTC is calculated by Chandra and Eastman [23] for a triangular

barrier via the numerical method using Taylor series expansions for the wave function and

it's derivative. This method can also be extended for arbitrary structures but the

computation will be inefficient.

In another approach, the potential structure is approximated either piecewise

linear . potential functions or, by piecewise constant potential functions. The solutions of

Schrodinger wave equation in a region can then be expressed as a linear combination of

plane or evanescent waves. The general concept of quantum mechanical tunneling is

discussed in sec.3.2. A simple method of calculating the QMTC of tunnel structure is

presented in sec.3.3. A method for calculating the wave function is present in sec. 3.4.

3.2 Review of quantum mechanical tunneling:

Let us consider a fmite one-dimensional potential barrier V(x) between two

constant potential energy regions which are semi-infmite in extent as shown in Fig. 3.1.

According to the theory of classical mechanics a stream of particles coming from the left

with energies E less than the barrier peak Vp will be totally reflected but with energy

E> Vp completely transmitted. According to quantum theory, any particle can be

represented by a wave. However, because of the wave nature of the matter, the probability

of reflection is fmite for E>Vp , and the possibility oftunneling exists forE<Vp

18



B

A

n
v

---~ p
---, C

---- ,-----
,
x

Fig 3.1 A one dimensional potential barrier Vex)

An election wave with energy E incident on the barrier from left to right is represented by

the stationary wave function,

() A -J"k"x
lJIi x = e I, X < XL

where, .

A is a complex constant and

Kj is the wave vector for the region, x < XL

The wave vector K can be determined by using the equation,

(3.1)

K(E,V)=~=
•2m (E - V)
",2

(3.2)

where,

so that, Kj = K( E,Vd = ~ = (3.3)

P is the momentum.

m. is the effective mass.

VL is the height of the potential to the left of the barrier.

Ii is reduced Planck's constant.

19



The reflected and transmitted waves are represented by the expression

'JIr(x) = B eik/:x:

'JII (x) =C eik/ :x: , x> XR

(3.4)

(3.5)

respectively.

Where, kt=k(E ,Va) is the wave vector for X>XR and B and C are complex constants.

The ~urrent transmission coefficient D is equal to the ratio of the transmitted current to

the incident current [24].

D = kt lei: ' assuming same effective mass.
kilA/ . (3.6)

The reflection coefficient R is then just the ratio of the intensities of reflected and incident

waves [24].

The two coefficients are related by [24J

R+D=1

(3.7)

(3.8)

D and R are the functions the electron energy for a given potential barrier V(x). D and R

are mdependent of the direction from which the electron is incident on the barrier.

D(E) and R(E) may be determined by solving the time independent Schrodinger wave

equation,

d21V + 2m orE - V(x)}v = O.
dx2 ,,2

using the conditions of continuity of 'JI and dlV .
dx

20
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. 3.3 Methodology :

3.3.1 Quantum mechanical transmission probability across arbitrary

potential structures - The generalized impedance concept:

A straight forward method for solving the time independent Schrodinger

wave equation to calculate the QMTC across an arbitrary one~dimensional potential well

have been developed by Khondker et. al. [17]. This method is based on the analogy

between the plane wave and ~vanescent wave solutions of Schrodinger's equation in a

region of constant potential and the waves along a unifonn transmission line. A quantum

mechanical wave impedance analogous to the impedance in transmission lines have been

defmed to make use of impedance transformation and other complex inlpedance matching

techniques in the design and analysis of resonant tUlUlelingand other so called quantum

size effect devices.

V(x)

v _ ..'
\jJ-

'V+ '!
E -------------------

o 1 x

Fig. 3.2 A region with constant potential energy V

To understand the concept of quantum mechanical wave impedance in analytical

form let us consider a region of constant potential and the solution of one-dimensional

21



time independent Schrodinger wave equation in this region. The wave function in the

region 0 < x < I (Fig. 3.2) associated with energy E incident normally on the potential

barrier is,

where,

*. . 2m (E- V)
"I=lX+J~=J .1;2

is the propagation constant; m. is the effective mass and 1; is the reduced Planck

constant II' + and II' - are the complex constants.

