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ABSTRACT 
 

With the increase of the complexities of VLSI circuit, testing problem has become more acute. 

Testing at low cost with reliable performance is now a burning issue in the semiconductor world. 

Test pattern generator is very important in VLSI Testing. Researchers have proposed different 

testing approaches where test pattern generation plays an important role on performance of the 

testing. Finding proper seed for a test pattern generator, finding optimum switching point from 

pseudo-random test technique to deterministic test etc. are challenges in VLSI testing. Fault 

simulation experiments have been conducted on a number of benchmark circuits to find the best 

seed and optimum switching points. Recently Fibonacci pseudo-random test pattern generator 

has been proved efficient in many cryptographic applications. Then we have evaluated the 

effectiveness of a 64-bit Fibonacci test pattern generator in VLSI circuit testing. The project 

focuses on design and simulation of a 64-bit Fibonacci test pattern generator capable of 

generating sufficient long test pattern. By changing the seed and feedback connection, a set of 

test vectors are generated for different benchmark circuits. Then we have conducted fault 

simulation experiments on ISCAS (International Symposium on Circuits and Systems) 

benchmark circuits for its evaluation in cost effective IC Testing. The result has been compared 

with that of other researchers. It is found better as compared to all other results. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Overview 

In this modern era, electronic equipment and products have become a part and parcel of our daily 

life. Zero failure, reliability and longevity are now major business issues as well as customer‟s 

expectation for the electronic goods. Accuracy and high reliability are essential and even life 

critical for many applications, for example, in medical and aerospace. The key components of an 

electronic product are integrated circuits (ICs). In IC manufacturing, various physical defects 

may occur during numerous physical, chemical and thermal processes [1]. It is very unwise to 

sell components to customers without being absolutely sure that the devices are functioning as 

per specification. During the early stage of semiconductor technology, testing of IC was simple 

and the designer did not need to be much concerned about that. With the dramatic improvement 

of semiconductor technology, the design complexities and packing densities of IC have 

exceedingly increased. Now millions of transistors are being integrated on a single chip. System-

on-a-chip (SOC) is a vision of this era. With the increase of the complexities of VLSI circuit, 

testing problem has become more complex. Testing at low cost with reliable performance is now 

a burning issue in the semiconductor world. If a fault can be detected at an earlier stage, it is 

possible to avoid a larger cost of fault detection. Efficient testing method plays a vital role in the 

economic success of VLSI circuits. Researchers have proposed different testing approaches. 

They are exhaustive test technique, pseudo random test technique, weighted random test 

technique, mixed mode test technique etc. Usually in all the testing approaches a number of test 

patterns are applied to the circuit under test (CUT) and faults are detected. In a literature, it has 

been shown that number of faults detected depends on the randomness of the test pattern. So test 
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pattern generation technique is very important in VLSI circuit testing. Usually linear feedback 

shift register (LFSR) and cellular automata register (CAR) are widely used in test pattern 

generation for testing ICs. Due to the limitations of integration and fabrication technology 

previous researchers used 32-bit LFSR or CAR in designing IC tester or test processor chip. 

However now integration technology has tremendously improved. In this project a 64-bit 

Fibonacci test pattern generator which is a modified version of LFSR has been evaluated in 

VLSI testing. Fibonacci test pattern generator has already been used in many cryptographic 

applications and proved very much efficient. So, there are scopes of research to evaluate its 

effectiveness in VLSI testing. 

 

1.2 Motivation 

Modern IC production facilities use computer controlled Automatic Test Equipment (ATE) for 

testing ICs. With the increase of complexities of ICs, ATE suffers from the following drawbacks, 

(i) high equipment cost ,(ii) slow  test  speed ,(iii) huge  memory  requirements ,(iv) yield less. 

To ease the burden of IC testing using ATE, different test techniques have been proposed in the 

literatures for the purpose of reducing the test cost using 32-bit test pattern generator [2-3]. 

Based on the proposed algorithms different researchers have shown their fault simulation results 

to prove the effectiveness of their proposed techniques [2-8]. But the number of test patterns to 

achieve full fault coverage is still high enough. In all the test techniques test pattern generation 

plays a vital role because if the generated pattern has better randomness then performance of the 

testing increases. Recently Fibonacci pseudo-random test pattern generator has been proved 

efficient in many cryptographic applications. As a result in this project work we proposed a new 

64-bit Fibonacci test pattern generator which is a modified version of LFSR .So there are scopes 
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of research to evaluate the Fibonacci pseudo-random test pattern generator to be used in VLSI 

testing.        

 
1.3 Objectives with Specific Aims and Possible Outcome 

The proposed project has the following objectives: 

 To design a Fibonacci test pattern generator capable of generating sufficient long test 

pattern without repeating the sequence. 

 To conduct fault simulation experiments on benchmark circuits.  

 To evaluate the test pattern and find the fault coverage for different seeds and different 

tap positions of the proposed test pattern generator. 

 To determine the best seed and the optimum switching point for a mixed mode test. 

 To compare the test results with that of other researchers. 

 

1.4 Outline of the Project 

The project is arranged in five chapters. Chapter 1 describes complexities and difficulties of 

testing ICs of present days. Scope and motivation of the research work is presented in this 

chapter. 

Chapter 2 of this project describes different testing techniques of digital IC. It also covers the 

theory of fault modeling and fault simulation, the details of LFSR, types of LFSR, test pattern 

generation and primitive polynomial.  

Chapter 3 of this project describes about the details design of the proposed FLFSR.  

Chapter 4 of this project describes the simulation result of the ISCAS benchmark circuits using 

Fibonacci test pattern generator by FSIM and comparison of fault simulation results with that of 
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other researchers. Extensive simulations are performed to study the effect of reseeding and 

programmability of feedback polynomial in improving fault coverage.  

Chapter 5 presents the conclusion and future work of the proposed system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

CHAPTER 2 
FUNDAMENTALS OF IC TESTING 

 
2.1 Introduction 

This chapter includes the fundamental topics related to VLSI circuit testing. It has been 

mentioned in the previous chapter that the aim of the research work presented in this project is to 

design a Fibonacci test pattern generator and evaluates its effectiveness in VLSI circuit testing. 

In order to give a better understanding for the reader of this project, different topics related to 

digital IC testing such as fault modeling and fault simulation, different types of LFSR and 

different types of testing techniques and their relative advantages and disadvantages have been 

discussed in this chapter. 

 

2.2 Preliminaries 

Test pattern (test vector): To carry out the testing of a digital circuit, a set of signals are applied 

to its input and then compare the corresponding output responses with that of a good circuit. The 

input signals are called input test vectors and output signals are called response vectors. In a 

sequence of test vectors, if the combination of binary 0 and 1 are at random and are not 

predictable then it is called random test vectors. True random test vectors are not possible to 

generate. Generally, after a certain period, the sequence repeats and so they are known as 

pseudo-random test vectors. 

 
Fault coverage: The percentage of detected faults over all possible detectable faults is known as 

fault coverage. Typically, fault coverage refers to the percentage of single faults detected by the 

test. As a rule, test engineers attempt to provide as close as possible to 100% fault coverage. Due 
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to the difficulty in developing such tests, however, in practice, a fault coverage that is too high is 

difficult to achieve. 

Fault simulation: An empirical method used to determine how faults affect the operation of a 

circuit and/or also how much testing is required to obtain desired fault coverage. Fault simulation 

plays a significant role in the testing of digital circuits. It determines which faults in the circuit 

are detected by a given set of test patterns. 

LFSR: A shift register formed by flip-flops and XOR gates, chained together, with a 

synchronous clock, used either as input pattern generator or as signature analyzer. An LFSR with 

a well-chosen feedback function can produce a sequence of bits which appears random and 

which has a very long cycle. 

Maximal Length Sequences (L): A maximal length sequence for a shift register of length N is 

referred to as an m-sequence, and is defined as: L = 2N −1. An eight-stage LFSR, for example, 

will have a set of m-sequences of length 255. 

Pseudo-random pattern generator: It generates a binary sequence of patterns where the 

patterns appear to be random in the local sense, but they are deterministically repeatable. 

Random testing: The process of testing using a set of pseudo-randomly generated patterns. 

MISR: Multiple-input LFSR. 

Aliasing: It occurs if the faulty output produces the same signature as a fault-free output. 

Built-in self-test (BIST): Built-in self-test is the capability of a digital circuit to carry out self 

test using the built in hardware facilities. It reduces the costs of external test pattern generation 

and fault simulation, the testing time and simplifies the external test equipment. 

Off-line testing: A testing process carried out while the tested circuit is not in use. 

On-line testing: Concurrent testing to detect errors while circuit is in operation. 



24 
 

Signature analysis/data compaction: A test where the output responses of a device over time 

are compacted into a characteristic value called a signature, which is then compared to a known 

good one. 

Stuck-at fault: A fault model represented by a signal stuck at a fixed logic value (0 or 1). 

Redundant Fault: If there is no test vector that can detect a fault in a circuit then the fault is 

called redundant [9]. 

 

2.3 Different Approaches of IC Testing 

With the evolution of test technology, various approaches have been developed for IC testing. 

The choice of an approach depends on the factors such as fault coverage, test length, test 

application time and simplicity of hardware.  Major approaches for IC testing are as follows: 

 Exhaustive approach 

 Pseudo-exhaustive approach 

 Deterministic approach 

 Pseudo-random approach 

 Weighted random approach 

 Mixed-mode approach 

 

2.3.1 Exhaustive approach 

According to exhaustive approach all the possible combination of input test vectors is generated 

and applied to the circuit-under-test (CUT) [1]. For a circuit with n number of inputs, the 

possible combination of input vectors will be 2 n . Binary counter, Gray counter, linear feedback 

shift register (LFSR) are generally used as exhaustive test pattern generator. This approach offers 
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100% fault coverage with a low computational cost. However with inputs roughly greater than 

twenty test lengths become very long. If the number of inputs is high, then test length becomes 

very long and takes much longer time for test generation. For example, the exhaustive testing of 

the 8080 microprocessor would take over 2010  years, at one million tests a second. 

 

2.3.2 Pseudo-exhaustive approach 

In pseudo-exhaustive approach, circuits are logically partitioned into smaller parts and then each 

part is tested exhaustively by much fewer number of test vectors than that of exhaustive 

approach. To reduce hardware overhead and testing time, different algorithms have been 

proposed for circuit-partitioning. Although pseudo-exhaustive method achieves the benefits of 

exhaustive testing by using far fewer test patterns but the disadvantage of this approach is the 

large test sets with the increase of complexities in circuits. Very often physical segmentation of 

the circuit is necessary in this approach. Moreover, hardware implementation of pseudo-

exhaustive pattern generator is difficult and most of the design does not lead to minimal test set. 

 

2.3.3 Deterministic approach 

Deterministic approach allows CUT to be examined at first of the test and test vectors are 

generated after that using any suitable algorithm for deterministic test pattern generation. For 

deterministic test pattern generation different algorithms have been proposed such as Exclusive-

OR, D-algorithm, PODEM (path-oriented decision making) and FAN (Fan oriented test pattern) 

[10]. This approach enables error signals to be generated due to presence of faults and propagate 
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Figure 2.1:  Fault coverage versus random test vectors  

them to some observable output form. This approach guarantees full fault coverage but large test 

data volumes and computational complexities are the drawbacks of this approach.      

 

2.3.4 Pseudo-random approach 

Pseudo-random approach is now an established technique for low cost IC testing [11]. In this 

approach, a set of test vectors is generated randomly from 2 n possible input patterns where n is 

the number of inputs. Linear feedback shift registers (LFSRs) are commonly used for test pattern 

generation for its simple structure and can also be used as output response analyzer and thereby 

serves dual purposes. The main advantage of this approach is that random pattern generation 

circuitry is simple and a large number of tests can be generated using smaller data storage. The 

disadvantage of this approach is that the length of the test set that detects a set of faults is much 

larger (usually 10 times or more) than deterministically generated test set for the same faults. 

Figure 2.1 shows relationship between fault coverage and pseudo-random test vectors applied to 

a typical complex circuit. 
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Figure 2.1 shows that in pseudo-random approach, almost 90% fault coverage can be achieved 

using fewer number of test vectors. A large number of test vectors are needed to detect the 

remaining faults. Another implication of this approach is that there are faults in some circuits 

known as random pattern resistant faults where acceptable fault coverage cannot be achieved 

even after applying a large number of test patterns. To illustrate this, an eight-input AND gate is 

shown in Figure 2.2. 

 

 

 

 

 

 

A stuck-at-1 fault at line 1 in Figure 2.2 can be detected by only one test vector which is 

X1…..X8={01111111}. Hence the probability that this fault may be detected by a random 

pattern is 1/256. The probability decreases with the increase of number of inputs. 

 

2.3.5 Weighted random approach 

Weighted random approach has been proposed to overcome the drawbacks of low fault coverage 

due to hard-to-detect (HTD) and random pattern resistant faults in IC testing. It has been shown 

that the biased or the weighted pseudo random vector (PRV) can test PRV resistant faults more 

efficiently using a lower number of test vectors than the unbiased PRV. The disadvantage of this 

approach is preprocessing is necessary to calculate the signal probabilities for every input and to 

generate necessary weight set. Complex and additional hardware circuitry is necessary to design 

8 
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Figure 2.2: An eight-input AND gate 
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weighted random pattern generator. Moreover, for complex circuits, multiple sets of weight are 

necessary to achieve acceptable fault coverage. This leads to a large volume of test data to be 

stored and manipulated.  

 

2.3.6 Mixed-mode approach 

Mixed-mode approach was first proposed by Koenemann [12]. It is a hybrid test technique where 

deterministic test technique is followed by pseudo-random test technique. This approach exploits 

advantages of both the pseudo-random test technique and the deterministic test technique. A 

generalized scheme of mixed-mode technique is presented in Figure 2.3. 

