- MICROWAVE DIPLEXER USING FORWARD COUPLED

MICROSTRIP COMBLINES

A Thesis submitted to the
Eloctrien] and Electronic Engineering depivltment of
BUET Dhaka, in partial fulfilment of the

requirements for the degree of
Master of Science in Engincering (Electrical and Electronic)

)

Md. Sayeed Akmal

March 1993

l mmumﬂggyggmummW




boags '
1973 ' .
SAY

Declaration

| hereby declare that this work has not been submitted elsewhere for the award of

any degree or diploma or for publication.

Sy, thomed

Md. Sayeed Akmal

<
-_-\



Approval

The thesis MICROWAVE DIPLEXER USING FORWARD‘ CouPLED MICROSTRIP
COMBLINES submitted by Md. Sayeed Akmal, Roll No. 891319p, Session '87-88

to the Department of Electrical and Electronic Engineering of BUET has been

accepted as satisfactory for partial fulfilment of the requirements for the degree of

Master of Science in Engineering (Electrical and Electronic).

Board of Examineres

1. Dr. Saiful Islam
Professor and Head
Department of EEE
B.U.E.T., Dhaka 1000

2. Dr. Saiful Islam
Head
Department of EEE
B.U.E.T., Dhaka 1000

3. Dr. A. B. M. Siddique Hossain
Professor and Dean
Faculty of EEE
B.U.E.T., Dhaka 1000

5. Dr. Shamsuddin ‘Ahmed
Head
Department of EEE
ICTVTR, Gazipur

Sciful Tslaim
Chairman /m 3
(Supervisor)
D
Member t1-3-93 s
(Ez-officio)
Member M L/] “4 N
- ?,5/—9 [
Member AT Y 20N 2 I J ' NI
'(E:Bternal ) |

(77)



Ack_ﬂciwle‘dgémént

With deep sincerity, the author wishes to acknowledge his profound gratitude
to Professor Dr. Saiful Islam of Electrical and Electronic Engineering Department
BUET for his incessant and meticulous guidance in compléting this work. The
author thanks him for his outstanding suggestions in the computation and design
procedure of a forward coupled microstrip.'combline diplexer. The author also feels
proud to acknowledge him for his expert opinion in designing the diplexer at every
step of the entire research. '

Thanks are given to Dr. Mohammad Ali Chowdhury, Mr. Mainul Hasan and
Mr. Mohsin Mollah for their support and coopertation. Also thanks are given to

the friends and colleagues who helped the author to complete this work.

(ii)



Contents

Declaration . . . . .. .. . . e e e

Approval . . . . . .. e e e
Acknowledgement . . ..o .o Lo L. P
Contents . . . . . oo [ e
Abstract . . .. ... ... ... .. .. . L. e e

Chapter 1: Introduction
1.1 Historical review of multiplexers . . . . ... .. .. e
1.2 Diplexer: . . . . . e e e
1.3 Microstrip comb- and herringbone-lines . . . . ... ... .........
1.4 Combline diplexer , . . . ... ... ...... e e e e e e e e e e
1.5 Objective of this research . . . . . S

1.6 | Introduction tothiswork . . . ... ... ...... e e e e e e

Chapter 2: Review of the theory of n-coupled comblines
2.1 Introduction. ... .. P .
2.2 Theory of n-coupled lines . . . . . .. ....... e e
2.3 The wave-propagationmatrix J. .. .. ..................
2.4 Capacitance and inductance matrices of an n-coupled combline system
2.5 The forward scattering matrix of forward coupled microstrip comblines

2.6 Power and relative phase characteristics of an n-coupled.

combline system . . . .. ... .. T

2.7 Obtaining the line parameters of an n-coupled combline

system from the J matrix

............................

2.8 Defining the e vector for an n-coupled combline system

---------

2.9 Summary

.....................................

(iv)

W
(i)
- (4)
(i)

(vids)

12
13
21
23
25

26

28

- 31

32



r

O]
, .

Chapter 3: Forward scattering matrix and line parameters of a combline dllplexe

3.1 Introduction .. .. .. .. 0. .. 33
3.2 Obtaining the forward scattering matrix of a combline
diplexer from its wave-propagation matrix . . . . .. ... .. ... 35
3.3 The e vector of a combline diplexer . . . . . . ... ... e e e e 37
3.4 Scaling a J matrix. .. .. e 38
3.4.1 Scaling by scalar multiplication of a J matrix . . . . ...... 38

3.4.2 Scaling by adding a constant value with all
the diagonal elements of a Jmatrix . . . . ... .......... 39
3.5 Dectermination of the parameters of a forward coupled microstrip

36 Summary . ............. e e e e e PP 447

Chapter 4: Designing a combline diplexer by computer optimization

4.1 Introduction............... e e e 45
4.2 Possible methods of optimization . . . . ... ... ..... e e e 47
4921 Golden sectionsearch ... ........... e 49 o
422 Gradientmethods. ... ... ........ ... ... ... 50 ;
4.3 Selection of optimization algorithm . . . . .. ... ... ... ... 52 1"
4.4 Optimization algorithm used in thiswork . . . ... .. ... ... ... 52
4.5 The effect of changing the elements of e vector on the
characteristics of a diplexer . . . . .. .. e e e e e - 55
4.6 Starting vaiue oftheevector . . ... .. . e 77
4.7 Optimization of g vector . . . . . ... .. e O 78
4.8 Computation of the error function . . . . . . ... .. .... B 80
4.9 The optimization program‘. e e ................... 85
4.10 Examples of optimization . . . . .. . ... ... .. .. 00000 86
4115umma.ry ................. 97

(v)



Chapter 5: Obtaining the physical dimensions of a combline diplexer
51 Introduction . ... ... ... .. ... ...... e e e e e e e 99
5.2 Modeling a solitary combline using the microstrip T-junction
equivalent circuit . . . ... .. e e e e e e e e e e e e e e e e e 101

5.3 Necessary equations for obtaining the finger length and main-line

characteristic impedance of a solitary microstrip corbline . . . . . .. 105
5.4 Obtaining the dimensions of a solitary microstrip combline . . . . . . . 110
- 5.5 Obtaining the dimensions of a pair of coupled microstrip comblines . . 111

5.6 The computer program used in this work for computing the

physical dimensjons of a diplexer . . ... ... ....... e e e e - 112
5.7 Relationship between coupling capacitance and finger overlap C oo

of a pair of coupled comblines . . . . . .. ... ... ... ... ... 115
5.8 Summary . . . . .. e e e e e e e e e e e e e e e e e e 116

Chapterlﬁzl Designing the diplexer

6.1 Introduction. .. .. .. L 117
6.2 Choice of Cu-clad laminate hoard, finger periodicity, finger line width

 and lower band edge frequency . . . . . . . . v i e e e e e 117
6.3 Practical considerations for designing . . . . .. ... ... ... 118
6.4 Considerations regarding scaling and shifting . . . .. ... ... .. .. 119

- 6.5 The design values . . . . .. e e e 130
6.6 Summary . . . . .. e e e e e e e e 134

Chapter 7: Discussions and suggestions for future work

7.1 Discussions . . . ................ S 135
7.2 Suggestions for futurework . . . . ... .. L L L Lo oL, 136
7.2.1 Developing an analytical design method . . . . ... ... ... 136

7.2.2 Developing a design method for a microstrip combline triplexer 137
7.2.3 Developing a designing method for microstrip combline

quadruplexers, quintoplexers and n-channel multiplexers 137

(vi)



References . . . . . . . . . . e e e e e e

Appendices

Appendix A

Appendix B

Appendix C

List of the computer program for obtaining the power and

relative phase characteristics of the ports of a diplexer . . . .

List of the computer program for optimizing the e vector

ofadiplexer. . .. ...... ... .. ...

...........

List of the computer program for obtaining the line

parameters of a diplexer from its ¢ vector

( 'Uii)- '

157

139

144



Abstract

A design method for a novel type of microwave diplexer using coupled microstrip
comblines has been developed. The resulting dipléxer is small in size, compact in
structure and easy to fabricate by using photolithographic and etching techniques.
This type of diplexer is suitable for use in Microwave Integrated Circuits (MIC) as
well as Microwave Monolithic Integrated Circuits (MMIC).

For developirig the new design method for the microstrip diplexers, the forward
coupling properties of a pair of microstrip comblines are taken as the basis. In
a previous work it has been shown that the characteristics of a pair of coupled
microstrip comblines may be represented by a wave propagation matrix known as
J matrix. This J matrix contains necessary information regarding the nature of
propagation of waves in the coupled comblines,

In this work a diplexef is formed with the help of two coupled comblines. The
o matrix of such a diplexer is formed with the help of self line parameters of the
two lines, the coupled line parameters and the léngth of the diplexer. It has been
observed that the J matrix obtained for u matched forward combline directional
coupler in an earlier work provides a good gtarting J matrix for this work. Using the
J matrix scaling and shifting techniques and also adjusting the coupled length,
the operating band of the directional coupler is brought in between the required
operating frequency ranges of the two output channpels of the diplexer. The result-
ing J matrix is then taken for optimization. In this work it has been found that
a compﬁter optimization technique using simple steepest descent algorithm works
well for converting the directional coupler characteristics into the desired diplexer
characteristics. The steps and techniques of the optimization procedure are pre-
sented. The matrix obtained after this optimization is next used for obtaining line
parameters of the coupled comblines. The required equations for this purpose are
also presented. After computing the physical dimensions of a microstrip combline
diplexer it has been observed that the structure is physically realizable.

(viii)
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Introduction

1.1 Historical review of multiplexers

In microwave engineering multiplexers are often required to split a single channel
carrying many frequencies into a number of separate channels carrying narrow-
band frequencies. When a band of microwave signals is fed into the input port
of an n-channel multiplexer, it divides the signal-band into n-number of channels
among n-number of output ports as per the design of the multiplexer. Generally
filters of different characteristics are connected in series or in parallel to achieve
multiplexing. A generalized block diagram of an n-channel multiplexer is shown in
figure 1.1. Multiplexers may be of contiguous channcl type or non-contiguous
channel type. In contiguous type there is no frequency gap between two adjacent
channels of the multiplexer. On the other hand, in non-contiguous type, guard

bands are available between adjacent channels.

From the basic concept of multiplexer one might consider designing a multiplexer

using a number of band pass filters having passbands in the ranges of the required

multiplexer. outputs. However, in practice, difficulties arise in such designs and.

usually special technigues are employed to avoid undesirable interactions between
the filters which could result in very poor performance,

Several types of multiplexers [1] have been developed so far. One type of mul-
tiplexers uses directional filters [1]. These directional filters have a constant re-
sistance input impedance provided that their output ports are terminated in their
proper resistance terminations. When all the filters of such a multiplexer are de-
signed for the same terminating resistance, the filters can be cascaded as shown in
figure 1.2 to form a multiplexer where filter interaction problems are avoided. Each
filter provides pr0pei termination for its preceding neighbour and so there occurs
no residual Voltage Standing Wave Ratio (VSWR) due to design and manufac-

turing imperfections. The system thus become reflectionless. In figure 1.2, Filter

1
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a removes all of the energy at frequency £, but passes on the energy at all other
frequencies. Filter b removes the energy at frequency f, and so on. The use of
directional filters for multiplexing is a simple way of solving multiplexing problem.
In many cases it is also a very pragmatic solution, though by no means always the
most practical way. The greatest practical drawback of directional filter is that each
resonator of each filter has two different orthogonal modes, and if more than one or
two resonators are required per filter, the tuning of the filters [1] may become very
difficult.

There are also multiplexers which use reflecting marrow-band filters, with
guard band between channels (noncontiguous) [1]. These multiplexers are used
where the channels of a multiplexer are very narrow (say, of thie order of 1% of the
main bandwidth or less) and if the channels are separated by guard bands which are
several times the pass band width of the individual filters. Jris-coupled typé filters
may be used in this type of multiplexers. A three-channel waveguide multiplexer is
shown in figure 1.3. At frequency f,, the Filter a has a pass-band while the other
two filters, *Filter b and Filter ¢ have their stop-bands. Similarly at frequency f, the
Filter b has a pass-band while the other two filters have their stop-bands. Filter ¢
also behaves in a similar manner. If it is desired to add more channels, they can be
mounted on the main waveguide at additional points corresponding to various odd
muitiples of Ag/4 from the rightmost filter, i.e., Filter a in figure 1.3, (where Ay is
the guide wavelengthat the midband frequency of the filter in question).

" Another type proposed by J. F. Cline [2] employs decoupling technique which
is achieved by a decoupling resonator adjacent to each filter. These type of multj-
Plexers are also used for narrow-band channels with guard bands between channels.
There are also some other types of multiplexers involving complicated features. It
is difficult to fabricate multiplexers of the above mentioned configurations because
of their complicated shape and. geometry. The most difficult part is to design and
fabricate the input and output sections. The problem that occurs in devising the
feed junctions (the junctions where input signals are fed into and output signals are
extracted from) is particularly very difficult to overcome. Due to these problems it
is often quite difficult to fabricate such a multiplexer in planar configuration.

In order to get rid of these difficulties, a new type of multiplexer structure is
considered in the present work. Such a multiplexer may be fabricated using forward
coupled microstrip comblines with the help of masking and etching techniques.
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1.2 Diplexer

A diplezer is a special form of multiplexer which has only two output channels.
In fact a diplexer is the simplest form of multiplexer. So, the techniques for multi-
plexers discussed in section 1.1 may also be employed for designing diplexers. The
block diagram of a diplexer is shown in figure 1.4.

A design method for developing a microwave diplexer using forward coupled mi-
crostrip comblines is undertaken in this research. The diplexer under consideration
is a passive device which separates an incoming microwave band of signal between
two channels according to the desired power ratio. Similarly, a ¢r¢plezer would di-
vide an input band of microwave signal among three channels and a quadruplezer

would divide the input signal among four channels.

1.3 Microstrip Comb- and Herringbone- lines

A microstrip‘combline [6] consists of a main line and many finger lines period-
ically placed perpendicularly along its length as shown in figure 1.5 and figure 1.6.
The finger lines are usually located at equal intervals which is known as the fin-
ger periodicity (p) The dimension of the mainline width (wy,), finger line width
(wy), length of finger (L;) and finger periodicity (p) are in millimeter ranges. Slight
variation of any of these parameters significantly affect the characteristic of the
comblines. The difference between a Combline and Herringbone line can be seen
from the top metalization pattern, in open microstrip configuration from figure 1.5
and figure 1.6. The herringbone line has fingers in both sides of the main line (like
the spine of a Herring fish as implied by its name) and the actual combline has fin-
gers only on one side of the main line (similar to a comb). The mode of propagation
is supported by the dielectric material between the conductor plate at the bottom
and the conducting comblines. The transverse section of an open microstrip line is
shown in figure 1.7.

The finger lines are actually small segments of open circuit transmission lines.
Usually, the main line and the finger lines when considered separately, are microstrip
lines having different characteristic impedances (assuming that the width of the two
lines are different). The effective dielectric constant for main and finger lines, for
such a case, is different. For the remaining part of this thesis the term Combline will

be used to represent both Comb- and Herringbone- lines if not specified explicitly.



A combline can be designed for a wide range of effective phase velocities and
impedance values. This is one of the major aidvantages of this type of lines over
uniform microstrip lines'. Actually the finger lines may be considered as lumped
shunt capacitances (Cp) added at periodic intervals without affecting the value of
inductance -(L). If the finger periodicity (p), i.e., the spacing between the added
lumped capacitors is small compared with the wavelength, it may be anticipated
that the line will appear to be smooth, with a phase velocity [3]

v, = [(C + Co/p)L)'* (1.1)

where, Cy/p is the amount of lumped capacitance added per unit length and C is the
shunt capécitance per unit length of the main line. However, with very short lengths
of fingers the phase velocity of a combline can be close to ¢/+/€. (where c is the speed
of light). With longer fingers much lower phase velocity can be achieved which may
be realized from above equation. Practically, values of phase velocities in the rangé,
of 50% to 90% of the velocity in the dielectric material (e.g. 1.1x10% m/s to 2 x10®
m/s in substrate of dielectric constant 25) can be easily obtained. An important
advantage of microstrip comblines over uniform microstrip lines is that, due to the
presence of the finger lines the former can achieve higher coupling capacitance per
unit length between neighbouring lines. For example, coupling capacitance upto
60 pF/m can easily be obtained between two comblines made with a 1.5 mm thick
dielectric substrate (¢, = 2.55), having 2.4 mm finger periodicity and 1 mm wide
figures. Due to these advantages, microstrip lines of this category have been selected
for realizing forward coupled diplexers. The aforementioned advantages make the
microstrip combline configuration the right choice for realizing forward coupled
diplexers and that is why it is undertaken in this research. |

The two major disadvantages of a combline are stop-bands and finger reso-
nance. Stop-band is a function of finger periodicity of this type of lines. Following |
the solution of waves in periodic structure presented by Collin and Carroll {2], it
may be shown that the stop band in a combline occurs when 3, is equal to 7« (where
Be is the effective propagation constant of the combline). This means that a pe-
riodicity of value equal to w/8. will produce stop-band at the frequency at which
computation is done. Sub-periodicity which subsequently causes stop-bands may

sometimes be introduced due to constructional defects. If the fingers are made too

'Uniform microstrip lines are those where finger lines are absent i.e., where the microstrip line
has the main line only
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long then the finger resonance causes difficulty in propagation. In order to avoid
finger resonance, finger lengths should be less than A/4 at highest the frequency of
operation. For these reasons, while designing multiplexers using forward coupled
microstrip comblines, it is also very necessary to avoid operation near the stop-band

frequency and also to keep the finger lengths sufficiently short.

1.4 Combline diplexer

The diplexer which uses the above mentioned comb or herringbone -lines is
termed in this work as Combline Diplexer. Such a diplexcr consists of two coupled
comblines. Each of these lines is periodically loaded with finger lines where the
finger periodicity is small compared to a wavelength. The distance between the
two comb lines is such that th‘e'ﬁngers of both the lines overlap upto the required
extent. In a diplexer, the comblines are coupled through the overlapping finger lines
as shown in figure 1.8 and figure 1.9. Such a coupling is capacitive and is achieved
through the edges of the overlapping fingers. In order to avoid coupling between the
tips of the fingers and the adjacent main line, the distance between the finger line
tips and the next main line is kept larger than the gap between adjacent fingers.
However, if tight coupling is used, the capacitance at the finger ends has to be taken
into account. _

The diplexer under consideration is a four port device. The wide band input
signal is fed into only one port at the input side and the two output signals having
different bands of frequencies are obtained from the two ports and thus diplexing
is achieved. In such a combline diplexer the back terminal is terminated with
matched terminating impedance because ideally there will be no power at this port.
The amount of input power which will be transferred to the adjacent line will be

determined mainly by the tightness of coupling achieved through the overlapping
fingers.

1.5 Objective of this research

The objective of this rescarch is to develop a design method for a microwave
diplexer using coupled microstrip comblines so that the resulting diplexer is small
in size, compact in structure and easy to fabricate. It is aiso desirable to obtain a
structure suitable for use in subsystems in the form of MIC (Microwave Integrated



Circuit) and if possible for MMIC (Monolithic Microwave Integrated Circuit). In
this research forward coupling properties of a pair of coupled comblines will be used
as the basis for developing the method of designing the diplexer. The entire research
is actually dedicated to the process of formulating a design method to construct the
diplexer under consideration. The goal is to find all the design parameters (i.e.,
physical properties .and geometric dimensions) which may be used to manufacture

a practical device.

‘1.6 Introduction to this work

The main objective of this'work is to design a microwave diplexer using for-
ward coupled microstrip comblines as the name of the thesis implies. The method
used in this work for the design purpose has been briefly presented in the abstrac-
t. Introduction to microwave diplexers and multiplexers have been presented in
this chapter. The microstrip comb- and herringbone- lines and their application
in diplexers have also been presented. The objective of this research have been
presented in this chapter. '

In this research the equations required for computing the power and phase
characteristics of a diplexer is derived from the generalized theory of n-coupled
comblines. So a review of the theory of n—coﬁpled comblines is required which is
presented in chapter 2. Two major parameters in multiplexer design, the wave
propagation matrix J and the e vector are introduced in this chapter. The eQUa-
tions relating the inductance and capacitance matrices, and the J matrix are also
presented. The process of obtaining the power and relative phase characteristics,
and the line-parameters of an n-coupled combline system is described in chapter 2.

Chapter 3 is actually the special form of chapter 2, where the équations for
diplexer are deduced from the equations of generalized n—coﬁpled comblines pre-
sented in chapter 2. The process of obtaim'ng the forward scattering matrix of
a combline diplexer from its J matrix is presented in chapter 3. The equations
of coupled and uncoupled capacitance, inductance, characteristic impedance and
phase velocity for an n-coupled system presented in chapter 2 are transformed into
the equations for a diplexer in chapter 3. An important concept regarding scaling
and shifting of J matrix, which is required for obtaining realizable design values of
a diplexer is presented in chapter 3.



The computer optimization procedure which is a major part of this work is
presented in chapter 4. The method of optimization used in this work is described
in details in this chapter. Selection of a starting e vector and its optimization are
also presented. The optiinized e vector thus obtained in this chapter is later used
in designing the diplexer.

The complete procedure of obtaining the physical dimensions of a combline

diplexer is presented in chapter 5.

In chapter 6 the design values of a herringbone- and a comb- line diplexer, i.e.,
the physical dimensions are presented. This design values may be used to fabricate
a practical diplexer which is suitable for use in Microwave Integrated Circuits (MIC)
as well as Microwave Monolithic Integrated Circuits (MMIC).. The objective of this

research is achieved with the conclusion of chapter 6. -

In chapfer 7 discussions and suggestions for possible future work are presented |

which may be used as the guidelines for any further research.

11



CHAPTER 2

| Review of the theory of n-coupled comblines

2.1 Introduction

A generalized theory of n-coupled comblines has been presented in [5]. In order to
develop a design method for a diplexer, this generalized theory will be taken as the
basis. For this reason a result a brief review of the generalized theory of n-coupled

comblines is presented in this chapter.

Starting with tlie voltage é.nd curfent equation’s of an n-line coupled system the
equation for the forward scattering matrix of such a system is presented in section
2.2. A matrix called J matrix, which is termed as wave-propagation matriz is also
introduced in section 2.3. It is also shown in this section that the eigenvalues of
J {i.e., the diagonal clements of 8 matrix) can bé obtained by orthogonal transfor-
mation of J matrix. In section 2.4 the relationship between the J matrix and the
.cap'acitanccl and inciuctance matrices arc shown. It is shown that, for nearest neigh-
bour interaction of microstrip comblines the capacitance matrix C is tridiagonal
and the inductance matrix L is diagonal. The equations for computing the forward
scattering matrix of a coupled combline system are presented in section 2.5. If the
J matrix of the coupled combline system is known then one can obtain the forward
scatteﬂng matrix by using these equations. The equations for obtaining the power

and relative phase characteristics of the output ports of a coupled combline system

are presented in section 2.6.

The equations for obtaining the elements of capacitance matrix C and the ele-

ments of inductance matrix L from the J matrix are presented in section 2.7. The

12
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" equations for obtaining different line parameters of a coupled combline are also p-

resented in section 2.7. In section 2.8 it is shown that a vector e may be formed with
the elements of J matrix and the length of the coupled comblines. This e vector
will be used to specify a coupled combline system. The summary of this chapter is

presented in section 2.9.
2.2 Theory of n-coupled lines

Consider an n-line coupled system having a coupled Iength'of Ly as shown
in figure 2.1. It is assumed that the transmission lines of this system are lossless.
The distributed self and mutual values of inductances and capacitances of such a
coupled system may be represented by an induetance matriz L, and a capacitance
matriz C respectively. In order to ensure that the energy stbred in the system is

positive, the inductance and the capacitance matrices are to be positive definite.

