STUDY OF A BALANCED OUTPUT THREE PHASE STATIC CONVERTER FOR AN UNBALANCED SYSTEM

BY
SADIQUR RAHMAN KHAN

A THESIS
SUBMITTED TO THE DERARTMENT, OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET IN PARTIAL fFULFILLMENT OF THE REQUIREMENT FOR

THE DEGREE

OF
MASTER OF SCIENCE IN ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OE ENGINEERING. AND TECHNOLOGY, DHAKA OCTOBER, 1992

Abstract

Converter analysis presented in technical literatures have been mostly based on assumption that converter operates under balanced conditions. Evaluation of real operating conditions, however , show that this assumption is not valid for all operating conditions. It is, therefore, essential in converter analysis to accomodate unbalanced operating conditions. This thesis discusses a novel technique of producing the balanced output of the converter when the input is unbalanced in amplitude.

The proposed technique states that in order to generate balanced voltages and currents from amplitude unbalanced systems, the magnitudes of the fundamental components of three switching functions has to be inversely proportional to the amplitudes of the corresponding unbalance input phase voltages .. This thesis focuses on the analysis and design of the three phase static converter under both balanced and unbalanced operating conditions. Analytically predicted results are varified by simulation.

ACKNOWLEDGEMENT

The author is pleased to have the opportunity of expressing his heart-felt and most sincere gratitude to a number of people who have helped him in course of this research work.

First and foremost the author wishes to acknowledge his profound indebtness to Dr. Shahidul Islam Khan , Associate Professor of the Department of EEE, BUET. This research work was done under his kind supervision . His keen interest and patience and the scholarly guidance and suggestions at all stages of this research have made the author to complete this thesis.

The author also express his sincere gratitude to Dr. Saiful Islam, Professor and Head , Department of Electrical and Electronic Engineering, BUET for his sincere help towaed the progress of this work.

The author tkankfully acknowledges the valuable discussions occasionally made with Dr. Mohammad Ali Choudhury, Assistant Professor, Department of EEE, BUET.

The author acknowledges with sincere thanks, the all-out cooperation and services rendered by the faculty members and the staff of the EEE Department, BUET.

Finally the author express his utmost gratitude to his mother without whose consistent encourgement the thesis work would not have been possible.

APPROVAL

Accepted as satisfactory in partial fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Electronic).

BOARD OE EXAMINERS
1.

Chairman
(Supervisor)
Associate Professor,
Department of Electrical and Electronic Engineering, BUET, Dhaka, Bangladesh.

Saiful Is tam 28/10192

2. $\frac{}{\text { (Dr. Saiful Islam) }}$

Member
(Ex officio)
Professor and Head,
Department of Electrical and Electronic Engineering , BUET, Dhaka, Bangladesh.
3. Efante/ 28
(Dr. Enamel Basher)
Associate Professor
Department of Electrical and Electronic Engineering , BUET, Dhaka, Bangladesh.
4.

Member
(Dr. Mohammad Ali Choudhury)
Assistant Professor
Department of Electrical and Electronic Engineering , BUET, Dhaka, Bangladesh.
5.

Member
(External)

CERTIFICATE

This is to certify that the work presented in this thesis paper is the outcome of the investigation carried out by me under the supervision of Dr. Shahidul Islam Khan in the Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka. It is also declared. that neither this thesis nor any part thereof has been submitted or is being concurrently submitted anywhere else for the award of any degree or diploma.

Signature of the Supervisor

Signature of the Author

AND

TEACHERS

TABLE OE CONTENTS

Page
Abstract II
Acknowledgements III
Approval IV
Certificate V
Dedication VI
TABLE OF CONTENTS VII
List of Figures XI
List of Tables XIV
List of Symbols and Abbreviations XVI
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Review of Previous Work 2
1.3 The Proposed Method 5
1.4 Scope of the Present Work 6
CHAPTER 2 MODELLING AND ARALYSIS OF THE CONVERTER 10
2.1 Introduction 10
2.2 Mathematical Modelling of the Converter 11
2.2.1 Practical Converter Structure 15
2.2.2 Operation of the Converter 19
2.2.3 Mathematical Analysis of the 3 phaseto 3 phase Converter Under Balance Input20
Page
2.2.4 Mathematical Ansilysis of the 3 Phase to 3
Phase Converter Under Unbalance Input 24
2.3 Conclusions 31
CHAPTER 3 FOURIER ANALYSIS OF THE CONVERTER 32
3.1 Introduction 32
3.2 Switching Function 32
3.3 Fourier Analysis of Output Voltage and Input
Current for Balanced Input 36
3.3.1 Output Voltage 36
3.3.2 Input Current 39
3.4 Fourier Analysis of Output Voltage and Input Current for Unbalanced Input 49
3.4.1 Output Voltage 49
3.4.2 Input Current 60
3.5 An Example 67
3.6 Simulation of Input-Output Voltage/Currents 69
3.7 Verification of Results by MATLAB Simulation Package 69
3.8 Conclusions 74
CHAPTER 4 OPERATION AND DESIGN OF THE CONVERTER 75
4.1. Introduction 75
4.2 Operation of the Converter. 76
4.2.1 Active Elements and Switching Functions 76
4.2.2 Operation of the Converter Under Balanced Input Condition 80
Page
4.2.3 Operation of the Converter Under Unbalanced Input Condition 80
4.3 Design Criteria 81
4.3.1 Component Ratings 83
4.3.2 Desisn of Control Circuit 84
4.3.3 Component Protection 87
4.4 Conclusions 93
CHAPTER 5 ANALYSIS OF AN UNEALANCED INPUT THREE PHASE RECTIFIER 94
5.1 Introduction 94
5.2 Mathematical Analysis of the Controlled Rectifier 95
5.2.1 Analysis of the Balanced Three Phase Controlled Rectifier 95
5.2.2 Analysis of the Unbalanced Three phase Controlled Rectifier 99
5.3 An Example 104
5.4 Simulated Results 104
5.5 Design Criteria 115
5.6 Conclusions 118
CHAPTER 6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 119
6.1 Summary and Conclusions 119
6.2 Suggestions for Future Work 120

REFERENCES $\quad 121$
APPENDICES - 124
APPENDIX - A EIRCUIT IMPLEMENTATION 124
APPENDIX - B COMPUTER PROGRAM 131

LIST OE FIGURES

Page
Fig. 1.1 Block diagram of the proposed 3 phase to 3 phase balanced output static converter. 7
Fig. 2.1 Generalized model structure of the converter "for N input \& M output static converter. 12
Fig. 2.2 Simplified circuit disgrsm of the proposed 3 phase to ${ }^{-3}$ phase static converter. 16
Fig. 3:1 Single pulse modulationswitching function. 35
Fig. 3.2 Simplified circuit diagram of the proposed 3 phase to 3 phase static converter. 37
Fig. 3.3 Output voltage waveform, $V_{A N}$ obtajned with 3 phase to 3 phase converter under balanced condition. 40
Fig. 3.4 Output voltage waveform, $V_{\mathrm{B}}^{\mathrm{N}} \mathrm{N}$ obtained with 3phase to 3 phase converter under balancedcondition.41
Fig. 3.5 Output voltage waveform, VCN obtained with 3 phase to 3 phase converter under balanced condition. 42
Fig. 3.6 Input current waveform, I_{a} obtained with 3 phase to 3 phase converter under balanced condition. 45
Fig. 3.7 Input current waveform, I_{b} obtained with 3 phase to 3 phase converter under balanced condition. 46
Fig. 3.8 Input current waveform, I_{c} obtained with 3 phase to 3 phase converter under balanced condition. 47
Fig. 3.9 Gating signals for the example. 50
Fig. 3.10 Output voltage waveform, VAM obtained with 3 phase to 3 phase converter under unbalanced condition.54
Fig. 3.11 Output voltage waveform, V BN obtained with 3 phase to 3 phase converter under unbalanced condition.
Fig. 3.12 Output voltage waveform, $V_{C N}$ obtained with 3 phase to 3 phase converter under unbalanced condition. 58
Fig. 3.13 Input current waveform, I_{a} obtained with 3 phase to 3 phase converter under unbalanced condition.
Fig. 3.14 Input current waveform, I_{b} obtained with 3 phase to 3 phase converter under unbalanced condition.

Page

Fig. 3.15 Input current waveform, I_{c} obtained with 3 phase to 3 phase converter under unbalanced condition.

Fig. 3.16 Output voltages $V_{A N}, V_{B N}$ and $V_{C N}$ from reconst
ructed harmonic coefficients (shown in Tables
3.3-3.5).
Fig. 3.17 Input currents I_{a}, I_{b} and I_{c} from reconstructed harmonic coefficients (shown in Tables 3.6-3.8).
Fig. 3.18 Output voltages $V_{A N}, V_{B N}$ and $V_{N}^{(N a, b \& c) ~ a n d ~}$ their spectro (e, $\left.\bar{f} \&{ }_{\varepsilon}\right)$ by METLAB simulation package.
Fig. 3.19 Input currents I_{a}, I_{b} and $I_{\text {in }}(a, b \& c)$ and their spectra (e,fag) by MATLAB simulation package.73

Fig. 4.1 Simplied circuit diagram of the proposed 3
phase to 3 phase static converter.
Fig. 4.2 Simplied circuit diagram of the proposed 3 phase to 3 phase static converter (Here Phase 'A'has taken into account).79
$\begin{array}{lll}\text { Fig. 4.3 } & \begin{array}{l}\text { Six gating signals relationship with } \\ \text { nced inqut valtages for the converter. }\end{array} & 82\end{array}$
Fig: 4.4 Logic circuit block diagram for the converter. 86
Fig. 4.5 Six gating signals relationship with unbala-
nced input voltages for the converter. $\quad 88$
Fig. 4.6 Microprocessor based control circuitry. 89
Fig. 4.7 The converter circuit showing protective elements.

Page

Fig. 5.1 Proposed contralled rectirier. 96
Fig. 5.2 Gating signals for the controllled rectifier. 97
$\begin{array}{lll}\text { Fig. 5.3 } \begin{array}{ll}\text { Output voltage waveform, } \\ \text { under unbalanced condition. }\end{array} & 105\end{array}$
Fig. 5.4 $\quad \begin{aligned} & \text { Input current waveform, } I_{a} \text { obtained with } \\ & \text { under unbalanced condition. }\end{aligned} \quad 106$
$\begin{array}{cl}\text { Fig. 5.5 Input current waveform, } I_{b} \text { obtained with } C R \quad 107 \\ & \begin{array}{l}\text { under unbalanced condition. }\end{array}\end{array}$
$\begin{array}{ll}\text { Fig. 5.6 } \begin{array}{ll}\text { Input current waveform, } I_{c} \text { obtained with } \\ \text { under unbalanced condition. }\end{array} & 108\end{array}$
$\begin{array}{cl}\text { Fig. 5.7 } \begin{array}{l}\text { Output Voltage waveform, } \\ \text { under balanced condition. }\end{array} & 110\end{array}$

Fig. 5.9 $\begin{aligned} & \text { Input current waveform, } I_{b} \text { obtained with } C R \quad \text { inder balanced condition. }\end{aligned}$
$\begin{array}{ll}\text { Fig. 5.10 } \begin{array}{ll}\text { Input current waveform, } I_{c} \text { obtained with } \\ \text { under balanced condition. }\end{array} & 113\end{array}$
$\begin{array}{ll}\text { Fig. } 5.11 & \begin{array}{l}\text { Output voltage, } V_{o} \text { of } C R \text { (} A \text {) and its spectrum } \\ \text { (B) under unbalanced condition. }\end{array} \\ & 116\end{array}$

$\begin{array}{ll}\text { Fig. } 5.13 & \text { Input current, } I_{b} \text { (A) and its spectrum (B) } \\ \text { under unbalanced condition. }\end{array}$
$\begin{array}{ll}\text { Fig. 5.14 } \begin{array}{l}\text { Input current, } I_{c} \text { (A) and its spectrum (B) } \\ \text { under unbalanced condition. }\end{array} & 117\end{array}$
Fig. A-1 TMS 2516 EPROM device. . 125
Fig. A-2 Converter gate pulses stored in the EPROM. 125
Fig. A-3 $\begin{aligned} & \text { Approximate } \\ & \text { EPROM. }\end{aligned} \quad 128$ gic circuit for reading the

LIST OF TABLES

$\therefore \cdot$

Page

Table 3.1 Frequency spectra of waveforms associated with converter output voltages $V_{A N}, V_{B N}$ and $V_{C N}$ shown in Figs. (03.3-3.50.

Table 3.2 Frequency spectra of waveforms sssociated with converter input currents I_{a}, I_{b} and I_{c} shown in Figs. []3.6-3.80.

Table 3.3 Frequency spectra of waveform associated with converter output voltages $V_{A N}$ shown in Fig. (33.100.

Table 3.4 Freguency spectra of waveform associated with converter output voltages V_{B} shown in Fig. (3.110.

Table 3.5 Frequency spectra of waveform associated with converter output voltage $V_{C N}$ shown in Fig. (f3.120.

Table 3.6 Frequency spectra of waveform associated with converter input. current, I_{a} shown in Fig. $)^{3.13 \|}$.

Page

Table 3.7 Frequency spectra of waveform .. associsted with converter input current, I_{b} shown in Fig. $\}_{3} .140$.

Table 3.8 Frequency spectra of waveform associated with converter input current, I_{c} shown in Fig. 3.150 . 66

LOOR UP TABLE 90

Table 5.1 Frequency spectra of waveforms associated. with Unbalanced converter output voltage and input currents shown in Fig. S5.3-5.6月. 109

Table 5.2 Frequency spectra of waveforms associatd with balanced controlled rectifier output voltage and input currents shown in Fig. (5.7-5.10

LIST OF SYMBOLS AND ABBREVIATIONS

1.1 Introduction

Electrical power is processed by power electronics to make it suitable for various applications, such as dc and ac regulated power supplies, electrochemical processes, heating and lighting control, electrical machine drives, induction heating, electronic welding, active power line filtering, static var compensation, etc. The processes involve conversions (ac to ac, ac to dc, dc to dc and ac to ac) and control of power [1] using power semiconductor switches.

A power converter incorporates a matrix of power switching devices to convert the electricsl power under the guidance of control electronics.The general classification of converters on functional basis are : rectifier, chopper, inverter, ac controller, cycloconverter. Often, a practical power electronic system may combine more than one conversion processes. The recent advancement of power semiconductor devices and control electronics is creating a tremendous impact on power converter technology in terms of size, cost, reliability and performance.

In a modern power electronic equipment, there are essentially two types of semiconductor elements: the power semiconductors that can be considered as the muscle of the equipment and the microelectronic control chips which provide the power of the brain. Both are digital in nature, except that one manipulates power upto gigawatts and the other handles only miliwatts. The close coordination of these end-of-the-spectrum electronics is offering large size and cost effectiveness and high level of performance in today's power supplies.

Static converter are designed to work under balanced input condition. The power frequency three phase input voltage of static converter may be unbalanced in phase or amplitude. This work discusses a novel technique of producing the output of a converter balanced when the input is amplitude unbalanced.

This thesis focuses on the analysis, design and development of a three phase to three phase static converter which produces balanced output voltage when the input is amplitude unbalance.

1.2 Revien of Previous Works

Usually power electronics converters are designed to work with balanced input power. However, the input electric power may be unbalanced in phase and amplitude. The case of unbalanced
voltage supply is often a perplexing and difficult application problem. Causes for such an unbalance [2] are numerous. Unsymmetrical transformer windings or transmission line impedance, unbalanced three phase loads or large single phase load, are some typical examples. Causes exist in all states of the electrical energy transformation from the generation to utilization. The cycloconverters are designed to work under balanced condition. In general, unbalanced (phase and amplitude) voltages produce various problems such as signal interference, relay malfunctioning, over voltages and excessive currents causing losses; distortion of voltages and currents (dc, in case of rectifier) and errors in moritoring meters.

Any device with nonlinear characteristics that derịe their input power from a sinusoidal electrical system may be responsible for injecting harmonic currents and voltages into the electrical system. The primary sources [2] of undesired harmonics are from rectifiers and electric arc furnaces. Common applications of rectifiers are solid-state drives and uninterruptible power supplies (UPS). Untalance voltage problem
for different types of converters is studied by different researchers in different ways. Unbalance in the operation of high-voltage dc converter gives rise to harmonics in the current and voltages waveforms . The analysis and assessment [3] of uncharacteristic harmonics arising in HVDC transmission are specified in terms of asymmetry of the control pulse of the converter.

Proper understanding and detail information on unbalanced voltage operation is carried out by.R.F. Woll, [4]. Here the unbalanced voltage is spilt in positive, negative and zero sequences [5]. Using this sequence network concept high voltage $D C$ transmission when experiencing unbalanced condition was studies in reference [6].

Regardless of the cause, a small phase unbalance voltage can induce large negative sequence current, due to the relatively low negative sequence impedance the machine. Induction motors are particularly sensitive to unbalance operation since localized heating can occur in the stator and the life of the machine can be seriously affected with only a few percent voltage unbalance [7]. Induction motor
phase unbalance problem solution has been proposed [7]-[9] by digital controller.

Converters, mainly rectifiers are analysed [10]-[12] for input unbalance using sequence network. In these works both phase and amplitude unbalance were considered. Complex mathematical procedure is followed to break the unbalance network into three sequence networks. Proper switching function is calculated by rigorous mathemematical calculation. An evaluation of harmonics generated by Forced Commatated Cycloconverter (FCC) under unbalance is reported [13].

This thesis is devoted only on amplitude unbalanced converter. Simple mathematical calculation is needed to find the proper switching function. The implementation of the technique is simple and effective.

1.3 The Proposed Method

This thesis proposes and analyse a novel method for balancing the output voltage when the input voltage is amplitude unbalanced. This. voltage balancing technique states that the output voltage is balanced when the fundamental component of the switching functions are equal to inverse of
the amplitude of the corresponding unbalance input phase voltage. The analytical method of design and analysis of three phase to three phase static converter is presented in this thesis. A simplified block diagram of the proposed unbalance three phase to three phase static converter is shown in Fig. 1.1(b). Fig 1.1(a) and. (c) shows the unbalanced input voltages and balanced output voltages respectively.

The converter consists of six bilateral switches. The switches which are controlled by switching function are synchronized with the input voltages and their ON/OFF operations are determined by the percentage of input unbalance.