 

Generally most of the faults in a typical circuit are easy-to-detect (ETD), which can be easily 

detected using the first few PRVs and the remaining faults are HTD, which need long PRV 

sequences to detect [1]. In the mixed-mode approach, PRV is generated using LFSR and is 

applied to a CUT to detect all the ETD faults and then deterministic test sets are generated using 

the same LFSR to target the remaining HTD faults using compacted test data named as seed. 

Thereby all the faults of a circuit are detected in this approach. 

 

 

 

 

 

 

 

Scan-chain LFSR 

CUT 

Seeds 

Figure 2.3: Generalized scheme of the mixed-mode technique 
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A number of mixed-mode approaches have been proposed and it has been claimed that this 

approach ensures complete fault coverage while offers reduced storage requirements, shorter test 

application time, and smaller area overhead compared to weighted random approach [12-16]. 

 

2.4 Faults in IC 

Faults in an IC can be defined in terms of its operation. The IC is faulty if it does not perform the 

job it is supposed to do. Error in the operation of an IC is the manifestation of a fault while fault 

is the manifestation of physical defect [17]. Physical defects in the IC occur during the numerous 

physical, chemical and thermal processes in IC manufacturing. Some common defects are 

particles (small bits of materials that bridge two lines), incorrect spacing (wide or narrow 

variations in line spacing that may short a circuit), incorrect implant value (due to machine error 

or blockages), misalignment (misplacing one layer with respect to the previous layer), holes 

(exposed area that is unexpectedly etched), weak oxides and contamination (unwanted foreign 

material).  

 

Faults can be categorized in different ways. If the presence of faults changes the logic value of a 

signal line in a circuit from zero to one or vice versa, they are referred to as logical faults while if 

the fault causes some parameters of the circuit to change, such as current drawn by the circuit, it 

is known as parametric fault [9]. It also can be classified as (a) transient (b) intermittent and (c) 

permanent depending on the basis of duration of faults in a circuit. The presence of transient 

faults is only for a short duration. The transient faults are generally caused by α-particle radiation 

or power supply fluctuation. Intermittent faults appear regularly but not present continuously. 

They are generally due to loose connections, bad designs or environmental effects like 
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temperature and humidity variations. Permanent faults remain present continuously. They are 

predominantly caused by shorts and opens in the IC. 

 

2.4.1 Fault Modeling 

An IC may have different types of physical defects and the number of defects increases with the 

increase of its complexities. If each of the physical defects of an IC needs to be considered for its 

test, it would soon become unmanageable. In order to successfully tackle this problem, the 

physical defects in a chip are represented at a higher level with the help of fault model. Any fault 

from a fault model may represent many physical defects. Thus the use of fault models speeds up 

the testing process of an IC. Most popular fault models are (a) stuck-at (b) stuck-open (c) stuck-

on (d) bridging (e) parametric and (f) delay fault. Brief discussion of different types of fault 

models is given below: 

 

Stuck-at fault model: Most commonly used fault model is the stuck-at fault model and it has 

been proven reliable in practical applications [18]. The fault in this model makes a signal line in 

a circuit permanently at logic 0 or vice versa. If the line is permanently at logic 0, it is said to be 

stuck-at 0 (s-a-0) while if the line is permanently at logic 1, it is said to be stuck-at 1 (s-a-1).  

 

Stuck-open fault model: The fault which makes a transistor in a circuit non-conducting is 

known as stuck-open fault [9]. In order to detect a stuck-open fault, exact sequence of vectors is 

required to be fed to the circuit. It usually requires a sequence consisting of two vectors to detect 

stuck-open fault. The first vector is called the initialization vector and the second vector is called 

the test vector. The sequence of these two vectors is referred to as two-pattern test. 
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Stuck-on fault model: If a fault causes a transistor in a circuit to conduct continuously, the 

transistor is said to be stuck-on. Logic testing does not guarantee to detect this type of fault. 

Integrated circuit quiescent current (IDDQ) testing (monitoring the quiescent current of a device) 

is a very effective technique for detecting stuck-on faults.  

 

Bridging fault model: Bridging fault indicates short between two or more signal lines in a 

circuit. This may occur due to defective masking or etching, aluminum migration or breakdown 

of insulators [9]. Bridging fault results in complex situation in a circuit. IDDQ testing is usually 

used to detect these faults [17].    

 

Parametric fault model: There may occur some faults in an IC, which do not affect the 

functional behavior, but affect the performance and reliability of the circuit. They are known as 

parametric faults, which include the substrate leakage current, gate-oxide leakage current, 

variation in threshold voltage and capacitive coupling or cross talk. Parametric faults may create 

functional error at any future instant. Usually, these faults are detected by accelerated stress 

testing based on voltage, current, temperature, shock and vibration. IDDQ testing is also an 

example of parametric test.   

 

Delay fault model: This type of fault occurs due to the propagation delay of any signal in a 

circuit [9]. The voltage on a faulty line could either be slow-to-rise or slow-to-fall. This fault 

usually occurs due to stuck-on fault or structural impurities. This fault-model is classified two 

types: (a) gate delay model and (b) path delay model. Gate delay model is based on the delay at 
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the inputs or output of a logic gate while path delay model is based on the cumulative 

propagation delays along a circuit path. 

 

2.4.2 Fault Coverage  

Faults in an IC are detected by applying a set of binary input sequences (known as test patterns) 

to the inputs of the IC. The test patterns make the fault effects observable at the outputs of the 

IC. Fault detection ability of a set of test patterns are measured by fault coverage which is 

defined as the percentage of ratio of the number of faults detected to the number of possible 

faults [18]. Therefore, 

 
FC (fault coverage) =                                                        x100%    

 
 

Some faults in the circuits are undetectable. Therefore, the actual fault coverage: 

           AFC =   x100%     

 

2.4.3 Fault Simulation 

It consists of few processes such as (a) simulation of a circuit in the presence of faults (b) 

comparison of the simulation results with those of the fault free simulation of the same circuit 

and (c) determination of faults detected. Fault simulation technique is used for the followings: 

 To evaluate (grade) a test set. The grade of a test set is expressed in terms of fault 

coverage. Fault coverage of a test set for a circuit can be found out using fault simulation 

technique. 

 To generate a test set that can produce satisfactory fault coverage. 

Number of detected faults 

  Number of possible faults 

Number of detected faults 

  Number of possible faults-number of undetectable faults 
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 To analyze the operation of a circuit in the presence of faults. This is especially 

important in high-reliability systems, since some faults may drastically affect the 

operation of the circuit. 

 

The most common types of fault simulation techniques are parallel, deductive and concurrent 

fault simulations. In parallel fault simulation, effort is made to reduce computation time by 

simulating more than one fault in one pass for a given set of input vectors. In this fault 

simulation approach, the circuit being simulated must be expressed in Boolean terms due to 

which memory and large sequential circuits are impractical or impossible to handle.  

Deductive fault simulation relies upon the fault list data (input/output relationship of logic gates 

under fault-free and chosen faulty condition). In this technique, fault lists are serially propagated 

through the circuit to the primary output and all the detectable faults are counted after each pass 

for each test vector. This method is not suitable for multiple logic values due to increasing 

complexities.  

 

At present, concurrent fault simulation is the preferred method of fault simulation. It consists of 

simulating the fault-free circuit and concurrently simulating the faulty circuit only if the faulty 

circuit‟s activity actually differs from that of the fault-free circuit [18]. This method is capable of 

handling multiple logic values, which makes it suitable for increasingly complex circuits. 

However, this approach requires more memory space than that of deductive fault simulation 

approach.  
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2.5 Linear Feedback Shift Register (LFSR) 

A linear feedback shift register (LFSR) is a shift register whose input bit is a linear function of its 

previous state. It is widely used for test pattern generation as it is simple and most efficient 

pseudo-random test pattern generator [19]. The initial value of the LFSR is called the seed. 

However, a LFSR with a well-chosen feedback function can produce a sequence of bits which 

appears random and which has a very long cycle. Figure 2.4 shows the basic structure of a 

standard LFSR. It consists of a set of storage elements (D-Flip-Flops) and modulo-2 adder (X-

OR gate). The connection is in such a way that the state of each element is shifted to the next 

element with the application of clock signal.  

 

 

 

 

 

In Figure 2.4, All the operations are in Galois Field GF(2).  S= ( 0S , 1S , ………., 1nS ), the binary 

n-tuples, represents the state of the LFSR. It can be represented in the polynomial form as 

follows: 

                  
1

1
2

210 .......................)( 





  n

n
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where ix  denotes the ith  stage of the LFSR. For example, 0x  represents stage 0, 1x  represents 

stage 1 and so on. Feedback function of the LFSR is called the feedback polynomial or the 

generator polynomial and can be represented as follows: 

Figure 2.4: General structure of an n-bit LFSR 
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where ih {1,0} denotes the feedback tap in the ith  stage of the LFSR. 0ih  means there exists 

no feedback link in the ith stage whereas 1ih  means there exists feedback link in that stage.                       

With the application of clock signal, the LFSR goes into autonomous mode. The past state of the 

LFSR (S(x)) changes to a new state and generates pseudo-random patterns. If the period of the 

LFSR is u then the LFSR returns to the initial state after u number of shifts. The period (u) of the 

LFSR depends on the feedback polynomial and initial state. If the initial state is all zero then u 

will be 1 meaning that the state remains unchanged. Again if the initial state of the LFSR is non-

zero and the feedback polynomial is primitive then we become near exhaustive [20]. For an n-

stage LFSR with feedback connection based on the primitive polynomial, it goes through all the 

states except all zero state i.e. 12  nu . The primitive polynomial is discussed in section 2.7. 

Figure 2.5 shows a 4-stage LFSR. Its feedback polynomial is 41)( xxxh   which is primitive 

[20]. Assuming that the initial state of the LFSR is 1000, Table 2.1 shows all the states of the 

LFSR when it is subjected to clock signal.  

 

 

 

 
0S  

1S  3S  

Figure 2.5: A four stage LFSR 

2S  

stage1 stage2 stage3 stage 4 



36 
 

Table 2.1: States of the LFSR with feedback polynomial 41)( xxxh   

states stage 4 stage 3 stage 2 stage 1 
1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 1 0 0 1 
5 1 1 0 0 
6 0 1 1 0 
7 1 0 1 1 
8 0 1 0 1 
9 1 0 1 0 
10 1 1 0 1 
11 1 1 1 0 
12 1 1 1 1 
13 0 1 1 1 
14 0 0 1 1 
15 0 0 0 1 
16 1 0 0 0 

From the Table 2.1, it is seen that the state of the LFSR repeats after 15124  clock cycles. 

2.5.1 LFSR Terminology 

LFSRs sequence through 2N –1 states, where N is the number of registers in the LFSR. The 

contents of the registers are shifted right by one position at each clock cycle. The feedbacks from 

predefined registers or taps to the leftmost register are XORed together. 

LFSRs have several variables: 

• The number of stages in the shift registers 

• The number of taps in the feedback path 

• The position of each tap in the shift registers stage 

• The initial starting condition of the shift register, often referred to as the FILL state 

In the case of LFSRs with an XOR feedback, the FILL value must be non-zero to avoid the 

LFSR locking up in the next state. 
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2.5.1.1 Shift Register Length  

The shift register length is often referred to as the degree, and the longer the shift register, the 

longer the duration of the presudo-random sequence before it repeats. For a shift register of fixed 

length N, the number and duration of the sequences it can generate are determined by the number 

and position of taps used to generate the parity feedback bit. 

2.5.1.2 Shift Register Taps 

The combination of taps and their location is often referred to as a polynomial, and expressed as 

P(x) = X7+X3+ 1. Various conventions are used to map the polynomial terms to register stages in 

the shift register implementation. In the polynomial P(x) = X7+X3+ 1, the trailing "1" represents 

X0, which is the output of the last stage of the shift register. X3 is the output of register stage 3 

and X7 the output of the XOR. A few points to note about LFSRs and the polynomial used to 

describe them: 

• The last tap of the shift register is the leading "1" and is always used in the shift register 

feedback path. 

• The length of the shift register can be deduced from the exponent of the highest order 

term in the polynomial. 

• The highest order term of the polynomial is the signal connecting the final XOR output 

to the shift register input. It does not feed back into the parity calculation along with the 

other taps identified in the polynomial. 

 

2.6 LFSR Design 

There are two major design of LFSR, namely the Galois LFSR (GLFSR) and Fibonacci LFSR 

(FLFSR). Figure 2.6 and 2.8 shows these two types of LFSR each with characteristics 
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polynomial P(x) = 1 + c1x + c2x2 + … + cnxn. If a connection exists then ci=1, otherwise ci=0. 

The Fibonacci implementation has logic in the feedback path, whereas the Galois 

implementation has an output that is fed back to selected points in the feed forward path. 

2.6.1 Galois Linear Feedback Shift Register (GLFSR) 

 

 
Figure 2.6. Structure of Galois LFSR 

 

 
Figure 2.7. 3-bit GLFSR with feedback ploynomial 1+x+x3 

 

As shown in Figure 2.6, the data flow is from left to right and the feedback path is from right to 

left. The polynomial increments from left to right with x0 term (the "1" in the polynomial) as the 

first term. This is referred to as a Tap polynomial, as it indicates which taps (appropriate taps for 

maximum-length LFSR is listed in section 3.4.4) are to be fed back from the shift register. Since 

the XOR gate is in the shift register path, the Galois implementation is also known as an in-line 

or modular type (M-type) or one-to-many LFSR. 
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2.6.2 Fibonacci Linear Feedback Shift Register (FLFSR) 
 

 
Figure 2.8. Structure of Fibonacci LFSR 

 

 
Figure 2.9. 3-bit FLFSR with feedback ploynomial 1+x2+x3 

 

 
Figure 2.10. 8-bit FLFSR with feedback ploynomial 1+x4+x5+x6+x8 

 
In Figure 2.8, the data flow is from left to right and the feedback path is from right to left, similar 

to the Galois implementation. However, in Fibonacci implementation polynomial decrements 

from left to right with x0 as the last term in the polynomial. This polynomial is referred to as a 

Reciprocal Tap polynomial and the feedback taps (appropriate taps for maximum-length LFSR is 

listed in section 3.4.4) are incrementally annotated from right to left along the shift register. 

