
I

A GENERALIZED DATABASE SYSTEM FOR THE CENTRAL BANK OF BANGLADESH

FROM HETEROGENEOUS SYSTEM OF DIFFERENT COMMERCIAL BANKS

by

Md. Mahbubur Rahman Alam

MASTER OF ENGINEERING IN INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology (IICT)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
June, 2013

II

The project titled “A GENERALIZED DATABASE SYSTEM FOR THE CENTRAL BANK

OF BANGLADESH FROM HETEROGENEOUS SYSTEM OF DIFFERENT COMMERCIAL

BANKS”, submitted by Md. Mahbubur Rahman Alam, Roll No. M10073119P, Session:

October/2007, has been accepted as satisfactory in partial fulfillment of the requirement for the

degree of Masters of Engineering in Information and Communication Technology on June29,

2013.

Board of Examiners

1. Dr. Md. Saiful Islam

Professor and Director

Institute of Information and Communication Technology

BUET, Dhaka-1000, Bangladesh

Chairman

2. Dr. Md. Liakot Ali

Professor

Institute of Information andCommunication Technology

BUET, Dhaka-1000, Bangladesh

Member

3. Dr. Mohammad Shah Alam

Assistant Professor

Institute of Information andCommunication Technology

BUET, Dhaka-1000, Bangladesh

Member

III

Candidate’s Declaration

It is hereby declared that this report or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Md. Mahbubur Rahman Alam

IV

Dedicated

To

My Parents and Family Members

V

Table of Contents

Title Page No.

Board of Examiners II

Candidate’s Declaration III

Dedication IV

Table of Contents V-X

List of Tables XI

List of Figures XII-XIV

Acknowledgement XV

Abstract

 XVI

Chapter 1: Introduction

1.1 In General 1

1.2 Objectives with Specific Aims and Possible Outcomes 2

1.3 Project Paper Layout 3

Chapter 2: Background, Present State and Implementation of the System

2.1 Overview 4

2.2 Implementation Issues 8

Chapter 3: Database Design for Central Bank, Linked-Server and Commercial

Banks

3.1 Introduction 12

3.2 Normalization Issues 12

3.3 Oracle Database Design for the Production Server of the Central Bank 14

3.3.1 Entity and Attributes Exploration 14

3.3.1.1 Info_Categories 14

VI

Table of Contents

Title Page No.

3.3.1.2 Bank 15

3.3.1.3 Gathered_Data 15

3.3.1.4 Process_Info 16

3.3.1.5 Filtering_Data 17

3.3.2 Creating Tables of the Temporary Schema 18

3.4 Permanent Schema of Production Server: To Store Data Received from

 Temporary Schema

19

3.4.1 Entity and Attributes Exploration 20

3.4.1.1 Info_Categories 20

3.4.1.2 Bank 20

3.4.1.3 Process_Info 21

3.4.1.4 Filtering_Data 21

3.4.1.5 Gathered_Data 22

3.4.2 Creating Tables: Permanent Schema of Central Bank 23

3.5 Linked-Server Database (Middle-Tier) 24

3.5.1 Entity and Attributes Exploration 25

3.5.1.1 Info_Categories 25

3.5.1.2 Bank 25

3.5.1.3 Gathered_Data 26

3.5.1.4 Process_Info 27

3.5.1.5 Filtering_Data 27

3.5.2 Creation of Linked-Server Database and Tables in MS-SQL Server

 (Middle-Tier)

28

3.5.2.1Creation of Database 28

3.5.2.2 Creation of Tables 29

3.6 Commercial Banks’ Database 30

3.6.1 Commercial Banks’ Database: Bank-6 Using MS-SQL Server 31

3.6.1.1 Entity and Attributes Exploration 31

VII

Table of Contents

Title Page No.

3.6.1.1.1 Customers 31

3.6.1.1.2 Account_Type 32

3.6.1.1.3 Accounts 33

3.6.1.1.4 Transactions 33

3.6.1.1.5 Vault 33

3.6.1.1.6 Vault_Transaction 34

3.6.1.2 Creation of Database and Tables in MS-SQL Server: Bank-6 34

3.6.1.2.1 Creation of Database with Log files using T-SQL 34

3.6.1.2.2 Creation of Database Tables 35

3.6.2 Commercial Banks’ Database: Bank-1 Using Oracle Server 37

3.6.2.1 Creation of Database Tables 37

3.6.3 Commercial Banks’ Database: Bank-4 using MS-Visual FoxPro

Database

39

3.6.3.1 Creation of Database and Tables 40

3.6.4 Commercial Banks’ Database: Bank-3 using MS-Access Database 42

3.6.4.1 Populating Data 43

3.6.5 Commercial Banks’ Data: Bank-5 Using Text Files 43

3.6.6 Commercial Banks’ Data: Bank-2 using MS-Excel Files

43

3.7 Summary

44

Chapter 4: Designing the Middle-Tier Linked-Server

4.1 Introduction 45

4.2 Linked-Servers 45

4.2.1 Linked Server Components 46

4.2.2 Managing a Linked Server Definition 46

4.3 OLE DB Provider for Oracle 49

4.4 OLE DB Provider for Jet 50

4.4.1 To Create a Linked Server to access an MS-Access Database 50

VIII

Table of Contents

Title Page No.

4.4.2 To Create a Linked Server against an Excel Spreadsheet 51

4.4.3 To set up a Linked Server against a Text File 52

4.5 OLE DB Provider for ODBC (MS-Visual FoxPro) 53

4.6 OLE DB Provider for SQL Server 55

4.7 Summary

56

Chapter 5 :Data Gathering, Filtering and Processing

5.1 Introduction 57

5.2 Distributed Query Architecture 57

5.3 OPENQUERY 59

5.4 Gathering Data from Linked Servers 60

5.4.1 Gathering data from all banks assuming all communication links are up

 and all linked-servers are running

60

5.4.1.1 Executing the Procedure to gather data when all servers are online 61

5.4.2 Gathering data from all banks assuming all communication links and all

 linked-servers are not online

61

5.4.2.1 Executing the Procedure to gather data when all servers are not

 online

63

5.4.3 Gathering data from a specific bank assuming the communication link

 and linked-server is online

63

5.4.3.1 Executing the Procedure to gather data for a specific server 65

5.4.4 Procedure to gather vault data when all servers are online 65

5.4.4.1 Executing Procedure to gather vault data when all servers are

 online

66

5.4.5 Procedure to gather vault data when all servers are not online 66

5.4.5.1 Executing Procedure to gather vault data when all servers are not

 online

67

5.4.6 Procedure to gather Vault data for a specific server 68

IX

Table of Contents

Title Page No.

5.4.6.1 Executing Procedure to gather Vault data for a specific server 69

5.4.7 Filter Data after Gathering from Linked Servers 69

5.4.7.1 Executing Procedure to Filter Data after Gathering from Linked

 Servers

71

5.7 Summary

71

Chapter 6:Transferring Data from Linked-Server to Production Server

6.1 Introduction 72

6.2 MS-Data Transformation Services (DTS) 72

6.3 Configuring MS-Data Transformation Services (DTS) 72

6.4Filtering Data after receiving from Linked Servers 79

6.4.1Creating the Procedure 79

6.4.2Executing the Procedure 80

6.5 Loading the Processed Data from Temporary Schema to Permanent Schema

 of the Production Server

81

6.5.1 Creating the Procedure 81

6.5.2 Executing the Procedure 81

6.6 Summary

81

Chapter 7 :Interactive Form and Report Design for End-Users

7.1 Introduction 82

7.2 Interactive Form Design 82

7.2.1 Vault Data 82

7.2.2Banks Information 88

7.2.3Status of Gathered Data 89

7.2.4Gathered Data 90

7.2.5Gathered Data by Category 91

7.2.6Process Wise Data 92

X

Table of Contents

Title Page No.

7.2.7Running a Process to Filter and Load Data 93

7.3 Report Design 99

7.4 Summary

109

Chapter 8: Security Issues

8.1 Introduction 110

8.2 Network Domain Configuration 110

8.3 Database Views 111

8.3.1 Creating Views for Bank-6 MS-SQL Server 111

8.3.2 Creating Views for Bank-1 Oracle Server 112

8.3.3 Creating Views for Bank-4 FoxPro Server 112

8.3.4 Creating View to See Filtered Data in Linked-Server 112

8.3.5 Creating View for Production Server of the Central Bank 113

8.4 Database User Security 113

8.4.1 MS-SQL Server 114

8.4.2 Oracle 116

8.4.3Others 117

8.5 Summary

118

Chapter 9: Conclusion

9.1 Conclusion 119

9.2 Future Works

120

References

121

Appendix-I 122-130

XI

List of Tables

Table No. Table Caption Page No.

Table 3.1 Info_Categories 15

Table 3.2 Bank 15

Table 3.3 Gathered_Data 16

Table 3.4 Process_Info 17

Table 3.5 Filtering_Data 17

Table 3.6 Info_Categories 20

Table 3.7 Bank 20

Table 3.8 Process_Info 21

Table 3.9 Filtering_Data 22

Table 3.10 Gathered_Data 23

Table 3.11 Info_Categories 25

Table 3.12 Bank 25

Table 3.13 Gathered_Data 26

Table 3.14 Process_Info 27

Table 3.15 Filtering_Data 28

Table 3.16 Customers

31

Table 3.17 Account_Type 32

Table 3.18 Accounts 32

Table 3.19 Transactions 33

Table 3.20 Vault 33

Table 3.21 Vault_Transaction 34

Table 4.1 sp_addlinkedserverParamaeter Values 48

XII

List of Figures

Figure No. Figure Caption Page No.

Fig. 2.1 Architecture of the Project (Network Communication) 7

Fig. 2.2 Architecture of the Project (Data Communication) 11

Fig. 3.1 Snapshot of Temporary Schema of Central Bank’s Server 14

Fig. 3.2 Snapshot of Permanent Schema of Central Bank’s Server 19

Fig. 3.3 Snapshot of Linked-Server Database Design 24

Fig. 3.4 Snapshot of SQL Server Database Design for Bank-6 30

Fig. 3.5 Snapshot of Oracle Database Design for Bank-1 37

Fig. 3.6 Snapshot of Visual FoxPro Database Design for Bank-4 39

Fig. 3.7 Snapshot of Access Database Design for Bank-3 42

Fig. 3.8 Snapshot of Access Data for Bank-3 42

Fig. 3.9 Snapshot of Text Data for Bank-5 43

Fig. 3.10 Snapshot of Excel Data for Bank-2 44

Fig. 4.1 Snapshot of Oracle Database SQL* Net Service Provider
Configuration

49

Fig. 4.2 Snapshot of ODBC System Data Source Configuration 53

Fig. 4.3 Snapshot of ODBC System Data Source Location 54

Fig. 4.4 Snapshot of Linked-Server Configuration for Visual FoxPro 54

Fig. 4.5 Snapshot of Security Configuration for Visual FoxPro 55

Fig. 4.6 Snapshot of MS-SQL Server Enterprise Manager 56

Fig 5.1 Snapshot of Output of the above command 61

Fig 5.2 Snapshot of Output of the above command 66

Fig. 6.1 Snapshot of Configuring oracle SQL-Net services 73

Fig. 6.2 Snapshot of Export Import Wizard of MS-DTS 73

Fig. 6.3 Snapshot of Data Source Wizard 74

Fig. 6.4 Snapshot of Selecting Destination Database 75

Fig. 6.5 Snapshot of Connecting Oracle Database 75

Fig. 6.6 Snapshot of Specify Table Copy or Query Wizard 76

Fig. 6.7 Snapshot of Selecting Source Tables 76

Fig. 6.8 Snapshot of Saving DTS Package 77

XIII

List of Figures
Figure No. Figure Caption Page No.

Fig. 6.9 Snapshot of Saving DTS Package 77

Fig. 6.10 Snapshot of Completing DTS Services 78

Fig. 6.11 Snapshot of Successful Transfer Message 78

Fig. 7.1 Snapshot of Oracle Forms Builder 83

Fig. 7.2 Snapshot of Data Block Wizard (Type) 83

Fig. 7.3 Snapshot of Data Block Wizard (Table) 84

Fig. 7.4 Snapshot of Data Block Wizard (Master-Detail) 84

Fig. 7.5 Snapshot of Layout Wizard (Data Block) 85

Fig. 7.6 Snapshot of Layout Wizard (Items) 86

Fig. 7.7 Snapshot of Layout Wizard (Style) 86

Fig. 7.8 Snapshot of Layout Wizard (Rows) 87

Fig. 7.9 Snapshot of Form Layout 87

Fig. 7.10 Snapshot of Form Runtime (Vault Data) 88

Fig. 7.11 Snapshot of Forms Layout (List of Banks) 88

Fig. 7.12 Snapshot of Form Runtime (List of Banks) 89

Fig. 7.13 Snapshot of Form Layout (Status of Gathered Data) 89

Fig. 7.14 Snapshot of Form Runtime (Status of Gathered Data) 90

Fig. 7.15 Snapshot of Form Layout (Gathered Data) 90

Fig. 7.16 Snapshot of Form Runtime (Gathered Data) 91

Fig. 7.17 Snapshot of Form Layout (Gathered Data by Category) 91

Fig. 7.18 Snapshot of Form Runtime (Gathered Data by Category) 92

Fig. 7.19 Snapshot of Form Layout (Gathered Data by Process) 92

Fig. 7.20 Snapshot of Form Runtime (Gathered Data by Process) 93

Fig. 7.21 Snapshot of Form Layout (Filter and Load Data) 94

Fig. 7.22 Snapshot of Form Runtime (Filter and Load Data) 94

Fig. 7.23 Snapshot of Procedure to Generate PID 95

Fig. 7.24 Snapshot of Procedure for Filter Data Button 96

Fig. 7.25 Snapshot of Procedure for Load Data Button 96

Fig. 7.26 Snapshot of Form Layout (Run Report) 97

XIV

List of Figures
Figure No. Figure Caption Page No.

Fig. 7.27 Snapshot of Form Runtime (Run Report) 98

Fig. 7.28 Snapshot of Procedure to Call Business Reports 98

Fig. 7.29 Snapshot of Procedure to Call Liquid Asset’s Reports 99

Fig. 7.30 Snapshot of Report Wizard (Style Tab) 100

Fig. 7.31 Snapshot of Report Wizard (Type Tab) 100

Fig. 7.32 Snapshot of Report Wizard (Data Tab) 101

Fig. 7.33 Snapshot of Report Wizard (Group Tab) 101

Fig. 7.34 Snapshot of Report Wizard (Fields Tab) 102

Fig. 7.35 Snapshot of Report Wizard (Totals Tab) 102

Fig. 7.36 Snapshot of Report Wizard (Labels Tab) 103

Fig. 7.37 Snapshot of Report Wizard (Template Tab) 103

Fig. 7.38 Snapshot of Data Model 104

Fig. 7.39 Snapshot of Layout Model 104

Fig. 7.40 Snapshot of Report Parameter Form 105

Fig. 7.41 Snapshot of Report LOV 105

Fig. 7.42 Snapshot of Report Parameters 106

Fig. 7.43 Snapshot of Final Report (Run Time) 106

Fig. 7.44 Snapshot of Final Report (Run Time) 107

Fig. 7.45 Snapshot of SQL Query for Liquid Asset Report 108

Fig. 7.46 Snapshot of Report Parameters 108

Fig. 7.47 Snapshot of Final Report (Run Time) 109

Fig. 8.1 Snapshot of Domain: banking.com 110

Fig. 8.2 Snapshot ofCreating Database User (Step-1) 114

Fig. 8.3 Snapshot ofCreating Database User (Step-2) 114

Fig. 8.4 Snapshot ofCreating Database User (Step-3) 115

Fig. 8.5 Snapshot ofCreating Database User (Step-4) 115

Fig. 8.6 Snapshot ofSharing Folder Permissions (Step-1) 117

Fig. 8.7 Snapshot ofSharing Folder Permissions (Step-2) 118

XV

Acknowledgement

First of all I would like to express my gratitude to Almighty Allah for giving me the opportunity

to conduct this project. I would like to thank Professor Dr. Md. Saiful Islam, Director, Institute

of Information and Communication Technology, Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh. He has assigned me an interesting and useful topic, which has a

wide range of application in real world. He has provided all sorts of support regarding the project

work. Without his proper guidance, advice, continual encouragement and active participation in

the process of this work, it would have not been possible.

The suggestions on the improvement of the work received from Professor Dr. Md. Liakot Ali

and Assistant Professor Dr. Mohammad Shah Alam are also duly acknowledged with thanks.

Special thanks goes to Ms. Nazneen Sultana, Deputy Governor, Bangladesh Bank, Mr.

GourangaChakrabarti, Executive Director, Bangladesh Bank, Mr. AbulKashem Md. Shirin,

DMD, Dutch-Bangla Bank Ltd, Mr. S. M. MainuddinChowdhury, DMD, South-East Bank Ltd.

and Mr. Shamsur Rahman Chowdhury, Head of IT, Jamuna Bank Ltd. for their cordial help and

guidelines regarding this project.

I also like to give thanks to all of our classmates for various discussions regarding the project

work.

Finally, I am grateful to all staffs and officers of IICT, especially Mr. Khairul Islam, for helping

me continuously in various ways.

XVI

Abstract

Bangladesh Bank (BB), as a regulatory body and central bank of Bangladesh, collect, filter,

organize and process periodical data from different commercial banks operating in Bangladesh

for better policy, monitoring and management of the banking sector. There are a number of

departments and authorities involved with this process. At present, in most of the cases, all the

information is collected manually and stored in separate manual registers, text files and MS-

Excel sheets in different departments which do not follow a uniform format. This decentralized

information is complicated to aggregate for monitoring and policy purpose from a central point.

By using current infrastructure it is not also possible for BB to access a heterogeneous banking

system where 31 types of banking software are being used with 5 types of databases. To address

this problem through a simulated environment a generalized database is designed to collect,

filter, organize process and store periodical data in a unique standard format. Proposed system

uses the Linked-Server concept of Microsoft SQL-Server to gather data by using distributed

query technique. After filtering and processing in SQL-Server, data is exported to the production

server of the central bank, which is running an Oracle database management system. Security

issues are strictly handled in this regard. Finally, a set of parameterized reports have been

designed that can be run from different departments by using central report server and will assist

the regulatory body for proper monitoring, control and making policy decision. This system is

simulated in the HUAWEI-Lab of the IICT department successfully. Now, with the proper

permission of BB and cooperation of different commercial banks, this system can be

implemented for the betterment of the banking sector and economy of the country.

1

Chapter1
Introduction

1.1 In General

Banking is the backbone of modern economy. In 21st century, modern banking totally depends

on information and communication technology. For the economic development of Bangladesh it

is very much important to develop the banking sector. Formulation and implementation of the

national economic policy very much depends on information regarding banking. In Bangladesh,

there are 47 commercial banks operating banking business all over the country. Most of the

banks are computerized and providing online banking services through different delivery

channels with different types of banking software (local, in-house, foreign) having different

categories of databases. Most of the banks are providing online banking services through state-

of–the-art data centers having disaster recover sites. The central and regulatory bank of

Bangladesh, The Bangladesh Bank (BB), has been facing severe problems to have proper

information regarding export, import, profit, tax, loans &advances, defaults, liquid assets, etc.

from different commercial banks for quick policy making. Organizing data is also a great

challenge. It is seen that several quarters/months/years required for gathering and processing

data. It has been the main challenge of BB for policy formulation and implementation.

Moreover, fraud prevention is not possible for manipulated data that is reported to BB manually.

It is also very difficult for financial auditors to audit billions of records stored into the databases

of different banks and verify it manually due to time, cost and lack of expertise. In this scenario,

a generalized database system is required for BB to gather, filter, accumulate and process data

for multiple uses from a heterogeneous banking system. Once the standard database is designed

and data are stored with standard format, following advantages can be achieved.

2

a) Quick collection, organization, filtering and processing of banking data.

b) Easy monitoring and controlling the financial services of banks in Bangladesh.

c) Quick and better financial audit.

d) Fraud prevention related to false financial statements.

e) Quick policy formulation and implementation.

f) Monitoring and management of classified loans.

g) Proper monitoring and management of liquid assets of banks.

h) Data can be used for statistical analysis (correlation, regression, trend analysis, etc.)

i) Data mining application can be used in long term.

1.2 Objectives with Specific Aims and Possible Outcomes

This project has the following objectives:

a) To create a virtual banking environment of Bangladesh in the lab including BB with

other commercial banks.

b) To design a database for BB so that required accumulated information regarding

finance, economics and statistics of all commercial banks operating in Bangladesh

can be produced by BB.

c) To write procedures for the central servers of different banks so that required data can

be collected from banking database.

d) To accumulate data from heterogeneous data sources of commercial banks and insert

into a common database that is designed for BB.

e) Finally, to filter and process data and send it to the central server of BB to generate

policy report.

3

1.3 Project Paper Layout

This report consists of nine chapters. Contents of the chapters are as follows:

Chapter 1 of this report describes general discussion on the proposed project followed by

background of the problem, objectives, methodology and project paper layout.

Chapter 2 of this report contains background, present state and implementation of the system.

Chapter 3 discusses database design and implementation issues of the project.

Chapter 4 mainly expresses on the designing of the linked-server.

Chapter 5 mainly focuses on the distributed query mechanism of the system including

gathering, filtering and processing of data.

Chapter 6 includes transferring data from linked server to production server and final

verification of the received data.

Chapter 7 contains form and report design for the end-users of the system.

Chapter 8 describes the network domain configuration and security issues of the system.

Finally, conclusion and recommendations for future works has been stated in Chapter 9.

The project paper ends with appendix that contains the database table scripts and other SQL

commands related to the system.