1.4 Scope of the Present Work

In this thesis a novel technique is used to analyse the proposed three phase to three phase static converter conversion. The analytical method of design and analysis of three phase to three phase static converter is complicated. The voltage balancing technigue proposed here states that the output voltages are balanced when the fundamental component of three switching functions are taken as inversely proportional to the amplitude of the three unbalance input phase voltages. The amplitude unbalance is corrected [14] by changing the width of the switching

a) Unbalanced Input Voltages

b) Converter

c) Balanced Output Voltages

Fig. 1.l: Block diagram of the proposed 3 phase to 3 phase balanced output static converter.
function according to unbalance. This type of converter may find extensive use to correct unbalance in power systems. Moreover, this converter may be used in unbalanced environment for motor drives.

The objective of this research is to analyze the simulated balanced waveforms obtained by switching füction method from an unbalanced system.

In particular the contents of this thesis have been organised as follows:

A generalized converter matrix model with N-phase inputs and M-phase outputs is used to develop a three phase to three phase static converter structure. Mathametical analysis of a 3-phase to 3-phase static converter under balanced and unbalanced input condition are analysed. A graphical technique has been developed using IBM PC to findout the output voltages and input currents. The data for analysing the waveforms of input-output quantities are calculated with the help of FORTRAN program using transfer function approach.

In Chapter 3, through Fourier analysis of input and output voltage/currents are done. Both balanced and unbalanced operating
conditions gre considered. Computer programs were developed using the mathematical expressions detailed in chapter 2.

In Chapter 4, the operation and design of the proposed converter are discussed. The control logic algorithm development and implementation using simple simple logic blocks are also discussed.

Three phase controlled rectifier under unbalanced input condition is studied in chapter 5. It has been proved that the developed technique of voltage balancing is equally applicable to unbalanced controlled rectifier.

Chapter 6 reviews the entire work presented in this thesis and presents relevents conclusions. Suggession for using more complex and advanced PWM switching functions technique and studying the phase unbolanced cycloconverter are focused for future research work.

CHAPTER 2

MODELLING AND ANALYSIS OF THE CONVERTER

2.1 Introduction

The objective of this chapter is to develop a switching model suitable for the analysis and evaluation of a three phase to three phase converter which can handle unblanced input voltages. To achieve this objective the converter (in its ideal form) is modelled as a circuit matrix consisting of $\left[\begin{array}{lll}N & x & M\end{array}\right]$ switching elements (Fig 2.1). The matrix representation [15] of this generalized converter allows us to understand easily the process of voltage and frequency transformation. In this thesis this model is used to analyze a three phase to three phase converter. To reach the goal, first such a conveter is anslysed under balanced input condition. From this analysis some basic criterion is established so that the input unbalance can be made balanced in the output circuit.

Converters are usually designed to handle balanced three and single phase input power. When the input is unbalanced conventional static conveter may not work properly. Short. circuiting, harmonic generation, unbalancing of output power are the major problems associated with unbalanced input.

The input voltage could be unbalanced by amplitudes of the three input phases or by improper phase relationships. Both amplitude and phase unbalance could be corrected. Only the amplitude unbalance is treated in this thesis.

A method for correcting the amplitude unbalance is developed in this chapter which could be applied to polyphase converters. A specific case of three phase to three phase converter is studied in details.

2.2 Mathametical Modelling of the Converter

The model of a converter structure capable of performing the voltage, current, phase, frequecny and amplitude transformation is shown in Fig 2.1. This switching model [15] comprises of an "input matrix" of [Nx1] dimension and an "output matrix" of [Mx1] dimension.

The multiplication of a set of $N x 1$ sinusoidal quantities (e.g. input voltage matrix) by a compatible set of $M x N$ balanced sinusoidal quantities (e.g. converter transfer matrix) yields a third set of Mx1 sinusoidal quantities (e.g. output voltage matrix) that are balanced. Therefore, the analytical representation of the converter interms of output voltage $\left[v_{0}\left(w_{o} t\right)\right]$ and input current $\left[I_{i}\left(w_{i} t\right)\right]$ becomes:

Fig. 2.1: Generalized model structure of the converter for N input and M output phases.
$\left[V_{o}\left(w_{o} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]\left[V_{i}\left(w_{i} t\right)\right]$

$$
[M \times 1] \quad[M \times N]
$$

[N(1]

and
$\left[I_{i}\left(w_{i} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]^{T}\left[I_{o}\left(w_{o} t\right)\right]$
[M×1]
[MxN]
[$\mathrm{N} \times 1$]

(2.1b)

A generalized converter (for N input and M output phases) structure capable of performing voltage, current, phase, frequency and amplitude transformation given in egns.(2.1a) and (2.1b) is illustrated in Fig. 2.1.

2.2.1 Practical Converter Structure

A simplified circuit topology that results from the generalized model shown in Fig 2.1 and $N=M=3$ is illustrated in Fig 2.2. This converter structure is cable of yoltage/freguency transformation from fixed frequency/voltage 3 -phase input to variable frequency 3 -phase output voltage.

This topology (Fig 2.2) comprises of $9(=3 \times 3)$ "active elements" since the " ideal 3-phase to 3-phase converter transfer matrix" is of dimension [3x3] (i.e. $N=3, M=3$). The transfer

Fig. 2.2: Simplified circuit diagram of the proposed 3 phase to 3 phase static converter.
function is represented as:

$$
\left[\mathrm{F}_{\mathrm{d}}\left(\mathrm{w}_{\mathrm{s}} \mathrm{t}\right)\right]=\dot{A}\left[\begin{array}{lll}
\mathfrak{f}_{1,1} & \mathfrak{f}_{1,2} & \mathfrak{f}_{1,3} \tag{2.3a}\\
\hat{\mathrm{f}}_{2,1} & \mathfrak{f}_{2,2} & \mathrm{f}_{2,3} \\
\mathrm{f}_{3,1} & \mathfrak{f}_{3,2} & \mathfrak{f}_{3,3}
\end{array}\right]
$$

The converter transfer matrix elements $f_{1,1}, f_{1,2}, f_{1,3}$ can be expressed as F_{1}, F_{2} and F_{3}
where,

$$
\begin{align*}
& \mathrm{F}_{1}=\mathrm{f}_{1,1} \\
& \mathrm{~F}_{2}=\mathrm{f}_{1,2}=\mathrm{F}_{1}<-120^{\circ} \tag{2.3~b}
\end{align*}
$$

and $F_{3}=f_{1,3}=F_{1}<-240^{\circ}$
Equation (2.1 a) can be simplified as

$$
\begin{aligned}
{\left[V_{0}\left(W_{0} t\right)\right] } & =1\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{3} & F_{1} & F_{2} \\
F_{2} & F_{3} & F_{1}
\end{array}\right] \cdot 1 \\
& =\left[\begin{array}{c}
V_{s b} \\
V_{b c} \\
V_{c a} \\
F_{1} V_{a b}+F_{2} V_{b c}+F_{3} V_{c s} \\
F_{3} V_{a b}+F_{1} V_{b c}+F_{2} V_{c a} \\
F_{2} V_{a b}+F_{3} V_{b c}+F_{1} V_{c a}
\end{array}\right]
\end{aligned}
$$

or

$$
\begin{aligned}
& V_{A B}=V_{a b} F_{1}+V_{b c} F_{2}+V_{c a} F_{3} \\
& V_{B C}=V_{a b} F_{3}+V_{b c} F_{1}+V_{c a} F_{2} \\
& V_{C A}=V_{a b} F_{2}+V_{b c} F_{3}+V_{c a} F_{1}
\end{aligned}
$$

$$
\left[\begin{array}{l}
V_{A N} \\
V_{\mathrm{BN}} \\
V_{\mathrm{CN}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{F}_{1} & \mathrm{~F}_{2} & \mathrm{~F}_{3} \\
\mathrm{~F}_{3} & \mathrm{~F}_{1} & \mathrm{~F}_{2} \\
\mathrm{~F}_{2} & \mathrm{~F}_{3} & \mathrm{~F}_{1}
\end{array}\right] \quad\left[\begin{array}{l}
V_{\mathrm{an}} \\
\mathrm{~V}_{\mathrm{bn}} \\
\mathrm{~V}_{\mathrm{cn}}
\end{array}\right](2.3 \mathrm{c})
$$

or per phase

$$
\begin{align*}
& V_{\mathrm{AN}}=V_{\mathrm{an}} \mathrm{~F}_{1}+V_{\mathrm{bn}} \mathrm{~F}_{2}+V_{\mathrm{cn}} \mathrm{~F}_{3} \\
& \mathrm{~V}_{\mathrm{BN}}=\mathrm{V}_{\mathrm{an}} \mathrm{~F}_{3}+\mathrm{V}_{\mathrm{bn}} \mathrm{~F}_{1}+V_{\mathrm{cn}} \mathrm{~F}_{2} \tag{2.3d}\\
& \mathrm{~V}_{\mathrm{CN}}=\mathrm{V}_{\mathrm{an}} \mathrm{~F}_{2}+\mathrm{V}_{\mathrm{bn}} \mathrm{~F}_{3}+V_{\mathrm{cn}} \mathrm{~F}_{1}
\end{align*}
$$

And for a 3 phase to 3 phase converter equation (2.1 b) can also be rewritten and simplified as:

$$
\begin{align*}
& {\left[\begin{array}{l}
I_{i, 1} \\
I_{i, 2} \\
I_{i, 3}
\end{array}\right]=\left[\begin{array}{lll}
F_{1} & F_{3} & F_{2} \\
F_{2} & F_{1} & F_{3} \\
F_{3} & F_{2} & F_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{0,1} \\
I_{0,2} \\
I_{0,3}
\end{array}\right]} \\
& =\left[\begin{array}{l}
F_{1} \cdot I_{o, 1}+F_{3}, I_{0,2}+F_{2} \cdot I_{0,3} \\
F_{2} \cdot I_{0,1}+F_{1} \cdot I_{0,2}+F_{3} \cdot I_{0,3} \\
F_{3} \cdot I_{0,1}+F_{2} \cdot I_{0,2}+F_{1} \cdot i_{0,3}
\end{array}\right] \tag{2.3e}
\end{align*}
$$

$$
\text { or } \begin{align*}
I_{i, 1} & =F_{1} \cdot I_{0,1}+F_{3} \cdot I_{0,2}+F_{2} \cdot I_{0,3} \\
I_{i, 2} & =F_{2} \cdot I_{0,1}+F_{1} \cdot I_{0,2}+F_{3} \cdot I_{0,3} \tag{2.3f}\\
I_{i, 3} & =F_{3} \cdot I_{0,1}+F_{2} \cdot I_{0,2}+F_{1} \cdot i_{0,3}
\end{align*}
$$

or expressing in per phase

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{8} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{lll}
F_{1} & F_{3} & F_{2} \\
F_{2} & F_{1} & F_{3} \\
F_{3} & F_{2} & F_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{A} \\
I_{B} \\
I_{C}
\end{array}\right]} \\
& I_{a}=F_{1} \cdot I_{A}+F_{3} \cdot I_{B}+F_{2} \cdot I_{C} \\
& I_{b}=F_{2} \cdot I_{A}+F_{1} \cdot I_{B}+F_{3} \cdot I_{C} \\
& I_{c}=F_{3} \cdot I_{A}+F_{2} \cdot I_{B}+F_{1} \cdot I_{C}
\end{aligned}
$$

2.2.2 Operation of the Converter

Considering switch matrix element F_{1}, bilateral switches S_{i}, S_{5} and S_{g} are turned $O N$ whenever F_{1} has the values of one (Fig. 2.2), thus connecting the three converter input terminals a, b, c to the three respective output terminals A, B, C (Fig. 2.2). Whenever F_{1} has the value of zero, two of the three switches are turned $0 F F$ (in this case of $S 5$ and S9), while at the same time the remaining two of the three switches connected to the input terminal a, S_{2} and S_{3}, are turned $O N$. With switches S_{1}, S_{2} and S_{3} simultaneously $O N$, all three outpat voltages becomes zero, thus
disconnecting the output from. the input terminals. This mode of ON-OFF operation lasts for 120° interval of the period of the output voltage. For the next 120° interval converter operation is determined by switching matrix element F_{2} (instead of F_{1}). Consequently, the function performed by switches S_{1}, S_{5}, S_{9} is now performed by S_{3}, S_{4}, S_{8} and the function performed by switches S_{1}, S_{2}, S_{3} is now performed by S_{4}, S_{5}, S_{6}. A similar switch by switch substitution occurs during the third (and final) 120° interval of the period of the output voltage.
2.2.3 Mathematical Analysis of the 3 phase to 3 phase Converter Under Balance Input

Consider a balance case and assume

$$
\begin{align*}
& F_{1}=A \cos \left(\omega_{s} t\right) \\
& F_{2}=A \cos \left(H_{S} t-120^{\circ}\right) \tag{2.4}\\
& F_{3}=A \cos \left(\omega_{S} t-240^{\circ}\right)
\end{align*}
$$

where A is the amplitude of the fundamental components of all three function $F_{1}, F_{2} \& F_{3}$.

$$
\text { and }\left[v_{i}\left(w_{i} t\right)\right]=v_{i}\left[\begin{array}{l}
\cos \left(w_{i} t\right) \tag{2.5}\\
\cos \left(w_{i} t-120^{\circ}\right) \\
\cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]
$$

```
From equation (2.3 d), (2.4) \& (2.5)
```

The expression for output village is given by:
$\left[V_{0}\left(w_{o} t\right)\right]=\left[F\left(w_{S} t\right)\right] \cdot\left[V_{i}\left(w_{i} t\right)\right]$
$=\left[\begin{array}{lll}F_{1} & F_{2} & F_{3} \\ F_{3} & F_{1} & F_{2} \\ F_{2} & F_{3} & F_{1}\end{array}\right] \quad V_{i}\left[\begin{array}{l}\cos \left(w_{i} t\right) \\ \cos \left(w_{i} t-120^{\circ}\right) \\ \cos \left(w_{i} t-240^{\circ}\right)\end{array}\right]$

$$
\begin{aligned}
V_{A N}= & A V_{i}\left[\left(\cos \left(w_{S} t\right) \cdot \cos \left(w_{i} t\right)+\cos \left(w_{S} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right)\right.\right. \\
& \left.+\cos \left(w_{S} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right)\right] \\
= & \frac{3 A V_{i}}{2} \cos \left(w_{S}-w_{i}\right) t+-\frac{A V_{i}}{2}\left[\cos \left(w_{S}+w_{i}\right) t\right. \\
& \left.+\cos \left\{\left(w_{S}+w_{i}\right) t-120^{\circ}\right\}+\cos \left\{\left(w_{S}+w_{i}\right) t-240^{\circ}\right\}\right]
\end{aligned}
$$

Since the second term of the above equation is the three phasors of equal magnitude and displaced 120° apart from each other, their sum i.e. the resultant is zero.

$$
\begin{equation*}
V_{A N}=\frac{3}{2} A V_{i} \cos \left(w_{i}^{t}\right) \tag{2.6a}
\end{equation*}
$$

where

$$
w_{s}=w_{i}+w_{o}
$$

Similarly

$$
\begin{aligned}
V_{B N} & =V_{i} A \cos \left(w_{S} t-240^{\circ}\right) \cdot \cos \left(w_{i} t\right) \\
& +V_{i} A \cos \left(w_{S} t\right) \cdot \cos \left(n_{i} t-120^{\circ}\right) \\
& +V_{i} A \cos \left(w_{S} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
=\frac{A V_{i}}{2} & {\left[\left\{\cos \left(\left(w_{S}-w_{i}\right) t-240^{\circ}\right)+\cos \left(\left(w_{S}+w_{i}\right) t-240^{\circ}\right)\right\}\right.} \\
& +\left\{\cos \left(\left(\omega_{S}-w_{i}\right) t+120^{\circ}\right)+\cos \left(\left(\omega_{S}+w_{i}\right) t-120^{\circ}\right)\right\} \\
& \left.+\left\{\cos \left(\left(w_{S}-w_{i}\right) t+120^{\circ}\right)+\cos \left(\left(\omega_{S}+w_{i}\right) t\right)\right\}\right]
\end{aligned}
$$

$$
=\frac{3 A V_{i}}{2}\left[\cos \left(\left(\mathrm{w}_{\mathrm{s}}-\mathrm{w}_{\mathrm{i}}\right) \mathrm{t}-240^{\circ}\right)\right.
$$

$$
+\frac{A V_{i}}{2}\left[\cos \left(3 w_{o} t-240^{\circ}\right)+\cos \left(3 w_{O} t-120^{\circ}\right)+\cos \left(3 w_{O} t\right)\right\}
$$

$$
V_{B N}=\frac{3 A V_{i}}{2} \cos \left(\omega_{0} t-240^{\circ}\right)
$$

and $\quad V_{C N}=V_{i} A \cos \left(\omega_{S} t-120^{\circ}\right) \cdot \cos \left(\omega_{i} t\right)$
$+V_{i} A \cos \left(w_{s} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right)$
$+V_{i} A \cos \left(w_{S} t\right) \cdot \cos \left(w_{i} t-240^{\circ}\right)$

$$
\begin{aligned}
&=\frac{A V_{i}}{2}\left[\left\{\cos \left(\left(w_{S}-w_{i}\right) t-120^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-120^{\circ}\right)\right\}\right. \\
&+\left\{\cos \left(\left(w_{s}-w_{i}\right) t-120^{\circ}\right)+\cos \left(\left(w_{S}+w_{i}\right) t-360^{\circ}\right)\right\} \\
&+\left.\left\{\cos \left(\left(w_{s}-w_{i}\right) t-240^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-240^{\circ}\right)\right\}\right]
\end{aligned}
$$

$$
=\frac{3 A V_{i}}{2} \cos \left(\omega_{o} t-120^{\circ}\right)
$$

$$
\begin{align*}
& +\frac{V A_{i}}{2}\left[\cos \left(3 w_{O} t-120^{\circ}\right)+\cos \left(3 \omega_{0} t-240^{\circ}\right)+\cos \left(3 w_{O} t\right)\right] \\
& V_{C N}=\frac{3 A V_{i}}{2} \cos \left(w_{0} t-120^{\circ}\right) \tag{2.6c}
\end{align*}
$$

From equation (2.6 a), (2.6 b) and (2.6 c) it is observed that the output voltages are balanced.