Since the XOR gate is in the feedback path, the Fibonacci implementation is also known as an 
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out-of-line or simple type (S-type) or many-to-one LFSR. In this project we are focusing on this 

type of LFSR for our experiments.  

The two 7-bit LFSRs with feedback polynomial 1+x+x3+x6+x7 cycle through the following states 

when the registers are initially loaded with 0000001: 

         Galois       Fibonacci 
                                                          t      g7···g1        f7···f1 

0     0000001      0000001 
1     0000010      1000000 
2     0000100      1100000 
3     0001000      1110000 
4     0010000      1111000 
5     0100000      0111100 
6     1000000      1011110 
7     1001011      1101111 
8     1011101      0110111 
9     1110001      0011011 
10    0101001      1001101 
11    1010010      1100110 
12    1101111      0110011 
13    0010101      0011001 

              14    0101010      0001100 
15    1010100      1000110 
16    1100011      0100011 
17    0001101      0010001 
18    0011010      1001000 
19    0110100      0100100 
20    1101000      0010010 

 

2.7 Primitive Polynomial 
  

In an n-stage LFSR, it is possible to have many possible combination of feedback taps and 

thereby many corresponding feedback polynomials. It has been mentioned that the period of the 

LFSR depends on the feedback polynomials. If the sequence of pseudo-random numbers 

generated by an n-stage LFSR has period (2n-1), then it is called maximum length LFSR (m-
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sequence LFSR) and the corresponding feedback polynomial is called primitive polynomial. A 

primitive polynomial is a polynomial that generates all elements of an extension field from a 

base field. Primitive polynomials are also irreducible polynomials. For any prime or prime power 

q and any positive integer n, there exists a primitive polynomial of degree n over GF(q) There 

are  

 

(2.5)  

primitive polynomials over GF( ), where  is the totient function.  

A polynomial of degree n over the finite field GF(2) (i.e., with coefficients either 0 or 1) is 

primitive if it has polynomial order . For example,  has order 3 since  

 

 

 

(2.6)  

 

 

 

(2.7)  

 

  

(2.8)  

Plugging in q=2 to equation (1), the numbers of primitive polynomials over GF(2) are  

 

(2.9)  

giving 1, 1, 2, 2, 6, 6, 18, 16, 48, ... (Sloane's A011260) for n=1, 2, .... The Table 2.2 lists the 

primitive polynomials (mod 2) of orders 1 through 5.  

For an n-stage LFSR, the maximum possible number of nth degree feedback polynomials is 2n 

but the number of nth degree primitive polynomials are much less than 2n. 

 

http://mathworld.wolfram.com/ExtensionField.html
http://mathworld.wolfram.com/IrreduciblePolynomial.html
http://mathworld.wolfram.com/PrimeNumber.html
http://mathworld.wolfram.com/PrimePower.html
http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/TotientFunction.html
http://mathworld.wolfram.com/FiniteField.html
http://mathworld.wolfram.com/PolynomialOrder.html
http://oeis.org/A011260
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Table 2.2: Primitive polynomials (mod 2) of orders 1 through 5 

n primitive polynomials 

1  

2  

3 ,  

4 ,  

5 , , , 

, , 

 

 

2.8 Coefficient of Variation (CV) 

Coefficient of variation denoted as CV is relative measure in statistics. This measure developed 

by Karl Pearson is the most commonly used measure of relative variation. It is used in such 

problems where we want to compare the variability of two or more than two series. The series 

for which the coefficient of variation is greater is said to be more variable or conversely less 

consistent, less uniform, less stable, less homogeneous. On the other hand, the series for which 

the coefficient of variation is less is said to be less variable or more consistent, more uniform, 

more stable, more homogeneous [21]. CV is obtained as follows: 

CV =
σ
X
× 100 

where σ = Standard Deviation and 

                       X = Arithmetic Mean 
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Here we will describe details about arithmetic mean and standard deviation. The most popular 

and widely used measure for representing the entire data by one value is what the arithmetic 

mean, often referred to as mean in statistics. Its value is obtained by adding together all the 

observations and by dividing this total by the number of observations. Thus if X1, X2, …, XN 

represent the values of N items or observations, the arithmetic mean denoted by X̅ (read as Xbar) 

is defined as : 

                                         X =                                =  

The standard deviation is by far the most important and widely used measure of studying 

variation. It is a measure of how much “spread” or “variability” is present in data. If all the 

numbers in the data series are very close to each other, the standard deviation is close to zero. If 

the numbers are well dispersed, the standard deviation will tend to be large. Standard deviation is 

denoted by the small Greek letter σ (read as sigma) and is defined as : 

σ =√ 

If we square standard deviation, we get what is called Variance. 

Hence Variance = σ2 or σ = √Variance 

The standard deviation measures the absolute variation of a distribution; the greater amount of 

variation, the greater the standard deviation. A small standard deviation means a high degree of 

uniformity of the observations as well as homogeneity of a series, a large standard deviation 

means just the opposite. 

2.9 Summary 

Different techniques for testing digital IC have been elaborated in this chapter. It can be 

concluded from the review of different test techniques that the mixed mode approach 

X1+X2+ …+XN 
           N 

ΣX 
 N 

Σ(X-X)2
 

     N 
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outperforms all other existing test technologies in terms of simplicity in hardware 

implementation and control complexity, encoding efficiency, test application time and data 

storage requirements. Pseudo-random vector generation using the LFSR has also been discussed 

and shown that an LFSR having feedback connection based on primitive polynomial generates 

maximal length sequence.  
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CHAPTER 3 

EVALUATION TECHNIQUE FOR TEST PATTERN 

GENERATOR 

 

3.1 Introduction 

This chapter presents the fault simulation technique for the evaluation of the proposed Fibonacci 

test pattern generator. It also describes all the required tools for the above purpose. 

3.2 Basic Test Arrangement 
Now a days mixed-mode technique outperforms all other test techniques in VLSI testing. This 

technique used in this project is a hybrid test technique of deterministic test approach followed 

by pseudo-random test approach. This approach takes advantages of both the pseudo-random test 

approach and deterministic test approach. In mixed mode approach, Circuit Under Test (CUT) is 

first subjected under pseudo-random testing mode and then at an optimum point of fault 

coverage it is switched to deterministic test mode. In this approach, pseudo-random test pattern 

generation and proper switching point from pseudo-random test mode to deterministic test mode 

are very important to make the testing process cost effective. This approach ensures complete 

fault coverage while offers reduced storage requirements, shorter test application time, and 

smaller area overhead compared to weighted random approach. 

 

The basic arrangement for testing a digital IC is shown in Figure 3.1. A test pattern generator 

generates a vector of binary inputs that are applied to the circuit-under-test (CUT). For each 

input vector, the response is measured and compared with the expected output. More than a 
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single input vector is needed to adequately test the CUT, so a test vector set is created to 

determine the functionality of the chip.  

 

 

 

   

  
 
  
 
 
 
  
 
  

 
Figure 3.1: General IC testing process 

 
 

Since each measurement takes time, it is needed a minimal test vector set to reduce the total time 

to determine if the chip is functional or not. Test vector generation is one of the more challenging 

aspects of testing. 

 

3.3 Benchmark Circuits 

To evaluate the performance of mixed-mode technique in IC testing, fault simulation 

experiments have been conducted on ISCAS benchmark circuits. ISCAS benchmark circuits are 

a set of combinational circuits focusing on different level of IC complexities. They are a group of 

well-defined, gate level netlist and functions based on common building blocks. The circuits 

were presented in the international symposium on circuits and systems held on 1985[22, 23]. 

These circuits are proposed with the objective of evaluating performance of test pattern 

Data Compare CUT 
 

Test Data Memory 

 
Test Controller 

 
Test Pattern  
Generator 
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generation algorithm‟s, fault simulation, testability analysis, formal verification, logic synthesis, 

design verification, test generation, clock distribution, power consumption, timing analysis, 

technology mapping and layout synthesis. Its main advantage is that researchers all over the 

world can work on a common set of problems, compare their results and cooperate with each 

other. The HDL code of the ISCAS benchmark circuits is available on the website [24]. General 

characteristics of ISCAS benchmark circuits are presented in Table 3.1. 

Table 3.1: ISCAS Benchmark Circuits 

Circuits Circuit 

Function 
*NG *NL *NS *NPI *NPO *NF 

c432 Priority 

Decoder 
160 432 89 36 7 802 

c499 Error Correcting 

Circuit 
221 499 59 41 32 1306 

c880 ALU and 

Control 
383 880 125 60 26 1428 

c1355 Error Correcting 

Circuit 
546 1355 259 41 32 1970 

c1908 Error Correcting 

Circuit 
880 1908 385 33 25 1282 

c2670 ALU and 

Control 
1193 2670 454 233 140 2588 

c3540 ALU and 

Control 
1669 3540 579 50 22 2988 

c5315 ALU and 

Selector 
2307 5315 806 178 123 5640 

c6288 Multiplier 2517 6288 1456 32 32 9804 

*NPI= Number of Primary Inputs, *NG= Number of Gates, *NS=Number of Stems, *NPO= 
Number of Primary Outputs, *NL= Number of Lines, *NF= Total Number of Faults 
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3.4 Design of 64-bit FLFSR 
A 64-bit FLFSR has been proposed in this project. Table 3.2 lists the appropriate taps for 

maximum-length LFSR counters of up to 168 bits taken from Xilinx Data Books. An LFSR with 

a well-chosen feedback function is capable of generating sufficient long test pattern. 

3.4.1 64-bit Fibonacci Linear Feedback Shift Register 

In order for an LFSR to iterate through its largest possible sequence of values, it must use a 

polynomial which will produce such a sequence. The tap positions shown in Figure 3.2 will 

produce maximum sequence lengths for the proposed 64-bit FLFSR. The design uses the 

Fibonacci approach to implement test pattern generator. 

 

3.4.2 Feedback 

The LFSR feedback network performs modulo-2 summation as was discussed in Chapter 2. 

These summations can be performed with either XOR or XNOR gates in the logic. However 

XOR gate is used in this project. The design uses Fibonacci configuration of test pattern 

generator. The output FB_Out is fed back to the first stage of the FLFSR. Figure 3.3 shows the 

feedback logic using XOR gates for an LFSR with 4 taps. The tap numbers in Figure 3.2 are 

taken from Table 3.2 for a 64-stage LFSR. Figure 3.3 shows the complete FLFSR arrangement 

with feedback tap positions Q60, Q61,Q63, Q64, hence the characteristics ploynomial is 

1+X60+X61+X63+X64. 
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Figure 3.2. Feedback Logic using XOR gates 

 
 

                                     FB_Out  
 
 
 

 …                                                                                          
 

 

Figure 3.3. 64-bit FLFSR with feedback logic 
 

From Figure 3.3 we see that the outputs of the 60th, 61st, 63rd, 64th stages are XORed and fed 

back to first stage of the proposed 64-bit FLFSR. 

3.4.3 Conventions for Feedback Tap Specification 

A given set of feedback connections can be expressed in a convenient and easy-to-use shorthand 

form, with the connection numbers being listed within a pair of square brackets. In doing so, 

connection g0 (defined in Figure 3.4) is implied, and not listed, since it is always connected. 

Although gm is also always connected, it is listed in order to convey the shift register size (i.e. the 

number of registers). 
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Figure 3.4. Galois implementation of LFSR 

Specifically, a set of feedback connections, or taps, is denoted as 

[f1, f2, f3, ..., fJ] 

where subscript J is the total number of feedback taps (not including g0), f1 = m is the highest-

order feedback tap (and the size of the LFSR), and fj represent the remaining feedback taps. The 

value of each fj is equal to the subscript of the corresponding connection g. Note that the tap 

numbers fj are customarily arranged in descending order from left to right. 

A set of feedback taps specified in this format is called a feedback tap set, feedback set, or 

feedback pattern. As an example, the [8, 4, 3, 2] feedback set would signify an eight-stage shift 

register with feedback connections at taps g8, g4, g3, g2, and, as always, at g0. 

A related convention is that an LFSR with m shift register stages is said to be an Rm LFSR. For 

example, an R8 generator is one with eight stages. An alternative to this convention is PNm, or 

PN8 in this example. (PN is an acronym for pseudonoise, which is a term used in some industries 

for maximal length pseudorandom sequences.) 