4

Chapter 2

Background, Present State and Implementation of the System

2.1 Overview

Like any other central bank of the world, data collection, organization, filtering and processing is

a large and complex work for the central bank of Bangladesh. In Bangladesh, 47 commercial

banks have been operating their business with 7,772 branches. Among the banks, 4 nationalized

commercial banks (NCBs), 30 private commercial banks (PCBs), 9 foreign commercial banks

(FCBs) and 4 specialized banks (SBs) have been providing services through near about six crore

accounts to the people in the country. Among the branches NCBs, PCBs, FCBs and SBs run

3685 (47%), 2382 (31%), 64 (1%) and 1641 (21%) branches respectively. Though almost all

branches of private and foreign banks are computerized and providing online banking services,

they use both centralize and distributed database for their operations [1].

Though almost all banks are computerized and providing online banking services; there are 31

banking software in operation using 5 types of databases. These banking software mainly use

Oracle (42%), MS-SQL Server (35%), MS-Access (2%), MS-FoxPro (6%) and text files (15%)

to store valuable banking data [2]-[5]. Banking data actually coming through different delivery

channels, like Automated Teller Machine (ATM), Internet, Point of Sale Terminal (POST),

Branch, Mobile Phones, etc. in to the central database server of data center of different banks by

using different communication channels like VSAT, PSTN, Radio-Link, optical fiber, Internet

(VPN), etc.,[Fig: 2.1].

5

Bangladesh Bank (BB), the central and regulatory bank of Bangladesh, has been facing

tremendous problems to get proper information from different commercial banks for quick

policy making. Moreover, BB has no online connectivity with different banks and still collects

data using CD, DVD and formatted printed report by postal and courier services periodically.

Based on this data the central bank produces several policy reports and change their audit and

monitoring policy. Collecting data by postal or courier services is time consuming and costly.

Organizing data is also a great challenge for BB. It also hampers policy making and

implementation process of BB [6]. BB periodically collects data related to export, import, profit,

tax, loans &advances, defaults, liquid asset, etc. for better economic policy. Starting from the

generation of banking data through delivery channels to policy report, several critical steps are

involved in this system. For each step it is necessary to accumulate a lot of information that is

very much important for the BB. The data are again maintained and used by a number of

authorities. The important components in this system are collection, filtering, processing and

generating reports. However, it is found that several months or quarters or even years required

for gathering and processing these data. Moreover, fraud prevention (intentional over/under

shown amounts) is not possible for manipulated data that is reported to BB manually. For

example, if a bank collects Tk. 5 crore as government taxes & duties and reports that the amount

collected is only Tk. 2 crore; it is very difficult for BB to audit and verify it manually due to

time, cost and human resource constraints [7]-[8]. At present, in most of the cases, all the

information is stored in separate manual registers, text files and MS-Excel sheets in different

departments which do not follow a uniform format. This decentralized information is

complicated to aggregate for monitoring and policy purpose from a central point. By using

current infrastructure it is not also possible for BB to access a heterogeneous banking system

where 31 types of banking software are being used with 5 types of database [9]-[12]. But there

6

exists no attempt to integrate those data. No initiative has been taken yet from BB to develop a

system to solve such problems.

Though required data is periodical, collecting data for BB from heterogeneous databases into a

common platform, like Oracle, through online connectivity using linked database server concept

would be a better solution. In this regard, a generalized database is needed for the Bangladesh

Bank, for easy integration of different databases of different commercial banks operating in

Bangladesh. Common procedures may be written for different types of database by using SQL

and install it into the banking software of different banks. Those procedures will collect data

periodically and send it to BB through online connectivity. After collecting data from all banks

required policy information can be generated quickly and accurately from the server located at

BB. In this regard, a simulated banking environment is created with necessary technology to

solve this problem by developing the project. After successful testing of the project BB may use

it to overcome the current problems regarding this issue. Finally, the data will assist the

regulatory body for proper monitoring, control and making policy decision.

C

en
tr

al
 B

an
k

C
om

m
er

ci
al

 B
an

k
to

C

en
tr

al
 B

an
k

H

ea
d

O
ff

ic
e

L
ev

el

D
el

iv
er

y
C

ha
nn

el

to
 H

ea
d

O
ff

ic
e

D
el

iv
er

y
C

ha
nn

el
s

B1: Oracle

POST

Radio
Link

e B6: M
Ser

Call C

Fig. 2

Opt

S-SQL
rver

B3

Center

2.1: Architec

tical

Linked-

3: MS-Access

Branch

cture of the

PSTN/VPN/

PSTN

Server

s B4: MS-V
FoxP

ATM

e Project (Ne

/ISP/Optical

ISP

P

Visual
Pro

B5:

M Mob

etwork Com

Cable

P

Production S

Text Files

bile Phone

mmunicatio

VSAT

Server

B2: MS-
Excel

Fixed Phon

n)

Internet/VP

7

e Internet

PN

8

2.2 Implementation Issues

In this project, we have considered six commercial banks; namely, B1, B2, B3, B4, B5 and B6.

We also considered these banks are running under the guidance of the Central Bank. In the

Central Bank there are two servers- a production server running Oracle and a Linked-Server

using MS-SQL Server database. Bank-1 (B1) is a high-tech Private Commercial Bank (PCB)

uses Oracle database for their banking software. MS-Excel is used by Bank-2 (B2), a

Nationalized Commercial Bank (NCB), which is not a database at all. They collect data from

different branches and arrange it in Excel files for reporting purpose. An old Private Commercial

Bank (PCB), Bank-3 (B3), has been using MS-Access for their banking operations. Another

Nationalized Commercial Bank, Bank-4 (B4), stores their data in MS-Visual FoxPro database.

Bank-5 (B5) is a Specialized Bank (SB) that is using COBOL based software that stores banking

information into text files. Finally, MS-SQL Server is used by a Foreign Commercial Bank

(FCB), Bank-6 (B6).

First of all, we have setup network communication links to database servers of all banks.

Communication may be direct or through third party, according to the wish of BB, considering

financial budget and security. We assumed that data are coming through ISP, VPN, PSTN or

optical fiber connectivity. Figure 2.1 describes the network communication from delivery

channels to linked server of BB.

In the next step, normalization issues are considered and Oracle database is designed for the

production server of the central bank (one for temporary use and other for permanent use).

Relationship among entities, table structures, constraints, data types and its size are also carefully

handled. Dummy data are used to test the output of the system. SQL commands for designing the

databases are used. Middle-tier (linked-server) database is designed followed by the details

9

designing of commercial banks’ database in different platforms. To retrieve data from central

database servers of different banks we have written standard procedures by using T-SQL

(Transact-Structured Query Language) and PL/SQL (Procedural Language/ Structured Query

Language). There is a similarity among the databases and banking software of all banks as they

maintain the same hierarchical relationship to manage the system. Language of the banking

software or database may be different. So it becomes very easy for us to capture the data from

different banking software almost in the same fashion. So, common procedures and functions are

used with slight modification. Moreover, SQL is a unique common language that is accepted by

all database system. As a result, we have easily communicated with all database servers of

different banks to gather data.

After establishing the network connection successfully, we established database links to all

database servers from the middle-tiered linked-server. In this project, MS-SQL Server is used as

a linked-server because of cost, flexibility, availability and easy manageability. Microsoft has a

very powerful tool, named MS-OLEDB that can be used to access, import and export data

among databases easily. Except MS-Visual FoxPro, OLEDB is used for Oracle, SQL-Server,

MS-Access, MS-Excel and even for Text files. By using OLEDB we directly accessed the

mentioned databases without any middle interference. But, in case of Visual FoxPro, we used

MS-OLEDB Provider for ODBC. ODBC is another tool, though not as secured as OLEDB, is

used to access FoxPro database. Unfortunately, Microsoft did not provide any facility to OLEDB

to access Visual FoxPro database directly as it is not a pure database engine and store data as a

record concept. As a result, we configured ODBC for Visual FoxPro and then used MS-OLEDB

Provider for ODBC to get data. Moreover, distributed query architecture, written procedures to

gather, filter and process data, functionality of necessary procedures, data providers,

communication and security features are also tested with due attention. Precaution regarding

10

smooth data gathering, in case of communication disruption, are also taken care of properly.

Figure 2.2 describes the above mentioned technology.

After collecting and processing data in the linked-server (middle-tier), we exported it to the

central database of BB (production server) that is connected to the linked-server via optical link.

For this purpose we used MS-Data Transformation Services (MS-DTS). At first, data is received

in a temporary location of the production server from linked-server and after final verification to

ensure that necessary data reached successfully, data is transferred to the permanent location for

official use.

After successful reception of data into the production server of the central bank from different

commercial banks, GUIs are designed that opens the ways of the use of the final processed data

by the ultimate end-users. We developed a set of forms and reports so that users can interact

with data and take necessary hard copy print according to their needs. The end-users will also be

able to pass parameters to filter the data according to the demand. Necessary procedures and

functions are written according the need of the forms and reports. We configured report and form

tools step-by-step as required. Tools are customized and configured efficiently so that the end-

users can use it interactively. Oracle Developer 6i is used in this case.

The most important part of the project, data security is handled very carefully. Domain

configuration, creation of appropriate views and user level security management are also strictly

monitored. Mechanism regarding database object use, granting and revoking roles and privileges

are also implemented. Proper folder permissions, for Sharing non-database files like MS-Excel

and ASCII text files, are also given.

Finally, the simulated outputs are verified and we found that the proposed system developed in

the lab is working properly. Ultimate output is seen by running reports before printing.

\

MS-SQ
Serve

Centr
Bank

Linked S

QL
er

ral
k’s

erver

Fig.

. 2.2: Archit

MS‐OLED

MS‐OLED

MS‐OLED

MS‐OLED

MS‐OLED

MS‐OLED

MS‐OLED

tecture of th

DB for Oracle

DB for Oracle

DB Provider fo

DB Provider fo

DB Provider fo

MS‐ODBC

DB Provider f

DB Provider f

he Project (

e

or Jet

or Jet

or ODBC

for Jet

for SQL Serve

Central
Productio

Ban

Ban

Ban

Ban

Ban

Ban

(Data Comm

er

Bank’s

on Server

k 1

k 2

k 3

k 4

k 5

k 6

munication)

Oracle

Oracle

MS-Exc

MS-Acce

MS-Visu
FoxPro

Text File

MS-SQL Se

11

e

e

el

ess

ual
o

es

erver

12

Chapter 3

Database Design for Central Bank, Linked-Server and Commercial Banks

3.1 Introduction

There are three parts of the database design issues. First part is the designing of an oracle

database for the production server of the Central Bank. In this database, we will create two

schemas, one for the temporary storage of the received data from the linked-server and other one

is the final destination for several uses. In the temporary schema, we will finally check the data

with filtering and if we are sure that data from all banks correctly reached in the production

server, we will transfer it to the permanent storage area and delete from temporary schema. A set

of procedures written in PL/SQL language will be run for this purpose.

In second part, we will design a Linked-Server database in MS-SQL Server. This is the most

important database in this project, because data will be gathered, filtered and processed here by

linking all commercial banks’ database with it.

In third part of this chapter, we will design all commercial banks’ database. Here we will use

Oracle, MS-SQL Server, MS-Access, MS-Visual FoxPro, MS-Excel and Text files. These

databases will supply necessary information to the linked-server according to the demand of the

Central Bank. So these databases are the primary data source of the project.

3.2 Normalization Issues

In database design, normalization is used to reduce data redundancy and to improve

performance. Normalization also prevents update anomalies and data inconsistencies.

13

There are three basic steps of normalization.

a) First Normal Form

b) Second Normal Form

c) Third Normal Form

Normalization rules are applied while conducting Entity-Relationship Modeling. The

normalization process results the data structure of the relational tables. First normal form is

concerned with the shape of the record and the preliminary identification of keys. Second normal

form and third normal form are concerned with resolving problems associated with the

interrelationship of keys and dependent attributes.

In proposed system, there are eight databases; six for commercial banks, one for linked-server

(middle-tier) and last one for the central bank. All databases are designed applying first, second

and third normal form. The results of the normalization are relational tables that are used in all

databases. The data structures of those tables are also outcome of normalization.

In case of designing the database, normalization procedures are fully maintained. Entity

Relationship and relational model are also taken into account. As Oracle is an Object Oriented

Relational Database Management System, relation is properly developed among entities by using

primary and foreign key concept. We have also adopted different types of database constraints

(not null, check, unique, etc.) where necessary.

The relational model is the primary data model for commercial data processing applications. It

has attained its primary position because of its simplicity. The relational model uses a collection

of tables to represent both data and relationship among those data. Each table has multiple

columns, and each column has a unique name. Figure 3.1 shows the detail design and

relationship of the tables in the database. Different tables with characteristics are also given

below (Table: 3.1-3.5).

14

3.3 Oracle Database Design for the Production Server of the Central Bank

Fig. 3.1: Temporary Schema of Central Bank’s Server

(To Store Data Received from Linked-Server)

3.3.1 Entity and Attributes Exploration

There are a number of entities involved in this part of the proposed system. Each entity has its

own attributes (data elements) to describe itself. The entity and its attributes are described in the

following sub sections.

3.3.1.1 Info_Categories

Different types of information will be gathered in this project. For example, tax, loan, export,

import, liquid asset, etc. This entity shall categories these data for further use of the relational

purpose. Table description and sample data are given below for better understanding.

15

Table 3.1: Info_Categories

Column
Name

Description Data Type Size Constraint Reference

CTG_ID Category Identity
Number

CHAR 5 PRIMARY KEY

TYPE Category Name VARCHAR 20 NOT NULL

Sample Data
CTG_ID TYPE

CTG01 TAX
CTG02 VAT
CTG03 IMPORT LC
CTG04 EXPORT LC
CTG05 LOAN
CTG06 LIQUID ASSET
CTG07 FDR
CTG08 CHARGES
CTG09 ADVANCES
CTG10 DEFAULTS
CTG11 INTEREST INCOME

3.3.1.2 Bank

This entity shall contain a list of banks with their identity number. Table description and sample

data are given below.

Table 3.2: Bank

Column
Name

Description Data Type Size Constraint Reference

B_ID Bank’s Identity Number CHAR 2 PRIMARY KEY
NAME Bank’ Name VARCHAR 50 NOT NULL

Sample Data
B_ ID NAME

B1 SONALI BANK LIMITED
B2 BANGLADESH KRISHI BANK
B3 DUTCH-BANGLA BANK LIMITED
B4 HSBC LIMITED
B5 RUPALI BANK LIMITED
B6 BASIC BANK LIMITED

3.3.1.3 Gathered_Data

Data transferred from linked-server will be received by the system and stored in this entity first.

After checking whether all data are reached well or not, we will transfer this data to the

permanent schema. If we found that all data are not received properly, we will request to the

16

linked-server to send the data again. This entity will store ultimate data. Table description and

sample data are given below.

Table 3.3: Gathered_Data

Column Name Description Data Type Size Constraint Reference of Foreign
Key

TR_ID Transaction
Identity Number

CHAR 6 PRIMARY
KEY

B_ID Bank’s Identity
Number

CHAR 2 FOREIGN
KEY

Table: Bank
Column: B_ID

CTG_ID Category
Identity Number

CHAR 5 FOREIGN
KEY

Table: Process_Info
Column: PR_ID

PR_ID Process Identity
Number

CHAR 5

SD Starting Date DATE NOT NULL
ED Ending Date DATE NOT NULL
CD Collection Date DATE NOT NULL
CREDIT_AMOUNT Credit Balance NUMBER

15,2

DEBIT_AMOUNT Debit Balance NUMBER

15,2

Sample Data
TR_ID B_ID CTG_ID PR_ID SD ED CD CREDIT_AMOUNT DEBIT_AMOUNT
TR0148 B4 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0149 B5 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0150 B6 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 2532543
TR0151 B1 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 251425
TR0152 B2 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 123456
TR0153 B3 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0140 B2 CTG01 PR001 01-JAN-11 01-JAN-14 19-FEB-12 90634.9
TR0141 B3 CTG02 PR002 01-JAN-11 01-JAN-14 19-FEB-12 1812698
TR0154 B4 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 25362541
TR0155 B5 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0156 B6 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000

3.3.1.4 Process_Info

To ensure that required data of all banks successfully reached into the temporary schema of

production server from linked-server, we have to run a process. This process will check and

summarize data by using batch processing technique. So it is necessary to know what categories

of data handled by the process with a brief description, when the process is run and who run this.

This entity will actually store data to monitor the processes run by the users. Table description

and sample data are given below.

17

Table 3.4: Process_Info

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 PRIMARY KEY

CTG_ID Category Identity
Number

CHAR

5 FOREIGN KEY Table:
INFO_CATEGORIES
Column: CTG_ID

DESCRIPT
ION

Details about the Process VARCHAR 50 NOT NULL

PD Processing Date DATE NOT NULL
RUN_BY User of the Process VARCHAR 20 NOT NULL

Sample Data
PR_ID CTG_ID DESCRIPTION PD RUN_BY

PR001 CTG01 TAX Collection 19-FEB-12 RAIHAN
PR002 CTG02 VAT Collected 19-FEB-12 BEENA
PR003 CTG03 IMPORT LC 19-FEB-12 KAMAL
PR004 CTG04 EXPORT LC 19-FEB-12 TAPAN
PR005 CTG08 CHARGES 19-FEB-12 ALAM
PR006 CTG06 VAULT DATA 19-FEB-12 ALAM

3.3.1.5 Filtering_Data

To ensure that required data of all banks successfully reached into the temporary schema of the

production server from linked-server, we have to run a process. This process will put a flag in the

‘status’ field of this table. Here ‘Y’ indicates data reached successfully and ‘N’ indicates failure.

By observing this flags we will transfer these data to permanent schema of the production server.

If we see that data for some banks are missing, in that case we will send request to the linked-

server to transfer data from linked-server to the temporary schema of production server again.

Table description and sample data are given below.

Table 3.5: Filtering_Data

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 JOINTLY
PRIMARY KEY

Table: Process_INFO
Column: PR_ID

B_ID Bank’s Identity Number CHAR 2 Table: BANK
Column:B_ID

STATUS Status of the Process
whether executed or not

CHAR

5

18

Sample Data
B_ID PR_ID STATUS

B1 PR002 Y
B2 PR002 Y
B3 PR002 Y
B4 PR002 N
B5 PR002 Y
B1 PR001 Y
B2 PR001 Y
B3 PR001 N
B4 PR001 Y
B5 PR001 Y
B6 PR001 N

3.3.2 Creating Tables of the Temporary Schema

The following SQL commands are used to create the necessary tables under Temporary Schema

of Oracle production Server. SQL- Insert commands used to populate data in these tables are

given in Appendix-I (a).

DROP TABLE BANK;

CREATE TABLE BANK

(B_ID CHAR(2) PRIMARY KEY,

NAME VARCHAR(50) NOT NULL);

DROP TABLE INFO_CATEGORIES;

CREATE TABLE INFO_CATEGORIES

(CTG_ID CHAR(5) PRIMARY KEY,

TYPE VARCHAR(20) NOT NULL);

DROP TABLE PROCESS_INFO;

CREATE TABLE PROCESS_INFO

(PR_ID CHAR(5) PRIMARY KEY,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

DESCRIPTION VARCHAR(50) NOT NULL,

PD DATE NOT NULL,

RUN_BY VARCHAR(20) NOT NULL);

DROP TABLE FILTERING_DATA;

CREATE TABLE FILTERING_DATA

19

(B_ID CHAR(2) REFERENCES BANK,

PR_ID CHAR(5) REFERENCES PROCESS_INFO,

STATUS CHAR(1),

PRIMARY KEY (B_ID, PR_ID));

DROP TABLE GATHERED_DATA;

CREATE TABLE GATHERED_DATA

(B_ID CHAR(2) REFERENCES BANK,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

SD DATE NOT NULL,

ED DATE NOT NULL,

CD DATE NOT NULL,

CREDIT_AMOUNT NUMERIC(15,2),

DEBIT_AMOUNT NUMERIC(15,2));

3.4 Permanent Schema of Production Server: To Store Data Received from
Temporary Schema

Fig. 3.2: Permanent Schema of Central Bank’s Server

(To Store Data Received from Temporary Schema)

20

3.4.1 Entity and Attributes Exploration

There are a number of entities also involved in this part of the proposed system. Each entity has

its own attributes (data elements) to describe itself. The entity and its attributes are described in

the following sub sections.

3.4.1.1 Info_Categories

Different types of information will be gathered in this project. For example, tax, loan, export,

import, liquid asset, etc. This entity shall categories these data for further use of the relational

purpose. Table description and sample data are given below.

Table 3.6: Info_Categories

Column
Name

Description Data Type Size Constraint Reference

CTG_ID Category Identity
Number

CHAR 5 PRIMARY KEY

TYPE Category Name VARCHAR 20 NOT NULL

Sample Data
CTG_ID TYPE

CTG01 TAX
CTG02 VAT
CTG03 IMPORT LC
CTG04 EXPORT LC
CTG05 LOAN
CTG06 LIQUID ASSET
CTG07 FDR
CTG08 CHARGES
CTG09 ADVANCES
CTG10 DEFAULTS
CTG11 INTEREST INCOME

3.4.1.2 Bank

This entity shall contain a list of banks with their identity number. Table description and sample

data are given below.

Table 3.7: Bank

Column
Name

Description Data Type Size Constraint Reference

B_ID Bank’s Identity Number CHAR 2 PRIMARY KEY
NAME Bank’ Name VARCHAR 50 NOT NULL

21

Sample Data

B_ ID NAME
B1 SONALI BANK LIMITED
B2 BANGLADESH KRISHI BANK
B3 DUTCH-BANGLA BANK LIMITED
B4 HSBC LIMITED
B5 RUPALI BANK LIMITED
B6 BASIC BANK LIMITED

3.4.1.3 Process_Info

To ensure that required data of all banks successfully reached into the permanent schema of the

production server, we have to run a process. This process will check and summarize data by

using batch processing technique. So it is necessary to know what categories of data handled by

the process with a brief description, when the process is run and who run this. This entity will

actually store data to monitor the processes run by the users. Table description and sample data

are given below.