The input current expressions are derived as:

$$
\begin{align*}
& {\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{lll}
F_{1} & F_{3} & F_{2} \\
F_{2} & F_{1} & F_{3} \\
F_{3} & F_{2} & F_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
I_{A} \\
I_{B}^{B} \\
I_{\underline{C}}^{\Gamma_{i}}
\end{array}\right]} \tag{2.78}\\
& \text { or }\left[\begin{array}{l}
I_{g} \\
I_{b} \\
I_{C}
\end{array}\right]=A\left[\begin{array}{lll}
\cos \left(w_{S} t\right) & \cos \left(w_{S} t-240^{\circ}\right) & \cos \left(w_{S} t-120^{\circ}\right) \\
\cos \left(w_{S} t-120^{\circ}\right) & \cos \left(w_{S} t\right) & \cos \left(w_{S}-240^{\circ}\right) \\
\cos \left(\omega_{S} t-240^{\circ}\right) & \cos \left(\omega_{S} t-120^{\circ}\right) & \cos \left(w_{S} t\right)
\end{array}\right] \\
& \text {. I }\left[\begin{array}{l}
\cos \left(\omega_{o} t\right) \\
\cos \left(\omega_{o} t-240^{\circ}\right) \\
\cos \left(\omega_{o} t-120^{\circ}\right)
\end{array}\right] .
\end{align*}
$$

or

$$
\left[\begin{array}{l}
I_{0} \tag{2.7b}\\
I_{b} \\
I_{c}
\end{array}\right]=\frac{3 A I_{o}}{2}\left[\begin{array}{l}
\cos \left(w_{i} t\right) \\
\cos \left(w_{i} t-120^{\circ}\right) \\
\cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]
$$

2.2.4 Mathematical Analysis of the 3 phase te 3 phase converter under Unbalance Input

Consider an unbalance case and assume the unbalanced input voltage $V_{i}(\mathrm{wt})$ a.s

$$
\begin{aligned}
{\left[V_{i}\left(w_{i} t\right)\right] } & =\text { Input voltage } \\
& =\left[\begin{array}{ll}
A & \cos \left(w_{i} i\right) \\
B & \cos \left(w_{i} t-120^{\circ}\right) \\
C & \cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{align*}
& F_{1}=A_{1} \cos \left(w_{s} t\right) \\
& F_{2}=B_{1} \cos \left(w_{s} t-120^{\circ}\right) \tag{2.8}\\
& F_{3}=C_{1} \cos \left(w_{s} t-240^{\circ}\right)
\end{align*}
$$

where A_{1}, B_{1} and C_{1} are the amplitude of the fundamental components of three switching function F_{1}, F_{2} and F_{3} respectively. From equation (2.3 c)

$$
\begin{aligned}
& {\left[\begin{array}{c}
v_{A N} \\
v_{B N} \\
v_{C N}
\end{array}\right]=\left[\mathrm{SF}_{1}\right] \cdot\left[\mathrm{V}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{i}} \mathrm{t}\right)\right] \because \cdot} \\
& =\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{3} & F_{1} & F_{2} \\
F_{2} & F_{3} & F_{1}
\end{array}\right],\left[\begin{array}{c}
V_{8 n} \\
V_{b n} \\
V_{c n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
A_{1} \cos \left(\omega_{s} t\right) & B_{1} \cos \left(\omega_{s}-120^{\circ}\right) & C_{1} \cos \left(\omega_{s} t-240^{\circ}\right) \\
C_{1} \cos \left(\omega_{s} t-240^{\circ}\right) & A_{1} \cos \left(\omega_{s} t\right) & B_{1} \cos \left(\omega_{s} t-120^{\circ}\right) \\
B_{1} \cos \left(\omega_{s} t-120^{\circ}\right) & C_{1} \cos \left(\omega_{s}-240^{\circ}\right) & A_{1} \cos \left(\omega_{s} t\right)
\end{array}\right] \\
& {\left[\begin{array}{l}
A \cos \left(w_{i} t\right) \\
B \cos \left(w_{i} t-120^{\circ}\right) \\
C \cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]} \\
& =\left[\begin{array}{l}
A A_{1} \cos \left(w_{s} t\right) \cos \left(w_{i} t\right)+B B_{1} \cos \left(w_{s} t-120^{\circ}\right) \cos \left(w_{i} t-120^{\circ}\right) \\
+C C_{1} \cos \left(w_{S} t-240^{\circ}\right) \cos \left(w_{i} t-240^{\circ}\right) \\
A C_{1} \cos \left(w_{S} t-240^{\circ}\right) \cos \left(w_{i} t\right)+B A_{1} \cos \left(w_{S} t\right) \cos \left(w_{i} t-120^{\circ}\right) \\
+C B 1_{1} \cos \left(w_{s} t-120^{\circ}\right) \cos \left(w_{i} t-240^{\circ}\right) \\
A B_{1} \cos \left(w_{S} t-120^{\circ}\right) \cos \left(w_{i} t\right)+B C C_{1} \cos \left(w_{S} t-240^{\circ}\right) \cos \left(w_{i} t-120^{\circ}\right) \\
+C A_{1} \cos \left(w_{S} t\right) \cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
V_{A N}= & A A_{1} \cos \left(w_{S} t\right) \cos \left(w_{i} t\right)+B B_{1} \cos \left(w_{s} t-120^{\circ}\right) \cos \left(w_{i} t-120^{\circ}\right) \\
& +C C_{1} \cos \left(w_{s} t-240^{\circ}\right) \cos \left(w_{i} t-240^{\circ}\right) \\
= & 3 / 2 \cos \left(w_{0} t\right)
\end{aligned}
$$

When $A A_{1}=1$,

$$
\mathrm{BB}_{1}=1, \quad \text { and } \quad C C_{1}=1
$$

$A=1 / A_{1}$
$B=1 / B_{1}$
$C=1 / C_{1}$
and where $\omega_{s}=\omega_{0}+w_{i}$, and $\omega_{0}=w_{i}$

Similarly

$$
\begin{aligned}
& V_{B N}=A C_{1} \cos \left(w_{s} t-240^{\circ}\right) \cos \left(w_{i} t\right)+B A_{1} \cos \left(w_{s} t\right) \cos \left(w_{i} t-120^{\circ}\right) \\
& +\mathrm{CB}_{1} \cos \left(\mathrm{w}_{\mathrm{s}}{ }^{\left.\mathrm{t}-120^{\circ}\right) \cos \left(\mathrm{H}_{\mathrm{i}} \mathrm{t}-240^{\circ}\right)}\right. \\
& \begin{aligned}
=\frac{1}{2} & {\left[A C_{1}\left\{\cos \left(\left(\omega_{S}-w_{i}\right) t-240^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-240^{\circ}\right)\right\}\right.} \\
& +B A_{1}\left\{\cos \left(\left(\omega_{s}-w_{i}\right) t+120^{\circ}\right)+\cos \left(\left(\omega_{s}+w_{i}\right) t-120^{\circ}\right)\right\}
\end{aligned} \\
& \left.+C B_{1}\left\{\cos \left(\left(w_{s}{ }^{-w_{i}}\right) t+120^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-360^{\circ}\right)\right\}\right] \\
& =\frac{A C_{1}+B A_{1}+C B_{1}}{2} \cos \left(W_{0} t-240^{\circ}\right) \\
& +\frac{1}{2}\left[A C_{1} \cos \left(3 \mathrm{w}_{o} \mathrm{t}-240^{\circ}\right)+B A_{1} \cos \left(3 \mathrm{w}_{\mathrm{o}} \mathrm{t}-120^{\circ}\right)\right. \\
& \left.+C B_{1} \cos \left(3 \mathrm{H}_{0} \mathrm{t}-36 \mathrm{n}^{\circ}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
V_{C N}= & A B_{1} \cos \left(w_{s} t-120^{\circ}\right) \cos \left(w_{i} t\right)+B C_{1} \cos \left(w_{s} t-240^{\circ}\right) \cos \left(w_{i} t-120^{\circ}\right\} \\
& +C A_{1} \cos \left(w_{s} t\right) \cos \left(w_{i} t-240^{\circ}\right\} \\
= & \frac{1}{2}\left[A B _ { 1 } \left\{\cos \left(\left(\omega_{s}-w_{i}\right) t-120^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-120^{\circ}\right)\right.\right. \\
& +B C_{1}\left\{\cos \left(\left(w_{s}-w_{i}\right) t-120^{\circ}\right)+\cos \left(\left(w_{s}+w_{i}\right) t-360^{\circ}\right)\right\} \\
& \left.+C A_{1}\left\{\cos \left(\left(w_{s}-w_{i}\right) t+240^{\circ}\right)+\cos \left(\left(w_{i}+w_{i}\right) t-240^{\circ}\right)\right\}\right\} \\
= & \frac{A B_{1}+B C_{1}+C A_{1}}{2} \cos \left(w_{o} t-120^{\circ}\right)
\end{aligned}
$$

$$
+\frac{1}{2}\left[A B_{1} \cos \left(3 w_{0} t-120^{\circ}\right)+B C_{1} \cos \left(3 w_{O} t-380^{\circ}\right)+C A_{1}\left(3 w_{O} t-240^{\circ}\right)\right]
$$

Now, from equation (2.7a) and in which the phase rotation of output current I_{B} and T is considered.

$$
\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{F}_{1} & \mathrm{~F}_{3} & \mathrm{~F}_{2} \\
\mathrm{~F}_{2} & \mathrm{~F}_{1} & \mathrm{~F}_{3} \\
\mathrm{~F}_{3} & \mathrm{~F}_{2} & \mathrm{~F}_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{I}_{\mathrm{A}} \\
\mathrm{I}_{\mathrm{B}} \\
\mathrm{I}_{\mathrm{C}}
\end{array}\right]
$$

$$
\text { or }\left[\begin{array}{l}
I_{2} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{lll}
A_{1} \cos \left(w_{s} t\right) & C_{1} \cos \left(\omega_{s} t-240^{\circ}\right) & B_{1} \cos \left(\omega_{s} t-120^{\circ}\right) \\
B_{1} \cos \left(w_{s} t-120^{\circ}\right) & A_{1} \cos \left(w_{s} t\right) & C_{1} \cos \left(w_{s} t-240^{\circ}\right) \\
C_{1} \cos \left(\omega_{s} t-240^{\circ}\right) & B_{1} \cos \left(\omega_{s} t-120^{\circ}\right) & A_{1} \cos \left(w_{s} t\right)
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \cos \left(w_{o} t\right)^{\circ} \\
C \cos \left(w_{o} t-240^{\circ}\right) \\
B \cos \left(w_{o} t-120^{\circ}\right)
\end{array}\right]}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I_{a}= & A A_{1} \cos \left(w_{s} t\right) \cos \left(w_{0} t\right)+B B_{1} \cos \left(w_{S} t-120^{\circ}\right) \cos \left(w_{0} t-120^{\circ}\right) \\
& +C C_{1} \cos \left(\omega_{S} t-240^{\circ}\right) \cos \left(w_{0} t-240^{\circ}\right) \\
= & \frac{1}{2}\left[A A_{1}\left\{\cos \left(w_{s}-w_{0}\right) t+\cos \left(w_{S}+w_{0}\right) t\right\}\right. \\
& +B B_{1}\left\{\cos \left(w_{S}-w_{0}\right) t+\cos \left(\left(w_{S}+w_{0}\right) t-240^{\circ}\right)\right\} \\
& \left.+\operatorname{CC}_{1}\left\{\cos \left(w_{S}-w_{0}\right) t+\cos \left(\left(w_{S}+w_{0}\right) t-480^{\circ}\right)\right\}\right] \\
= & 3 / 2 \cos w_{i} t \quad\left[A s \quad A A_{1}=1, B B_{1}=1 \& C C_{1}=1\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
I_{b}= & A B_{1} \cos \left(\omega_{S} t-120^{\circ}\right) \cos \left(\omega_{0} t\right)+C A_{1} \cos \left(\omega_{S} t\right) \cos \left(\omega_{0} t-240^{\circ}\right) \\
& +B C_{1} \cos \left(\omega_{S} t-240^{\circ}\right) \cos \left(\omega_{0} t-120^{\circ}\right) \\
= & \frac{1}{2}\left[A B_{1}\left\{\cos \left(\omega_{S}-\omega_{0}\right) t-120^{\circ}\right)+\cos \left(\left(\omega_{s}+\omega_{0}\right) t-120^{\circ}\right\}\right. \\
& +C A_{1}\left\{\cos \left(\left(\omega_{S}-\omega_{0}\right) t+240^{\circ}\right)+\cos \left(\left(\omega_{S}+\omega_{0}\right) t-240^{\circ}\right)\right\} \\
& \left.+B C_{1}\left\{\cos \left(\left(\omega_{S}-\omega_{0}\right) t-120^{\circ}\right)+\cos \left(\left(\omega_{S^{\prime}}+\omega_{0}\right) t-360^{\circ}\right)\right\}\right] \\
= & \frac{A B_{1}+C A_{1}+B C_{1}}{2} \cos \left(\omega_{i} t-120^{\circ}\right)+\frac{1}{2}\left[A B_{1} \cos \left(3 \omega_{i} t-120^{\circ}\right)\right. \\
& \left.+C A_{1} \cos \left(3 \omega_{i} t-240^{\circ}\right)+B C_{1} \cos \left(3 w_{i} t-360^{\circ}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& I_{c}=A C_{1} \cos \left(\omega_{S} t-240^{\circ}\right) \cos \left(W_{O}{ }^{t}\right)+C B_{1} \cos \left(\omega_{S} t-120^{\circ}\right) \cos \left(\omega_{o} t-240^{\circ}\right) \\
& +B A_{1} \cos \left(\omega_{S} t\right) \cos \left(\omega_{0} t-120^{\circ}\right) \\
& =\frac{1}{2}\left[A C_{1}\left\{\cos \left(\left(\omega_{S}-\omega_{0}\right) t-240^{\circ}\right)+\cos \left(\left(\omega_{S}+\omega_{0}\right) t-240^{\circ}\right)\right\}\right. \\
& +C B_{1}\left\{\cos \left(\left(\omega_{S}-w_{0}\right) t+120^{\circ}\right)+\cos \left(\left(\omega_{S}+\omega_{0}\right) t-360^{\circ}\right)\right\} \\
& \left.+B A_{1}\left\{\cos \left(\left(\omega_{S} \omega_{0}\right) t+120^{\circ}\right)+\cos \left(\left(\omega_{S}+\omega_{0}\right) t-120^{\circ}\right)\right\}\right] \\
& =\frac{A C_{1}+C B_{1}+B A_{1}}{2} \cos \left(W_{i} t-240^{\circ}\right) \\
& +\frac{1}{2}\left[A C_{1} \cos \left(3 w_{i} t-240^{\circ}\right)+C B_{1} \cos \left(3 w_{i} t-360^{\circ}\right)+B A_{1} \cos \left(3 w_{i} t-120^{\circ}\right)\right] \\
& \text {-For a } 3 \text { phase to } 3 \text { phase unbalanced (amplitude only) }
\end{aligned}
$$ converter:

The Output voltages are

$$
\begin{align*}
& V_{A N}= \frac{3}{2} \cos \left(w_{o} t\right) \\
& V_{B N}= \frac{A C_{1}+B A_{1}+C B_{1}}{2} \cos \left(w_{o} t-240^{\circ}\right) \\
&+\frac{1}{2}\left[A C_{1} \cos \left(3 w_{o} t-240^{\circ}\right)+B A_{1} \cos \left(3 w_{0} t-120^{\circ}\right)\right. \tag{2.10}\\
&\left.+C B_{1} \cos \left(3 w_{o} t-360^{\circ}\right)\right]
\end{aligned} \quad \begin{aligned}
& V_{C N}= \frac{A B_{1}+B C_{1}+C A_{1} \cos \left(w_{o} t-120^{\circ}\right)}{2} \\
&+\frac{1}{2}\left[A B_{1} \cos \left(3 w_{o} t-120^{\circ}\right)+B C_{1} \cos \left(3 w_{0} t-360^{\circ}\right)\right. \\
&\left.+C A_{1} \cos \left(3 w_{O} t-240^{\circ}\right)\right]
\end{align*}
$$

$I_{a}=\frac{3}{2} \cos \left(w_{i} t\right)$.
$I_{b}=\frac{A B_{1}+B C_{1}+C A_{1}}{2} \cos \left(w_{i} t-120^{\circ}\right)$

$$
\begin{align*}
+\frac{1}{2} & {\left[A B_{1} \cos \left(3 w_{i} t-120^{\circ}\right)+B C_{1} \cos \left(3 w_{i} t-360^{\circ}\right)\right.} \tag{2.11}\\
& \left.+C A_{1} \cos \left(3 w_{i} t-240^{\circ}\right)\right]
\end{align*}
$$

$I_{c}=\frac{A C_{1}+B A_{1}+C B_{1}}{2} \cos \left(W_{i} t-240^{\circ}\right)$

$$
\begin{aligned}
+\frac{1}{2} & {\left[A C_{1} \cos \left(3 w_{i} t-240^{\circ}\right)+B A_{1} \cos \left(3 w_{i} t-120^{\circ}\right)\right.} \\
& \left.+C B_{1} \cos \left(3 w_{i} t-360^{\circ}\right)\right]
\end{aligned}
$$

2.3 Conclusions

The three phase converter structure is described in terms of the generalized matrix.model. The operation of a three phase converter is described in this chapter. The three phase converter is analysed under balanced and unbalanced input conditions. It is established that the output voltages are balanced in magnitude when the fundamental component of the switching functions are equal to the inverse of the amplitude of the corresponding unbalanced input phase voltages.

CHAPTER 3

EQURIER ANALYSIS OE THE CONYERTER.

3.1 Introduction

The three-phase converter model developed in chapter 2 is analysed using Fourier analysis in this chapter. Both balanced and unbalanced input case have been analysed using FORTRAN programs on personal computer. The spectra of three output voltages and input currents of the converter are presented in Tables 3.1-3.6. Using these Fourier coefficients the waveforms are reconstructed. The reconstructed waveforms matches the original waveforms, which proves the validity of the proposed technique of voltage balancing. Finally the harmoric analysis of input/output voltage/current waveforms. are slso done using MATLAB package program.

The analysis is done for simple single pulse modulation.

3.2 Switchine Eunctions

The operation of the converter can be achieved only by means of a set of switches which operate according to a predetermined switching patterr. The switching function for a single switch assumes unit value whenever the switch is closed and a zero value whenever the switch is opened. In a converter, each switch is
closed and opened according to a predetermined repetitive pattern; hence, its switching function will take the form of a train of pulses of unit amplitude. Neither the pulses nor the intervening zero-value periods have necessarily the same time duration; however, the requirement that a repetitive switching pattern must exist means that the function must at least consist of repetitive groups of pulses. The simplest, or anmodulated, switching functions have pulses of the some time duration and zero intervales
 complex type with differing pulse durations and various intersperses zero times, is termed as a pulse width modulated (PWM) switching function. By modulating the pulse widths, harmonic :content of the resultant waveform improves and voltage control at the output is achieved. In the case of 8 variable frequency converter, the selection of a suitable modulation [16] strategy is of utmost importance. This is particularly true when the output voltage shape and the frequency spectrum change with a corresponding change in output frequency.