Coupled length Ly

Input ports | [ Output ports

port 1 © i?m 1 o port {n + 1)
port 2 O lfne Z O port (n 4 2)
port 3 © ne O port (n + 3)
port mo ]mim —0 port (n + m)
port n O line n O port 2n

figure 2.1 An n-coupled line system

Thus for this system (shown in figure 2.1) the distributed line parameters are
the per uni¢ length self and mutual capacitances and the per unit length self and

mutual inductances. The line voltages and currents of the coupled line system are

13



represented by the vectors y and i respectively. Following the wave equations of 7
transmission lines it is now possible to write the voltage and current equations of

this system as

dv 8

9 - (*)7(1@ (4 (2.1)
i a ‘

T et o e 2.2
5 5 (C 2) . (2.2)

v '
P .4 (2.3)
di '
== = _4 2.4
55 jBu (2.4)
where,
X=wlL (2.5)
and,
" B=uwC (2.6)

Here, X and B are symmetric matrices. For coplanar structure due to nearest

neighbour interaction X and B are tridiagonal' matrices [5].

From equations (2.2.a) and (2.2.b) one obtains,

5
T%Jrggy = 0 (2.7)
i
a—; BXi =0 (2.8)

1A matrix A is tridiegonal if all of its elements éxcept Aii and A; (i11y are zero

14
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The matrix X B of equation (2.7) can be diagonalized by a transformation
matrix U such that U' X B U= gf (diagonal) whereas the matrix B X of equation

{2.8) may be d.ia.gonalized by the transformation U'B X (U ! = Ef

Fa upr s

Using the operations for diagonalization of X B, equation (2.7) may be written

as

2
—8—8;(251“ U o)+ 2" U7 XBUZ (2, U w) = 0 (2.9)

Simjlérly equation (2.8) may be written as

2 .
0 (Z(]]/2 QLE) + Z(I)lz __Q,t BX Ut“IZEl/Z(Z(ljlz _U:!, E) =0 (2.10)

o BXU

Thus from equations (2.9) and (2.10) the diagoﬂalized. form of equations (2.7)
and (2.8) may be written as [5]

8%, '

B2 + fu, =0 : (2.11)
2‘

CmHfi =0 e

In cquation (2.11) v, represents the column vector containing the normal-mode
voltages on different lines and in equation (2.12) i, represents the column vector
containing the normal-mode currents. Here, the normalization by a matrix Z})/ 2 is

used for the norinal-mode voltages and currents such that

v, = Z;PU7 (2.13)
i, = Z*Ui (2.14)

This is done so that the clements of v, and i, have the dimensions of square
root of the power. The matrix Z, is taken as the diagonal matrix containing the

characteristic impedances of the line as its diagonal elements.



From equations (2.9) and (2.10) it may be observed that the matrices Band X

may be written as

_ll = Q_Z—l;-f/fl Q'Z;;]/Z_U_“] — “U_;tflgallz EZ{-]—‘/2 Q_l (2‘15)
X=Uz"pz"v'=v"z szt (216

The general solution of equations (2.11) and (2.8) are given by

7+

Y, = cos(BLg) v, + 7sin(BLg)i,, (2.17)

i’u,— = €05 (ELU) i’n,, + j S]’..D (QLO) Yy, : (2'18)

Here, Ly is the coupled length.

The subscripts ¢ and o of v, and i, in equations (2.17) and (2.18) represent the
values at the input and output ports respectively.

The normal-mode voltage and currents at the ports are related by a mode ter-

minating impedance matrix . by [5]

Yo, = T, (2.19)
Z,'"U ™, = r 2P U, - (2.20)

Therefore,
| v,=UZ/r 2" Ui, = 2,3, (2.21)

where, Z, = U Z,/*r 2,/ U

The termination impedance matriz Z, specifies a network of impedances in-
- terlinking the output ports to one another and to ground and will in general not

be diagonal. However, for non-mode converting terminations (n.m.c condition) the

16



=\ matrix r as well as Z, are diagonal [2]. If the mode termination impedance matrix
r is chosen to be diagonal then the normal-mode voltages and currents incident on
the terminations are partly absorbed and partly reflected without any conversion
from one mode into another.
Consider now a diagonal matrix, R,, where R, (the diagonal eiements of this
. matrix) are the resistive load terminations of the ith line to grouﬁd. The voltages
and currents are then normalized with this termination impedance matrix E,. The
normalized voltage vector ¢ and the normalized current vector @ are then writ-

ten as ¢ = _Ij[”zy and 8= _Ij}/zi respectively.

The above two equations may be restated as

¢ = BUZ, (2.22)
— &-1/2QZ(1)/2£1/2£—1/2H"
= Q'r 'y, : (2.23)
8 = B'"UT z)M. o (229)
= B'*U ZyPri i,
= Q'r'/?i, (2.25)
- where,
Qﬁ — Et—u’zgzélzrm - Et—lfzw—lzglfzz_l/g (2.26)
Thus, |
Q@ =nZ U = r 2z P U g (2.27)

From equation (2.26) and (2.27) it may be observed that the @ matrix has the
property of orthogonality, i.e., Q’Q =Q Q_t = I (identity matrix).

The wave amplitude vectors at the input and output ports may be defined as, .

\ ' 17



9_;. = '2 : | (2.28)
b= &8 (2.29)
a, — 5’?@;-@’ - (2.30)
b = 5’30_;-9*’ | (2.31)

Here the subscript and o represent the values at the input and output ports
respectively. In terms of this wave uinplitudc vectors, the total scattering matrir

may be written in a partitioned form as,

b; ‘ Vﬁii | S, 1o
e e (2:32)
b, Sio | Soo 2

Here, due to symmetry S;; = S,, and §;, = S.

From equation (2.32) one can write the wave amplitude vectors in terms of the

forward scattering matrix S;, as

b, =S, 0 (2.33)

Now, putting the values of g; and b, from equations (2.28) and (2.31) in equa-

tion (2.33) and one gets

S, =Q(FEF-GE'G)'Q (2.34)
where, :
1/2 -1/2
I | (2.35)

18



and, :
12 _ p-1/2

G=""L | (2.36)

it

E = exp (§8L,) = cos BL, + 7 sin BL, (2.37)

In a similar way the reverse scatiering matriz may be written as follows.

S =QEE'G-GLF) (FE

I

F-GETG)'Q (2.38)

Equation (2.23) to (2.27) are the general relations for the scattering parameters
of a n-line coupled system,

From equations (2.34) and (2.38) it is apparent that these will involve an enor-
mous amount of computation for designing a coupler A 51gmﬁca.nt s1mp11ﬁcat10n
of these equations is possible by applymg the weak reflection approximation {5].
This will reduce the amount of computat1on to a great extent. The weak reflection
approximation implies that the elements bf the mode reflection matrix p are very

small.

The mode termination matrix = may be related to the mode reflection matrix

p, by [5]

r = (+pl-p7" (2.39)
Thus, r'? = (I+p)/*(I-p)7'* (2.40)
and, 7' = (I+p) AL p)"? (2.41)

If 7712 and 7~/ are expanded neglecting terms containing ¢* and higher powers

of p, one obtains,

19



2 = I+p (2.42)

r'—lfz — l_E (2.43)

so that,
F =1 (2.44)
G =p (2.45)

This reduces equations (2.34) and (2.38) to

S5,:=QE'Q (2.46)
:;md,

S =QUE'p—pE) QS - (247)

Here it is nccessary to define the normalized admittance and impedance ma-

trices as

B, = R\/’B R - (2.48)
and, : ‘ ,
X, =B'"X B (2.49)

~where I2; is the termination impedance matrix.

Using equations (2.15) and (2.‘16) it is possible to rewrite equations (2.48) and
(2.49) as

B,=RU"' 278 2; U R . (2.50)
and,
X, =R'uzltpgz\* U R (2.51)

Using equations (2.26) and (2.27) it is possible to rewrite equations (2.50) and

(1.51) as

20
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A

B,=Q '3’ Q

(2.52)

and, .

X, =Q'r '\ r1PQ (2.53)
2.3 'The wave-propagation matrix .J

Consider that in an n-coupled line system only forward waves are propagating
and scattering in the z direction and that the n-row forward wave amplitude

vector is written as

a(z) = (1/2)(B " v+ R 3) (2.54)

x
-.

Thus using equations (2.5) — (2.8) it may be written that

i
2 () = 3L alz) sy ¢
dz . :
where, _
R R (2:50

- In equation (2.48) B,, and X, matrices are the normalized admittance and in-

ductance matrices as defined in equations (2.50), (2.51), (2.52) and (2.53).
Here the J matrix may be called the wave-propagation matriz. From equa-
tion (2.56), one may observe that the J matrix can be obtained from the capacitance

and inductance matrices of the n-coupled line system. The values of B, and X,,

" can be obtained from equétions (2.5), (2.6), (2.50), (2.51), (2.52) and (2.53). For

lossless lines the J matrix is real and symmetric and for planar structure (with
nearcst neighbour interaction) this is a tridiagonal matrix.
The ecigenvalues of the wave propagation matrix J are the mode propagation

constants B (i =1,2,3,---,N) on the lines so that
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Coupled langth Lo

port 1 e—r—Ar—MP—r—M—------- port n+ r
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input side 7 ‘/‘@%“I‘MLIZ .?I R

A A~ o
J;, &b I

Figure 2.2 Model of an n;coupled' combline system showing the distributed
self capacitances, inductances and interline coupling capacitances. Here, only
the nearest neighbour interaction is considered. '
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N

Q JQ'=8 : (2.57)
The matrix § [7] [19] is the diagonal matrix containing the mode propagation
constants J3,’s as the diagonal elements, and the @ matrix [7] [19] {20] is the orthog-

onal modal matrix J . For lossless lines, elements of orthogonal modal matrix @

are rcal. The orthonormal row vectors of @ are denoted as q, (1=1,23,---,N)

~and the orthonormal column vectors of the same matrix as p, (7 =1,2,8,---,N).

Here the g, vectors are the eigenvectors of the J matrix.

2.4 Capacitance and inductance matrices of an n-coupled
combline system

As shown in equation (2.56) the J matrix may be rewritten as

J= B, +Xa (2.58)
2
where, the normalized admittance and impedance matrices are
B,=w, R"CR” (2.59)
X,=w, B/'"LR (2.60)

Here w; = 21 f,, and R, may be taken as a diagonal termination matrix with R,,
as its diagonal element corresponding to the ith line. The inductance matrix L is
diagonal since the interline inductive coupling is negligible for a coupled combline
S).rstem. The capacitance matrix ( is tridiagonal in case of nearest neighbour inter-
action. The diagonal elements of C are the self-capacitances C;; of the lines under
coupled condition. An éqiq.iyalent circuit of an n-line coupled system considering
nearest neighbour interaction is shown in figure 2.2.

The distributed capacitance and inductance of a multiline coupled system may

be represented by a capacitance and a inductance matriz respectively. Both the
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capacitance and inductance matrices of an n-line multiplexer are represented by

n X n square matrices which can be written in the most general form as

Capacitance matriz

i C;l C12
Chy Coo
Ca1 Ciz
C=1 Cn Ciz .
L Cn.l Cﬂ-2
Inductance matriz
[ L1y Ly,
- Ly Ly
L3, Lo
L:

L41

Lnl

Ln2

C23
Cas
Caa

Cn3

Ln3

Cl4
Ca4
C“34
C44

G(n—l)l C(n—l)2 C(nu-l)a C(ah-l)-‘l
Cur  ++-

" Lya

Lyy
Lays
Lyy

L(n-wl) 1 L(ﬂ.—l) 2 L(n—l) 3 L(n—l) 4

Ln. 4‘

Ch (n—1)
Cy (n—1)
CS {(n-1)
C4 (n—-1)

C(n.—l) {n—1) C(n—l) n

Cﬂ. (n—1)

Ly gy
L 2{n-1)
L,y {n—1}
Litn-1

Lin-1yn-1) Ltn-1)n

Ln (n-1)

Cl n A
CZ n
CB n
C4 n

nn o

Ly, 1
L2n
L3n
L4n

Lﬂ ﬂ.l

(2.61)

(2.62)

In the case of 2 coupled microstrip combline system only nearest neighbour inter-

action will be considered. So for ncarest neighbour interaction the above matrices

may be written as

(Cu

Cy1
0
0

I
I

(== TR

and,

" L1y
Ly,

|t~
I
o

Ciz

Csyo

Css
0

0 0 0
0 0 0
C;; 4 0 0
Css Cys 0
0 0 Counmy Cu-1m-1 Cau-na
0 0 0 Crin-1)
0 0 0
0 -0 0
Lyy O 0
0

0 0 L(n—])(n»«2)‘ L(n—l) (n-1) ,L(n—l)n

0

0

0
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Ln {n—1)

[ = B e B o B o |

Cﬂ. "

OO OO

Lﬂ.ﬂ.

(2.63)

(2.64)



In the matrices shown in equations (2.61) - (2.64) the diagonal elements repre-
sent the uncbupled self quantities, whereas the oﬁ-diagc_)nal elements represent the
interline coupling or mutual coupling quantities. For nearest neighbour interaction,
" only the coupling between adjacent lines are considered. As a result the generalized
capacitance and inductance matrices shown in equations (2.61) and (2.62) become
tridiagonal and take the form shown in equations (2.63) and (2.64) respectively. For
coupled comblines, since the coupling is predbm.inantly capacitive, the inductance

matrix is diagonal.

2.5 The forward scattering matrix of forward n-coupled
microstrip comblines

The equations required for designing a generalized n-channel multiplexer are

presented in this section.

The relationship between input and output of an n—coupled line system is repre-
sented in terms of input and output wave amplitude vectors, and scattering matrix.
The input wave amplitude vector g; and the output wave amplitude vector b, are

related with the forward scattering matrix (S,:) by [6] [7]

by=S,a | (2.65)

From equation (2.46) the relationship between the forward scattering matrix

and the normal mode propagation matrix § (diagonal) may be written as 6] [7]

| Sei= Q' lexpli(f/F) L)) 'R (2.66)

The matrix 8 used in equation (2.66) may be obtained from the tridiagonal
‘wave propagation matrix J , since the elements of the diagonal matrix 3 are the
cigenvalues of J . The @ matrix is formed with the cigenvectors of the J matrix.

In the above equation f is the frequency of computation, fp is the frequency of



E

normalization and Lo is the coupled length of the coupled lines. The column vectors
of the @ matrix in equation (2.66) are the eigenvectors of the symmetric wave
propagation matrix J . For lossless lines, the elements of the orthogonal modal
matrix ¢ are real.

From equation (2.66) it may be observed that if the J matrix and the coupled
combline system is known then one can compute the complex elements of the for-
ward scattering matrix. For this purpose the first step is to compute the eigenvalues
and the eigenvectors of the J matrix. The next étep is to form the 8 matrix with

the eigenvalues of the J matrix.

2.6 Power and relative phase characteristics of an n-coupled
combline system

From the elements of the forward scattering matrix one can obtain the power
characteristics of the coupled combline system. In the power characteristics it will
be observed that the lower band edge frequency will be at (f/fo) = 1.

Instead of computing the elements of the forward scattering matrix one can
obtain the output wave amplitudes directly. This will give the power characteristics

of the coupled line system.

Combining equations (2.65) and (2.66) one can write the output wave amplitude

vector b, of a forward coupled microstrip comblines in terms of the input wave

amplitude vector a; as

bh=QE'Qu - | (2.67)
where,

L = expli(f/ £2) T} - (2.68)

Taking unit excitation at the input port of the kth line and using equations (2.33)

and (2.66), the output wave amplitnde b, of the ith line can be computed.
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Takiﬁg the unit excitation at the input port oi_:‘ the kth line and using equation-
s (2.65) and (2.66), the output wave amplitude vector of ith line can be written
- as '
boi = py E™' p, = boin + §buir (2.69)
Here thc sﬁbscript IR and | arc used for indicating real and tmaginary part respec-
tively.

The power at the output port of the ith line is then [7]

Po, = by, by, = I_’i E ' p,pt EI_’, (2.70)

Ll =

Assuming no loss within the device, the sum of power at the output ports at a

single frequency must be equal to the input power P,,, which can be stated as [9]

n

ZPOi = P, . (271)

i=1

The amﬁlitude b,, at the oﬁtput port of the ith line and hence the power at all
the output ports may now be obtained at any frequency by using equations (2.33)
and (2.68). The normalized power characteristic in dB at any particular frequency

f at ith port may then be obtained from the following equation.

P,
5 = 10log(by, b3 (2.72)

If the input power P, in the above equation is taken as 1 then the normalized

power at the ith output port may be written as

P, = 10log(b,, b,) - (2.78)

The absolute phase of the ith line is

‘I)m' = tau‘l (bm-]/bm-R) (2.74)
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The relativ.e phase of the ith line with respect to the kth line is

-1 { boirbokr — boirborr
Qri = Qoi - ¢o =t 1 ' 2.75
A (boinokR + boirboki (2.75)

2.7 Obtaining the line parameters of an n-coﬁpled combline
system from the J matrix '

Using equation (2.58) and writing the terms with respect to the ith line of an

n-coupled combline system, one obtains

for the diagonal terms

2J;; = wi,(R,C;s + Lii/Ry,) (2.76)

and for off—diagonal terms
2Ji6iny = wil, Gy (2.77)

Equatioﬁ (2.77) is valid only for coupled combline system since for this case
there is no inductive type interline coupling.

From equation (2.76) it is observed that the difficulty here is to separate the
inductance and capacitance values from the diagonal elements J;'s. Before trying
to sort out this it is necessary to define the coupled and uncoupled conditions. It may
be noted that in equation (2.‘76) the self capacitance term Cj; is the capacitance
under coupled condition. ‘

Therefore, the uncoupled self capacitance C; of the ith line is [6] .

C; = Cii — Ciicyyi — Cigirn . (2.78)

It should be noted here that [6],

Coi = Cio = Clnr1)i = Ci(ur1y = 0 (2.79)
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The process of finding capacitance under coupled condition is described in ‘thc
following section.

Since there is no inductive coupling in a coupled combline system, the self in-
- ductance is the same for both coupled and uncoupled conditions. Using these quan-
tities, the uncoupled and coupled ch,a,ra,ctcristic tmpedances of the ith line can

be obtained by using the following equations [7]. 7

Zy = Li;/C; . (2.80)

o

Zg5, = Lii/Ci ' (2.81)

The uncoupled and coupled phase velocities of the ith line are [7]

. | _

v 2.82

n L;iG (282)
=

o= | (2.83)

The superscript ¢ and u used in the above equations indicate the coupled and
uncoupled conditions respectively. If may thus be observed that if the elements of -
the J matrix are known then it is possible to find the values of C;, C; and L,,, and

thus it is p0551ble to compute Ze, Z5, vp and vy,

. For separating the inductance and capacitance values of equation (2.78) it is
useful to have a quantity m; corresponding to the ith line defined as
Ze,
My = —
R,

. so that in case of necessity the termination impedances of the ith line may be chosen

(2.84)

to have a value other than the corresponding value of ZZ. Usually, for the matched
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condition Z7, = R, ie, m; = 1. Now eliminating Z% from equations (2.81) and

(2.64) one obtains

\/I L,‘,‘/Cﬁ =m; _R;'. (285) '

Putting. the value of L;; from equation (2.85) in equation (2.76), one gets

1 +m"f
2

(wrCiilty,) = Jii (2.86)

Again pﬁtting the value of Cj; from equation (2.85) into equation (2.76), one

gets

wrLi 2J;;
= 87
mlt,  1+mi (2.87)
Equations (2.85) and (2.86) may be rewritten as
2J;;

Ci; = : 2.88
LIJLR,['.(]. + m?) ( )

miR, [ 2Ji; \ |
L = MR 2.89
L wy, (1 + mf) ( 8 )

From equation (2.75) the interline coupling capacitance C; (;11y may be written

as

© (2.90)

Thus specifying Zg and Ry, one can obtain Cj;, L;;, C;, C; ti+1), Ci -1y from the
J matrix. With these values one can determine the line parameters, i.e., the zy,

vy, and vy, of a coupled combline system.
1 1

Thus the line parameters (coupled and uncoupled impedances and the phase

velocities) may be computed using equations (2.80) — (2.83) and equations (2.88) -
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(2.89).
2.8  Defining the ¢ vector for an n-coupled combliné system

For computation purpose it is very useful to have a set of parameters which can
um'que'ly describe the behavior pattern of an n-coupled combline system. The ¢ is
a column vector which is formed with the elements of the J matrix and the coupled
length of the system. For an n-coupled combline system the first n elements are the
n. diagonal clements of the J matrix, the next n — 1 elements are the off-diagonal
elements of the J matrix and the last element is the coupled length of the system.
So, the e is a column vector having 2n number of elements as shown below.

1
C2

(2.91)

iy
Il
&
=2

dn—f- 1
Ly

In the above expression ¢;’s are the diagonal clements and d;’s are the off-diagonal
elements of the tridiagonal matrix J . The last element L, represents the coupled
length (figure 2.1). A combline multiplexer with nearest neighbour interaction is
thus uniquely identified by specifying this e vector.

The relationship between the clements of e vector and those of J matrix may be

shown as follows.
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c = -I11 )
2 = Jp2 ‘
¢y = Jaz § : (2.92)
G, = Jnn. ]
"and,

d =. Jia = Jo )

d = Juz = Jia

ds = Jyg = Jig (2.93)

‘ln = '](u--.l)'n. == Ju(nﬂl) J

2.9 Summary

In this chapter a brief review of the genéralized theory of n-coupled combline
system has been presented bearing in mind that equations for combline diplexers
will be derived out of these equations.

The wave-propagation matrix J has been.introduced. The equations for the
forward scattering matrix for coupled combline system has beén presented. The
equatlions' for obtaining the power and relative pﬁase characteristics have been pre-

sented. The equations for obtaining the parameters of a coupled combline system

for the J matrix has also been presented.
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CHAPTER 3

Forward scattering matrix and line parameters of
a combline diplexer

3.1 Introduction

In the last chapter the generalized theory of n~coupled microstrip comblines has

been presented. Following the generalized equations of last chapter the equations

for two coupled comblines system are derived. Thus for a two coupled system it .

will be scen that the wave-propagation matrix J is a 2 x 2 matrix. Similarly the
scattering matrix S,; is also a 2x 2 matrix. The input wave amplitude vector and
the output wave amplitude vector are two-element column vectors. The equations
for such a two. coupled combline system may be considered to be the equations for
a.- diplexer. |

The equations for obtaining the forward scattering matrix of a combline diplexer

from its wave-propagation matrix are presénted in section 3.2. In section 3.3 the

e vector for a combline diplexer is written in terms of its wave-propagation matrix

éleménts and the coupled length. Next in section 3.4 the techniques of scaling and
shifting the wave-propagation matrix are presented. The equations for obtaining the
line parameters of a combline diplexer are presented in section 3.5. The summary

of this chapter is presented in section 3.6.
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Figure 3.1 Block diagram of a diplexer.
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input side Diplexer output side

Figure 3.2 A diplexer represented by its forward scattering matrix S, ;.
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3.2 Obfaining the forward scattering matrix of a combline
diplexer from its wave-propagation matrix J

In a diplexer the input signal of a certain frequency band is fed through one of

the two input ports and the other port at the input side (known as the back-port is

terminated by a matched coupled line impedance as shown in figure 3.1. The two

bands of ﬁ‘equencies are obtained at the two different output ports of a diplexer.