3.4.4 Taps of Linear Feedback Shift Register 

Table 3.2 lists the appropriate taps for maximum-length LFSR counters of up to 168 bits. The 

basic description and the table for the first 40 bits was originally published in XCELL and 
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reprinted on page 9-24 of the 1993 and 1994 Xilinx Data Books. Responding to repeated 

requests, the list is here extended to 168 bits. This information is based on unpublished research 

done by Wayne Stahnke while he was at Fairchild Semiconductor in 1970. 
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Table 3.2: Taps for maximum-length LFSR counters 

n XOR from n XOR from n XOR from n XOR from                
3 3,2 45 45,44,42,41 87 87,74 129 129,124 
4 4,3 46 46,45,26,25 88 88,87,17,16 130 130,127 
5 5,3 47 47,42 89 89,51 131 131,130,84,83 
6 6,5 48 48,47,21,20 90 90,89,72,71 132 132,103 
7 7,6 49 49,40 91 91,90,8,7 133 133,132,82,81 
8 8,6,5,4 50 50,49,24,23 92 92,91,80,79 134 134,77 
9 9,5 51 51,50,36,35 93 93,91 135 135,124 
10 10,7 52 52,49 94 94,73 136 136,135,11,10 
11 11,9 53 53,52,38,37 95 95,84 137 137,116 
12 12,6,4,1 54 54,53,18,17 96 96,94,49,47 138 138,137,131,130 
13 13,4,3,1 55 55,31 97 97,91 139 139,136,134,131 
14 14,5,3,1 56 56,55,35,34 98 98,87 140 140,111 
15 15,14 57 57,50 99 99,97,54,52 141 141,140,110,109 
16 16,15,13,4 58 58,39 100 100,63 142 142,121 
17 17,14 59 59,58,38,37 101 101,100,95,94 143 143,142,123,122 
18 18,11 60 60,59 102 102,101,36,35 144 144,143,75,74 
19 19,6,2,1 61 61,60,46,45 103 103,94 145 145,93 
20 20,17 62 62,61,6,5 104 104,103,94,93 146 146,145,87,86 
21 21,19 63 63,62 105 105,89 147 147,146,110,109 
22 22,21 64 64,63,61,60 106 106,91 148 148,121 
23 23,18 65 65,47 107 107,105,44,42 149 149,148,40,39 
24 24,23,22,17 66 66,65,57,56 108 108,77 150 150,97 
25 25,22 67 67,66,58,57 109 109,108,103,102 151 151,148 
26 26,6,2,1 68 68,59 110 110,109,98,97 152 152,151,87,86 
27 27,5,2,1 69 69,67,42,40 111 111,101 153 153,152 
28 28,25 70 70,69,55,54 112 112,110,69,67 154 154,152,27,25 
29 29,27 71 71,65 113 113,104 155 155,154,124,123 
30 30,6,4,1 72 72,66,25,19 114 114,113,33,32 156 156,155,41,40 
31 31,28 73 73,48 115 115,114,101,100 157 157,156,131,130 
32 32,22,2,1 74 74,73,59,58 116 116,115,46,45 158 158,157,132,131 
33 33,20 75 75,74,65,64 117 117,115,99,97 159 159,128 
34 34,27,2,1 76 76,75,41,40 118 118,85 160 160,159,142,141 
35 35,33 77 77,76,47,46 119 119,111 161 161,143 
36 36,25 78 78,77,59,58 120 120,113,9,2 162 162,161,75,74 
37 37,5,4,3,2,1 79 79,70 121 121,103 163 163,162,104,103 
38 38,6,5,1 80 80,79,43,42 122 122,121,63,62 164 164,163,151,150 
39 39,35 81 81,77 123 123,121 165 165,164,135,134 
40 40,38,21,19 82 82,79,47,44 124 124,87 166 166,165,128,127 
41 41,38 83 83,82,38,37 125 125,124,18,17 167 167,161 
42 42,41,20,19 84 84,71 126 126,125,90,89 168 168,166,153,151 
43 43,42,38,37 85 85,84,58,57 127 127,126   
44 44,43,18,17 86 86,85,74,73 128 128,126,101,99   
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3.5 Illustration of FLFSR Working 

Consider a 4-bit Fibonacci LFSR with characteristics ploynomial 1+X3+X4. The XOR gate 

provides feedback to the register that shifts bits from left to right. The maximal sequence consists 

of every possible state except the "0000" state. 

 

(a) 

 

(b) 

http://en.wikipedia.org/wiki/XOR_gate
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(c) 

Figure 3.5. (a) Block Diagram, (b) truth table, (c) state diagram of 4-bit FLFSR with 
characteristics ploynomial 1+X3+X4 

 
 

Note that in Figure 3.5(a) the outputs of 3rd and fourth stage of the LFSR are XORed and are fed 

back to the first stage. Since the LFSR has four stages, the truth table in Figure 3.5(b) shows that 

it has 15 different states. After 15th clock cycle the LFSR repeats its states. The 15 distinct states 

of the LFSR are also depicted with the state diagram in Figure 3.5(c). 

 

3.6 Test Pattern Generation using FLFSR 
 
Algorithm of the program for generating random numbers is given below. 

Algorithm: 
Read the number of stages (m), number of feedback taps, and their position in the FLFSR; 

Read reseeding position; 

Initialize the stage with the entered position to 1 and all other stages to 0; 

Read the number of test vectors and number of primary inputs of CUT; 

Loop1 

{ 
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 Store the values of the tap positions of the FLFSR into temporary variables; 

 Loop2 

 { 

  Store the values of the tap positions of the FLFSR into temporary variables; 

  Loop3 

{ 

 Assign the value of (m-i-2)th stage of the FLFSR to (m-i-1)th stage; 

 Repeat the process equal to the number of stages of the FLFSR; 

} 

Calculate the XORed output of the temporary variables and assign it to first stage 

of the  FLFSR; 

 Write the value of the (m-1)th stage of the FLFSR in the test vector file;   

Repeat the process equal to the number of primary inputs of the FLFSR;  

} 

} 

Move to the next line of the test vector file and repeat Loop1 equal to the number of test  

vectors; 

End; 

 

Figure 3.5 shows the flowchart of test vector file generation using the proposed 64-bit FLFSR in 

this project. This will give the reader a better understanding of how test patterns are generated 

using the proposed technique. 
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Figure 3.6: Flow Chart 

Start 

Read the number of stages (m), number of feedback taps, and their positions  

Read the number of test vectors and number of primary inputs of CUT 

k=1; 
k<=no. of test 

vectors 

j=1; 
j<=no. of primary 

inputs 
 

Store the values of the tap positions of the FLFSR into temporary variables 

i=0; 
i<=no. of stages-1 

 

Assign the value of (m-i-1)th stage of the FLFSR to (m-i-2)th stage 

Calculate the XORed output of the temporary variables and assign it to 

first stage of the FLFSR 

 
Write the value of (m-1)th stage of the FLFSR in the test vector file 

 

j=j+1 

Stop 

k=k+1 
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A pictorial representation of test vector file generation using FLFSR is given below. 

 
                                                                                                                               Test Vector File 
 
 

Figure 3.7. Test vector file generation using FLFSR 
 
Figure 3.7 illustrates how a test vector file is generated from the binary streams output by the 

proposed Fibonacci test pattern generator. For simplicity here a 4-bit FLFSR with characteristics 

ploynomial 1+X3+X4 is considered. After each clock pulse outputs of each FLFSR stage is 

shifted right and the output of the final stage of the FLFSR is written in the test vector file. This 

process continues until the number of bits in the first line of the vector file equals to the primary 

inputs of the CUT. After completion of filling the first line of the test vector file, writing on the 

second line starts as shown Figure 3.7. In this way writing is completed on line n (equals to the 

no. of test vectors) of the test vector file which would be used as an input of the CUT. 
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3.7 Techniques for Determining Best Seed 

An LFSR generates a PRV sequence for a particular seed and achieves reasonable fault 

coverage. To achieve highest percentage of fault coverage, PRV sequences are generated for 

different seeds. It is observed that for a particular seed the LFSR achieves the highest fault 

coverage as compared to other seeds. This particular seed is called the best seed or proper seed in 

the context of IC testing. One would simply ask that why the fault coverage is high for that 

particular seed. The answer can be easily given in terms of coefficient of variation (CV) 

discussed in chapter 2. Theoretically, the seed for which CV is maximum will be the best seed 

because the fault coverage is the highest for that seed. 

Algorithm of the MATLAB program for measuring CV is given below. 

Algorithm: 
Read the random sequence with 1 and 0 for a particular seed. 

Compute the Standard Deviation (σ) of the random sequence. 

Compute the Mean (X) of the random sequence. 

Divide σ by X and multiply the result by100. 

 

Figure 3.8 shows the Flowchart for the measurement of CV. 
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Figure 3.8: Flowchart for measuring CV 

 

3.8 Software Requirements for Proposed Work 

In this section we will discuss about different software used in this project to perform the 

simulation works. 

3.8.1 Fault Simulator (FSIM) 
FSIM is a fault simulator for combinational circuits. It employs the parallel pattern single fault 

propagation technique. FSIM has been developed in the Bradley Department of Electrical 

Engineering, Virginia Polytechnic Institute & State University (VPI&SU) and the copy right 

belongs to VPI&SU. A FSIM emulates the behavior of a circuit in the presence of the given set 

of faults. Because of its inherent low-complexity, the fault simulator serves many purposes in 

VLSI testing. In fact, as the circuit simulator in circuit design, the fault simulator is regarded as 

the most fundamental tool in testing. 

Start 

Read the random sequence with 1 and 0 for a particular seed 

Compute the Standard Deviation (σ) of the random sequence. 

 

Stop 

Compute the Mean (X) of the random sequence. 

  

Divide σ by X and multiply the result by100. 
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The FSIM is the most fundamental tool in VLSI testing. It serves many applications. We will 

summarize the major applications in the following. 

(1) The most prominent application is to evaluate the quality of a given test set for a circuit under 

test (CUT). The fault simulator simulates the circuit under different inserted faults and 

determines the number of faults detected by the test set, usually in terms of fault coverage 

which is the percentage of detected faults over all considered faults. The test engineer then 

decides whether the obtained fault coverage is acceptable or not.  

(2) If the fault coverage is lower than expectation, more test patterns must be included into the 

test set. These extra patterns are preferably generated by an automatic test pattern generator 

(ATPG). Here the fault simulator also plays an important role. The simulator is used to find 

out the detected faults for each newly generated test pattern from ATPG, thereby 

significantly reduces the CPU time of high-complexity ATPG.   

(3) In VLSI testing, sometimes we need to investigate why the tested IC fails. The first step of 

such diagnosis is to locate the defect. Although the fault is only the behavioral model of 

defects, the location of fault generally gives a good indicator of defect location. To find out 

the fault location for a failed IC, we first need to construct a fault dictionary, with the help 

of a fault simulator, which lists the complete faulty behavior of all considered faults.  

(4) In addition, a fault simulator serves the application of reliability analysis of ICs, in which the 

faulty behavior from considered faults is simulated to see whether or not the faults adversely 

affect the function or performance of a system. In summary, fault simulation plays an 

essential role in VLSI testing. Its efficiency determines the performance of the above 

applications. As the size of circuits and test sets grow increasingly, the demand of efficient 

fault simulation algorithm becomes even more acute. 
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3.8.2 MATLAB 
MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation 

programming language. Developed by MathWorks, MATLAB allows matrix manipulations, 

plotting of functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages. It is a high-level language and interactive 

environment for numerical computation, visualization, and programming. Using MATLAB, one 

can analyze data, develop algorithms, and create models and applications. The language, tools, 

and built-in math functions enable one to explore multiple approaches and reach a solution faster 

than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB 

can be used for a range of applications, including signal processing and communications, image 

and video processing, control systems, test and measurement, computational finance, and 

computational biology. More than a million engineers and scientists in industry and academia 

use MATLAB, the language of technical computing. 

 

3.9 Summary 

This chapter mainly discusses the design and functional operation of the proposed system.  

Necessary software and hardware to implement the design are also described. The test pattern 

generator is capable of generating PRVs of sufficient length since it is a 64-bit LFSR having 

feedback connection based on the primitive polynomial. 

 

 

 

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/MathWorks
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Introduction 
This chapter presents the fault simulation results of different ISCAS benchmark circuits using 

the pseudo random test vectors generated by the proposed 64-bit FLFSR. FSIM is used to carry 

out the simulation process. 

4.2 Fault Simulation  
„FSIM‟ is a digital fault simulator [25] which is used for conducting the fault simulation 

experiments on the ISCAS benchmark circuits. It is a process by which fault coverage of a 

circuit is determined for a set of test pattern. It shows that if an LFSR is initialized with proper 

seed, it generates PRV sequences, which detect the maximum faults of a CUT using lower 

number of PRVs than that of using other seeds of the same LFSR. In this project, similar 

experiments have been carried out on the ISCAS benchmark circuits using fault simulator to find 

the appropriate seed of the FLFSR for generating PRV sequences with better fault detection 

capability.  

A computer program has been developed using C programming language to generate PRV for 

fault simulation experiments. The program represents the FLFSR that is used in the proposed 

system. It can generate PRV of any predefined number of test length by user and can store in a 

file. The source code of the program has been presented in Appendix A1. The commands by 

which fault simulation experiments have been conducted using FSIM is specified in Appendix 

A2. When the program is executed, it generates a test vector file. Appendix A3 shows a sample 

of test vectors for benchmark circuit c432.bench.  
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In IC testing, maximum fault coverage using minimum test application time is the most 

desirable. Researchers have shown that better randomness and less correlation in the PRV 

sequences result in better fault detection capability [26-28]. Fault simulation experiments on 

ISCAS benchmark circuits has been carried out using FSIM to find the best seed of the LFSR for 

generating PRV sequences with better fault detection capability. 

 

Since in the mixed mode approach, deterministic test is followed by pseudo-random test, the 

performance of IC testing in this approach largely depends on the optimum switching from the 

pseudo-random test mode to the deterministic test mode. The fewer the number of deterministic 

test vectors, the less the data storage requirements. Fault detection profile of the PRV sequences 

for a circuit helps to determine the appropriate switching moment from the pseudo-random test 

mode to the deterministic test mode. In this project, PRV sequences have been generated using 

best seed of the FLFSR for the benchmark circuits and then fault simulation experiments have 

been conducted with the PRV sequences to determine its fault detection profile for the 

benchmark circuits using the FSIM.  

 

4.3 Fault Simulation Results of the ISCAS Benchmark Circuits   

 
Pseudo-random testing is a cost-effective means of testing VLSI circuits. Using Fibonacci 

pseudo-random test patterns it is possible to achieve a maximum percentage of fault coverage 

only applying fewer number of test vectors. This fact has been verified in this project. Fault 

simulation experiments using FLFSR have been conducted out on the ISCAS Benchmark 

circuits. The fault simulation results have been compared with that of other researchers [2-8]. 
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The technique of maximization of fault detection using PRV sequences is presented in the 

literature [29] where „FSIM‟ digital fault simulator [25] is used in conducting the fault 

simulation experiments on the ISCAS benchmark circuits.  

