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ABSTRACT

The general MOS structure, it’s operation, the oxide trap creation and the effects -
of interface traps and oxide trapped charge on the ideal MOS characteristics are discussed.
In this work, the tunneling of electrons between the conduction band of a semiconductor
(or metal) and a trap center in the insulator for an MOS structure is studied. The present
analysis use the quantum mechanical | wave 1mpedance conéebt in solving the one

dimensional time independent Schrodinger wave equation.

The general physics of coherent resonant tunneling is discussed.
A simple analytical model is developed to calculate the life time of oxide trapped charge
using stationary state wave function. This model is developed under no applied electric .
field. This analytical model is developed considering the tunneling probability of trapped
charge through both the metal-oxide and semiconductor-oxide interface. The results shows

reasonable agreement with other reported results.

A simple arialyticzil formulation is also developed to calculate the effective life time
of oxide trapped charge in an MOS structure under different gate voltages and at different

time intervals after switching.
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ABBREVIATIONS
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CHAPTER-1

INTRODUCTION

Very Large Scale Integration ( VLSI )} technology has reduced the size of
Metal - Oxide - Semiconductor (MOS) devices to a remarkable extent without reducing
the supply voltage. This often causes generation of hot carriers aild mjection of a fraction
of this hot carriers into the insulating films of MOS devices during normal operation.
Charge carriers are injécted into the oxide if they acquire sufficient energy to overcome
the energy barrier during operation under high electric field. While most of the injected
carriers are collected at the gate terminal as gate current, a small portion of them are
captured by intrinsic trap centers in the insulating (oxide) layer. Charge carriers may also
be captured by trap centers created during high field stressing. These trapped charges
affect device performance through threshold yoltage shift and cause transconductance
‘variation by their involvement in the creation of interface states at the Si / SiO, interface
f1]. The recovery of the device is very slow after the removal of the external bias. The
recovery, however, is accelerafed under proper gate bias [2]. Against a good number of
experimental reports on charge trapping and subsequent relaxation phenomena in the
oxide of MOS structures [3-8], very few reports are available in the literature on
theoretical analysis on charge transport through the SiO, films [7-9]. Most of the reports -
describe that relaxation of trapped charge occurs through a tunneling process. However,
the charge transport through the insulating films of MOS structures is not clear due to a

wide variety of assumptions and nature of treatments among the reporis. In this study,



electron transport through thin SiQ, films of an MOS structure has been discussed
elaborately, wherein the trap centers are considered one dimensional delta function and the
general formula for life time of trapped electron is obtained from the relationship between

position probability density and current density usihg Green’s theorem [10].

1.1 General review :

Experimental investigations on the relaxation of charges trapped in the insulating
layer of MOS structures have been carried out extensively during recent years and -
described ‘tunneling ‘discharge’ as the most probable mechanism for the relaxation [2,3,8].
Tsu et al invesﬁgated the resonant tunneling phenomena in heterostructures
incorporating multiple quantum wells [11,12]. Theoretical treatment of the resonant
tunnehng phenomena include Bohm’s theory [13] which uses Wen‘rzel Kramers-Brillouin
(WKB) approximation in solving the Schrodmger wave equation and Kane’s rigorous
analysis [14] which uses the method of wave function matching . Recent treatment is Tsu
- and Esaki’s transfer matrix model [11], which ‘invol_ves the solution of Schrodinger wave
equation in each region of the device with the assumptions that the applied bias is small
and 'the-eﬂ"ective mass is constant throughout. Later the transfer matrix model is extended
to make it directly appllcable to arbltrary potential energy profiles. Then Brennan and
Summer developed a simple meﬂlod [15] based on an exact A1ry function solution to the
Schrodinger wave equation for calculating the transmission probability and current
through R structures. This model is mathematically similar to that of Tsu and Esaki in
which a transfer matrix approach is used to couple the incident wave vector to the

outgoing wave vector of the resonant tunneling structure,

Ricco and Azbel [16] suggested that the occurrence of resonance involve some

complicated physical effects which have so far been overlooked. They showed that



resonant tunnelil_lg ;Jnder the usual experimental conditions implies carrer trapping in the
quantuﬁ well, hence a build up of space charge available for modifying the potential
energy barrier. The tunneling current must then be calculated in a self consistent wdy,
taking into account the contribution due to the trapped éleétr011$. Lundstrom and Svensson
derived the analy_tiéal formula [9] for life time of oxide trapped charge considering the -
-trap as a 3-dimensional delta function and using the direct tunneling probability for a
conduction band electron to the ground state of a trap located at some distance from the

interface.

1.2 Overview of the work :

The general physics of resonant tunneling and also the tunneliﬁg through the
oxide layer of MOS ﬂm&ure is discussed. The calculations are based on the quantum
mechanical wave impedance concept developed by Khondker et. al. [17]. The techniques .
of generating oxide trapped charge is also discussed. An analytical formulation is
presented to estimate the life time of oxide trapped charge when the pdtential stress is
withdrawn. It is extended to estimate the effective life time of oxide trapped charge when
gate voltage is switched from one to another voltage which is less than the initial applied
voltage. The calculation of effective life time for certain delay time after switching 1s also
presented. The effective life time makeé use of the distribution of probability density
corresponding to the trapped electron due to the initial applied voltage.

The whole analysis have been carried out in n-channel MOS structure. The
general formula for life time of oxide trapped charge is obtained by showing.simjlarify
with trapped charge carriers for double barrier resonant tunneling (DBRT)structure. At

first the life time of oxide trapped charge is formulated without potential stress i.c., the



oxide conduction band is flat. But under external gate bias the oxide conduiction band
bends linearly. In this case the analytical formula is developed by dividing the total oxide
‘length into pieces so that each small part can be assumed to be flat. Therefore, the
techniques.discussed above can well be used to estimate the life time of oxide trapped
charge at various distance from the interface and the effective life time of oxide trapped

charge can also be estimated under applied potential.



CHAPTER-2

GENERAL REVIEW ON MOS STRUCTURE
AND OXIDE TRAPPED CHARGE

2.1 Introduction :

MOS diode 1s the most useful device in the study of semiconductor surfaces.
Since the reliability and stability of all semiconductor devices are ixﬂirﬁately related to
their surface conditions, a understanding of the surface physics with the help of MOS
diodes is of great importance to device operaﬁon[lS]. The MOS has a simple structure
and low fabrication cost. For this reason , MOS is very popular device for very large scale
integration(VLSI) technology. In this chaptéi', the basic principle of loperation, various
oxide charges and the effects of oxide chérge on the characteristics of MOS devices are

discussed.