The output wave amplitude vector b and the input wave amplitude vector g are
related by the scattering matrix as shown in equation (2.33). In case of a diplexer

(as shown in figure 3.2) this relationship may be written as

HE T F

In the above equation_lthe sﬁbscript§ of .a and b indicate the line number. The
first and the second subscripts of S indicate the port numbers at the input and the
output sides respectively. As mentioned earlier the wide band of input signal is fed
into one of the two ports at the input side of a diplexer while the other port remains

terminated with no signal input. So either a; or a; is equal to zero (which implies

no signal at this port). If it is assumed that the input is fed through port 2 at the

input side, then the backport (i.e., port 1), remains terminated (i.e., @) == 0). Under A

this condition equation (3.1) takes the followining form.

bl 1S Sn .0 ‘_ Sn ' |
nl=lsslla]-=[5] 2

From equation (2.68) it may be seen that

Si=Q'E"Q
where

L= exPU(f/fo)Lo_ﬁ_]
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. So in order to obtain the forward scattering matrix S, it is necessary to obtain
the propagation constant £, and f; at the two lines. Thus equation (2.57) can be

written as

QI =8 | (3.3)

For a diplexer equation (3.3) may be rewritten in terms of the matrix elements

as

. : [Qll QIZ][JII JH][QH lejllz[ﬂl O] - (34)
) Q2 Qz; Jn Ju || Qu Qn 0 B =

A and 3, in the above equation are the eigenvalues of J matrix. These eigenval-

ues may be obtained by solving the following characteristic equation of the J matrix.
BL-Jl=0 . (3.5)

In the above equation [ is the identity matrix and 3 is the characteristic root of

the J matrix. In case of a diplexer equation (3.5) may be written as
11 0 Ji Jie " .
ﬁ[o 1] [le Tp | 1=0 | (3.6)

Simplifying the above -equation one obtains

B — Bl + Ja2) + (J1pdag — JiaJa)) =0 (3.7)

Equation (3.7) is a quadratic equation of B and solving this cquation two charac-
teristic roots (i.e., f1 and ;) arc obtained. These two roots are the eigenvalues of

J matrix. From equation (3.7) one can obtain the equations for two eigenvalues as

g, = {(Ju + Ji2) + \/(Jn + Jo2)? + A(J1doe + Ji2Jn)?

1 > {3.8)

(Jiu + Ji2) = /(T + Jo2)? + 4(J 1y Jor — Ji2Jon)?

P = 5
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For the diplexer under consideration the forward seattering matrix may be ob-
tained from equation (2.56), which can be rewritten for a diplexer in the following

form.

[ . .
Su S| _ | Qu Qi eI o) oy 0 Qu Q2
= —Hfo o (3.10)
Sy Sn Qa Qn 0 e /e Qzll Q2
Thus using equations (3.8) and (3.9) it is possible to obtain the propagation
constants on the two llines of a combline diplexer from its wave—propagation matrix.
" Next using equations (3.10), it is possible to obtain the elements of the forward

scattering matrix of the diplexer. This means that one can then obtain the power

characteristics of the diplexer.
3.3 - The ¢ vector of a combline diplexer

Fdllowing section 2.8, it is possible to write the e vector for a diplexer as a

four-element column vector. So,

|
C2
dy
Ly

]
It

(3.11)

The first two elements ¢; and ¢; of the ¢ vector shown are the diagonal clements
of the 2 x 2 wave-propagation matrix of diplexer. The third element d; is the off-
diagonal clement (since both the off-diagonal elements are same in this case). The

- fourth element L, represents the coupled length of the combline. So the elements

of the e vector can be written in terms of the elements of J as

cCy = Jll .
Cy = Jzz ) (312)
d = Jp = Jn



3.4 Scaling of J matrix

The techniques of scﬁ]ing the wave prolﬁagation matrix J may be used for
necessary adjustment of the combline parameters without changing the scattering
matrix which actually represents the operating characteristics of the device. Scaling
is necessary for obtaining the physical dimensions of the device within realizable
ranges. The process of séaling does not affect the characteristics of a diplexer.
Two types of scaling of J matrix will be necessary. These two types of scaling are

described in the following subsections.

3.4.1 Scaling by scaler multiplication of .J matrix

The first type of scaling can be done by ﬁiult;plying the elements of the J matrix
by a scaler quantity (say =). This will multiply the interline coupling capacitances by
« and shift the characteristics of the dii)lexer. So, in order to keep the characteristics
unchanged the coupled length of the diplexer is divided by the same quantity z.
As a result even after these two operations the characteristics of a diplexer remain
unchanged [6]. In the following equation J,,.,, is the matrix after scaling thé J matrix

by scaler multiplication.

= — Jiu Jiz | _ | =du 2z
J"“"‘”‘““[Jm Jzz}_[ﬂiJm 93-]22] (3:13)
The new length, Ly = Ly/x (3.14)

where, Ly is the coupled length before the change.

It may be thus be observed that this operation is useful in ihcreﬂsing or reducing
the interline coupling capacitances and also in changing the coupled length. Thus

this operation is very useful in the design procedure.
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3.4.2 Scaling by adding a constant value with all the diagonal ele-
ments of the J matrix

This method is also known as J matriz shifting technique [6]. If a constant
amount of phase constant o is added to or subtracted from each of the diagonal
elements of the J matrix then despite the changes in J matrix the characteristics of
the device remain unchanged. This operation may be represented by the following

equation:

' Jiw Ji2 o O | Jdu+p  Juo
Jo = I = = 3.15
Trew =L+ ol |i Jor Jz ] + |i 0 fo ] [ Jn  Jn+tbo (3.15)

In the above equation though the J,,.,, and the J matrices have different diagonal
elements, they yield same scattering matrix.

This operation will be required to adjust the phase velocities of the comblines

of a diplexcr.

3.5 Determination of the parameters of a forward coupled
microstrip combline diplexer from its wave propagation
matrix

Once tllle wave pfopagétion matrix is known, the eigenvalues of the J matrix
can be computed usiﬁg equations (3.8) and (3.9). The @ matrix containing the
eigenvectors can also be obtained by the usual matrix method. In order to obtain the
liﬁe parameters of a forward coupled microstrip combline multiplexer it is necessary
to obtain the inductance and the capacitance matrices from the wave propagation

-matrix. The techniques of obtaining the capacitance and inductance matrices and

hence the line parameters are presented in this section.

The computations are done at the lower band edge frequency wy, = 2nf; of
the diplexer. However, after computing the capacitance and inductance matrices,

the wave propagation matrix J (which means the mode propagation matrix 3 as
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Coupled length Lo

Line 1

port 1 Tw —fqm\_w port
| % i %T )
port 2 © T H ‘__I_ Li-;']“e-“é““ port 4

TLH;J;M; A

77T

Figure 3.3 Mode! of an 2-line coupled combline system (diplexer) showing the
distributed self capacitances, inductances and interline coupling capacitances.
- Here, only the nearest neighbour interaction is considered.
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well) can be scaled in order to obtain realizable values of the line parameters. The
process of scaling the J matrix has alrecady been discussed in section (3.4). It may
be mentioned here once again that,the scaling operation leaves the scattering matrix

S, (i.e. the power characteristics) unchanged.

Iﬁ order to obtain the elements of the capacitance matrix C and the inductance
matrix L in terms of the wave propagation matrix J , it is necessary to recall here
that, from its definition, the matrix J may be written in the following form from

equation {2.58).
B, + X,

J="2 = (3.16)

where B, = w,lf QE}/ o 1?_.11/ 2and X, = w;ﬂ[l'sz Et_lf ? as shown in equation-
s (2.59) and (2.60). In case of a combline diplexer the capacitance and inductance ‘

matrices shown in cquations (2.61) and (2.63) reduce to the following form

Capacitance matric

[ Ch Crz |
C = 3.17
=~ | Ca Cxn | (3.17)
Inductance matriz ' :
Ly, Ly |
L= 3.18
= | Lan L2 | ( )

Here, Ly = Ly, = 0 for a pair of coupled comblines. The equivalent circuit of
a pair of coupled comblines may be represented as shown in figure 3.3.
The uncoupled capacitance of the two lines of a forward coupled microstrip

diplexer can be computed from the equations (2.78) and (2.79) as shown below,

Cl = Cll - Cﬁl - C"12
= Cn—Chn } (3.19)
and '
C: = On—Ci—0Oxy
2
= Cp—Cn } (3 0)
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For a diplexer, the characteristic impedance under coupled and uncoupled con-
ditions may be obtained from equations (2.80) and (2.81). The characteristic

impedances of line-1 and line-2 are as follows.

Uncoupled characteristic impedance

for line-1: Z* = \/Ln/Cy (3.21)

for line-2: Zy = [Lp/C, (3.22)

Coupled characteristic tmpedance

for line-1: Z; = +f (8.23)

Ll] /Cll
for tine-2. 2% = \/Ln/Cn | (3.24)
The uncoupled and coupled phase velocities may be obtained from equation-

s (2.82) and (2.83). For a diplexer the phase velocitics of line-1 and line-2 can be

written as

Uncoupled phase velocities

for line-1: v} = 1/y/LuGC (3.25)

for line-2. v

= 1/{/LyC, (3.26)

ye

Coupled phase velocities
for line-1: vy = 1/4y/L;Cyp (3.27)
for line-2: vy, = 1/y/LaCn (328)

For a diplexer the ratios of coupled characteristic impedance and thc_terminaﬁing

‘Tesistance may be obtained from equation (2.84) which are
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C ZC
my = R‘: and m; = R_: (3.29)

" From equation (2.88) the following equations may be written for a diplexer to

obtain the coupled capacitances for line-1 and line-2 as shown below.

2

2
Cyp = ) (J22) (3.31)

wLiztz(l + m%

The equations for coupled inductances of a diplexer can be derived from equa-

tion (2.89) which are shown below. o ' ' L
miR, 2 RN
Lu= X (J11) (3.32)

Wy, (1 +m§)

=m%Rt2X 2

X oy ) (3.33)

L22

From eqnation (2.90) the coupling capacitance between line-1 and line-2 (i.e

A

Cy or Cy ,) may be written as

2
wi T,

Thus specifying Z7 and I, one can obtain Cy, Ly;, C;, C; G+1)s Ciny from the

Cip=0Cy =

(J12) (3.34)

J matrix. With these values one can determine the line parameters, i.e., the Zy,

v, and vpof a forward coupled microstrip combline diplexer.

Thus the line parameters (coupled and uncoupled impedances and the phase

velocities) may be computed using equations (3.19) - (3.22).
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3.6 Summary

The equations presented in this chapter will be necéssai'y for obtaining the pbwer
characteristics of a combline diplexer. For this, it is necessary to know the wave-
propagation matrix J of the diplexer. It has also been shown that if the J matrix
of a coupled diplexer is known then one can obtain the physical dimensions of the

diplexer.
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CHAPTER 4

Designing a combline diplexer by computer
| optimization

4.1 Introduction

In chapter 3 the equations and procedures for obtaining the forward séattering
matrix, power characteristics and the line parameters from the wave-propagation
matrix of a two coupled combline system have been presented. So, in order to get
these, it is necessary to know the J matrix and the coupled length of the IS)-rstcm.
The next fequirement is to have a J matrix and a value of the coupled length Ly
which will provide the desired characteristics of the diplexer. This means that an
e vector is nécessary which will meet the requirements of the desired characteristics.
Unlfortunately, an analytical method of obtaining such an e vector to get the desired
characteristics could not yet be developed. So, this woric will be done by comput-
er optim_iza;tion. The steps required for an optimization procedure are shown in
ﬁgure 4.1,

In this chapter the technique of computer optimization of e vector to achieve fhe
desired diplexer characteristics is presented. The possible methods of optimization
and the difficulties those are encountered in finding the maximum or minimum
of a function are discussed briefly in section 4.2. The principles of two methods of
optimization known as Golden section search and Gradient method are presented
| concisel&v in subsections 4.2.1 and 4.2.2 re5péctively. The aspects which should be

taken under consideration while sélecting or developing an optimization program
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Study the system

Identify the controlling parameters and the responsc {(output)

L

Develop a mathematical model of the system

Prepare a computer program for optimization

Run the optimization program in a computer

Obtain the optimized parameters as output

Figure 4.1 Steps required in an optimization procedure.
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are presented in section 4.3. The criterions for selecting a particular optmnzatlon

method are also presented in section 4.3. The optimization method used in this

work is presented in section 4.4.

The effect of the elements of e vector on the power against frequency character-
istics of a diplexer are presented in section 4.5. Considex_'atio,ns regarding selecting
a starting e vector is presented in section 4.6. The necessity and procedure of opti-
mizing the e vector is discussed in section 4.7. The computation of error function is
discussed in section 4.8. The 0ptiﬁ:ization program used in this work is presented A
in section 4.9. Finally an example of optimization of e vector is presented in sec-
tion 4.10 with a sample set of data. The summary of this chapter is presented.in

section 4.11.
4.2 Possible methods of optimization

If there is a function f which depends on a number of independent variables,
onc can find the values of those variables for which f takes on a maximum or a

minimum value by the process of optimization.

Figure 4.2 The function f shown in the range of AH |
has three local minimas at C, E and G. Here F is the

global minima. The arrow signs indicatcs the tendency of
the search to fall into the local minima. '
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An extremum (maximum or minimum point) can be either global (truly the
highest or lowest function value) or local (the highest or lowest or lowest function
‘value) or local (the highest or lowest in a finite neighbourhood and not on the
boundary of that neighbourhood) [13]. Always the target is to obtain a global
extremum. For very simple type of functions this can be achieve(;l easily but for
functions of complicated behaviour optimization work is very l.ikely to get trapped
in local extremum. Then the problem is to get out of the local extremum by

improved search techniques. On the contrary, finding a local extremum is easy.

Let the function shown in figure 4.2 be considered for example. If the search for
minima is started at any point between B and D, a routine will stuck at point C
(the local minima) unless it extends its search beyond point D. Similarly if search
is started at any point between F' and H, a routine is likely to stuck at point G
unless' the search is extended beyond point F. So one standard procedure that is
commonly used is to find local extrema starting from widely varying starting values
of the independent variables, and then pick the most extreme of these (if they are
not all the same which might occur in case of a function having uniqué extrema).
In figure 4.2 if se'afch is started from different points, the routine will find the global
' minima ;at E. ‘

One—dimensional functions (where the response is the function of a single inde-
pendent variable) can be handled more easily than the multi-dimensional functions
(where the response is a function of a number of independent variables). A single-
variable function can be plotted readily on a two dimensional plane from where the
maxima or minima can be seen within a selected range. But in case of an n-variable
function, an (n+1) dimensional domain is required for plotfing the function. Soitis
not possiblé to represented such a domain graphically. At best the two-dimensional

 functions may be plotted in a three dimensional space. It is also very' difficult to
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determine in case of an n-dimensional function, to determine the direction in which
the search should be performed in the (n + 1) dimensional domain to move toward

-the maxima or minima,

There are several methods for optimization of multi-variable functioﬁs. The
commonly used methods are: Golden section search method, Least square method,
Gradient. method, Powell’s method and variable metric method. All these methods
have their merits and demerits. Two of these methods are briefly discussed in the
following subsections. Any of these methods may be used for the optimization
job required in this work. However, a differenf, algoriﬁhm is used in this work for

optimization considering different aspects of the e vector under consideration.

4.2.1 Golden section search - v

A golden section search is designed to bandle, in effect the worst possible case
of function minimization. This procesé is similar to the bisection method of finding
roots of function in one dimension {13]. The root is supposed to be bracketed! in
one interval (a,b). One then evaluates the function at an intermediate point = and
obtains a new smaller bracketing interval, (a,z) or (z,b). The process continues
until the bracketing interval is acceptably small. It is optimal to choose « to be the

midpoint of (a,b) so that decrease in the interval length is maximized.

A minimum is known to be bracketed only when there is'a triplet of points,
a < b < ¢, such that f(b) is less than both f(a) and f(c). In this case it is known
that the function (if it is nonsingular) has minimum in the interval (a,c). |

The analog of bisection is to choose a new point =, either between a and b or
between b and ¢. Suppose, to be specific, the latter choice is made and f(x) is
evaluated. If f(b) < f(z), then the nevﬁ bracketing triplet of points is a < b < =;

contrariwise, if f(b) > f(z), then the new bracketing triplet is b < z < c. In all

1A root of function is known to be bracketed by a pair of point, & < b, when the function has
opposite sign at those points. ‘
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cases the middle point of the new triplet is the abscissa whose ordinate is the best

minimum achieved so far.

4.2.2 QGradient methods

If y is a function of n number of variables (;sﬁy, Z), Tg,---T,) then the vector of first
partial derivatives (Ay/Az,, Ay/Az,y,---,Ay/Ax,) = Vy is known as gradient.
The vector gets its name because it points in the direction in which the respon.%e
surface has the steepest slope. To see why this is so, an nadimensional hypersphere

of radius r; centered about the point z. Points £ + Az on this sphere satisfy

3 (Am)t = [Agl? = r? @

=1
The first order approximation of the objective function in the neighbourhood of

z gives the value of the objective function at various points on the sphere as
Ay = Vy Az’ ‘ (4.2)

The point on the hypersphere is sought where Ay is maximum. At this point'

the following Lagrangian must be stationary:
L=VyAd - A[|Agf -] (4.3)
Hence the maximizing perturbation Az* satisfies
VL=Vy—-2XAz'=0 (4.4)

where

Az’ = (20)"! Vy (4.5)

Since A, the Lagrangé multiplier, is a constant, the geometric interpretation of
equation (4.5) is that the optimum perturbation vector Agz* points in the same

direction as the gradient vector. The constraint equation {4.1) gives X :

|Az*[* = (24) 7 |Vy}* =7 (4.6)
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where
Vyl
S T
A Ir (4.7)
(4.8)
™Vy
Ar' =
B Vy
: (4.9)
Ay' = r|Vy|

The vector Vy/|Vy| is called the normalized gradient.

The gradient method for secking a maximum is to determine the gradient at

point z,. The set of points in the gradient direction is given by

Azy = pVy(z,) = pVio (4.10)

Where p is a normalized hypersphere radius given by

r

=% (4.11)

Positive values of the normalized radius p give locally increasing values of g, so

the. value of p maximizing Ay is found either by one-dimensional (Fibonacci) [21]

“search or, when possible by direct differentiation. The latter alternative involves

substituting equation (4.10) into the objective function , differentiating with respect
to p, setting the derivatives to zero, and solving for minimizing value p*. Thus one
finds p* satisfying

Slzte¥) (4.12)

& p=pt
At new point z,, one evaluates a new gradient and iterates the gradient climbing

procedure. That is,

z, = 2o+ Vi . ' (4.13)
Azr, = piViy (4.14)
and so on.
51
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4.3 Selection of optimization algorithm

There are a number of standard algorithms for optimization [13] [21]. Actually
diﬂ"efent types of optimization jobs may require different types of algorithms. So
the selection of Ehe most suitable algorithm is also of vital importance. There may
be several optimization algorithms which will get a particular job done, but the
best one should be chosen carefully. It becomes easier to select an optimization

algorithm if the nature of the function under consideration is known beforehand.

It is desired that the computational procedures for optimization run quickly
and use small memory while it is run in a computer. In other words it is desired
to evaluate the particular function in question as few times as possible. As fof
example the OptimiZationlrequired for this rescarch could be done with any of the
multi-variable optimization procedures mentioned in section 4.2, But considering
the fact that the function under consideration (i.e., the e vector) is relatively simple
and has only four independent variables, instead of using any standard optimization
method a more simple and modified optimization algorithm is used in this work.
This.method of optimization is described in details in section 4.4. The algorithm

developed in section 4.4 is simple, reasonably fast and suitable for this particular

job. '

4.4 Optimization algorithm used in this work

Though there are several optimization algorithms in practice as described in
the last section, none of these techniques is completely followed in this work. For
the optimization job in this work a different aigorithm which suits the work under
consideration has been adopted. The generalized form of the algorithm (i.e., with

n number of independent variables) used in this work is presented in this section.

Let it be assumed that there are n number of controlling parameters or indepen-

dent variables (say, =, 23, ...x,) on which the response or the output (P,,) depends.
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| START )

Set the reference value with which the output will be considered

4

Compute the error by taking the difference
between the computed output and the selected reference
Error = Absolute of (Reference - Output)

Shift the controlling variables to obtain a lower value

of error until the lowest value of error is achieved. -
(The minimum error occurs at optimized state)

The optimized parameters are obtained

@

Figure 4.3 Major steps of the optimization algorithm used in this work.
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In other words the output is a function of the n number of variables or independenf
variables, i.e., P,y = f(z),z2,...,7,). Here a reference value (Kej-) is chosen first
with which the output is compared to give the amount of error or deviation.

At the beginning, a starting set of variables is chosen and with this known set
of values the output (F,,) is computed. Now the difference between this computed
output and the reference level is determined. Thié difference is considered as the
deviation or thé error. The job of optimization is to minimize this error to an
optimum level. This is done by shifting the n number of variables. The shifting is
done by gradually incrementing or decrementing the variables by a small quantity
(say Ax). . .

Initially the first variable (z;) is incremented by amount Az keeping all other
parameters unchanged. With this new value of x) (say =}, where z} = x, + Ax)
the output is computed and the error is determined. If the error increases with
x) then z) is dccrementcd by the same amount Az to obtain the new z) (where
zy = @1 — Ax). If the error still increases with the decremented z, (i.e., z}), the
original value of #; is retained. However, that value of z] is accepted for which the
error decreases and this ! is used as z; in latter computations. Now the second
© parameter z, is similarly increased or decreased to obtain x5 (where, =), = x5 + Ax
if increased by Az and z}, = & — Aw if decreased by Ax) or kept unchanged so that
a smaller error is obtained. This =) is accepted as the new z, and is used in latter
computations.

In a similar fashion all other parameters are gradually changed to obtain smaller
error. When all the variables are shifted once, the entire procedure is repeated once
again and so on. If the process is continued, a condition occurs when the error
reaches its minima and any furthef change of any of the controlling parameters
gives a greater error. The set of controlling parameters which gives the m.injmuni
error is taken as the optimum set of parameters. The majorlsteps of optimization

algorithm used in this work is shown in Fig 4.3.
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4.5 The effect of changing the elements of e vector on the
characteristics of a diplexer

The e vector® of a diplexer contain four elements, first- three of whichf{i.e.,
¢1, ¢z and dy) comes J matrix and the fourth one (i.e., Lo) is the coupled length of
the diplexer as mentioned in section 3.3. The power and phase characteristics are
functions of e vector. The characteristics of the curves may be modified by varying
tﬂe elements of e vector. Different elements of e vector has different effects on the
characteristics of a diplexer. To study and observe the effect of the elements of
¢ vector on the power against frequenéy characteristic a number of plots have been
prepared (figure 4.4 — 4.23). |

In Figs. 4.4 — 4.9 the power characlteristics are plotted while decreasing the first
element of e vector (i.e., c;) keeping other elements constant. -It is seen the coupling
between the lines increases as the difference between ¢; and c; decreases, When c¢;
equals c;, maximum coupling between lines occur.

Similaﬂy in Figs. 4.10 — 4.15 only the second element of e (i.e., ¢3) is varied.
These plots also support the idea stated above. In Figs. 4.16 '—A4.19 represent the
power against frequency plots where only d; is varied keeping all other elements
constant. It may be observed from these plots that the periodicity of reaching peak
coupling decreases with increasing d;. Similarly only the coupled lenéth Ly is varied
to obtain the plots shown in Figs. 4.20 — 4.23. It is observed tha.t- the characteristics
can be shifted along the frequency scale by changing the coupled length Ly. If the
coupled iength is increased, the frequency at which coupling reaches the required
value can be lowered. This can better be understood_By comparing the curves shown
in Figs. 4.20 —74.23. It can also inferred from these plots that in case of a diplexer-
the two channels may be brought closer or pushed away by respectively increasing

or decreasing the coupled length of the diplexer.