Now consider a function ct> which is defmed as

ct> = 21; d\jl

. jm' dx

21; ( + ~ _ _~)
= -, "( II' e'~. II' e ,~
jm

= Zo (II' + eY" • 'V - e - Y" )

(3.10)

(3.11)

(3.12)

(3.13)

where,
2/iZ =-."1

o 'mJ
The equations for the current (1) and the voltage

line with distributed impedances have the fonn [25] :

r (x) = (r eYtX + r e-Y'X)

V (x) = Zot (r eYtX - r- e-YtX)

(V) m a uniform transmission

(3.15)

(3.16)

where, "It is the propagation constant; Zot is the characteristic impedance of the

transmission line.
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Comparison of equations (3.10) and (3.13) with equations (3.15) :Uld(3.16) shows that

\V and <1>are analogous to current 1 and voltage V, respectively in a transmission line.

Thus, Zo can be regarded as a characteristic wave impedance for the region 0 < x < I . We .

must consider the continuity conditions at the interface between two adjacent regions to

complete the analogy. At the interface, particle conservation requires the continuity of lIf.

and the continuity of ~ d\j/. The second condition is slightly different from what ism ~ .

often used in that the derivative ofthe wave function is divided by the effective mass.

Therefore, the continuity conditions will be satisfied if lIf and cD are continuous

everywhere including the interfaces. These conditions corresponds to those transmission

lines which require that total voltage and current be continuous at tlle junction between

two transmission lines.

Again, the ratio of cDand lIf are analogous to the ratio ofvoItage and current

which is called impedance. This ratio (cD IlIf) is most useful because tlle techniques

devised for transmission line computation may be applied to .problems in resonant

tunneling phenomena. The quantum mechanical wave impedance (QMW1) at any plane

x is defined as,

Z(x) = cD(x)1 lIf(x) . (3.17)

This ratio is simply 20 for a (+)vely traveling wave at all planes whereas for a

negatively traveling wave tllis ratio is - Zo for all x. In general, theQMWI will vary

with x. The input impedance value Zin= Z(O) distance I in front of a plane at which the .

load value of QMWI is given as ZL= Z(l) may be derived in a ma1111ersimilar to tlle

cOlTesponding transmission line formula [25].

Z L cosh yl + Z 0 sinh yl
Zin=Zo. (3.18)

Z 0 cosh yl + ZL smh yl

where, Zo is the characteristic QMWI of the intervening region.
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The equation (3.18) constitutes the core of the exact solution of Schrodinger's equation'

across arbitrary piecewise constant potential. By using the analogy the equation for

reflection coefficient defined as the ratio ofthe voltage in the reflected wave to that in the

incident wave [25] gives the wave amplitude reflection coefficient p = 1Jl-/1Jl+ for a

potential structure of characteristic impedance Zo when it is terminated with some known

load value ofQMWI ZL:

(3.19)

The probability current density S [19] can be defined as,

.' IiS = Re [1Jl -:-;0
JID

•= (112) Re[<1>1Jl]

dljl ]

dx

(3.20)

Thus, S is analogous to the average power in transmission lines.

Therefore, the use of equation (3.18) makes the wave impedance method computationally

efficient for analyzing arbitrary potential functions.

3.3.2 Application of impedance method for an arbitrary potential

function:

This requires the continuous. variations of potential energy which is to be

approximated by piecewise-constant functions. Consider the potential function as show in

Fig.3.3 be splitted up into a sequence of N small segments. Then the effective electron

mass m '(x) and the potential barrier V(x) are approximated by the multistep functions.
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(3.21 )

(3.22)

for, Xi.[ <x < Xi (i=1,2,3 .....N)

Consider the left (x < xo) and tile right (x > XN) of tile potential barrier which can be

assumed to seminfinite in extent.

Potential
Energy, V(x)

Xo

ithregion

x

Fig.3-3. Energy band diagram (Solid line) and approximated potential filllctions (broken

line) for tile potential barrier.
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Suppose we shall calculate the QMTC of an electron incident with energy E at the left side
of the barrier. The estimation of the QMTC across the barrier has been reduced to the

calculation of the QMWI for the electron streaming from the left toward the ban-iet. using

equation (3.18). The values of y and Zo in different segments can be calculated using

equation (3.11) & (3.14) respectively. Since there is no reflected wave in the region x > XN
it can be represented by a transmission line of infInite length.

