
1

EVALUATION OF FIBONACCI TEST PATTERN GENERATOR FOR COST
EFFECTIVE IC TESTING

by

MD. TANVEER AHMED

MASTER OF ENGINEERING IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

January, 2013

2

The project titled “EVALUATION OF FIBONACCI TEST PATTERN GENERATOR FOR

COST EFFECTIVE IC TESTING” submitted by Md. Tanveer Ahmed, Roll No. M04083119P,

Session April-2008 has been accepted as satisfactory in partial fulfillment of the requirement for

the degree of Master of Engineering (ICT) held on 19th January, 2013.

BOARD OF EXAMINERS

1. Dr. Md. Liakot Ali
Professor
Institute of Information and Communication Technology
BUET, Dhaka-1000, Bangladesh.

Chairman

2. Dr. Md. Saiful Islam
Professor
Institute of Information and Communication Technology
BUET, Dhaka-1000, Bangladesh.

Member

3. Dr. Mohammad Shah Alam
Assistant Professor
Institute of Information and Communication Technology
BUET, Dhaka-1000, Bangladesh.

Member

3

CANDIDATE’S DECLARATION

It is hereby declared that this report or any part of it has not been submitted elsewhere for

the award of any degree or diploma.

Md. Tanveer Ahmed

4

Dedicated to

My Parents

5

CONTENTS

Title Page No

BOARD OF EXAMINERS II

CANDIDATE’S DECLARATION III

CONTENTS V

LIST OF TABLES X

LIST OF FIGURES XI

LIST OF ABBREVIATION XIV

ACKNOWLEDGEMENT XVI

ABSTRACT XVII

CHAPTER 1: INTRODUCTION 1

1.1 Introduction 1

1.2 Motivation 2

1.3 Objectives with Specific Aims and Possible Outcome 3

1.4 Outline of the Project 3

CHAPTER 2: FUNDAMENTALS OF IC TESTING 5

2.1 Introduction 5

2.2 Preliminaries 5

2.3 Different Approaches of IC Testing 7

 2.3.1 Exhaustive Approach 7

 2.3.2 Pseudo-Exhaustive Approach 8

 2.3.3 Deterministic Approach 8

 2.3.4 Pseudo-random Approach 9

 2.3.5 Weighted Random Approach 10

 2.3.6 Mixed-mode Approach 11

6

2.4 Faults in IC 12

 2.4.1 Fault Modeling 13

 2.4.2 Fault Coverage 15

 2.4.3 Fault Simulation 15

2.5 Linear Feedback Shift Register (LFSR) 17

 2.5.1 LFSR Terminology 19

2.6 LFSR Design 20

 2.6.1 Galois Linear Feedback Shift Register (GLFSR) 21

 2.6.2 Fibonacci Linear Feedback Shift Register (FLFSR) 22

2.7 Primitive Polynomial 23

2.8 Coefficient of Variation (CV) 25

2.9 Summary 26

CHAPTER 3: EVALUATION TECHNIQUE FOR TEST PATTERN

GENERATOR 28

3.1 Introduction 28

3.2 Basic Test Arrangement 28

3.3 Benchmark Circuits 29

3.4 Design of 64-bit FLFSR 31

 3.4.1 64-bit Fibonacci Linear Feedback Shift Register 31

 3.4.2 Feedback 31

 3.4.3 Conventions for Feedback Tap Specification 32

 3.4.4 Taps of Linear Feedback Shift Register 33

3.5 Illustration of FLFSR Working 36

7

3.6 Test Pattern Generation Using FLFSR 37

3.7 Techniques for Determining Best Seed 41

3.8 Software Requirements for Proposed Work 42

 3.8.1 Fault Simulator (FSIM) 42

 3.8.2 MATLAB 44

3.9 Summary 44

CHAPTER 4: RESULTS AND DISCUSSIONS 45

4.1 Introduction 45

4.2 Fault Simulation 45

4.3 Fault simulation results of the ISCAS Benchmark Circuits 46

 4.3.1 Best Seed Determination 61

4.3.2 Comparison 63

4.4 Summary 65

CHAPTER 5: CONCLUSION AND FUTURE WORK 66

5.1 Conclusion 66

5.2 Future Work 66

REFERENCES 67
APPENDIX 70

A1 Computer Program for generating random numbers 70

A2 Command for Fault Simulation using FSIM 72

A3 Random Test Vectors for ISCAS85 Benchmark Circuit c432.bench 74

A4 Fault simulation result of circuit c432.bench 79

(For feedback polynomial 1+x60+x61+x63+x64)

8

A5 Fault simulation result of circuit c432.bench 80

(For feedback polynomial 1+x+x3+x4+x64)

A6 Fault simulation result of circuit c499.bench 81
(For feedback polynomial 1+x60+x61+x63+x64)

A7 Fault simulation result of circuit c499.bench 82
(For feedback polynomial 1+x+x3+x4+x64)

A8 Fault simulation result of circuit c880.bench 83
(For feedback polynomial 1+x60+x61+x63+x64)

A9 Fault simulation result of circuit c880.bench 84
(For feedback polynomial 1+x+x3+x4+x64)

A10 Fault simulation result of circuit c1355.bench 85
(For feedback polynomial 1+x60+x61+x63+x64)

A11 Fault simulation result of circuit c1355.bench 86
(For feedback polynomial 1+x+x3+x4+x64)

A12 Fault simulation result of circuit c1908.bench 87
(For feedback polynomial 1+x60+x61+x63+x64)

A13 Fault simulation result of circuit c1908.bench 88
(For feedback polynomial 1+x+x3+x4+x64)