21t may be recalled here that e' =[c; ez di Lyl
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Figure 4.4 Characteristics of a diplexer: (a) power vs. frequency, and
(b) relative phase vs. frequency plots with ¢ =[1.5 0.5 —0.2 6.0]
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Figure 4.5 Characteristics of a diplexer: (a) power vs. frequency, and
(b) relative phase vs. frequency plots with ¢ =[1.0 0.5 ~0.2 6.0 .
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Figure 4.6 Characteristics of a diplexer: (a) power vs. frequency, and
- (b) relative phase vs. frequency plots with ¢ ={0.75 0.5 —0.2 6.0].
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Figure 4.7 Characteristics of a diplexer: (a) power vs. frequency, and
(b) relative phase vs. frequency plots with ¢ = [0.5 0.5 —0.2 6.0].
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Figure 4.8 Characteristics of a diplexer: (a) power vs. frequency, and
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Figure 4.9 Characteristics of a diplexer: (a) power vs. frequency, and
(b) relative phase vs. frequency plots with e =[0 05 ~0.2 6.0].
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Figure 4.10 Characteristics of a diplexer: (a) power vs. frequeney, and
(b) relative phase vs. frequency plots with & =[0.5 1.5 —0.2 6.0].
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Figure 4.14 Characteristics of a diplexer: (a) power vs. frequency, and |
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66



‘Power Output (in dB)

Sute1 i o o o s o I 0 O
0.00 050 100 150 200 250 300 350 400

Normalized ( F)requency (f/fo)
a .

Relative phase angle in degrees

O T T T T T T T T T T T T T T T T oo

0.00 050 1.00 150 2.00 250 300 350 4.00
N'ormolized(bigrequency (f/fo)

Figure 4.15 Characteristics of a diplexer: (a) power vs. frequeney,
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 Figure 4.18 Characteristics of a diplexer: (a) power vs. frequency,
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4.6 Starting value of the ¢ vector

In every algorithms for optimization it is a vital prdblem to choose a starting
point. The search for mlmmu_m or maximum is started from this point. If the
starting p.oint is chosen badly, not only the search takes longer time, but in case of
a complex function the search may also stuck in a .vallcy or pothole. So, it is very

important to select a good starting point.

At the beginning of optimization a starting e vector is required for initial com-
putation of power. Selection of a suitable starting e vector makes it easier to find
tlic optimized e vector reliably and quickly. The starting e vector can not be taken
arbitrarily. ‘It should be chosen so that the coupling of peak power between two lines
of the diplexer occurs in the vicinity of the two selected frequency bands. So, while
selecting a starting e vector the power characteristics of a diplexer should be plot-
ted with several sets of e vectors and the one which fits closest to the requirement

should be chosen.

While selecting a starting e vector the relationship of the power characteristics
with the elements of e vector'should be understood. The effect of the elements
of e vector on the power against frequency characteristics discussed in section 4.5
gives an idea where the starting point may be sclected. The idea about selecting a
starting e vector for this work is obtained from a work on the design of microwave
forward directional couplers {6]. After making few modifications of the e vector
used in reference [6] on the basis of the concept developed in section 4.5 a starting
e vector is chosen so that the power characteristics fit the two operating bands of

the diplexer.

In this work the diplexer under consideration is desired to operate in the fre-
quency bands of (1 - 1.3) and (2 -2.3) GHz. Here two starting e vectors are chosen
for optimization. The 1st e vector is chosen from the plots given is Figs. 4.4 - 4.23

which is the e vector of figure 4.6.
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The 1st starting ¢ vector: ¢' = [0.75 0.5 — 0.2 6.0].
.The 2nd starting ¢ vector is chosen on the basis of the data given in refcrence
[6].
The 2nd starting e vector: e = [0.646 0.5523 —0.2 6.7].

The optimization program is individually operated with both of these starting
e vectors. It will be seen that the optimization program will optimize both the

e vectors to the same minimum error level (section 4.10).

4.7 Optimization of the ¢ vector

The characterisﬁics of the diplexer under consideration depends on the elements
(;f the ¢ vector. In this work the ¢ vector contains four elements. In other words
the e vector is a four-variable function. The characteristics of the diplexer may be
conl;rt;llcd by changing the values of the clements of the ¢ vector. So to o.btninl the
desired power characteristics in two different frequency bands, the function that
requires to be optimized is the ¢ vector.

The method used for optimization in this work has been described in section 4.4.
For a diplexer the e vector is a four-variable function and all the four variables are
required to be changed to obtain maximum power in two desired band of frequencies.
Before starting optimization, two bands of frequencies (within which optimization
is performed) and a reference power level (with which output power is compared)

are selected.

The starting e vector used in this work is given in section 4.6. After selecting the
starting e vector power is computed in the two selected frequency bands and this
computed power is subtracted from the reference power level to obtain the error
function as described in section 4.8. The goal of the optimization in this work is to
minimize this error function so that ma.ximﬁm coupling of power can be achieved

in the selected frequency bands. To minimize this error function the method of



[ Select a starting e vo(.‘ﬁr.mj

[ Specify the desired power vs. frequency characteristic,
Set the reference power level for the individual lines
of the diplexer and the frequency ranges for cach line

|

| Obtain the power characteristic from the ¢ vector
‘ and compare it with the desired characteristic

l

Form an error function by taking the differnce between the
reference power level and the computed power level within the
specified frequency bands at the specified frequency values

l

! Optimize the error function by computer method J

l Form the new e vector

! From the obtained e vector form the J matrix and get the length Ly

Compute the eigenvalues of the J matrix and form the g matrix

I

Obtain the eigen values of J matrix and form the ¢ matrix

‘ '
Get the plots of power and phase characteristics by necessary

computations using equations (2.72) — (2.75)

!

[Print the e vectorl

|

Fxgure 4.25 Flow—cha.rt showing the sequence of computations for obtaining
an ODtlIl']JJCd e vector of the required diplexer.
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~ optimization described in section 4.4 is followed.

The optimization of ¢ vector is a major step in designing the diplexer under‘
consideration. After optimizing the e vector, the methods of scaling and shifting
the J matrix (described in section 3.4) are applied to get realizable physical di-
mensions of the diplexer. The sequence of computations required for obtaining an
optimized ¢ vector is shown in the flow-diagram of Fig 4.25. The optimized e vector
thus obtained is latter used for computing the physical dimensions of the required

diplexer.
4.8 Computation of the error function

It may be seen from figure 4.3 that before beginning optimization a reference
level is selected so that the deviation of the response from this reference level can be
computed. In an optimization procedure, computation of this deyiation or error is
very important. The total error computed within desired limits is known as error
function. The process of computing the error function of a diplexer is discussed in

this section.

- The general process of computing an error function of any function f(x) is
shown in figure 4.26. In case of a diplexer, two operating bands of frequencies — one
for channel-1 and the other for channel-2 are selected within which the diplexer is
desired to operate (figure 4.27). For channel-1 let the lower and the upper frequency
boundary be f; and f;. Similarly let the lower-and upper frequency boundary be
respectively f; and f;. The area enclosed by the reference line and the power-curve
between frequency range f; and f, is computed to find the crror in channel-1 (say,
ER;). Similarly ‘error for channel-2 (say, ER;) is also computed by finding the
enclosed area between the reference line and the power curve of channel-2 within

the boundary f; and f;. The total error is obtained by adding ER, and I R,.
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Figure 4.26 Computing the error function of a general function f(z) -
by finding the error area (indicated by hatched lines). The total error
is equal to the sum of total area, i.e., error = (4; + Ay + A3) = [7
[Yres — [{z)ldz. :
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START 4

Declara arrays:
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i
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. ] ;
[]
P;ALL ERRCR{ Vv, ERRL] :'
1
| :
:
Oall Subroutine ERROR  Annwenn Yos E
GALL ERROR{ U, ERR ) !
- a
| No i
"|PERR = ERR '
V(I = () E
4 :
Print the Yos E
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Figure 4.28 Flow-chart of the optimization program OPT.FOR.
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Figure 4.29 Flowchart of the subroutine ERROR.
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The errors can be computed by following equations. Error of channel-1 is:
f2
ER, = ]f Yees — Poldf . (4.15)
. , .
Error of channel-2 is:

! ) .
BRy = [ Yoy = Paulf (4.16)
h .

So the net error is obtained by adding the error areas of the two individual

channels.

The total error, ERR = ER;+ ER; (4.17)

This error is a function ofg vector and so the error can be minimized by manip-
ulating the e vector. The error is computed numerically with computer programs

as a part of the main optimization prograﬁl.
4.9 The Optimization program

The process of minimizing the error function described in the previous section
is done with the help of a computer program which is developed for optimizing the
diplexer characteristics.. The program takes the known parameters of a diplexer
(mentioned in section 5.10) and a startfng e vectér as input and gives the optimized
e vector as output. This optimized ¢ vector gives the minimum error for a specified

bands of frequencies and a chosen reference level.
The flow-chart of the main opti_mizatioﬁ program is shown in figure 4.28. ‘The

main program uses a subroutine named ERROR. This subroutine actually does the

major portion of the job. The main program passes an e vector to the subroutine

"ERROR. With this ¢ vector the subroutine computes cigenvalues, eigenvectors,

scattering matrix and the output power. The output power thus obtained is then

compared with the reference power level to find the error. The error area between
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the computed power and the reference power level is obtained by the process of

numerical integration. The flow diagram of the subroutine is shown in figure 4.29.

According to the steps shown in the flow charts (figures 4.28 — 4.29) a program
(OPT.FOR) has been developed in FORTRAN. The listing of the program is given
in the appendix-B. In the process of optimizing the e vector, one has to repeatedly
compute the power at different frequencies. The program for finding the power
and phase characteristics of a diplexer is presented in appendix A. The number of
iterations the program performs depends on the value of Az (mentioned in section
4.4). The smaller the value of Ax the higher will be the number of iterations. If
a very small value of Az is taken, the number of iterations will be very high and
the program will take longer time to run. Again if a large value of Az is taken the

accuracy of the search will be reduced.

In program OPT.FOR (given in appendix-B) there is an option to choose the
value of Az, There are also several other options for selecting the starting e vector.
Using this program one can reach same minimum point starting with different

€ vectors.

4.10 Examples of optimization

The optimization program actually modifies the e vector so that the minimum
error (i.c., the maximum output) is obtained. The program starts with a set of pre-
defined variables and a starting e vector. In this section the optimization program
is run with a set of sample data to see how the optimization program gradually
changes the elements \of the e vector and minimize the error. when the minimum

error is achieved, the program gives the optimized e vector and terminates.

Here the optimization program is run with two different starting e vectors as

discussed in section 4.6, -

The 1st starting e vector: e =[0.75 0.5 —0.2 6.0]
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Table 4.1.a

Data generated during the optimization of ¢ vector strating

with e = [ .75 .5

— .2 6.0]. The e vector, error and output
power during the first 34 iterations arc shown in this Table.
The program used for pencrating these data is OPILFOR given
is appendix B.

[ Iteration | The ¢ Vector Error | Power |

1 0750000 0.500000 -.200000 6.000000 | 14.449820 | -1.708293

2 0749250 0.500750 -.300750 6.000750 | 14.253240 | -1.691223

3 0748500 0501500 -.201500 6.001500 | 14.059370 | -1.674690

; 0747750 0.502950 202950 6.000250 | 13.868180 | -1.658703

) 5 0747000 0.503000 -.203000 6.003000 | 13.679770 | -1.643268
5 0746250 0.503750 -.203750 6.003750 | 13.494120 | -1.628390

7 0.74E500  0.504500 -.204500 6.004500 | 13.511300 | -1.614071

8 0744750 0.505250 -.205250 6.005250 | 13.131360 | -1.600330

9 0744000 0.506000 206000 6.006001 | 12.954300 | -1.587157

10 10743250 0306750 _.206750 6.006751 | 12.780180 | -1.574572

11 [ 0.742501 0.507500 -.207500 6.007501 | 12.609110 | -1.562578

12 0.741751 0.508250 -.208250 6.008251 | 12.441050 | -1.5651184

13 0.741001 0.509000 -.209000 6.009001 | 12.276090 | -1.540396

14 0.740251 0.509750 -.209750 6.009751 | 12.114280 | -1.530226

15 0.739501 0.510500 -.210500 6.010501 | 11.955660 ( -1.520672

16 0.738751 0.511250 -.211250 6.009751 | 11.799890 | -1.509810

_ 17 0.738001 0.512000 -.212000 6.009002 | 11.647000 | -1.499504
18 0.737251 0.512750 -.212750 6.008252 | 11.496990 | -1.489765

19 0.736501 0.513500 -.213500 6.007503 | 11.349930 { -1.480591

20 0.735751 0.514250 -.214250 6.006753 | 11.205830 | -1.471997

21 0.735001 0.515000 -.215000 6.006003 | 11.064720 | -1.463980

22 0.734251 0.515750 -.215750 6.005254 | 10.926650 | -1.456555

23 0.733501 0.516500 -.216500 .6.004504 | 10.791710 | -1.449722

24 0.732751 0.517250 -.217250 6.003755 | 10.659860 | -1.443487

25 0.732001 0.518000 -.218000 6.003005 | 10.531190 | -1.437837

26 0.731251 0.518750 -.218750 6.002255 | 10.405720 | -1.432848

27 0.730501 0.519500 -.219500 6.001506 | 10.283530. | -1.428453

28 0.729751 0.520250 -.220250 6.000756 | 10.164630 | -1.424685

_ 29 0.720002 0.521000 -.221000 6.000007 | 10.049080 | -1.421553
30 0.728252 0.521750 -.221750 5.999257 | 9.936935 | -1.419065

31 0.727502 0.522500 -.221750 5.998507 | 9.829186 | -1.3940065

32 0.726752 0.523250 -.222500 5.997758 | 9.720054 | -1.392208

33 0.726002 0.524000 -.222500 5.997008 | 9.613948 | -1.367518

[ 34 0.725252 0.524750 -.222500 5.996259 | 9.509856 | -1.343156
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Table 4.1.b Continuation of Table 4.1.a. The ¢ vector, error and output
power during iterations 35 to 68 are shown in this Table.

| Tteration | The ¢ Vector | Error | Power |
33 0.724502 0.525500 -.223250 5.995509 | 9.403306 | -1.341944
36 0.723752 0.526250 -.223250 5.994760 | 9.300788 | -1.3178%4
37 0.723002 0.527000 -.224000 5.994010 | 9.197314 | -1.317337
38 0.722252 0.527750 -.224000 5.993260 ; 9.096290 | -1.2935%4
39 0.721502 0.528500 -.224000 5.992511 | 8.997247 | -1.270161
40 0.720752 0.529250 -.224750 5.991761 | 8.896376 | -1.270260
41 0.720002 0.530000 -.224750 5.991012 | 8.798774 | -1.247128
42 0.719252 0.530750 -.224750 5.990262 | 8.703100 | -1.224312
43 0.718502 0.531500 -.225500 5.989512 ; 8.604842 | -1.225060
44 0.717752 0.532250 -.225500 5.988763 | 8.510522 | -1.202534
45 0.717002 0.533000 -.226250 5.988013 | 8.415428 | -1.203954
46 0.716252 0.533750 -.226250 5.987264 | 8.322452 | -1.181725
47 0.715503 0.534500 -.226250 5.986514 | 8.231359 | -1.1597%4
48 0.714753 0.535250 -.227000 5.985765 | 8.138912 | -1.161884
£9 0.714003 0.536000 -.227000 5.985015 | 8.049064 | -1.140235
50 0.713253 0.536750 -.227000 5.984265 | 7.961027 | -1.118890
51 0.712503  0.537500  -.227750 5983516 | 7.871284 | -1.121654
02 0.711753 0.538250 -.227750 5.982766 | 7.784455 | -1.1005685
53 0.711003 0.539000 -.227750 5.982017 | 7.699413 | -1.079807
4 0.710253 0.539750 -.228500 5.981267 | 7.612387 | -1.083258
59 0.709503 0.540500 -.228500 5.980517 | 7.528485 | -1.062751
56 0.708753 0.541250 -.228500 5.979768 | 7.446300 } -1.042537
57 0.708003 0.542000 -.229250 5.979018 | 7.362011 | -1.046672
58 0.707253 0.542750 -.229250 5.978269 ; 7.280935 | -1.026727
29 0.706503 0.543500 -.229250 5.977519 | 7.201535 | -1.007061
¢0 0.705753 0.544250 -.230000 5.976769 | 7.120069 | -1.011902
61 0.705003 0.545000 -.230000 5.976020 | 7.041708 | -0.992497
62 0.704233 0.545750 -.230000 5.975270 | 6.964268 | -C.973375

1 63 0.703503 0.546500 -.230750 5.974521 | 6.886380 | -0.978929

| 64 0.702753 0.547250 -.230750 5.973771 | 6.810631 | -0.960064
65 0.702003 (.548000 -.230750 5.973022 | 6.736487 | -0.941468
66 0.701254 0.548750 -.231500 5.972272 | 6.660838 | -0.947750
67 0.700504 0.549500 -.231500 5.971522 | 6.587619 | -0.929407
68 0.699754  0.550250 -.231500 5.970773 1 6.515970 | -0.911339
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Table 4.1.c Continuation of Table 4.1.b. The ¢ vector, error and output
power during iterations 69 to 102 are shown in this Table.

| Iteration | The ¢ Vector | Error | Power |
[ 69 1 0.699004 0.551000 -.232250 5.970023 | 6.443338 | -0.918351
70 1 0.698254 0.551750 -.232250 5.969274 | 6.372583 | -0.900533
71 0.627504 0.552500 -.232250 5.968524 | 6.303306 | -0.882969
72 | 0.696754 0.5563250 -.232250 5.967774 | 6.235543 | -0.865677
73 . 0.696004 0.554000 -.233000 5.967025 | 6.165396 | -0.873428
74 0.695254 0.554750 -.233000 5.966275 ! 6.098450 | -0.856380 .
75 0.694504 0.555500 -.233000 5.965526 [ 6.032965 | -0.839580
76 0.693754 (.556250 -.233750 5.964776 | 5.96A002 { -0.848104
77 0.693004  0.557000 -.233750 5.964026 | 5.901299 ; -0.831543
78 0.692254  0.557750 -233750 5.963277 t 5.838034 | -0.815246
79 0.691504 0.558500 -.233750 5.962527 | 5.776150 | -0.799195
80 0.690754 0.559250 -.234500 5.961778 | 5.711857 | -0.808486
81 0.690004 0.560000 -.234500 5.961028 | 5.650692 | -0.792664
82 0.6892564  0.560750 -.234500 5.960279 | 5.590909 | -0.777101
83 (L688H04  0.561500 -.235250  5.959529 | 5.530080 | -0.787194
84 0.687755 0.562250 -.235250 5.958779  5.470989 | -0.771860
85 0.687006 0.563000 -.235250 5.958030 | 5.413227 | -0.756765
86 0.686255 0.563750 -.235250 5.957280 | 5.356777 | -0.741919
87 (0.685505 0.564500 -.236000 5.956531 : 5.298855 | -0.752816
88 0.684755 0.565250 -.236000 5.955781 | 5.243055 { -0.738193
89 0.684005 0.566000 -.236000 5.955031 | 5.188528 | -0.723808
90 0.683255 0.566750 -.236000 5.954282 | 5.135260 | -0.709663
91 0.682505 0.567500 -.236750 5.953532 | 5.080456 | -0.721395
92 0.681755 0.568250 -.236750 5.952783 | 5.027787 | -0.707471
93 0.681005 0.569000 -.236750 5.952033 | 4.976375 | -0.693779
94 0.680255 0.569750 -.236750 5.951283 | 4.926170 | -0.680324
95 0.679505 0.570500 -.237500 5.950534 | 4.874645 | -0.692920
96 0.678765 0.571230 -.237500 5.949784 | 4.824988 | -0.679681
o7 0.678005 0.572001 -.237500 5.949035 | 4.776551 | -0.666669
08 0.677255 0.572751 -.237500 5.948285 | 4.729271 | -0.653890
99 0.676505 0.573501 -.238250 5.947536 | 4.681220 | -0.667372
100 0.675755 0.574251 -.238250 5.946786 | 4.634486 | -0.654807
101 0.675005 (.575001 -.238250 5.946036 | 4.588884 | -0.642460
102 0.674255 0.575751 -.238250 5.945287 | 4.544425 | -0.630344
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Table 4.1.d Continuation of Table 4.1.c. The e vector, crror and output
power during iterations 103 to 136 are shown in this Table.

| Iteration | The e Vector | Error | Power |
103 | 0.673506 0.576501 -.238250 5.944537 | 4.501055 | -0.618440
104 0.672756 0.577251 -.239000 5.943788 | 4.456142 | -0.632850
105 0.672006 0.578001 -.239000 5.943038 | 4.413315 | -0.621163
106 0.671256 0.578751 -.239000 5.942288 | 4.371535 | -0.609695
107 0.670506 0.579501 -.239000 5.941539 | 4.330829 | -0.598440
108 0.669756 0.580251 -.239000 5.940789 | 4.291186 | -0.587400
109 0.669006 0.581001 -.239750 5.940040 | 4.249744 | -0.602766
110 0.668256 0.581751 -.239750 5.939290 | 4.210601 | -0.591947
111 0.667506 0.582501 -.239750 5.938540 | 4.172468 | -0.581326
112 0.566756 0.583251 -.239750 5.937791 | 4.135364 | -0.570924
113 0.666006 0.584001 -.239750 5.937041 | 4.099251 § -0.560723
114 0.665256 0.584751 -.240500 5.936292 | 4.061625 | -0.577107
115 0.664506 0.585501 -.240500 5.935542 | 4.026000 | -0.567121
116 0.663756 0.586251 -.240500 5.934793 | 3.991361 | -0.557343
117 0.663006 0.587001 -.240500 5.934043 | 3.957667 | -0.547765
118 0.662256 0.587751 -.240500 5.933293 | 3.924945 | -0.538395
119 0.661506 0.588501 -.241250 5.932544 | 3.891541 | -0.555839
120 0.660756 0.589251 -.241250 5.931794 | 3.859289 | -(0.546683
121 0.660007 0.590001 -.241250 5.931045 | 3.827999 | -0.537724
122 0.659257 0.590751 -.241250 5.930295 | 3.797626 ; -0.528972
123 0.658507 0.591501 -.241250 5.929545 | 3.768147 | -0.520405
124 0.657757 0.592251 -.241250 5.928796 | 3.739554 | -0.512039
125 0.657007 0.593001 -.242000 5.929546 | 3.710941 | -0.532937
126 0.656257 0.593751 -.242000 5.928796 | 3.682755 | -0.524777
127 0.655507 0.594501 -.242000 5.928047 | 3.655450 | -0.516806
128 0.654757 0.595251  -.242000 5.927297 | 3.629022 | -0.509031
129 0.654007 0.596001 -.242000 5.926548 | 3.603455 | -0.501442
130 0.633257 0.596751 -.242000 5.925798 | 3.578724 | -0.494050
131 0652507  0.597501  -.242000 5.925798 | 3.554798 | -0.487951
132 0.451757 (.5998251 -.242000 5.926548 | 3.531520 | -0.483135
133 | 0.651007 0.599001 -.242000 5.927298 | 3.508932 | -0.478484
134 0.650257 0.599751 -.242750 5.928048 | 3.48(G195 | -0.501037
135 0.649507 0.600501 -.242750 5.927299 | 3.464145 | -0.494376
136 | 0.648757 0.601251 -.242750 5.926549 | 3.442928 | -0.487907
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Table 4.1.e Continuation of Table 4.1.d. The e vector, error and output
power during iterations 137 to 169 are shown in this Table.