TIle load impedance ZL = Z(XN) is equal to ZooN+!, the characteristic

impedance of the (n+ l)th region. TIle impedance Z(XN.l) is calculated using equation

(3.18) with Zo = Zo.N , l=xN-xN.1and this process is repeated until the impedance Z(Xo) is
obtained.

where,

(3.23)

Yi = ai+jPi = j

I.= X'-X' II I I.

•2mi(E- Vi)

1i2 (3.24)

(3.25)

The wave inlpedance reflection coefficient p at x = Xois calculated by using Z(Xo) as the

load inlpedance and Zo. 0 as the characteristic inlpedance and substituting these values in

equation (3.19). TIle QMTC D(E) is then given by [17].

D(E) = 1~lp(E )12

Where Ip(E )/2is the quantum mechanical reflection coefficient.
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3.4 Solution for the wave function:

The wave function in any region of constant potential can be calculated using

equation (3.10). The solutions of two adjacent region must then be cOllllected at the

interface using the continuity conditions. For automatic solution matching at potential

discontinuities and ease of numerical computati0n it is conveiuent to write the wave

function in the i th region as

where,
>y,-

p' (Xi) = ~ is the reflection coefficient at X =:r;-
1

(3.27)

putting X = Xi in equation (3.27) we get,

From equation (3.27) and (3.28) we fmally get

'¥(x) = ,«Xi JCosh{'Yi(X-Xi)} + 1- P~iXijSinh{'Ylx-:r;)}]t l+p :r;
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(3.30)

for, Xi_! ~ x ~ Xi

From equation (3.30) the following recurrence relation can be obtained

(3.31)

The solution of Ij1throughout the stmcture entails an initial condition. We can freely

choose an initial condition that is convenient for an unbounded fimction. 1~2is unaffected

by this choice of initial condition as it is the ratios of square of amplitudes and so the

absolute normalization of free particle wave functions is not required. A convenient initial

condition is to assume I'¥(XN)I = 1.0; the recurrence relation equation (3.31) can then be

used to determine at each position over the full region with which we are interested.

In some cases the position probability density t'ff rather than the wave

function Ij1 it self is of physical importance. A much simpler method for accurately

calculating 1'f12 can then by developed for an unbounded wave function.

Using equation (3.17) the probability current density S in equation (3.20) IS

expressed simply by

1 •
Sex) ="2 Re[ Z(x) lj1(x) Ij1 (x)]

2.8



=41'¥(xi Re[Z(x)] . (3.32)

S represents the net electron flux and for a stationary problem it must be independent of x .

I )1 liPN+1Ifwe assume '¥( XN = 1.0 then at x = XN , S has the value --.--
mN+I

where,

•
2IDN+1 (E - VN+1)

1i2

l'If at any x is then given by ,

I /2 2IiPN+1
. \}lex) = • R [Z( )]

IDN+1 e X

3.5 Discussion:

(3.33)

(3.34)

A simple but exact method of solving the Schrodinger equation for a piecewise

conStant potential has been presented by Kholldker et. aI. [17]. Since any potential

function can be approximated by using piecewise constant potential function to arbitrary

accuracy, then Schrodinger equation can be solved to any degree of accuracy for various

potential barriers and wells including continuous variations of potential and effective

mass. Various useful quantum mechanical quantities regarding the particular potential can

be obtained by using the solution. In the next chapter, this quantum mechanical wave

impedance concept will be used to estimate the life time of oxide trapped charge at

various distance throughout the oxide length of the MOS structure.
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CHAPTER 4

TIME DEVELOPMENT OF THE OXIDE TRAPPED

.CHARGE IN AN MOS STRUCTURE

4.1 Introduction:

The investigation of the time development of tunneling phenomenon. is

important since it detennines not only the fundamental frequency limit of most devices

involving resonant tunneling but also the mechanism for the physics of the tunneling
process.