 
Forty different seeds have been used to generate PRV sequences. The PRV sequences are 

applied to the benchmark circuits and fault coverage (%) versus number of PRVs are measured 

with respect to every seed. Figure 4.1 shows the fault detection profile of the PRV sequences for 

the benchmark circuit c432.bench. 

 

Figure 4.1: Fault detection profile of PRV for the benchmark circuit c432.bench 
 

Figure 2.1 in section 2.3.4 shows the relationship between fault coverage and pseudo-random test 

vectors applied to a typical circuit. Here Figure 4.1 shows that the first few PRVs detect the 

maximum faults of the circuit c432.bench. Then the slope of the fault detection profile of the 

PRV rapidly decreases with the increase of number of test vectors. More than 80 % fault 

coverage is achieved using only 50 test vectors. These faults are ETD faults. After the detection 

of the ETD faults, much higher number of test vectors is needed to detect the remaining faults. 
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These remaining faults are HTD faults and random resistant faults. These faults cause potential 

difficulties in achieving acceptable fault coverage in the pseudo-random testing of IC. Fault 

detection profile of the PRV sequences for the rest of the benchmark circuits is similar to that as 

shown in Figure 4.1. It clearly indicates that with the increase of number of test vectors, 

increase of fault coverage sharply decreases and goes towards zero. When the increment of fault 

coverage is very low or almost zeros then the mode of test is switched from the pseudo-random 

test to the deterministic test. For example, in the simulation result as shown in Appendix A4, 

when number of PRV is 200 for circuit c432.bench then it is appropriate to switch from the 

pseudo-random test mode to the deterministic mode. Note that the best seed is represented using 

the bold letter in the table in Appendix A4. Fault simulation results for the rest of the benchmark 

circuits follow the similar profile. 

 

Another experiment has been carried out on ISCAS Benchmark Circuit c432.bench. Three 

different seeds have been chosen arbitrarily and with respect to every seed, a set of test vectors 

have been generated. The fault simulation results have been presented in Table 4.1. From this 

table it can be proved that maximum percentage of faults in the circuit can be detected by using 

small number of test vectors and the rate of fault coverage decreases with the increase of number 

of test vectors. Almost 80-90% fault coverage can be achieved applying only 60-70 test vectors. 

The main reason of this is that the most of the faults in the circuit are easy to detect but there are 

some other faults which are hard to detect. These undetectable faults are called PRV resistant 

faults. Table 4.1 also compares the fault detection profile of the test vectors generated with 

respect to three different seeds of the FLFSR. This shows that a significant improvement in the 

fault coverage can be gained by changing the seed of the FLFSR. 
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Table 4.1: Fault coverage for different PRVs for benchmark circuit c432.bench 
 

PRV FC1 (%) FC2 (%) FC3 (%) 

10 49.05 33.21 36.26 
20 62.21 46.18 55.15 
30 71.37 67.18 66.22 
40 75.38 75.95 77.29 
50 84.54 82.06 84.73 
60 86.83 84.54 87.77 
70 88.74 87.41 90.65 
80 91.03 90.08 91.6 
90 91.99 90.65 93.89 
100 93.51 93.89 95.23 

 

Abbreviations used in the following Table 4.1. 

PRV= Pseudo Random test Vector 

FC1= Fault coverage for seed1 

FV2= Fault coverage for seed2 

FC3= Fault coverage for seed3 

 

Experiments are successful to use two sample of 64 degree feedback polynomial such as 

1+x60+x61+x63+x64 and 1+x+x3+x4+x64 on achieving full fault coverage. For any of these 

feedback polynomials, a test vector file is generated. FC Comparison is shown in Table 4.2.  
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Table 4.2: FC (%) Comparison for two different feedback polynomials 
 

ISCAS 
Benchmark 

Circuits 

NTV Polynomial1 
(1+x+x3+x4+x64) 

Polynomial2 
(1+x60+x61+x63+x64) 

c432 200 98.09 98.28 
c499 190 96.17 96.70 
c880 120 90.13 93.52 
c1355 180 91.49 92.00 
c1908 880 94.41 96.33 
c2670 250 82.71 83.55 
c3540 540 91.80 91.57 
c5315 560 98.30 98.24 
c6288 60 99.47 99.11 

 
         NTV=No. of TV 

 

To analyze the effect of reseeding and polynomial programmability on achieving full fault 

coverage, experiments have also been performed on different ISCAS benchmark circuits. Two 

sample of 64 degree feedback polynomial such as 1+x60+x61+x63+x64 and 1+x+x3+x4+x64 have 

been chosen. The seed of an FLFSR is defined as the initial value of the stages of the FLFSR 

before starting to generate the test vectors. Forty different seeds have been used to generate PRV 

sequences. The PRV sequences are applied to the benchmark circuits and fault coverage versus 

number of PRV are measured with respect to every seed. For seed of the FLFSR in the 

experiment, one of the stages of the FLFSR has set to „1‟ and others to „0‟ and in this project „1‟ 

is mentioned as seed for simplicity. For any of the feedback polynomials, a test vector file is 

generated for different seeds. Figure 4.2 and 4.3 represent fault simulation results of the circuit 

c432.bench for the two selected feedback polynomials. Figure 4.2 shows that fault detection 

capability of the PRV sequences for the benchmark circuits varies with the seed of the FLFSR. It 

is possible to determine the best seed of the FLFSR for the benchmark circuits out of the given 
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seeds. The best seed of the FLFSR produces the highest fault coverage using lowest number of 

PRV sequences. For example, seed number „24‟ in Figure 4.2 can be considered the best seed of 

the FLFSR for the benchmark circuit c432.bench. The best seed of the FLFSR for the benchmark 

circuit c432.bench is highlighted using bold letter in the Appendix A4. Similarly, Figure 4.4, 

Figure 4.6, Figure 4.8, Figure 4.10, Figure 4.12, Figure 4.14, Figure 4.16 and Figure 4.18 

represent fault simulation results highlighting the best seed of the circuits c499.bench, 

c880.bench, c1355.bench, c1908.bench, c2670.bench, c3540.bench, c5315.bench, c6288.bench 

respectively. The tabulated results are presented in Appendices A4 to A21. 

In Figure 4.2, best seed of circuit c432.bench for feedback polynomial 1+x60+x61+x63+x64 is 

indicated by the arrow sign where the fault coverage is 98.28% and the required number of test 

vectors is 200. At this point of testing, pseudo-random test mode can be switched to 

deterministic test mode. 

 

 
 

Figure 4.2. Fault simulation result of circuit c432.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.3. Fault simulation result of circuit c432.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 
In Figure 4.4, seed  „7‟ of circuit c499.bench for feedback polynomial 1+x60+x61+x63+x64 can be 

considered as the best seed where the fault coverage is 96.70% and the required number of test 

vectors is 190. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.4. Fault simulation result of circuit c499.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.5. Fault simulation result of circuit c499.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 

In Figure 4.6, seed „27‟ of circuit c880.bench for feedback polynomial 1+x60+x61+x63+x64 can be 

considered as the best seed where the fault coverage is 93.52% and the required number of test 

vectors is 120. The best seed is indicated by the arrow sign.  

 

 

Figure 4.6. Fault simulation result of circuit c880.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.7. Fault simulation result of circuit c880.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 

In Figure 4.8, seed „21‟ of circuit c1355.bench for feedback polynomial 1+x60+x61+x63+x64 can 

be considered as the best seed where the fault coverage is 92.00% and the required number of 

test vectors is 180. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.8. Fault simulation result of circuit c1355.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.9. Fault simulation result of circuit c1355.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 

In Figure 4.10, seed „24‟ of circuit c1908.bench for feedback polynomial 1+x60+x61+x63+x64 can 

be considered as the best seed where the fault coverage is 96.33% and the required number of 

test vectors is 880. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.10. Fault simulation result of circuit c1908.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.11. Fault simulation result of circuit c1908.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 

In Figure 4.12, seed „36‟ of circuit c2670.bench for feedback polynomial 1+x60+x61+x63+x64 can 

be considered as the best seed where the fault coverage is 83.55% and the required number of 

test vectors is 250. The best seed is indicated by the arrow sign.  

 

Figure 4.12. Fault simulation result of circuit c2670.bench (for feedback polynomial 
1+x60+x61+x63+x64) 
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Figure 4.13. Fault simulation result of circuit c2670.bench (for feedback polynomial 
1+x+x3+x4+x64) 

 
 

In Figure 4.14, seed „17‟ of circuit c3540.bench for feedback polynomial 1+x+x3+x4+x64 can be 

considered as the best seed where the fault coverage is 91.80% and the required number of test 

vectors is 540. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.14. Fault simulation result of circuit c3540.bench (for feedback polynomial 
1+x+x3+x4+x64) 
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Figure 4.15. Fault simulation result of circuit c3540.bench (for feedback polynomial 
1+x60+x61+x63+x64) 

 
 

In Figure 4.16, seed „22‟ of circuit c5315.bench for feedback polynomial 1+x+x3+x4+x64 can be 

considered as the best seed where the fault coverage is 98.30% and the required number of test 

vectors is 560. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.16. Fault simulation result of circuit c5315.bench (for feedback polynomial 
1+x+x3+x4+x64) 
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Figure 4.17. Fault simulation result of circuit c5315.bench (for feedback polynomial 
1+x60+x61+x63+x64) 

 
 

In Figure 4.18, seed „11‟ of circuit c6288.bench for feedback polynomial 1+x+x3+x4+x64 can be 

considered as the best seed where the fault coverage is 99.47% and the required number of test 

vectors is 60. The best seed is indicated by the arrow sign.  

 

 
 

Figure 4.18. Fault simulation result of circuit c6288.bench (for feedback polynomial 
1+x+x3+x4+x64) 
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Figure 4.19. Fault simulation result of circuit c6288.bench (for feedback polynomial 
1+x60+x61+x63+x64) 

 

It is also seen that fault detection profile of the PRV sequences for a benchmark circuit is not 

exactly same as that of other circuit. For example, number of PRVs to achieve 80 to 90 percent 

fault coverage for the circuit c880.bench, c1355.bench, c1908.bench and c5315.bench are much 

more than that for the circuits c432.bench, c499.bench and c3540.bench. It is due to the different 

complexity levels of the circuits as mentioned in Table 3.2. The benchmark circuits are having 

different number of gate density, primary inputs and outputs, number of lines and nodes and with 

different number of total faults.  

 

The screenshots of fault simulation result on the ISCAS benchmark circuit c432.bench using the 

PRV sequences generated by the proposed FLFSR is presented in Appendix A22. 

 
First it shows the number of inputs, outputs, gates and the level of the circuit. The name of the 

test vector file is output1.test is also shown. The figure shows that the percentage of fault 

coverage is 98.282 using 200 number of test vectors. Among the 524 faults 515 faults are 
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detected and the remaining 9 faults were undetected. It also shows the amount of memory used 

and the total CPU time required. Similarly Appendix A23 and Appendix A24 shows the 

screenshots of fault simulation result of circuit c499.bench and c1908.bench circuits respectively 

with the same meanings. 

 
To determine the optimum switching point from the pseudo-random test mode to the 

deterministic test mode, fault simulation experiments have been carried out on the ISCAS 

benchmark circuits using the PRV sequences generated based on the best seed of the LFSR as 

presented in Appendix A4 to A21. 

 

Once the optimal switching moment from the pseudo-random test to the deterministic test mode 

is determined and the number of PRVs (PRV generated using the best seed) detecting the 

maximum ETD faults are also determined using the fault simulation technique, the remaining 

faults (HTD) are targeted using the deterministic test vectors. The deterministic test vectors are 

generated using the FSIM. 

4.3.1 Best Seed Determination 

For measuring CV of a PRV sequence for a particular seed for a benchmark circuit, MATLAB 

R2012b is used. To compare the value of CV of PRV sequences generated for different seeds, we 

have selected a number of different seeds randomly. We have measured the CV of PRV 

sequences for different seeds and reported accordingly. The source code of MATLAB program 

for finding CV is given in Appendix A25.The result is given in Table 4.3. 
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Table 4.3. CV of PRV sequences for different seeds for different benchmark circuits. 

 
 

c432 

Seed 
6 

Seed 
15 

Seed 
23 

Seed 
24 

Seed 
26 

Seed 
35 

Seed 
38 

Seed 
42 

Seed 
51 

Seed 
59 

118.54 115.58 116.51 119.01 118.41 118.30 118.30 115.31 113.86 113.77 
 

c499 
Seed 

5 
Seed 

7 
Seed 
12 

Seed 
18 

Seed 
24 

Seed 
33 

Seed 
42 

Seed 
47 

Seed 
54 

Seed 
60 

109.51 112.39 111.25 111.70 108.25 110.23 109.35 110.13 111.47 110.88 

 

From Table 4.3 it is observed clearly that the value of CV of the PRV sequence is maximum for 

the seed 24 for benchmark circuit c432.bench. So, we can say that the PRV sequence generated 

for seed 24 is more random as compared to other seeds. As a result, seed 24 for circuit 

c432.bench is determined as the best seed. In similar way, we can say that seed 7 for circuit 

c499.bench is the best seed. Results of CV for the rest of the benchmark circuits follow the 

similar profile. The screenshot of the output of the MATLAB program for finding CV is given in 

Appendix A26. 

 

 

Figure 4.20. CV for different seeds for circuit c432.bench 
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Figures 4.20 graphically shows the CV of different seeds as indicated in the X-axis. It is clear 

from the figure that seed 24 has the peak value. 

             

(a)                      (b)                    (c) 

Figure 4.21. Image representation of PRV sequences 

This section demonstrates the effectiveness of the proposed FLFSR in terms of fault coverage. 

Figure 4.21 (a) and (c) shows the image representation of the PRV sequence generated from a 

general LFSR and 4.21(b) shows the same generated from our proposed 64-bit FLFSR. The 

images are created from a test vector file of 7200 bits using MATLAB. It‟s quite clear that image 

(b) is more random than image (a) or (c).This may provide one possible explanation as to why 

the proposed FLFSR admit significantly higher fault coverage. 