| Iteration | The ¢ Vector | Error | Power |
137 0.648007  0.602001 -.242750 5.925799 | 3.422480 | -0.481611
138 0.647257 0.602751 -.242750 5.925050 | 3.402849 | -0.475511
139 0.646508  0.603501 -.242750 5.924300 | 3.383993 | -0.469586
140 0.645758 0.604251 -242750 5.925050 | 3.365861 | -0.466081
141 0.645008 0.605001 -.242750 5.925800 | 3.348366 | -0.462737
142 0.644258 0.605751 -.242750 5.926550 | 3.331514 | -0.459558
143 0.643508 0.606501 -.242750 5.927300 | 3.315322 | -0.456541
144 0.642758 0.607251 -.242750 5.928051 | 3.299761 | -0.453687
145 0.642008 0.608001 -.242750 5.928801 | 3.284868 | -0.450997
146 0.641258 0.608751 -.242750 5.929551 | 3.270588 | -0.448471
147 0.640508 0.609501 -.242750 5.930301 | 3.256956 | -0.446104
148 0.639758 0.610251 -.242750 5.931051 | 3.243969 | -0.443904
149 0.639008 0.611001 -.242750 5.931801 | 3.231612 | -0.441863
150 0.638258 0.611751 -.242750 5.932551 | 3.219903 | -0.439993
151 0.637508 0.612501 -.242750 5.933301 | 3.208827 | -0.438276
152 0.636758 0.613251 -.242750 5.934051 | 3.198373 | -0.436731
153 0.636008 0.614001 -.242750 5.934801 | 3.188558 | -0.435340
154 0.635258 0.614751 -.242750 5.935551 | 3.179389 | -0.434123
155 0.634508 0.615501 -.242750 5.936301 | 3.170848 | -0.433060
156 0.633758  0.616251 -.242750 5.937051 | 3.162949 | -0.432164
157 0.633008 0.617001 -.242750 5.937801 | 3.155675 | -0.431433
158 0.632259 0.617751 -.242750 5.938551 | 3.149057 [ -0.430867
159 0.631509 0.618501 -.242750 5.939301 ! 3.143058 | -0.430461
160 0.630759 0.619251 -.242750 5.940052 | 3.137714 | -0.430225
161 0.630009 0.620001 -.242750 5.940802 | 3.132992 | -0.430145
162 0.629259 0.620751 -.242750 5.941552 | 3.128932 | -0.430241
163 ] 0.628509 0.621501 -.242750 5.942302 | 3.125516 | -0.430493
164 0.627759  0.622251 -.242750 5.943052 | 3.122738 [ -0.430917
165 0.627009 0.623001 -.242750 5.943802 | 3.120504 | -0.431502
166 0.626259 0.623751 -.242750 5.944552 | 3.119148 | -0.432262
167 0.625509 0.624501 -.242750 5.945302 | 3.118315 | -0.433177
168 0.624759 0.625251 -.242750 5.946052 | 3.118159 | -0.434266
| 169 | 0.625509 0.624501 -.242750 5.946802 | 3.118227 | -0.435413
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Table 4.2.a

with ¢ = [ .646 .5523

Data generated during the optimization of e vector strating
— .2 6.7]. The e vector, error and

output power during the first 32 iterations are shown in this
Table. The program used for generating these data is OPT.FOR
given is appendix B.

t Tteration | The ¢ Vector | Error | Power |

[ 1 0.646000 0.552300 -.200000 6.700000 | 5.832225 | -.3911839
2 0.645250 0.553050 -.200750 6.700750 | 5.663136 | -.3909530
3 0.644500 0.553800 -.201500 6.701500 | 5.500857 | -.3918845
4 0.643750 0.554550 -.202250 6.702250 | 5.345592 | -.3940239
S 0.643000 0.555300 -.203000 6.703000 | 5.197395 | -.3973585
6 0.642250 0.556050 -.203750 6.703750 | 5.056554 | -.4019512
7 0.641500 0.556800 -.204500 6.704500 | 4.923080 | -.4077820
8 0.640750 0.557550 -.205250 6.705250 | 4.797157 | -.4148880
9 0.640000 0.558300 -.206000 6.706000 | 4.678905 | -.4232783
10 0.639251 (.559050 -.206750 6.706750 | 4.568480 | -.4329824
11 0.638501 0.559800 -.207500 6.707500 | 4.466009 | -.4440151
12 0.637751 0.560550 -.208250 6.708251 | 4.371676 | -.4564109
13 5.637001 0.561300 -.209000 6.709001 | 4.285531 | -.4701633
14 0.636251 0.562050 -.209750 6.709751 | 4.207781 | -.48563130
15 0.635501 0.562800 -.210500 6.710501 | 4.138458 | -.5018558
16 0.634751 0.563550 -.211250 6.711251 | 4.077835 | -.5198447
17 0.634001 0.564300 -.212000 6.712001 | 4.025918 | -.5392691
1 0.633251 0.565050 -.212750 6.712751 | 3.982950 | -.5601779
9 0.632501 0.565800 -.212750 6.712001 | 3.944899 | -.5496509
20 0.631751 0.566550 -.212750 6.711252 | 3.908041 | -.5393825
21 0.631001 0.567300 -.212750 6.710502 | 3.872311 | -.5293548
22 0.630251 0.568050 -.213500 6.710502 | 3.836251 | -.5507790
23 0.629501 0.568800 -.213500 6.709753 | 3.801111 | -.5410233
24 (0.628751 0.569550 -.213500 6.709003 | 3.767175 | -.5315312
25 0.628001 0.570300 -.213500 6.708253 | 3.734313 | -.5222754
26 0.627251 0.571050 -.213500 6.707504 | 3.702611 | -.5132771
27 0.626501  0.571800 -.213500 6.706754 | 3.671924 | -.5045031
28 0.625751 0.572550 -.213500 6.707504 | 3.642289 | -.4979462
29 0.625002 0.573300 -.213500 6.708254 | 3.613492 | -.£915891
30 0.624252 0.574050 -.214250 6.709004 | 3.584456 | -.5159311
31 0.623502  0.574800 -.214200 6.708255 | 3.5506311 | -.5078856
32 | 0.622752 0.575550 -.214250 6.707505 | 3.529308 | -.5000985
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Table 4.2.b Continuation of Table 4.2.a. The e vector, error and output
power during iterations 33 to 64 are shown in this Table.

[ Iteration ] The ¢ Veclor | Error | Power J
33 n.622002 0.576300 -.214250 6.706756 | 3.503250 | -.4925289
34 0.621952 0.577050 -.214250 6.706006 | 3.478305 | -.4852131
29 0.620502 0.577800 -.214250 6.705256 | 3.454278 | -.4781103
35 0.610752 0.578550 -.214250 6.706007 | 3.431240 | -.4732231
37 | 0.619002 -0.579300 -.214250 6.706757 | 3.408993 | -.4685342
&8 0.5618252 0.580050 -.214250 6.707507 | 3.387689 | -.4640794
39 0.617502 0.580800 -.214250 6.708257 | 3.367134 | -.4598124
40 0.616752 0.581550 -.214250 6.709007 | 3.347465 | -.4557664
41 0.616002 0.582300 -.214250 6.709757 | 3.328597 | -.4519233
42 0.615252 0.583050 -.215000 6.710507 | 3.310136 | -.4791320
43 0.614502 0.583800 -.215000 6.709757 | 3.292274 | -.4736434
44 0.613752 0.584550 -.215000 6.709008 | 3.275362 | -.4683832
45 0.613002 0.585300 -.215000 6.708258 | 3.259342 | -.4633376
46 0.612252 0.586050 -.215000 6.707509 3.244322 | -.4585327
a7 0.611503 0.586800 -.215000 6.706759 | 3.230165 | -.4539355
48 N0.610753 0.587550 -.215000 6.706009 | 3.216992 | -.4495786
49 0.610003 0.588300 -.215000 6.706009 | 3.204624 | -.4464163
50 0.609253 0.589050 -.215000 6.706759 | 3.193117 | -.4444728
51 0.608503 0.589800 -.215000 6.707510 | 3.182378 | -.4427229
52 0.607753 0.590550 -.215000 6.708260 | 3.172549 | -.4412043
53 1 0.607003 0.591300 -.215000 6.709010 | 3.163484 -.4398776
54 [ 0.606253 0.592050 -.215000 6.709760 | 3.155229 | -.4387655
55 0.605503 0.592800 -.215000 6.710510 | 3.147792 | -.4378600
56 0.604753 0.593550 -.215000 6.711260 | 3.141224 | -.4£571758
57 0.604003 0.594300 -.215000 6.712010 | 3.135412 | -.4366846
58 0.603233 0.505050 -.215000 6.712760 | 3.130510 | -.4364278
59 0.602503 0.595800 -.215000 6.713510 | 3.126345 | -.4363621
60 0.601753 0.596550 -.215000 6.714260 | 3.123073 | -.4365215
61 0.601003 0.597300 -.215000 6.715010 { 3.120583 | -.4368815
62 0.600253 0.598050 -.215000 6.715760 | 3.118971 | -.4374675
63 0.599503 0.598800 -.215000 6.716510 | 3.118147 | -.4382511
64 0.598753 0.599550 -.215000 6.716510 | 3.118198 | -.4382659
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Figure 4.30 Output power vs. frepuency characteristics o-fa diplexer

with: a

) starting e vector from table 4.1.a,¢'=[.75 .5 —.2 6.0],b) an

intermediate e vector obtained in 69th iteration, ! = [ .69904 .551 -

23225

5.970023 ), c) optimized e vector, e! = [ 625509 .624501 —
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and 2nd second starting e lvector: e = [0.646 0.5523 —0.2 6.7)
The following set of values are also assumed:
Small change, delx (Az) = .00075
The normalized frequeﬁcy band of ch@nnel -1 :
| fi=10to =13 GHZ
The normalized frequenc& band of channel 2:
| f=20to f;=23GHz

First the optimization program OPT.FOR is run with the 1st starting e vector.
~ When the program is run, with the above set of values it continues to modify the
e vectdr and minimize the error through iterations as can be seen frbm the output
of the optimization program. The gradual change of the e vector with decreasing
error is shown in tables 4.1.a — 4le. Tt may be seen from these tables that the
optimization program requires 169 iterations to reach the minimum error level. The

[

optimized e obtained with the 1st starting e vector is:

Optimized ¢' = [.648757 .601251 — .24275 5.926549]

Again the optimization program is run with the 2nd starting e vector. The data
gencrated during optimization is shown in tables 4.2.a — 4.2.b. The power against
frequency charﬁcteristics of the diplexer with the starting e vector, an intermediate
e vector and the optimized ¢ vector is shovw in figure 4.30. It is seen from the tables
that the optimization program requires 64 iterations to reach the same minimum
error level as obtained with the first starting e vector. The program requires less -
number of iterations bocause, the 2nd stafting e vector was closer to the optimized
e vector than that of the 1st startiﬁg ¢ vector which can readily be verified from the
tables 4.1.a - 4.2.b and figure 4.30. As may be seen from table 4.2.b the optimized .

e obtained with the 2nd starting e vector is:
Optimized ¢ = [.648757 601251 — 24275 5.926549)

Before starting the optimization of an ¢ vector it is necessary to select Ehé
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two channels of the desired diplexer. It is considered that for the desired example
diplexer, each channel shall have a band width of 0.3 GHz. For this case Qe choose
the optimizing band for the first output channel within 1 - 1.3 GHz end for the
second output channel within 2 — 2.3 GHz. A reference power level is also selected
for these two outputs. It is assumed that the reference power level of both the
channels is 0.1 dB. The selected channels and the reference power level are shown
in fipure 4.31.a.

In the next step a power against frequency plot of the coupled combline system
is obtained with a starting ¢ vector which is shown in figure 4.31.b. It may be seen
from figure 4.yy that the maximum distributed power on the lines do.not occur in
the selected channels To make the diplexer work in the desired channels the power
characteristic curves should be dragged toward the selected channels as indicated
by the arrow sign (figure 4.31.b). It is also desired to obtain minimum deviation
fromr the reference power level i.e., minimum loss in the selected bands.

With the help of the computer optimiztion procedure the charcteristics of the
diplexer are brought within the desired frequency ranges by shifting the e vector.
The power characteristic of the diplexe]; with an optimized e vector is shown in
figure 4.31.c. It might be desirable to bring the channels closer to make the diplexer
a contiguous channel type diplexer. But it has been observed that the behaviour
of this type of coupied lines does not permit to have a contiguous channel type

diplexer.
4.11 summary

Some possible methods of optimization have been discussed. The optimization
algorithm used in this work has been presented. The influence of ¢ vector on the
power against frequency characteristics has been presented with a number of plots.

The flow-chart of the optimization program OPT.FOR, used for the optimimtion
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in this work, has been presented. The method of optimizing the e vector has been
described and examples of optimizaﬁion of e vector have also been presented in
this chapter. A design example of a diplexer ha—.;we been considered and the e of
this diplexer obtained after computer optimization have been’ used to obtain the
characteristics of the diplexer. The optimized e vector obtained for this examplé

will used as the basis for obtaining the physical dimensions of a diplexer.
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CHAPTER 5

Obtaining the physical dimensions of a combline
~diplexer

5.1 Introduction

" In the last chapter the technique of obtaining an optimized e vector which
provides the desired characteristics of a diplexer is presented. Once an e vector is
obtained, the next step is to obtain the line parameters of the combline diplexer by-
using the equations of section 3.5. One can then obtain the physical dimensions of a
combline diplexer on the basis of the obtained line parameters. Since the diplexers
under discussion are made of comblines, a model for a solitary combline is needed
and the equations' for obtaining the line dimensions from the line parameters are

needed. This chapter starts with such a presentation.

The microstrip T-junction equivalent circuit and the équivalent circuit of a soli-
tary combline using the microstrip T-junction equivalent circuit are presented in
section 5.2. The equations required for obtaining the finger length and the main
line characteristic impedance of a solitary combline are presented in section 5.3. The
process of obtaining the dimensions of a solitary microstrip combline is discussed in
section 5.4. The procedure of obtaining the dimensions of the coupled comblines of
a dipleier is presented in section 5.5. The computer program developed and used
for obtaining the line parameters and the finger lengths is discussed in section 5.6.
The method of nbl’.'uiniug the amount of foger overlap of a combline dipl('.}'ccr is

presented in section 5.7. The summary of this chapter is presented in section 5.8.
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Figure 5.1 Miérostrip T-junction equivalent circuit for obtaining equiv-
alent circuit model of a comb- or herringbone- line. (a) A combline, (b) a
microstrip T-junction, and (c) equivalent circuit of the T-junction.
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5.2 Mddeling a solitary combline using the microstrip T-
junction equivalent circuit

It is necessarjr, at this st#ge, to obtain an cquivalent circuit of a solitary (isolated)
combline. This is necessary in order to be able to obtain analytical expressions of
the characteristic impedance and phase velocity of a combline in terms of the finger
periodicity, characteristic impedance of the main line and characteristic impedance

of the finger line. Such an equivalent circuit has been presented in reference [5].

From [5] it may. be observed that for obtaining such an equivalent circuit the
wellknown microstrip T-junction equivalent circuit may be used as the basis. It is
known thét in a coinblinc, finger lines come out at right angle from the main line
and appear periodically. So each junction between a finger and the main line may bé
treated as a T-junction. An analysis of such a miérostrip T-junction was presented
by Silvester and Benedek [10] and also by Hammerstead [8]. The equivalent circuit
of such a microstrip T-junction used by them is shown in figure 5.1. According
to Hammerstead’s analysis [8] the impedance offered by the open circuit branch
liﬁe appears both transformed by the ratio n? 8] and displaced by some electrical
length from the physical juncﬁion. A junction capacitance also appears as shown in
figure 5.1. The equations for compuﬁing the displacement of reference lines for both
main and branch lines were presented by Silvester and Benedek and Hammerstad
[8] some of which are presented in section 5.3.

Thus in a herringbone- or comb- line, each junction between a finger and main
line is treated as a T-junction. On this basis an equivalent circuit of a combline may
be represented by cascaded T-junctions as shown in figure 5.2. A nomenclature of

terms which will be used in the following discussion is presented below.
p = finger periodicity
l; = finger length

d. = displacement of the main line reference at the junction of the fingers
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Wy

wy

displacement of the finger line reference at the junction

Om = Bm(p + 2d,,) radians

electrical periodicity of the herringbone line

propagation constant for the main line (in radians/mm.)
propagation constant for finger lines (in radians/mm.)
effective propagation constant (in radians/mm.)

cha.r#cl:eristic impedance of the main line

characteristic impedance of the finger liné

characteristic impedance of the herringbone — or coﬁlb — line

capacitance at the junction for the discontinuity due to fingers

(negative for Z; > 65 ohms)

transformation ratio

angular velocity at lower end of frequency band (in radian/sec.)
thickness of the substrate (in mm.)

width of the main line when 2 = m and ﬁﬁger line when i = f(in mm.)

dielectric constant of the substrate material

iX v [lix (v, [Jix [Jix

L

—— ———

«—— unit cell —-

figure 5.2 Eqivalent circuit of 'a comb- or herringbone- line using
T-junction model.
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For comblines it may be assumed that the transformation ratio in near to unity
[5]. After necessary changes n is main line reference plane, the effectivé pefiodicity
for describing the propagation becomes (p + 2d,,,). For the finger lines if the ref-
erence plane displacement is found to be of significant amount, this is taken into
account by replacing I; by (I; + dp). Equations for computing the min line refer-
ence displacement d,,,, the finger line reference displacement d; énd dy are given in
section 5.3.

After replacing the finger line with T-junction equivalent circuit of figure 5.1
" the equivalent circuit of a comb- or herringbone- line may be drawn as shown in
figure 5.2. Here the loading due to the fingers is indicated by the admittance j X
‘and the reference plane displacement is adjusted within the electrical length p. Thus .
a unit cell of length p is considered with one finger line in the center. The unit cell

thus has three parts:

7) A portion of the main line of effective length (p+ 2dm)/ 2 on the left,

1%) the reactance due to finger line at the junction in the center, and
177) a portion of the main line of offective length (p+ 2d.)/2 on the right

(as shown in figure 5.1).

The total ABCD matrix of the unit cell is obtained by cascade multiplication of
the ABCD matrices for the three sections described above. From the ABCD matrix
of the unit cell, the equation of the characﬁeristic impedance of the main line and
the equations for the length of the finger lines are obtained.

The detail analysis is available in reference [5]. Here only the ﬁscful cquations
will be presented. Thus following [5] and by considering a unit cell between the nth
and (n + 1)th node of the equivalent circuit shown in figure 5.2, the voltage and

currents at the two ends of the cell may be represented by the following equations:
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Val [ cost §Zpmsin g 1 0] [cos?  §Zunsin? ][ Vi

_ | | e
L] L i¥msing  cosg [ [JX 1] | j¥nsing  cos§ || L
Vil [ecosf—ZaXging _jé’%i +j?m@ +5Zmsind | [ Vanr

_ (5.2)
Lol |5 +i%5%2 4+ i, sin0 - cos0-Z3%sing | | Lunn

Equation 5.2 may be writtén in terms of ABCD matrix as shown in the following

. equation:

v, A B Va1
"= 5.
Using the eigenvalues of the ABCD matrix it is possible to obtain the analytical

' expressioh for the characteristic impedance and phase velocity of a combline.

Z:(ZnX cosf+ 2sin0 — Z,, X
Zy = = 5.4
0 \/ Zmc0s0 + 2500 + Z X (54)
(5.5)
Upe = “p
pe T cos~1(cos f — ZmXeind X;i“”) '
(5.6)
Here
2 . .
X = 8 — .
Z e (cos 8 — cos B.p) (5.7)
| . The expression for finger length of a herringbone line may be written as
1 Z '
l=—.;“1[ / v f) . reva ] 5
/ 5 tan w27 sinf B(LObo cos B.p) o (5.8)
~ and the expression for finger length of a combline may be written as
1 . 2Z;
lf = E; tan [m(cos f— COS ﬁep)] (5.9)
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It has been shown in [B] that it is possible to make certain approximations

regarding 6 and higher power of 8 so that the following equations can be obtained.

| T
— '1
“ = INFTEX (5.10)

(5.11)
W p
Vo0 + XZ,,)

- Now, eliminating /(8 + Z,,X) from equations (5.9) and (5.10) one obtains

6 vy,
Zl) = Lm %
wp

(5.12)
, (5.13)

Vpe P B

. Zy = Z Y P
o 0 Vpm (P + 2d,)

From equation (5.12) one may obtain the main line impedance as follows:

2o

. P
I = o) T )

(5.14)‘

(5.15)
Zy - p

or, /— o
T P+ 2dn)

5.3 Necessary equations for obtaining the finger length and
main line characteristic impedance of a solitary mi-
crostrip combline |

The dimensions required to fabricate the diplexer under consideration are coupled
length (L), length of finger (Ly}, width of the main line (w,,), width of the finger
line (wy), thickness of the substrate (h), periodicity of the finger line (p} and the
amount of finger overlap. All of the above parameters are shown in Figs. (1.7), (1.8)
and (1.9). |

"Two curves are now r’equ.iré& for un_ifofm microstrip- lines. The first one is a

plot of characteristic impedance Z; (with i = m or f) against shape ratio (w;/h) on
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3.78 and 10. '
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semilog graph paper and the second one is a plot of the effective dielectric constant
crei Aggainst (w;/N), also on semilog-graph paper. These curves are obtained for the
particular value of dielectric constant e, {(of the chosen copper laminated board)

- using Hammerstad’s equations for microstrip lines. These equations are [11]

€rei-= (& + 1) + (e, — 1)F]/2 (5.16)
= | F = (1+12h/w)" "2 +0.04(1 —wi/h)? ;  when w;/h<1 (5.17)
F o= (1+12h/uw) ; | o when w;/h > 1 (5.18)

The relationship between effective dielectric constant and the shape ratio is
obtained from equations (5.4), (5.5) and (5.6). The relationship is shown graphically
in figure 53

The relationship between the impedance and the shape ratio! of the main line

and finger lines may be obtained from the following equations [11].

for w;/h <1
Z; = [(m/2) ln (8h/w; + 0.25w;/h)/ /e (5.19)
and for w;/h>1
Z; = [owi/h + 1.393 + 0.667 In(w;/h + 1.444) ")/ /ere (5.20)

1 = 376.73 chms

The subscript ¢ in the above equations is to be replaced by f for finger line
and by m for mainline. The exponential relationship between the characteristic

impedance (Z;) and the shape ratio is shown in figure 5.4.

"The ratio of the line-width Lo the substrate-thickness, (i.e., w;/h) is known as the shape ratio
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It is required to assume a value of €rem {the effective diclectric constant of the
mainline) as slightly less than ¢, (the dielectric constant of the substrate). A value

of the mainline impedance Z,,, is then obtained using the following equation.

Zm = Zo[[(p + 205 )pe/ (c/ v/ Erem )] (5.21)

Equation (5.9) is obtained from the model analysis of a combline discussed in
section (5.2). The phase velocity v, and the characteristic impedance Z, of the
combline should be known beforehand for designing a coupler. Following Hammer-

stad [8], d, is written as

dw. = D;(0.05n°Z,.)/Z; , (5.22) .