2.2 MOS structure :

A MOS transistor is a four terminal device (shown in Fig. 2.1) in which the
lateral current flow is controlled by an externally applied vertical electric field. A typical
n-channel enhancement type MOS field-effect-transistor (MOSFET) consists of a



relatively lightly doped p tYpe substrate into which two heavily doped.n” regions are
diﬁ'used which act as source and drain respectively. The region of inversion layer of
mobile electrons between source and drain is the channel and a thin layer of insulating
material separates the channel froxﬁ the metal gate clectrode. The metal, oxide and
semiconductor channel forms a parallel plate capacitor. The voltage applied to the gate

controls the carriers in the conduction channel and thus controls the conductivity of the

device.

Source Gate Drain
Si0,
<+ +
n n
Substrate (p type)
Substrate

Fig. 2.1 A basic MOS structure.
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The threshold voltage Vy of a MOSFET is defined as the minimum voltage
which is required to induce the conduction channel [18]. When a gate voltage equal to V¢
is applied to a MOSFET it produces a downward bending of the energy band diagram at
semiconductor / oxide interface and cause the intrinsic energy level E, to lcross over the
coﬁsta.nt fermi level by @; at of, near the Si surfaces ( Fig. 2.2, 2.3 ). Then an inversion
Tlayer of width w; is formed at the silicon surface. This region has conduction properties
typically of n type material. This rt;gion IS called the conducting channel of MOS
structure. q'¥, represénts the band bending at the surface and ¥, represents the surface

potential.

( Ec
' - s
i I‘// .
¥, q®r By
e )
» X
Si0, Si (p type)

Fig. 2.3 Energy band diagram at the onset of strong inversion



i,
¥, <0, the bands bend up at the surface,.hole is accumulated at the surface which
happens for (-)ve gate voltage. | |
¥, =0, flat band condition .
O > ¥, > O, holes .are depleted which happens for (+) ve gate voltage.

¥, > @y, we get inversion for more (+)ve gate voltage.

- Atthe oﬁ_ set of strong inversion the surface poteﬁt.ial [Fig. 2:3), -
| | P, =20 = ¥, (2D
At the right side of inversion. layer a debletion layer of width W (neglecting
inversion layer width since it is less than 100A° ) is produced which extends up to the

bulk.. .

The depletion layer width W and the charges per unit area in depletion layer Qg is

given by
2 )
wW— 8}:}‘“ (2.2)
aN, .
and, |
Qp = -gNaW ‘ (2.3)
Where, ‘

Na Iis the doping density of the substrate.
q is the magnitude of electron charge. -
T}le charge balance equation is given by,
Qs=Qr+ Qs =-Qu _ (2.4)
where, _ '
Qs = total charges per unit area in semiconductor
(= charges per unit area in depletion layer

Qu = charge per unit area on the metal.



The applied gate voltage is given by,
| VG = VFB + lIJs! + lPo

= Vpp + ¥, - Qs/C,

= VFB+ IPS+TJ[E ‘ . . (2.5)

where, 7
Vg = flat-band vo]tgge
¥, = Surface potential
C, = Oxide layer capacitance per unit area.

Vs = 0 volt for ideal MOS structure.

_ y2ag,N, ' ' ' (2.6)

"Yn.n.

Cp= S - . @

oxX

—

tox = oxide thickness. '
£ax = permittivity of oxide layer
g = permittivity of semiconductor 7
Therefore the threshoid voltage can be represented as, |
Vr= Vi - Qu/C, - o (2.8)
Since, at threshold voltage Vr, Qs =Qpg '
where, |
W, = 2Oy at the on-set of strong inversion,
Again, at the onset of strong inversion Q; << Qg
| 50,0 =Qi+ Qu= Qs
So, for ideal MOS structure, Vy=28; - Qu/C, | @9
' The flat-band voltage is hecessary due to work function difference between the

metal and semiconductor and also due to the interface traps and oxide charges,

10



2.3 Interface traps and oxide charges :

The exact nature of the Si -/_ Si0, interface is not yet fully understood.
Picture of the interface is that the chemical composition of the interfacial, as a
consequencelof thermal oxidation is a single crystal silicon followed by a monolayer of
Si0y i.e., incompletely oxidized silicén, then a strained region of Si0, and the remained
stoichiofnetric, strain free amorphous, SiO, (the compound Si is stoichiometric when x=2
aﬁd nonstoichiometric when 2> x >1 [16]. For a practical MOS stfucture,'interface traps
and oxide cha.rges exist ﬂiat will affect the ideal MOS characteristics.

The basic classification of these traps and charges are (Fig.2.4):-

1) interface trapped charge Q; , which are charges located at the Si-Si0;
interface with energy states in the Si forbidden bandgap and which can exchange charges
within a very short time; this charge can possibly be produced by excess silicon (trivalent

silicon), excess oxygen, and impurities.

2) fixed oxide charges Qg which are located at or, near the interface and are

immobile under an applied electric field.

3) oxide trapped charges Q, , an be created, for example, by x-ray radiation or,

hot electron injection ; these traps are distributed inside the oxide layer.
4) mobile ionic charge Q,, such as sodium tons, which are mobile within the oxide
under bias teinperature aging condifions. In this thesis, only the oxide trapped charge is

discussed.



Mobile tonic - :
charge _ Metal

Oxide trapped T~ [Na* K'
charge —_

- S10,

D

Fixed oxXide |

charge "‘“-- . . . . ‘ SiOx
/ Si | ~
Interface :

trapped charge

Fig. 2.4 Tenninology of charges associated with thermally oxidized silicon

2.4 Creation of oiide' traps :

The oxide traps are created during fabrication due to some loose bonds of Si
and these are intrinsic traps. Some traps are also created when high energy hot carrier
injected into the oxide and break the bonds of Si0Q,. The generation of interface trap at the
Si/Si0; interface and the oxide trapped charge are due to ionizing radiation as well as high
field stressing [1,3]. Due to high electric field, carriers that are injected into the depletion
1ayer are accelerated and some of them may gain enou gh energy to cause impact
tonization, [19]. These carriers have higher energy than the thermal enefgy and are called

hot carriers.

17



Tunneling

- ' " .7 electrons
Trap levels _ / Ec

// _ Er
"

SiO, Si (p type) .

Fig. 2.5 A possible model for detrapping of trapped holes showing electrons tunneling

| from silicon conduction band to trap levels applying positive gate voltage.