4.3.2 Comparison 

Summary of the fault simulation results of the ISCAS benchmark circuits using the proposed 64-

bit FLFSR is presented in Table 4.4. 
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Table 4.4: Summary of fault simulation results of the ISCAS benchmark circuits with using 
proposed technique 

 
ISCAS 

Benchmark 
Circuits 

Total Number of 
Faults Inserted 

Number of Test Vectors Total Number of 
Test Vectors 

% Fault 
Coverage 

Random Determini
stic 

c432 802 200 222 9 209 100 
c499 1306 190 25 215 100 
c880 1428 120 61 181 100 
c1355 1970 180 126 306 100 
c1908 1282 880 69             949 100 
c2670 2588 250 452 702 100 
c3540 2988 540 281 821 100 
c5315 5640 560 91 651 100 
c6288 9804 60  414 101 100 

 
Table 4.4 shows the total number of test vectors required to achieve the complete fault coverage 

for the ISCAS benchmark circuits using the FLFSR. It shows that 100% fault coverage has been 

achieved for all the benchmark circuits. The results presented in Table 4.5 can be compared with 

that of other researchers [2-8]. Comparison of the fault simulation results is presented in Table 

4.5. 

Table 4.5: Comparison of fault simulation results of the ISCAS benchmark circuits with that of 
other researchers 

 

 
 

ISCAS 
Benchmark 

Circuits 

*NTV1 *NTV2 *NTV3 *NTV4 *NTV5 *NTV6 *NTV7 
 

c432 209 214 224 320 512 1024 320 
c499 215 225 512 - - - - 
c880 181 248 160 416 260 1280 160 
c1355 306 314 512 1664 2244 2098 2784 
c1908 949 969 992 2496 2308 5376 3916 
c2670 702 724 288 6240 10766 5888 6400 
c3540 821 271 640 9504 12220 3840 4352 
c5315 651 388 640 1950 1316 2048 1024 
c6288 101 234 64 - - - - 
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The fault simulation results of the benchmark circuits „c499‟ and „c6288‟ from other researchers 

are not available. The „–„ sign in Table 4.5 is to indicate the unavailability of the actual data.  It 

shows that the proposed 64-bit Fibonacci test pattern generator in mixed mode approach is 

capable of producing 100% fault coverage using lowest number of test vectors than that of all 

other researchers.  

 

4.4 Summary 

Fault Simulation results of the ISCAS benchmark circuits presented in this chapter verify the 

effectiveness of the proposed approach in IC testing. The results obtained from the fault 

simulation experiments on the different ISCAS benchmark circuits show that the proposed 64-bit 

FLFSR produces 100% fault coverage for the benchmark circuits using much lower number of 

test vectors than that of other researchers. 

 

 

 

 

*NTV1 = Number of test vectors required using FLFSR based mixed-mode technique in 
the present work  

*NTV2 = Number of test vectors required using LFSR based mixed-mode technique [2] 

*NTV3 = Number of test vectors required using LFSR based mixed-mode technique [3] 
*NTV4 = Number of test vectors using weighted random technique [5]  
*NTV5 = Number of test vectors using weighted random technique [6]   
*NTV6 = Number of test vectors using weighted random technique [7]  
*NTV7 = Number of test vectors using weighted random technique [8] 
 
 
 
 
 
 
 al.1987) 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 
5.1 Conclusion 
 
Test pattern generator is an important module for any IC tester. Performance of the tester in 

terms of testing time, test economics etc largely depends on it. This project evaluates a 64-bit 

FLFSR for its effectiveness in VLSI testing. Fault simulation experiments have been conducted 

on a number of ISACS benchmark circuits for this purpose. The fault simulation results show 

that complete fault coverage can be achieved using lower number of test vectors than that of 

other researchers. Moreover best seed and optimum switching point have also been examined by 

conducting fault simulation experiments on ISCAS benchmark circuits. Determination of best 

seed has again been verified by calculating the coefficient of variation of the random sequences 

that have applied to the benchmark circuits. Based on the result in the project initiative can be 

taken for designing low cost IC Tester. 

 

5.2 Future Work 

For this project we recommend the following future works. 

i) Fault simulation experiments can be conducted on the other types of benchmark 

circuits and can be tested the effectiveness of the proposed 64-bit FLFSR. 

ii) The test results in this project can be used in designing low cost IC tester. 
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APPENDIX A1 
COMPUTER PROGRAM FOR GENERATING RANDOM NUMBERS 

 
 
 
#include<stdio.h> 
#include<conio.h> 
#include<string.h> 
#include<ctype.h> 
main() 
{ 
 clrscr(); 
 FILE *fpt; 
 char fname[10]; 
 int vector[70],i,j,tap1,tap2,tap3,tap4,stage,k,temp1,temp2,temp3,temp4,temp5,temp6,clk, 
           width,tap[10],n,u,v; 
 int pos; 
 printf("\n \n No. of Stages of FLFSR ="); 
 scanf("%d",&stage); 
 printf("\n \n Test vector Width ="); 
 scanf("%d",&width); 
 printf("Enter Tap1="); 
 scanf("%d",&tap1); 
 printf("Enter Tap2="); 
 scanf("%d",&tap2); 
 printf("Enter Tap3="); 
 scanf("%d",&tap3); 
 printf("Enter Tap4="); 
 scanf("%d",&tap4); 
 printf("Enter the seed position="); 
 scanf("%d",&pos); 
 printf("How many test vectors="); 
 scanf("%d",&clk); 
 printf("Enter the name of the file="); 
 scanf("%s",&fname); 
 fpt=fopen(fname,"w"); 
 for(i=0;i<= stage -1;i++) 
 { 
  if(i==(pos-1)) 
   vector[i]=1; 
  else 
   vector[i]=0; 
 } 
 for(k=1;k<=clk;k++) 
 { 
  fprintf(fpt,"%d:",k); 
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  for(j=1;j<=width;j++) 
  { 
   temp1=vector[tap1-1]; 
   temp2=vector[tap2-1]; 
   temp3=vector[tap3-1]; 
   temp4=vector[tap4-1]; 
   for(i=0;i<stage-1;i++) 
    vector[stage -i-1]=vector[stage -i-2]; 
   vector[0]=temp1^temp2^temp3^temp4; 
    fprintf(fpt,"%d",vector[stage -1]); 
  } 
  fprintf(fpt,"\n"); 
 
 } 
 getch(); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



89 
 

APPENDIX A2 
COMMAND FOR FAULT SIMULATION USING FSIM 

 
Format: fsim [options] circuit_file [> outfile] 

 

OPTIONS: Several options as listed below are available for 

  atalanta. If an option is not specified, the default 

  value is used. 

 

-r n  Test patterns are generated internally using the random number 

  generator (random()). The simulation stops when either n 

  patterns are applied or all faults are detected. 

  (default: -r 224) 

-s n  Initial seed for the random number generator (random()). 

  If n=0, the initial seed is the current time. 

  (default: -s 0) 

-t filename Test pattern file. 

  Test patterns are read from the file. 

  The simulation stops when either all test patterns 

  are applied or all faults are detected. 

  (default: random patterns are used) 

-l filename Log file is created  

  (default: no logfile is created) 

-f filename The options are read from the named file 
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For example for the following command 

  

fsim -t output.test c432.isc 

    --- The test patterns are read from the file " output.test". 

        The simulation stops when all test patterns in output.test 

        are simulated or all faults are detected. 

Where output.test is the test vector file. 

 

For example test pattern file for the circuit c432.bench 

1:000000000000000000000000000000000000 

2:000100000000000000000000000000000000 

3:000000000000000000000000000110110000 

4:000000000000000000000000000000000000 

5:000000000000000101000101000000000000 

The test pattern begins after colon (:). After n bits, where n is the number of primary inputs of 

the circuit, all the following characters are ignored until the next colon (:) is read. The j'th bit of a 

test pattern is the value to be applied to the j'th input of the circuit. For example, c432 has 36 

inputs named input1, input2, input3, input6 … input36 which appear in the order in the netlist. 

The first bit of a test pattern is the value for input1, the second for input2, ..., and the last bit for 

input36. 
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APPENDIX A3 
RANDOM TEST VECTORS FOR ISCAS85 BENCHMARK CIRCUIT C432.BENCH 

 
 

1:000000000000000000000000000000000000 
2:000100000000000000000000000000000000 
3:000000000000000000000000000110110000 
4:000000000000000000000000000000000000 
5:000000000000000101000101000000000000 
6:000000000000000000000000000000000000 
7:000111011011011100000000000000000000 
8:000000000000000000000000000100010000 
9:000100010000000000000000000000000000 
10:000000000000000110101011000110101011 
11:000000000000000000000000000000000000 
12:000101010001010001010001010100000000 
13:000000000000000000000000000111000110 
14:110110110110110001110000000000000000 
15:000000000000000100000001000000000000 
16:000100000001000000000000000000000000 
17:000110110001101100000000000110110001 
18:101100000000000000000000000101000100 
19:010001010000000101000100010001010000 
20:000000000000000111011010101010110111 
21:000111011010101010110111000000000000 
22:000100010001000000010001000000010001 
23:000000010001000100000000000110101010 
24:101100011010101100011010101100011010 
25:101010110000000101010000000101000101 
26:000101000101000101000101000000010101 
27:000111000111000111011011011011011011 
28:011011011011011100011100011000000000 
29:000000010000000000000000000000000000 
30:000100000000000110100000000000011011 
31:000000000000000000000000000110110000 
32:000101011110000000010100010100000000 
33:000000000000000101000101000111001111 
34:001000011101101101110000000000000000 
35:000111011011011000001101101001110001 
36:000000010001000000000000000100010000 
37:000010101010000110100000101100011010 
38:101100000000000110101011000011100000 
39:111101011110111101000101000101010000 
40:000101010001010110000010100111101111 
41:101111111011011011000111000111000110 
42:110010101011101010111011011011000110 
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43:000000010000000000000001000110100001 
44:101100011010000000010001101000011011 
45:000000000001101001011111010001000101 
46:111000011010010111110100010100000001 
47:010110011110111110101011111100110101 
48:100111101111101101110001110010111011 
49:101101110001110010111010101110111011 
50:011000010000000010111010101000010000 
51:000010111011000110101010000010111011 
52:000011111011000011111011000011111010 
53:010001010000111011111010010110010110 
54:010110010110010110010111100010110111 
55:100010110111100110110110110110110110 
56:110110110111110001110001110001110001 
57:110111000000000000000000000000000001 
58:101000000000000000000000000101000100 
59:000000000000000000000001010111100000 
60:000000000000000111011010110000000000 
61:000000000001110011110010000000000000 
62:000100010001010101000000000000000001 
63:000011011010011000000000000110101010 
64:110000011100000000000001101110100001 
65:101110100000000101010000010101010000 
66:010000000001010010111111010010111110 
67:000111000111011100000111011011000001 
68:110100111100111100111101001100000000 
69:010100010100010000010101000111010110 
70:110110110111110111010000011101101101 
71:101011011100011000011010000000000001 
72:101101011111010001000000000101000100 
73:000110110101111000000001010000101110 
74:111110101100000111011010110101000010 
75:111100100001110111111110101101110101 
76:010100010001010010011111111110100111 
77:000101100001110100010110000001101010 
78:110100001010000001111010000011101011 
79:000111101110101001010100010011111110 
80:111001001111111010001101010000111010 
81:110010010001101001010001101001000101 
82:000111110010100111100011010110000010 
83:010110010110010110001011011000101010 
84:101010110000101010101011000110110110 
85:110110100111000010011000000000010101 
86:111000000001010001000000000000011010 
87:000111001110100000011100111100100001 
88:110110101100000000010101111100001100 
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89:111110010000110110100111000100010101 
90:010000011100111010011011110101010011 
91:101000011010000010101100000111010000 
92:110011101100111110000101001111110101 
93:111011100101010100011111101111001001 
94:110101001111010101001110111110100101 
95:000001100010011011101000100110010101 
96:111000010100101101111001011101011001 
97:001100101111010011110100111100111101 
98:001100011101011101101011000111101111 
99:111101011111010110110111110111000001 
100:101101000101010000111011000011101110 
101:111010000001101101000101010000111011 
102:000111100010010110001010101011111001 
103:010000111011000111100010010000110001 
104:000110100110000001110101010111100010 
105:010000110001000011101100101001011011 
106:101001000110000011110001000011101100 
107:101110001001101010011000101110001001 
108:101010011000101110001001101110000100 
109:110100101110011110000100110100101110 
110:011110000100110010001110011011001110 
111:011011001110011011001110011011001110 
112:011110010000011100011100011100011100 
113:011100011100011100011100011011010011 
114:010000000000000000000000000000000000 
115:000000000000000100001101101111000000 
116:000000000000000000000000000000000000 
117:000110111010000011100100000000000000 
118:000000000000000000000000000101001011 
119:111010000100110000000000000000000000 
120:000000000000000111010011110111111110 
121:011101000000000000000000000000000000 
122:000100011101011101100001011001111100 
123:000000000000000000000000000110100001 
124:101101001011111011101010010000000000 
125:000000000000000101011111010000110011 
126:110110101100100011000000000000000000 
127:000111001110111111101111011100010101 
128:100100110100000000000000000100001100 
129:101100011011110100001100101100011011 
130:110000000000000110111011101101000100 
131:111111111011101101000100111001000000 
132:000101001010101000111010010100000110 
133:101000111010010001001100000111010010 
134:000011000011100101110101010011000011 
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135:100010100111010100011100011010110110 
136:000101110110000101110110000001101010 
137:011001100000000101010000101111110100 
138:101111110100101001010100101111111010 
139:000111000111111111001111001111001111 
140:001010010001001111000111111100000000 
141:100000101101101101101101101010100010 
142:100101100000100010010000110110111100 
143:000000000000000100001101101001101010 
144:110101000011101000001110010000000000 
145:000110111010000110110100010010011110 
146:001111101000010011000000000101001011 
147:111101000011101000001011000001011111 
148:111001110100000111010011110011111110 
149:001111101111010101111110000101100111 
150:110100011101011011010001000001011011 
151:111000111001001111101110101111100001 
152:101000001110101101111000110100000001 
153:000101011010110111010011010111101000 
154:110100011100001011110001101011001001 
155:010001011101101011111111001011100000 
156:011111111000010101011000010110111101 
157:000101110000101011100010010010000100 
158:111100001010111110001111111011110001 
159:111001100001000000011110010110011110 
160:011101000001000110111000001101111011 
161:101100010011010110111011011001111101 
162:101001001000101010011110101001001001 
163:101010001010000011101011000110000001 
164:011000101011110010000000110100110110 
165:111010001101010001101001111010011001 
166:111010011000101011011000001011110010 
167:100110010110101111101111101111101110 
168:011001000010101111111010101011110110 
169:010111011011011011011010011111001111 
170:100111000111000001111100110111010000 
171:000000000001101010101101010110000000 
172:000101001010111001011111000000000001 
173:010100000100100010101000000111010010 
174:011001011110100100000001110001110110 
175:000101100011100100011100001111011111 
176:111000110001000000000100101111101000 
177:000100100000011001110110000100001100 
178:101100000110001111011111100110000110 
179:010111100100101110111011101101010101 
180:100001110110010111101101110111110100 
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181:001110101010101000100000101011000100 
182:110111111000010101101111111000110000 
183:000011010110111001010010011001100100 
184:111100100011000100001101000010101010 
185:001001010100001111111100010110100100 
186:110010111010111111100000110100010001 
187:111001000010001110011000011110111011 
188:011100010010101011101010001101001111 
189:010000011110110011101010000100001000 
190:100001101100110010110101111111010011 
191:100111001100111110111101010111010001 
192:111110110010111000111101000110001111 
193:110101101111100011011110001001100110 
194:111000000111111001100001001110100011 
195:010000100111000100111111001000100100 
196:100101111011100100111100101111110010 
197:000010010100101001010000000001111110 
198:100100010110101111001010011011000101 
199:001010010111000001001001111000101110 
200:010111101010101100010011010010100111 
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APPENDIX A4 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C432.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed  No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 288 97.71 0.500 
3 256 97.14 0.500 
5 350 98.86 0.250 
6 256 97.52 0.517 
8 350 99.05 0.250 
9 320 98.66 0.250 