There is an interesting property of resonant tunneling structure for transmitting

electrons through a quantum well sandwiched between two potential barriers with high

transmission probability when the electrons are incident at energies equal to any of the

virtual energy levels of the well[26]. Electrons having energies other than the virtual

energies of the well have a very low transmission coefficient i.e., they are not allowed to

pass through the resonant tunneling (RT) structure, The build up of a coherent electron

wave function in the quantum well involves a process very similar to that building up an

electromagnetic wave in a Febry-perot resonator [27]. In the absence of a scattering

mechanism, which can destroy the phase coherence of electron wave, the amplitude of the

resonant modes builds up in the quantum well. The electron waves can leakout in both

directions and in doing so cancel the reflected waves and thus enhance



the transmitted wave [26]. If the time evolution of the wave function in the well is long

compared to the scattering time, the collisions randomize the phase of the wave fimction.

In this case, the electrons tUilllel tllfough both tlle barriers sequentially and the RT

structure has a lower quantum mechanical transmission peak.

Tunnel injection of charge carriers fr0111traps into the allowed energy bands of

insulators, the so called field ionization, is a well-studied phenomenon. One or, more trap

energy levels even exist in insulators and direct injection of charge carriers in insulators

from an electrode may also occur [9]. In tltis research, we investigate tlle tunneling of

charge carriers from a metal or, semiconductor to a trap in insulator. Tltis process is

important to study the insulator currents and breakdown phenomena. In tltischapter , an

analytic formula for the life time of oxide trapped charge is derived by considering tlle

electron wave function as one-dimensional delta function. Tllen tllis analytic fOlmula is

modified to determine the effective life time when tlle gate voltage is switched from one to

another voltage which is less than the initial applied voltage. To determine the effective

life time the probability density distribution corresponding to the initial applied voltage is

also presented .

4.2 Limitations of frequency for tunneling structures:

The proposed frequency limitations of device involving the tunneling process

have been based on various defmitions of the intrinsic time scale for tlle tUillleling

electrons. These include tlle life time of resonant state [28], wave packet delay time and

resistance-capacitance time constants.
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The traversal time is the time during which the tUillleling particle is actually

traversing the barrier. The importance of traversal time in characterizing the tmmeling

process have been pointed out by some authors [16,26]. But there are several

contradictory results for the traversal time. Buttiker and Landauer [29] have substantiated

an eXisting expression for traversal time by considering tunneling through a time-

modulated barrier:

f ..
X2 m

T,T = Xl lik(x)dx

XI and X2 are turning points and K (x) =

(4.1)

for the tunneling electrons after the establishment of steady state in DBRTS. Anwar et.

a!. [26] calculated the traversal tinle by detenllining steady &'tategroup velocity Vg of th~

tunneling particles from the equation

(4.2) .

where, S is the probability current density through the double barrier resonant tunneling

structure (DBRTS) , which at resonance is equal to the incident current density for a

symmetric structure and IjI is the steady state wave function.

Comparison of equation (4.2) with equation (3.32) gives us ,

1
Vg(x) = 2" Re [Z(x)] (4.3)



The traversal time is then given by ,

fL dx
= 2 0 -R-e[-zJ.-x-) 1

where, L is total length of the resonant tUlmeling structure.

(4.4)

(4.5)

Smith [30] calculated a time 'td which is the ratio of the number of particles

under the potential to the incident flux. This time is the average dwell time of a particle

which is not the traversal time, ifmost particles are reflected [29].

fL 2
l'I'(x)1 dx

o (4.6)

. where , Sin is the incident flux . For a Symmetric double barrier resonant tunneling

structures at resonance Sin= S(x) = Vg (x)I'f'(x~2 so that 'td becomes essentially the same

as the traversal time 'tT proposed by Anwar et. aL[26]. Luryi [30]. calculated the time

constant of the transient process during which the resonant modes builds up inside the

well due to charging of the 'quantum capacitor' fonned between the base quantum well

and emitter electrode by the tunneling current through the first barrier. But the frequency

limitation calculated by Luryi gives much lower value which is not relevant for usual

device operation.
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Lundstrom and Svensson [9] calculated the tunneling time constant of oxide

trapped charge in an MOS structure by using,

1
't= -

P
(4.7)

where, P is the probability of tunneling through the oxide and is given by ,

ZITI 12 dnP=T 1',./ dE (4.8)

where, :; is the density of states for the metal and should be taken at E=EI

which is the total energy of the conduction band electron.