There are various types of modulation techniques e.g. single-pulse modulation, multi-pulse modulation, sinusoidal-puise modulation, sinusoidal pulse-width modulation, etc.

The techniques available differ in the harmonic content that
they produce and in the output voltage gain. Thus the acceptable harmonic content and resulting voltage gain are the factors that determine the choice of a particular PWM technique.

The switching function waveforms of the single-pulse modulation scheme is illustrated in Fig. 3.1. For the purpose of analysis it is assumed that the pulse width can be varied by equal angular intervals on both sides from the centre of the pulse, thus resulting in variation of the pulse width δ over the range $0<\delta<\pi$ radian.

The ${ }^{\text {maveform }}$ can be described by the Fourier series;

$$
\begin{equation*}
\mathrm{SF}=\mathrm{A}_{\mathrm{o}}+\sum_{\mathrm{n}=1,2,3}^{\alpha}\left(\mathrm{A}_{\mathrm{p}} \cos \mathrm{nwt}+\mathrm{B}_{\mathrm{n}} \sin \mathrm{nwt}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos n w t d(w t) \\
& =\frac{4}{n \pi} \sin \frac{n \delta}{2}, \quad n \text { is odd }
\end{aligned}
$$

and

$$
A_{0}=0, B_{n}=0
$$

and the corresponding harmonics i.e. An values are shown in Fig.3.1b for the value of $\delta=120^{\circ}$. This single pulse modulation
a)
b)

Fig. 3.1: Single pulse modulation switching function.
a) The switching function.
b) Respective frequency spectrum.
technique is used in this converter analysis.
3.3 Fourier Analysis of Output Voltage and Input Current for Balanced Input

For balanced case, the switching functions are of equal widths. The Fourier coefficients of the switching functions for this case are equal. In an actual converter (Fig.3.2), the switches operate in $O N-O F F$ mode, therefore, the practical switching function $\left[F_{d}\left(w_{s} t\right)\right]$ cointain harmonics.

3.3.1 Ontput Voltage

The practical expression for output voltage under balanced case becomes

$$
\begin{aligned}
& {\left[V_{0}\left(w_{o} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]\left[V_{i}\left(w_{i} t\right)\right]} \\
& \text { where } F_{d}\left(w_{s} t\right)=\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{3} & F_{1} & F_{2} \\
F_{2} & F_{3} & F_{1}
\end{array}\right]
\end{aligned}
$$

Fig. 3.2: Simplified circuit diagram of the proposed 3 phase to 3 phase static converter.

$$
=\left[\begin{array}{lll}
a & a & a \tag{3.2}\\
\sum A_{n} \cos \left(n w_{s} t\right) & \sum_{n} A_{n} \cos n\left(w_{S} t-120^{\circ}\right) & \sum_{n=1,3,5} A_{n} \cos n\left(w_{s} t-240^{\circ}\right) \\
n=1,3,5 & n=1,3,5 & \\
a & a & a \\
\sum_{n=1} A_{n} \cos n\left(w_{s} t-240^{\circ}\right) & \sum_{n=1,3} A_{n} \cos \left(n w_{s} t\right) & \sum_{n=1,3} \cos n\left(w_{s} t-120^{\circ}\right) \\
n & a & a \\
\sum_{n=1,5} A_{n} \cos n\left(w_{s} t-120^{\circ}\right) & \sum_{n=1,5} A_{n} \cos n\left(w_{s} t-240^{\circ}\right) & \sum_{n=1} A_{n} \cos \left(n w_{s} t\right) \\
n=3,3,5
\end{array}\right]
$$

and the analytical expression for output voltage (Figs.3.3-3.5) for 3 phase to 3 phase converter becomes

$$
\left[\begin{array}{c}
V_{A N} \\
V_{B N} \\
V_{C N}
\end{array}\right]=\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{3} & F_{1} & F_{2} \\
F_{2} & F_{3} & F_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
v_{s . n} \\
V_{b n} \\
V_{\mathrm{Cn}}
\end{array}\right]
$$

$=\frac{3 A_{1} V_{i}}{2}\left[\begin{array}{l}\cos \left(w_{o} t\right) \\ \cos \left(w_{o} t-240^{\circ}\right) \\ \left.\cos \left(w_{o} t-120^{\circ}\right)\right)\end{array}\right]+\left[S_{d h}\left(w_{S} t\right)\right] \cdot V_{i}\left[\begin{array}{l}\cos \left(w_{i} t\right) \\ \cos \left(w_{i} t-120^{\circ}\right) \\ \cos \left(w_{i} t-240^{\circ}\right)\end{array}\right]$
where

Comparing equation(3.3) with eqr. (2.6a,b,c) of chapter 2 we can see that there is difference between practical and ideal conveter output voltages. In practical case output voltages contains an infinite series of harmonics.

3.3.2 Input Current

The input current (Figs.3.6-3.8) spectrum of the 3 phase to 3 phase converter can be calculated in the same manner as the output voltage spectrum computed in subsection 3.3.1. The equation for input current of a 3-phase to 3-phase converter for balanced case can be expressed as follows:

$$
\left[I_{i}\left(w_{i} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]^{T}\left[I_{0}\left(w_{o} t\right)\right]
$$

Fig. 3.3: Output voltage waveform, $V_{\text {AN }}$ obtained with 3 phase to 3 phase converter under balanced condition.
a) Three input balanced phase voltages.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Output voltage, V_{AN}.

Fig. 3.4: Output voltage waveform, V_{BN} obtained with 3 phase to 3 phase converter under balanced condition.
a) Three input balanced phase voltages.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Output voltage, $\mathrm{V}_{\mathrm{BN}}{ }^{-}$

Fig. 3.5: Output voltage wave form, v_{Cl} obtained with 3 phase to 3 phase converter under balanced condition.
a) Three input balanced phase voltages.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2} \mathrm{~F}_{3}$ switching function components.
h) Output voltage, V_{CN}.

Table 3.1				
Frequency spectra of waveforms associated with converter output voltages $\mathrm{V}_{\mathrm{AN}}, \mathrm{V}_{\mathrm{BN}}$ and V_{CN} shown in Figs. 3.3-3.5				
Harmonic coefficients of switching function Fig. (3.3 b-d)		Harmonic coefficients of output voltages $V_{A N}, V_{B N}$ and Fíg. (3.3h-3.5h)		
Order(n)	$\begin{gathered} \text { Amplitude } \\ \left(A_{n}\right) \end{gathered}$	Amplitude ${ }^{\text {V }}$ AN,$V_{B N}$ and ${ }^{\text {V }}$ CN		
		$\underset{(\mathrm{n}}{\mathrm{Ord}}$	p.u	\%
1	1.10	1	0.37	87
3	0.00	3	-	-
5	0.22	5	-	-
7	0.16	7	-	-
9	0.00	9	-	-
11	0.10	11	0.20	20
13	0.09	13	0.14	14
15	0.00	15	-	-
17	0.07	17	-	-
19	0.06	19	-	-
21	0.00	21	-	-
23	0.05	23	0.08	8

(1) Input phase voltage have been taken as 1 p.u. volt \& 100% volt.

$$
=\left[\begin{array}{lll}
F_{1} & F_{3} & F_{2} \\
F_{2} & F_{1} & F_{3} \\
F_{3} & F_{2} & F_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
I_{A} \\
I_{B} \\
\stackrel{I}{C}
\end{array}\right]
$$

or
where

Fig. 3.6: Input current waveform, I_{a} obtained with 3 phase to 3 phase converter under balanced condition.
a) Three output balanced phase currents.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Input current, I_{a}.

Fig, 3.7: Input current waveform, I_{b} obtained with 3 phase to 3 phase converter under balanced condition.
a) Three output balanced phase currents.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Input current I_{b}.

Fig. 3.8: Input current I_{c}, "waveform obtained with 3 phase to 3 phase converter under balanced condition.
a) Three output balanced phase currents.
b) - d) F_{1}, F_{2}, F_{3} switching function components.
h) Input current, I_{C}.

Table 3.2
Frequency spectra of waveforms associated with converter
Input currents I_{a}, I_{b} and I_{c} shown in Figs.(3.6-3.8)

Harmonic coefficients of switching functionFig. (3.6 b-d)		Harmonic coefficients of resulting input phase currents I_{8}, I_{p} and I_{c} (Fig.3.6h-3.8h)		
Order (n)	$\begin{gathered} \text { Amplitude } \\ \left(A_{n}\right. \end{gathered}$	Amplitude $I_{\text {g }}, I_{b}$ and I_{c}		
		Order (n)	p.u.	$\%^{\text {(1 }}$
1	1.10	1	0.87	87
3	0.00	3	-	-
5	0.22	5	-	-
7	0.16	7	-	-
9	0.00	9	-	-
11	0.10	11	0.20	20
13	0.09	13	0.14	14
15	0.00	15	-	-
17	0.07	17	-	-
19	0.06	19	-	-
21	0.00	21	-	-
23	0.05	23	0.08	8

(1) Output phase current has been taken as 1 p.u. volt \& 100\% volt.

3.4 Eourier Analysis of Output Voltage and Input Current for Unbalanced Input

The switching functions are of unequal widths (Fig 3.9) for an unbalanced case. The widths are varied according to input unbalance.As practical power converters operate in ON/OFF mode employing switches rather than in continuous mode, they posses frequency spectra having infinite series of harmonic components. Harmonics associated with output voltages and input currents are discussed in details in the following sub-sections:

3.4.1 Qutput voltage

Similar to balanced case in subsection 3.3.1 the practical expression for output voltages under amplitude unbalanced input condition becomes:

$$
\begin{aligned}
& {\left[v_{0}\left(w_{o} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right] \cdot\left[v_{i}\left(w_{i} t\right)\right]} \\
& \text { where }\left[F_{d}\left(\omega_{s} t\right)\right]=\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{3} & F_{1} & F_{2} \\
F_{2} & F_{3} & F_{1}
\end{array}\right]
\end{aligned}
$$

Fig. 3.9: Gating signals for the example.

$$
\begin{align*}
& {\left[\begin{array}{l}
A \cos \left(\omega_{i} t\right) \\
B \cos \left(\omega_{i} t-120^{\circ}\right) \\
C \cos \left(\omega_{i} t-240^{\circ}\right)
\end{array}\right]} \tag{3.7}
\end{align*}
$$

$V_{A N}=\sum_{n=1,3,5}^{\alpha} A A_{n} \cos \left(n \omega_{s} t\right) \cdot \cos \left(w_{i} t\right)+\sum_{n=1,3,5}^{\alpha} B B_{n} \cos n\left(\omega_{S} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right)$

$$
\begin{aligned}
& +\sum_{n=1,3,5}^{a} \operatorname{cC} n_{n} \cos n\left(\omega_{s} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right) \\
& \left.=\frac{1}{2}\left(A A_{1}+B B_{1}+C C_{1}\right) \cos \left(w_{s}-w_{i}\right) t+\frac{1}{2} \sum_{n=3,5}^{a} A A_{p} \cos \left(n w_{s}+w_{i}\right) t+\cos \left(n w_{s}-w_{i}\right) t\right] \\
& +\frac{1}{2} \sum_{n=3,5}^{a} B B_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-n 120^{\circ}-120^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-n 120^{\circ}+120^{\circ}\right\}\right] \\
& +\frac{1}{2} \sum_{n=3}^{a} C C_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-n 240^{\circ}-240^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-n 240^{\circ}+240^{\circ}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{n=1,3,5}^{a} C B_{n} \cos n\left(\omega_{s} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right) \\
& =\frac{1}{2}\left(A C_{1}+B A_{1}+C B_{1}\right) \cos \left\{\left(w_{s}-w_{i}\right) t-240\right\}+\frac{1}{2}\left[A C \cos \left\{3\left(w_{s}+w_{i}\right) t-240^{\circ}\right\}\right. \\
& \left.+B A_{1} \cos \left\{3\left(\mathrm{H}_{\mathrm{S}}+\mathrm{w}_{\mathrm{i}}\right) \mathrm{t}-120^{\circ}\right\}+\mathrm{CB} \mathrm{~B}_{1} \cos \left\{3\left(\mathrm{w}_{\mathrm{S}}+\mathrm{w}_{\mathrm{i}}\right) \mathrm{t}-360^{\circ}\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{2} \sum_{n=3,5}^{a} B A_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-120^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-120^{\circ}\right\}\right] \\
& +\frac{1}{2} \sum_{n=3,5}^{a} C B_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-n 120^{\circ}-240^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-n 120^{\circ}+240^{\circ}\right\}\right] \tag{3.9}\\
& V_{C N}=\sum_{n=1,3,5}^{a} A B_{n} \cos n\left(w_{s} t-120^{\circ}\right) \cdot \cos \left(w_{i} t\right)+\sum_{n=1,3,5}^{a} B C_{i} \cos n\left(w_{s} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right) \\
& \sum_{n=1,3,5}^{a} C A_{n} \cos n\left(\omega_{s} t\right) \cdot \cos \left(\omega_{i} t-240^{\circ}\right) \\
& =\frac{1}{2}\left(A B_{1}+B C_{1}+C A_{1}\right) \cos \left\{\left(W_{s}-W_{i}\right) t-120^{\circ}\right\}+\frac{1}{2}\left[A C_{1} \cos \left\{3\left(W_{s}+W_{i}\right) t-120^{\circ}\right\}\right. \\
& \left.+B C_{1} \cos \left\{3\left(\mathrm{w}_{\mathrm{s}}+\mathrm{w}_{\mathrm{i}}\right) \mathrm{t}-360^{\circ}\right\}+C A_{1} \cos \left\{3\left(\mathrm{w}_{\mathrm{s}}+\mathrm{w}_{\mathrm{i}}\right) \mathrm{t}-240^{\circ}\right\}\right] \\
& +\frac{1}{2} \sum_{n=3,5}^{a} A B_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-n 120^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-n 120^{\circ}\right\}\right] \\
& +\frac{1}{2} \sum_{n=3,5}^{a} B C_{n}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-n 240^{\circ}-120^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t-n 240^{\circ}-120^{\circ}\right\}\right] \\
& +\frac{1}{2} \sum_{n=3,5}^{\alpha} \operatorname{CA}\left[\cos \left\{\left(n w_{s}+w_{i}\right) t-240^{\circ}\right\}+\cos \left\{\left(n w_{s}-w_{i}\right) t+240^{\circ}\right\}\right] \tag{3.10}
\end{align*}
$$

Fig. 3.10: Output voltage waveform, V_{AN} obtained with 3 phase to 3 phase converter under unbalanced condition.
a) Three input unbalanced phase voltages.
b) - d) $\quad \mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Output voltage, $V_{A N}$.

Table 3.3						
Frequency spectra of waveforms associated with converter Output voltage, $V_{A N}$ shown in Fig. 3.10						
Harmonic coefficients of switching function Fig. (3. $10 \mathrm{~b}-\mathrm{d}$)				Harmonic coefficients of output phase voltage V_{AN} Fig. (3.10h)		
Order(n)	Amplitude			Amplitude, ${ }^{\text {ANN }}$		
	A_{n}	B_{n}	C_{n}	Order	p:u. (1)	\% ${ }^{(1)}$
1	1.030	1.056	1.080	1	0.8682	86.82
3	0.131	0.088	0.044	3	-	-
5	-0.255	-0.25	-0.239	5	0.0185	1.85
7	0.056	0.096	0.131	7	0.0185	1.85
9	0.114	0.083	0.044	9	-0.0046	0.46
11	-0.074	0.112	-0.115	11	-0.2044	20.44
13	-0.030	0.014	0.055	13	0.0774	7.74
15	0.085	0.074	0.042	15	-0.0150	1.50
17	-0.023	-0.0.59	-0.075	17	0.0150	1.50
19	-0.054	-0.018	0.025	19	0.0150	1.50
21	0.049	0.060	0.041	21	0.0046	0.45
23	0.017	-0.026	-0.053	23	-0.0878	8.78
25	0.051	-0.033	0.009	25	0.10988	0.98

(1) Input phase voltage have been taken as 1 p.u. volt \& 100% volt.

Fig. 3.11: Output voltage waveform, V_{BN} obtained with 3 phase to 3 phase converter under unbalanced condition.
a) Three input unbalanced phase voltages.
b) - d) $\quad F_{1}, F_{2}, F_{3}$ switching function components.
h) Output voltage, V_{BN}.

Table 3.4						
Frequency spectra of waveforms associated with converter Output voltage, V_{BN} shown in Fig. 3.11						
Harmonic coefficients of switching function Fig. (3.11b-d)				Harmonic coefficients of output phase voltage $V_{\text {BiN }}$ Fig. (3.11h)		
Order (n)	Amplitude			Amplitude, V_{BN}		
	A_{n}	B_{n}	C_{n}	Order (n)	p.u. (1)	$\%$ (1)
1	1.030	1.056	1.080	1	-0.8684	86.84
3	0.131	0.088	0.044	3	-0.0185	1.85
5	-0.255	-0.251	-0.239	5	-0.0346	3.45
7	0.056	0.096	0.131	7	-0.0346	3.46
9	0.114	0.083	0.044	9	0.0023	3.48 20.44
11	-0.094	-0.112	-0.115	11	0.2044	20.44 7
13	-0.030	0.014	0.055	13	-0.0774	7.74
15	-0.085	0.074	0.042	15	0.0000	0.00
17	-0.023	-0.059	-0.075	17	0.0289	2.89
19	-0.054	-0.018	0.025	19	0.0289 0.0023	2.89 0.23
21	0.051	-0.060	0.041	21	0.0023	8.78
23	0.017	-0.026	-0.053	23 25	0.0878 -0.0104	01.04
25	0.051	-0.033	0.009	25	-0.0104	01.04

(1) Input phase voltage have been taken as 1 p.u. volt \& 100% volt.

Fig. 3.12: Output voltage waveform, V_{CN} obtained with 3 phase to 3 phase converter under unbalanced condition.
a) Three input unbalanced phase voltages.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Output voltage, V_{CN}.

Table 3.5						
Frequency spectra of waveforms associated with converter Output voltage, $V_{\text {CN }}$ shown in Fig. 3.12						
Harmonic coefficients of switching function Fig. (3.12b-d)				Harmonic coefficients of output phase voltage $V_{C N}$ Fig. (3.12 h)		
Order (n)	Amplitude			Amplitude, V_{CN}		
	A_{n}	B_{n}	C_{n}	Order	p.u. ${ }^{(1)}$	$\%$ (1)
1	1.030	1.056	1.080	1	-0.8682	86.82
3	0.131	0.088	0.044	3	0.0201	2.01
5	-0.255	-0.251	-0.239	5	-19.0020	0.20
7	0.056	0.096	0.131	7	0.0020	0.20
9	0.114	0.083	0.044	9	0.0073	0.73
11	-0.094	-0.112	-0.115	11	0.2042	20.42
13	-0.030	0.014	0.055	13	-0.0779	07.79
15	0.085	0.074	0.042	15	0.0297	02.97
17	-0.023	-0.059	-0.075	17	0.0039	0.39
19	-0.054	-0.018	0.025	19	0.0039	0.39
21	0.049	0.060	0.041	21	-0.0063	0.63
23	-0.017	-0.026	-0.053	23	0.0880	8.80
25	0.051	-0.033	0.009	25	-0.0107	01.07

(1) Input phase voltage have been taken as $1 \mathrm{p} . \mathrm{u}$ volt and 100% volt.