11 320 97.52 0.250 
12 288 98.66 0.517 
14 288 98.09 0.517 
15 320 97.14 0.500 
17 320 98.66 0.517 
18 288 97.33 0.250 
20 350 98.66 0.250 
21 320 98.47 0.500 
23 288 97.71 0.250 
24 200 98.28 0.500 
26 256 96.95 0.250 
27 350 98.66 0.250 
29 256 98.09 0.250 
30 320 98.09 0.500 
32 232 97.90 0.250 
33 288 98.86 0.500 
35 256 97.14 0.500 
36 350 99.05 0.250 
38 256 96.95 0.250 
39 350 97.90 0.250 
41 320 98.66 0.500 
42 320 98.66 0.250 
44 288 99.05 0.500 
45 288 98.66 0.500 
47 320 97.52 0.250 
48 320 98.66 0.250 
50 288 98.09 0.250 
51 350 97.33 0.250 
53 224 97.71 0.250 
54 320 97.90 0.500 
56 288 98.66 0.500 
57 256 98.28 0.250 
59 350 98.09 0.500 
60 256 98.86 0.500 
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APPENDIX A5 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C432.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 256 98.66 0.500 
3 350 98.47 0.250 
5 256 97.90 0.250 
6 288 98.09 0.500 
8 320 98.66 0.500 
9 288 98.47 0.250 

11 256 98.86 0.500 
12 350 98.09 0.250 
14 256 98.86 0.250 
15 350 99.24 0.500 
17 320 97.90 0.500 
18 320 98.66 0.250 
20 288 98.47 0.517 
21 288 98.47 0.500 
23 320 98.47 0.500 
24 200 98.09 0.500 
26 320 99.24 0.500 
27 288 98.28 0.500 
29 350 98.28 0.250 
30 320 98.09 0.500 
32 232 98.09 0.250 
33 288 97.90 0.500 
35 256 98.09 0.250 
36 350 99.05 0.500 
38 256 98.09 0.250 
39 350 98.66 0.250 
41 320 98.66 0.250 
42 320 98.28 0.517 
44 288 98.66 0.500 
45 288 98.47 0.250 
47 320 99.05 0.500 
48 320 98.09 0.500 
50 288 99.05 0.250 
51 350 99.24 0.250 
53 224 97.14 0.250 
54 320 98.66 0.517 
56 288 98.47 0.500 
57 256 98.28 0.250 
59 350 98.66 0.250 
60 256 98.47 0.250 
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APPENDIX A6 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C499.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 480 98.15 0.250 
3 384 97.89 0.517 
5 512 98.29 0.500 
7 190 96.70 0.500 
8 416 98.02 0.500 
9 480 98.29 0.250 

11 512 98.15 0.250 
12 448 98.02 0.250 
14 448 98.15 0.500 
15 480 98.55 0.250 
17 416 98.42 0.250 
18 384 97.76 0.500 
20 512 98.29 0.250 
21 512 98.81 0.250 
23 384 98.02 0.517 
24 576 98.42 0.517 
26 416 97.76 0.250 
27 512 98.15 0.517 
29 448 98.15 0.500 
30 480 98.29 0.250 
32 512 98.81 0.250 
33 480 98.29 0.250 
35 384 98.42 0.517 
36 512 98.81 0.250 
38 416 98.02 0.517 
39 352 98.15 0.500 
41 480 98.55 0.517 
42 512 98.81 0.250 
44 448 98.02 0.500 
45 448 98.42 0.250 
47 480 97.89 0.250 
48 416 98.29 0.500 
50 384 98.15 0.500 
51 512 98.15 0.250 
53 512 98.15 0.250 
54 384 97.76 0.250 
56 576 98.55 0.250 
57 416 98.02 0.250 
59 512 98.55 0.250 
60 448 98.02 0.250 
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APPENDIX A7 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C499.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 448 98.02 0.250 
3 512 98.15 0.250 
5 416 98.02 0.250 
7 190 96.17 0.250 
8 576 98.68 0.500 
9 384 98.29 0.250 

11 512 98.02 0.517 
12 512 97.89 0.250 
14 384 97.49 0.250 
15 416 98.29 0.250 
17 480 97.76 0.250 
18 448 98.29 0.500 
20 448 97.76 0.250 
21 512 98.55 0.250 
23 480 98.42 0.250 
24 416 98.02 0.500 
26 512 98.55 0.250 
27 384 96.70 0.250 
29 480 98.02 0.517 
30 350 97.36 0.250 
32 512 98.42 0.250 
33 480 98.29 0.250 
35 384 97.76 0.250 
36 512 98.55 0.517 
38 416 98.15 0.500 
39 352 98.29 0.500 
41 480 98.55 0.250 
42 512 98.15 0.250 
44 448 98.02 0.517 
45 448 98.29 0.517 
47 480 98.15 0.500 
48 416 98.29 0.517 
50 384 98.29 0.250 
51 512 98.29 0.250 
53 512 97.89 0.250 
54 384 98.29 0.517 
56 576 98.68 0.500 
57 416 98.15 0.500 
59 512 98.55 0.500 
60 448 98.15 0.500 
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APPENDIX A8 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C880.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 256 94.27 0.250 
3 224 94.90 0.517 
5 256 94.59 0.500 
6 256 93.52 0.500 
8 224 94.90 0.517 
9 256 94.80 0.500 

11 224 94.27 0.250 
12 256 94.90 0.250 
14 192 93.21 0.500 
15 256 94.69 0.250 
17 192 93.84 0.250 
18 256 95.65 0.500 
20 260 94.80 0.250 
21 224 94.59 0.250 
23 256 94.16 0.517 
24 160 90.66 0.517 
26 192 92.25 0.250 
27 120 93.52 0.500 
29 260 94.27 0.517 
30 224 92.68 0.500 
32 160 90.45 0.250 
33 256 93.74 0.500 
35 224 92.68 0.250 
36 256 93.21 0.517 
38 256 92.46 0.250 
39 224 93.42 0.250 
41 256 94.59 0.517 
42 224 92.57 0.500 
44 256 93.84 0.250 
45 160 91.30 0.250 
47 192 93.21 0.250 
48 256 93.42 0.250 
50 192 92.04 0.250 
51 256 94.80 0.500 
53 260 95.33 0.250 
54 224 92.04 0.250 
56 256 94.80 0.250 
57 160 92.46 0.500 
59 192 92.89 0.250 
60 260 94.69 0.500 
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APPENDIX A9 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C880.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 256 94.69 0.250 
3 224 95.65 0.250 
5 256 95.12 0.500 
6 256 94.27 0.250 
8 224 94.48 0.250 
9 256 95.54 0.517 

11 224 95.01 0.517 
12 256 94.69 0.250 
14 160 92.14 0.250 
15 192 92.99 0.250 
17 256 94.90 0.250 
18 192 93.10 0.250 
20 256 95.12 0.500 
21 260 94.69 0.250 
23 224 93.95 0.250 
24 256 95.01 0.250 
26 160 92.14 0.250 
27 120 90.13 0.250 
29 192 94.59 0.250 
30 260 95.44 0.500 
32 160 92.99 0.250 
33 256 95.54 0.500 
35 224 94.48 0.517 
36 256 95.97 0.250 
38 256 95.44 0.250 
39 224 94.48 0.250 
41 256 95.86 0.250 
42 224 92.99 0.500 
44 256 95.01 0.517 
45 160 93.95 0.517 
47 192 93.95 0.250 
48 256 95.86 0.500 
50 192 93.63 0.250 
51 256 94.59 0.250 
53 260 96.29 0.250 
54 224 93.95 0.500 
56 256 94.27 0.500 
57 160 92.46 0.517 
59 192 94.37 0.250 
60 260 95.54 0.250 
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APPENDIX A10 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1355.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
  
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 1152 98.41 0.500 
3 1088 98.09 0.500 
5 736 96.32 0.250 
6 672 95.87 0.250 
8 960 98.54 0.500 
9 928 97.52 0.250 

11 864 97.21 0.250 
12 1120 98.29 0.250 
14 1056 98.29 0.517 
15 640 96.57 0.517 
17 640 96.89 0.250 
18 576 96.06 0.517 
20 832 97.84 0.517 
21 180 92.00 0.517 
23 896 97.01 0.250 
24 800 96.82 0.500 
26 768 97.27 0.250 
27 960 98.09 0.250 
29 704 95.74 0.250 
30 512 94.41 0.500 
32 512 96.38 0.250 
33 1152 98.16 0.500 
35 1088 97.84 0.250 
36 512 96.25 0.517 
38 736 97.59 0.250 
39 672 96.57 0.500 
41 960 98.03 0.250 
42 928 98.16 0.250 
44 864 97.01 0.500 
45 1120 98.48 0.517 
47 1056 97.71 0.500 
48 640 96.13 0.500 
50 640 96.44 0.500 
51 576 96.44 0.250 
53 832 97.46 0.500 
54 896 98.16 0.250 
56 816 97.21 0.500 
57 768 96.76 0.250 
59 960 97.52 0.500 
60 728 96.44 0.250 
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APPENDIX A11 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1355.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 704 96.95 0.517 
3 960 97.65 0.250 
5 768 96.70 0.517 
6 800 96.70 0.517 
8 896 97.78 0.250 
9 832 97.90 0.500 

11 576 95.81 0.517 
12 640 96.13 0.517 
14 640 95.55 0.517 
15 1056 97.59 0.250 
17 1120 98.29 0.250 
18 864 98.09 0.500 
20 928 98.09 0.500 
21 180 91.49 0.500 
23 960 98.09 0.517 
24 672 97.46 0.500 
26 736 97.78 0.250 
27 1088 98.41 0.500 
29 1152 98.48 0.517 
30 512 96.70 0.250 
32 512 95.62 0.250 
33 1152 97.65 0.500 
35 1088 97.84 0.517 
36 512 95.62 0.517 
38 736 97.27 0.250 
39 672 96.63 0.250 
41 960 98.41 0.500 
42 928 97.78 0.250 
44 864 96.13 0.500 
45 1120 98.29 0.250 
47 1056 98.35 0.500 
48 640 96.70 0.250 
50 640 96.76 0.250 
51 576 96.00 0.250 
53 832 97.78 0.517 
54 896 97.59 0.500 
56 820 97.46 0.517 
57 780 97.52 0.500 
59 960 98.22 0.500 
60 712 97.08 0.500 
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APPENDIX A12 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1908.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 1632 97.07 0.767 
3 1184 97.13 0.517 
5 1376 96.91 0.250 
6 1120 96.06 0.250 
8 1312 95.74 0.500 
9 960 95.26 0.250 

11 1280 96.97 0.250 
12 992 95.37 0.767 
14 992 96.91 0.767 
15 1504 96.65 0.767 
17 1344 95.90 0.250 
18 1408 97.50 0.517 
20 1344 97.34 0.500 
21 1600 97.07 0.500 
23 1472 97.07 0.517 
24 880 96.33 0.500 
26 1312 96.49 0.500 
27 1568 97.98 0.517 
29 1184 96.33 0.500 
30 864 94.52 0.250 
32 992 95.42 0.517 
33 1632 98.24 0.517 
35 1184 96.33 0.250 
36 1376 97.29 0.517 
38 1120 96.17 0.500 
39 1312 96.65 0.250 
41 960 92.87 0.500 
42 1280 96.81 0.500 
44 992 96.06 0.517 
45 992 95.37 0.500 
47 1504 98.08 0.517 
48 1344 96.59 0.500 
50 1408 96.22 0.250 
51 1344 97.23 0.500 
53 1600 97.77 0.517 
54 1472 96.81 0.250 
56 1312 96.91 0.517 
57 1568 98.14 0.500 
59 1184 96.28 0.500 
60 864 96.28 0.250 
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APPENDIX A13 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1908.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 864 92.82 0.500 
3 1184 96.12 0.517 
5 1568 98.46 0.517 
6 1312 95.42 0.250 
8 1472 96.69 0.500 
9 1600 97.18 0.250 