Tunnel transition, Trl = J'l';VIl'l]8( r )dr (4.9)

where , the wave function 'l'r and 'PI characterizes a trapped electron and an

electron in the conduction band of the metal and VB characterizes a three dimensional 1)

function trap. But Yamabe and Miura [8] calculated the tunneling probability Pox using

WKB approximation as ,

x2

-2 JK(x)d.x
P =e xl
ox , (4.10)

(4.11)and,
'to

't=-
Pox

where, k(x) is the imaginary part of the longitudinal wave vector in the SiOz

band gap, 'to is the shortest time constant and XI , Xz are the classical turning points.
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The detrapping of holes out of Si02 in an n-MOSFET's after exposure to

ionizing radiation was found to play a dominant role in the long teon recovery of

irradiated MOS devices [5]. It was modeled as a tunneling transition of holes from an

energetic level about 3 eVabove Si02 valence band. Manzini and Modelli [5] developed

an expression for the dependence of the time constant of the hole discharge on the applied

electric field' F and the distance x between trapped hole and interface which is given by ,

(.J • 1( ) _ vi 4 2m ( 1.5 ( ) 1.5))
l' x,F -1'0 ex." 3liqF Et - Et ~qFx . .

where, E, is the energetic level above the Si02 valence band ,

tunneling time and m' is the hole tunneiing effective mass.

3,

(4.12)

to is the characteristic



4.3 Calculation of life ,time of oxide trapped charge using stationary

state solution:

An alternative analytical formulation ,using the stationary state wave

. function to calculate the life time of an electron in a quantum well is presented here.

Consider a simplest case of resonant transmission, when a particle of energy E is incident

from left upon two consecutive barriers of height greater than E, with a classically allowed

region between them (FigA-2). The energy of the particle is almost totally reflected, but in

exponentially small energy intervals of width Llli, the particle transmission is greatly

enhanced.

1

o L

3

to ;.

Fig. 4.1 Conduction band profile of a double barrier resonant tunneling structure.

A relatively large electronic density builds up in the allowed region between

the barriers, because the wave leaking through the ftrst barrier is constructively inteneriitg
",

with reflections of the second barrier. The [mal wave function inside the well may be
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obtained by summing up all the multiply reflected waves. Let , this stationary wave

function be represented by ",(x) which can be obtained from the solution of time

independent Schrodinger's wave equation.

If the incident wave is now stopped, the accumulated charge density in the

well will gradually decrease since the carriers will leak through the barriers into region 1

and region 3 . The amplitude of the wave in the well will decrease with time and let this

time-varying function be represented as

",(x, t) = ",(x) itt)

where, itt)= 1 at, t=o

The wave function in ~egion 1 (for t > 0) can be written as,

where,

Similarly the wave function in region 3 for t > 0 is

'¥(x,t)='P(L)ej~3(X-L) j(t) ,X>XL

where,

(4.13)

(4.14)

(4.15)
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The time derivative of the integral of position probability density P over any fixed volume

V is given by [10]

: f P(;,I)dv=- f ~.d4
ul .

v A

where, A is the hounding surface of the volume V.

structure, equation (4.16) can be written as

o fL-;- p( x . I) dx =s(O. t) - s(L . I)
ut 0

( 4.16)

For the one dimensional

(4.17)

where, S(O,t) and S(L,t) are the probability current densities at x =0 and x=L, respectively.

The probability current density S is defmed as [10]

= Real part Of['¥* ~ \7'¥] .
]m .