Equations (3.8)-(3.10) show that output voltages contain fundamental components of amplitudes in the order of 1.5 and harmonic components whose frequency is determined by ($2 \mathrm{n} \pm 1$) w_{o} term.

3.4.2 Input Current

The input current equation for 3-phase to 3-phase converter is expressed as follows:

$$
\left[I_{i}\left(w_{i} t\right)\right]=\left[F_{d}\left(w_{5} t\right)\right]^{T} \cdot\left[I_{0}\left(w_{0} t\right)\right]
$$

or
$\left[\begin{array}{l}I_{a} \\ I_{b} \\ I_{c}\end{array}\right]=\left[\begin{array}{lll}F_{1} & F_{3} & F_{2} \\ F_{2} & F_{1} & F_{3} \\ F_{3} & F_{2} & F_{1}\end{array}\right] \cdot\left[\begin{array}{l}A \cos \left(w_{0} t\right) \\ B \cos \left(\omega_{0} t-240^{\circ}\right) \\ \left.C \cos \left(\omega_{0} t-120^{\circ}\right)\right)\end{array}\right]$.
where
$\left[F_{d}\left(w_{S} t\right)\right]^{T}=\left[\begin{array}{lll}F_{1} & F_{3} & F_{2} \\ F_{2} & F_{1} & F_{3} \\ F_{3} & F_{2} & F_{1}\end{array}\right]$

Fig. 3.13: Input current waveform, I_{a} obtained with 3 phase to 3 phase converters under unbalanced condition.
a) Three output unbalanced phase currents.
b) - d) F_{1}, F_{2}, F_{3} switching function components.
h) Input current, I_{a}.
(-9) ?

Table 3.6						
Frequency spectra of waveforms associated with converter Input current, $I_{\text {a }}$ shown in Fig. 3.13						
Harmonic coefficients of switching function Fig. (3.13b-d)				Harmonic coefficients of input phase current, I_{a} Fig. (3.13h)		
Order (n)	Amplitude			Amplitude, $\mathrm{I}_{\text {a }}$		
	${ }^{A_{n}}$	B_{n}	C_{n}	Order (n)	p.u. (1)	$\%$ (1)
1	1.030	1.056	1.080	1	0.8682	86.82
3	0.131	0.088	0.044	3		
5	-0.255	-0.251	-0.239	5	-0.015	1.85
7	0.056	0.096	0.131	7	0.0185	1.85
9	0.114	0.083	0.044	9	-0.0046	0.46
11	-0.094	-0.112	-0.115	11	-0.2044	20.44
13	-0.030	0.014	0.055	13	0.0774	7.74
15	0.085	0.074	0.042	15	-0.0150	1.50
17	-0.023	-0.059	-0.075	17	0.0150	1.50
19	-0.054	-0.018	0.025	19	0.0150	1.50
21	0.049	0.080	0.041	21	0.0046	0.48
23	0.017	-0.026	-0.053	23	-0.0878	8.78
25	0.0 .51	-0.033	0.009	25	-0.0098	0.98

(1) Output phase current has been taken as 1 p.u. current \& 100% current

Fig. 3.14: Input current waveform, I_{b} obtained with 3 phase to 3 phase converter under unbalanced condition.
a) Three output unbalanced phase currents.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Input current, I_{b}.

$$
l-g) ?
$$

Table 3.7
Frequency spectra of waveforms associated with converter
Input current, I_{b} shown in Fig. 3.14

Harmonic coefficients of switching function Fig. (3.14 b-d)				Harmonic coefficients of input phase current, I_{b} Fig. (3.14h)		
Order (n)	Amplitude			Amplitude, I_{t}		
	${ }^{\text {n }}$	B_{n}	${ }^{\text {c }}$ n	Order (n)	p.u. ${ }^{(1)}$	$\%$ (1)
1	1.030	1.056	1.080	1	-0.8682	86.82
3	0.131	0.088	0.044	3	0.0201	2.01
5	-10.255	-0.251	-0.239	5	0.0020	0.20
7	0.056	0.096	0.131	7	0.0020	0.20
9	0.114	0.083	0.044	9	0.0073	0.73
11	-0.094	-0.112	-0.115	11	0.2042	20.42
13	-0.030	0.014	0.055	13	-0.0779	7.79
15	0.085	0.074	0.042	15	0.0297	2.97
17	-0.023	-0.059	-0.075	17	0.0039	0.39
19	-0.054	-0.018	0.025	19	0.0039	0.39
21	0.049	0.060	0.1041	21	-0.0063	0.83
23	0.017	-0.026	-0.053	23	0.0880	8.80
25	0.051	-0.033	0.009	25	-0.0107	1.07

(1) Output phase current has been taken as 1 p.u. current \& 100% current

Fig. 3.15: Input current waveform, I_{c} obtained balanced with 3 phase to 3 phase converter under unbalanced conditior
a) Three output unbalanced phase currents.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
h) Input current, I_{c}

$$
(e-g) ?
$$

Table 3.8						
Frequency spectra of waveforms associated with converter Input current, I_{c} shown in Fig. 3.15						
Harmonic coefficients of switching function Fig. (3. 15 b-d)				Harmonic coefficients of input phase current, I_{c} Fig. (3.15h)		
Order (n)	Amplitude			Amplitude, I_{c}		
	${ }^{\text {A }}$	B_{n}	C_{n}	Order (n)	p.u. (1)	$\%^{(1)}$
1	1.030	1.056	1.080	1	-0.8684	86.84
3	0.131	0.088	0.044	3	0.0185	1.85
5	-0.255	-0.251	-0.239	5	-0.0346	3.46
7	0.056	0.096	0.131	7	-0.0346	3.46
9	0.114	0.083	0.1344	9	0.0073	0.23
11	-0.094	-0.112	-0.115	11	0.2044	20.44
13	-0.030	0.014	0.055	13	-0.0774	7.74
15	-0.085	0.074	0.042	15	0.0000	0.00
17	-0.023	-0.059	-0.075	17	-0.0289	2.89
19	-0.054	-0.018	0.025	19	-0.0289	2.89
21	0.049	0.060	0.041	21	-0.0023	0.23
23	0.017	-0.026	-0.053	23	0.0878	8.70
25	0.051	-0.033	0.009	25	-0.0104	1.04

(1) Input phase current has been taken as 1 p.u. current \& 100% current.

The three input currents I_{a}, I_{b} and I_{c} are the replica of three output voltages. Hence, the harmonic content of the input currents are similar to output voltages.

3.5 An Example

To verify the proposed technique a specific example of input voltage of magnitudes $V_{s n}=0.97$ p.u. $V_{b n}=0.95$ p.u. and $V_{c n}=0.93$ p.u. i.e. 3,5 and 7 percent amplitude unbolance is considered. A simple single pulse modulation (Fig.3.1) is considered for this example. As the input phase voltages are of different amplitudes, the pulse duration will be different for the three phases. The duration, δ, of the pulses can be calculated 8 follows:

$$
A_{n}=4 / n \pi \sin (n \delta / 2) \quad \text { for } n=1,3,5
$$

To get the output voltage balanced, fundamental A_{1} must satisfy Eqn. 2.9 of chapter 2 which states that

$$
\begin{aligned}
& A_{1}=\frac{1}{A}=\frac{1}{0.97}=1.03093 \\
& \text { or, } A_{1}=4 / \pi \sin \left(\delta_{1} / 2\right) \\
& \text { or, } 1.03093=4 / \pi \sin \left(\delta_{1} / 2\right)
\end{aligned}
$$

$$
\mathrm{B}_{1}=\frac{\begin{array}{l}
\delta_{1}=108^{\circ} \\
1
\end{array}}{\mathrm{~B}}=\frac{1}{0.95}
$$

$$
\delta_{2}=112^{\circ}
$$

and $C_{1}=\frac{1}{C}=\frac{1}{0.93}$

$$
\delta_{3}=116^{\circ} .
$$

Therefore, pulse widths for a, b and c phases are $\delta_{1}=108^{\circ}$ $\delta_{2}=112^{\circ}$ and $\delta_{3}=116^{\circ}$ respectively. The converter configuration is shown in Fig. 3.2 and corresponding gating signals $g_{1}-g_{g}$ for this specific example is depicted in Fig.3.9. The output voltages and the corresponding input currents are shown in Fig.3.10-3.15. In order to provide a detailed description of the generated converter output voltage and input current waveforms, their respective spectra have been computed and shown in Tables 3.33.8. This information is essential not only for the proper evaluation of the converter performance but also for the design of input ontput filters (when required).

3.6 Simulation of Input-Output Voltage/Currents

It is customary to verify the analytically predicted frequency spectra of unknown shaped waveform by reconstrucing the waveshapes from predicted frequency spectra. Using the harmonic coefficients shown in Tables 3.3-3.8 the three output voltages and three input currents are reconstructed and depicted in Figs 3.16 and 3.17 . Their shapes matches the analytically predicted wave shapes of Figs. 3.10-3.15.

3.7 Varification of Results by MATLAB Simulation Package

To verify key analytical results, the discussed unbalanced converter are tested by simulation on IBM PC using MATLAB package program. A dedicated computer program simulating the precise opening and closing of the switches is employed to generate output voltages and input currents are shown in Figs 3.18 and 3.19. Further processing of these waveforms using MATLAB package program yields the respective frequency spectra. These waveforms are also shown in Fig 3.18 and 3.19. Comparison between analytically predicted frequency spectra (Tables 3.3-3.8) and spectra obtained by simulation shows that they are in close agreement.

Fig. 3.16: Output voltages $V_{A N}, V_{B N} \& V_{C N}$ reconstructed from harmonic coefficients (shown in Tables 3.3-3.5).

Fig. 3.17: Input currents $I_{a}, I_{b} \& I_{c}$ reconstructed from harmonic
coefficients (shown in Tables 3.6-3.8).

(b)

(c)
V_{BN}

(e)

(f)

Fig. 3.18: Output voltages $V_{A N}, V_{B N}$ and $V_{C N}(a, b \& c)$ and their spectra (e, f \& g) by MATLAB simulation package.

73

(b)

(c)

(e)

(f)

Fig. 3.19: Input currents $I_{a}{ }_{b} \& I_{c}(a, b * c)$ and their spectra (e, f\&g) by MATLAB simulation package.

3.8 Conclusions

A detailed Fourier analysis of output voltages and currents for the unbalanced converter is presented in this chapter. The gating signal required to get a balanced output is derived. The voltages and currents are reconstructed using the Fourier coefficients. Finally their spectrum are verified by using MATLAB package.

The frequency spectrum of output voltages and currents proves that the output of the proposed unbalanced converter is balanced. This verifies the validity of proposed technique.

CHAPTER 4

QPERATION AND DESIGN OF THE CONVERTER

4.1 Introduction

This chapter discusses the operation and design of the converter. The aspects of the active elements which are used for switching purpose and also the design aspects of logic-control circuit of the unbalanced phase converter are discussed. These aspects include, the defination and derivation of the appropriate active element i.e.switching element, switching function, the processing of the gating signals from their respective functions and the developement of the necessary circuitry to implement these functions and signal processing.

As the input voltages are unbalanced, the appropriate switching fuention or gating signal generation is much more complex [11]-[12] than the generation of respective function or signals for a balanced 3 phase to 3 phase converter. The unbalance present suggests that the implementation and performance of such converter depends to a large extent on their respective logic control boards. Slight mismatch of the gating signals will result in short-circuiting and blow-up of switches.

Some discussion is made regarding the active element i.e. elements of converter transfer matrix, before the discussion of operation of the converter.

Finally, a complete design data for the converter is provided.

4.2 Qperation of the Converter

The operation of a 3 -phase to 3 phase balanced output static converter can be explained with the help of Fig. 4.1. Before going in the operation of the converter it is essential to discuss about active element and switching function.

4.2.1 Active Elements \& Switching Eunctions

The realization of the 'Converter Transfer Matrix' can be achived only by means of a set of switches which operates according to a predetermined switching pattern. This topology (Fig 4.1) comprises of $9(=3 \times 3)$ 'active element'. In this specific case of converter as switching function have both positive(+) and negative (-) values and all nine active elements (S_{1} to S_{9}) has to operate both in positive (+) and negetive (-) values, so it is clear that each of nine active elements (S_{1} to S_{g}) consists of two static converter switch, one in top and another at the bottom called top switch and bottom switch respectively. For a 3phase to 3 -phase converter a total no. of $9 \times 2(=18)$ static switch are required. So one switch (top switch) operate on positive value of switching function and other switch (bottom switch) operate on negative value of the switching function.

The phase A of the converter (Fig. 4.1) can be redrawn as

Fig. 4.1: Simplified circuit diagram of the proposed 3 phase to 3 phase static converter.
shown in Fig. 4.2 considering the top and bottom switch concept (negative and positive value)..

The switching function for a single switch assumes unit value whenever the switch is closed and a zero value whenever the switch is open. But here switching function for an active element have a positive unit, zero and negstive unit value; whenever the top and bottom switch are open the switching function have a zero value and whenever the bottom switch of the active element is closed the switching function have a negative unit value. The function which are required for the operation of the converter active elements/switches are termed as switching function. In the design and analysis of a balanced output 3 phase to 3 phase static converter, the three switching function F_{1}, F_{2} and F_{3} have $+1,0$ and -1 value. Consider an active element S_{1}. Top switch S_{1}. operate when the switching function have a positive unit value and top switch S_{1}, remain inoperative when the switching function have zero or negative unit value. Similarly the bottom switch S_{1} " operate when the switching function have a negative unit value and the bottom switch S_{1} " remain inoperative when the switching function have a positive or zero value. Ali nine active elements operate like active element S_{1} as described above.

$\left|\begin{array}{ll}\text { k } \\ \text { PHASE } \\ \text { SUPPLY } & \text { STAGE }\end{array}\right|$ CONVERTER Stage
(a)

a) Switches are numbered according to Fig. 4.1.

Fig. 4.2: Simpliefied circuit diagram of the proposed 3 phase to to 3 phase static converter. (Here phase 'A' has taken into account.)

4.2.2 Operation of the Converter Under Balanced Input Condition

The operstion of phase 'A' according to Fig. 4.2 can be explained as follows:

For the first $30^{\circ}, F_{1}$ has a value of +1 and F_{3} has a value of -1 . So S_{1} and S_{7} " are closed. The output is the combination of $\mathrm{F}_{1} * \mathrm{~V}_{\text {an }}$ and $\mathrm{F}_{3} * \mathrm{~V}_{\mathrm{cn}}$. For 30° to $60^{\circ} \mathrm{F}_{2}$ has a value of +1 and F_{3} has a value of -1 . So S_{4}, and S_{7} " are closed. The output is the combination of $F_{2} * V_{b n}$ and $F_{3} * V_{c n}$. For 60° to $90^{\circ}, F_{1}$ has a value of -1 and F_{2} has a value of +1 . So S_{1} " and $S_{4}{ }^{\prime \prime}$ are closed. The output is the combination of $\mathrm{F}_{1} * \mathrm{~V}_{\text {an }}$ and $\mathrm{F}_{2} * \mathrm{~V}_{\mathrm{bn}}$. For 90° to 120°, F_{1} has a value of -1 and F_{3} has a value of +1 . So S_{1} " and S_{7}, are closed. The output is the combination of $\mathrm{F}_{1} * V_{\text {an }}$ and $\mathrm{F}_{3} * V_{\mathrm{cn}}$. For 120° to $150^{\circ}, F_{2}$ has a value of -1 and F_{3} has a value of +1 . So switches S_{4} " and S_{7} are closed. The output is the combination of $\mathrm{F}_{2} * \mathrm{~V}_{\mathrm{bn}}$ and $\mathrm{F}_{3} *_{\mathrm{cn}}$. For 150° to $180^{\circ} \mathrm{F}_{1}$ has a value of +1 and F_{2} has a value of -1 . So S_{1}, and S_{4} " are closed. The output is the combination of $\mathrm{F}_{1} * V_{\text {an }}$ and $\mathrm{F}_{2} * \mathrm{~V}_{\mathrm{bn}}$.

After 180° the operation is the same as explained earlier and the cycle is repeated.

For phases B and C the operations are similar to phase A.

4.2.3 Operation of the Converter Under Unbalanced Input Condition

For the unbalanced input condition, only the width of the switching function will be different, principle of operation remains the same as explained for balanced case disscussed in
section 2.3. Fig 4.4. shows three switching function with different widths due to unbalances in the input voltages, we can explain the operation of the converter under unbalanced case as follows;

The unbalanced voltages are taken as

$$
\begin{aligned}
& V_{a n}=A \cos w_{i} t \\
& V_{b n}=B \cos \left(w_{i} t-120^{\circ}\right) \\
& V_{c n}=C \cos \left(w_{i} t-240^{\circ}\right)
\end{aligned}
$$

Consider a specific example of input voltages $V_{a n}=0.97$ p.u., $V_{b n}=0.93$ p.u. i.e 3,5 and 7 percent amplitude unbalanced is considered. The switching function angle for this specific case are calculated as $\delta_{1}=54^{\circ}, \delta_{2}=56^{\circ}$ and $\delta_{3}=58^{\circ}$ using the formula $A_{n}=\frac{4}{n \pi} \sin \left(\frac{n \delta}{2}\right)$ and dividing the value of δ by $2($ two) because $\mathrm{w}_{\mathrm{s}}=2 \mathrm{w}_{\mathrm{i}}$.

For the balanced case the width of the switching function is $\delta=\delta_{1}=\delta_{2}=\delta_{3}$.

Comparing figures 4.3 and 4.5 we see that the principle of operation of the converter remains the same under balanced and unbalanced input conditions, only the widths of the switeting functions become different.

4.3 Design Criteria

Some converter design aspects regarding component rating

Fig. 4.3: Six gating signals relationship with balanced input voltages for the converter.
control logic and component profection are discussed in this section.