If the hot electrons have energies larger than the 81-8i0, energy barrier (3.2 eV)
then fhey can get injected from Si conduction band into\the gate oxide. Even if these
elecﬁons have energies greater than 1.5 eV ﬂley may be able to tunnel into the oxide from
inversion layer [19]. Both electron and hole traps results from hole injection, although
traps are initially neutral and hence not seen [20]. A fracfion of the injected electrons are
captured by electron traps in thé oxide resulting in trapped negative .ch,arges in the oxide
[3]. These negative charges influence the device cllafactelistiés producing positive shift of
threshold voltage."l"hé amount of trapped charge can be calculated from the shift of the
- threshold voltage if the position of charge centroid is known. Due to oxide trapped charge

the transconductance becomes smaller because of reduced channel mobility [18].

A possible MiCroscopic mechanism for trap generation is that a hot electron
(having energies lager than 3.7 eV) breaks a silicon-hydrogen bond [21]. If the trivalent Si
atom recombine with hydrogen, no interface trap is generated. If the hydrogen atom



diffuses away from the interface, a new interface trap is generated [21]. In insulator -
semiconductor device structures, the bonds that can be readily broken are[22]: (1) the
strained intrinsic bonds, such as Si-O~8i~O-Si where, ~ indicates a strained bond, in the
sense that the bond lengfh ~ is stretched or longer than the average and hence susceptible
to rupture -or breakup by an impinging energetic eleciroxr (2) the hydrogen bond at a
proton trap such as SiO-H, Si-H and Si.H.X=Si; where X is a group IIi acceptor such as
B, Al, Ga, or In; and (3) weak impurity bonds.

AN
2.5 Effects of oxide trapped charge :

The main effect of oxide trapped charge is a definite shift in threshold voltage of the
device. it causes also a voltage shift of the MOS Capacitance-Voltage (C-V) curve.
These oxide traps are associated with defects in SiO, . These oxide trai)s are usually
electrically neutral and are charged by introducing electrons and holes into the oxide. F ig.
2.6 shows the band diagram and the charge distribution for an MOS diode with both fixed
oxide charge and oxide trapped charge. Comparinlg this Fig. 2 ¢ with Fig.2.2, it can be
noted that for the same surface potential y, , the applied voltage Vg is reduced which
makes the threshold voltage shift .

The shift due to the oxide trapped charge is given by [18],

Qo

MVa = C, = VCH ([ xp_ (o] (2.10)

where, , _
Qo = effective net charge in the bulk oxide traps per unit area at the Si-S10,
interface.

Pa(X) = volume oxide trap density.

i4



Ve>0 T - / ' ~ Er,

E,_ /‘———Ev
o | 4‘_’tox__‘+

Metal Oxide Semiconductor (P type)

Fig. (a).

1 p(x), space charge density

~ Qe

Fig. (b) -

- Fig. 2.6 (a) Band diagram and (b) Charge distribution with fixed oxide charge and oxide
trapped charge of a MOS diode.
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Even after detrapping of oxide trapped charge on the application of an electric field , the

remaining flat band voltage shift AV(t) is given by [7]

-t
o tox -t
AV(t) = ﬂf__.. ’ (l— ti)nd(x)e'("fmdx

g0)(80 0-

where,

©(x,F) = time constant of oxide trapped charge on the applied electric field.

n,(x) = initial distribution of filled traps .

2.6 Discussion :

(2.11)

Due to the continuous scaling down of MOSFET device dimensions, both the

lateral and the transversal electnc fields generated during device operatlon are steadily

mcreasmg This enhances the m_;ectxon of channel hot carriers, thus aggravating the

problem of oxide trapping and interface state generation. Long-term operation of the

device is seriously affected by oxide charging, because the charging continues to increase

with time during device operation. As a result of this cumulative degradation, oxide

charging limits the maximum voltage levels that can be applied for a given specific device

life time. To reduce oxide charging the water related traps in the oxide should be

minimized.
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CHAPTER-3

QUANTUM MECHANICAL TUNNELING PHENOMENA
AND THE METHOD OF SOLUTION -

3.1 Introduction :

An estimation of the quantum mechanical transmission coefficient (QMTC)
across the arbitrary quantum-barrier and quantum-well structures are required to .
understand the physical mechanisms and the major features of resonant tunneling process.
The .quantum mechanical transmission coefficient and hence the quantum mechanical
reflection coefficient (QMRC) can be calculated by solving the single particle, one
dimensional time independent Schrodinger wave equation with scattering wave conditions.
{11]. The closed form anaiytic solutions in terms of known functions can be obtained only
for certain special forms of potential energy profiles. When an exact analytic solution of
the Schrodinger equation acfoss a particular potential is not available, approximate

method applicable to general potentials is required.

The WKB approximation is the éonventionai method of determining QMTC
[13]. Although it is conceptually elegant, it is nevertheless an approximation scheme that
does not take into account , for example, the detailed structure of a given potential below
the penetrating electron energy level. The WKB method fails to show the ﬁné structure of



the QMTC. Furthermore, it predicts incorrect resonant energies of a resonant system. The
WKB method is a quasi-classical approximétion and is valid when the De-Broglie
wavelengths of electrons are small compared to the distance over which the potential

changes appreciably.

The QMTC is calculated by Chandra and Eastman [23] for a triangular
barrier via the numerical method using Taylor series expansions for the wave function and
it’s derivative. This method can also be extended for arbitrary structures but the

computation will be inefficient.

In another approach, the potential structure is approximated e:ither piecewise
linear ‘potential functions or, by piecewise constant potential functions. The solutions of
Schrodinger wave equation in a region can then be expressed as a linear combination of
plane or evanescentrwaves. The general concept of quantum mechanical tunneling'is
discussed in sec.3.2. A simple method of calculating the QMTC of tunnel structure is

presented in sec.3.3. A method for calculating the wave function is present in sec. 3.4.

3.2 Review of quantum mechanical tunneling :

Let us consider a finite one-dimensional potential barrier V(x) between two
constant potential energy regions which are semi-infinite in extent as shown in Fig. 3.1.
According to the theory of classical mechanics a stream of particles coming from the left
with enérgies E less than the barrier peak V, will be totally reflected but with energy
E>V, completely transmitted. According to quantum theory, any particle can be
representéd by a wave. However, because of the wave nature of the matfer, the probability

- of reflection is finite for E>V,, , and the possibility of tunneling exists for -E<V, .