L

The term Dj used in equation (5.10) is to be obtained from equation '(5.12).
Following Hammerstad [8], the displacement of the finger line reference at a

junction is given by [5] [6] [11]

df = Dy[0.076 +0.2(2D,./A)? + 0.663 exp(—1.71Z,,/Z;)

~0.1721n(Z,./Z4)| 2,/ Z; _ | (5.23)
In equation (5.11) the term X represents the wave length of the microwave signal
under consideration (A = 2mwc/wy).

D.. and Dj used in equations (5.10) and (5.11) are the effective width of the
mainline and the finger line respectively. These two notations can be generalized
by using the notation D; where, ¢ = m (for main line) or f (for finger line). The

effective width of line ¢ can be obtained from the following equation.

D, : mh/(z‘i\/grei) V . . (524)
During the first approximate evaluation of Z,,, d,, is assumed to be zero.

The equations reguired to compute finger length (I;) of the combline are as

follows [5] [6].
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For a herringbone-line
Iy = (1/8;) tan™ [{Z; /(122 5in 6,,) } (cos B, — cos BP)] (5.25)
- For a combline

Iy = (1/8;) tén"l [{2Z;/(n2Z,, sin 8,,) }(cos 8 — cos B.P)] (5.26)

Here, 0,, = wy/(c €rem) (P+2dm), By = wi/(c/v/e, ;) and Be = wi/vpe. 8, and Fy
arc calculated using €. and e, obtaincd carlier. f. is (;alculated using the value
of the effective phase velocity of the combline v,, = vp;. At the end, d; is computed
using equation (5.22). The extra finger length for compensating the effect of the

finger line reference displacement is computed using the following equation.

5.4 Obtaining the dimensions of a solitary microstrip combline

The steps required for obtaining the physical dimensions of a microstrip combline
diplexer is shown in this section. However, before going through the design steps,
it is required to identify the parameters which are known or assumed pI‘IOI‘ to

proceeding with computatlon

For designing a combline in an open microstrip conﬁgufation, a suitable value of
finger periodicity p and a suitable width (wy) of finger line are taken first. Selection
of a particular copper laminated board gives the dielectric thickness, i.e., the gap h
and the dielectric constant (e,). We choose a copper laminated board with €, = 2.55
and the substrate thickness of 1.5 mm. Also we chooée that for the present example
we will have finger widths of 1 mm (suitable for cutting the mask by a 1 mm tool).

Thus the finger line characteristic impedance for this case is 107 ohms [5].

The equations presented in section 5.3 may be used for computing the finger

“length of a solitary microstrip combline. The method of finding the dimensions of
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a solitary microstrip combline may be used for finding the dimensions of a pair of
coupled microstrip combline if few coupling properties are considered. The steps
required for obtaining such a pair of coupled microstrip combline which is a diplexer

is presented in section 5.6.

5.5 Obtaining the dimensions of a pair of coupled microstrip
comblines ‘

.The way of obtaining the dimensions of a pair of coupled combline is similar |
to that of a solitary microstrip combline. A few modifications are required due
to the presence of the coupling properties of the two lines. The coupled or mutual
capacitance that comes into play due to the finger overlap of the two lines (déscribed
in section 55) is mainly taken under consideration. The values of the different
parameters given in section 5.3 are accepted in obtaining the dimensions of a pair
bf coupled combline. |

The uncoupled characteristic impedanées of the two lines afe taken as charac-
teristic impedance of the device (Z;). With this known parameters in hand the
following steps are worked through for obtaining the line width (w; and w,,) and
the length of the finger lines (I)..

Step—I With the known value of relative dielectric constant (¢,) and the charac-
teristic impedance (Z ), the width-height ratio of the finger lines (wy /h) is
computed from figure 5.3. As the thickness of the substrate (k) is known
before hand the width of the finger line (wy) may be computed.

Step—II Using the known dielectric constant (¢} and the shape ratio obtained in
Step-1, the effective dielectric constant (&) is obtained from the semilog plot

. of figure. 54.

Step—III Now a value of €., (effective dielectric constant of the‘main line) is
assumed, which should be slightly less than the value of ¢,. obtained in Step-

IT.
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Step—IV Putﬁing the value of €., (obtained in Step-II) in equation (5.20) the
impedance of the main line (Z,,) is now computed. All the terms used in
equation (5.20) are known except d,,. However, for the first approximation

d,, is taken to be zero. Tor later iterations the value of o, comes from Step-V.

Step—V Now d,, is computed with the help of equation (5.21). This d,,, is then

used to again find the value of main line impedance Z,, using equation (5.20).

Step— VI With the values obtained in the above steps the finger length (I;) for
comb- and herringbone- lines are obtained using equations (5.24) and (5.25)

respectively.

Step—VII The Z,, obtained in Step-V is now used to asses the éhape ratio (wy,/h)
from the semilog plot of figure 5.3. From this step the process is looped back
to Step-2 until a steady value of finger length (I;) is obtained in Step-VI. If
a steady value of I; is obtained then Step-VIII is executed, otherwise the job

~ sequence is switched switch back to Step-II.

Step—VIII After obtaining [; it remains to find the value of finger overlap. The
amount of finger overlap is determined from figure 5.5. The coupling capac-
itance is known from equation (3.20) and this capacitance is used to obtain

the finger overlap. The widths of the lines, w,, and w; are also obtained from

the shape ratio as A is known.

After completing Step-VIII all the dimensions of the diplexer become known.

These dimensions may be used to fabricate a practical device.

5.6 The computer program used in this work for computing
the physical dimensions of a diplexer

A computer program named FIND-LF.BAS has been developed to compute the
physical dimensions of a diplexer from the optimized e vector given as its input.

The program is written in BASIC and may be run by using a Quick Basic compiler
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Initialize the known and assumed parameters
Input the optimized e vector obtained from the output of
the optimization program OPT FOR given in appendix B

:

Form the J matrix and obtain the coupled length (Lo)
from the optimized e vector

!

Sclect a scaling factor and scale the J matrix

Initialize p, Mo, €, €remy €refy Amy £y, n and h.
(the nomenclature of the terms are given in section 5.2)

l

Start shifting the J matrix by an amount delj where
delj increases from 0 to 0.1 with step 0.005

l

Call the subroutine ZmEre to compute ¢..; and
the shaperatio (wy/h) from the finger line impedance Zy

l

Do all the computations required to find Z,,

!

Find the finger lengths of both comb- and herringbone- lines
‘ using equations (5.24) and (5.25)

i

Print the line parameters: Ci2, Z¢, vy, Wn, Z» and
the finger lengths (I7) of both the lines of the diplexer

!

as delj
reached its
limit ?

Figure 5.5 Flow-chart of the program FIND_LF.BAS developed to find the
finger lengths of a diplexer. The program is given in appendix C.
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.or interpreter. The program form the J matrix from the optimized e vector and
then scale and shift the J matrix according to the rules mentioned in section 3.4.
The degree of scaling may be controlled to seiéct a suitable value coupled length
(Lo)-

After scaling the J matrix the program starts to shift the

J matrix by an
amount delj. With cach step of shifting, the program does all the job mentioned
in Step-I to Step-VII of section 5.5. Thus the program computes the coupling
capacitance, -main-Iima width, main-line impedance and the finger length of both
the lines for comb- a.nd'. herringbone- structures. The program generates a table
of data with series of shifted J matrix. From this data a suitable value of finger
length is chosen for design purpose. The only thing that is left to be found is the
amount of finger overlap mentioned in Step-VIII of section 5.5. The finger overlap
may be found from a curve showing coupling capacitance against finger overlap.
The coupling capacitance is taken from the output of the program and the finger

“overlap is obtained according to the process mentioned in section 5.7.

The flow-chart of the program FIND_LF.BAS is given in figure 5.5. The program
uses a subroutine named ZMERE which handles the job of finding the characteristic
impedance of the finger line (Z;) and the shape ratio (w;/h). This subroutine
actually simulate the search for Z; and wy/h in the curves shown in Figs. 5.3 and

5.4 respectively. The program is given in appendix C.

5.7 Relationship between coupling capacitance and finger
overlap of a pair of coupled comblines

The coupling between two adjacent comblines in a microstrip diplexer is capacitive
in nature. Actually this coupling capacitance is achieved with the interpenetration
of the finger lines, i.c., with finger overlap as shown in figure 1.9. As can be an-
ticipated from the law of capacitanée, the coupling capacitance is proportional to
the amount of finger overlap. The behavior between a pair of coupled plain mi-

crostrip lines was explained by Bryant and Weiss, Milligan, Garg and Bahl [5] [12]
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and others.

The relationship between the coupling capacitance and finger overlap is shown
in figure 5.6. This curve shown in this figure is used to find the amount of finger

overlap which is a very important design parameter.
5.8 Summary"

Using the method presented in an earlier work [6] the .equ_ivalenl: circuit of
a solitary combline has been presented. The useful analytical expressions have
been presented. Necessary analytical expressions for evaluating the characteristic
impedance, effective phase velocity and the finger length of a solitary combline have
been presented. The procedure of obtaining the dimensions of a solitary microstrip
combline has been presented. Next, the method of obtaining the physical dimen-
sions of a pair of coupled comblines (as used in a diplexer) has been presented. A
computer program has been developed to obtain the lHne parameters of a combline
diplexer. The equations and procedure presented in this chapter will be used in.

designing a microwave forward coupled combline diplexer.
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CHAPTER 6

Designing the Diplexer

6.1 Introduction

A design example of a microstrip combline diplexer is presented in this chapter.
The e vector obtained after optirnization in section 4.10 is taken as the design
example. For this design example it is necessary to neceséary to choose a Cu-
clad laminate board and the values of a number of design parameters as shown
in section 6.2. The practical considerations necessary for designing a diplexer are
presented in section 6.3. The factors required to be taken under consideration while
scaling and shifting J matrix are presented in section 6.4. The process of obtaining

suitable coupling capacitances is also presented in section 6.4.

Finally, a complete set of design values, i.e., the physical dimensions of a herringbone-

and a comb- line diplexer are presented in section 6.5. These dimensions may be
used for fabricating a practical diplexer. The contents of this chapter are summa-

rized in section 6.6.

6.2 Choice of Cu-clad laminate board, finger periodicity,
finger line width and lower band edge frequency

For designing a microstrip coupled combline diplexer it is necessary to choose
a particular Cu-clad laminate board. For present design work a Cu-clad laminate
board having glass woven teflon substrate of thickness - = 1.5 mm and substrate

dielectric constant €, = 2.55 has been selected.
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Next, the periodicity p of finger lines in the comb- or herringbone- lines of the
desired diplexer is chosen to be 2.4 mm. For this finger periodicity, the finger line
width wy is chosen to be 1 mm. This value of finger width will permit to have a gap
of 0.2 mm between two adjacent fingers of a pair of coupled comblines. The lower
band edge frequency fj, is choseﬁ at 1 GHz (guide wave length A = ¢/(fi/€) =
300/ /€. = 187.9 mm).

6.3 Practical considerations for designing

There are several factors which should be taken into consideration for designing a
forward coupled microstrip combline diplexer. The optimized e vector, and hence,
the optimized J matrix obtained from computer optimization can not always be
directly used to obtain the physical-dimensions of a diplexer. The characteristic
parameters like coupled and uncoupled capacitances, inductances, phase velocitiés,
characteristic impedances etc. obtained may not be physically realizable. So in
order to obtain physically realizable line paratneters it is necessary to perform two
types of operations: ¢) scaling the J matrix and %) shifting the J matrix. Details
of thesc two types of operation have been presented in section 3.4.

The scaling of J matrix is mainly required for obtaining a suitable coupling
capacitance. As mentioned earlier (section 5.7) the coupling capacitance determines
the amount of finger overlap of the two comb- or herringbone- lines. For an operating
frequency of 1 —2 GHz it is desired to have finger lengths in the range of 2 to 4 mm
due to the difficulties discussed in section 5.7. Scaling is done in such a way that the
coupling calpa.citances (i.e., Ci2 and C31) of the coupled lines of a diplexer (having
a substrate dielectric constant come in the range of 20 to 50 pF/m. This is done
because, for the selected finger periodicity of 2.4 mm and finger width of 1 mm,
finger overlap in the range of 0.75 mm to 2.75 mm (figure 5.6) will be required to

achieve this range of coupling capacitance which does not exceed the desired finger
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length. With this choice a good amount of separation remains between the finger
tip of one line and the other main-line. The derivable values of phase velocities are
within the range of 1.5 x 10" to 2.5 x 10" mm/s. To keep the above mentioned

parameters in the desired ranges the scaling technique of J matrix is used.
6.4 Considerations regarding scaling and shifting of J matrix

It may be recalled from section 4.10 that the optimized e vector for the desired

diplexer is:

e =[.598753 .59955 — .215 6.71651 ].

From this ¢ vector, the J matrix may be formed as:

;[ 598753 —.215
“7 1 ~215 5995

Here, it is noted that the coupled length of this diplexer is Ly == 6.71651 mm. Using -
this J and coupled length the output power values in dB at the output ports of this
diplexer are computed at different frequencies. The c,:omputed power plots of the
output ports and the computed relative phase plot (phase of port-2 with respect to
that of port-1) are preéented in figure 6.5.

After obtaining a J matrix from the optimized e vector, first the J matrix js
scaled by multiplication (described in section 3.4.1). This operation is done in such
a way that the coupled length Ly comes in the range of 100 to 250 mm for the
selected finger width and périod_icity values. While multiplying the J matrix by
a scaling factor it must be kept iﬁ mind that the coupled length L, also has to

be divided by the same scaling factor to keep the characteristics of the diplexer

unchanged. . : )

Equation (3.34) may be rewritten for a dipllexcr as
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Table 6.1.a Result of shifting J matrix by an amount Aj. Here Aj is varied from 0
to .028. The fnger length given in this Table represents a herringbone-
line diplexer having coupled length of 201.49 mm., The dala in this
Table is obtained from the output of the program FIND_LF.BAS given
in appendix C

o ¢! = [ .598753/30 .59955/30 — .215/30 6.7165 x 30 ]
e Scaling factor x = 30

e Coupled length Ly = 201.49 mm

e Coupling Capacitance Cyg = 45.6244 pF/m

Line | Aj | Z§ in ohms v, in mm/s Wy inmm | Z,, in ohms | Finger length
1 0 94.18205 5.92995754+11 | 8.38148 30.90082 R.689165
2 0 94.02293 | 5.912069E+11 | 8.38148 30.94054 8.673311
1 002 | 84.84923 ARIBTEE411 | 7.28651 34035806 7.538556
2 .002 | 84.75304 4.844384154+11 | 7.35974 34.06441 7.528712
1 .004 | 78.88539 4.137595E+11 | 6.527505 | 37.14206 6.563409
2 D04 ) TRR2041 4296075111 3 6.527505 | 37.18158 6.551841
1 D06 | 74.71554 3.616948E--11 | 5.847563 | 40.24923 5.713981
2 .006 | 74.66849 3.61097554+11 | 5.789378 | 40.30153 5.700898
1 008 | 71.62367 3219241411 ¢ 5.291094 | 43.34304 4.965777
2 | .008 | 71.58794 3.214581154+11 | 5.291094 | 43.38229 4.95676
1 01 | 69.2338 290408215411 | 4.78758 46.43505 4.295668
2 D1} 69.20568 2.900335+11 | 4.78758 46.47418 4.287546
1 012 | 67.32819 2.647415E4+11 | 4.331982 | 49.52473 3.688722
2 012 | 67.30547 2.644318T+11 | 4.288878 | 49.57897 3.67909
1 014 | 65.77152 2.433885154+11 | 3.959134 | 52.61246 3.134109
2 .014 | 65.75275 2.431288FK+11 | 3.959134 | 52.6344 3.128781
1 .016 | 64.475 2.253203154+11 | 3.618376 | 55.66161 - 2624974
2 .016 | 64.45923 2.250989K+11 | 3.618376 | 55.71795 2.617298
1 018 | 63.37782 2.098161E4+11 | 3.340182 | 58.70531 2.151685
2 018 | 63.36438 2.096249E411 | 3.306947 | 58.76099 2.144069
1 02 | 62.43692 1.963554E4+11 | 3.052697 | 61.75987 1.706582
2 .02 | 62.42532 1.961884I5+11 | 3.052697 | 61.7983 1.70104
1 022 | 61.52085 1.845518E+11 | 2.81799% | 64.79018 1.859015
2 .022 | 61.61074 1.844047E4+11 | 2.817995 | 64.84793 1.864609
1 024 1 60.90615 1.74112E+11 | 2.601337 | 67.81298 2.131266.
2 024 | 60.89726 | 1.739814E+11 | 2.601337 | 67.85112 2,13471
1 026 | 60.27492 1.648091E+11 | 2.401337 | 70.82794 2.401109
2 .026 | 60.26703 1.64692315+11 | 2.401337 | 70.86592 2.404527
1 028 | 59.71323 1.564644E+11 | 2.238992 | 73.81548 | 2.667244
2 028 | 59.7062 1.563593E+11 | 2.238992 | 73.8533 f 2.67064
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Table 6.1.b Continuation of Table 6.1.a. Here Ajis varied from .030 to .060. The da-
ta in this table is obtained from the output of the program FIND_LF.BAS
gven in appendix C.

o ¢t = [ .598753/30 .59955/30 - .215/30 6.7165 x 30 ]
¢ Sceling factor z = 30
o Coupled length Lo = 201.4% mm
o Coupling Capacitance Cy = 45.6244 pI'/m

Line | Aj | Z§ in ohms vy inmm/s | wp in mm | Z, in chms ; Finger length
H .03 5221018 1.48935215411 | 2.06685 76.81343 2.932449
2 .03 | 59.20385 1.488401E+11 | 2.06685 76.85113 2.935824
1 1.032 ! BR.75694 1.421062L+11 | 1.927119 79.78278 3.194165
2 032 | 58.75122 1.420197E+11 | 1.927119 79.82034 3.1975617
1 L34 | BR.34646 1.35882915+11 | 1.778955 | 82.76262 3.454916
2 024 | 58.34126 B580410+11 1.778955 82.8 3.458243
1 086 | 57.97292 1.301875154-11 | 1.6586G80 85.71304 3.712414
2 036 | 57.96818 1.301151E+11 | 1.658686 | 85.7501 3.715689
1 038 | 57.63152 1.24954954+11 | 1.546549 8&.6531 3.967R22
2 038 | 57.62719 1.24888215+11 | 1.546549 28.69021 3.971104
1 D4 | 57.31829 1.20130315+11 | 1.441993 | 91.58226 4.22123
2 .04 a7.3143 1.20068RE4+11 | 1.441993 91.61921 4.22419
1 042 1 57.02986 1.1566765+11 | 1.358018 | 94.47636 4.471549
2 042 | 57.02618 1.156105E+11 | 1.358018 94.51316 4.474789
1 A4 5676337 1. 1152715411 1.266207 0727486 A.720712
2 044 | 56.75997 1.11474154-11 1.266207 97.41148 4.723959
1 046 | 56.51643 1.076748E+11 | 1.180604 100.258 4.967916
2 046 | 56.51327 1.076254+11 | 1.180604 100.2945 4.971113
1 048 ! 56.28594 1.040816%+11 | 1.1211851- | 103.1083 5.212433
2 048 | 56.284 1.040355F+11 | 1.111851 103.1447 5.215612
1 03 56.07311 1.00722F+11 1.036683 105.9626 ; 5.455871
2 .05 56.07037 1.00678810+11 | 1.036683 105.9988 5.458029
1 1.052 ] 55.87339 9.757377154-10 | 9763111 108,7855 5.696873
2 052 ¢ TR.BTOR3 9.753327154+10 | 9665967 108.83R88 5.700653
1 054 i 55.68642 9.461747E+10 | .9103065 ¢ 111.6123 . : 5.936821
2 .054 | 55.68402 9.457942E410 | .9103065 | 111.6482 | 5.939939
1 056 | 35.51102 9.183612+10 8572944 114.4089 6.174509

L2 056 | 55.50876 9.180015E+10 | .8572944 114.4446 6.177609
1 0568 | 35.34614 8.92142E+10 | .7993361 117.2092 6.411161
2 . 1.058 ; 55.34401 8.918038L5+10 | .7993361 117.2448 6.414242
1 060 | 55.19086 8.673864E4-10 | .7527865 | 119.9805 6.6457
2 .060 | 55.18885 8.6706681E4+10 | .7527865 120.0159 6.64876.3
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It may be seen from the above equation that the coupling capacitance is 'directly
proportional to the off-diagonal element of the J matrix and inversely proportion-
al to the lower band edge frequency of the diplexer. For a fixed band of operating
frequency the off-diagonal element of the J matrix is to be incremented or decre-
mented if it is desired to respectively increase or decrease the coupling capacitance.
For the selected ¢ vector the coupling capacitance is found to be: |

2 (.215/30)

Clz:?ﬂlxlo%o

=45.6244 pF/m

The off-diagonal elements of a J, matrix can be chénged by scaling the J matrix |
as indicated in section 6.5.

In the next step the J matrix is shifted by adding a small quantity (say, Aj
which may be +we or -ve) with the diagonal elements of the J matrix. This is done
to select a desirable value of finger length, because the finger length is a function!
of the off diagonal eleménts of the J matrix. With each step of J matrix shjfting,k

the characteristic parameters and the finger lengths are also computed.