For the one dimensional case,

r .. 1i o\f1
S(x,t) = Real part ofl \f jm" Ox J
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Therefore from equations (4.14), (4.15) and (4.16),

and

S(L,t)= -1i~31'P(L)12If(t)12
m3

Substitution of equation 4.20 into equation 4.17 gives

As ttt) is independent ofx equation (4.21) can be written as,

°1 /2 -1lr /2-f(t) =- (t)at 'tL

where,

f~I'P(x)12dx

'tL liP",I/'P(0)12 + liP",3/'P(L)/2
m} m3

(4.20a)

(4.20b)

(4.21)

(4.22)

(4.23)

The form of equation (4.23) suggests that 'tL can be taken as the time constant

for the decay of the charge density in t1Iewell i.e., the life tinle of the quasi bound state.
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For a symmetric double barrier structure 'tT ('td) is twice the value of the life time 'tL as can

be seen from an inspection of equations (4.6) and (4.23). Here Anwar et. al. [22]

suggested an intriguing possibility. If one assume that time required for the electronic

density to build up in the well is equal to the decay time then the traverSal time of an

electron through the RT structure is 2'tL.

Now using equation (4.23) the calculation of life time of oxide trapped charge (eO) is

presented below.

Metal Oxide

v

A A
E ............•

C B

o xo

Semiconductor

Trapped
electron

x

Fig. 4.2 Band diagram ofMOS structure at flat band condition.

At frrst consider that no voltage is applied to the gate i.e., the oxide conduction band is

flat. Although, due to some trap charge a.small tilt in the oxide conduction band exists but
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we can neglect this. Let us, consider an electron is trapped at a distance Xo from the metal

oxide interface (Fig. 4.2). Consider the corresponding trap wave function as,

where,

A, B and C are complex constants and

m' = effective mass of electron in Si021ayer = 0.1 mo

rno = rest mass of electron = 9.1095x 10 -31 Kg

V = potential barrier height (conduction band of Si02)

E = electron energy

Et = V-E = trap depth

Ii= reduced Planck constant = 1.055 x 10-34 J-sec

Now,

fL
2 /'¥ (x)/2 dx
o

= fXO A 2 e -2r(x-xo) dx + fL2A 2 e2r(x-XO) dx
o . Xo

+ fL
2
B2 e-2r(x-Xo) dx + f

L
2 C2 e2r(x-Xo) dx

o 0
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where,

L1=~-Xo

~ = width of oxide layer .

Again, the reflection coefficient at Si / SiOi interface Pr is,

(4.26)

(4.27)

the reflection coefficient at metal / Si02 interface PI is ,

CeY(O-xo) C
P ------- -e -2yxo

1 = -y(o-xo) - AA e

(4.28)
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By putting these values in equation (4.26) we get,

fL2 . 2

. I'¥(x)i dx=
o

(4.29)

Now,

and,

According to equation (4.23) the life time of oxide trapped charge is,

Jf2~X)12dx

tIP!~O)12+ ftP: ~~t
mZ mr

where,

(4.30)

(4.31)

(4.32)

and,
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,

n; = effective mass of electron in metal

m;. = effective mass ~f electron in semiconductor

E = trapped electron energy

VI = conduction band of metal

V2 = conduction band ofSi

The wave amplitude reflection coefficients are given as ,

where,

2yn
Zo = -.-. , characteristic wave impedance in oxide layer.

jm

(4.33)

(4.34)

Since, y= j

JE-Vso, Zo= 7 (4.35)

Similarly, the load impedance at x = 0 looking toward the left (metal) Zu is gIven

by (Fig. 4.3)
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10 -9

Dislonce(m)
10 -8

Fig. 4.3 Life time (tL) as a function of distance from interface with trap depth (Et,

measured from oxide conduction band) as a paranleter.
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Fig.4.4 Life time ('tL) as a function of distance from interface.with oxide thickness (~)

as a parameter.
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the load impedance at x = Lz looking toward the right (Si) ZLr is given by (Fig. 4.2)

.~

(4.37)

Now using equation (4.33), (4.34), (4.35), (4.36) and (4.37) we can calculate PI and p,.