18



v

Xy, Xp X

Fig 3.1 A one dimensional potential barrier V(x)

An electron wave with energy E incident on the barrier from left to right is represented by
the stationary wave function, |
yi(x) = Ae KX x<x, | (3.1)
where,
A isacomplex constantand
K; is the wave vector for the region, x <xi, -

The wave vector K can be determined by using the equation,

| _p_ 2m (E-V) o '
K(EV)=R= 220 =~ %/ 3.2
( ) " ) (3.2)
so that, K; = K( E,VL)=-%= 2_.,_____'(hE2_VL) (3.3)

where,
P is the momentum.
m' is the effective mass.
V. is the height of the potential to the left of thé barrier.
# is reduced Planck’s constant.

15



The reflected and transmitted waves are represented by the expression

y,(x)=Bef* x<x | | (3.4)

W) =C&* T x>x, | 3.5)
respectively. |
Where, k,-k(E , Vy) is the wave vector for x>xg and B and C are complex constants.
The current transmission coefficient D s equal to the ratio of the transmitted current to

the incident current [24].

2
_ k]

? k;laf

, assn_imihg same effective mass. (3.6) -

The reflection coefficient R is then just the ratio of the intensities of reflected and incident

waves [24].

2
B
- R= i% (3.7)
The two coefficients are related by [24]

R+D=1 - | (3.8)

D and R are the functions the electron energy for a given potential barrier V(x). Dand R
are independent of the direction from which the electron is incident on the barrier.

D(E) and R(E) may be determined by solving the time independent Schrodinger wave
equation, '

42 2m[E-V |
dx‘z" + = ['rﬂ W _ . (3.9)

using the conditions of continuity of y and %xl—p— .

20



" 3.3 Methodology :
3.3.1 Quantum mechanical transmission probability across arbitrary

~* potential structures - The generalized impedance concept ;.

A.straigh-t forward method for solving the fime independent -Schrodinger
wave equatio.n-to calculate the QMTC across an arbitrary one-dimensional potential well
have been developed by Khondker et. al. [17]. This method is based on the analogy
betweén the plane wave and evanescent wave solutions of Séhrodinger's equation in a |
- region of constant potential and the waves along a uniform transmission line. A quantum
_ mechanical wave impedance analogous to the impedance in transmission lmnes have been
defined to make use of impedance transformation and other complex impedan‘c'e matching
techniques in the design and analysié of resonant tunneling and other so called quaﬁtum

size effect devices.

& V ( X )
v . : -
Y- *“'—
W+ -----—p-
0 1 N

- Fig. 3.2 A region with constant potential energy V

To understand the concept of quantum mechanical wave mmpedance in analytical

form let us consider a region of constant potential and the solution of one-dimiensional
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time independent Schrodinger wave equation in this region. The wave function in the
region ¢ <x <1 (Fig. 3.2) assoctated with energy E incident normally on the potential
barrier is,

W) =y ety e o o (3.10)

Y=a+ip=] ‘/—"_"‘.;‘E_“” | 3.11)

is the propagation constant; m’ is the effective mass and Ais the reduced Planck

where,

constant. y * and y ~ are the complex constants.

Now consider a function ¢ which is defined as

¢>=_2_n’1", ‘%“ o o ' 3.12)
J
2

Sy (e ™)
_l |

= Zo(y e®-y e ™) I' - (3.13)

where, Z,=—=Y
jm

The equations for the current (I) and the voltage (V) in a uniform transmission

line with distributed impedances have the form [25]:

1) =( e’ + I 0%y | (3.15)
V() =Zy (I " - I 71 (3.16)
where, v, is the propagation constant; Z, 1is the characteristic im;iedance of the

transmission line.
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Comparison of equations (3.10) and (3.13) with equations (3.15) and (3.16) shows that
 and @ are analogous to current I and voltage V, respectively int a transmission line.
Thus, Z, can be regarded as a characteristic wave iinpedance for the region 0 < x < 1. We .
must consider the contmuity conditions at the interface between two adjacellf regions to

complete the analogy. At the interface, particle conservation requires the continuity of W

and the continuity of i jx—w The second condition is slightly different from what is
m - .

often used in that the derivative of the wave function is divided by the effective mass.
| Therefore, the continuity conditions will be satisfied if y and Q. are continuous

everywhere inéluding the interfaces. These conditions corresponds to those transinission .
lines which require that total voltage and current be continuous at the jﬁllcti011 between

two transmission lines.

Again, the ratio of ® and y are analogous to the ratio of voltage and current

which is called impedance. This ratio (@ Ay) is most useful because the techniques
devised for transmission line computation may be applied to problems in resonant
turmel'ing phenomena. The quantum mechanical wave impedance (QMWI) at any plane
X is defined as,

Z0)=0x)/wx) o @17

ThJs ratio is simply Z, for a (+)vely traveling wave at all planes whereas for a

negatively traveling wave this ratio 1s - Z, for all x. In general, the QMWI will vary
with x. The input tmpedance value Zin= Z(0) distance | in front of a plane at which the -
load value of QMWTI is glven as Zp = Z(1) may be derived in a manner similar to the
| corresponding transmlssmn line formula [25].

Z, coshyl+Z , sinhyl
*Z , coshyl+Z, sinhyl

Z;n = (3.18)

where, Z, is the characteristic QMWI of the intervening region.
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The equation (3.18) constitutes the core of the exact solution of Schrodihger‘s equation -
across arbitrary piecewise constant potential. By using the analogy the equation for
reflection coefficient defined as the ratio of the voltage in the reflected wave to that in the

" incident wave [25] gives the wave amplitude reflection coefficient p = y/y' for a
potential structure of characteristic impedance Z, when it is terminated with some known

load value of QMWI Z; :

Z; -Z ' .
p=-L 0 - (3.19)
ZL+ZO .

The probability current density S [19] can be defined as,

~h  dy
N —1
jm” dx

S=Re[y
= (1/2) Re[Dy"] | | (3.20)
Thus, 8 is analogous to the average power in transmission lines.

Therefore, the use of equation (3.18) makes the wave impedance method computationally

efficient for analyzing arbitrary potential functions.

3.3.2 Applicatioh of impedance method for an arbitrary thential

function :

This requires the continuous. variations of potential energy which is to be
approximafed by piecewise-constant functions. Consider the potential function as show in
Fig.3.3 be splitted up into a sequence of N small ségrﬁents. Then the effective electron
mass m'(x) and the potential barrier V(x) are approximated by the multistep functions.
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m’(x) = m; (%) = m'[Xi +xi]/2 | | (3.21)

V(x)=V;=V[xit+x]2 (3.22)

Consider the left (x < X,) and the right (x > xy) of the potentiél barrier which can be

assumed to seminfinite in extent.