4.3.1 Component Ratings

In determining the ratings of the converter switches, the worst case condition is considered. It is noted that the worst case condition interval is 120° conduction. Conduction of more than 120° interval for any switch is equivalant to short circuiting the source which is not desirable. For this case the peak, rms and average switch currents $I_{s p}, I_{s r}$ and $I_{\text {sav }}$ are given by [13];

$$
\begin{aligned}
& I_{s p}=(\sqrt{3}) *(\sqrt{2}) \text { p.u Amps } \\
& I_{\text {sr }}=(\sqrt{3}) * /(\sqrt{2}) \text { p.u. Amps } \\
& I_{\text {sav }}=(\sqrt{6}) / \pi \quad \text { p.u. Amps }
\end{aligned}
$$

With these ratings a simple design is provided here for the phase converter.

For the case of simplisity consider phase "A" only. (Fig. 4.2)

Now considering the design of 30 KVA three phase to three phase converter (Fig. 4.1). it is assumed that

Nominal ac voltage $\mathrm{V}_{\mathrm{an}}=220$ volts (rms)
1 p.u. volt $=220$ volts (rms)
and the fundamental component of output (Table 3.1) voltage

$$
V_{A B}, 1=220 * 0.87=191.4 \text { volts (rms) }
$$

and the load current $I_{A B}($ Fig 4.1$)$ is given by

$$
I_{A B}, 1=30,000 /(\sqrt{3} * 191.4)=90.49 \text { Amps }(\mathrm{rms})
$$

By using computed per unit voltage, the actual converter switch voltage and current ratings (without safety margin) can be computed as follows:

Peak switch voltage $=220 * \sqrt{2}=311$ volts.
Peak switch current $=90.49 *(\sqrt{ })$ p.u $=221.88$ Amps.

Average switch current $=90.49 *(f 6 / \pi)$ $=70.55$ Amps

RMS switch current $\quad=90.49 x(\sqrt{3} / \sqrt{ })$ $=110.83$ Amps .

4.3.2 Design of the Control Circuit

Converter have special logic control requirements because of the complexities of associated power circuits. The design of the control circuit includes:

- the derivation of the appropriate switching functions
- the processing of the gating signals from their respective functions
- the development of the circuitry required to implement the above functions and signal processing.

To implement the schemes proper relationship between input voltages and gating signals is required. Such a gating signal which have relationship with balanced input for the phase
converter (Fig 4.1 \& Fig 4.2) is shown in Fig 4.3. This gating signals can be realized by using digital components.

A delta-wye step down transformer (Fig. 4.4) is used for input line voltage sensing. The output of this transformer provides the three zero crossing points for the three input line voltages. The zero-cross sensing is implemented by employing three properly biased voltage comparators.

The six gating signals $g_{1}-g_{6}$ (Fig 4.3) are then applied to the gates of the swithes of the converter in proper synchronization with zero crossing signals. The gating signals for balanced case and unbalanced case is depicted in Fig. 4.3 and Fig 4.5 respectively.

The derivation of unbalanced gating signals are described as £ollows:

Let

$$
\begin{aligned}
\mathrm{v}_{\mathrm{an}} & =0.97 \operatorname{sinwt} \\
\mathrm{v}_{\mathrm{bn}} & =0.95 \sin \left(w \mathrm{t}-120^{\circ}\right) \\
\mathrm{v}_{\mathrm{c}} & =0.93 \sin \left(w \mathrm{t}-240^{\circ}\right)
\end{aligned}
$$

i.e the unbalances are $3 \%, 5 \%$ and 7%.

The widths of the gating signal will be changed according to the amplitude of the unbalanced line voltages. The width of the gating signals are calculated as follows:

- For signal g_{1} and g_{4}, the width $={ }^{\dagger} 54.1^{\circ}$

Fig. 4.4: Logic circuit block diagram for the converter.

- For signal g_{3} and g_{6}, the width $=55.8^{\circ}$
- For signsl gis and gi, the width $=57.6^{\circ}$

The relationship between the goting signals and the unbalanced line voltages are shown in Fis 4.5.

Therefore, the width of the gating signals rhanges according to the unbalances present in the input line voltages.

If the amplitude of the unbalanced input voltages are previously known then the corresponding gating signals can be stored in EPROM and can be synohronized with the zero crossing. A dedicated computer program for loading (burning) EMROM for known amplitude unbalance is developed in FORTRAN language.

Abstract

When the smplitude of the input unbalance voltages change with time, i.e. varying continuously, then a dedicated microporcessor can be used. Various vombinations of gating signals for corresponding amplitude unbalance can be stored (Fig 4.6) in a look up table. According to the unbalance the output (Fig 4.6).

4.3.3 Component Protestisn

Providing effective switch protection for the converter shown in Fig 4.1 is very difficult task, s.s the load current commatation must be done without free-wheeling diode. Reffering to [14] a snubbercircuit which can provide adequate protection for the switches shown in Fig 4.7. The function of

180.0

${ }^{\omega t}$ 1.00
0.00
0.00
0.

Fig. 4.5: Six gating signals relationship with unbalanced input voltages for the converter.

Fig. 4.6: Microprocessor based control circuitry.

LOOK-UP TABLE

Amplitude Unbalance present in input Line voltage V_{ab} in percent	Corresponing gating signal width g_{1}, g_{4}	Amplitude Unbalance present in input Line voltage $V_{b c}$ in percent	Corresponing gating signal width g3, ${ }_{5}^{8}$	Amplitude Unbalance present in input Line voltage $V_{c a}$ in percent	Corresponing eating width E_{5}, B_{2}
1	$52.5{ }^{\circ}$	1	$52.5{ }^{\circ}$	1	$52.5{ }^{\circ}$
2	$53.3{ }^{\circ}$	2	53.3°	2	53.3°
3	$54.1{ }^{\circ}$	3	$54.1{ }^{\circ}$	3	$54.1{ }^{\circ}$
4	54.9°	4	$54.9{ }^{\circ}$	4	54.9°
5	$55.8{ }^{\circ}$	5	$5.5 .8^{\circ}$	5	$55.8{ }^{\circ}$
6	$56.7{ }^{\circ}$	6	56.7°	6	56.7°
7	57.6°	7	57.6°	7	57.6°
8	$58.6{ }^{\circ}$	8	$58.6{ }^{\circ}$	8	$58.6{ }^{\circ}$
9	59.7°	8	59.7°	8	58.7°

```
each (protective circuit) component is as follows:
    -` Reactors Ls 1-2-3 facilitate current transition (i.e.
    commutation) from a turning off to a turning on
    switching device.
    - Front end snubber rectifier diverts input currents to
        *storage elements C Ci during converter normsl or
        accidental switching transients.
    - Load end snubber rectifier diverts load currents to
        storage element }\mp@subsup{C}{s2}{}\mathrm{ during converter normal or
        accidential switching transients.
        Snubber sapacitors }\mp@subsup{C}{s1}{}\mathrm{ and © © limit resulting over
        voltages during above mentioned transients.
- Resistors R R2 and R R4 act as energy `bleeding` element
        for C}\mp@subsup{C}{s1}{}\mathrm{ and }\mp@subsup{C}{s2}{}\mathrm{ .
- Resistors R}\mp@subsup{R}{s1}{}\mathrm{ and R Rs3 provide criticsl damping to L-R-C
    path comprised by the smbber circuit compoents.
```


Fig. 4.7: The converter circuit showing protective elements.

4.4 Conlusions

This chapter discussed the operation and design of the converter. Derivation of the gating signals and their implementation by using microprocessor is also discussed. Component ratings and a snubber circuit for providing effective switch protection have also been discussed. Due to inadequate laboratory facilities the circuit could not be constructed.

CHAPTER 5

ANALYSIS OF AN UNBALANCED INPUT THREE PHASE CONTROLLED RECTIEIER

5.1 Introduction

Develapments in microelectronics, power semiconductors and fast switches have made possible the widespread use of ac to de converters in the control of d.c. motors, in voltage and current source inverters to provide the front end do link, in reactive power control and harmonic current compensation schemes. Due to the increase in application of these rectifier the effect of unbalance input operation condition study has become necessary. The novel technique discussed for the study of a balanced output three phase static converter for an unbalanced systen can also be applied to produce near perfect do (output) from a three input phase voltages when they are amplitude unbalanced.

Controlled Rectifiers like all other power electronios converters are designed to work in balanced input condition. Evaluation of real operating conditions, however, shows that this assumption is not true in most cases [12]. It is, therefore, essential for the validity of typical results, converter analysis methods should accomodate unbalanced operation conditions.

This chapter focuses on the analysis and design of a three phase controlled rectifier (CR) which produces near perfect dc output voltages with the amplitude unbalanced inputs. According to novel
technique to have a desired output it has been proved that the fundamental components of the switching functions are inversely 'proportional to the corresponding unbalanced input phase voltage magritudes. However the output contains insignificant harmonics.

5.2 Mathematical Analysis of the Controlled Rectifier

The simplified circuit diagram of the $C R$ capable to produce a near perfect de is shown in Fig. 5.1. This circuit structure consists of six bilatersi switches. The basic principle of operation for this $C R$ can be derived from the genral equation (2.1a \& 2.1b) in Chapter 2 by setting the number of input phases $N=3$ and the number of output phase $M=1$. In particular, the direct multiplication of the input phase voltage $V_{a n}, V_{b n}$ and $V_{c n}$ by the corresponding switching function components F_{1}, F_{2} and F_{3} yields the near perfect de voltage. $V_{d c}$ (Fig. 5.3). Similarly unbalanced input phase currents ia, Ib and Io (Figs. 5.4, 5.5 and 5.6) are obtained by multiplying the output current $I_{d c}$ by respective converter switching function components F_{1}, F_{2} and F_{3}.

5.2.1 Analysis of the balanced three phase controlled rectifier

Consider a balanced case and assume, switching functions are:

$$
\begin{align*}
& F_{1}=A \cos \left(\omega_{s} t\right) \\
& F_{2}=A \cos \left(\omega_{S} t-120^{\circ}\right) \tag{5.1}\\
& F_{3}=A \cos \left(\omega_{s} t-240^{\circ}\right)
\end{align*}
$$

Fig. 5.1: Proposea controlled rectifier.

Fig. 5.2: Gating signals for the proposed controlled rectifier.
where A is the amplitude of the fundamertal components of all the function $F_{1}, F_{2} \& F_{3}$.
and Input voltages

$$
\left[V_{i}\left(w_{i} t\right)\right]=V_{i}\left[\begin{array}{l}
\cos \left(w_{i} t\right) \tag{5.2}\\
\operatorname{Cos}\left(w_{i} t-120^{\circ}\right) \\
\operatorname{Cos}\left(w_{i} t-240^{\circ}\right)
\end{array}\right]
$$

Now the theoritical input, output quantities for a three phase CR with balanced input can be derived using spectrum multiplication as follows:

$$
\begin{equation*}
\left[V_{0}\left(w_{o} t\right)\right]=[S F] \cdot\left[V_{i}\left(w_{i} t\right)\right] \tag{5.3}
\end{equation*}
$$

$$
=A V_{i}\left[\cos \left(w_{s} t\right) \cos \left(w_{i} t\right)+\cos \left(w_{s} t-120^{\circ}\right) \cos \left(w_{i} t-120^{\circ}\right)\right.
$$

$$
\left.+\cos \left(w_{s} t-240^{\circ}\right) \cos \left(w_{i} t-240^{\circ}\right)\right]
$$

If $w_{s}=w_{i}$ then

$$
\left[V_{0}\left(w_{o} t\right)\right]=V_{d c}=\frac{3}{2}
$$

$$
\begin{equation*}
\left[I_{i}\left(w_{i} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]^{T}\left[I_{i}\right] \tag{5.5}
\end{equation*}
$$

$\operatorname{or}\left[\begin{array}{l}I_{a}\left(w_{i} t\right) \\ I_{b}\left(w_{i} t\right) \\ I_{c}\left(w_{i} t\right.\end{array}\right]=\left[\begin{array}{l}A \cos \left(w_{S} t\right) \\ A \cos \left(w_{S} t-120^{\circ}\right) \\ A \cos \left(w_{s} t-240^{\circ}\right)\end{array}\right] \cdot\left[I_{o}\right]$.

$$
=A \cdot I_{0}\left[\begin{array}{l}
\cos \left(\omega_{S} t\right) \tag{5.6}\\
\cos \left(\omega_{S} t-120^{\circ}\right) \\
\cos \left(\omega_{S} t-240^{\circ}\right)
\end{array}\right]
$$

5.2.2 Analysis of the unbalanced three phase controlled rectfifer

Consider an unbalanced case and assume switching functions are:

$$
\begin{aligned}
& F_{1}=A_{1} \cos \left(\omega_{s} t\right) \\
& F_{2}=B_{1} \cos \left(\omega_{s} t-120^{\circ}\right) \\
& F_{3}=C_{1} \cos \left(\omega_{s} t-240^{\circ}\right)
\end{aligned}
$$

and the input voltages

$$
\left[V_{i}\left(w_{i} t\right)\right]=\left[\begin{array}{l}
A \cos \left(w_{i} t\right) \\
B \operatorname{Cos}\left(w_{i} t-120^{\circ}\right) \\
C \cos \left(w_{i} t-240^{\circ}\right)
\end{array}\right]
$$

Now using the same equation (5.3) for a three phase CR with unbalanced input we have-

$$
\begin{align*}
& {\left[V_{0}\left(w_{0} t\right)\right]=[S F] \cdot\left[V_{i}\left(w_{i} t\right)\right]} \\
& =A_{1} A\left[\left(\cos \left(w_{S} t\right) \cdot \cos \left(w_{i} t\right)+B_{1} B \cos \left(w_{S} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right)\right.\right. \\
& \left.\quad+C_{1} \operatorname{Cos}\left(w_{S} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right)\right] \\
& \quad=\frac{3}{2} \tag{5.7}
\end{align*}
$$

When

$$
\begin{align*}
& A_{1} A=1, B_{1} B=1 \& C_{1} C=1 \\
& A_{1}=\frac{1}{A}, B_{1}=\frac{1}{B}, C_{1}=\frac{1}{C} \tag{5.8}
\end{align*}
$$

Similarly the corresponding input currents can be derived as follows using the same equation (5.5),

$$
\begin{gather*}
{\left[I_{0}\left(w_{i} t\right)\right]=\left[F_{d}\left(w_{s} t\right)\right]^{T}\left[I_{0}\right]} \\
\text { or }\left[\begin{array}{l}
I_{a}\left(w_{i} t\right) \\
I_{b}\left(w_{i} t\right) \\
I_{c}\left(w_{i} t\right.
\end{array}\right]=\left[\begin{array}{l}
A_{1} \cos \left(w_{S} t\right) \\
B_{1} \cos \left(w_{s} t-120^{\circ}\right) \\
C_{1} \cos \left(w_{S} t-240^{\circ}\right)
\end{array}\right] \cdot\left[I_{0}\right] \\
= \tag{5.9}\\
=\left[\begin{array}{l}
A_{1} \cos \left(w_{s} t\right) \\
B_{1} \cos \left(w_{s} t-120^{\circ}\right) \\
C_{1} \cos \left(w_{S} t-240^{\circ}\right)
\end{array}\right]
\end{gather*}
$$

In the above analysis w_{i} is the frequency of input quintities (i.e. 50 Hz) w_{s} is the operating frequency of the CR (e.g. 50 Hz) and $\mathrm{w}_{0}=\mathrm{w}_{\mathrm{s}}-\mathrm{F}_{\mathrm{i}}=0$.

Equation (5.4) and (5.7) shows that the output voltage is theoritically harmonic free. It can be concluded from equations (5.7) and (5.8) that the output voltage is pure de when the fundamental component of the switching function are equsl to the inverse of the amplitude of the corresponding input phase voltage. The amount of anbslance that can be corrected depends on the choice of proper switching function (SF). In this analysis a single pulse modulation is considered (Fig. 5.4b). Though theoritically the output is harmonic free, but the output contains some insignificant harmonics, because $S F$ is a square wave instead of a cosine wave as considered during analysis. The various waveforms are depicted in Figs. 5.3-5.6 and the associated frequency spectra are shown in Tables 5.1 and 5.2.

The input currents are balanced for balanced sase and the input currents are unbalanced for anbalanced case.

The complete expression for the output voltage and input currents can be written as follows:

$$
V_{o}=\left[F_{d}\left(w_{s} t\right)\right] \cdot\left[V_{i}\left(w_{i}\right)\right]
$$

and the input current expression becomes ;

$$
\left[I_{i}\left(w_{i} t\right)=\left[F_{d}\left(w_{s} t\right)\right]^{T} \cdot\left[I_{o}\right]\right.
$$

$$
\text { or }\left[\begin{array}{l}
I_{a}\left(w_{i} t\right) \\
I_{b}\left(w_{i} t\right) \\
I_{c}\left(w_{i} t\right)
\end{array}\right]=\left[\begin{array}{l}
\sum_{n=1,3,5}^{\infty} A_{n} \cos \left(n w_{s} t\right) \\
\sum_{n=1,3,5}^{\infty} B_{n} \cos n\left(w_{s} t-120^{\circ}\right) \\
\sum_{n=1,3,5}^{\infty} C_{n} \cos n\left(w_{s} t-240^{\circ}\right)
\end{array}\right] \cdot\left[I_{o}\right]
$$

$$
\begin{align*}
& =\left[\begin{array}{lll}
\sum_{n=1}^{\infty} A_{n} \cos \left(n w_{s} t\right) & \sum_{n=1,5}^{\infty} B_{n} \cos n\left(w_{s} t-120^{\circ}\right) & \sum_{n=1,3,5}^{\infty} C_{n} \operatorname{cosn}\left(w_{s} t-240^{\circ}\right)
\end{array}\right] \\
& A \cos \left(w_{i} t\right) \\
& B \cos \left(w_{i} t-120^{\circ}\right) \\
& C \cos \left(w_{i} t-240^{\circ}\right) \\
& =\sum_{n=1,3,5}^{\infty} A A_{n} \cos \left(n \omega_{s} t\right) \cdot \cos \left(w_{i} t\right)+\sum_{n=1,3,5}^{\infty} B B_{n} \cos n\left(w_{s} t-120^{\circ}\right) \cdot \cos \left(w_{i} t-120^{\circ}\right) \\
& +\sum_{n=1,3,5}^{\infty} \cos n\left(\omega_{s} t-240^{\circ}\right) \cdot \cos \left(w_{i} t-240^{\circ}\right) \\
& =\frac{3}{2}+\frac{1}{2}\left[\sum_{n=3,5}^{\infty} A A_{p}\left(\cos \left(n w_{s}+{ }_{i}\right) t+\cos \left(n w_{s}-w_{i}\right) t\right)\right. \\
& +\underset{n=3,5}{\infty} \sum_{n}\left(\cos \left(\left(n \omega_{S}+w_{i}\right) t-(n+1) 120^{\circ}\right)+\cos \left(\left(n \omega_{S}-w_{i}\right) t-(n-1) 120^{\circ}\right)\right) \\
& +\sum_{n=3,5}^{\infty} C C_{n}\left(\cos \left(\left(n w_{s}+w_{i}\right) t-(n+1) 240^{\circ}\right)+\cos \left(\left(n w_{5 j}-w_{i}\right) t-(n-1) 240^{\circ}\right)\right) \tag{5.10}
\end{align*}
$$

$$
\left[\begin{array}{l}
I_{a}\left(w_{i} t\right) \tag{5.11}\\
I_{b}\left(w_{i} t\right) \\
I_{c}\left(w_{i} t\right)
\end{array}\right]=I_{o}\left[\begin{array}{l}
\infty \\
\sum_{n=1,3,5} A_{n_{1}} \cos \left(n w_{s} t\right) \\
\infty \quad \sum_{n=1,3,5} \cos n\left(w_{s} t-120^{\circ}\right) \\
\infty \\
\sum C_{n=1,3,5} \cos n\left(w_{s} t-240^{\circ}\right)
\end{array}\right]
$$

5.3 An Example

To veryfy the proposed technique specific example of input voltage of magritudes $V_{a n}=0.97$ P.U. $V_{b n}=0.95 \mathrm{P} . \mathrm{U}$. and $V_{\mathrm{c}_{\mathrm{n}}}=0.93$ p.u. i.e. 3.5 and 7 percent amplitude unbalance is considered. As the input phase voltages are of different amplitudes, the pulse duration will be different for the three phases. The duration δ of the pulses can be calculated as follows

$$
A_{n}=(4 / n \pi) \sin (n \delta / 2) \quad \text { for } n=1,3,5 \ldots
$$

To get the output balanced $A_{1}=\frac{1}{A}=\frac{1}{A}=1.03093$

$$
\delta_{1}=108^{\circ}
$$

Corresponding pulses widths for b and c phases are $\delta_{2}=112^{\circ}$ and $\delta_{3}=118^{\circ}$ respectively. The $C R$ converter configuration shown in Fig 5.1 and corresponding gatting signals g_{1} - $_{8}$ for this sfecific example is depicted in Fig 5.2. The output voltage $V_{d c}$ and the corresponding input currents are shown in Fig 5.3-5.6. Respective Fourier spectrum is shown in Table 5.1. For comparison purpose the output voltage and input currents waveforms for balanced C.R. are shown in Figs 5.7-5.10. Corresponding Fourier spectrum is shown in Table 5.2.