Table 3.8: Process_Info

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 PRIMARY KEY

CTG_ID Category Identity
Number

CHAR

5 FOREIGN KEY Table:
INFO_CATEGORIES
Column: CTG_ID

DESCRIPT
ION

Details about the Process VARCHAR 50 NOT NULL

PD Processing Date DATE NOT NULL
RUN_BY User of the Process VARCHAR 20 NOT NULL

Sample Data
PR_ID CTG_ID DESCRIPTION PD RUN_BY

PR001 CTG01 TAX Collection 19-FEB-12 RAIHAN
PR002 CTG02 VAT Collected 19-FEB-12 BEENA
PR003 CTG03 IMPORT LC 19-FEB-12 KAMAL
PR004 CTG04 EXPORT LC 19-FEB-12 TAPAN
PR005 CTG08 CHARGES 19-FEB-12 ALAM
PR006 CTG06 VAULT DATA 19-FEB-12 ALAM

3.4.1.4 Filtering_Data

To ensure that required data of all banks successfully reached into the permanent schema from

the temporary schema of the production server, we have to run a process. This process will put a

flag in the ‘status’ field of this table. Here ‘Y’ indicates data reached successfully and ‘N’

indicates failure. By observing this values we will go for final report. If we see that data for some

banks are missing, in that case we will run the procedure again. If all data reaches well, we will

22

delete it from temporary schema permanently. Table description and sample data are given

below.

Sample Data
B_ID PR_ID STATUS

B1 PR002 Y
B2 PR002 Y
B3 PR002 Y
B4 PR002 N
B5 PR002 Y
B1 PR001 Y
B2 PR001 Y
B3 PR001 N
B4 PR001 Y
B5 PR001 Y
B6 PR001 N

Table 3.9: Filtering_Data

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 JOINTLY
PRIMARY KEY

Table: Process_INFO
Column: PR_ID

B_ID Bank’s Identity Number CHAR 2 Table: BANK
Column:B_ID

STATUS Status of the Process
whether executed or not

CHAR

5

3.4.1.5 Gathered_Data

Finally checked and processed data will be stored in this entity. Users will get final reports from

this table. This entity will store ultimate data as follows. Table description and sample data are

given below.

Sample Data
TR_ID B_ID CTG_ID PR_ID SD ED CD CREDIT_AMOUNT DEBIT_AMOUNT
TR0148 B4 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0149 B5 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0150 B6 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 2532543
TR0151 B1 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 251425
TR0152 B2 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 123456
TR0153 B3 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0140 B2 CTG01 PR001 01-JAN-11 01-JAN-14 19-FEB-12 90634.9
TR0141 B3 CTG02 PR002 01-JAN-11 01-JAN-14 19-FEB-12 1812698
TR0154 B4 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 25362541
TR0155 B5 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0156 B6 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000

23

Table 3.10: Gathered_Data

Column Name Description Data Type Size Constraint Reference of Foreign
Key

TR_ID Transaction
Identity Number

CHAR 6 PRIMARY
KEY

B_ID Bank’s Identity
Number

CHAR 2 FOREIGN
KEY

Table: Bank
Column: B_ID

CTG_ID Category
Identity Number

CHAR 5 FOREIGN
KEY

Table: Process_Info
Column: PR_ID

PR_ID Process Identity
Number

CHAR 5

SD Starting Date DATE NOT NULL
ED Ending Date DATE NOT NULL
CD Collection Date DATE NOT NULL
CREDIT_AMOUNT Credit Balance NUMBER

15,2

DEBIT_AMOUNT Debit Balance NUMBER

15,2

3.4.2Creating Tables: Permanent Schema of Central Bank

The following SQL commands are used to create the necessary tables under Permanent Schema

of Oracle production Server. SQL- Insert commands used to populate data in these tables are

given in Appendix-I (b).

DROP TABLE BANK;

CREATE TABLE BANK

(B_ID CHAR(2) PRIMARY KEY,

NAME VARCHAR(50) NOT NULL);

DROP TABLE INFO_CATEGORIES;

CREATE TABLE INFO_CATEGORIES

(CTG_ID CHAR(5) PRIMARY KEY,

TYPE VARCHAR(20) NOT NULL);

DROP TABLE PROCESS_INFO;

CREATE TABLE PROCESS_INFO

(PR_ID CHAR(5) PRIMARY KEY,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

DESCRIPTION VARCHAR(50) NOT NULL,

PD DATE NOT NULL,

RUN_BY VARCHAR(20) NOT NULL);

24

DROP TABLE FILTERING_DATA;

CREATE TABLE FILTERING_DATA

(B_ID CHAR(2) REFERENCES BANK,

PR_ID CHAR(5) REFERENCES PROCESS_INFO,

STATUS CHAR(1),

PRIMARY KEY (B_ID, PR_ID));

DROP TABLE GATHERED_DATA;

CREATE TABLE GATHERED_DATA

(B_ID CHAR(2) REFERENCES BANK,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

SD DATE NOT NULL,

ED DATE NOT NULL,

CD DATE NOT NULL,

CREDIT_AMOUNT NUMERIC(15,2),

DEBIT_AMOUNT NUMERIC(15,2));

3.5 Linked-Server Database (Middle-Tier)

Fig. 3.3: Linked-Server Database Design

25

3.5.1 Entity and Attributes Exploration

There are a number of entities also involved in the most important part of the proposed system.

Each entity has its own attributes (data elements) to describe itself. The entity and its attributes

are described in the following sub sections.

3.5.1.1 Info_Categories

Different types of information will be gathered in this project. For example, tax, loan, export,

import, liquid asset, etc. This entity shall categories these data for further use of the relational

purpose. Table description and sample data are given below.

Table 3.11: Info_Categories

Column
Name

Description Data Type Size Constraint Reference

CTG_ID Category Identity
Number

CHAR 5 PRIMARY KEY

TYPE Category Name VARCHAR 20 NOT NULL

Sample Data
CTG_ID TYPE

CTG01 TAX
CTG02 VAT
CTG03 IMPORT LC
CTG04 EXPORT LC
CTG05 LOAN
CTG06 LIQUID ASSET
CTG07 FDR
CTG08 CHARGES
CTG09 ADVANCES
CTG10 DEFAULTS
CTG11 INTEREST INCOME

3.5.1.2 Bank

This entity shall contain a list of banks with their identity number. Linked-server will

communicate with banks’ database servers with this identity number. Table description and

sample data are given below.

Table 3.12: Bank

Column
Name

Description Data Type Size Constraint Reference

B_ID Bank’s Identity Number CHAR 2 PRIMARY KEY
NAME Bank’ Name VARCHAR 50 NOT NULL

26

Sample Data

B_ ID NAME
B1 SONALI BANK LIMITED
B2 BANGLADESH KRISHI BANK
B3 DUTCH-BANGLA BANK LIMITED
B4 HSBC LIMITED
B5 RUPALI BANK LIMITED
B6 BASIC BANK LIMITED

3.5.1.3 Gathered_Data

After successfully linked all servers of different banks, different procedure will be run that will

gather summarized data according to the demand of the linked-server in this entity. Actually, this

entity will be used to gather data in a central location. This data will be checked and filtered by

other procedures according to the demand. If accurate and sufficient information is gathered

successfully, this data will be sent to the temporary schema of the central bank’s production

server. Table description and sample data are given below.

Table 3.13: Gathered_Data

Column Name Description Data Type Size Constraint Reference of Foreign
Key

TR_ID Transaction
Identity Number

CHAR 6 PRIMARY
KEY

B_ID Bank’s Identity
Number

CHAR 2 FOREIGN
KEY

Table: Bank
Column: B_ID

CTG_ID Category
Identity Number

CHAR 5 FOREIGN
KEY

Table: Process_Info
Column: PR_ID

PR_ID Process Identity
Number

CHAR 5

SD Starting Date DATETIME NOT NULL
ED Ending Date DATETIME NOT NULL
CD Collection Date DATETIME NOT NULL
CREDIT_AMOUNT Credit Balance NUMERIC

15,2

DEBIT_AMOUNT Debit Balance NUMERIC

15,2

Sample Data
TR_ID B_ID CTG_ID PR_ID SD ED CD CREDIT_AMOUNT DEBIT_AMOUNT
TR0148 B4 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0149 B5 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 33000000
TR0150 B6 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 2532543
TR0151 B1 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 251425
TR0152 B2 CTG03 PR003 01-JAN-11 01-JAN-14 19-FEB-12 123456
TR0153 B3 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0140 B2 CTG01 PR001 01-JAN-11 01-JAN-14 19-FEB-12 90634.9
TR0141 B3 CTG02 PR002 01-JAN-11 01-JAN-14 19-FEB-12 1812698
TR0154 B4 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 25362541
TR0155 B5 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000
TR0156 B6 CTG04 PR004 01-JAN-11 01-JAN-14 19-FEB-12 80000000

27

3.5.1.4 Process_Info

To ensure that required data of all banks successfully reached into the linked-server, we have to

run a process. This process will check and summarize data by using batch processing technique.

So it is necessary to know what categories of data handled by the process with a brief

description, when the process is run and who run this. This entity will actually store data to

monitor the processes run by the users. Table description and sample data are given below.

Table 3.14: Process_Info

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 PRIMARY KEY

CTG_ID Category Identity
Number

CHAR

5 FOREIGN KEY Table:
INFO_CATEGORIES
Column: CTG_ID

DESCRIPT
ION

Details about the Process VARCHAR 50 NOT NULL

PD Processing Date DATETIME NOT NULL
RUN_BY User of the Process VARCHAR 20 NOT NULL

Sample Data
PR_ID CTG_ID DESCRIPTION PD RUN_BY

PR001 CTG01 TAX Collection 19-FEB-12 RAIHAN
PR002 CTG02 VAT Collected 19-FEB-12 BEENA
PR003 CTG03 IMPORT LC 19-FEB-12 KAMAL
PR004 CTG04 EXPORT LC 19-FEB-12 TAPAN
PR005 CTG08 CHARGES 19-FEB-12 ALAM
PR006 CTG06 VAULT DATA 19-FEB-12 ALAM

3.5.1.5 Filtering_Data

To ensure that required data of all banks successfully reached into the linked-server from all

servers of different banks, we have to run the above mentioned process. This process will put a

flag in the ‘status’ field of this table. Here ‘Y’ indicates data reached successfully and ‘N’

indicates failure. By observing this values we will ensure whether data of all banks are gathered

successfully or not. If we see that data for some banks are missing, in that case we will run the

procedure again. If all data reaches well, we will export it to the temporary schema of central

bank’s production server. Table description and sample data are given below.

28

Table 3.15: Filtering_Data

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

PR_ID Process Identity Number CHAR

5 JOINTLY
PRIMARY KEY

Table: Process_INFO
Column: PR_ID

B_ID Bank’s Identity Number CHAR 2 Table: BANK
Column:B_ID

STATUS Status of the Process
whether executed or not

CHAR

5

Sample Data
B_ID PR_ID STATUS

B1 PR002 Y
B2 PR002 Y
B3 PR002 Y
B4 PR002 N
B5 PR002 Y
B1 PR001 Y
B2 PR001 Y
B3 PR001 N
B4 PR001 Y
B5 PR001 Y
B6 PR001 N

3.5.2Creation of Linked-Server Database and Tables in MS-SQL Server (Middle-Tier)

3.5.2.1Creation of Database

USE MASTER

GO

CREATE DATABASE LINKEDSERVER

ON

(NAME = 'LINKEDSERVER_DAT',

 FILENAME = 'I:\PROGRAM FILES\MICROSOFT SQL SERVER\MSSQL\DATA\LINKEDSERVER_DAT.MDF',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5)

LOG ON

(NAME = 'LINKEDSERVER',

 FILENAME = 'I:\PROGRAM FILES\MICROSOFT SQL SERVER\MSSQL\DATA\LINKEDSERVER_LOG.LDF',

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB)

GO

29

3.5.2.2 Creation of Tables

The following SQL commands are used to create the necessary tables in the Linked-Server

which is a MS-SQL Server. SQL- Insert commands used to populate data in these tables are

given in Appendix-I (c).

DROP TABLE BANK;

CREATE TABLE BANK

(B_ID CHAR(2) PRIMARY KEY,

NAME VARCHAR(50) NOT NULL);

DROP TABLE INFO_CATEGORIES;

CREATE TABLE INFO_CATEGORIES

(CTG_ID CHAR(5) PRIMARY KEY,

TYPE VARCHAR(20) NOT NULL);

DROP TABLE PROCESS_INFO;

CREATE TABLE PROCESS_INFO

(PR_ID CHAR(5) PRIMARY KEY,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

DESCRIPTION VARCHAR(50) NOT NULL,

PD DATETIME NOT NULL,

RUN_BY VARCHAR(20) NOT NULL);

DROP TABLE FILTERING_DATA;

CREATE TABLE FILTERING_DATA

(B_ID CHAR(2) REFERENCES BANK,

PR_ID CHAR(5) REFERENCES PROCESS_INFO,

STATUS CHAR(1),

PRIMARY KEY (B_ID, PR_ID));

DROP TABLE GATHERED_DATA;

CREATE TABLE GATHERED_DATA

(B_ID CHAR(2) REFERENCES BANK,

CTG_ID CHAR(5) REFERENCES INFO_CATEGORIES,

SD DATETIME NOT NULL,

30

ED DATETIME NOT NULL,

CD DATETIME NOT NULL,

CREDIT_AMOUNT NUMERIC(15,2),

DEBIT_AMOUNT NUMERIC(15,2));

3.6 Commercial Banks’ Database

This is the third part of the database design of this project. In this part, we will design all

commercial banks’ database. Here we will use Oracle, MS-SQL Server, MS-Access, MS-Visual

FoxPro, MS-Excel and Text files. These databases and data files will supply necessary

information to the linked-server according to the demand of the Central Bank. So these databases

are the primary data source of the project.

3.6.1Commercial Banks’ Database: Bank-6 Using MS-SQL Server

Fig. 3.4: SQL Server Database Design for Bank-6

31

3.6.1.1Entity and Attributes Exploration

There are a number of entities also involved in the most important part of the proposed system.

Each entity has its own attributes (data elements) to describe itself. The entity and its attributes

are described in the following sub sections.

3.6.1.1.1 Customers

Different types of information regarding customers’ will be gathered in this entity. Data of this

entity will be used for relational purpose. Table description and sample data are given below.

Table 3.16: Customers

Column
Name

Description Data Type Size Constraint Reference of Foreign
Key

C_ID CUSTOMER’S IDENTITY
NUMBER

CHAR 4 PRIMARY KEY

NAME NAME OF THE
CUSTOMER

VARCHAR 30 NOT NULL

ADDRESS PRESENT ADDRESS OF
THE CUSTOMER

VARCHAR 30 FOREIGN KEY

N_ID NATIONAL IDENTITY
NUMBER

CHAR 13 NOT NULL

PHONE PHONE NUMBER VARCHAR 30
PHOTO PHOTOGRAPH OF THE

CLIENT
LONG RAW

Sample Data
C_ID NAME ADDRESS N_ID PHONE PHOTO

C001 MD. HAFIZUR
RAHMAN

413, MIRPUR, DHAKA 1235695823254 01775858256

C002 MS. KANIZ RBBI 744, KAZIPARA, MIRPUR,
DHAKA

4569871425632 9003088,
0174586958

C003 MD. HELEL UDDIN H-3, R-
5,DHANMONDI,DHAKA

1885895823254 01556323244

C004 MS. TAHMINA
AKHTER

H#12,R#15,SHYAMOLI,DHA
KA

2365251425632 9003031

3.6.1.1.2 Account_Type

Different types of accounts are maintained by banks in Bangladesh. This entity will contain

name of different types of accounts that will be used for relational purpose. Table description and

sample data are given below.

32

Table 3.17: Account_Type

Column
Name

Description Data Type Size Constraint Reference

T_ID Account Type Identity
Number

CHAR 2 PRIMARY KEY

DESCRIP
TION

Description of the
Account Type

VARCHAR 20 NOT NULL

Sample Data
T_ID DESCRIPTION
T1 SAVINGS
T2 CURRENT
T3 FDR
T4 LOAN
T5 IMPORT LC
T6 EXPORT LC

3.6.1.1.3 Accounts

This entity shall contain a list of all accounts opened by the bank. Table description and sample

data are given below.

Table 3.18: Accounts

Column Name Description Data Type Size Constraint Reference of
Foreign Key

A_NO Account Number CHAR 4 PRIMARY KEY
T_ID Account Type

Identity Number
CHAR 2 FOREIGN KEY Table:

ACCOUNT_TYPE
Column: T_ID

C_ID Customer Identity
Number

CHAR 4 FOREIGN KEY Table: CUSTOMERS
Column: C_ID

NOMINEE Name of the
Nominee

VARCHAR 30 NOT NULL

OD Account Opening
Date

DATETIME NOT NULL

MIN_BAL Minimum Balance
of the Account

NUMERIC

10,2 CHECK(MIN_BAL>=0)

CURR_BAL Current Balance of
the Account

NUMERIC

10,2 CHECK(CURR_BAL>=0)

 UNIQUE(T_ID,C_ID)

Sample Data
A_NO T_ ID C_ID OD NOMINEE MIN_BAL CURR_BAL
A001 T1 C001 03-APR-11 SALAMA AKHTER: SISTER 500 6673
A002 T1 C002 08-APR-11 RABBANI MAHBUB: SON 500 2618.1
A003 T1 C003 13-APR-11 MOKBUL HOSSAIN: FATHER 5000 49200

33

3.6.1.1.4 Transactions

This is the most important entity of banking software. All transactional data are stored in this

entity. We will pick data from this table mainly for the project. Table description and sample

data are given below.

Table 3.19: Transactions

Column Name Description Data Type Size Constraint Reference of
Foreign Key

TR_ID TRANSACTION
IDENTITY NUMBER

CHAR 10 PRIMARY KEY

A_NO ACCOUNT NUMBER CHAR 2 FOREIGN KEY TABLE: ACCOUNTS
COLUMN: A_NO

DESCRIPTION DESCRIPTION OF THE
ACCOUNT

VARCHAR 40

TD TRANSACTION DATE DATETIME NOT NULL
DEBIT DEBIT AMOUNT NUMERIC

10,2 CHECK(DEBIT>=0)

CREDIT CREDIT AMOUNT NUMERIC

10,2 CHECK(CREDIT>=0)

BALANCE BALANCE OF THE
ACCOUNT

NUMERIC

10,2 CHECK(BALANCE>=0)

Sample Data

TR_ID A_NO DESCRIPTION TD DEBIT CREDIT BALANCE

TR00000001 A001 CASH
RECEIVE

13-APR-11 5000 5000

TR00000002 A001 CHEQUE 27-JUN-11 1000 400
TR00000003 A004 TRANSFER 01-AUG-11 5000 9000
TR00000004 A009 ATM 20-OCT-11 2000 7000

3.6.1.1.5 Vault

Liquid Assets management is an important issue to any central bank. The entity vault will supply

the necessary information in this regard. Table description and sample data are given below.

Table 3.20: Vault
Column Name Description Data Type Size Constraint Reference of

Foreign Key
V_NO VAULT NUMBER CHAR 4 PRIMARY KEY
LOCATION VAULT LOCATION VARCHAR 20 NOT NULL
OWNER VAULT MANAGER VARCHAR 20 NOT NULL
MIN_BAL MINIMUM BALANCE NUMERIC

10,2 CHECK(MIN_BAL>=0)

CURR_BAL CURRENT BALANCE NUMERIC

10,2 CHECK(CURR_BAL>=0)

V_NO LOCATION OWNER MIN_BAL CURR_BAL
V001 DHANMONDI BRANCH MD. ZAMIL AHMED 25000000 30000000
V002 SUNAMGONJ BRANCH MS. ANTARA ZERIN 20000000 40000000
V003 KHULNA BRANCH MD. AKHTER HAMID 13000000 15000000

34

3.6.1.1.6 Vault_Transaction

The entity vault_transaction will hold the transaction information regarding cash-in and cash-out

of a vault. Sample data and table structure are given below.

Table 3.21:Vault_Transaction

Column Name Description Data Type Size Constraint Reference of
Foreign Key

TR_NO TRANSACTION
IDENTITY NUMBER

CHAR 10 PRIMARY KEY

VA_NO VAULT NUMBER CHAR 4 FOREIGN KEY TABLE: VAULT
COLUMN: V_NO

TD TRANSACTION DATE DATETIME NOT NULL
DEBIT DEBIT AMOUNT NUMERIC

10,2 CHECK(DEBIT>=0)

CREDIT CREDIT AMOUNT NUMERIC

10,2 CHECK(CREDIT>=0)

BALANCE BALANCE OF THE
VAULT

NUMERIC

10,2 CHECK(BALANCE>=
0)

Sample Data

TR_NO V_NO TD DEBIT CREDIT BALANCE

VTR0000001 V001 27-JAN-12 50000000 50000000
VTR0000002 V001 28-JAN-12 30000000 80000000
VTR0000010 V002 27-JAN-12 1000000 7000000
VTR0000011 V002 29-JAN-12 1000000 6000000

3.6.1.2Creation of Database and Tables in MS-SQL Server: Bank-6

Assuming Bank-6 using MS-SQL Server, Database and Data are produced by using the

following SQL and T-SQL commands.

3.6.1.2.1Creation of Database with Log files using T-SQL

USE MASTER

GO

CREATE DATABASE DBBL

ON

(NAME = DBBL_DAT,

 FILENAME = 'I:\PROGRAM FILES\MICROSOFT SQL SERVER\MSSQL\DATA\DBBLDAT.MDF',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5)

LOG ON

35

(NAME = 'DBBL_LOG',

 FILENAME = 'I:\PROGRAM FILES\MICROSOFT SQL SERVER\MSSQL\DATA\DBBLLOG.LDF',

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB)

GO

3.6.1.2.2 Creation of Database Tables

The following T-SQL commands are used to create the necessary tables in the central database

server of Bank-6, which is a MS-SQL Server. SQL- Insert commands used to populate data in

these tables are given in Appendix-I (d).