) ith region
Potential

Energy, V(x)

v
w4

Xo Xi-t Xj XN

Fig.3-3. Energy band diagram (Solid line) and approximated potential functions (broken

line) for the potential barrier.
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Suppose we shall calculate the QMTC of an eleutron incident with energy E at the lefi side ,
of the barrier. The estimation of the QMTC across the barrier has been reduced to the
calculation of the QMWI for the electron streaming from the left toward the barrier using
equation (3. 18) The valués of ¥ and Z, in different segments can be calculated using
equation (3.11) & (3.14) respectively. Since there is no reflected wave in the region x > xy

it can be represented by a transmission line of infinite length.

The load impedance 7; = Z(xy) is equal to Zo, wer , the cha_racterlstlc
impedance of the (n+1)th region. The impedance Z(xn. ;) is calculated using equation

(3.18) with Zo=Zon , |=xn-Xxn.; and this process is repeated until the unpedance Z(xo) 18

obtained.
Z( ) Z(x, )Coshyl +Z, Sinhy I, :
N S0d 7 Costy -+ 2, (x,)Siny (3.23)
where, _ _
o [2m{(E=V)) -
Yi= ot =] 5 | (3.24)
li=x-x;, , (3.25)

The wave impedance reflection coefficient P at X = X, is calculated by using Z(x,) as the
load impedance and Z, .o as the characteristic impedance and substituting these values in

equation (3.19). The QMTC D(E) is then given by [17].

D(E) = 1-{o(E ) [* | - (326)

Where [o(E )| is the quantum mechanical reflection coefficient.

26



3.4 Solution for the Wave function :

The wave function in any region of constant potential can be calculated using
equatlon (3.10). The solutions of two adjacent region must then be connected at the
interface using the continuity conditions. For automatic solution matching at potentlal

discontinuities and ease of numerical computatien it is convehient to write the wave

function in the i th region as

W(x) = LIJ’_+ e'Yi(x_xi) + p— (xi)e‘”'Yi (-r_xi)] 7 | (3.27)

where, p’(x;) = —- is the reflection coefficient at x =x;

kA

putting x = x; in equation (3.27) we get,

o W)
Wt —— 2 3.28
1+p7(x;) 529
From equation (3.27) and (3.28) we finally get
Wix) = ‘{"(x,-{Cosh{Y,-(x—x,- P+ - p:(x") Sinhfy;(x- x,-)}} (3.29)
| 1+p7(x) |
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Z(xi)

Coéh{yi(x — X+ 7

=qJ(x‘

1

Sinh{y,(x —x, )} (3.30)

0,

for, x;; <x<x

From equation (3.30) the following recurrence relation can be obtained

Z(xi)
Z .

0.1

W(x,_,)="¥(x,] Cosh(y,;1)- Sinh(y1;)

(3.31)

The solution of s throughout the structure entails an initial condition. We can freely

choose an initial condition that is convenient for an unbounded function. |p|” is unaffected

by this choice of initial condition as it is the ratios of square of amplitudes and so the

absolute normalization of free particle wave functions is not required. A convenient initial

condition is to assume "‘P(XN)I = 1.0, the recurrence relation equation (3.31) can then be

used to determine at each position over the full region with which we are interested.

In some cases the position probability density [¥? rather than the wave

function y it self is of physical importance. A much simpler method for accurately

calculating [¥? can then by developed for an unbounded wave function.

Using equation (3.17) the probability current density S in equation (3.20) is

expressed simply by

1 .
S(x) =7 Re[Zx)wx) w (x)]
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-5 heeol” Relzeo) | (3.32)

S represents the net electron flux and for a stationary problem it must be independent of x .

hB
If we assume H’(XN)! = 10 then at x = xy, S has the value ——""-m,.N,+
. . . N+1

where,

2m1:1+1 (E B VN-H)
BN+1 =

o2 (3.33)
/17 at any x is then given by, \
2 2hBN+1
g = .
O = o kel 9

3.5 Discussion:

A simple but exact method of solving the Schrodmger equation for a piecewise
constant potential has been presented by Khondker et. al. [17]. Since any potential
function can be approximated by using piecewise constant potentlal ﬁmctlon to arbltrary
accuracy, then Schrodinger equation can be solved to any degree of accuracy for various
potential barriers and wells including continuous variations of potential and effective
ntass \t’arious useful qltantum mechanical quantities regarding the particular potential can
be obtained by using the solution. In the next chapter this quantum mechanical wave
Impedance concept will be used to estimate the life time of 0x1de trapped charge at

various distance throughout the oxide length of the MOS structure .
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CHAPTER 4

TIME DEVELOPMENT OF THE OXIDE TRAPPED
CHARGE IN AN MOS STRUCTURE

4.1 Introduction :

The investigation of the time development of tunnelmg phenomenon is
unportant since it determines not only the fundamental frequency limit of most devices
involving resonant tunneling but also the mechanism for the physics of the tunneling
process. ‘

There is an interesting property of resoniant tunneling structure for transmitting
electrons through a quantum well sandwiched between two poténtial barriers with high
transmission probability when the electrons are incident at energies equal to any of the-
virtual energy levels of the well[26]. Elec;;rons having energies other than the virtual
energies of the well have a very low transnﬁssidn coefficient ie., they are not allowed to
pass through the resonant tunneling (RT) structure. The build up of a coherent electron
wave function in the quantum well involves a process very similar to that building up an
electromagnetlc wave in a Febry-perot resonator [27]. In the absence of a scattering
mechanism, which can destroy the phase coherence of eleciron wave, the a.mphtude of the
resonant modes bu1lds up in the quantum well. The electron waves can leakout in both

directions and in doing so cancel the reflected waves and thus enhance



> the transmitted wave [26]. If the time evolution of the wave function in the well is long
compared to the scattering time, the collisions randomize the phase of the wave function.
In this case, the electrons tunmel through both the barriers sequentially and the RT

structure has a lower quantum mechanical transmission peak.

Tunnel injection of charge carriers from traps into the allowed energy bands of
insulators, the so called field ionization, is a well-studied phenomenon. One or, more trap -
energy levels even exist in insulators and direct injection of charge carriers in insulators
from an electrode may also occur [9]. In this research, we investigate the tunneling of
charge carriers from a h;etal or, semiconductor to a trap in insulator. This process is
important to study the insulator currents and breakdown phenomena. In this chapter , an
analytic formula for the life time of oxide trapped charge is derived by considering the
electron wave function as one-dimensional delta function . Then this analytic formula is
modified to determine the effective life time when the gate voltage is switched from one to
another voltage which is léss than the initial applied voltage . To determine the effective
life time the prolbabi.lity density distribution corresbonding to the imtial applied voltage is

also presented .