11 1344 96.70 0.250 
12 1408 97.23 0.500 
14 1344 96.81 0.250 
15 1504 96.86 0.517 
17 992 94.36 0.500 
18 992 96.06 0.250 
20 1280 96.38 0.767 
21 960 96.43 0.250 
23 1312 96.43 0.517 
24 880 94.41 0.250 
26 1120 94.99 0.767 
27 1376 96.86 0.767 
29 1184 96.70 0.250 
30 1632 96.64 0.250 
32 992 94.84 0.500 
33 1632 96.06 0.500 
35 1184 95.42 0.250 
36 1376 97.61 0.500 
38 1120 97.61 0.250 
39 1312 95.42 0.250 
41 960 95.05 0.500 
42 1280 97.02 0.250 
44 992 95.42 0.517 
45 992 96.17 0.500 
47 1504 97.18 0.517 
48 1344 96.65 0.250 
50 1408 95.74 0.500 
51 1344 96.54 0.250 
53 1600 97.71 0.250 
54 1472 97.82 0.250 
56 1312 96.43 0.500 
57 1568 97.45 0.500 
59 1184 95.32 0.517 
60 864 94.57 0.250 
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APPENDIX A14 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C2670.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 416 83.25 0.517 
3 448 82.85 0.250 
5 288 82.82 0.767 
6 992 84.02 0.767 
8 736 83.91 0.767 
9 320 83.15 0.250 

11 480 83.11 0.500 
12 320 82.71 0.500 
14 768 83.95 0.250 
15 672 83.22 0.767 
17 640 83.51 0.250 
18 672 83.66 0.517 
20 736 83.76 0.250 
21 672 83.62 0.250 
23 832 84.24 0.250 
24 768 83.87 0.250 
26 448 83.33 0.250 
27 672 84.09 0.250 
29 412 83.11 0.517 
30 288 83.22 0.500 
32 416 83.84 0.500 
33 448 83.51 0.517 
35 288 83.00 0.500 
36 250 83.55 0.500 
38 992 84.35 0.500 
39 736 83.98 0.250 
41 320 82.09 0.500 
42 480 83.98 0.250 
44 320 82.34 0.517 
45 768 83.95 0.500 
47 672 84.17 0.500 
48 640 84.35 0.517 
50 672 83.18 0.500 
51 736 84.09 0.500 
53 672 83.84 0.517 
54 832 84.06 0.517 
56 768 84.02 0.517 
57 448 83.00 0.500 
59 672 83.87 0.500 
60 412 82.96 0.250 
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APPENDIX A15 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C2670.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 412 82.96 0.517 
3 672 83.76 0.767 
5 448 83.29 0.250 
6 768 84.09 0.767 
8 832 83.76 0.517 
9 672 83.87 0.250 

11 736 84.17 0.250 
12 672 83.84 0.517 
14 640 83.87 0.517 
15 672 83.91 0.250 
17 768 83.76 0.517 
18 320 81.40 0.517 
20 480 83.73 0.517 
21 320 82.38 0.517 
23 736 84.13 0.500 
24 992 84.06 0.767 
26 288 83.22 0.517 
27 448 83.40 0.767 
29 416 83.25 0.250 
30 288 82.20 1.033 
32 416 83.40 0.250 
33 448 83.58 0.517 
35 288 83.29 0.250 
36 250 82.71 0.517 
38 992 84.42 0.500 
39 736 84.20 0.517 
41 320 83.15 0.250 
42 480 83.87 0.250 
44 320 82.93 0.517 
45 768 84.02 0.500 
47 672 83.91 0.517 
48 640 83.95 0.250 
50 672 83.84 0.250 
51 736 83.73 0.517 
53 672 84.17 0.500 
54 832 83.80 0.517 
56 768 83.95 0.517 
57 448 83.25 0.250 
59 672 83.91 0.517 
60 412 83.62 0.250 
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APPENDIX A16 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C3540.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 896 93.58 0.250 
3 864 93.85 0.250 
5 896 93.90 0.250 
6 960 93.85 1.033 
8 800 93.09 0.517 
9 928 94.08 1.017 

11 640 92.50 0.767 
12 992 94.46 0.767 
14 864 93.61 0.500 
15 800 93.61 0.517 
17 540 91.57 0.517 
18 896 93.23 0.767 
20 768 92.94 0.250 
21 800 93.29 1.017 
23 960 94.11 0.517 
24 832 93.44 0.500 
26 800 93.26 0.517 
27 928 93.87 0.250 
29 928 94.20 0.767 
30 736 91.83 0.517 
32 640 93.15 0.517 
33 896 93.87 0.517 
35 864 92.97 0.767 
36 896 92.68 0.517 
38 960 94.49 0.517 
39 800 92.88 0.250 
41 928 93.47 0.500 
42 640 92.01 0.517 
44 992 93.55 0.517 
45 864 93.79 0.517 
47 800 93.76 0.517 
48 896 93.79 0.517 
50 768 92.77 0.500 
51 800 94.11 0.767 
53 960 94.20 0.517 
54 832 93.99 0.517 
56 800 92.68 0.517 
57 928 93.50 0.500 
59 928 94.11 0.517 
60 736 93.44 0.517 
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APPENDIX A17 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C3540.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 736 93.76 0.517 
3 928 94.78 0.767 
5 928 94.31 0.500 
6 800 93.29 0.517 
8 832 94.08 0.517 
9 960 94.55 0.517 

11 800 93.61 0.517 
12 768 94.14 0.250 
14 896 93.44 0.500 
15 800 93.50 0.517 
17 540 91.80 0.517 
18 864 93.99 0.500 
20 992 94.22 0.517 
21 640 93.41 0.517 
23 928 94.60 0.517 
24 800 93.32 0.767 
26 960 94.52 0.517 
27 896 93.96 0.500 
29 864 93.52 0.517 
30 896 93.64 0.517 
32 640 92.04 0.500 
33 896 94.14 0.517 
35 864 94.05 0.500 
36 896 93.85 0.767 
38 960 94.78 0.517 
39 800 92.39 0.517 
41 928 93.70 0.517 
42 640 93.35 0.517 
44 992 93.55 0.517 
45 864 93.90 0.517 
47 800 93.47 0.500 
48 896 93.90 0.517 
50 768 93.52 0.517 
51 800 93.87 0.517 
53 960 94.31 0.517 
54 832 93.96 0.517 
56 800 93.29 0.517 
57 928 93.06 0.517 
59 928 94.55 0.250 
60 736 93.32 0.500 



110 
 

APPENDIX A18 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C5315.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 768 98.51 0.517 
3 1152 98.75 0.767 
5 1056 98.73 0.767 
6 640 98.34 0.500 
8 640 98.17 0.517 
9 864 98.52 0.517 

11 960 98.62 0.500 
12 960 98.62 0.767 
14 768 98.39 0.500 
15 1088 98.79 0.517 
17 928 98.49 0.517 
18 960 98.79 0.517 
20 928 98.60 0.517 
21 1088 98.75 0.517 
22 600 98.26 0.517 
24 832 98.52 0.517 
26 1056 98.65 0.250 
27 1088 98.71 0.517 
29 736 98.36 0.517 
30 1248 98.80 0.767 
32 640 98.22 0.517 
33 780 98.32 0.517 
35 1140 98.77 0.517 
36 1056 98.64 0.500 
38 640 98.28 0.517 
39 640 98.28 0.500 
41 864 98.54 0.517 
42 960 98.75 0.767 
44 960 98.65 0.767 
45 768 98.54 0.250 
47 1088 98.64 0.767 
48 928 98.69 0.767 
50 960 98.54 0.517 
51 928 98.60 0.767 
53 1088 98.77 0.517 
54 832 98.69 0.250 
56 1056 98.64 0.250 
57 1088 98.62 0.517 
59 740 98.45 0.517 
60 1236 98.69 0.517 
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APPENDIX A19 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C5315.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 1248 98.75 0.517 
3 736 98.43 0.767 
5 1088 98.69 0.517 
6 1056 98.71 0.767 
8 832 98.51 0.517 
9 1088 98.67 0.767 

11 928 98.60 0.517 
12 960 98.47 0.500 
14 928 98.60 0.517 
15 1088 98.73 0.517 
17 768 98.71 0.517 
18 960 98.56 0.517 
20 960 98.60 0.517 
21 864 98.67 0.517 
22 560 98.30 0.517 
24 640 98.28 0.500 
26 640 98.36 0.767 
27 1056 98.71 0.517 
29 1152 98.65 0.767 
30 740 98.58 0.517 
32 768 98.28 0.767 
33 1152 98.69 0.517 
35 1056 98.65 0.500 
36 640 98.22 0.500 
38 640 98.41 0.500 
39 864 98.36 0.517 
41 960 98.64 0.517 
42 960 98.79 0.767 
44 768 98.56 0.517 
45 1088 98.71 0.500 
47 928 98.62 0.517 
48 960 98.71 0.517 
50 928 98.54 0.517 
51 1088 98.62 0.767 
53 832 98.45 0.517 
54 1056 98.67 0.767 
56 1088 98.71 0.517 
57 736 98.58 0.517 
59 1248 98.71 0.767 
60 640 98.04 0.517 
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APPENDIX A20 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C6288.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
 
 
 

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 96 99.30 0.767 
3 96 99.25 0.767 
5 96 99.29 0.767 
6 96 99.21 0.517 
8 64 98.39 0.517 
9 64 98.35 0.767 

11 60 99.11 0.517 
12 64 98.75 0.517 
14 96 99.33 0.767 
15 96 99.21 0.767 
17 96 98.84 0.767 
18 64 97.57 0.767 
20 64 97.68 0.517 
21 96 99.03 0.767 
23 96 98.83 0.517 
24 96 99.02 0.767 
26 64 98.22 0.767 
27 64 98.57 0.767 
29 128 99.48 0.767 
30 128 99.46 0.767 
32 64 97.81 0.767 
33 128 99.51 0.767 
35 128 99.54 0.767 
36 96 99.15 0.767 
38 96 99.21 0.767 
39 64 98.46 0.517 
41 64 98.35 0.517 
42 64 98.72 0.767 
44 96 99.43 0.767 
45 96 99.46 0.767 
47 96 99.21 0.767 
48 64 97.92 0.767 
50 64 97.57 0.767 
51 96 98.74 0.767 
53 96 99.06 0.517 
54 96 99.04 0.767 
56 64 98.06 0.767 
57 64 98.19 0.767 
59 128 99.42 0.767 
60 128 99.46 0.767 
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APPENDIX A21 
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C6288.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64) 
 

 
Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec) 

2 128 99.56 0.767 
3 128 99.56 0.517 
5 64 99.30 0.517 
6 64 99.43 0.767 
8 96 99.46 0.767 
9 96 99.48 0.767 

11 60 99.47 0.767 
12 96 99.33 0.767 
14 64 99.30 0.767 
15 64 99.46 0.517 
17 96 99.48 0.767 
18 96 99.33 0.767 
20 96 99.54 0.517 
21 64 99.38 0.767 
23 64 99.38 0.767 
24 64 99.30 0.767 
26 64 99.37 0.517 
27 64 99.15 0.767 
29 96 99.41 0.767 
30 96 99.37 0.517 
32 64 99.48 1.017 
33 96 99.34 0.767 
35 96 99.38 0.517 
36 96 99.46 0.767 
38 96 99.54 0.767 
39 64 99.14 0.767 
41 64 99.26 0.767 
42 64 99.02 0.767 
44 96 99.35 0.767 
45 96 99.51 0.767 
47 96 99.56 0.767 
48 64 99.23 0.767 
50 64 99.23 0.517 
51 96 99.48 0.767 
53 96 99.46 0.767 
54 96 99.51 0.767 
56 64 99.30 0.767 
57 64 99.38 0.517 
59 128 99.54 0.767 
60 128 99.51 0.517 
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APPENDIX A22 
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C432.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
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APPENDIX A23 
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C499.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
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APPENDIX A24 
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C1908.BENCH 

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64) 
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APPENDIX A25 
MATLAB PROGRAM FOR MEASURING CV OF PRV SEQUENCES 

 
 
 

clc, clear all, close all 
format short 
load tvf.mat 
  
x = seed06; 
cv_x(1) = std(x)/mean(x)*100; 
  
x = seed15; 
cv_x(2) = std(x)/mean(x)*100; 
  
x = seed23; 
cv_x(3) = std(x)/mean(x)*100; 
  
x = seed24; 
cv_x(4) = std(x)/mean(x)*100; 
  
x = seed26; 
cv_x(5) = std(x)/mean(x)*100; 
  
x = seed35; 
cv_x(6) = std(x)/mean(x)*100; 
  
x = seed38; 
cv_x(7) = std(x)/mean(x)*100; 
  
x = seed42; 
cv_x(8) = std(x)/mean(x)*100; 
  
x = seed51; 
cv_x(9) = std(x)/mean(x)*100; 
  
x = seed59; 
cv_x(10) = std(x)/mean(x)*100; 
  
cv(:,2)=cv_x'; 
cv(:,1)=[6 15 23 24 26 35 38 42 51 59]'; 
  
cv 
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APPENDIX A26 
SCREENSHOT OF THE OUTPUT OF MATLAB PROGRAM FOR MEASURING CV FOR 

C432.BENCH  
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