DROP TABLE CUSTOMERS;

CREATE TABLE CUSTOMERS

(C_ID CHAR(4) PRIMARY KEY,

NAME VARCHAR(30) NOT NULL,

ADDRESS VARCHAR(30),

N_ID CHAR(13) NOT NULL,

PHONE VARCHAR(30),

PHOTO IMAGE)

DROP TABLE ACCOUNT_TYPE;

CREATE TABLE ACCOUNT_TYPE

(T_ID CHAR(2) PRIMARY KEY,

DESCRIPTION VARCHAR(20) NOT NULL);

DROP TABLE ACCOUNTS;

CREATE TABLE ACCOUNTS

(A_NO CHAR(4) PRIMARY KEY,

T_ID CHAR(2) REFERENCES ACCOUNT_TYPE,

C_ID CHAR(4) REFERENCES CUSTOMERS,

OD DATETIME NOT NULL,

36

NOMINEE VARCHAR(30) NOT NULL,

MIN_BAL NUMERIC(10,2) CHECK(MIN_BAL>=0),

CURR_BAL NUMERIC(10,2) CHECK(CURR_BAL>=0),

UNIQUE(T_ID,C_ID));

DROP TABLE TRANSACTIONS;

CREATE TABLE TRANSACTIONS

(TR_ID CHAR(10) PRIMARY KEY,

A_NO CHAR(4) REFERENCES ACCOUNTS,

DESCRIPTION VARCHAR(20),

TD DATETIME NOT NULL,

DEBIT NUMERIC(10,2) CHECK(DEBIT>=0),

CREDIT NUMERIC(10,2) CHECK(CREDIT>=0),

BALANCE NUMERIC(10,2) CHECK(BALANCE>=0));

DROP TABLE VAULT;

CREATE TABLE VAULT

(V_NO CHAR(4) PRIMARY KEY,

LOCATION VARCHAR(20) NOT NULL,

OWNER VARCHAR(20) NOT NULL,

MIN_BAL NUMERIC(10,2) CHECK(MIN_BAL>=0),

CURR_BAL NUMERIC(10,2) CHECK(CURR_BAL>=0));

DROP TABLE VAULT_TRANSACTION;

CREATE TABLE VAULT_TRANSACTION

(TR_NO CHAR(10) PRIMARY KEY,

V_NO CHAR(4) REFERENCES VAULT,

TD DATETIME NOT NULL,

DEBIT NUMERIC(10,2) CHECK(DEBIT>=0),

CREDIT NUMERIC(10,2) CHECK(CREDIT>=0),

BALANCE NUMERIC(10,2) CHECK(BALANCE>=0));

37

3.6.2Commercial Banks’ Database: Bank-1 Using Oracle Server

Fig. 3.5: Oracle Database Design for Bank-1

As design of Bank-1’s database is same as MS-SQL Server database design used for Bank-6 and

structure of entities are almost same, we skipped table descriptions here and will show the

PL/SQL commands only for designing the Oracle database. PL/SQL- Insert commands used to

populate data in these tables are given in Appendix-I (e).

3.6.2.1 Creation of Database Tables

DROP TABLE CUSTOMERS;

CREATE TABLE CUSTOMERS

(C_ID CHAR(4) PRIMARY KEY,

NAME VARCHAR2(30) NOT NULL,

ADDRESS VARCHAR2(30),

N_ID CHAR(13) NOT NULL,

PHONE VARCHAR2(30),

38

PHOTO LONG RAW);

DROP TABLE ACCOUNT_TYPE;

CREATE TABLE ACCOUNT_TYPE

(T_ID CHAR(2) PRIMARY KEY,

DESCRIPTION VARCHAR2(20) NOT NULL);

DROP TABLE ACCOUNTS;

CREATE TABLE ACCOUNTS

(A_NO CHAR(4) PRIMARY KEY,

T_ID CHAR(2) REFERENCES ACCOUNT_TYPE,

C_ID CHAR(4) REFERENCES CUSTOMERS,

OD DATE NOT NULL,

NOMINEE VARCHAR2(30) NOT NULL,

MIN_BAL NUMBER(10,2) CHECK(MIN_BAL>=0),

CURR_BAL NUMBER(10,2) CHECK(CURR_BAL>=0),

UNIQUE(T_ID,C_ID));

DROP TABLE TRANSACTIONS;

CREATE TABLE TRANSACTIONS

(TR_ID CHAR(10) PRIMARY KEY,

A_NO CHAR(4) REFERENCES ACCOUNTS,

DESCRIPTION VARCHAR2(20),

TD DATE NOT NULL,

DEBIT NUMBER(10,2) CHECK(DEBIT>=0),

CREDIT NUMBER(10,2) CHECK(CREDIT>=0),

BALANCE NUMBER(10,2) CHECK(BALANCE>=0));

DROP TABLE VAULT;

CREATE TABLE VAULT

(V_NO CHAR(4) PRIMARY KEY,

LOCATION VARCHAR2(20) NOT NULL,

OWNER VARCHAR2(20) NOT NULL,

39

MIN_BAL NUMBER(10,2) CHECK(MIN_BAL>=0),

CURR_BAL NUMBER(10,2) CHECK(CURR_BAL>=0));

DROP TABLE VAULT_TRANSACTION;

CREATE TABLE VAULT_TRANSACTION

(TR_NO CHAR(10) PRIMARY KEY,

V_NO CHAR(4) REFERENCES VAULT,

TD DATE NOT NULL,

DEBIT NUMBER(10,2) CHECK(DEBIT>=0),

CREDIT NUMBER(10,2) CHECK(CREDIT>=0),

BALANCE NUMBER(10,2) CHECK(BALANCE>=0));

3.6.3Commercial Banks’ Database: Bank-4 using MS-Visual FoxPro Database

Fig. 3.6: Visual FoxPro Database Design for Bank-4

40

As design of Bank-4’s database is same as MS-SQL Server database design used for Bank-6 and

structure of entities are almost same, we skipped table descriptions here and will show the SQL

commands only for designing the MS-Visual FoxPro database. SQL- Insert commands used to

populate data in these tables are given in Appendix-I (f).

3.6.3.1 Creation of Database and Tables

CLOSE DATABASES

CLEAR

CREATE DATABASE SONALI_BANK

--SEMICOLON USED FOR LINE BREAK

DELETE TABLE CUSTOMERS

CREATE TABLE CUSTOMERS;

(C_ID CHAR(4) PRIMARY KEY, ;

NAME CHAR(30) NOT 0, ;

ADDRESS CHAR(30), ;

N_ID CHAR(13) NOT 0, ;

PHONE CHAR(30),;

PHOTO GENERAL)

DELETE TABLE ACCOUNT_TYPE
[[

CREATE TABLE ACCOUNT_TYPE ;

(T_ID CHAR(2) PRIMARY KEY, ;

DESCRIPTION CHAR(20) NOT 0)

DELETE TABLE ACCOUNTS

CREATE TABLE ACCOUNTS ;

(A_NO CHAR(4) PRIMARY KEY, ;

T_ID CHAR(2) REFERENCES ACCOUNT_TYPE TAG T_ID, ;

C_ID CHAR(4) REFERENCES CUSTOMERS TAG C_ID, ;

OD DATETIME NOT 0, ;

41

NOMINEE CHAR(30) NOT 0, ;

MIN_BAL FLOAT CHECK(MIN_BAL>=0), ;

CURR_BAL FLOAT CHECK(CURR_BAL>=0))

--please don’t put semicolon after commands

DELETE TABLE TRANSACTIONS
[

CREATE TABLE TRANSACTIONS ;

(TR_ID CHAR(10) PRIMARY KEY, ;

A_NO CHAR(4) REFERENCES ACCOUNTS, ;

DESCRIPTION CHAR(20), ;

TD DATETIME NOT 0, ;

DEBIT FLOAT CHECK(DEBIT>=0), ;

CREDIT FLOAT CHECK(CREDIT>=0), ;

BALANCE FLOAT CHECK(BALANCE>=0))

DELETE TABLE VAULT

CREATE TABLE VAULT ;

(V_NO CHAR(4) PRIMARY KEY, ;

LOCATION CHAR(20) NOT 0, ;

OWNER CHAR(20) NOT 0, ;

MIN_BAL FLOAT CHECK(MIN_BAL>=0), ;

CURR_BAL FLOAT CHECK(CURR_BAL>=0))

DELETE TABLE VAULT_TRANSACTION

CREATE TABLE VAULT_TRANSACTION ;

(TR_NO CHAR(10) PRIMARY KEY, ;

V_NO CHAR(4) REFERENCES VAULT, ;

TD DATETIME NOT 0, ;

DEBIT NUMBER(10,2) CHECK(DEBIT>=0), ;

CREDIT NUMBER(10,2) CHECK(CREDIT>=0), ;

BALANCE NUMBER(10,2) CHECK(BALANCE>=0))

42

3.6.4Commercial Banks’ Database: Bank-3 using MS-Access Database

Fig. 3.7: Access Database Design for Bank-3

As design of Bank-3’s database is same as MS-SQL Server database design used for Bank-6 and

structure of entities are almost same, we skipped table descriptions and SQL commands for

designing the MS-Access database. After creation of the database it will look like above figure

(Fig. 3.7).

Fig. 3.8: Access Data for Bank-3

43

3.6.4.1 Populating Data

After populating data it will look like the Fig.3.8.

3.6.5Commercial Banks’ Data: Bank-5 Using Text Files

As Bank-5 is using Text Files to store their data, only figure is shown below for transaction files (Fig.
3.9).

Fig. 3.9: Text Data for Bank-5

3.6.6Commercial Banks’ Data: Bank-2 using MS-Excel Files

Assuming Bank-2 Using MS-Excel Files to store their data manually, figure is shown below for

transaction data only (Fig. 3.10).

44

Fig. 3.10: Excel Data for Bank-2

3.7 Summary

In this chapter different issues regarding the design of database for the project are discussed. At

first, normalization issues are discussed and Oracle database is designed for the production

server of the central bank (one for temporary use and other for permanent use). Relationship

among entities, constraints, data types and its size are also illustrated here. Table structures with

dummy data are also presented for clear understanding. SQL commands for designing the

databases are also presented in this chapter. Database design for middle-tier (linked-server) is

also elaborated followed by the details designing of commercial banks’ database in different

platforms. In the next chapter, configuration of linked-server is presented and discussed.

45

Chapter 4

Designing the Middle-Tier Linked-Server

4.1 Introduction

First of all, we have setup network communication links to database servers of all banks.

Communication may be direct or through third party, according to the wish of BB, considering

financial budget and security. Here ISP, VPN, PSTN or optical communication can be used.

Dark optical fiber can also be used, as most of the data centers are very near about BB at

Motijheel. After establishing the network connection successfully, we will establish database

links to all database servers from the middle-tiered linked server. In this project, MS-SQL Server

is used as a linked-server; because of cost, flexibility, availability and easy manageability.

Microsoft has a very powerful tool, named MS-OLEDB that can be used to access, import and

export data among databases easily. Except MS-Visual FoxPro, OLEDB can be used for Oracle,

SQL-Server, MS-Access, MS-Excel and even for Text files also. By using OLEDB we can

directly access the mentioned databases without any middle interference. But, in case of Visual

FoxPro, we can use MS-OLEDB Provider for ODBC. ODBC is another tool, though not as

secured as OLEDB, can be used to access databases. But it’s an old one with less security.

Unfortunately, Microsoft did not provide any facility to OLEDB to access Visual FoxPro

database directly as it is not a pure database engine and store data as a record concept. In that

case, we will configure ODBC for Visual FoxPro and then use MS-OLEDB Provider for ODBC

to get data.

4.2 Linked-Servers

A linked server configuration allows Microsoft SQL Server to execute commands against OLE

DB data sources on different servers. Linked servers offer these advantages:

• Remote server access.

• The ability to issue distributed queries, updates, commands, and transactions on

heterogeneous data sources across the enterprise.

• The ability to address diverse data sources similarly.

46

4.2.1 Linked Server Components

A linked server definition specifies an OLE DB provider and an OLE DB data source.

An OLE DB provider is a dynamic-link library (DLL) that manages and interacts with a specific

data source. An OLE DB data source identifies the specific database accessible through OLE

DB. Although data sources queried through linked server definitions are usually databases, OLE

DB providers exist for a wide variety of files and file formats, including text files, spreadsheet

data, and the results of full-text content searches.

For a data source to return data through a linked server, the OLE DB provider (DLL) for that

data source must be present on the same server as SQL Server.

Typically, linked servers are used to handle distributed queries. When a client application

executes a distributed query through a linked server, SQL Server breaks down the command and

sends rowset requests to OLE DB. The rowset request may be in the form of executing a query

against the provider or opening a base table from the provider.

4.2.2 Managing a Linked Server Definition

When setting up a linked server, we have to register the connection information and data source

information with SQL Server. After registration is accomplished, that data source can always be

referred to with a single logical name.

We can create or delete a linked server definition with stored procedures or through SQL Server

Enterprise Manager.

With stored procedures:

• We can create a linked server definition using sp_addlinkedserver.

• We can delete a linked server definition using sp_dropserver.

With SQL Server Enterprise Manager:

• We can create a linked server definition using the SQL Server Enterprise Manager

Console tree and the Linked Servers node (under the Security folder). Define the

name, provider properties, server options, and security options for the linked server.

47

• We can edit a linked server definition by right-clicking the linked server and clicking

Properties.

• We can delete a linked server definition by right-clicking the linked server and clicking

Delete.

sp_addlinkedserver

sp_addlinkedserver built-in procedure creates a linked server, which allows access to distributed,

heterogeneous queries against OLE DB data sources. After creating a linked server with

sp_addlinkedserver, this server can then execute distributed queries. If the linked server is

defined as Microsoft SQL Server, remote stored procedures can be executed.

Syntax

sp_addlinkedserver[@server=] 'server'
 [, [@srvproduct=] 'product_name']
 [, [@provider=] 'provider_name']
 [, [@datasrc=] 'data_source']
 [, [@location=] 'location']
 [, [@provstr=] 'provider_string']
 [, [@catalog=] 'catalog']

Arguments

[@server =] 'server' is the local name of the linked server to create. It issysname, with no

default.

 [@srvproduct =] 'product_name' is the product name of the OLE DB data source to add as a

linked server.

[@provider =] 'provider_name' isthe unique programmatic identifier (PROGID) of the OLE

DB provider corresponding to this data source. provider_namemust be unique for the specified

OLE DB provider installed on the current computer. The OLE DB provider is expected to be

registered with the given PROGID in the registry.

[@datasrc =] 'data_source' is the name of the data source as interpreted by the OLE DB

provider. When the linked server is created against the SQL Server OLE DB provider,

data_source can be specified in the form of servername\instancename, which can be used to

48

connect to a specific instance of SQL Server running on the specified computer. servername is

the name of the computer on which SQL Server is running, and instancename is the name of the

specific SQL Server instance to which the user will be connected.

[@location =] 'location' is the location of the database as interpreted by the OLE DB provider.

[@provstr =] 'provider_string' is the OLE DB provider-specific connection string that

identifies a unique data source.

[@catalog =] 'catalog' is the catalog to be used when making a connection to the OLE DB

provider.

The following table shows the ways that a linked server can be set up for data sources accessible

through OLE DB. A linked server can be set up using more than one way for a given data source;

there may be more than one row for a data source type. This table shows the

sp_addlinkedserver parameter values to be used for setting up the linked server.

Table 4.1: sp_addlinkedserverParamaeter Values

Remote Data
Source

OLE DB Provider

Provider Name

Data Source

SQL Server Microsoft OLE DB
Provider for SQL Server SQLOLEDB Servername\instancename

(for specific instance)

Oracle Microsoft OLE DB
Provider for Oracle MSDAORA SQL*Net alias for Oracle

database

Access/Jet Microsoft OLE DB
Provider for Jet Microsoft.Jet.OLEDB.4.0

Full path name of Jet
database file

ODBC Microsoft OLE DB
Provider for ODBC MSDASQL System DSN of ODBC data

source

Microsoft Excel Microsoft OLE DB
Provider for Jet Microsoft.Jet.OLEDB.4.0 Full path name of Excel file

49

4.3 OLE DB Provider for Oracle

The Microsoft OLE DB Provider for Oracle allows distributed queries to query data in Oracle

databases.

To Create a Linked Server to Access an Oracle Database Instance

• We have to ensure the Oracle client software on the server running SQL Server is at the

level required by the provider. The Microsoft OLE DB Provider for Oracle requires Oracle

Client Software Support File version 7.3.3.4.0 or later, and SQL*Net version 2.3.3.0.4.

• We have to create an SQL*Net alias name on the server running SQL Server that points to

an Oracle database instance.

• We have to execute sp_addlinkedserver to create the linked server, specifying

MSDAORA as provider_name, and the SQL*Net alias name for the Oracle database

instance as data_ source.

Fig. 4.1: Oracle Database SQL* Net Service Provider Configuration

50

Creating a Linked-Server by Using the Microsoft OLE DB Provider for Oracle

Following T-SQL codes will create a linked server named 'ORACLEDATA' that uses the

Microsoft OLE DB Provider for Oracle and assumes that the SQL*Net alias for the Oracle

database is ‘Alam’(Fig. 4.1).

--CREATING LINKED SERVERS

USE MASTER

GO

EXEC SP_DROPSERVER ORACLEDATA

EXEC SP_ADDLINKEDSERVER

 @SERVER = 'ORACLEDATA',

 @SRVPRODUCT = 'ORACLE',

 @PROVIDER = 'MSDAORA',

 @DATASRC = 'ALAM'

GO

-- @DATASRC IS THE HOST STRING IN ORACLE

--@LOCATION IS THE SERVER NAME WHERE ORACLE RUNS

--GO TO ENTERPRISE MANAGER FIND ADD LINK SERVER LONDON GO TO PROPERTIES

-- GO TO SECURITY TAB GO TO BE MADE USING THIS SECURITY CONTEXT

-- USE SCOTT AND TIGER TO CONNECT

--USE SAME SERVER FOR ORACLE AND SQL SERVER 2000

4.4 OLE DB Provider for Jet

The Microsoft OLE DB Provider for Jet provides an OLE DB interface to Microsoft Access

databases, and allows Microsoft SQL Server distributed queries to query Access databases.

4.4.1 To Create a Linked Server to access an MS-Access Database

• We have to execute sp_addlinkedserver to create the linked server, specifying

Microsoft.Jet.OLEDB.4.0 as provider_name, and the full path name of the Access.mdb

database file as data_source. The .mdb database file must reside on the server.

data_source is evaluated on the server, not the client, and the path must be valid on the

server.

51

We have created a linked server named 'ACCESS_LINK' that operates against the Access

database named DB1.mdb in the = 'I:\BUET\DB1.MDB' directory, as follows:

--CREATE A LINKED SERVER FOR ACCESS DATA

USE MASTER

GO

EXEC SP_ADDLINKEDSERVER

 @SERVER = 'ACCESS_LINK',

 @PROVIDER = 'MICROSOFT.JET.OLEDB.4.0',

 @SRVPRODUCT = 'OLE DB PROVIDER FOR JET',

 @DATASRC = 'I:\BUET\DB1.MDB'

GO

4.4.2 To Create a Linked Server against an Excel Spreadsheet

To create a linked server definition using the Microsoft OLE DB Provider for Jet to access an

Excel spreadsheet, first we have to create a named range in Excel specifying the columns and

rows of the Excel worksheet to select. The name of the range can then be referenced as a table

name in a distributed query.

The Microsoft OLE DB Provider for Jet 4.0 can be used to access Microsoft Excel spreadsheets.

To create a linked server that accesses an Excel spreadsheet, we used the following T-SQL

command.

--CREATE A LINKED SERVER FOR EXECL DATA FROM TRANSACTIONS

EXEC SP_ADDLINKEDSERVER 'EXCELSOURCE_VAULT',

 'JET 4.0',

 'MICROSOFT.JET.OLEDB.4.0',

 'I:\BUET\VAULT.XLS',

 NULL,

 'EXCEL 5.0'

GO

--CREATE A LINKED SERVER FOR EXECL DATA FROM VAULT

52

EXEC SP_ADDLINKEDSERVER 'EXCELSOURCE',

 'JET 4.0',

 'MICROSOFT.JET.OLEDB.4.0',

 'I:\BUET\TRANSACTIONS.XLS',

 NULL,

 'EXCEL 5.0'

GO

4.4.3 To set up a Linked Server against a Text File

Microsoft OLE DB Provider for Jet can be used to access and query text files.

• To create a linked server for accessing text files directly without linking the files as tables

in an Access .mdb file, we executed sp_addlinkedserver, as follows:

The provider is Microsoft.Jet.OLEDB.4.0 and the provider string is 'Text'. The data

source is the full path name of the directory that contains the text files. A schema.ini file,

which describes the structure of the text files, must exist in the same directory as the text

files.

--CREATE A LINKED SERVER FOR TEXT DATA FROM TRANSACTIONS

USE MASTER

GO

EXEC SP_ADDLINKEDSERVER TEXTSERVER, 'JET 4.0',

 'MICROSOFT.JET.OLEDB.4.0',

 'I:\BUET',

 NULL,

 'TEXT'

GO

--CREATE A LINKED SERVER FOR TEXT DATA FROM VAULT

USE MASTER

GO

EXEC SP_ADDLINKEDSERVER TEXTSERVERVAULT, 'JET 4.0',

 'MICROSOFT.JET.OLEDB.4.0',

 'I:\BUET',

 NULL,

 'TEXT'

GO

53

4.5 OLE DB Provider for ODBC (MS-Visual FoxPro)

The OLE DB Provider for ODBC provides an OLE DB interface to ODBC data sources. Using

the OLE DB Provider for ODBC, Microsoft SQL Server distributed queries can access all

ODBC data.

To create a Linked Server to access an ODBC Database (MS-Visual FoxPro)

1. We have to create a System Data Source on the computer on which SQL Server is

installed (Figure 4.2 and 4.3).

2. After configuring System Data Source, we have to configure the Liked-Server properties

described in Figure 4.4 and 4.5.