4.2 Limitations of frequency for tunneling structures:

The proposed frequency limitations of device involving the tunneling process
have been based on various definitions of the intrinsic time scale for the tunneling
electrons. These include the life time of resonant state [28], wave packet delay time and

resistance-capacitance time constants.
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The traversal time is the time during which the tunneling particle is actually
traversing the barrier. The importance of traversal time in characterizing the tunneling
‘process have been pointed out by some authors [16,26]. But there are several
cohtradict_ory results for the traversal time. Buttiker and Landauer {29} have substantiated
an existing expression for traversal time by c_onsiderihg mlmeling. through a time-

modulated barrier :

Ixﬂ? m "

Tr= A k(%) j , (4.1)
. Zm*[V" (x) - £]

x; and x, are turning points and K(Xx) = Y

for the tunneling electrons after the establishment of steady state in DBRTS. Anwar et.
al. [26] calculated the traversal time by determining steady state group velocity V, of the

tunneling particles from the equation

S(x) = Vg(x) ()| @Y

where , S is the probability current density through the double barrier resonant tunneling
structure (DBRTS) , which at resonance is equal to the incident current density'for a

symmetric structure and v is the steady state wave function .

Comparison of equation (4.2) with equation (3.32) gives us,

1
Vg(x) = 5 Re [Z(x)] | - . (4.3)
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The traversal time is then given by ,

L dx : ‘ o
=l o ae
L dx o

=2L el 4.5)

where , L is total length of the resonant tunneling structure.

Smith [30] calculated a time 14 which is the ratio of the number of particles
“under the potential to the incident flux. This time is the average dwell time of a particle
which is not the traversal time, if most partiéles are reflected [29].

IL x| dx |
0

S (4.6)

Td=

: whéré ., Sip 1s the incident flux . For a Symmetric dquble barrier resonant tunneling
structures at resonance Si, = S(x) =V, (X)I‘I’(x)l2 so that T4 becomes essentially the same
as the traversal time tr proposed by Anwar et all..[26]. Luryi [30]_calcﬁlated the time
" constant of the ﬁansient process during which the resonant modes builds up inside the
Well due to charging of the ‘quantum capacitor’ formed between the base quantum well
and emitter electrode by the tunneling curfent through the first barrier. But the frequency

limitation calculated by Luryi gives much lower value which is not relevant for usual

device operation.

33 -



Lundstrom and Svensson [9] calculated the tunneling time constant of oxide

trapped charge in an MOS structure by using,

1
t=% 4.7
where , P is the probability of tunneling through the oxide and is given by,
200, 2dn '
P=— | L - (4.8)
where , dE is the density of states for the metal and should be taken at E=E;
which is the total energy of the conduction band electron.
Tunnel transition, T = J‘P:Va‘l-}ﬁ( r)dr 4.9) .

where , the wave function ¥, and ‘¥, characterizes a trapped electron and an
electron in the conduction band of the metal and V; characterizes a three dimensional 6

function trap. But Yamabe and Miura 8] calculated the tunneling probability Pox using

‘WKB approximation as ,
X2
-2 JK(x)dx
P, =e *l - (4.10)
and, r= S ' (4.11)

where, Kk(x) is the imaginary part of the longitudinal wave vector in the SiO,
band gap , To is the shortest time constant and x, , X, are the classical turning points.
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The detrapping. of holes out of SiQO, in an n-MOSFET's afier exposure to
ionizing radiation was found to play a dominant role in the long term recovery of

irradiated MOS devices [5]. It was modeled as a tunneling transition of holes from an

energetic level about 3 eV above SiO, valence band. Manzini and Modelli [5] developed

“an expression for the dependence of the time constant of the hole discharge on the applied

electric field F and the distance x between trapped hole and interface which is given by,
UX,F)=t expl 7o
(xF)=1 pL 3hqF

(4.12)

where, E; is the energetic level above the Si0O; valence band , 1, is the characteristic

tunnelfng time and m’ is the hole tunneling effective mass.
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4.3 Calculation of life time of oxide trapped charge using stationary

state solution :

An alternative analyti_cél formulation , using the stationary state wave
function to calculate the life time of -an electron in a quantum well is presented here.
Consider a simplest case of resonant transmission , when a paﬁicle of energy E is incident
from left upon two consecutive barriers of height greater than E, with a classically allowed
region between them (Fig.4-2). The energy of the pafticle is almost totally reflected, but in
exponentially small energy intervals of width AE, the particle transmission is greatly

enhanced. -

v

Fig. 4.1 Conduction band profile of a double barrier resonant tunneling structure .
A relatively large electronic density builds up in the allowed region between

| the barriers, because the wave leaking through the first barrier is constructively interfering

w1th reflections of the second ba.mer The final wave function inside the well may be
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obtained by-s'umming up all the multiply reflected waves. Let , this stationary wave

function be represented by y(x) which can be obtained from the solution of time

independent Schrodinger's wave equation.

If the incident wave is now stopped, the accumulated charge density in the

well will gradually decrease since the carriers will leak through the barriers into region 1

and region 3 . The amplitude of the wave in the well will decrease with time and let this

time-varying function be represented as
w(x, 1) = yw(x) i)
‘where , fit)=1 at, t=0

The wave function in region 1 (fort > 0) can be written as,

LP(x, t) =W(0) e /P1x ft) x<o0

where ,

_‘/2m;(E—V1)

l} =
1 hz

Similarly the wave function in region 3 fort >0 is

Wz, 1) =H(L) ) (1) o

where ,

2m;(E—V3)
52

3——
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The time derivative of the integral of position probability density P over any fixed volume
Vis given by [10]

o - - - o
a_tjp(r-,:)dh—_[s.d/l_ . (4.16)
v -4

where, A is the bounding surface of the volume V. For the one dimensional

structure, equation (4.16) can be written as
o tL
2 jo Plx. ) dx=5(0,1)-5(1..1) |  an

where, S(0,t) and S(L,t) are the probability current densities at x =0 and x=1, respectively.

The probability current density S is defined as [10] 7

- Fofoe . |
..S(r,.r)zzjm, ¥ ve-(ve')y] (4.18a)
= Real part of[qf _h. V‘P} (4.18b)
Jjm : : .