Then, the results obtained by equation (4.32) shows that the states which are

more closer to conduction band, that is, the states which have a deep trap depth have

longer life times (Fig. 4-3). It is also shown that the life tinle increases also with the

increase in. distance from any interface (either metal-oxide. or, semiconductor-oxide

interface) and it becomes maximum at the middle of the oxide length. It happens because

near the interface the tUlmeling probability is very high and it decreases with the distance

from the interface. TIle maximum life tinle also increases with the increase in length of the

oxide layer (Fig. 4-4). In this analysis the effective electron mass in Si02 is assumed to be

O.l1l1{), in Si it is O.981l1{) and in metal it is 0.42mo. The potential barrier at the Si - Si02

interface is assumed to be 3.2 eV.

Now an analytic formulation is presented to determine the effective life time of

oxide trap charge by considering that an initial voltage is applied to the gate and then at a

moment the gate voltage is switched to another voltage which is less than the initial

applied voltage. TIle effective life time can be determined at the switching moment and for

certain delay time Tafter switching moment.

47



:::)

The bending of oxide conduction band after applying some gate voltage is shown

in Fig. 4.5 .Now we can determine the life time of oxide trap charge at various distance

throughout the oxide layer by approximating tIle bending of oxide conduction band as a

piecewise constant potential. for each step we can use equation (4.32) but the load

inlpedance at various steps can be determined by using the transfonnation equation (3.23).

Metal Oxide Semiconductor

nth (n+l)th
step step

Vo.

xL,o
------~------------'------------..~

"

Fig. 4.5 Energy band diagram (solid line) with applied gate voltage and approximation of

the oxide conduction band (dotted line).

I

:/
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t.,., ,. ". . .
In this caSe, the potential barrier height for n th step,

where,

VG = remaining gate voltage after switching

Xo = distance of oxide trap fr0111metal-oxide interface

Here, it is assumed that the electrons tumlel with c()pstant energy.

(4.38)

Now to detenninethe effective life time the wave function distribution, that is, the

probability density distribution should be detemlilled. The wave function corresponding to

tunneling electrons depends on the initial applied gate voltage.

/

(n+l)th
regIOn

nth
regIOn

ZLu ZL(O+I)

Fig. 4-6. A single step of the approximated oxide conduction band
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The wave function in nth region associated with an electron of energy E incident normally

on the-potential is,

where,

(4.39)

Yn = (4.40)

.Vn= height of the potential barrier (approximated oxide conduction band)

of nth region.

Vn can be determined by using equation (4.38) but in tIlis case, Va is the initial applied

gate voltage.

Now,

+ '¥n(O)
so, '¥.n = 1

+Pn

. where,

'Ie
Pn=;; is the wave amplitude reflection coefficient for n th region.

n

Pn can be deternlined by using equation (3.14), (3.19)& (3.23).
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Again,

'Pn+1 (0) = 'Pn(l) = 'P:(eY n1 + Pne-Y n1)

(4.42)

where, I = width of each region.

It is assumed that 'fJ( 0) = 1.0 for convenience of calculation. 11Ien we can detennine the

wave function at the beginning of each step and thus the normalized distribution of

probability density I'¥n( 0)1
2
is detennined.

Now the effective life time of oxide trapped charge is,

'[eff = (4.43)

where,

N = total number of steps

T = delay time after switching

The results obtained by equation (4.43) is shown in Fig. 4-7. In this case, the

oxide layer width is considered as 100 AOand total number of steps is 50. The results

shows that the effective life time 'tcff increases with the increase of time after switching

and becomes constant after some titne. It happens because near the switching moment

almost of the oxide trapped charge tumlel out. from the oxide layer and the amount of
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Fig. 4.7 Time dependence of the effective life time of oxide trapped charge. TIle

initially applied gate voltage is 6 volt and the marked VG in the figure is the gate

voltage after switching.
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charghe associated with tUlmelilig discharge decreases with the time. Effective life time

becomes constant due to penllanent trapping of some charge can.iers. 'teII also increases

.with the decrease of applied gate voltage after switching. It happens due to a slower

detrapping under reduced gate voltage.