Fig. 4.2: ODBC System Data Source Configuration

54

Fig. 4.3: ODBC System Data Source Location

 Fig. 4.4: Linked-Server Configuration for Visual FoxPro

55

Fig. 4.5: Security Configuration for Visual FoxPro

4.6 OLE DB Provider for SQL Server

The Microsoft OLE DB Provider for SQL Server provides an OLE DB interface to Microsoft

SQL Server databases. Using the OLE DB Provider for SQL Server, SQL Server distributed

queries can query data in remote instances of SQL Server.

To create a Linked Server to access a SQL Server Database

• We have to execute sp_addlinkedserver to create the linked server, specifying

SQLOLEDB as provider_name, and the network name of the server running the remote

instance of SQL Server as data_source.

For example, to create a linked server named SQLSERVER_LINK that operates against the

instance of SQL Server running on the server whose network name is BANK-6, we

executed the following codes.

--CREATE A LINKED SERVER FOR SQL SERVER DATA

56

EXEC SP_ADDLINKEDSERVER

 @SERVER='SQLSERVER_LINK',

 @SRVPRODUCT='',

 @PROVIDER='SQLOLEDB',

 @DATASRC='BANK-6'

GO

After configuring all Linked Servers we will see the Enterprise Manager as shown below (Fig. 4.6).

Fig. 4.6: MS-SQL Server Enterprise Manager

4.7 Summary

This chapter mainly discusses the design and configuration of linked-server for middle-tier use.

Functionality of necessary procedures and data providers are also described. Communication and

security features are also tested in this chapter with due attention.

57

Chapter 5

Data Gathering, Filtering and Processing

5.1 Introduction

Distributed queries access data from multiple heterogeneous data sources, which can be stored

on either the same or different computers. MS SQL Server supports distributed queries by using

OLEDB, the Microsoft specification of an application programming interface (API) for universal

data access.

Distributed queries provide SQL Server users with access to:

• Distributed data stored in multiple instances of SQL Server.

• Heterogeneous data stored in various relational and non-relational data sources accessed

using an OLEDB provider.

OLE DB providers expose data in tabular objects called rowsets. SQL Server allows rowsets

from OLE DB providers to be referenced in Transact-SQL statements as if they were a SQL

Server table.

Tables and views in external data sources can be referenced directly in SELECT, INSERT,

UPDATE, and DELETE Transact-SQL statements. Because distributed queries use OLEDB as

the underlying interface, distributed queries can access traditional relational DBMS systems with

SQL query processors, as well as data managed by data sources of varying capabilities and

sophistication. As long as the software owning the data exposes it in a tabular rowset through an

OLE DB provider, the data can be used in distributed queries. Using distributed queries in SQL

Server is similar to the linked table functionality through ODBC, which is supported by

Microsoft Visual FoxPro.

5.2 Distributed Query Architecture

MS SQL Server supports two methods for referencing heterogeneous OLE DB data sources in

Transact-SQL statements:

58

• Linked server names

The system stored procedures sp_addlinkedserver and sp_addlinkedsrvlogin are used to

give a server name to an OLE DB data source. Objects in these linked servers can be

referenced in Transact-SQL statements using four-part names. For example, if a linked

server name of DBBL is defined against another copy of SQL Server, the following

statement references a table on that server:

SELECT * FROM DBBL.Northwind.dbo.Employees

The linked server name can also be specified in an OPENQUERY statement to open a

rowset from the OLE DB data source. This rowset can then be referenced like a table in

Transact-SQL statements.

• Ad hoc connector names

For infrequent references to a data source, the OPENROWSET functions are specified

with the information needed to connect to the linked server. The rowset can then be

referenced the same way a table is referenced in Transact-SQL statements:

SELECT *

FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0',

 'c:\MSOffice\Access\Samples\Northwind.mdb';'Admin';'';

 Employees)

SQL Server uses OLEDB to communicate between the relational engine and the storage engine.

The relational engine breaks down each Transact-SQL statement into a series of operations on

simple OLEDB rowsets opened by the storage engine from the base tables. This means the

relational engine can also open simple OLEDB rowsets on any OLE DB data source.

The relational engine uses the OLE DB API to open the rowsets on linked servers, to fetch the

rows, and to manage transactions.

For each OLEDB data source accessed as a linked server, an OLEDB provider must be present

on the server running SQL Server. The set of Transact-SQL operations that can be used against a

specific OLE DB data source depends on the capabilities of the OLE DB provider.

59

5.3 OPENQUERY

OPENQUERY executes the specified pass-through query on the given linked server, which is an

OLE DB data source. The OPENQUERY function can be referenced in the FROM clause of a

query as though it is a table name. The OPENQUERY function can also be referenced as the

target table of an INSERT, UPDATE, or DELETE statement, subject to the capabilities of the

OLE DB provider.

Syntax

OPENQUERY (linked_server,'query')

Arguments

linked_server

Is an identifier representing the name of the linked server.

'query'

Is the query string executed in the linked server.

Remarks

OPENQUERY does not accept variables for its arguments.

Examples

This example creates a linked server named OracleServeragainst an Oracle database using the

Microsoft OLE DB Provider for Oracle. Then this example uses a pass-through query against

this linked server. This example assumes that an Oracle database alias called ORCLDB has been

created.

SELECT *

FROM OPENQUERY(OracleSvr, 'SELECT name, id FROM joe.titles')

GO

In our project we used OPENQUERY features of MS SQL Server to run distributed queries.

60

5.4 Gathering Data from Linked Servers

5.4.1 Gathering data from all banks assuming all communication links are up and all

linked-servers are running

The following procedure, PR_GATHER_DATA_ALL_ONLINE, will receive four parameters;

starting date (@SD), ending date (@ED), data category identity (@CTG_ID)and description of

the category (@CTG_DES) of the data, for example tax, vat, etc. This procedure will gather data

and united them by using UNION ALL operator at first and store it to the GATHERED_DATA

table. The main advantage of this procedure is that it will collect and gather data from all banks

with a single click only. But the main problem is that, if any server or link goes down it will

produce an error and all transactions will be rolled back.

CREATE PROCEDURE PR_GATHER_DATA_ALL_ONLINE

 @SD DATETIME,

 @ED DATETIME,

 @CTG_ID CHAR(5), --DATA CATEGORY ID LIKE CTG01

 @CTG_DES VARCHAR(20) --DATA CATEGORY DESCRIPTION LIKE.

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,@SD, @ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ORACLE, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 UNION ALL

 SELECT 'B2',@CTG_ID,@SD,@ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(EXCELSOURCE, 'SELECT * FROM [TRANSACTIONS$]') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 UNION ALL

 SELECT 'B3',@CTG_ID,@SD,@ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 UNION ALL

 SELECT 'B4',@CTG_ID,@SD,@ED, @CD, SUM(DEBIT),SUM(CREDIT)

61

FROM OPENQUERY(VFPSQL, 'SELECT * FROM TRANSACTIONS')WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 UNION ALL

 SELECT 'B5',@CTG_ID,@SD,@ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM TEXTSERVER...[TRANSACTIONS#TXT]WHERE TD>=@SD AND TD<=@ED AND DESCRIPTION=@CTG_DES

 UNION ALL

 SELECT 'B6',@CTG_ID,@SD,@ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(DBBL, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

5.4.1.1 Executing the Procedure to gather data when all servers are online

The following command will execute the procedure, PR_GATHER_DATA_ALL_ONLINE, and

collect data from all servers from starting date ‘01-01-12’ to ending date '01-01-14 for data

category CTG01 which is CHARGES of all banks.

EXECUTE PR_GATHER_DATA_ALL_ONLINE '01-01-12', '01-01-14', 'CTG01', ' CHARGES'

Fig 5.1: Output of the above command

5.4.2 Gathering data from all banks assuming all communication links and all linked-

servers are not online

The following procedure, PR_GATHER_DATA_ALL_NOT_ONLINE, will receive four parameters;

starting date (@SD), ending date (@ED), data category identity (@CTG_ID)and description of

the category (@CTG_DES) of the data, for example tax, vat, etc. This procedure will gather and

insert data in to the GATHERED_DATA table bank by bank. The main advantage of this

procedure is that it will collect data bank by bank with a single click only. If any server or link

goes down it will produce an error and rest of the transactions will be terminated but data that are

already received by the linked-server will not be rolled back.

CREATE PROCEDURE PR_GATHER_DATA_ALL_NOT_ONLINE

62

 @SD DATETIME,

 @ED DATETIME,

 @CTG_ID CHAR(5), --DATA CATEGORY ID LIKE CTG01

 @CTG_DES VARCHAR(20) --DATA CATEGORY DESCRIPTION LIKE.

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,@SD, @ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ORACLE, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 INSERT INTO GATHERED_DATA

 SELECT 'B2',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(EXCELSOURCE, 'SELECT * FROM [TRANSACTIONS$]') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 INSERT INTO GATHERED_DATA

 SELECT 'B3',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 INSERT INTO GATHERED_DATA

 SELECT 'B4',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(VFPSQL, 'SELECT * FROM TRANSACTIONS')WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 INSERT INTO GATHERED_DATA

 SELECT 'B5',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM TEXTSERVER...[TRANSACTIONS#TXT]WHERE TD>=@SD AND TD<=@ED AND DESCRIPTION=@CTG_DES

 INSERT INTO GATHERED_DATA

 SELECT 'B6',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(DBBL , 'SELECT * FROM TRANSACTIONS')..TRANSACTIONS WHERE TD>=@SD AND TD<=@ED
AND DESCRIPTION=@CTG_DES

63

5.4.2.1 Executing the Procedure to gather data when all servers are not online

The following command will execute the procedure, PR_GATHER_DATA_ALL_NOT_ONLINE, and

collect data from all servers from starting date ‘01-01-12’ to ending date '01-01-14 for data

category CTG01 which is CHARGES of all available banks.

EXECUTE PR_GATHER_DATA_ALL_NOT_ONLINE '01-01-12', '01-01-14', 'CTG01', 'CHARGES'

5.4.3 Gathering data from a specific bank assuming the communication link and linked-

server is online

The following procedure, PR_GATHER_DATA_SPECIFIC_SERVER, will receive four parameters;

starting date (@SD), ending date (@ED), bank identity number (@BANK_ID), data category

identity (@CTG_ID)and description of the category (@CTG_DES) of the data, for example tax,

vat, etc. This procedure will gather and insert data in to the GATHERED_DATA table of the

required bank.

CREATE PROCEDURE PR_GATHER_DATA_SPECIFIC_SERVER

 @SD DATETIME,--STARTING DATE

 @ED DATETIME,--ENDING DATE

 @CTG_ID CHAR(5), --DATA CATEGORY ID LIKE CTG01

 @CTG_DES VARCHAR(20), --DATA CATEGORY DESCRIPTION LIKE.

 @BANK_ID CHAR(2)--BANK ID

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

IF @BANK_ID='B1'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,@SD, @ED, @CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ORACLE, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 PRINT 'DATA OF B1 GATHERED'

 END

ELSE IF @BANK_ID='B2'

 BEGIN

64

 INSERT INTO GATHERED_DATA

 SELECT 'B2',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(EXCELSOURCE, 'SELECT * FROM [TRANSACTIONS$]') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 PRINT 'DATA OF B2 GATHERED'

 END

ELSE IF @BANK_ID='B3'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B3',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM TRANSACTIONS') WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 PRINT 'DATA OF B3 GATHERED'

 END

ELSE IF @BANK_ID='B4'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B4',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(VFPSQL, 'SELECT * FROM TRANSACTIONS')WHERE TD>=@SD AND TD<=@ED AND
DESCRIPTION=@CTG_DES

 PRINT 'DATA OF B4 GATHERED'

 END

ELSE IF @BANK_ID='B5'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B5',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM TEXTSERVER...[TRANSACTIONS#TXT]WHERE TD>=@SD AND TD<=@ED AND DESCRIPTION=@CTG_DES

 PRINT 'DATA OF B5 GATHERED'

 END

ELSE IF @BANK_ID='B6'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B6',@CTG_ID,@SD,@ED,@CD, SUM(DEBIT),SUM(CREDIT)

FROM OPENQUERY(DBBL , 'SELECT * FROM TRANSACTIONS')..TRANSACTIONS WHERE TD>=@SD AND TD<=@ED
AND DESCRIPTION=@CTG_DES

 END

ELSE PRINT 'INVALID BANK CODE SELECTED'

65

5.4.3.1 Executing the Procedure to gather data for a specific server

The following command will execute the procedure, PR_GATHER_DATA_SPECIFIC_SERVER, and

collect data from the specific server (B1) during the period ‘01-01-12’ to '01-01-14 for data

category CTG01 which is CHARGES of that bank.

EXECUTE PR_GATHER_DATA_SPECIFIC_SERVER '01-01-12', '01-01-14', 'CTG01', 'CHARGES', 'B1'

5.4.4 Procedure to gather vault data when all servers are online

Since vault management is a separate management, we need separate procedures to handle the

data in this case. The following procedure, PR_GATHER_VAULT_DATA_ALL_ONLINE, will receive one

parameter: data category identity (@CTG_ID). This procedure will gather data and joined them

by using UNION ALL operator and store it to the GATHERED_DATA table. The main

advantage of this procedure is that it will collect and gather data from all banks with a single

click only. But the main problem is that, if any server or link goes down it will produce an error

and all transactions will be rolled back.

CREATE PROCEDURE PR_GATHER_VAULT_DATA_ALL_ONLINE

 @CTG_ID CHAR(5) --DATA CATEGORY ID LIKE CTG01

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ORACLE, 'SELECT * FROM VAULT')

 UNION ALL

 SELECT 'B2',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

FROM OPENQUERY(EXCELSOURCE_VAULT, 'SELECT * FROM [VAULT$]')

 UNION ALL

 SELECT 'B3',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM VAULT')

 UNION ALL

 SELECT 'B4',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

66

 FROM OPENQUERY(VFPSQL, 'SELECT * FROM VAULT')

 UNION ALL

 SELECT 'B5',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM TEXTSERVERVAULT...[VAULT#TXT]

 UNION ALL

 SELECT 'B6',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(DBBL, 'SELECT * FROM VAULT')

5.4.4.1 Executing Procedure to gather vault data when all servers are online

The following command will execute the procedure, PR_GATHER_VAULT_DATA_ALL_ONLINE, and

collect data from all servers for data category CTG09 which is LIQUID ASSEST of all available

banks. By default it will gather data of the current date.

EXECUTE PR_GATHER_VAULT_DATA_ALL_ONLINE 'CTG09'

Fig 5.2: Output of the above command

5.4.5 Procedure to gather vault data when all servers are not online

The following procedure, PR_GATHER_VAULT_DATA_ALL_NOT_ONLINE, will receive one parameter,

data category identity (@CTG_ID). This procedure will gather and insert data into the

GATHERED_DATA table bank by bank. The main advantage of this procedure is that it will

collect data bank by bank with a single click only. If any server or link goes down, it will

produce an error and rest of the transactions will be terminated but data that are already received

by the linked-server will not be rolled back.

CREATE PROCEDURE PR_GATHER_VAULT_DATA_ALL_NOT_ONLINE

 @CTG_ID CHAR(5) --DATA CATEGORY ID LIKE CTG01

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

67

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ORACLE, 'SELECT * FROM VAULT')

 INSERT INTO GATHERED_DATA

 SELECT 'B2',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(EXCELSOURCE_VAULT, 'SELECT * FROM [VAULT$]')

 INSERT INTO GATHERED_DATA

 SELECT 'B3',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM VAULT')

 INSERT INTO GATHERED_DATA

 SELECT 'B4',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(VFPSQL, 'SELECT * FROM VAULT')

 INSERT INTO GATHERED_DATA

 SELECT 'B5',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM TEXTSERVERVAULT...[VAULT#TXT]

 INSERT INTO GATHERED_DATA

 SELECT 'B6',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(DBBL, 'SELECT * FROM VAULT')

5.4.5.1 Executing Procedure to gather vault data when all servers are not online

The following command will execute the procedure, PR_GATHER_VAULT_DATA_ALL_NOT_ONLINE,

and collect data from all servers for data category CTG09 which is LIQUID ASSEST of all

available banks. By default it will gather data of the current date.

EXECUTE PR_GATHER_VAULT_DATA_ALL_NOT_ONLINE 'CTG09'

68

5.4.6 Procedure to gather Vault data for a specific server

The following procedure, PR_GATHER_VAULT_DATA_SPECIFIC_SERVER, will receive two parameter

data category identity (@CTG_ID) and bank identity number (@BANK_ID). This procedure will

gather and insert data into the GATHERED_DATA table of the required bank.

CREATE PROCEDURE PR_GATHER_VAULT_DATA_SPECIFIC_SERVER

 @CTG_ID CHAR(5), --DATA CATEGORY ID LIKE CTG01

 @BANK_ID CHAR(2) --BANK ID

AS

 DECLARE @CD DATETIME

 SELECT @CD=GETDATE()

IF @BANK_ID='B1'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B1',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ORACLE, 'SELECT * FROM VAULT')

 PRINT 'DATA OF B1 GATHERED'

 END

ELSE IF @BANK_ID='B2'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B2',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(EXCELSOURCE_VAULT, 'SELECT * FROM [VAULT$]')

 PRINT 'DATA OF B2 GATHERED'

 END

ELSE IF @BANK_ID='B3'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B3',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(ACCESS_LINK, 'SELECT * FROM VAULT')

 PRINT 'DATA OF B3 GATHERED'

 END

ELSE IF @BANK_ID='B4'

69

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B4',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM OPENQUERY(VFPSQL, 'SELECT * FROM VAULT')

 PRINT 'DATA OF B4 GATHERED'

 END

ELSE IF @BANK_ID='B5'

 BEGIN

 INSERT INTO GATHERED_DATA

SELECT 'B5',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM TEXTSERVERVAULT...[VAULT#TXT]

 PRINT 'DATA OF B5 GATHERED'

 END

ELSE IF @BANK_ID='B6'

 BEGIN

 INSERT INTO GATHERED_DATA

 SELECT 'B6',@CTG_ID,GETDATE(), GETDATE(), @CD, SUM(MIN_BAL),SUM(CURR_BAL)

 FROM DBBL..VAULT

 PRINT 'DATA OF B6 GATHERED'

 END

ELSE

 PRINT 'INVALID BANK CODE SELECTED'

5.4.6.1 Executing Procedure to gather Vault data for a specific server

The following command will execute the procedure, PR_GATHER_VAULT_DATA_SPECIFIC_SERVER,

and collect data from all servers for data category CTG09 which is LIQUID ASSEST of that

bank (B1). By default it will gather data of the current date.

EXECUTE PR_GATHER_VAULT_DATA_SPECIFIC_SERVER 'CTG09', 'B1'

5.4.7 Filter Data after Gathering from Linked Servers

After gathering data, it is important to check whether all required data are successfully reached

into the linked server database or not. Received data will be stored into the GATHERED_DATA

70

table at first. Then the following procedure, FILTER_DATA, will be run. This procedure will

receive four parameters; process identity number (@PR_ID), data category identity

number(@CTG_ID), description and objective of the process (@DESCRIPTION) and who run

the procedure(@RUN_BY). This procedure will insert process information into

PROCESS_INFO table and put a flag into the FILTERING_DATA table to show that data of the

required process reached successfully. If flag for any bank is found as ‘N’, it will indicate that

data of that bank is not reached successfully due to unavailability of the server or link-down

problem. In that case we have to run the procedure named

PR_GATHER_DATA_SPECIFIC_SERVER to gather the missing information. When we will

be satisfied that all data are gathered successfully, we will transfer this data to the temporary

location of the production server. Most powerful data processing technique, i.e., cursor, is used

to do the job successfully.

CREATE PROCEDURE FILTER_DATA

 @PR_ID CHAR(5),

 @CTG_ID CHAR(5),

 @DESCRIPTION VARCHAR(50),

 @RUN_BY VARCHAR(20)

AS

INSERT INTO PROCESS_INFO VALUES(@PR_ID,@CTG_ID,@DESCRIPTION,GETDATE(),@RUN_BY)

DECLARE

 @TEMP_B_ID CHAR(2),

 @B_ID CHAR(2),

 @NAME VARCHAR(50)

DECLARE FILTER_DATA_CURSOR CURSOR

FOR

 SELECT * FROM BANK

OPEN FILTER_DATA_CURSOR

 FETCH NEXT FROM FILTER_DATA_CURSOR INTO @B_ID, @NAME

WHILE @@FETCH_STATUS=0

BEGIN

 SELECT @TEMP_B_ID =(SELECT B_ID FROM GATHERED_DATA WHERE CTG_ID=@CTG_ID

 AND B_ID=@B_ID)

71

IF @TEMP_B_ID IS NOT NULL

 BEGIN

 INSERT INTO FILTERING_DATA VALUES(@B_ID,@PR_ID,'Y')

 PRINT @B_ID+' '+@CTG_ID

 END

ELSE

 BEGIN

 INSERT INTO FILTERING_DATA VALUES(@B_ID,@PR_ID,'N')

 END

FETCH NEXT FROM FILTER_DATA_CURSOR INTO @B_ID, @NAME

END

CLOSE FILTER_DATA_CURSOR

DEALLOCATE FILTER_DATA_CURSOR

5.4.7.1 Executing Procedure to Filter Data after Gathering from Linked Servers

The following command will execute the procedure, FILTER_DATA for data category CTG04

which is IMPORT of different banks. This procedure will work after the request of the process

number ‘PR004’ which is run by ‘KAMAL’.

EXECUTE FILTER_DATA 'PR004','CTG02','IMPORT','KAMAL'

5.5 Summary

The above simulation and experimental results verify that the proposed system developed in the

lab is working properly. Moreover, distributed query architecture, written procedures to gather,

filter and process data are also discussed clearly. Precaution regarding smooth data gathering in

case of communication disruption are also taken care of properly.

72

Chapter 6

Transferring Data from Linked-Server to Production Server

6.1 Introduction

After gathering and filtering data, our next step is to send data to the production server of the

central bank. In this regard, at first we will send the data to the temporary location (schema) of

the production server. In the temporary schema we will again verify the data to see that all

necessary data has been received by the production server successfully. Because, there may be

several issues that may hamper this transportation process. It might be security issues, network

responsibility or any other software problems that may hamper smooth and accurate

transportation of data. To do this job, we have selected MS-Data Transformation Services (DTS).