To obtaiﬁ a suitable finger length the J matrix is shifted according to the rule
mentioned in section 3.4.2. The J matrix is gradually shifted by adding a constant-
ly increasing quantity (Aj) with the diagonal elements of the i matrix (i.e., Ji;
and Jy,). In the process of shifting, at some point, realizable values of coupling
capacitances and finger lengths are obtained. The values that come in the process
© of J matrix shifting technique are listed in tables 6.1.a — 6.2.b. The shiftitig of
J matrix is dore by running the program FIND LF.BAS (given in appendix C).
The data listed in tables 6.1.a - 6.2.b represent the output of this program written
in Quick Basic. The change of uncoupled .characteristic impedance (Z§), uncou-
pled phase velocity (v¥), main-line width (w,,), the main-line impedance (Zm) and

the finger length (I;) with the amount of shifting (Aj) are given in table 6.1 for

1The nature of relationship between the finger length and the amount by which the diagonal
elements of J are is shifted is latter shown in Figs. 6.3 and 6.4
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Table 6.2.a Result of shifting J matrix by an amount Aj. Here Aj is varied from
0 to .028. The finger length given in this Table represents a Combline
diplexer having coupled length of 201.49 mm. The data in this Ta-
ble is obtained from the output of the program FIND_LF.BAS given in
appendix C

« ¢ = [ 508753/30 .59955/30 — 215/30 6.7165 x 30 ]
e Scaling factor x = 230

e Coupled length Lo = 201.49 mm

o Coupling Capacitance Cy o = 45.6244 pF/m

Line | Aj Z§ in chms v, in mm/s W in mm | Z, in ohms | Finger Iength
1 0 94,18205 5.929957E+11 | 8.38148 30.90082 13.49306
2 0 94.02293 5.912069E4-11 | 8.38148 30.94054 13.4687
1 002 | 84.84923 4.855758+11 ] 7.28651 34.03586 11.68929,
2 002 | 84.75304 4.844384E+11 | 7.35974 34.06441 11.67472
1 .004 | 78.88539 4.137595E+11 | 6.527505 | 37.14206 10.12594
2 004 | 78.82041 4.129607E+11 | 6.527505 | 37.18158 10.1073
1 .006 | 74.71554 3.616948E+11 | 5.847563 | 40.24923 8.734396
2 .006 | 74.66849 3.610975E+11 | 5.789378 : 40.30153 8.712143
1 008 | 71.62367 3.219241E411 | 5.291094 | 43.34304 7.485154
2 .008 | 71.58794 3.214581E+11 | 5.291094 | 43.38229 7.470037
1 01 | 69.2338 2.904082E411 | 4.78758 46.43505 6.346313
2 01 | 69.20568 2.90033E+11 | 4.78758 46.47418 6.332463
1 .012 | 67.32819 2.647411E+11 | 4.331982 | 49.52473 5.298165 -
2 012 | 67.30547 2.6443185+11 | 4.288878 | 49.57897 5.28099
1 .014 | 65.77152 2.433885E+11 | 3.959134 | 52.61246 4.325912
2 .014 | 65.75275 2.431288E+11 | 3.959134 | 52.6344 4.317562
1 016 | 64.475 2.253203E411 | 3.618376 | 55.66161 3.423666
2 | .016 | 64.45923 2.2500R9E4-11 | 3.618376 | 55.71795 3.409108
1 .018 | 63.37782 2.09816115-+11 | 3.340182 | 58.70531 2.574659
2 .018 | 63.36438 2.09624915411 | 3.306947 | 58.76099 2.560614
1 02 | 62.43692 1.963554E4+11 | 3.052697 | 61.75987 1.767704
2 02 | 62.42532 1.961884E+11 | 3.052697 | 61.7983 1.757645
1 .022 | 61.62085 1.845518E+11 | 2.817995 | 64.79018 2.14422
2 022} 61.61074 1.8440475411 | 2.817995 | 64.84793 2.15579
1 024 | 60.90615 1.74112E4-11 | 2.601337 | 67.81298 2.750398
2 .024 | 60.89726 1.739814E+11 | 2.601337 | 67.85112 2.758052
1 026 | 60.27492 1.648091154-11 | 2401337 | 70.82794 |- 3.342931
2 .026 | 60.26703 1.6469235+11 | 2.401337 | 70.86592 3.350425
1 028 1 59.71325 1.564644FE+11 | 2.238992 | 73.81548 3.920262
2 028 | 59.7062 1563593411 | 2.238992 | 73.8533 3.927613
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Table 6.2.b

Continuation of Table 6.2.a. Here Aj is varied from .030 to .060. The da-
Lo in thig Lable is obtained [Fom the outpul of the program FIND_LI.BAS
given in appendix C.

o ¢l = [ .598753/30 .59955/30 — .215/30 6.7165 x 30 ]
o Scaling factor z = 30 _
o Coupled length Lo = 201.49 mm
o Coupling Capacitance Cz = 45.6244 pI'/m

Line | Aj | Z§ in ohms U;; in fﬂm/s W in mm | Zy, in ohms | Finger length
1 03 | 59.21018 1.48935215411 | 2.06685 76.81343 4.48R529
2 .03 | 59.20385 1.488401E411 | 2.06685 76.85113 4.495749
1 032 | 38.75694 1.421062E+11 | 1.927119 79.78278 5.04348
2 032 | b8.75122 1.420197E+11 | 1.927119 | 79.82034 5.050573
1 034 1 38.34646 1.358820E+11 | 1.778055 | 82.76262 5.590447
2 .034 | 5834126 1.35804K4+11 | 1.778955 | 82.8 5.507417
1 .036 | 57.97292 1.301875E4+11 | 1.658686 | 85.71304 6.125572
2 036 1 57.96818 1.301151E+11 | 1.658686 | 85.7501 6.132391
1 .038 | 57.63152 1.249549%5+11 | 1.546549 88,6531 6.651484
2 .038 | 57.62719 1.248882E+11 | 1.5465649 | 88.69021 6.658232
1 .04 | 57.31829 1.201303E+11 | 1.441993 | 91.58226 7.168623
2 .04 | 57.3143 1.2006885+11 | 1.441993 | 91.61921 7.175267
1 042 | 57.029086 1.156676K+11 | 1.358018 | 94.47636 7.675329
2 042 1 57.02618 1.15610512+11 | 1.358018 94.51316 7.681875
1 044 | 56.76337 1.1152715+4+11 1.266207 97.37486 8.175397
2 044 | 56,75997 1.11474E+11 | 1.266207 | 97.41148 8.181844
1 .045 | 56.51643 1.076748E4+11 | 1.180604 100.258 8.667416
2 046 | 56.51327 1.076254E+11 | 1.180604 | 100.2945 8.67377
1 048 | 56.28694 1.040816K+11 | 1.111851 | 103.1083 9,150455
2 048 | 56.284 1.040355E+11 | 1.111851 103.1447 9.156721
1 .05 | 56.07311 1.007225+11 | 1.036683 | 105.9626 9.627443
2 05 1 56.07037 1.006788I5+11 | 1.036683 | 105.9988 9.633619
1 052 | 55.87339 9.75737TE+10 | 9763111 | 108.7855 10.09615
2 052 | 55.8T0]3 D.75IR2TIA410 | 9665067 | T10R.83R8% 10.10335
1 .054 | 55.68642 9.461747E410 | 9103065 | 111.6123 10.55909
2 054} 55.68402 G ASTH2IE+4+10 | 91030065 111.6482 10.5651
1 056 { 55.51102 9.183654-10 B572944 | 114.41089 11.0143
2 056 | 55.50876 9.180015E+10 | .8572944 | 114.4446 11.02022
1 .058 | 55.34614 8.92142E+10 | .7993361 | 117.2092 11.46394
2 058 | 55.34401 8.918038154+10 | .7993361 | 117.2448 11.46978
1 06 | 55.19086 8.6738641K410 | .7527865 | 119.9805 11.80629
2 06 | 55.18885 8.670668L+10 | .7527865 | 120.0159
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The main line width w, and finger length l; vs.

plot of a combline diplexer having coupled length of 201.49 mm. The

reference J matrix is:

Figure 6.4 .
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Figure 6.5 The characteristics of the designed diplexer. The cor-
responding e vector is shown in table 6.1 and 6.2. a) Power against
frequency plot, b) relative phase lﬁggle of channel-2 with respect to



a combline diplexer. Similar data for herringbone-line diplexer arc presented in
table 6.2. The data presented in tables 6.1.a — 6.2.b have been used for plotting
figures 6.1 — 6.4. '

The amount by which J matrix is shifted (i.e., A 7)? from a reference J matrix?
is taken as the x-axis of the plots. The uncoupled phase velocity v% against Aj plot
is shown in Fig 6.1. The variation of the finger. length and the main line width
with changing Aj is shown in figure 6.2. The variation of uncoupled characteristic
impedance and main line impedance with Aj of a herringbone- and comb- line

- are shown in Figs. 6.3 and 6.4 respectively.

6.5 The design values

Thirty one values of Aj have been considered for computing the values of Zg, v,

main-line width w,,, Z,,, finger lengths of the two coupled comblines of which both
the lines are in comb form (table 6.1). Similarly tabie 6.2 contains similar values for
the coupled combline system with the two lines in herringbone form. For the design
of diplexer under consideration either combline (from table 6.1) or herringbone-line

(from table 6.2) may be chosen.

Any of the values of Aj which gives finger lengths in the range of 3 to 5 mm may
be taken as the accepted amount of shifting to be done. This amount of shifting is
performed on the reference, i.e., the optimized and scaled J matrix to obtain the

final J matrix which is used to obtain the dimensions of the diplexer.

In this rescarch, Aj is accepted as 0.036 for herringbone-line from table 6.1.b.
With this amount of shifting finger lengths for line-1 and line-2 are found to be
3.712414 (=~ 3.712) mm and 3.7156_84 (approz3.716) mm respectively. The mainline
width, for herringbone-lines (w,,) are found to be 1.658686 (~ 1.659) mm for both

2A7jis represented by the variable delf in the program FIND _LF.BAS

*The optimized e vector obtained from table 4.2.b is used 8s the reference J mairiz
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Table 6.3 The physical dimensions of a herringbone- and
a comb- line diplexer required for fabricating a
practical diplexer. The diplexers under consider-
ation have operating bands in ranges of {1 ~ 1.3)
GHz and (2 - 2.3) GHz.

- Physical dimensions of diplexer

Precision upto maximum three decimal digits is considered
for the design data presented in this table

e Coupled length (L) : 201.49 mm.
® Finger line width (wur) . 1.0 mm.
. Substrate thichness (k) ;1.5 mm.
e Finger periodicity (p) 1,24 mm
o Finger overlap : 2.4 mm,

* For herringbone-line:

. o Finger length of line-1 : 3.712 mm.
o Finger length of line-2 : 3.716 mm.
e Main-line width (w,) : 1.659 mm.

* For comb-line:

o Fineor length of line-1 :  3.920 mm.
e Finger length of line-2 : 3.928 mm.
o Main-line width (w,,) : 2.239 mm.
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Figure 6.6 . The schematic diagram of the combline diplexer with ob-
tained design values as indicated in table 6.3. The figure is drawn in 3:1
. scale. : 2
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Figure 6.7 The schematic diagram of the herringbone-line diplexer

with obtained design values as indicated in table 6.3. The figure is drawn
in 3:1 scale. '
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the lines. As mentioned earlier, the width of the finger lines are accepted as 1 mm
for both the lines. As shown in section 6.4 and tables 6.1 and 6.2, the coupling
capacitonce is found to be 45.6244 pF/m. Using this coupling capacitance the
amount of finger overlap is found out with the help of figure 5.6. In this case, the
finger periodicity has been taken as 2.4 mm and the amount of finger overlap is

found to be 2.4 mm from the graph (figure 5.6).

For a comb-line diplexer, Aj is accepted as .028 from table 6.2.a. All the other
dimensions except the finger length and the main-line width remain the same as
that of herringbone-line. The finger lengths of line-1 and line-2 are found to be
3.920262 (= 3.920) mm én_d 3.927613 (= 3.928) min respectively from table 6.2.a.
From the sé.me table the main-line width of line-1 and line-2 are found to be 73.81548
(% 73.815) mm and 73.8533 (= 73853)\mm respectively.

The physical dimensions of a diplexer for both herringbone- and comb- line
- configurations are shown in table 6.3. The designs arc schematically presented in
figure 6.6. A drawing of the designed diplexer is presented in figures 6.6 and 6.7.
This drawing is pfepared using 2:1 scale. This drawing shows that this diplexer can
‘be fabricated by using usual photolithographic and etching techniques without any
~ difficulty.

6.6 Summary

The design values of a practical diplexer have been obtained through scéling
and shifting of J matrix. Finally the physical dimensions of the desired combline
diplexer have been presented for realization in the form of two coupled comblines

and also in the form of two coupled herringbone-lines.
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CHAPTER 7

Discussions and suggestions for future work

7.1 Discussions

A computer optimizatioxi based method for designing a microstrip combline
diplexer has been presented. This work utilizes the theory of geﬁeralized coupled
lines. In this work the e \fector of a diplexer is obtained by computer optimization
of rthe elements of this vector for obtaining the desired bands of operation of the
output ports of the diplexer. For this optimization job the e¢ vector of a 3dB
directional coupler has been taken as a starting point. This starting point is not
unique. However, it appears that such a starting point works well for the desired
design of a diplexer. It has'been observedrthat the two operating bands of the two
ports can not be brought very close to each other, because the behaviour of a pair of
_'g:oupled comblines does not permit to do so. As a result of this, contiguous channel
type diplexers can not be realized using this type of coupled comblines.

The characteristics of such a diplexer show t‘hat the output power level within
the dperating band of output port-1 is not the same as the input power level. This
is because 'of the fact that in the useful band of output port-1 small amount of
‘power remains at the other output port. Si]:;:lila.r explanation holds for the power
at the output port-2 within its operating band. This behaviour makes this diplexer
somewhat different than the conventional diplexers. However, this does not prohibit
_7 the use of such diplexers in communication networks. Even if, within the opcrating
bands of output ports, the same power level as the input port is required then this

can be obtained by making an additional arrangement. In this arrangement one
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simple solid state identical anipliﬁer can be added at each output port as shown in-
figure 7.1. The resulting device can still be in one microstrip substrate board. This
means that the diplexer along with the solid state amplifiers can be fabricated in

‘Monolithic Microwave Integrated Circuits (MMIC) form.
In selecting the solid state amplifiers care must be taken so that the operating
band (flat characteristic) of such an amplifier is wider than the operating band of

the corresponding output port. The addition of these solid state amplifiers provides

with additional facility of adjusting the output power level to the desired level.

Output 1

Solid state amplifier 1

Input Combline microstrip
diplexer

Solid state amplifier 2

" IOutput 2

Figure 7.1 The modified diplexer after adding the solid state amplifiers

with the output ports. The combline diplexer and the solid state amplifiers
are on the same substrate board.

7.2 Suggestions for future work

A suggestion for possible future work for the microstrip diplexer is presented in
subsection 7.2.1. Besides this, further extension of the design method of the present

type of diplexer are presented in subsections 7.2.2 and 7.2.3. -

7.2.1 Developing an a,na,lyticé,l deéign method

As mentioned in section 6.1 the design method presented in this thesis is based

on computer optimization. It would be interesting to investigate the possibility of
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developing an analytical method. An analytical method will be much more simple
in application. It is hoped that if an analytical method could be developed then one
would be able to find out the flexibilities in the design. Also, using an analytical
method, the corﬁi)utation time required for a design job can be significantly reduced.
So developing an analytical method for designing such a diplexer is expected to be

very useful for understanding the behaviour of the coupled line system.

7.2.2 Developing a design method for a microstrip combline triplexer

The design procedure of a diplexer presented in this thesis may be extended for
designing a triplexer. In case of a triplexer the;re'will be three microstrip lines one
of which will be direct and the other two will be coupled lines. The equations of an
n-line coupled system presented in chapter 2 are applicable for such a triplexer. It
is expected that by extending the same optimizafion and computation technique it
will be possible to develop a design method for a triplexer.. For the computational
purpose, new programs to find eigenvalues, eigenvectors and scattering matrix will
be required. It is worthwhile to investigate whether the same optimization algorithm

(i.e., the steepest descent algorithm) works for the triplexer design.

7.2.3 Developing a designing method for microstrip combline quadru-
~ plexers, quintoplexers and n-channel multiplexers

If the design of a triplexer seems to work satisfactorily, one may go for designing
a quadruplexer. The idea then can be extended for quintoplexer and in general for
'multiplexers. The mathematical models of these multiplexers“will require matrices
of higher orders and the computations will naturally be more complicated. The
higher the number of channels the more complex is the computational procedure.
Besides, the behaviour of the coupled combline system is expected to be quite
complicated. The computations for optimization will become more and more time
consuming because of the increase in the number of independent variables. As

a result a powerful optimization method will be required. Probably the quasi-
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Newton method is expected to provide good results. For finding the eigenvalues and
eigenvectors of a multiplexer it is advisable to use mathematical routines provided

by any programming language or mathematical packages (like Matlab or Mathcad).
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 Appendix A

List of the computer program for obtaining the power and
relative phase

characteristics of the ports of a diplexer

e s ke ek 4 e e e ke ok ke e sl ke s 2 ok e e e e ke e o ekt sk e e s sk o ok e e e e ke o ok e sk ok s ok ok s e e ke ke ok e e ok ke ok ok ok ok ok ke ko

Name of the program : PAL.FOR
Language : FORTRAN77
Programmer: Md. Sayeed Akmal

L
*O* R * N

#****f*******#************#*#****************##***********##*#*********

This program may be used to compute the POWER and RELATIVE PHASE
of the two lines of a diplexer at different frequencies between
0 to 4.0 GHz. This program has been used in this work to create
data-files for plotting POWER against FREQUENCY and RELATIVE
PHASE against FREQUECY characteristics.

LI I N K B
L I I I B

ke e s e e ok e o B ok o b e e stk o e ke sk ok ok ok o ke ok ke sk o ko sk s ek e s ket ok hokokok ok kR ke ok ok ok ook ko ok R R ke

COMPLEX C1, C2, C3, ¢4, 5(2,2), s0, CHECK
REAL N, J, L, L1, L2, L3, L4, FO

DIMENSION E(4), J(2,2), B(2), Q(2,2)
* DATA E/.646, -.5523, -.501, 1.536 /
* DATA J/.646, -.2, -.2, .5523 /

e o o o o o o o o o o o o o ok ok ok ook e o o o o o o o o e o o s sl ok sk e o o o o o ke ok sk ok sk sk ke e e e e e e ke ok ook e e
- ) .

* The following \e vectors have been used to make data files
* required for plotting the curves shown in Figs.4.6 to 4.23.
« , :

3 ofe e sk b e e ok sk o sk ke ok ok e sk e ke ok ke ke sk ok ke ol e ke ok ok ke ol ol sk sk ke sk sk e ol e e e e e sk e e A e ke ke ke e ke sk i e ook ok ok e ke ok ok

*Akdokkkkkkkxk Data with only \rarying E(1)=d1 sk ook o e e e ok ok ok

E

* DATA E/ 1.5, .5, -.2, 6.0 /
* DATA E/ 1.0, .5, -.2, 6.0 /
* DATA E/ 0.75, .5, -.2, 6.0 /
* DATA E/ 0.5, .5, -.2, 6.0 /
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* DATA E/ 0.25, .5, -.2, 6.0 /
* DATA E/ 0.0, .5, -.2, 6.0/
*rgkkkkakrdkk Data with only varying E(2)=d2 sskkkkkkkkk
* DATA E/ .5, 1.5, -.2, 6,0/
* DATA E/ .5, 1.0, -.2,°6.0/
* DATA E/ .5, 0.75, -.2, 6.0 /
* DATA E/ .5, 0.5, -.2, 6.0/
* DATA E/ .5, 0.25, -.2, 6.0 /
* DATA E/ .5, 0.0, -.2, 6.0 /

*adkxakarirk Data with only varying E(3)=cl mkddkksdkkksx
* DATA E/ .50001, .5, -.01, 6.0 /
* DATA E/ .500OO1, .5, -.1, 6.0 /
* DATA E/ .50001, .5, -.3, 6.0 /
* DATA E/ .50001, .5, -.6, 6.0 /

*kkkkkkkxk*x Data with only varying E(4)=Lo *ikkmkssrssrs
&

* DATA E/ .50001, .5, -.2, 2.0 /
* - DATA E/ .5000%, .5, -.2, 6.0 /
* . DATA E/ .5000%1, .5, -.2, 10.0 /
* DATA E/ .50001, .5, -.2, 15.0 /

R kkkckkkkkdokkrkkkkk Data from the PRper kickkdkkkkkkkkhkkkk

* DATA E/.646, .5523, -.501, 15.36 /

A 0o R R Ok ok Starting 0 VOCLOY rhshkkidooooh ook ok dokoh

* DATA E/.646, .5523, -.2, 6.7 /

hkkkahkkkkkkkhkkkk Tegl 0 veCchLors Hickiomkkkkokkkokkkdon fodoh Kok

. DATA E/ 2.0, 1.0, -.2, 6.0 /

J(1,1) = E(1)
J(2,2) = E(2)
J(1,2) = E()
3(2,1) = J(1,2)
PI = 3.1415927
ICOUNT = O
ISIGN = -1

3¢ e 2 3 e e e o o e e e o o e e e

*

* Computing the EIGENVALUES: B(1) & B(2) of J matrix

E

dedeookok dokododeodk e dede doheok ok

Bl = (J(1,1)+J(2,2))
B2 = SQRT( ( J(1,1)+J(2,2) %2 - 4.0+( J(1,1)*J(2,2)-J(1,2)
+ *3(2,1) ) )

140



B¢1) = (B1 + B2) / 2.0
B(2) = (B1 - B2) / 2.0

WRITE(*,10) B(1), B(2)
10 FORMAT( ’Eigenvalues are: B(1) = ?,f10.8, ? B(2) = 7,
+ £10.8 )

ko ok Rk
* .
*  Time to find Eigenvectors of J matrix using B(1) & B(2)
« .

ok ok ekt e e ok

Q(1,1) = 1.0
(2,1 = 1.0
0201 =1, 2
Q(I,2) = ( B(I) - J(1,1) ) / J(1,2)
N = SQRT( 1.0 + Q(I,2) * Q(I,2) )
e sk e s ke o o e sk s e o ok e ke
*
* Normalization of Eigenvector elements:
- ,
e e e e A e e A 3 A A A A Aok A
Q(r,1) = 1.0/ N
0(I,2> = Q(I,2)/N

20 CONTINUE

WRITE(*,30) ((Q(I,K), K=1, 2 ), I=1, 2)
30 FORMAT(//'The Eigenvector Q is: ?, 2(£20.8), /21x, 2(£20.8))

L = E(4)
L1 =1L = B(1)
L2 = L % B(2)

s e 3k 3ol o ke e 3 3 A e A A A 3 A A b sk sk sl sk ke b sk sk sl sk ok ok s sk ok o e e ake ok ke e ke e e ok A e e sjc ke A skl b ok ke e ke ok o ke Sl o ok e e ok
*

* Open files here if necessary for writing data files of
* POWER and RELATIVE PHASE against FREQUENCY.
- ‘

sk ek ook ok ok ek ok kR ko ok R kR ok ke i ko ko ko kR ok ok ok ek
*
OPEN( 8, FILE
OPEN( 9, FILE

’D:\AKMAL\DAT\fig424B.dat’ )
’D:\AKMAL\DAT\PHS424B.DAT? )

*
e 3 e e ke e o o e e e e S e e ke e S ok o A 6 3 38 8 0 36 sk sk o o sl sk e o ok o e ok o ok e ok ol ko ek e o ok s sk e o ok sk ok o ok

DO 40 F = .02, 4, .02
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13 =11 %F
14 =12 *F
€3 = (0,-1) * L3
C4 = (0,-1) % L4

|13

* PRINT *, *L3, L4, C3, C4 ', L3, L4, C3, C4
Ci = CEXP( C3 )
C2 = CEXP({ C4 ¥
* CHECK = ( Q(1,1)#%2 ) * C1 + ( Q(2,1)+x2)*C2
* PRINT *, ?*CHECK = !, CHECK

sk e ok ok ok ok ook K

* ' ,

* Computing Scattering matrix Soi :
* .

Aokokook ok ok ok koK

DOSOI =1, 2
Db 50 K =1, 2
S(I,X) = Q(1,I) = C1 * Q{1,K) + Q(2,I) = C2 * Q(2,K) .
50 CONTINUE
* WRITE(*, 60) £, ( ( S(I,K), K=1,2), I=1,2 )
60 FORMAT(//'The Forward Scattering matrix Soi : at f= ?,
+ £10.8, /12x, 2(£12.8), 5x, 2(f12.2), /12x, 2(f12.8),
+ - bx, 2(£f12.8), //)

e e e ek A 3 3 A e e A ke ke she ok e sk she ok o ek ok ok
x

* Computing OUTPUT POWER of the two lines
*

e e e e e e i i ke sl e e sk ok sk ok e e ok ke e

. PD1 = 20.0 * ALOG10( CABS( 8(1,1) ) )
* PHIL = ATAN( IMAG(S(1,1)) / REAL(S(1,1)) )+*180/PI

P02 = 20.0 * ALOG10( CABS( S(1,2) ) )
* PHI2 = ATAN( IMAG(5(1,2)) / REAL(S(1,2)) ) * 180/PI

e ahe e ke s s ke o ook ok o o e B o R e e ek K
*

* Computing REALATIVE PHASE betweer the two lines
*

e e ook sk ok b ok ok ok ok ks e e e ok ook e e kel

PHIR = ATAN( (IMAG(S(1,2))*REAL(S(1,1)) - REAL(S(i.?)S*
+ TMAG(S(1,1)) ) / (REAL(S(1,1))*REAL(S(1,2)) +
+ IMAG(S(1,1))+«IMAG(S(1,2)) ) ) =180/PI
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IF (PHIR .LT. Q) NSIGN
TF (PHIR .GT. 0) NSIGHN

It
I
s

IF (ISIGN .NE. NSIGN) ICOUNT = ICOUNT + 1

ISIGN = NSIGN

IF ( ICOUNT .EQ. O .OR. ICOUNT .EQ. 1) MCOUNT = 1

IF ( ICOUNT .EQ. 2 .OR. ICOUNT .EQ. 3) MCOUNT = 3

IF ( ICOUNT .EQ. 4 .OR. ICOUNT .EQ. 5) MCOUNT = &

IF ( ICOUNT .EQ. 6 .OR. ICOUNT .EQ. 7) MCOUNT = 7

IF ( ICOUNT .EQ. 8 .0OR. ICOUNT .EQ. 9) MCOUNT = 9

TF ( ICODUKT .EQ. 10 .OR. ICOUNT .EQ. 11) MCOUKNT = 1t
IF ( ICOUNT .EQ. 12 .OR. ICOUNT .EQ. 13) MCOUNT = 13
IF (. ICOUNT .EQ. 14 .OR. ICOUNT .EQ. 15) MCOUNT = 15
IF ( ICOUNT .GT. 15) THEN

PRINT #,’ Angle Exceeds 1530 degrees.’
PRINT *,’ To handle this please add more IF statements here.’