5.4 Simulated Results

To verify key analytical results, the discussed $C R$ was tested by simulation on an $I B M P C$. A dedicated computer program simulating

Fig. 5.3: Output voltage waveform, V_{o} obtained with $C R$ under unbalanced input condition.
a) Three input unbalanced phase voltages.
b) - d) $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ switching function components.
e) Output D.C. voltage, V_{0}.

Fig. 5.4: $\begin{aligned} & \text { Input current waveform, } I_{a} \text { obtained with } \mathrm{CR} \text { under unbalanced } \\ & \text { condion. }\end{aligned}$
a) Output current, I_{o} of $C R$.
b) Switching function, F_{1}
c) Input current, I_{a} of $C R$.

Fig. 5.5: Input current waveform, I_{b} obtained with $C R$ under unbalanced condition.
a) Output current, I_{o} of $C R$.
b) Switching function, F_{2}.
c) Input current, I_{b} of $C R$.

Fig. 5.6: Input current waveform, I_{C} obtained with $C R$ under unbalanced condition.
a) Output current, I_{o} of $C R$.
b) Switching function, F_{3}.
c) Input current, I_{c} of $C R$.

Table 5.1

Table 5.1									
Frequency spectra of waveforms Associated with unbalanced C.R. output voltage and Input currents shown in Fig 5.3-5.6.									
Harmon cients switch functi (Fig.	ic of ing on .3b-d			Harmon cients output voltage V_{dc} (Fig	c coeffiof $(5.3 e)$	Harmon of inp I or (Figs	ic coe ut cur I_{b} or $5: 4 \mathrm{c}, 5$	fici rents ${ }^{1} \xi_{c, 5}$	
Order		litud		Order	Amplitude	Order	$\because A$	litu	
(n)	A_{n}	B_{n}	C_{n}	(n)	$V_{d c}$	(n)	I_{a}	I_{b}	I_{c}
1	1.03	1.06	1.08	0	1.65	1	0.52	0.53	0.54
3	0.13	0.09	0.04	2	0.03	3	0.07	0.05	0.02
5	0.25	0.25	0.24	4	0.01	5	0.13	0.13	0.12
7	0.06	0.09	0.13	6	0.29	7	0.03	0.05	0.07
9	0.11	0.08	0.04	8	0.05	9	0.06	0.04	0.02
11	0.09	0.11	0.11	10	0.02	11	0.05	0.06	0.06
13	0.03	0.01	0.05	12.	0.09	13	0.02	0.01	0.03
15	0.08	0.07	0.04	14	0.03	15	0.04	0.04	0.02
17	0.02	0.06	0.07	16	0.04	17	0.01	0.03	0.04
19	0.05	0.02	0.03	18	0.11	19	0.03	0.01	0.02

(1) Input phase voltage and output current have taken as 1 P.U.

Fig. 5.7: Output voltage waveform, V_{o} obtained with $C R$ under balanced input condition.
a) Three input balanced phase voltages.
b) - d) F_{1}, F_{2}, F_{3} switching function components.
e) Output near perfect D.C. voltage, V_{o}.

Fig. 5.8: Input current waveform, I_{a} obtained with $C R$ under balanced condition.
a) Output current, I_{o} of $C R$.
b) Switching function, F_{1}.
c) Input current, I_{a} of $C R$.

Fig. 5.9: Input current waveform, I_{b} obtained with $C R$ under balanced condition.
a) Output current, I_{o} of $C R$.
b) Switching function, F_{2}.
c) Input current, I_{o} of $C R$.

Fig. 5.10: Input current waveform, I_{C} obtained with $C R$ under balanced condition.
a) Output current, I_{0} of $C R$.
b) Switching function, F_{3}.
c) Input current, I_{c} of $C R$.

Table 5.2				
Frequency spectra of waveforms associated with balanced controlled rectifier.				
Harmonic coefficients of switching function (Figs. 5.7b-d)	Harmonic coefficients of output voltage$\mathrm{V}_{\mathrm{dc}} \text { (Fig.5.7e) }$		Harmonic coefficient of input currents I_{a} or I_{b} or I_{c} (Figs.5.8c or ${ }^{\text {c }} 5.9 \mathrm{c}$ or 5.10c)	
Order Amplitude (n) (A_{n})	Order (n)	$\begin{aligned} & \text { Amplitude } \\ & \left(\mathrm{V}_{\mathrm{dc}}\right) \end{aligned}$	Order (n)	Amplitude in p.u. $\text { (} I_{a} \text { or } I_{b} \text { or } I_{c} \text {) }$
$1 \quad 1.10$	0	1.65	1	0.55
$3 \quad 0.00$	2	0.00	3	0.00
$5 \quad 0.22$	4	0.00	5	0.11
$7 \quad 0.16$	6	0.36	7	0.08
$9 \quad 0.00$	8	0.00	9	0.00
$11 \quad 0.10$	10	0.00	11	0.05
$13 \quad 0.09$	12	0.18	13	0.05
$15 \quad 0.00$	14	0.00	15	0.00
$17 \quad 0.07$	16	0.00	17	0.03
$19 \quad 0.06$	18	0.11	19	0.03

(1) Input phase voltage and output current have taken as 1 P.U.
the opening and closing of the six $C R$ switches in example 3 to generate 3 the output voltage and input current. Waveforms are shown in Figs. 5.11A, 5.12A, 5.13A, 5.14A. Further processing of these waveforms by using MATLAB package yields the respective frequency spectra as shown in Figs. 5.11B, 5.12B, 5.13B and 5.14B. Comperison between analytically predicted (Table 5.1) frequency spectra and spectra obtained by simulation shows that they are in close agreement.

5.5 Design Criteria

This $C R$ requires only 6 gating signals for 6 bilateral switches. The swithces are composed of 4 diodes and a gate turn-off divice. In designing the digital control (firing) circuit the following need to be considered:
i) Deriving the 6 gating signals.
ii) Applying the 6 gating signals.

The 6 gating signal for the specific example are shown in Fig. 5.2. These six gating signals are applied directly to the gates of the six swithces in proper time relative to zero crossing of input voltages.

Fig. 5.11: Output voltage, V_{0} of $C R(A) \&$ its spectrum (B) under unbalanced condition.

Fig. 5.12: Input current, $I_{a}(A) \&$ its spectrum (B) under unbalanced condition.

Fig. 5.13: Input current, I_{b} condition.

Fig. 5.14 Input current, I_{C} (A) \& its spectrum
(B) under unbalanced condition.

5.6 Conclusions

This chapter provides a comprehensive analysis of a three phase rectifier under amplitude unbalanced input voltages. A simple example is used to illustrate the validity of the principle and is supported by simulation.

CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

A three phase converter under unbalanced input condition has been studied in this thesis. The converter is modelled and analysed using Fourier analysis . The technique used for correcting the input unbalance is proved to be effective.

Contributions of this thesis by chapter are as follows:

In Chapter 2 , the three phase converter model is derived using generalized matrix model. The mathematical relationship of input/output quantities are derived for both balanced and unbalanced input conditions.

Fourier analysis of the proposed converter for balanced and unbalanced conditions is provided in Chapter 3. To prove the effectiveness of the proposed technique the output and input voltages/currents are reconstructed using the predicted Fourier coefficients. Finally the waveforms are analysed in a personal computer using MATLAB package. The results proves the vality of the proposed technique.

In Chapter 4 operation of the converter and necessary design and protection data are provided. Input voltage sensing is
used to synchronize the precise opening and closing of the converter switches. Microprocessor can also be used to correcy various amount of input unbalance.

Next, the search for using this proposed technique for frequency changer application has led to a novel unbalanced controlled rectifier is analysed using Fourier coefficients. Design data are also provided for its implementation.

6.2 Suggestion for Future Wark

The analysis and design of an unbalanced three phase converter using a simple single switch is presented in this thesis. During this analysis only unbalance in amplitude is considered. Advanced PWM switching function may be used to study the improvement of quality (spectrum) of output voltages/currents considering both amplitude and phase unbalance operating condition. Further study may be carried out to investigate the validity of this voltage balancing technique for this converter as a frequency changer. Further study may also be focussed on the microprocessor based control circuitry and the filter circuit necessary for such a converter.

References

[1] Bimal K. Bose, "Recent Advances in Power Electronics " in Conf. Record IEEE-IAS, 1990, pp. 829-838.
[2] Joseph S. Subjak, Jr. and John S. McQuilkin, "HarmonicsCauses, Effects, Measurements, and Analysis: An Update", IEEE Trans. on Industry Appl., Vol. 26, No. 6, pp. 1034-1042, Nov./Dec. 1990.
[3] John Reeve and P.C.S. Krishnayya, "Unusual Current Harmonics Arising from High-Voltage DC Transmission" IEEE Transactions on Power Apparatus and Systems, Vol. Pas-87, No.3, pp. 883-833, March 1968.
[4] R.F. Woll, "Effect of Unbalanced Voltage on the Operation of Polyphase Induction Motors, IEEE Translations on Industry Applications, Vol. IA-11. No.1, pp.38-42, January/February 1977.
[5] W.D. Stevenson, Elements of Power System Analysis, MoGrawHill, NY, 1955.
[6] R.Yacamini and W.J. Smith, "Negative Sequence Impedance of Convertors" IEE PROC, Vol. 128 Pt. B, No. 3, pp. 161-166 May 1981.
[7] J. Oyama, F. Profumo, E. Muljadi and T.A. Lipo; "Design and Performance of a Digitally Based Voltage Controller for Correcting Phase Unbalance in Induction Machines", in Conf. Rec. IEEE-IAS, 1988, pp. 578-583.
[8] J. Oyama, F. Profumo, E. Muljadi, T.A. Lipo. "A Digital Voltage Controller For Reducing Induction Motor Phase Unbalance" in Conf. Rec. ICEM 88, 1988, pp 431-434.
[9] E. Muljadi, R. Schifeal and T.A. Lipo, Induction Machine Phase Balancing by Unsymmetrical Thyristor Voltage Control, Research Report 84-10, June 1984.
[10] Luis Moran, Phoivos Ziogas and Geza Joos, "Design Aspects of Synchronous PWM Rectifier Inverter Systems Under Unbalanced Input Voltage Conditions", in Conf. Ree.IEEE-IAS, 1989, pp. 877-884.
[11] Prasad E. Enjeti and P.D. Ziogas, "Analysis of a Static Power Converter under Unbalance: A Novel Approach", (a letter), IEEE Trans, on Industrial Electronics, Vol. 17, No. 1, Feb. 1990, pp. 91-93.
[12] Prasad N. Enjeti, P.D. Ziogas and M. Ehsani, "Unbalanced PWM Converter Analysis and Connective Measures", in Cof. Rec. IEEEIAS, 1989, pp. 861-870.
[13] P. Enjeti and X. Wang, "A Critical Evaluation of Harmonics Generated by Forced Commutated Cycloconverters (ECC's) Under Unbalance", IEEE-IECON 1990, pp.216-221.
[14] Shaidul I. Khan and S. Islam, "Analysis of A Single Phase Direct Erequency Canger for Input Unbalnce Correction" in Conf. Rec. IEEE-IECON, 1991, pp...
[15] Shahidul I.Khan, P.D. Ziogas and M.H. Rashid," Foroed Commutated Cycloconverters for High Frequency Link Applications", IEEE Trans. on Ind. Appl., Vol. IA-23, no:4, pp.661-672, July/Aug., 1987.
[16] William G. Dunford and Jacobus D. van Wyk, " Harmonic Imbalance in Asynchronous PWM Schems", IEEE Trans. on Power Electronics, Vol. 7, no.3, pp. 480-486, July, 1992.

APPENDIX A

CIRCUIT IMPLEMENTATION

A. 1 INTRODUCTION

In implementing a converter configuration the Erasable Programable Read Only Memory (EPROM) can be used as a means of storing the gate signals applied to the different SCR's and power transistors. The gate signals can be stored in the memory locations of the EPROM by means of a device called the EPROM programmer or burner. A logic circuit can be used to retrieve the gate signals from the memory locations of the EPROM. Both the storing of gate signals into EPROM and retrieving of the same is discussed in this chapter.

A. 2 ERROM

EPROM is a field-programmable and field erasable device. The package has a quartz window over the chip. Fig. A. 1 shows a pictorial view of TMS 2516 or 2716 EPROM device. It is possible to erase this device by exposing it to ultraviolet light at or near a wavelength of $0.2537 \mu \mathrm{~m}$ for about a minimum of 21 minutes. Before programming, the device is erased. After erasure all bits are in the "1" state (assuming a high level output corresponding to logic "1").

(a) Top Vlew

(b)Pin Nomenclature

FIGURE AII TMS 2516 EPROM Device

FIGURE A-2 Converter Gate Pulses Stored in the EPROM

After erasure logic "0's" are programed into the desired locations. EPROM 2516 and 2716 are organized into 16 K memory locations. A "0" can be erased only by Ultra Violet light. The programmable mode is achieved when $V_{p p}$ is 25 volts and NOT CS is at $V_{1 H}$. Data is presented in parallel (8 bits) on pins Q_{1} through Q 8 . Once address and data are stable a 50 ms TTL high level pulse should be applied to the PGM pin at each address location to be programmed. Programing is usually performed by placing the EPROM in a programmer or burner.

A. 3 PROGRAMMING THE ERROM

The EPROM programmer used to store data on the different memory locations of an ERROM consists of an PC add on card, test socket box and software based on a IBM PC/XT/AT or compatible $P C$ under $P C-D O S$ or MS-DOS environment. The main software is EPROMX.EXE and using this software the EPROM car be programmed, read, verified, blank checked, and the memory buffer contents can be edited, displayed, printed etc. The EPROM 2715 and 2516 contains a total of 16 K bits of memory space and each has 0 to 7FF (hex) or 0 to 2047 memory locations. Each location can store up to 8 bits of binary information. The EPROM programmer software consists of a built in editor through which the desired 8 bit data can be stored in the desired location. If
the binary bits 00011100 (1 CHex) is to be stored in the memory locstion $6 F F$ (Hex) of the EPROM then after running the EPROMX.EXE programe under the DOS prompt the editor is invoked and the data 1 C (Hex) is written against the correspondig address GFF. This memory area is on the PC system memory and is called the memory buffer. The buffer is allocated by main software through the arrangement of DOS. Any portion of this buffer can be saved to diskette or programmed to the EPROM.

The six gate signals as shown in fig. A. 2 which are to be applied to a converter are stored in the 2048 memory locations of the EPROM 2516 or 2716 by dividing each signal into 2048 sub-divisions. Each of these sub-divisions contains either a "1" state or a "0" state according to the corresponding signal. Then for each of the 2048 8-bit location from 0 to 2047 the six gate signals g_{1} through g_{6} and two other signals g_{7} and g_{8}, assumed to be zero at all time, are combined to form the 8-bit binary information to be stored in that location. As for example, suppose after dividing the gate signals into 2048 sub-divisions the gate signals corresponding to location 005 are $g_{1}=0, g_{2}=$ $0, g_{3}=0, g_{4}=0, g_{5}=1, g_{6}=1$, and $g_{7}=g_{8}=0$. So, at the memory location 005 of the EPROM the 8 -bit byte 00001100 or OC Hex corresponding the gate signals is to be stored. In this way every memory locaton of the EPROM can be programmed to store certain data. A computer program is developed to determine the 8-bit binary

figureats Approsimate Logic Circuit for Reading the eprom
digits corresponding to the six gate signals for each memory location from 0 TO 7FE (Hex) of the TMS 2516 or 2716 EPROM. The output of the program is a binary file containing the required 8bit byte to be stored at each memory address. The binary file was loaded into the memory buffer of the PC using the EPROM main software and later loaded into the corresponding EPROM memory locations through the EPROM programmer or burner.

The programming of the EPROM is briefly as follows:-

1. Execution of the main software of the ERROM burner under DOS command.
2. Selection of the desired EPROM type numbe and corresponding manufacturer of the EPROM.
3. Placing of an erased EPROM on the master socket of the burner and blank-checking (all bits high) of the EPROM.
4. Loading of the desired contents of each memory locations into the memory buffer from diskette containing the binary file.
5. Programing the EPROM (i.e. loading the contents of memory buffer into the EPROM) by using the programming option of the main software of EPROM programmer.