It’s a fantastic built-in service of MS-SQL Server to export and import data among

heterogeneous databases and data files, like text and spread sheets.

6.2 MS-Data Transformation Services (DTS)

We can use Data Transformation Services (DTS) to copy data between a source and destination

and optionally apply column-level transformations to the data. The Transform Data task is the

most basic implementation of the data pump engine in Data Transformation Services (DTS).

The Transform Data task is optimized for insert-based copying and transforming of column-level

data between commercial databases, spreadsheets, and text files. We can use the task to copy and

transform data between any supported OLE DB connections. Because, the task handles such a

wide variety of data sources and transformation scenarios, we will frequently use one or more

instances of it when creating packages that consolidate data from disparate sources.

6.3 Configuring MS-Data Transformation Services (DTS)

Here we will transfer data from MS SQL Server to Oracle database server by using MS OLEDB.

Oracle will receive data by using oracle SQL-Net services. We must configure tnsnames.ora file

in this regard as follows (Fig. 6.1).

73

 Fig. 6.1: Configuring oracle SQL-Net services

After configuring oracle SQL‐Net services, we will open Import and Export Data utility wizard

from Microsoft SQL Server of Windows Program menu. We will see the first dialog box as

below (Fig. 6.2).

Fig. 6.2: Export Import Wizard of MS-DTS

74

Then we will select next button to get the data source wizard (Fig. 6.3). After selecting Next

button the data source wizard will appear as follows.

Fig. 6.3: Data Source Wizard

In this box we will select a data source, i.e., Microsoft OLEDB Provider for SQL Server,

because we are using MS-SQL Server as a linked server. In the next dialog box (Fig. 6.4) we will

select the destination database. It is an Oracle database for our project. So we will select

Microsoft OLEDB Provider for Oracle. Then ‘Properties’ button will be clicked to configure the

database connection properties for Oracle. Here we will give the Oracle host string, user name

and password to connect (Fig. 6.5). We will also test the connectivity by pressing the ‘Test

Connection’ button (Fig. 6.5). Then we will press the Next button to go to the next phase (Fig.

6.6).

75

Fig. 6.4: Selecting Destination Database

Fig. 6.5: Connecting Oracle Database

76

‘Specify Table Copy or Query’ box will be appeared (Fig. 6.6). We will select copy tables and

views radio button and press ‘Next’ button. From the ‘Select Source Tables and Views’ box we

will select only GATHERED_DATA table as we will transfer data only for this table (Fig. 6.7).

Fig. 6.6: Specify Table Copy or Query Wizard

Fig. 6.7: Selecting Source Tables

77

Now, we will save the DTS package as follows, because we will use it to transfer data all times (Fig. 6.8
and 6.9).

Fig. 6.8: Saving DTS Package

Fig. 6.9: Saving DTS Package

78

Finally, we will press the ‘Finish’ button to complete the job (Fig. 6.10). Data will be transferred

successfully by these processes.

Fig. 6.10: Completing DTS Services

After successful transfer of data we will be notified by a message as follows (Fig. 6.11).

Fig. 6.11: Successful Transfer Message

79

6.4Filtering Data after receiving from Linked Servers

After receiving data from linked server, it is important to check again whether all required data

are successfully reached into the temporary schema of the production server database or not.

Received data will be stored into the GATHERED_DATA table at first. Then the following

procedure, FILTER_DATA, will be run. This procedure will receive four parameters; process

identity number (V_PR_ID), data category identity number(V_CTG_ID), description and

objective of the process (V_DESCRIPTION) and who run the procedure(V_RUN_BY). This

procedure will insert process information into PROCESS_INFO table and put a flag into the

FILTERING_DATA table to show that data of the required process reached successfully. If flag

for any bank is found as ‘N’, it will indicate that data of that bank is not reached successfully due

to unavailability of the server or link-down problem. If we see that all required data are not

reached successfully, linked-server must send the data set again by using export data utility

described in section 6.3.

6.4.1Creating the Procedure

CREATE OR REPLACE PROCEDURE FILTER_DATA (V_PR_ID IN CHAR,V_CTG_ID IN CHAR,V_DESCRIPTION IN

VARCHAR,V_RUN_BY IN VARCHAR)

IS

BEGIN

 INSERT INTO PROCESS_INFO VALUES(V_PR_ID,V_CTG_ID,V_DESCRIPTION,SYSDATE,V_RUN_BY);

 COMMIT;--OTHERWISE FOREIGN KEY WILL PRODUCE ERROR NO PK FOUND

 DECLARE

 CURSOR FILTER_DATA_CURSOR IS SELECT B_ID FROM BANK;

CURSOR GATHERED_DATA_CURSOR(V_CTG_ID CHAR) IS SELECT B_ID FROM SCOTT.GATHERED_DATA
WHERE CTG_ID=V_CTG_ID;

 V_B_ID CHAR(2);

 TEMP_B_ID CHAR(2);

 TEMP_DUAL CHAR(8);

 BEGIN

 OPEN FILTER_DATA_CURSOR;

 IF FILTER_DATA_CURSOR%ISOPEN THEN

 LOOP

 FETCH FILTER_DATA_CURSOR INTO V_B_ID;

80

 EXIT WHEN FILTER_DATA_CURSOR%NOTFOUND;

 INSERT INTO FILTERING_DATA VALUES(V_B_ID, V_PR_ID,'N');

 END LOOP;

 CLOSE FILTER_DATA_CURSOR;

 COMMIT;

 ELSE

 DBMS_OUTPUT.PUT_LINE('UNABLE TO OPEN CURSOR');

 END IF;

 OPEN GATHERED_DATA_CURSOR(V_CTG_ID);

 IF GATHERED_DATA_CURSOR%ISOPEN THEN

 LOOP

 FETCH GATHERED_DATA_CURSOR INTO V_B_ID;

 EXIT WHEN GATHERED_DATA_CURSOR%NOTFOUND;

 UPDATE FILTERING_DATA SET STATUS='Y' WHERE B_ID=V_B_ID;

 END LOOP;

 ELSE

 DBMS_OUTPUT.PUT_LINE('UNABLE TO OPEN CURSOR');

 END IF;

 COMMIT;

 END;

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('NO DATA FOUND');

END;

6.4.2Executing the Procedure

To run the above procedure we will execute the following command.

EXECUTE FILTER_DATA ('PR005','CTG01','IMPORT','KAMAL');

81

6.5 Loading the Processed Data from Temporary Schema to Permanent Schema of

the Production Server

When we will be satisfied that all data are gathered successfully by executing the above

procedure, we will transfer this data to the permanent location of the production server for future

use and delete the data set from the GATHERED_DATA table of temporary schema. Following

procedure, FINALLY_LOAD_DATA, will do this job.

6.5.1 Creating the Procedure

CREATE OR REPLACE PROCEDURE FINALLY_LOAD_DATA

IS

BEGIN

 INSERT INTO GATHERED_DATA (B_ID,CTG_ID,SD,ED,CREDIT_AMOUNT,DEBIT_AMOUNT)

 SELECT * FROM SCOTT.GATHERED_DATA;

 DELETE FROM SCOTT.GATHERED_DATA;

 COMMIT;

END;

6.5.2 Executing the Procedure

To run the above procedure, FINALLY_LOAD_DATA, we will execute the following command.

EXECUTE FINALLY_LOAD_DATA ;

6.6 Summary

This chapter mainly includes the final destination of the data after proper filtering and process in

the linked-server. Data received from linked-server is also verified here to ensure that necessary

data reached successfully. Required procedures that are developed for this purpose are also tested

here followed by execution.

82

Chapter 7

Interactive Form and Report Design for End-Users

7.1 Introduction

So far what we did for this project is to collect data from heterogeneous data sources by using

linked-server concept, check and filter data after gathering from different servers, process it and

transfer data to the ultimate destination. What is done is a technical job and must be used by

technical persons. But when data will be reached to the ultimate users, we need some common

platforms so that general users of different departments can easily access, view and use the data

and take official prints to submit it to the policy makers, like deputy governors and governor of

the central bank, which was our main objective of the project. To do this we need some forms

and reports. Here we will use Oracle Forms Developer and Report Developer of ‘Oracle

Developer 6i’ utility. The following sections will describe the whole process step by step.

7.2 Interactive Form Design

For this project we need eight forms that will be integrated to a Tab Canvas for easy use. Out of

these eight tabs, six for data viewing, one for procedure runs and other for report running. The

steps for designing all the forms are same, except the two for report and procedure run. So we

will discuss the procedures to design only one form, avoiding others, as it will be redundant

description.

7.2.1 Vault Data

At first, we will run Oracle Developer Form Designer. It will be looked like the following one.

We will design the first form to show the Vault Data.

83

 Fig. 7.1: Oracle Forms Builder

From the Form-Tree we will select Data Block option and click the green plus (+) sign at the left

icon bar (Fig. 7.1). Data block wizard will appear as follows (Fig. 7.2).

 Fig. 7.2: Data Block Wizard (Type)

84

From the above wizard (Fig. 7.2), we will select ‘Table or View’ option to select a table or view

whose data will be shown in the form. After selecting the option we will select

V_GATHERED_DATA view and all of its fields for our project (Fig. 7.3).

 Fig. 7.3: Data Block Wizard (Table)

 Fig. 7.4: Data Block Wizard (Master-Detail)

85

As this view is related with V_PROCESS_INFO view, we will make a master-detail relationship

here by the primary key of V_PROCESS_INFO view with the foreign key of

V_GATHERED_DATA view (Fig. 7.4). After creating the data blocks we will design the lay

outs of the blocks by the lay out wizard. First step of the lay out wizard will be look like the

following one (Fig. 7.5). And we will select the fields we want to see on the form.

 Fig. 7.5: Layout Wizard (Data Block)

From the following option (Fig. 7.6) we will customize the name and width of the text boxes as

required.

86

 Fig. 7.6: Layout Wizard (Items)

Next, we will select the style of the form. Here we need to design it as tabular format. ‘Tabular’

option is selected here (Fig. 7.7).

 Fig. 7.7: Layout Wizard (Style)

87

Finally, we wanted to see ten records at a time. So we have put the value 10 for the box ‘record

displayed’. We also put a frame title to show the data heading and selected scroll bar option so

that we can scroll our records as we wish (Fig. 7.8).

 Fig. 7.8: Layout Wizard (Rows)

After pressing the ‘Finish’ button the form will be shown like the following one (Fig. 7.9).

Fig. 7.9: Form Layout

88

After running the form, vault data will be populated as Fig. 7.10 shown below.

 Fig. 7.10: Form Runtime (Vault Data)

7.2.2Banks Information

Like the above form all other forms are designed as follows. The following form (Fig. 7.11) is
designed to show the information of banks (List of banks)

 Fig. 7.11: Forms Layout (List of Banks)

89

After running the form, list of all banks will be populated as Fig. 7.12 shown below.

 Fig. 7.12: Form Runtime (List of Banks)

7.2.3Status of Gathered Data

This form will show process wise gathered data. By this form we can be ensured that required
data of all banks are gathered accurately for future use (Fig. 7.13).

 Fig. 7.13: Form Layout (Status of Gathered Data)

90

After running the form, process wise gathered data will be populated as Fig. 7.14 shown below.

 Fig. 7.14: Form Runtime (Status of Gathered Data)

7.2.4Gathered Data

This form will show all gathered data up to the current date from the starting date of data
gathering process (Fig. 7.15).

 Fig. 7.15: Form Layout (Gathered Data)

91

After running the form, historical gathered data will be populated as Fig. 7.16 shown below.

 Fig. 7.16: Form Runtime (Gathered Data)

7.2.5Gathered Data by Category

This form will show all gathered data by category. Here we can filter data by date range (Fig.
7.17).

 Fig. 7.17: Form Layout (Gathered Data by Category)

92

After running the form, gathered data by category will be populated as Fig. 7.18 shown below.

 Fig. 7.18: Form Runtime (Gathered Data by Category)

7.2.6Process Wise Data

This form will show all gathered data by process run by the users (Fig. 7.19).

 Fig. 7.19: Form Layout (Gathered Data by Process)

93

After running the form, gathered data by category will be populated as fig shown below (Fig.
7.20).

 Fig. 7.20: Form Runtime (Gathered Data by Process)

7.2.7 Running a Process to Filter and Load Data

After receiving data from linked-server to the temporary schema we have to check that all data

are reached successfully. By pushing the ‘Filter Data’ button we can check whether all data are

available or not. Then we will capture the data and load it to the permanent schema by pressing

the button ‘Load Data’ (Fig. 7.21 and 7.22).

94

 Fig. 7.21: Form Layout (Filter and Load Data)

After running the form, it will look like as Fig. 7.22 shown below.

 Fig. 7.22: Form Runtime (Filter and Load Data)

95

In the above form there is another button named ‘Generate PID’. This button will produce a

unique Process Identity Number for the integrity of the data. This process ID is very important to

trace the data arrival process. The following procedure is written for this purpose (Fig. 7.23).

 Fig. 7.23: Procedure to Generate PID

The above procedure will also require a dummy table named LOOK_UP, which is created as
follows:

CREATE TABLE PKEY_LOOK_UP

 (PKEY_VALUE CHAR(5));

Procedure for ‘Filter Data’ button is written as follows (Fig. 7.24).

96

 Fig. 7.24: Procedure for Filter Data Button

Procedure for ‘Load Data’ button is written as follows (Fig. 7.25).

 Fig. 7.25: Procedure for Load Data Button

97

Finally, the following form is designed to call the necessary reports of the project. Here two

buttons, ‘Business Data’ and ‘Vault Data’, are used to call the reports. All data related to tax, vat,

export, import, etc. will be shown by the ‘Business Data’ report and liquid asset by the vault data

report. Reports tab of the following form (Fig. 7.26) is designed to call the reports. Necessary

programs are written for this purpose.

 Fig. 7.26: Form Layout (Run Report)

After running the form, it will look like as fig shown below (Fig. 7.27).

98

 Fig. 7.27: Form Runtime (Run Report)

To call business reports following procedure will be used as shown below (Fig. 7.28).

 Fig. 7.28: Procedure to Call Business Reports

99

To call liquid asset’s report following procedure will be used as shown below (Fig. 7.29).

 Fig. 7.29: Procedure to Call Liquid Asset’s Reports

7.3 Report Design

Report is the ultimate state of data. In report, data stored in the database are represented as

information. From management point of view, report is very important. Report presents status,

progress, performance, etc., as per business needs. In this project we used permanent schema of

the production server to run the reports.

Here we used Oracle Report Design utility of Oracle Developer 6i. To design the business

reports, at first we created a new module and added features to it. At first, we selected report

type. In our project, we used ‘Group Left’ option of the Style tab from Report Wizard as follows

(Fig. 7.30).

100

 Fig. 7.30: Report Wizard (Style Tab)

Then we selected SQL Statement from ‘Type’ tab to indicate that data will be gathered by SQL
commands, not by express query as follows (Fig. 7.31).

 Fig. 7.31: Report Wizard (Type Tab)

We used the following query to gather data for these reports as shown in Fig. 7.32.

SELECT ALL V_GATHERED_DATA.NAME, V_GATHERED_DATA.CTG_ID,

101

V_GATHERED_DATA.TYPE, V_GATHERED_DATA.SD, V_GATHERED_DATA.ED, V_GATHERED_DATA.CD,

V_GATHERED_DATA.CREDIT_AMOUNT, V_GATHERED_DATA.DEBIT_AMOUNT

FROM V_GATHERED_DATA

WHERE V_GATHERED_DATA.CTG_ID= :P_INFO

AND TO_CHAR (V_GATHERED_DATA.SD, 'DD-MON-YYYY') >= :P_SD

AND TO_CHAR(V_GATHERED_DATA.ED,'DD-MON-YYYY') <= :P_ED

Fig. 7.32: Report Wizard (Data Tab)

At this stage, we selected the fields that will be shown in the report and also the group field by
which we will make groups of our data. Here group means categories of data, like, tax, vat,
import and export, etc. (Fig. 7.33 and 7.34).

 Fig. 7.33: Report Wizard (Group Tab)

102

 Fig. 7.34: Report Wizard (Fields Tab)

At this stage, we selected summary fields to show the sum of the data fields (country as a whole)
for all banks as follows (Fig. 7.35).

 Fig. 7.35: Report Wizard (Totals Tab)

103

In the following figure (Fig. 7.36), we selected report headings and width of the data fields as
follows.

 Fig. 7.36: Report Wizard (Labels Tab)

Finally, we selected the template of our report, i.e., the layout of the data as follows and pressed
‘Finish’ button to complete the report design as follows (Fig. 7.37)

Fig. 7.37: Report Wizard (Template Tab)

104

After creation of the report, Data Model and Layout Model will be seen as Fig. 7.38 and
7.39respectively.

 Fig. 7.38: Data Model

 Fig. 7.39: Layout Model

105

As we have designed a business report to show all categories of data, we have to pass some
parameters to filter our data before running the report. Here, we will pass three parameters:
information category, starting date and ending date. Starting and ending date will impose the date
range for which data will be produced. Parameter form is designed as follows (Fig. 7.40).

Fig. 7.40: Report Parameter Form

To see the Information Category automatically in the parameter list, we passed SQL query into
the List of Values Option of the report as follows (Fig. 7.41).

 Fig. 7.41: Report LOV

106

When we will call the Business Reports from our Form designed in section 7.2, parameter box
will be appeared as follows (Fig. 7.42).

 Fig. 7.42: Report Parameters

 Fig. 7.43: Final Report (Run Time)

107

After giving the parameters properly, we will see the ultimate report as below. Here, we wanted

to see the Tax and Export data from ‘01-Jan-2011’ to ‘01-Jan-2014’. These are shown in Fig.

7.43 and 7.44.

 Fig. 7.44: Final Report (Run Time)

Process to see the ‘Liquid Asset’ is same as Business Data. Only difference is the data

source,format and parameter to be passed. So, we avoided to discuss the redundant process of

report design here. Howevere, the following query is passed to gather data for the report (Fig.

7.45).

108

 Fig. 7.45: SQL Query for Liquid Asset Report

When we will call the Vault Report (Liquid Asset) from our Form developed in section 7.2,
parameter box will be appeared as follows (Fig. 7.46).

 Fig. 7.46: Report Parameters

109

To see the current status of the vault we need only one parameter, i.e., current date. After passing

the parameter, report will be looked like as follows (Fig. 7.47).

 Fig. 7.47: Final Report (Run Time)

7.4 Summary

After successful reception of data into the production server of the central bank from different

commercial banks, this chapter opens the ways of the use of the final processed data by the

ultimate end-users. In this chapter, we developed a set of forms and reports so that users can

interact with data and take necessary hard copy print according to their needs. The end-users will

also be able to pass parameters to filter the data according to the demand. Necessary procedures

and functions that are written according the need of the forms and reports are also discussed

here. Step-by-step configuration of report and form tools is also elaborated here. Tools are

customized and configured efficiently so that the end-users can use it interactively. Finally,

ultimate output is seen by run time report preview before printing.

Securit

8.1 Intr

As we ar

here. We

provided

including

8.2 Netw

For netw

to access

administe

be no ch

MS-Activ

Pr

 F

ty Issues

oduction

re gathering

e have tried

d in all stag

g middle-tier

work Doma

work data acc

s the domain

er the whole

hance to ente

ve Directory

roduction
Server

Fig. 8.1:Dom

data from p

to impleme

ges, from b

r linked-serv

ain Configu

cess we crea

n. We create

e process. As

er a non-use

y Services of

Linked-
Server

main: bankin

Ch

production se

ent the maxi

banks’ datab

ver also.

uration

ated a domain

ed domain u

s all banks’

er of the dom

f Windows S

B1: Orac

B4: MS
VisualFox

ng.com

hapter 8

ervers of dif

imum securi

base server

n named ban

users and ad

servers will

main to acce

Server.

cle B2:
Ex

S-
xPro

B5:
Fi

8

fferent bank

ity features

s to central

nking.com a

dministrators

be the mem

ess any data

MS-
xcel

B
A

Text
ile

B
SQL

ks, security i

for this pur

l bank’s pr

and created

s so that they

mber of the d

a. We create

3: MS-
Access

C

6: MS-
L Server

s a great con

rpose. Secur

roduction se

appropriate

y can access

domain, there

ed the doma

Domain
Controller

(ADC)

110

ncern

rity is

erver,

users

s and

e will

in by

111

8.3 Database Views

After a table is created and populated with data, it may become necessary to prevent all users

from accessing all columns of a table, for data security reasons. This would mean creating

several tables having the appropriate number of columns and assigning specific users to each

table, as required. This will answer data security requirements very well but will give rise to a

great deal of redundant data being resident in tables, in the database.

To reduce redundant data to the minimum possible, database allows the creation of an object

called a View. A View is mapped, to a SELECT sentence. The table on which the view is based

is described in the FROM clause of the SELECT statement. The SELECT clause consists of a

sub-set of the columns of the table. Thus a View, which is mapped to a table, will in effect have

a sub-set of the actual columns of the table from which it is built. This technique offers a simple,

effective way of hiding columns of a table.

An interesting fact about a View is that it is stored only as a definition in database. When a

reference is made to a View, its definition is scanned, the base table is opened and the View

created on top of the base table. Hence, a View holds no data at all, until a specific call to the

View is made. This reduces redundant data on the HDD to a very large extent. When a View is

used to manipulate table data, the underlying base table will be completely invisible. This will

give the level of data security required.

The database engine treats a View just as though it was a base table. Hence a View can be

queried exactly as though it was a base table. However, a query fired on a View will run slower

than a query fired on a base table. This is because the View definition has to be retrieved from

database system catalogue, the base table has to be identified and opened in memory and then the

View has to be constructed on top of the base table, suitably masking table columns. Only then

will the query actually execute and return the active data set.