For the one dimensional case,

o fgen o] -
S(x,t) = Real part of [ jm * O J .. | (4. 19)
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Therefore from equations (4.14) , (4.15) and (4.16)

5(0,1)= _':El (0)) |1 (e)? (4.20a)
1
and :
S(Le’)=—hli3 (L) | 0 (4.20b)
My _
Subﬁitution of equatio;l 4.20 into equation 4.17 gives
oL 2 |
5 J;llP(x)l @) dxe |
o o 4.21)
= 2P0 + e o
ml o ms
As f{t) is independent of x-equatio.n (4.21) can be miﬁen as,
| 0 | -1 |
alf (o) = jr:[f (e)ff (4.22)
where,
. - j(‘)r‘ I‘I’(J\:),2 dx |
L= _
Prwop+ Lo .
omy my

The form of equation (4.23) suggests that T, can be taken as the time constant
for the decay of the charge density in the well i.e., the life time of the quasi bound state.

39



For a symmetric double barrier structure tr (t4) is twice the value of the life time 1, as can
be seen from an inspection of equations (4.6) and (4.23). Here Anwar et. al. [22]
suggested an intriguing possibility. If one assume that time required for the electronic

density to build up in the well is equal to the decay time then the traversal time of an

electron through the RT structure is 2t;,.

Now using equation (4.23) the calculation of life time of oxide trapped charge (¢” ) is

presented below.

Metal Oxide Semiconductor
V .
A A : Trapped
4_ _._../
E | e —1" electron

v

0 % 1
Fig. 4.2 Band diagram of MOS structure at flat band condition .

At first consider that no voltage is applied to the gate i.e., the oxide conduction band is
flat. Although, due to some trap charge a smali tilt in the oxide conduction band exists but
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we can neglect this. Let us, consider an electron is trapped at a distance X, from the metal

oxide interface (Fig. 4.2 ). Consider the corresponding trap wave function as,

B(x) = A" 0y petleomo) eprlaomo) gy

where ,

A, B and C are complex constants and

; 2m*(V—E)_ meEt
7—\, Py ‘\f 12

m’ = effective mass of electron in SiO, layer = 0.1 m,

‘m, = rest mass of electron = 9.1095x 10 *! Kg

V = potential barrier height (conduction band of $iO;)
E = electron energy

E; = V-E = trap depth

A = reduced Planck consiant = 1.0l55 x 10 J-sec

Now ,

J;L; [‘I"(x)]2 dx

- Ix°A2é‘2’(’_“"°)dx+ILIAZe“(""‘o)dx
0 - xo L (425)

L
0 ) 0
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AY o

j( ~24€77¢ HM‘) +—-(— S Ry Ciat i

where,
=12-%
L, = width of oxide layer .

Again , the reflection coefficient at Si/SiO; interface p; is,

Be“T(Lz*Xo) B

= = - —ZYLI
Pr A cY(Lz—Xo) A N
B?
=R e

the reflection coefficient at métal / 810, interface p, is ,
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By putting these values in equation (4.26) we get,

[ ool aem S -asmm) o 81100

2(62?(L1+2%) e 2%0_)‘

Now, _
MO =[O 4 et |2
= A262’yx0 ll + pl‘z
and ,

2

| I~{_(]_,2)‘2=1A¢1(1a—30) +Beﬂ(1rz—’<o){

2
-A2%e?1h |1 + pr|
According to equation (4.23) the lifé time of oxide trapped charge is,

2 pt ) el

"LE0Br 2 BBy 2
m; H’(O)I + m: I"P(IQ)|
where , | ' o
[omi(E - - [2m\E -V
Btz\_/'Zm,(E ) and, BrZJ m(hz, )

hZ
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m; = effective mass of electron in metal.
m, = effective mass of electron in semiconductor

E = trapped electron energy
V; = conduction band of metal
V, = conduction band of St

The wave amplitude reflection coefficients are given as, .

Zo 11

P = o+ 2, (4.33)
P o=y 4.34
where,
2vh
Zo= _m.- , characteristic wave unpedance n ox1de layer
J
) 2m (E-V)
Since , y=jy——
| h
S s0, Zo= + . ' (4.35)
m : .

Similarly , the load unpedance at x=0 lookmg toward the left (metal) Zu is given
by (Fig. 4.3) ' ‘

E-V,
Zy = . (4.36)

*
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Fig. 43 Life time (1) as a function of .distance from interface with trap depth (E,,

measured from oxide conduction band) as a parameter.
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Fig.4.4 Life time (t1) as a function of distance from interface with oxide thickness (L,)

as a parameter.
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the load impedance at x = L, looking toward the right (Si) Z,, is given by (Fig. 4.2)

E—V. | '
Zip= [—2 o 4.37)
m,

Now using equation {(4.33), (4.34), (4.35), (4.36) and (4.37) we can calculate prand p; .

Then, the results obtained by equation (4.32) shows that the states which are
more closer to conduction band, ﬂlat is, the states which have a deep trap depth have
longer life times (Fig. 4-3). It is also shown that the life time increases also with the
increase in distance from any interface (either metal-oxide or, semiconductor-oxide
interface) and it becomes maximum at the middle of the oxide length". It happens because
near the interface the tunneling probabilify is very high and it decreases with the distance
from the interface. The maximum life time also increases with the ihcrease in length of the
oxide layer (Fig. 4-4). In this anal?sis the effective electron mass in SiO, is assumed to be
0.1myg, in Si it is 0.98m, and in metal it is 0. 42m,. The potential barrier at the Si - SlOz

interface is assumed to be 3.2 eV.

Now an analytic formulation is presented to determine the effective life time of
0x1de trap charge by con51der1ng that an initial voltage is applied to the gate and then at a
moment the gate voltage is switched to another volta ge which is less than the initial
applied voltage. The effective lif(;. time can be determined at the switching moment and for

~certain delay time T after switching moment.
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The bending of oxide conduction band after applying some gate voltage is shown
in Fig. 4.5 .Now we can determine the life time of oxide trap charge at various distancé |
throughout the oxide layer by épprdxhnating the bending of oxide conduction band as a
- * piecewise constant potenﬁai . For each step we can use equation (4.32) but the load
impédan_ce at various steps can be determined by using the transformation eqﬁation (3.23).

Metal ~ Oxide Semiconductor

_ VOI

ath  (@Dth
_ .

2

v

o Fig. 4.5 Energy band diagram (solid line) with applied gate voltage and approximation of
the oxide conduction band (dotted line).



-1

In this case, the potential barrier hei giit fornth step;

Vo “_“.Vo - Vo +H(Vs/ Ly ) %o | (4'38) ,

where,
Vg = remaining gate voltage after switching
Xo = distance of oxide trap from metal-oxide interface

Here, it is assumed that the electrons tunnel with constant energy.

Now to determine the effective life time the wave function distribution, that is, the
probability density distribution should be determined. The wave function corresponding to

tunneling electrons depends on the initial applied gate voltage.