Very few reports dealing with theoritical analysis of relaxation characteristics of trapped

charges are available in the Iiterature[5,9]. Lundstrom and Svensson [9] derived the model

to calculate life time of oxide trapped charge considering the charged trap center as a three

dimensional delta function without any definite width of oxide layer. According to his

model the life time of 1O-9s, lO-4s and lOs were obtained for a trap center situated at a

distance of IOAo , 20A" and 30Ao. respectively. Trap depth, trap distribution and electric

fields, however, were not clearly mentioned in. this report. [9] Brox and Weber[5]

calculated the tunneling time constant of 1O-7s,5s and 104s for holes trapped at a distance

of IOAo, 20Ao and 25A" respectively. In the calculation, they used a model developed

by Manzini and Modelli (Ref. 6 of [5]) which is based on WKB approximation. The

results mentioned above were calculated for trap depth of 2.5 eV under no extemal bias.

In this work, we developed a simple model for tUlmeling time constant of trapped electron

considering the charged trap center as a one dimensional delta ftmction. Using this model

we calculated a time constant of 2xlO-11S, lO-4s and 5s for trap center situated at 10Ao ,

20Ao and 30Ao respectively for a trap depth of 2.95 eV under no extemal bias. A

comparative study of the results mentioned above reveal a reasonable agreement despite

variations of different parameters. The model developed in this work is based on quantum

mechanical wave impedance concept which is a simple and effective tool to study the

relaxation phenomena of trapped charges in the insulating layer of an MOS structure.
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4.4 Discussion:

The life time of oxide trapped charge not only limits the operation speed of MOS

structure but also determines the transport mechanism operating in a particular device. In

this chapter, first an analytical model is developed to detemnne the life. time of oxide

trapped charge which makes use of the stationary state wave function and then this model

is extended to detennine the effective life time of oxide trapped charge when the gate

voltage is switched from one to another lower value which is less than the initial applied

voltage. In the later case, the concept of direct tunneling from semiconductor (or metal) to

oxide is used. The obtained life time shows reasonable agreement with, Lundstrom and

Svensson's [9] result and also with the result obtained by the equation which is developed

by ManzirJi and Modelli [5].
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CHAPTER-5

CONCLUSIONS

5.1 Conclusions:

TIle basic MOS structure and it's operations are discussed. The creation of oxide

trapped charge and the effects of interface trapped charge on the ideal MOS characteristics

are also discussed. The general physics of resonant tunneling is discussed. In tins work, the

quantum mechanical wave impedance concept is used for reformulating the tunneling

theory. A good qualitative agreement is obtained witil previous models. The tunneling of

electrons between the conduction band ofa sennconductor (metal) and a trap center in the

.. insulator for an MOS structure is discussed.

An analytical model is developed for tile life time of oxide trapped charge by

using stationary state wave function. Tins model is developed by exploiting a sinnlarity

with the double barrier resonant tunneling structure (DBRT). It is developed under no

applied electric field and by considering the tunneling probability of oxide trapped charge

through both the metal-oxide lmd semiconductor-oxide interface. In previous works, tile

life time of trapped charge is calculated considering tunneling discharge through one

interface only [5,9]. Here, the trap wave function is considered as an one dimensional

delta function. The calculated results show reasonable agreement with tile results reported

by otilers[5,9]. Assumption of an one dimensional delta function ratiler tIlan a three



dimensional delta function as was assumed by Lundstrom' and Svensson, has made the

analysis quite simple with considerable accuracy.

A simple analytical fonllulation for the effective life time of oxide trapped

charge. is derived under different gate voltages during relaxation and at different time

intervals after switching. The effective life tillle makes use of the probability density

distribution corresponding to the trapped electron due to the initial applied gate voltage.

The results show reasonable agreement with the physical concept. These results can well

be used to understand and estimate the qualitative nature of hot .carrier induced

degradation and oxide reliability of thin film MOS devices.

5.2 Suggestions:

In tllls work, the analysis has been carried out considering discrete trap levels

at various distances from the interface and neglecting interaction between traps. One

dimensional delta function is taken as trap wave function which is certainly not unique to

study the relaxation characteristics of oxide trapped charge in an MOS structure.

Consideration of a practical trap distribution Witll hopping charge transport (tnip assisted

tunneling) certainly come up with a further extension of tllls work. Moreover; calculation

of tlrreshold voltage recovery using a practical trap distribution function (both spatial and

energy) and comparison of the calculated results Witll reported experimental data will be a

nice work.
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