In this project we used view for SQL Server, Oracle and MS-Visual FoxPro databases.

8.3.1 Creating Views for Bank-6 MS-SQL Server

CREATE VIEW V_TRANSACTIONS AS

SELECT A. A_NO, AT.DESCRIPTION "ACCOUNT_TYPE", T.DESCRIPTION,T.TD, T. DEBIT,

 T.CREDIT,T.BALANCE FROM ACCOUNTS A,ACCOUNT_TYPE AT,TRANSACTIONS T

112

WHERE A. A_NO=T.A_NO AND A.T_ID=AT.T_ID

------ IN SQL SERVER THERE IS NO NEED OF SEMICOLON AT THE END OF THE VIEW DEFINITION------

8.3.2 Creating Views for Bank-1 Oracle Server

CREATE OR REPLACE VIEW V_TRANSACTIONS AS

SELECT A. A_NO, AT.DESCRIPTION "ACCOUNT_TYPE", T.DESCRIPTION,T.TD, T. DEBIT,

 T.CREDIT,T.BALANCE FROM ACCOUNTS A,ACCOUNT_TYPE AT,TRANSACTIONS T

WHERE A. A_NO=T.A_NO AND A.T_ID=AT.T_ID;

8.3.3 Creating Views for Bank-4 FoxPro Server

CREATE VIEW V_TRANSACTIONS

--WITH THE FOLLOWING CATEGORIES WE HAVE TO CREATE A VIEW MANUALLY

SELECT A. A_NO, AT.DESCRIPTION "ACCOUNT_TYPE", T.DESCRIPTION,T.TD, T. DEBIT,

 T.CREDIT,T.BALANCE FROM ACCOUNTS A,ACCOUNT_TYPE AT,TRANSACTIONS T

WHERE A. A_NO=T.A_NO AND A.T_ID=AT.T_ID

--AFTER CREATING THE VIEW WE HAVE TO RUN THE VIEW

8.3.4 Creating View to See Filtered Data in Linked-Server

CREATE VIEW V_GATHERED_DATA AS

SELECT GD.B_ID,GD.CTG_ID,IC.TYPE, GD.SD,GD.ED,GD.CD,GD.CREDIT_AMOUNT,

GD.DEBIT_AMOUNT FROM GATHERED_DATA GD, INFO_CATEGORIES IC

WHERE IC.CTG_ID=GD.CTG_ID

CREATE OR REPLACE VIEW V_GATHERED_DATA AS

SELECT B.B_ID,B.NAME, GD.TR_ID, GD.PR_ID, GD.CTG_ID,IC.TYPE, GD.SD,GD.ED,GD.CD,GD.CREDIT_AMOUNT,

GD.DEBIT_AMOUNT FROM BANK B, GATHERED_DATA GD, INFO_CATEGORIES IC

WHERE IC.CTG_ID=GD.CTG_ID

AND B.B_ID=GD.B_ID;

113

8.3.5 Creating View for Production Server of the Central Bank

CREATE OR REPLACE VIEW V_FILTERED_DATA AS SELECT BANK.B_ID, BANK.NAME,

FILTERING_DATA.STATUS, INFO_CATEGORIES.TYPE ,PROCESS_INFO.PR_ID

FROM PROCESS_INFO, INFO_CATEGORIES, BANK, FILTERING_DATA

WHERE ((PROCESS_INFO.CTG_ID=INFO_CATEGORIES.CTG_ID)

 AND (FILTERING_DATA.B_ID=BANK.B_ID)

 AND (FILTERING_DATA.PR_ID=PROCESS_INFO.PR_ID));

CREATE VIEW V_COLLECTED_DATA AS SELECT BANK.B_ID, BANK.NAME, FILTERING_DATA.PR_ID, GATHERED_DATA.SD,

GATHERED_DATA.ED, GATHERED_DATA.CD, GATHERED_DATA.CREDIT_AMOUNT,

GATHERED_DATA.DEBIT_AMOUNT, INFO_CATEGORIES.TYPE

FROM BANK, FILTERING_DATA, GATHERED_DATA, INFO_CATEGORIES

WHERE ((FILTERING_DATA.B_ID=BANK.B_ID)

 AND (GATHERED_DATA.B_ID=BANK.B_ID)

 AND (GATHERED_DATA.CTG_ID=INFO_CATEGORIES.CTG_ID))

CREATE VIEW V_FILTER_DATA AS SELECT ALL BANK.B_ID,

BANK.NAME, FILTERING_DATA.PR_ID, FILTERING_DATA.STATUS

FROM BANK, FILTERING_DATA

WHERE (FILTERING_DATA.B_ID=BANK.B_ID)

/

8.4 Database User Security

Database security is provided by creating appropriate database users and proving database role

and privileges to that user. In our project a database user is created who will be a read only user,

i.e., he/she can only view (select) the data. Moreover, view is created first for data abstraction,

that is also a read only data and then user is permitted to select the data from that view. So there

is no chance of the user to alter any data of bank’s production server. So it is ensured that any

user of the central bank can only select the data and there is no chance to alter any data of the

database, even to see any data that is not granted to the user.

114

8.4.1 MS-SQL Server

In MS-SQL Server we have created a user named test and provided the SELECT permission

only as needed. This process is described by the following figures (Fig. 8.2,8.3, 8.4 and 8.5).

Fig. 8.2: Creating Database User (Step-1)

Fig. 8.3: Creating Database User (Step-2)

115

Fig. 8.4: Creating Database User (Step-3)

Fig. 8.5: Creating Database User (Step-4)

116

8.4.2 Oracle

In case of Oracle Server, we have created a user named test and granted the SELECT permission

only as needed. This process is described by the following SQL commands.

At first we have connected to Oracle server as System Administrator (DBA). The user name

‘test’ is created by the following command.

SQL> create user test identified by antara;

User created.

Now permission is granted to ‘test’ so that he/she can connect to the oracle server as follows.

SQL> grant connect to test;

Grant succeeded.

He/she is also permitted to share the resource (data) of the oracle server as follows.

SQL> grant resource to test;

Grant succeeded.

Now, a user named ‘test’ is created successfully as a database user of Oracle. Now, the owner of

the schema, ‘bb’, has given read only permission to the user named ‘test’ so that he/she can only

select the data of the view v_gathered_data. By using the following commands we have done

this.

SQL> connect

Enter user-name: bb

Enter password: ******

Connected.

SQL> grant select on v_gathered_data to test;

Grant succeeded.

117

8.4.3Others

Other than SQL Server and Oracle, i.e., for MS-Access, MS-Visual FoxPro, MS-Excel and Text

files, there is no built-in database user management system. So, we cannot create a user in those

cases and provide grant permissions to the users like Oracle or SQL Server. In this situation, we

provided read only sharing permissions to the folder where data files are kept by the operating

system. As read only permissions are provided, it is ensured that no alteration of data is possible

by the remote users of the central bank. Fig. 8.6 and 8.7 describes this process.

For more and better security management it is also suggested that, if banks feel that security is

not ensured or don’t have trust regarding security, they can provide an online replica of the

production server or data files.

Fig. 8.6: Sharing Folder Permissions (Step-1)

118

Fig. 8.7: Sharing Folder Permissions (Step-2)

8.5 Summary

Finally, in this chapter we elaborated the most important part of the simulated project, i.e., data

security. The process of domain configuration, creation of appropriate views and user level

security management are also discussed here. Mechanism regarding database object use, granting

and revoking roles and privileges are also elaborated. Sharing folder permissions are also shown

in case of non-database files like MS-Excel and ASCII text files.

119

Chapter 9

Conclusion

9.1 Conclusion

Banking is the backbone of modern economy. Now-a-days, modern banking totally depends on

information and communication technology. For the economic development of Bangladesh it is

very much important to develop the banking sector. Formulation and implementation of the

national economic policy very much depends on information regarding banking. Bangladesh

Bank (BB) being a regulatory body and the central bank of Bangladesh collects, filters, organizes

and processes periodical data from different commercial banks operating in Bangladesh for

better policy, monitoring and management of the banking sector. There are a number of

departments and authorities involved with this process. But it has been facing severe problems to

have proper information regarding export, import, profit, tax, loans &advances, defaults, liquid

asset, etc.from different commercial banks for quick policy making. At present, in most of the

cases, all the information is collected manually and stored in separate manual registers, text files

and MS-Excel sheets in different departments which do not follow a uniform format. This

decentralized information is complicated to aggregate for monitoring and policy purpose from a

central point. By using current infrastructure it is not also possible for BB to access a

heterogeneous banking system where different banks use different banking software and

database. Keeping this problem in mind, in this project, we tried to develop a generalized

database to collect, filter, organize process and store periodical data in a unique standard format.

Firstly, we studied the banking system rigorously to explore the entities and their attributes. We

got number of entities incurred with this system. Then we explored the attributes of each entity.

After getting the entities and their attributes, we found out the relationship among the entities.

We also got normal relationship among the entities.

The central bank is the ultimate user of the system. So in the proposed system we used the

Linked-Server concept of Microsoft SQL-Server to gather data by using distributed query

technique. After filtering and processing in SQL-Server, data is exported to the production server

of the central bank, which is running an Oracle database management system. Security issues are

120

strictly handled in this regard. Finally, a set of forms and parameterized reports have been

designed that can be run from different departments by using central form and report server

which will assist the regulatory body for proper monitoring, control and making policy decision.

However, this system will require reliable communication system but a very low bandwidth is

enough to gather data, as only summarized data will travel from banks’ servers to linked-server.

This system is simulated in the HUAWEI-Lab of the IICT department successfully. Now, with

the proper permission of BB and cooperation of different commercial banks, this system can be

implemented for the betterment of the banking sector and economy of the country. This report

would be very useful for the central bank’s authority, if they implement the developed database.

9.2 Future Works

Any central bank of this world where banking system is same as Bangladesh (mainly developing

and neighboring countries like us) can implement this database for their banking system. Even a

bank which has a heterogeneous scattered branch banking system, having different banking

software and databases, can also customize this system to gather data for their head office policy

purpose. Corporate organizations, like garments and manufacturing industries, which have

different industries across the country can also use similar system to gather data to the central

administrative offices. International organizations which have separate offices all over the globe

can also get benefits from a system like this.

121

References

[1] “The Scheduled Bank Statistics”, Bangladesh Bank, Dhaka, Bangladesh, 2012.

[2] Rahman M. R., “IT readiness of banks for business in cyberspace”, a keynote paper

presented in an workshop, organized by BIBM, 2010.

[3] Mia, Rahman and Uddin, “E-banking: evolution, status and prospects”, The Cost and

Management, vol.35, no.1, pp. 36-48., 2007.

[4] Rahman, M. Mizanur, "Present status of e-banking in Bangladesh", Journal of the

Institute of the Bankers, Bangladesh, vol. 50, no. 1, 2003.

[5] BIBM Survey, "Computerization and information technology in the banking sector",

2010.

[6] Raihan, et al., "Computerization and information technology in the banking sector:

hindrances and remedies", Bank Parikrama, vol. XXVI, no. 1, 2010.

[7] “Guideline for Information and Communication Technology for Scheduled Banks and

Financial Institutions”, Bangladesh Bank, Dhaka, Bangladesh, 2005.

[8] “Guideline for ICT Security for Scheduled Banks and Financial Institutions”,

Bangladesh Bank, Dhaka, Bangladesh, 2010.

[9] Rahman, Atiur, “Digital Bangladesh Bank”, The Daily Star, July 05, 2010.

[10] Banstola, A., “Prospects and challenges of e-banking in Nepal”, The Journal of

Nepalese Business Studies, vol. IV, no. 1, Dec. 2007.

[11] Bhasin T. M., “E-commerce in Indian banking”, India: Authors Press, 2008.

[12] Rahman M.M., “Innovative technology and bank profitability: The Bangladesh

experience”, working paper series: WP 0803, Policy Analysis Unit, Bangladesh Bank,

2007.

122

Appendix-I

a)

INSERT INTO BANK VALUES('B4','SONALI BANK LIMITED');

INSERT INTO BANK VALUES('B2','BANGLADESH KRISHI BANK');

INSERT INTO BANK VALUES('B1','DUTCH-BANGLA BANK LIMITED');

INSERT INTO BANK VALUES('B6','HSBC LIMITED');

INSERT INTO BANK VALUES('B5','RUPALI BANK LIMITED');

INSERT INTO BANK VALUES('B3','BASIC BANK LIMITED');

INSERT INTO INFO_CATEGORIES VALUES('CTG01','TAX');

INSERT INTO INFO_CATEGORIES VALUES('CTG02','VAT');

INSERT INTO INFO_CATEGORIES VALUES('CTG03','IMPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG04','EXPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG05','LOAN');

INSERT INTO INFO_CATEGORIES VALUES('CTG06','LIQUID ASSET');

INSERT INTO INFO_CATEGORIES VALUES('CTG07','FDR');

INSERT INTO INFO_CATEGORIES VALUES('CTG08','CHARGES');

INSERT INTO INFO_CATEGORIES VALUES('CTG09','ADVANCES');

INSERT INTO INFO_CATEGORIES VALUES('CTG10','DEFAULTS');

INSERT INTO INFO_CATEGORIES VALUES('CTG11','INTEREST INCOME');

b)

INSERT INTO BANK VALUES('B1','SONALI BANK LIMITED');

INSERT INTO BANK VALUES('B2','BANGLADESH KRISHI BANK');

INSERT INTO BANK VALUES('B3','DUTCH-BANGLA BANK LIMITED');

INSERT INTO BANK VALUES('B4','HSBC LIMITED');

INSERT INTO BANK VALUES('B5','RUPALI BANK LIMITED');

INSERT INTO BANK VALUES('B6','BASIC BANK LIMITED');

INSERT INTO INFO_CATEGORIES VALUES('CTG01','TAX');

INSERT INTO INFO_CATEGORIES VALUES('CTG02','VAT');

INSERT INTO INFO_CATEGORIES VALUES('CTG03','IMPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG04','EXPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG05','LOAN');

123

INSERT INTO INFO_CATEGORIES VALUES('CTG06','LIQUID ASSET');

INSERT INTO INFO_CATEGORIES VALUES('CTG07','FDR');

INSERT INTO INFO_CATEGORIES VALUES('CTG08','CHARGES');

INSERT INTO INFO_CATEGORIES VALUES('CTG09','ADVANCES');

INSERT INTO INFO_CATEGORIES VALUES('CTG10','DEFAULTS');

INSERT INTO INFO_CATEGORIES VALUES('CTG11','INTEREST INCOME');

c)

INSERT INTO BANK VALUES('B1','SONALI BANK LIMITED');

INSERT INTO BANK VALUES('B2','BANGLADESH KRISHI BANK');

INSERT INTO BANK VALUES('B3','DUTCH-BANGLA BANK LIMITED');

INSERT INTO BANK VALUES('B4','HSBC LIMITED');

INSERT INTO BANK VALUES('B5','RUPALI BANK LIMITED');

INSERT INTO BANK VALUES('B6','BASIC BANK LIMITED');

INSERT INTO INFO_CATEGORIES VALUES('CTG01','TAX');

INSERT INTO INFO_CATEGORIES VALUES('CTG02','VAT');

INSERT INTO INFO_CATEGORIES VALUES('CTG03','IMPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG04','EXPORT LC');

INSERT INTO INFO_CATEGORIES VALUES('CTG05','LOAN');

INSERT INTO INFO_CATEGORIES VALUES('CTG06','LIQUID ASSET');

INSERT INTO INFO_CATEGORIES VALUES('CTG07','FDR');

INSERT INTO INFO_CATEGORIES VALUES('CTG08','CHARGES');

INSERT INTO INFO_CATEGORIES VALUES('CTG09','ADVANCES');

INSERT INTO INFO_CATEGORIES VALUES('CTG10','DEFAULTS');

INSERT INTO INFO_CATEGORIES VALUES('CTG11','ATM');

d)

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C001', 'MD. HAFIZUR RAHMAN', '413,
MIRPUR,DHAKA','1235695823254','01775858256');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C002', 'MD. HELEL UDDIN', 'H-3, R-
5,DHANMONDI,DHAKA','1885895823254','01556323244');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C003', 'MS. TAHMINA AKHTER',
'H#12,R#15,SHYAMOLI,DHAKA','2365251425632','9003031');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C004', 'MS. KANIZ RBBI',
'744,KAZIPARA,MIRPUR,DHAKA','4569871425632','9003088, 0174586958');

124

INSERT INTO ACCOUNT_TYPE VALUES('T1','SAVINGS');

INSERT INTO ACCOUNT_TYPE VALUES('T2','CURRENT');

INSERT INTO ACCOUNT_TYPE VALUES('T3', 'FDR');

INSERT INTO ACCOUNT_TYPE VALUES('T4','LOAN AND ADVANCE');

INSERT INTO ACCOUNT_TYPE VALUES('T5','IMPORT LC');

INSERT INTO ACCOUNT_TYPE VALUES('T6', 'EXPORT LC');

INSERT INTO ACCOUNTS VALUES('A001','T1','C001', GETDATE()-300, 'SALAMA AKHTER: SISTER',500.00,6673);

INSERT INTO ACCOUNTS VALUES('A002','T1','C002', GETDATE()-295, 'RABBANI MAHBUB: SON',500.00,2618.1);

INSERT INTO ACCOUNTS VALUES('A003','T1','C003', GETDATE()-290, 'MOKBUL HOSSAIN: FATHER',5000.00,49200);

INSERT INTO ACCOUNTS VALUES('A004','T1','C004', GETDATE()-280, 'FUAD HASSAN: BROTHER',1000.00,89650);

INSERT INTO ACCOUNTS VALUES('A005','T2','C001', GETDATE()-270, 'SALAMA AKHTER: SISTER',50000.00,54145);

INSERT INTO ACCOUNTS VALUES('A006','T3','C002', GETDATE()-170, 'RABBANI MAHBUB: SON',0,798870);

INSERT INTO ACCOUNTS VALUES('A007','T4','C003', GETDATE()-150, 'MOKBUL HOSSAIN: FATHER',0,9640);

INSERT INTO ACCOUNTS VALUES('A008','T5','C004', GETDATE()-130, 'FUAD HASSAN: BROTHER',0,6889750);

INSERT INTO ACCOUNTS VALUES('A009','T6','C001', GETDATE()-100, 'SALAMA AKHTER: SISTER',0,49119750);

INSERT INTO ACCOUNTS VALUES('A010','T2','C002', GETDATE()-80, 'RABBANI MAHBUB: SON',50000.00,399310);

INSERT INTO ACCOUNTS VALUES('A011','T2','C003', GETDATE()-60, 'MOKBUL HOSSAIN: FATHER',50000.00,93705);

INSERT INTO ACCOUNTS VALUES('A012','T6','C004', GETDATE()-30, 'FUAD HASSAN: BROTHER',0,80192605);

INSERT INTO TRANSACTIONS VALUES('TR00000001', 'A001','CASH RECEIVE',GETDATE()-290,NULL,5000,5000);

INSERT INTO TRANSACTIONS VALUES('TR00000002', 'A001','CHEQUE',GETDATE()-215,1000,NULL,4000);

INSERT INTO TRANSACTIONS VALUES('TR00000003', 'A001','TRANSFER',GETDATE()-180,NULL,5000,9000);

INSERT INTO TRANSACTIONS VALUES('TR00000004', 'A001','ATM',GETDATE()-100,2000,NULL,7000);

INSERT INTO TRANSACTIONS VALUES('TR00000005', 'A002','CASH RECEIVE',GETDATE()-290,NULL,2000,2000);

INSERT INTO TRANSACTIONS VALUES('TR00000006', 'A002','CHEQUE',GETDATE()-200,500,NULL,1500);

INSERT INTO TRANSACTIONS VALUES('TR00000007', 'A002','TRANSFER',GETDATE()-100,NULL,1500,3000);

INSERT INTO TRANSACTIONS VALUES('TR00000008', 'A002','ATM',GETDATE()-50,100,NULL,2900);

INSERT INTO TRANSACTIONS VALUES('TR00000009', 'A003','CASH RECEIVE',GETDATE()-200,NULL,50000,50000);

INSERT INTO TRANSACTIONS VALUES('TR00000010', 'A004','CHEQUE CLEARING',GETDATE()-100,NULL,100000,100000);

INSERT INTO TRANSACTIONS VALUES('TR00000011', 'A005','CASH RECEIVE',GETDATE()-200,NULL,55000,55000);

INSERT INTO TRANSACTIONS VALUES('TR00000012', 'A006','CHEQUE CLEARING',GETDATE()-150,NULL,800000,800000);

INSERT INTO TRANSACTIONS VALUES('TR00000013', 'A007','CHEQUE CLEARING',GETDATE()-120,NULL,200000,200000);

INSERT INTO TRANSACTIONS VALUES('TR00000014', 'A007','CASH WITHDRAWL',GETDATE()-100,200000,NULL,0);

125

INSERT INTO TRANSACTIONS VALUES('TR00000015', 'A007','CASH RECEIVE',GETDATE()-80,NULL, 10000,10000);

INSERT INTO TRANSACTIONS VALUES('TR00000016', 'A008','CHEQUE CLEARING',GETDATE()-125,NULL,50000000,50000000);

INSERT INTO TRANSACTIONS VALUES('TR00000017', 'A008','TRANSFER',GETDATE()-100,NULL,20000000,70000000);

INSERT INTO TRANSACTIONS VALUES('TR00000018', 'A008','CHEQUE CLEARING',GETDATE(),60000000,NULL,10000000);

INSERT INTO TRANSACTIONS VALUES('TR00000019', 'A009','CHEQUE CLEARING',GETDATE()-90,NULL,25000000,25000000);

INSERT INTO TRANSACTIONS VALUES('TR00000020', 'A009','CHEQUE CLEARING',GETDATE()-50,NULL,45000000,70000000);

INSERT INTO TRANSACTIONS VALUES('TR00000021', 'A009','CHEQUE CLEARING',GETDATE()-25,NULL,10000000,80000000);

INSERT INTO TRANSACTIONS VALUES('TR00000022', 'A010','CHEQUE CLEARING',GETDATE()-60,NULL,400000,400000);