_7///

g —
(n+1)th

¥, — :
e— Tegion

nth
region

ame

Zin Zi g1

4

Fig. 4-6. A single step of the approximated oxide conduction band
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The wave function in nth region associated with an electron of energy E incident normally

on the potential is,

W (x) =B "™ + P ¢ Tn* (4.39)

where,
2m'(E-V,) ~
Yn = 2 | | (4.40)

.V, = height of the potential barrier (approximated oxide conduction band)

of nth region.

Vi can be determined by using equation (4.38) but in this case, Vg is the initial applied

gate voltage.

Now,

¥,(0) =¥ +¥,; =¥ (1+p,)

(4.4i)

Pn= Fﬂ 1s the wave amplitude reflection coefficient for n th region.
n

Pn can be determined by using equaﬁon (3.14), (3.19) & (3.23).
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Again,
0= 50 = {0 )
l

eYnl + pn'e_Yn
1+p;,

= \Pn+l(0) Zan(O) (4.42)

where, 1 = width of each region.

It is assumed that ¥;(0) = 1.0 for convenience of calculation. Then we can determine the

wave function at the beginning of each step and thus the normalized distribution of

probability density l‘I’,,(O)I2 is determined.

Now the effective life time of oxide tfa‘p’ped charge is,

Tett =7 T | - (4.43)
| Xlwml?e? o

n=}
where,
N = total number of steps
T = delay time afier switching

The results obtained by equation (4.43) is shown in Fig. 4-7. In this case, the
oxide lﬁyer width is considered as 100 A° and total humber of steps is 50. The results
shows that the effective life time T.q increases with the increase of time after switching
and becomes constant affer some time. Tt hapbens because near the switching moment

almost of the oxide trapped charge tunnel out:from the oxide layer and the amount of
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Fig. 47 Time dependence of the effective life time of oxide trapped charge. The
initially applied gate voltage is 6 volt and the marked Vg in the figure is the gate
voltage after switching.
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charghe associated with tunneling discharge decreases with the time. Effective life time
becomes constant due to pennzinent trapping of some charge carriers. Ty also increases
. with the decrease of applied gate voltage afier switching. It happens due to a slower

detrapping under reduced gate voltage.

Very few reports dealing with theoritical analysis of relaxation characteristics of trapped

charges are available in the literature{5,9]. Lundstrom and Svensson {9] derived the model

to calculate life time of oxide trapped charge considering the charged trap center as a three

dimensional delta function without any definite width of oxide layer. According to his
model the life time of 10®s, 10s and 10s were obtained for a trap center situated-at a
distance of 10A° , 20A° and 30A° respectively. Trap depth, trap distribuiion and electric
fields, however, were not clearly mentioned in this report.[9] Brox and Weber{5]
calculated the tunneling time constant of 10”’s, 5s and 10 for holes trapped at a distance
of 10A°, 20A° and 25A° respectively. In the calculation, they used a model developed
by Manzini and Modelli (Ref. 6 of [5]) which is based on WKB approximation. The
results mentioned above were calculated for trap depth of 2.5 ¢V under no external bias.
In this work, we developed a simple mode} for tunneling time constant of trapped electron
considering the charged trap center as a one dimensional delta function. Using this model
we calculated a timé constant of 2x107s, 10™s and 5s for trap center situated at 10A°,
20A° and 30A° respectively for a trap depth of 2.95 eV under no external .bias. A
comparative study of the results mentioned above reveal la reasonable agreement despite
variations of different parameters. The model developed in this work is based on quantum
- mechanical wave impedance concept which is a simple and effective tool to study the

relaxation phél_lomena of trapped charges in the insulating layer of an MOS structure.
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4.4 Discussion :

‘The life time of oxide trapped charge not only limits the operation speed of MOS
structufe but also determines the transport mechanism operating in a particular device. In
this chapter, first an analytical model is developed to determine the life. time of oxide
trapped charge which makes use of the stationary state wave function and then this model
is extended to determine the effective life time of oxide trapped charge when the gate
voltage is switched from one to another lower value which is less than the initial applied
voltage. In the later case, the concept of direct tunneling from semiconductor (or metal) to
oxide is used. The obtained life time shows reasonable agreement with Lundstrom and
Svensson’s [9] result and also with the result obtained by the equation which is developed

by Manzini and Modelli [5].
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CHAPTER-5

~ CONCLUSIONS

5.1 Conclusions :

The basic MOS structure and it’s operations are discussed. The creation of oxide
trapped chargé and the effects of interface trapped charge on the ideal MOS characteristics
are also discussed. The general physics of resonant tunneling is discussed. In this work, the
quantum mechanical wave impedance concept is used for reformulating the tunneling
_theory. A good qualitative agreeinent is obtained with previous models. The tunneling of
electrons between the conduction band of a semiconductor (metal) and a trap center in the

insulator for an MOS structure is discussed.

An analytical model is developed for the life time of oxide trapped charge by
using stationary state wave function. This model is developed by exploiting a similarity
with the double barrier resonant tunneling structure (DBRT). It is developed under no

~applied electric field and by considering the tunneling brobability of oxide trapped charge
through both the metal-oxide and semiconductor-oxide interface. In previrous works, the
~ life time of trapped charge is calculated considering tunneling discharge through one
interface only [5,9]. Here, the trap wave function is considered as an one dimensional
delta function. The calculated results show reasonable agreement with the results reported

by others]5,9]. Assumption of an one dimensional delta function rather than a three



dimensional delta function as was assumed by Lundstrom and Svensson, has made the

analysis quite simple with considerable accuracy.

A simple analytical formulation for the effective life time of'oxide trapped
charge is derived under different gate voltages during relaxation and at different time
intervals after switching, The effective life time makes use of the probability density
distribution corresponding to the trapped electron due to the initial applied gate voltage.
The results show reasonable agreement with the physical concept. These results can well
be used to understand and estimate the qualitative nature of hot "carrier induced

degradation and oxide reliability of thin film MOS devices.

5.2 Suggestions :

In this work, the analysis has been carried out considering discrete trap levels
at various distances from the interface and negllect'ing interaction between traps. One
dimensional delta function is taken as trap wave function which is certainly not unique to
study the relaxation characteristics of oxide 'trapped charge in an MOS structure.
Consideration of a practical trap distribution with hopping charge Uénspon (trap assisted
tunneling) certainly come up with a further extension of this work. Moreover; calculation
of threshold voltage recovery using a practical ﬁap distribution function (both spatial and
energy) and comparison of the calculated results with reported experimental data will be a

_ nice work.
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