STCP
END IF
PHIRF = (90.0 + PHIR) + MCOUNT = 90.0
* IF (PHIR .LT. 0.0) PHIRF = (90.0 + PHIR) + 90

* XX = TAN(PHIR+=PI/180.0) - TAN(PHIRF+PI/180.0)

e e e e e she e she sl A e sl A e e e e e e sl e sl e e e e e she e she e e she i she e e e ok
*

* Writing Frequency, Power and Relative phase in the data files
b 3

*****************************************

WRITE(8,*) F, P01, P02
WRITE(9,*) F, PHIRF

* PRINT=*, ICOUNT, PHIR, PHIRF, XX
40 CONTINUE

END

************************************************************************
* *
* ‘ END of the program *
* : *
3 3 e e A e ke A A A R 7 2 A o ke ok ok ok ok sl sk sk o e sl A sk sk sk o Ak o A A A o i i she sk e ok sk she sk ok ok e ok ok sl ok ok sk ok ke sk e ke ok o sk ok ok ok A K o
t*****************f************#***********************t**#*************
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Appendix B

List of the computer program for optimizing the e vector

of a diplexer

*****;***************************#**************************************

Name of the Program: OPT.FOR
Language : FORTRAN77
Programmer: Md. Sayeed Akmal

¥ % ¥ * ®
* ¥ 2 Rk *

************************************************************************

This is the main optimization program. This program is used to
optimize the [e] matrix so that the maximum power may be obt-
ained at the output port of the two lines at two selected bands
of frequencies,

This is the main optimization program. The flowchart of this
main program is given in Fig. 4.29(a) and the flowchart of the’
subroutine EFROR is given is Fig. 4.29(b). Please refer to sec-
tion 4.9 for detailed description of the algorithm of this pro-
gram. :

* % F X F X O X R X ¥ ¥
% F R OF O X OF X ¥ X ¥ ¥

s 3 3 S s o e e e 3 sk sk ke ke e e e s e o e o o o A e o e e o o e o e e e e e e o ok e o o oo o i e ek e kol ok ke ke e e o

REAL E(4), U(4), V(4)
INTEGER COUNT

TERR = 100.0

DELX = .00075
COUNT = ©

Sekkotokkkok ok kkok ok okokkokkk Some sample e VeCL oS sk ok okt g ik A e e e 3 e ko g ok

* DATA E / 0.646, 0.5523, -.2, 6.7 /

* DATA E / 0.75, 0.5, -.2, 6.0/

* DATA E /.5991923, .5991077, -.2046001, 15.3346700 /
* DATA E /.604177, .6037722, -.2400954, 6.702775 /

* DATA E /.55, .56, -.20, 6.0 /

e o e e

* The cptimized e vector ...........

e = [ .5990006 .5992994 -.215. 6.715999 ]
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e
e e e e ke i e e e e ke e s e 3K o e e e sk o ok ke e e ok sk ke ok sk sl 3 sk sk ol ke sk ke o e sk e e e e o o sk e ook Sk ok sk ok ok

e e s e b A e e s e e ke s e ok ke o ol sk b ke ok b A e sk s e e s e e o ok ok ol ol o o ok o Ak A ok sl ko sk sk e b ek

"which the ERROR Subroutine cperates,

L 3 .

* VERTABLE IDENTIFICATION:

: _______________________

* TERR : Temporary Error.

: delxr: Value of Increment or Decrement.

*

* PERR : Previous Error with which recent Error is compared.
: E : DOriginal E Matrix, [ J11 J22 J12 L1

* or, [ C1 c2 di L0 ]

: U : Holds the currently Optimized E Matrix.

E . .

* v : Temporary Matrix containing the values of U Matrix on
:

3k e s s e b e o e s e 2k ok s ok ok ok sl ok s sk ook kol ol s sk sk e sk ok ok o o e ok o oo o o o sk ok e

DO 110 I =1, 4
110 U(r) = E(I)
**********************tttt*********
E S T
* Open file for writing data for Tables 4.1 and 4.2
E 3
CPEN ( 8, FILE = ’D:\AKMAL\DAT\TAB1.DAT’ )
*

*********tt**************t*t*******

300 CALL ERR”R ( U, ERR, POWER )

PERR, = ERR
COUNT = COUNT + 1

WRITE (*,150) ERR

PRINT*,’Iteration = ’,COUNT, ’ERROR=’,ERR, 'POWER=’, POWER
* PRINT *, 'THE NEW e VECTDR:’ '
* WRITE (*,163) U(1), U(2), U(3), U(4)

WRITE (8,173) COUNT, (U(I),I=1,4), ERR, POWER
173 FORMAT(I4,’% °,4(F8.6,” & ’),F9.6,’ & *,F9.6,’ \\ \hllne )
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150  FORMAT (/’ERR: ?, F16.10,/ )
160  FORMAT ( 4 (F16.10) )
170  FORMAT ( I3, 6(F12.8) )

IF (PERR .GE. TERR ) GOTO 600

DO 120 I
120 V(I

1, &
U(I)

[

DO 500 I =.1, 4
V(I) = U(I) + DELX

CALL ERROR ( V, ERR, POVWER)
IF ( ERR .LT. PERR ) GOTO 400
V(I) = U(I) - DELX

CALL ERROR ( V, ERR, POWER )
IF ( ERR .LT. PERR ) GOTO 400

V(I) = U(I)
400 TEMP = U(I)
U(I) = v(I)
V{(I) = TEMP

500  CONTINUE

TERR = PERR
GOTO 300

600 PRINT %, ?eomocomoomans OPTIZATION COMPLETE-=coooooooaax

END

* * * ¥

MAIN PROGRAM ENDS HERE.............

e e e e e 2 2k e e ke e e e ke o e e shooke e ok ok ok ok sk ok e sk e sk e ok sk e sk e sk e sk e ok e o sk s sk ook e o ke sk sk o o e e ke e ke
e e e o o e e o ke e e o o o ok kAol o o ok ok o o ok ok b A ok i ok ok A A A ol A ke ok sk ol s sk sk e ook e ok sk o ool ok ok ke sk ke ok ok

SUBROUTINE ERROR ( E, ERR, POWER )

e e e e o s e e o e ok ok o ke o ke s ok i ok o e ki Sk sk Sk ok o ke ok Sk K o ok e o e ok e e ok o ok o ok ke ok sk sk ok e e koo

* ’ ‘ *
* ‘ SUBROUTINE : ERROR *
* *

. .
ke e e o o e o e o R R ok 2888 e e ek o ok K o o o s s sk ek o ok o sk o s e e e s s ok ok ke e e e o o e e sk sk sk ook ke

COMPLEX Ci1, C2, €3, C4, S(2,2), SO, CHECK
REAL N, J, L, L1, L2, L3, I4
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DIMENSION E(4), J(2,2), B(2), Q(2,2)

s ke ke ke ok e e ok ke ok lokokok %
* YR is the reference value around which error is computed
e e ok A o e e e e e e e e ke ok

‘ YR = 0.1

J(1,1) = E()

J(1,2) = 2(3)

J(2,1) = E(3)

J{2,2) = E(2)

e e e s e o e e e e e e ok ok ok e e ke ke e e ok
* ’ Lo

* Computing'the EICEN VAUES: B(1) & B(2) of J Matrix
*

et e ok ek e ke e ok e ko e ok ok e e ok

Bl = J(1a1> + J(2s2) '
= SORT( B1#*Bl --4.0 * ( J(1,1)*J(2,2) - J(1,2) *

B2
+ J(2,1) ) )
B(1) = ( BL + B2 ) / 2.0
B(2) = (BL-B2) /2.0
* WRITE ¢*, 10) B(1), B(2)
* 10 FORMAT (’ Eigen Values are: B(1) = ’F10.8,

x4+ & B(2) = ’, F10.8 )

a4 3 o et e e e e b ook ok e e e e ko e ok e ke ok

*

* Time to find Eigen Vector of J matrix using B(1) & B(2)
*

e 3k 3k sk sk Ak T b e s e e b e A e e ok A Ak ok

Q(1,1) =1
Q(1,2) = 1
Qe2,1) = ( B(1)-J(1,1) ) / J(1,2)
N = SQRT( 1 + Q(2,1)*Q(2,1) )
QQ1,1) = Q(1,1) / XN
Q(2,1) = Q(2,1) / N

0(2,2) = ¢ B(2) - (1,0 ) / I(,2
N = SQRT( 1 + Q(2,2)%Q(2,2) )
Q(1,2) = Q(1,2) / N
Q(2,2) = Q(2,2) / N

]

sk e s e e e e e e ke e e e e e she e s dhe e e e ke e e e e e ol b ek ok ok ok ke ok ok ook dede e
*
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* Use This Segment if you wish to print the values of
* "Eigen Values" and the "Eigen Vector"......... ..
*

Ak kokkokokokkokkokhkkk ke kkkkkk ok kkkkk kR kkkk

PRINT#*,’The J matrix:’
PRINT*, J(i,1), J(1,2)
PRINT*, J(2,1), J(2.,2)

PRINT*, *Eigen Values: ’,B(1),B(2)
PRINT*, *The Eigen Vector of the above J matrix :’

" PRINT», Q(1,1), Q(1,2) :
PRINT*, Q(2,1), Q(2,2)

E R S R R R R R N

e ke ke e o o ok ol s e e ok ok ok e s sk e ook ek e ok ke ke ke ke okok ek ke ok ek

L E(4)
1 =1L x B(1)
L2 = L * B{2)

]

s e s s e e e s e de e e e kol ek ke oo

* Initializing errors for line-1 (ER1) and line-2 (ER2)
Rk ok Rk kR ok &

ER1 =0
ER2 = 0

DD 100 IT =1, 2

IF (II .EQ. 1) THEN

F1 = 1.0
F2 =1.3
ELSE
' Fi = 2,0
F2 = 2.3
ENDIF
DO 40 F = F1, F2, .04
L3 =11 * F
L4 = L2 % F
C3 = (0,-1) = L3
C4 = (0,-1) = L4
C1 = CEXP(C3)
C2 = CEXP(C4)
e 2 2 e e e 3k 3 3 e e ok e e ol e e e e Ak A ok K ke
* )
* - Computing SCATTERING MATRIX Soi :
*
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ke e e o e e s s sk sk koo o sk ok ok ok ok ok sk sk sk sk ke ke

D050 I=1, 2
DO 50 K = 1, 2
S{I,K) = Q(1,I) = C1 = Q(L,K) +
+ Q(2,1) = €2 * Q(2,K)
. 50 CONTINUE

**************************

k3

* WRITE(*,80) F, ( ( S(I,K), K=1,2 ), I=1,2 )

* 60 FORMAT(//’The Forward Scattering Matrix Soi : at f = °,
* + £4.3, /[12x, 2(£f12.8), 5x, 2(f12'2)’./12x’

* + 2(f12.8), 5x, 2(f12.8), //)

*

ek ok sk sk ok ok okl e ok ok ok

- :

* . Computing POWER & ERROR
*

e s s R R R R R ROk R R ok o

IF ( *I .EQ. 1 ) THEN : :
20 * ALOG10( CABS( S(1,2) ) )

P02 =
ER2 = ER2 + ABS( YR - P02 )

ELSE |
PO1 = 20 * ALOG10( CABS( S(1,1) ) )
ER1 = ERL + ABS( YR - P01 )

ENDIF

wrerxkxrrerer Writing in the data file opened earlier *xxxxxrxrxxx
WRITE(B.*) F, P01, P02
40 CONTINUE
100 CONTINUE

ERR = ER1 + ERZ
POWER = P01 + PO2

PRINT =, ER1, ER2, ERR, POWER
RETURN
END

3¢ e e e e e sk s e sk e e s sk o o sk sk sk s sk g sl e e afe e e e e o ok e e e e e g ok ko sje ok o ol she she o o e sje o o e 3 s ke e 3k ok ok K

* *
* End of the. subprogram ERROR. *
* : *

s 3 s s s e s e o o e ok o o o o ol el e e e e e s s sk sk sk s s sl s s s o s s o o 3 S o oo e e e e o o e e o o o o e e ok ok ke ke e e
ke e e e e e e ok s s e 3 oo obe i e e s eSS S ohe S s s s s o e o e ke e o o o o o ke ke o o o o sk ke ook e e sheoke ek e e sk sl ook obe ol ol e o
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Appendix C

List of the computer program for obtaining the line

parameters of a diplexer from its e vector

Name of the Program: FInD -LF.BAS
Language: BASIC
Programmer: Md. Sayeed Akmal

This program uses the program COMBLINE.BAS as its first
part for "calculating combline parameters”. The parameters
are printed on the screen.

The second segment of the program uses the subprogram ZmRe
and computes C(1,2), Zou, Vpu, Wm, Zm and H-Lf for different
values of shifting parameter "delj”. This output goes to the
printer.

- There is also an option for opening data file for writing
delj; H-Lf, Zm and Vpu for plotting purpose.

DECLARE SUB ZmEre (z!, Ere!, sr!)
DIM Zou(5), Vpu(3), e(4)

PR

e Defining Function COS INVERSE ----—---r-mme—

' ' DEF fnacos (x) = ATN((SQR(1 - x % x) / x))

f " The optimized e vector from Table 4.2 :

e(l)
e(3)

.598753: e(2)
-.215: - e{4)

.99955
B.71851

1 i
1
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Length = e(4)

m(l) = 1: m(2) = 1:

Rt(1) = 50: Rt(2) = 50

f = 1E+09: pl = 3.1415926#
wL = 2% pilxf _

30
Length * Factor

Factor
Length

o OPENING FILE FOR WRITING DATA ~——-—————mmmmmmm e
OPEN d:\AKMAL\dat\T6co30-1.dat" FOR OUTPUT AS #1

OPEN "d:\ARMAL\dat\T6co30-2.dat” FOR OUTPUT AS #2
OPEN "ci\vtex\TB6co30.tex” FOR OUTPUT AS #3

LPRINT "Factor ="; Factor, "Length ="; Length

LPRINT delj C(1,2) Zou Ypu Wm IZm H-Lf"
LPRINT * - o e e s e

FOR delj = 0 TO .07 STEP .002

Forming the J matrix from the e vetor:

J(1, 1) = e(1): (1, 2) = e(3)
(2, 1) = 3(3, 2 J3(2, 2) = e(2)

_/“-f"

I' FOR k =1 TO 2 _
J(i, k) = j3(i, k) / Factor
NEXT k
. (i, 1) = j(i, 1) + dely

e Calculation of Coupled Capacitance & Inductance —--————-

C(i, 1) = 2 * j(i, i) / (WL * Rt(i) *x (1 + m(i) * m(i)))
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L(i, 1) = 2 *lj(i, 1) * m(i) * m(i) * Rt(i) / (WL * (1 + m(i) * m(i)))

FOR k = 1 TO 2
IF i <> k THEN

S e Calculation of Uncoupled Capacitance ————---—--—---
C(i, k) = 2 x j(i, k) / (WL * Rt(i))
PRINT , "Mutual Capacitance:  C("; i; ","; k; ") = "; C(i, k)
END IF .

NEXT k
PRINT

NEXT i
FOR i = 1 TO 2
o Calculation of Uncoupled Capacitance --——--——-——-——-
OC(i) = C(i, i) - ABS(C(1, 2))

PRINT "Uncoupled Capacitsnce: C("; i; ") = "; CC(i)

‘——————-—— Calculation of Uncoupled & Coupled Impedances —-—-----——-
Zou(i) = SQR(ABS(L(i, i) / CC(1)))

" Zoc(i) = SAR(L(i, i) / C(i, 1))

e Calculation Uncoupled & Coupled Phase Velocities ———————-
- Vpu(i) = 1 / SQR(ABS(L(, i) * CC(i)))

E Vpe(i) = 1 / SQR(L(i, i) * C(i, 1))

) NEXT i
' PRINT "=========-====s==oz=roooonooossssosTTooSOSTCTSSOSSSIISISITISCITSINSISSS

PRINT “ Factor = "; Factof, "delj = ”; delj

PRINT "The New [J] matrix = "
FOR i =1 TO .2
PRINT TAB(22); "i"; " "
FORk =1TO 2
PRINT TAB{29 * k - 4 x k % k); j(i, K);
NEXT k
PRINT TAB(58); """
NEXT i

.
>

ks

PRINT "............. Length =-"; Length; "mm”
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'PROGRAM SEGMENT to calculate Zm and Lf
This program is uses a SUBprogram named ZmEre.

————————————————————— Initializing values ~————~——-w———m—
P=2.4: ETAo = 376.73: C = 3E+11
Erem = 2.55: Eref = 2.55:
pi = 3.141592: dm = 0O:

Zf = 107: n=.9: h=1.5
CALL ZmEre(Zf, Eref, srf)

FORnn = 1TO 2 ~“.... nn=1 for line-1 and nn=2 for line-2
WL = 2 % pil xf

Vpm = C / SQR(Erem)

Vpe = Vpu(nn) .

Vpf = C / SQR(Eref)

Bm = wL / Vpm

Bf = wL / Vpf

lamb = C / f

FORi =z 1TO B

Vpm = C / SQR(Erem)
Bm = wL / Vpm

Zm =1(Zou(nn) X P) / ((P+ 2 % dm) ¥ (Vpe / Vpm))

zr = Zm / Z2f

Be = uwL / Vpe

Tm = Bm ¥ (P + 2 ¥ dm)
t =Tm

XX ABS(COS(t) - COS(Be * P)) / (Zm * SIN(t))
x = 2% XX
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m\

S .
) FINGER LENGTH CALCULATION

D —— For HERRINGBONE line —---—--——-——m——mmmm |

hlf = ATN(XX * Zf / (n * n)) / Bf

S For COMBLINE line -—-mmmmwmm—memmmfm o

clf = ATN(Z * XX * Zf / (n * n)) / Bf

hlf + dfp
clf + dfp

h
=
!
.

N

PRINT "Line”; nn; ":";

" C(nﬁ, nn)
*; L{nn, nn)

"Coupled Capacitance: C{"; nn; ","; nn; ')
"Coupled Inductance : L("; nn; ","; nn; ™)

o
Z
—

"Coupled Phase Velocity: Vpe(”; nn; ") = "; Vpe{nn)

PRINT , "Mutual Capacitance C(1,2) = "; C(1, 2)

"Coupled Characteristic Impedance: Zoc("; nn; ") = "; Zoc(nn)

PRINT , "Uncoupled Characteristic Impedance: Zou(”; nn; “) = "; Zou(nn)

PRINT , “Uncoupled Phase Velocity: Vpu(”; nn; ") = "; Vpu(nn)

PRINT "Vpm="; Vpm; TAB(21); "Zm="; Zm; TAB(38); “"srm="; srm, "Bm="; Bm
PRINT "Vpf="; Vpf; TAB(21); "ZIf="; Zf; TAB(38); "srfz="; srf, "Bf="; Bf
PRINT “Vpe="; Vpe; TAB(21); "T="; t; TAB(38); “dm="; dm, “hlf="; hlf
PRINT "df="; df; TAB(21); “dfp="; dfp; TAB(38); "Dm="; Dmm

PRINT "Erem="; Erem; TAB(21); "Eref="; Eref

PRINT “........ ULTIHATE FINGER LENGTH FOR HERRINGBONE LINE"; nn; " =
PRINT : ‘
ELSE
END IF
(e Calling the SUBprogram: ZmEre -—-—----————————-omn

CALL ZmEre(Zm, Erem, srm)
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e

(ETAo * h) / (Zm % SQR(Erem)) ...z mor f..

Dmm =
Dff = (ETAo * h) / (Zf * SQR(Eref))
dfl1 = 076 + .2 % (2 * Dmm / lamb) ~ 2 + .663 % EXP(-1.71 * zr)

df = Dmm * (dfl - .172 % LOG(zr)) * zr
dfp = Dmm / 2 - df
dm = Dff * (.05 % n ¥ n %X zr)

NEXT i

Wm = h ¥ srm
k = nn

LPRINT k; TAB(5);

LPRINT USING "+.###"; delj;

- LPRINT TAB(11); ABS(C(l 2)) TAB(25); Zou(k); TAB(35); Vpu(k); TAB(49); Wm; TAB(58); Zirm

00, felf
PRINT #3, k; " & "; delj; " & “; Zou(k); " & "; Vpu(k), " & "; Wm; &y Zm; "
f\hline"
IF k = 1 THEN
WRITE #1, delj, fclf, Zm, Wm, Zou(k), Vpulk), C(l 2)
ELSE
WRITE #2, delj, feclf, Zm Wm, Zou(k), Ypu(k), C(1, 2)
END IF
NEXT nn
LPRINT
INPUT "terminate (y/n) "; t$
IF t$ = "y OR t$ = "Y" THEN GOTO 1000
NEXT delj

CLOSE #1: CLOSE #2: CLOSE #3

1000 END "=====z=zzzzzz==zzzzz==== END OF MAIN PROGRAM ======z==zo==zozzmcooco
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SUBprogram to find W/H & Ere for a certaiﬁ Zm
- SHAPE RATIO : W/H = SR

SUB ZmEre (z, Ere, sr) STATIC
DIN Er(5)
Er(1) = 2.33: Er(2) = 2.55: Er(3) = 3.78: Er(4) =

ETAo = 376.73: pi = 3.141593
i= 2: tolerance = ,01
delZ = 500

31 = LOG(.2): Jz2 = LOG(lU)
FOR § = J1 TO 32 STEP .01

sr = EXP(j)
delZold = delZ

IF sr <= 1 THEN ‘
f=1/S5aR(1+ 12 / sr)+ .04 *x (1 -~ sr) ~ 2
Ere = (Er(i) + 1) + (Er(i) - 1) x £ s 2 '
= ((ETAo / (2 ¥ pi)) *x LOG(8 / sr + .25 * sr)) / SQR(Ere)

ELSE
f=1,/95aR(1+ 12 / sr)
Ere = ((Br{i) + 1)+ (Er¢{i) - 1) x f) / 2
Zi = (ETAo / (sr + 1.393 + .667 % LOG(sr + 1.444))) / SQR(Ere)
END IF .

PRINT "W/H ="; SR; TAB(20); “Zi ="; Zi; TAB(40); "Ere ="; Ere; TAB(60); "Er="; Er(

delZ = ABS(z - Zi)
IF delZ <= tolerance OR delZ > delZold THEN EXIT FOR

NEXT 3
PRINT "Zi="; Zi, "sr="; sr, "Ere="; Ere

‘sZo=zzmmrszo—szzz== BEND OF SUBPROGRAM ::::::::::::ﬁ::::::::::::::::::
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