INSERT INTO TRANSACTIONS VALUES('TR00000023', 'A011','TRANSFER',GETDATE()-40,NULL,95000,95000);

INSERT INTO TRANSACTIONS VALUES('TR00000024', 'A012','TRANSFER',GETDATE()-40,NULL,195000,195000);

INSERT INTO TRANSACTIONS VALUES('TR00000025', 'A001','VAT','31-DEC-12',70,NULL,6930);

INSERT INTO TRANSACTIONS VALUES('TR00000026', 'A002','VAT','31-DEC-12',29,NULL,2871);

INSERT INTO TRANSACTIONS VALUES('TR00000027', 'A003','VAT','31-DEC-12',500,NULL,49500);

INSERT INTO TRANSACTIONS VALUES('TR00000028', 'A004','VAT','31-DEC-12',1000,NULL,99000);

INSERT INTO TRANSACTIONS VALUES('TR00000029', 'A005','VAT','31-DEC-12',550,NULL,54450);

INSERT INTO TRANSACTIONS VALUES('TR00000030', 'A006','VAT','31-DEC-12',800,NULL,799200);

INSERT INTO TRANSACTIONS VALUES('TR00000031', 'A007','VAT','31-DEC-12',100,NULL,9900);

INSERT INTO TRANSACTIONS VALUES('TR00000032', 'A008','VAT','31-DEC-12',100000,NULL,9900000);

INSERT INTO TRANSACTIONS VALUES('TR00000033', 'A009','VAT','31-DEC-12',800000,NULL,79200000);

INSERT INTO TRANSACTIONS VALUES('TR00000034', 'A010','VAT','31-DEC-12',400,NULL,399600);

INSERT INTO TRANSACTIONS VALUES('TR00000035', 'A011','VAT','31-DEC-12',950,NULL,94050);

INSERT INTO TRANSACTIONS VALUES('TR00000036', 'A012','VAT','31-DEC-12',1950,NULL,193050);

INSERT INTO TRANSACTIONS VALUES('TR00000037', 'A001','TAX','31-DEC-12',7,NULL,6923);

INSERT INTO TRANSACTIONS VALUES('TR00000038', 'A002','TAX','31-DEC-12',2.9,NULL,2868.1);

INSERT INTO TRANSACTIONS VALUES('TR00000039', 'A003','TAX','31-DEC-12',50,NULL,49450);

INSERT INTO TRANSACTIONS VALUES('TR00000040', 'A004','TAX','31-DEC-12',100,NULL,89900);

INSERT INTO TRANSACTIONS VALUES('TR00000041', 'A005','TAX','31-DEC-12',55,NULL,54395);

INSERT INTO TRANSACTIONS VALUES('TR00000042', 'A006','TAX','31-DEC-12',80,NULL,799120);

INSERT INTO TRANSACTIONS VALUES('TR00000043', 'A007','TAX','31-DEC-12',10,NULL,9890);

INSERT INTO TRANSACTIONS VALUES('TR00000044', 'A008','TAX','31-DEC-12',10000,NULL,9890000);

INSERT INTO TRANSACTIONS VALUES('TR00000045', 'A009','TAX','31-DEC-12',80000,NULL,79120000);

INSERT INTO TRANSACTIONS VALUES('TR00000046', 'A010','TAX','31-DEC-12',40,NULL,399560);

INSERT INTO TRANSACTIONS VALUES('TR00000047', 'A011','TAX','31-DEC-12',95,NULL,93955);

INSERT INTO TRANSACTIONS VALUES('TR00000048', 'A012','TAX','31-DEC-12',195,NULL,192855);

INSERT INTO TRANSACTIONS VALUES('TR00000049', 'A001','CHARGES','31-DEC-12',250,NULL,6673);

126

INSERT INTO TRANSACTIONS VALUES('TR00000050', 'A002','CHARGES','31-DEC-12',250,NULL,2618.1);

INSERT INTO TRANSACTIONS VALUES('TR00000051', 'A003','CHARGES','31-DEC-12',250,NULL,49200);

INSERT INTO TRANSACTIONS VALUES('TR00000052', 'A004','CHARGES','31-DEC-12',250,NULL,89650);

INSERT INTO TRANSACTIONS VALUES('TR00000053', 'A005','CHARGES','31-DEC-12',250,NULL,54145);

INSERT INTO TRANSACTIONS VALUES('TR00000054', 'A006','CHARGES','31-DEC-12',250,NULL,798870);

INSERT INTO TRANSACTIONS VALUES('TR00000055', 'A007','CHARGES','31-DEC-12',250,NULL,9640);

INSERT INTO TRANSACTIONS VALUES('TR00000056', 'A008','CHARGES','31-DEC-12',250,NULL,9889750);

INSERT INTO TRANSACTIONS VALUES('TR00000057', 'A009','CHARGES','31-DEC-12',250,NULL,79119750);

INSERT INTO TRANSACTIONS VALUES('TR00000058', 'A010','CHARGES','31-DEC-12',250,NULL,399310);

INSERT INTO TRANSACTIONS VALUES('TR00000059', 'A011','CHARGES','31-DEC-12',250,NULL,93705);

INSERT INTO TRANSACTIONS VALUES('TR00000060', 'A012','CHARGES','31-DEC-12',250,NULL,192605);

INSERT INTO TRANSACTIONS VALUES('TR00000061', 'A012','EXPORT LC',GETDATE()-40,50000000,NULL,50192605);

INSERT INTO TRANSACTIONS VALUES('TR00000062', 'A012','EXPORT LC',GETDATE()-30,10000000,NULL,60192605);

INSERT INTO TRANSACTIONS VALUES('TR00000063', 'A012','EXPORT LC',GETDATE()-20,20000000,NULL,80192605);

INSERT INTO TRANSACTIONS VALUES('TR00000064', 'A008','IMPORT LC',GETDATE()-40,NULL,1000000,8889750);

INSERT INTO TRANSACTIONS VALUES('TR00000065', 'A008','IMPORT LC',GETDATE()-30,NULL,1000000,7889750);

INSERT INTO TRANSACTIONS VALUES('TR00000066', 'A008','IMPORT LC',GETDATE()-10,NULL,1000000,6889750);

INSERT INTO TRANSACTIONS VALUES('TR00000067', 'A009','IMPORT LC',GETDATE()-40,NULL,10000000,69119750);

INSERT INTO TRANSACTIONS VALUES('TR00000068', 'A009','IMPORT LC',GETDATE()-30,NULL,10000000,59119750);

INSERT INTO TRANSACTIONS VALUES('TR00000069', 'A009','IMPORT LC',GETDATE()-10,NULL,10000000,49119750);

INSERT INTO VAULT VALUES('V001', 'DHANMONDI BRANCH', 'MD. ZAMIL AHMED', 25000000, 30000000);

INSERT INTO VAULT VALUES('V002', 'SUNAMGONJ BRANCH', 'MS. ANTARA ZERIN',20000000, 40000000);

INSERT INTO VAULT VALUES('V003', 'KHULNA BRANCH', 'MD. AKHTER HAMID', 13000000, 15000000);

INSERT INTO VAULT VALUES('V004', 'RAJSHAHI BRANCH', 'MD. ZAMIL AHMED', 10000000, 15000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000001', 'V001', GETDATE(), NULL, 50000000,50000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000002', 'V001', GETDATE(), NULL, 30000000,80000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000003', 'V001', GETDATE(), NULL, 10000000,90000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000004', 'V001', GETDATE()+1, 10000000,NULL,80000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000005', 'V001', GETDATE()+2, 20000000,NULL,60000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000006', 'V001', GETDATE()+3, 30000000,NULL,30000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000007', 'V002', GETDATE(), NULL, 2000000,2000000);

127

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000008', 'V002', GETDATE(), NULL, 1000000,3000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000009', 'V002', GETDATE(), NULL, 5000000,8000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000010', 'V002', GETDATE()+1, 1000000,NULL,7000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000011', 'V002', GETDATE()+2, 1000000,NULL,6000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000012', 'V002', GETDATE()+3, 2000000,NULL,4000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000013', 'V003', GETDATE(), NULL, 25000000,25000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000014', 'V003', GETDATE()+1, 10000000,NULL,15000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000015', 'V004', GETDATE(), NULL, 25000000,25000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000016', 'V004', GETDATE()+1, 10000000,NULL,15000000);

e)

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C001', 'MD. HAFIZUR RAHMAN', '413,
MIRPUR,DHAKA','1235695823254','01775858256');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C002', 'MD. HELEL UDDIN', 'H-3, R-
5,DHANMONDI,DHAKA','1885895823254','01556323244');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C003', 'MS. TAHMINA AKHTER',
'H#12,R#15,SHYAMOLI,DHAKA','2365251425632','9003031');

INSERT INTO CUSTOMERS (C_ID,NAME,ADDRESS, N_ID,PHONE) VALUES('C004', 'MS. KANIZ RBBI',
'744,KAZIPARA,MIRPUR,DHAKA','4569871425632','9003088, 0174586958');

INSERT INTO ACCOUNT_TYPE VALUES('T1','SAVINGS');

INSERT INTO ACCOUNT_TYPE VALUES('T2','CURRENT');

INSERT INTO ACCOUNT_TYPE VALUES('T3', 'FDR');

INSERT INTO ACCOUNT_TYPE VALUES('T4','LOAN');

INSERT INTO ACCOUNT_TYPE VALUES('T5','IMPORT LC');

INSERT INTO ACCOUNT_TYPE VALUES('T6', 'EXPORT LC');

INSERT INTO ACCOUNTS VALUES('A001','T1','C001', SYSDATE-300, 'SALAMA AKHTER: SISTER',500.00,6673);

INSERT INTO ACCOUNTS VALUES('A002','T1','C002', SYSDATE-295, 'RABBANI MAHBUB: SON',500.00,2618.1);

INSERT INTO ACCOUNTS VALUES('A003','T1','C003', SYSDATE-290, 'MOKBUL HOSSAIN: FATHER',5000.00,49200);

INSERT INTO ACCOUNTS VALUES('A005','T2','C001', SYSDATE-270, 'SALAMA AKHTER: SISTER',50000.00,54145);

INSERT INTO ACCOUNTS VALUES('A006','T3','C002', SYSDATE-170, 'RABBANI MAHBUB: SON',0,798870);

INSERT INTO ACCOUNTS VALUES('A007','T4','C003', SYSDATE-150, 'MOKBUL HOSSAIN: FATHER',0,9640);

INSERT INTO ACCOUNTS VALUES('A008','T5','C004', SYSDATE-130, 'FUAD HASSAN: BROTHER',0,6889750);

INSERT INTO ACCOUNTS VALUES('A009','T6','C001', SYSDATE-100, 'SALAMA AKHTER: SISTER',0,49119750);

INSERT INTO ACCOUNTS VALUES('A010','T2','C002', SYSDATE-80, 'RABBANI MAHBUB: SON',50000.00,399310);

INSERT INTO ACCOUNTS VALUES('A011','T2','C003', SYSDATE-60, 'MOKBUL HOSSAIN: FATHER',50000.00,93705);

128

INSERT INTO ACCOUNTS VALUES('A012','T6','C004', SYSDATE-30, 'FUAD HASSAN: BROTHER',0,80192605);

INSERT INTO TRANSACTIONS VALUES('TR00000001', 'A001','CASH RECEIVE',SYSDATE-290,NULL,5000,5000);

INSERT INTO TRANSACTIONS VALUES('TR00000002', 'A001','CHEQUE',SYSDATE-215,1000,NULL,4000);

INSERT INTO TRANSACTIONS VALUES('TR00000003', 'A001','TRANSFER',SYSDATE-180,NULL,5000,9000);

INSERT INTO TRANSACTIONS VALUES('TR00000004', 'A001','ATM',SYSDATE-100,2000,NULL,7000);

INSERT INTO TRANSACTIONS VALUES('TR00000005', 'A002','CASH RECEIVE',SYSDATE-290,NULL,2000,2000);

INSERT INTO TRANSACTIONS VALUES('TR00000006', 'A002','CHEQUE',SYSDATE-200,500,NULL,1500);

INSERT INTO TRANSACTIONS VALUES('TR00000007', 'A002','TRANSFER',SYSDATE-100,NULL,1500,3000);

INSERT INTO TRANSACTIONS VALUES('TR00000008', 'A002','ATM',SYSDATE-50,100,NULL,2900);

INSERT INTO TRANSACTIONS VALUES('TR00000009', 'A003','CASH RECEIVE',SYSDATE-200,NULL,50000,50000);

INSERT INTO TRANSACTIONS VALUES('TR00000011', 'A005','CASH RECEIVE',SYSDATE-200,NULL,55000,55000);

INSERT INTO TRANSACTIONS VALUES('TR00000012', 'A006','CHEQUE CLEARING',SYSDATE-150,NULL,800000,800000);

INSERT INTO TRANSACTIONS VALUES('TR00000013', 'A007','CHEQUE CLEARING',SYSDATE-120,NULL,200000,200000);

INSERT INTO TRANSACTIONS VALUES('TR00000014', 'A007','CASH WITHDRAWL',SYSDATE-100,200000,NULL,0);

INSERT INTO TRANSACTIONS VALUES('TR00000015', 'A007','CASH RECEIVE',SYSDATE-80,NULL, 10000,10000);

INSERT INTO TRANSACTIONS VALUES('TR00000016', 'A008','CHEQUE CLEARING',SYSDATE-125,NULL,50000000,50000000);

INSERT INTO TRANSACTIONS VALUES('TR00000017', 'A008','TRANSFER',SYSDATE-100,NULL,20000000,70000000);

INSERT INTO TRANSACTIONS VALUES('TR00000018', 'A008','CHEQUE CLEARING-50',SYSDATE,60000000,NULL,10000000);

INSERT INTO TRANSACTIONS VALUES('TR00000019', 'A009','CHEQUE CLEARING',SYSDATE-90,NULL,25000000,25000000);

INSERT INTO TRANSACTIONS VALUES('TR00000020', 'A009','CHEQUE CLEARING',SYSDATE-50,NULL,45000000,70000000);

INSERT INTO TRANSACTIONS VALUES('TR00000021', 'A009','CHEQUE CLEARING',SYSDATE-25,NULL,10000000,80000000);

INSERT INTO TRANSACTIONS VALUES('TR00000022', 'A010','CHEQUE CLEARING',SYSDATE-60,NULL,400000,400000);

INSERT INTO TRANSACTIONS VALUES('TR00000023', 'A011','TRANSFER',SYSDATE-40,NULL,95000,95000);

INSERT INTO TRANSACTIONS VALUES('TR00000024', 'A012','TRANSFER',SYSDATE-40,NULL,195000,195000);

INSERT INTO TRANSACTIONS VALUES('TR00000025', 'A001','VAT','31-DEC-12',70,NULL,6930);

INSERT INTO TRANSACTIONS VALUES('TR00000026', 'A002','VAT','31-DEC-12',29,NULL,2871);

INSERT INTO TRANSACTIONS VALUES('TR00000027', 'A003','VAT','31-DEC-12',500,NULL,49500);

INSERT INTO TRANSACTIONS VALUES('TR00000029', 'A005','VAT','31-DEC-12',550,NULL,54450);

INSERT INTO TRANSACTIONS VALUES('TR00000030', 'A006','VAT','31-DEC-12',800,NULL,799200);

INSERT INTO TRANSACTIONS VALUES('TR00000031', 'A007','VAT','31-DEC-12',100,NULL,9900);

INSERT INTO TRANSACTIONS VALUES('TR00000032', 'A008','VAT','31-DEC-12',100000,NULL,9900000);

INSERT INTO TRANSACTIONS VALUES('TR00000033', 'A009','VAT','31-DEC-12',800000,NULL,79200000);

INSERT INTO TRANSACTIONS VALUES('TR00000034', 'A010','VAT','31-DEC-12',400,NULL,399600);

INSERT INTO TRANSACTIONS VALUES('TR00000035', 'A011','VAT','31-DEC-12',950,NULL,94050);

129

INSERT INTO TRANSACTIONS VALUES('TR00000036', 'A012','VAT','31-DEC-12',1950,NULL,193050);

INSERT INTO TRANSACTIONS VALUES('TR00000037', 'A001','TAX','31-DEC-12',7,NULL,6923);

INSERT INTO TRANSACTIONS VALUES('TR00000038', 'A002','TAX','31-DEC-12',2.9,NULL,2868.1);

INSERT INTO TRANSACTIONS VALUES('TR00000039', 'A003','TAX','31-DEC-12',50,NULL,49450);

INSERT INTO TRANSACTIONS VALUES('TR00000041', 'A005','TAX','31-DEC-12',55,NULL,54395);

INSERT INTO TRANSACTIONS VALUES('TR00000042', 'A006','TAX','31-DEC-12',80,NULL,799120);

INSERT INTO TRANSACTIONS VALUES('TR00000043', 'A007','TAX','31-DEC-12',10,NULL,9890);

INSERT INTO TRANSACTIONS VALUES('TR00000044', 'A008','TAX','31-DEC-12',10000,NULL,9890000);

INSERT INTO TRANSACTIONS VALUES('TR00000045', 'A009','TAX','31-DEC-12',80000,NULL,79120000);

INSERT INTO TRANSACTIONS VALUES('TR00000046', 'A010','TAX','31-DEC-12',40,NULL,399560);

INSERT INTO TRANSACTIONS VALUES('TR00000047', 'A011','TAX','31-DEC-12',95,NULL,93955);

INSERT INTO TRANSACTIONS VALUES('TR00000048', 'A012','TAX','31-DEC-12',195,NULL,192855);

INSERT INTO TRANSACTIONS VALUES('TR00000049', 'A001','CHARGES','31-DEC-12',250,NULL,6673);

INSERT INTO TRANSACTIONS VALUES('TR00000050', 'A002','CHARGES','31-DEC-12',250,NULL,2618.1);

INSERT INTO TRANSACTIONS VALUES('TR00000051', 'A003','CHARGES','31-DEC-12',250,NULL,49200);

INSERT INTO TRANSACTIONS VALUES('TR00000053', 'A005','CHARGES','31-DEC-12',250,NULL,54145);

INSERT INTO TRANSACTIONS VALUES('TR00000054', 'A006','CHARGES','31-DEC-12',250,NULL,798870);

INSERT INTO TRANSACTIONS VALUES('TR00000055', 'A007','CHARGES','31-DEC-12',250,NULL,9640);

INSERT INTO TRANSACTIONS VALUES('TR00000056', 'A008','CHARGES','31-DEC-12',250,NULL,9889750);

INSERT INTO TRANSACTIONS VALUES('TR00000057', 'A009','CHARGES','31-DEC-12',250,NULL,79119750);

INSERT INTO TRANSACTIONS VALUES('TR00000058', 'A010','CHARGES','31-DEC-12',250,NULL,399310);

INSERT INTO TRANSACTIONS VALUES('TR00000059', 'A011','CHARGES','31-DEC-12',250,NULL,93705);

INSERT INTO TRANSACTIONS VALUES('TR00000060', 'A012','CHARGES','31-DEC-12',250,NULL,192605);

INSERT INTO TRANSACTIONS VALUES('TR00000061', 'A012','EXPORT LC',SYSDATE-40,50000000,NULL,50192605);

INSERT INTO TRANSACTIONS VALUES('TR00000062', 'A012','EXPORT LC',SYSDATE-30,10000000,NULL,60192605);

INSERT INTO TRANSACTIONS VALUES('TR00000063', 'A012','EXPORT LC',SYSDATE-20,20000000,NULL,80192605);

INSERT INTO TRANSACTIONS VALUES('TR00000064', 'A008','IMPORT LC',SYSDATE-40,NULL,1000000,8889750);

INSERT INTO TRANSACTIONS VALUES('TR00000065', 'A008','IMPORT LC',SYSDATE-30,NULL,1000000,7889750);

INSERT INTO TRANSACTIONS VALUES('TR00000066', 'A008','IMPORT LC',SYSDATE-10,NULL,1000000,6889750);

INSERT INTO TRANSACTIONS VALUES('TR00000067', 'A009','IMPORT LC',SYSDATE-40,NULL,10000000,69119750);

INSERT INTO TRANSACTIONS VALUES('TR00000068', 'A009','IMPORT LC',SYSDATE-30,NULL,10000000,59119750);

INSERT INTO TRANSACTIONS VALUES('TR00000069', 'A009','IMPORT LC',SYSDATE-10,NULL,10000000,49119750);

INSERT INTO VAULT VALUES('V001', 'DHANMONDI BRANCH', 'MD. ZAMIL AHMED', 25000000, 30000000);

INSERT INTO VAULT VALUES('V002', 'SUNAMGONJ BRANCH', 'MS. ANTARA ZERIN',20000000, 40000000);

130

INSERT INTO VAULT VALUES('V003', 'KHULNA BRANCH', 'MD. AKHTER HAMID', 13000000, 15000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000001', 'V001',SYSDATE, NULL, 50000000,50000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000002', 'V001',SYSDATE, NULL, 30000000,80000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000003', 'V001',SYSDATE, NULL, 10000000,90000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000004', 'V001',SYSDATE+1, 10000000,NULL,80000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000005', 'V001',SYSDATE+2, 20000000,NULL,60000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000006', 'V001',SYSDATE+3, 30000000,NULL,30000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000007', 'V002',SYSDATE, NULL, 2000000,2000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000008', 'V002',SYSDATE, NULL, 1000000,3000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000009', 'V002',SYSDATE, NULL, 5000000,8000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000010', 'V002',SYSDATE+1, 1000000,NULL,7000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000011', 'V002',SYSDATE+2, 1000000,NULL,6000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000012', 'V002',SYSDATE+3, 2000000,NULL,4000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000013', 'V003',SYSDATE, NULL, 25000000,25000000);

INSERT INTO VAULT_TRANSACTION VALUES('VTR0000014', 'V003',SYSDATE+1, 10000000,NULL,15000000);

COMMIT;

	Final Paper Aggregated Part I
	Final Paper Aggregated Part II