A. 4 RETRIEVING DATA FROH THE ERROM

Once the EPROM TMS 2516 or TMS 2716 has been programmed, the six gate signals, as discussed previonsly, can be retrieved by using an approximate logic circuit as shown in the figure A. 3 . The logic circuit consists of a counter and a clock. If the desired output frequency is 50 Hz then the clock has to be set to a frequency of $50 * 2048=102.4 \mathrm{KHz}$ for reading all the 2048 memory locations in the required 50 Hz interval. The TMS 2516 or 2716 contains $2048\left(=2^{11}\right.$) memory locations; i.e. 11 address bits are required to obtain the content of each memory location. The $C D$ 4040 is a 11 bit binary counter and changes the address of the 11 EPROM address pins at the clock frequency of 102.4 KHz . As the addresses of the EPROM memory location is continuously varied from 0 to 2047 the output pins of the EPROM $9,10,11,13,14,15$ contains the gate signals previously stored, at the desired output frequency of 50 Hz .

ARPENEDIX B

COMPUTER PROGRAM - 1

 DIMENSION TA(9), TB(9),TC(9), \(\mathrm{FA}(3000), \mathrm{FB}(4500), \mathrm{FC}(5000), \mathrm{VA}(5000)\)
 DIMENSION XA(5000), XB(5000), XC(5000), XDC1(5000),VB(5000),VC(5000)
 DIMENSION XDC2(5000),XDC3(5000)
 OPEN(UNIT=3, FILE='OUTS.DAT', STATUS='OLD')
 DEL \(1=120.0 / 2.0\)
 TA(1) \(=(\) DEL \(1 / 2.0)\)
 \(\mathrm{TA}(2)=90.0-(\mathrm{DEL} 1 / 2.0)\)
 \(\mathrm{TA}(3)=\mathrm{TA}(2)+\mathrm{DEL} 1\)
 \(\mathrm{TA}(4)=180.0-(\) DEL \(1 / 2.0)\)
 \(\mathrm{TA}(5)=180.25\)
 \(\mathrm{I}=1\)
 \(\mathrm{J}=1\)
 $1 \quad \mathrm{XF}=.25 * \mathrm{~J}$
FA(J) $=1$
$\mathrm{J}=\mathrm{J}+1$
IF (XF.LT.TA(I))GO TO 1
$F A(J)=0$
IF (I.EQ.5) GO TO 2
$\mathrm{I}=\mathrm{I}+1$
$\mathrm{J}=\mathrm{J}$
$\mathrm{J}=\mathrm{J}+1$
$X F=.25 *$. J
$\mathrm{FA}(\mathrm{J})=0$
IF (XF.LE.TA(I))GO TO 3
$\mathrm{I}=\mathrm{I}+1$
$\mathrm{J}=\mathrm{J}$
IF(J. GE.720) GO TO 2
GO TO 1
$\mathrm{J}=0$
$\mathrm{J}=\mathrm{J}+1$
IF (J.LE. 180) GO TO 5
IF (J.GT. 540) GO TO 5
$F A(J)=-F A(J)$
GO TO 7
$5 \quad F A(J)=F A(J)$
7 IF (J.EQ. 720) GO TO 6
GO TO 4
$\mathrm{J}=\mathrm{J}+1$

GO TO 6
8 DEL2 $=120.0 / 2.0$
$T B(1)=60.0+($ DEL2 2.0$)$
$T B(2)=90.0-($ DEL2 $/ 2.0)+60.0$
$\mathrm{TB}(3)=\mathrm{TB}(2)+\mathrm{DEL} 2$
$\mathrm{TB}(4)=180.0-($ DEL $2 / 2.0)+60.0$
$\mathrm{TB}(5)=180.25+60.0$
$\mathrm{I}=1$
$\mathrm{J}=241$
$11 \quad \mathrm{XF}=.25 * \mathrm{~J}$
FA $(J)=1$
$\mathrm{J}=\mathrm{J}+1$
IF (XF.LT.TB(I))GO TO 11
$F B(J)=0$
IF(I.EQ.5) GO TO 12
$\mathrm{I}=\mathrm{I}+1$
$\mathrm{J}=\mathrm{J}$
$13 \quad \mathrm{~J}=\mathrm{J}+1$
$\mathrm{XF}=.25 * \mathrm{~J}$
$F B(J)=0$
IF (XF.LE.TB(I))GO TO 13
$\mathrm{I}=\mathrm{I}+1$
$\mathrm{J}=\mathrm{J}$
IF(J.GE.960) GO TO 12
GO TO 11
$12 \mathrm{~J}=240$
$14 \mathrm{~J}=\mathrm{J}+1$
IF (J.LE. 420)GO TO 15
IF(J.GT.780) GO TO 15
$F B(J)=-F B(J)$
GO TO 17
$15 \quad \mathrm{FB}(\mathrm{J})=\mathrm{FB}(\mathrm{J})$
17 IF (J.EQ. 960) GO TO 16
GO TO 14
$16 \mathrm{~J}=720$
$18 \mathrm{~J}=\mathrm{J}+1$
$\mathrm{FB}(J-720)=\mathrm{FB}(\mathrm{J})$
IF(J.EQ.980) GO TO 19
GO TO 18
$19 \mathrm{~J}=240$
$20 \mathrm{~J}=\mathrm{J}+1$
$F B(J)=F B(J)$
IF (J.EQ.720) GO TO 50
GO TO 20
$50 \mathrm{~J}=\mathrm{J}+1$
$\mathrm{FB}(\mathrm{J})=\mathrm{FB}(\mathrm{J}-720)$

```
        IF(J.EQ.1920) GO TO 60
        G0 TO 50
```



```
        TC(1)=120.0+(DEL3/2.0)
        TC(2)=90.0-(DEL3/2.0)+120.0
        TC(3)=TC(2)+DEL3
        TC (4) = 180.0-(DEL3/2.0) +120.0
        TC(5)=180.25+120.0
        I=1
        J=481
21 XF=.25*J
        FC(J)=1
        J=J+1
        IF (XF .LT. TC(I))GO TO 21
        FC(J)=0
        IF(I. EQ. 5) GO TO 22
        I=I+1
        J=J
23 J=J+1
        XF=.25*J
        FC(J)=0
        IF (XF .LE. TC(I)) GO TO 23
        I=I+1
        J=J
        IF (J.GE. 1200) GO TO 22
        GO TO 21
22J=480
24 J = J +1
        IF (J .LE. 660) GO TO 25
        IF (J .GT. 1020) GO TO 25
        FC(J)=-FC(J)
        GO TO 27
        FC(J)=FC(J)
        27 IF(J.EQ. 1200) GO TO 26
        GO TO 24
        26 J=720
28 J=J+1
    FC(J-720)=FC(J)
    IF(J.EQ. 1200) GO TO 29
    GO TO 28
29 J=480
30 J=J+1
    FC(J)=FC(J)
    IFC( J .EQ. 720) GO TO 61
    G0 TO 30
61 J=J+1
    FC(J)=FC(J-720)
    IF(J.EQ. 2400) GO TO 100
```

GO TO 61
$J=1$
$\mathrm{PI}=3.141592654$
$31 \quad Y A=.25 * J$
$V A(J)=1.00 * \operatorname{COS}((Y A * P I) / 180.0)$
$\mathrm{XA}(\mathrm{J})=\mathrm{FA}(\mathrm{J}) * \mathrm{VA}(\mathrm{J})$
$Y B=Y A-120.0$
$\mathrm{VB}(J)=1.00 * \cos ((Y B * P I) / 180.0)$
$\mathrm{XB}(J)=\mathrm{FB}(J) * \mathrm{VB}(J)$
$Y C=Y A-240.0$
$V C(J)=1.00 * \operatorname{COS}((Y C * P I) / 180.0)$
$X C(J)=F C(J) * V C(J)$
$\operatorname{XDC} 1(J)=X A(J)+X B(J)+X C(J)$
$\operatorname{XDC2}(J)=F C(J) * V A(J)+F A(J) * V B(J)+E B(J) * V C(J)$
$\mathrm{XDC} 3(J)=F B(J) * V A(J)+F C(J) * V B(J)+\hat{F A}(J) * V C(J)$
WRITE(3,230)YA,FA(J),FB(J),FC(J),XDC1(J), XDC2(J), XDC3(J)
FORMAT(1X,F7.2,10(1X,F6.3)
IF (J.EQ. 1440) GO TO 200
$\mathrm{J}=\mathrm{J}+1$
GO TO 31
200
STOP
END

COMPUTER PROGRAM - 2

C THIS PROGRAM IS DONE BY SADIQUR RAHMAN KHAN

DETERMINATION OF NECESSARY DATA TO PLOT OUTPUT VOLTAGES

 AND INPUT CURRENTS UNDER UNBALANCED INPUT CONDITIONDIMENSION TA(9),TB(9),TC(9),FA(3000),FB(4500),FC(5000), VA(5000)
DIMENSION XA(5000), XB (5000), XC(5000), XDC1(5000), VB(5000), VC(5000)
DIMENSION XDC2(5000), XDC3(5000)
OPEN(UNIT=3, FILE='OUTS.DAT', STATUS='OLD')
DEL1=116.4/2.0
$\mathrm{TA}(1)=(\mathrm{DEL} 1 / 2.0)$
$\mathrm{TA}(2)=90.0-(\mathrm{DEL} 1 / 2.0)$
$\operatorname{TA}(3)=T A(2)+D E L 1$
TA $(4)=180.0-($ DEL $1 / 2.0)$
$\mathrm{TA}(5)=180.25$
$I=1$
$J=1$
$1 \quad \mathrm{XF}=.25 * \mathrm{~J}$
FA $(J)=1$
$\mathrm{J}=\mathrm{J}+1$
IF (XF.LT.TA(I))GO TO 1
FA $(J)=0$
IF(I.EQ.5) GO TO 2
$\mathrm{I}=\mathrm{I}+1$
$J=\mathrm{J}$
$\mathrm{J}=\mathrm{J}+1$
$X F=.25 * J$
$F A(J)=0$
IF (XF.LE.TA(I))GO TO 3
$\mathrm{I}=\mathrm{I}+1$
$J=J$
IF(J. GE.720) GO TO 2 GO TO 1
$J=\mathrm{J}+1$

```
        FA(J)=FA(J-720)
        IF(J. EQ. 1440) GO TO 8
        GO TO 6
8 DEL2=114.0/2.0
        TB(1)=60.0+(DEL2/2.0)
        TB(2)=90.0-(DEL2/2.0)+60.0
        TB(3)=TB(2)+DEL2
        TB(4)=180.0-(DEL2/2.0)+60.0
        TB(5)=180.25+60.0
        I=1
        J=241
        11 XF=.25*J
        FA(J)=1
        J=J+1
        IF(XF.LT.TB(I))GO TO 11
        FB(J)=0
        IF(I.EQ.5) GO TO 12
        I=I+1
        J=J
13 J=J+1
        XF=.25*J
        FB(J)=0
        IF(XF.LE.TB(I))GO TO 13
        I=I+1
        J=J
        IF(J.GE.960) GO TO 12
        GO TO 11
    12 J=240
    14J=J+1
        IF(J.LE.420)GO TO 15
        IF(J.GT.780) GO TO 15
        FB(J)=-FB(J)
        GO TO 17
    15 FB(J)=FB(J)
    17 IF(J.EQ.960) GO TO 16
        GO TO 14
        J=720
        J=J+1
        FB(J-720)=FB(J)
        IF(J.EQ.960) GO TO 19
        GO TO 18
        J=240
19 
        FB(J)=FB(J)
        IF(J.EQ.720) GO TO 50
        GO TO 20
    5 0 J = J + 1
        FB(J)=FB(J-720)
```

IF(J.EQ.1920).GO TO 60
GO TO 50
60 DEL3=111.6/2.0
$\mathrm{TC}(1)=120.0+(\mathrm{DEL} 3 / 2.0)$
$\mathrm{TC}(2)=90.0-(\mathrm{DEL} 3 / 2.0)+120.0$
$\mathrm{TC}(3)=\mathrm{TC}(2)+\mathrm{DEL} 3$
$\mathrm{TC}(4)=180.0-(\operatorname{DEL} 3 / 2.0)+120.0$
$T C(5)=180.25+120.0$
$\mathrm{I}=1$
$\mathrm{J}=481$
$21 \quad \mathrm{XF}=.25 * J$
FC(J) $=1$
$\mathrm{J}=\mathrm{J}+1$
IF (XF .LT. TC(I)) GO TO 21
$F C(J)=0$
IF (I. EQ. 5) GO TO 22
$\mathrm{I}=\mathrm{I}+1$
$J=J$
$23 \mathrm{~J}=\mathrm{J}+1$
$\mathrm{XF}=.25 * \mathrm{~J}$
$F C(J)=0$
IF (XF .LE. TC(I)) GO TO 23
$\mathrm{I}=\mathrm{I}+1$
$J=J$
IF (J. GE. 1200) GO TO 22
GO TO 21
$22 \mathrm{~J}=480$
$24 J=J+1$
IF (J .LE. 660) GO TO 25
IF (J.GT. 1020) GO TO 25
$F C(J)=-F C(J)$
GO TO 27
$25 \quad F C(J)=F C(J)$
27 IF(J.EQ. 1200) GO TO 26
GO TO 24
$26 \quad J=720$
$28 \mathrm{~J}=\mathrm{J}+1$
$F C(J-720)=F C(J)$
IF(J .EQ. 1200) GO TO 29
GO T0 23
$29 J=480$
$30 \quad \mathrm{~J}=\mathrm{J}+1$
$F C(J)=F C(J)$
IFC(J .EQ. 720) GO TO 61
GO TO 30
61

$$
F C(J)=F C(J-720)
$$

IF(J.EQ. 2400) GO TO 100

```
        GO TO 61
        J=1
        PI=3.141592654
31 YA=.25*J
        VA(J) =0.97*COS ((YA*PI)/180.0)
        XA(J)=FA(J)*VA(J)
        YB=YA-120.0
        VB(J)=0.95*COS ((YB*PI)/180.0)
        XB(J)=FB(J)*VB(J)
        YC=YA-240.0
        VC(.J )=0.93*COS((YC*PI)/180.0)
        XC(J)=FC(J)*VC(J)
        XDC1(J)=XA(J)+XB(J)+XC(J)
        XDC2(J)=FC(J)*VA(J)+FA(J)*VB(J)+FB(J)*VC(J)
        XDC3(J)=FB(J)*VA(J)+FC(J)*VB(J)+FA(J)*VC(J)
        WRITE(3,230)YA,FA(J),FB(J),FC(J),XDC1(J), XDC2(J), XDC3(J)
230 FORMAT(1X,F7.2,10(1X,F6.3)
        IF(J .EQ. 1440) GO TO 200
        J=J+1
        GO TO 31
200 STOP
    END
```


COMPUTER PROGRAM－ 3

THIS PROGRAM IS DONE BY SADIQUR RAHMAN KHAN
DETERMINATION OF NECESSARY DATA TO PLOT GATING SIGNALS
DIMENSION $\mathrm{X}(725), \mathrm{Z}(725), \mathrm{F} 1(725), \mathrm{F} 2(725), \mathrm{F} 3(725), \mathrm{F} 4(725)$
1，F5（725），F6（725）
DO $11 \mathrm{M}=0,720$
$\mathrm{X}(\mathrm{M})=\mathrm{FLOAT}(\mathrm{M}) / 2.0$
11 CONTINUE
DO $22 \mathrm{I}=0,720$
$\mathrm{A}=\mathrm{FLOAT}$（I）$/ 2.0$
IF（A．LE．36．）THEN
F 1 （I）$=0.0$
ELSEIF（（A．GT．36．）．AND．（A．LT．144．））THEN
F 1 （I）$=1.0$
ELSEIF（（A．GE．144．）．AND．（A．LE．360．））THEN $\mathrm{F} 1(\mathrm{I})=0.0$
ENDIF
22 CONTINUE
DO $33 \mathrm{~J}=0,720$
$B=F L O A T(J) / 2.0$
IF（B．LE．94．）THEN
$F 2(\mathrm{~J})=0.0$
ELSEIF（（B．GT．94．）．AND．（B．LT．206．））THEN
$\mathrm{F} 2(\mathrm{~J})=1.0$
ELSEIF（（B．GE．206．）．AND．（B．LE．360．））THEN
$\mathrm{F} 2(\mathrm{~J})=0.0$
ENDIF
33 CONTINUE
DO $44 \mathrm{~K}=0,720$
C＝FLOAT（K）／2．0
IF（C．LE．154．）THEN
$\mathrm{F} 3(\mathrm{~K})=0.0$
ELSEIF（（C．GT．154．）．AND．（C．LT．266．））THEN
$\mathrm{F} 3(\mathrm{~K})=1.0$
ELSEIF（（C．GE．266．）．AND．（C．LE．360．））THEN
$F 3(K)=0.0$
ENDIF
44 CONTINUE
DO $23 \mathrm{I}=0,720$
$D=F L O A T(I) / 2.0$
IF（D．LE．216．）THEN
$F 4(I)=0.0$
ELSEIF（（D．GT．216．）．AND．（D．LT．324．））THEN
$F 4(I)=1.0$
ELSEIF（（D．GE．324．）．AND．（D．LE．360．））THEN
$F 4(\mathrm{I})=0.0$
ENDIF
23 CONTINUE
D0 34. $\mathrm{J}=0,720$
E=FLOAT (J) $/ 2.0$
IF (E.LE.28.)THEN
F5(J) $=1.0$
ELSEIF((E.GT.28.).AND.(E.LT.272.))THEN
$\mathrm{F} 5(\mathrm{~J})=0.0$
ELSEIF ((E.GE.272.).AND.(E.LE.360.))THEN
F5 (J) $=1.0$
ENDIF
34 continue
DO $45 \mathrm{~K}=0,720$
$\mathrm{F}=\mathrm{FLOAT}(\mathrm{K}) / 2.0$
IF (F.LE.86.)THEN
$F 6(K)=1.0$
ELSEIF((F.GT.86.).AND.(F.LT. 334.))THEN
$\mathrm{F} 6(\mathrm{~K})=0.0$
ELSEIF ((F.GE.334.).AND.(F.LE. 360.))THEN
$F 6(K)=1.0$
ENDIF
45 CONTINUE
DO $55 \mathrm{~L}=0,720$
$Z(L)=X(L)$
$\operatorname{HRITE}(3,20) Z(L), F 1(L), F 2(L), F 3(L), F 4(L), F 5(L), F 6(L)$
20 FORMAT(1X,F6.2,2X,3(F4.1,2X),3(F4.1,2X))
55 CONTINUE
STOP
END