A14 Fault simulation result of circuit c2670.bench 89
(For feedback polynomial 1+x60+x61+x63+x64)

A15 Fault simulation result of circuit c2670.bench 90
(For feedback polynomial 1+x+x3+x4+x64)

A16 Fault simulation result of circuit c3540.bench 91
(For feedback polynomial 1+x60+x61+x63+x64)

A17 Fault simulation result of circuit c3540.bench 92
(For feedback polynomial 1+x+x3+x4+x64)

A18 Fault simulation result of circuit c5315.bench 93
(For feedback polynomial 1+x60+x61+x63+x64)

A19 Fault simulation result of circuit c5315.bench 94
(For feedback polynomial 1+x+x3+x4+x64)

9

A20 Fault simulation result of circuit c6288.bench 95
(For feedback polynomial 1+x60+x61+x63+x64)

A21 Fault simulation result of circuit c6288.bench 96
(For feedback polynomial 1+x+x3+x4+x64)

A22 Screenshot of Fault Simulation Result of Circuit c432.bench 97

(For feedback polynomial 1+x60+x61+x63+x64)

A23 Screenshot of Fault Simulation Result of Circuit c499.bench 98

(For feedback polynomial 1+x60+x61+x63+x64)

A24 Screenshot of Fault Simulation Result of Circuit c1908.bench 99

(For feedback polynomial 1+x60+x61+x63+x64)

A25 Matlab Program for Measuring CV of PRV Sequences 100

A26 Screenshot of the Output of Matlab Program for Measuring CV 101

OUTCOME OF THIS PROJECT 102

10

LIST OF TABLES
Title Page No

Table 2.1 States of the LFSR with feedback polynomial 19

Table 2.2 Primitive polynomials (mod 2) of orders 1 through 5 25

Table 3.1 ISCAS Benchmark Circuits 30

Table 3.2 Taps for maximum-length LFSR counters 35

Table 4.1 Fault coverage for different PRVs for benchmark circuit c432.bench 49

Table 4.2 FC Comparison for two Different Primitive Polynomials 50

Table 4.3 CV of PRV sequences for different seeds for different benchmark circuits 62

Table 4.4 Summary of fault simulation results of the ISCAS85 benchmark circuits 64
 with using proposed technique

Table 4.5 Comparison of fault simulation results of the ISCAS85 benchmark 64

 circuits with that of other researchers

11

LIST OF FIGURES
Title Page No

Figure 2.1 Fault coverage versus random test vectors (Stanley 1998) 9

Figure 2.2 An eight-input AND gate 10

Figure 2.3 Generalized scheme of the mixed-mode technique 11

Figure 2.4 General structure of an n-bit LFSR 17

Figure 2.5 A four stage LFSR 18

Figure 2.6 Structure of Galois LFSR 21

Figure 2.7 3-bit GLFSR with feedback ploynomial 1+x+x3 21

Figure 2.8 Structure of Fibonacci LFSR 22

Figure 2.9 3-bit FLFSR with feedback ploynomial 1+x2+x3 22

Figure 2.10 8-bit FLFSR with feedback ploynomial 1+x4+x5+x6+x8 22

Figure 3.1 General IC testing process 29

Figure 3.2 Feedback Logic using XOR gates 32

Figure 3.3 64-bit FLFSR with feedback logic 32

Figure 3.4 Galois implementation of LFSR 33

Figure 3.5. (a) Block Diagram, 36
 (b) truth table, 36
 (c) state diagram of 4-bit FLFSR with characteristics 37
 ploynomial 1+X3+X4

Figure 3.6 Flow chart of test pattern generation 39

Figure 3.7 Test vector file generation using FLFSR 40

Figure 3.8 Flow Chart for measuring CV 42

Figure 4.1 Fault detection profile of PRV for the benchmark circuit c432.bench 47

Figure 4.2 Fault simulation result of circuit c432.bench 51

(For feedback polynomial 1+x60+x61+x63+x64)

12

Figure 4.3 Fault simulation result of circuit c432.bench 52

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.4 Fault simulation result of circuit c499.bench 52
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.5 Fault simulation result of circuit c499.bench 53

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.6 Fault simulation result of circuit c880.bench 53
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.7 Fault simulation result of circuit c880.bench 54

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.8 Fault simulation result of circuit c1355.bench 54
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.9 Fault simulation result of circuit c1355.bench 55

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.10 Fault simulation result of circuit c1908.bench 55
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.11 Fault simulation result of circuit c1908.bench 56

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.12 Fault simulation result of circuit c2670.bench 56
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.13 Fault simulation result of circuit c2670.bench 57

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.14 Fault simulation result of circuit c3540.bench 57
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.15 Fault simulation result of circuit c3540.bench 58

(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.16 Fault simulation result of circuit c5315.bench 58
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.17 Fault simulation result of circuit c5315.bench 59

(For feedback polynomial 1+x+x3+x4+x64)

13

Figure 4.18 Fault simulation result of circuit c6288.bench 59
(For feedback polynomial 1+x60+x61+x63+x64)

Figure 4.19 Fault simulation result of circuit c6288.bench 60
(For feedback polynomial 1+x+x3+x4+x64)

Figure 4.20 CV for different seed positions 62

Figure 4.21 Image representation of PRV sequences 63

14

LIST OF ABBREVIATION

LFSR Linear Feedback Shift Register

ASIC Application Specific Integrated Circuit

ATE Automatic Test Equipment

GLFSR Galois Linear Feedback Shift Register

FLFSR Fibonacci Linear Feedback Shift Register

CUT Circuit Under Test

BIST Built-In Self-Test

SOC System-on-a-chip

PRV Pseudo Random Vector

TV Test Vector

NTV Number of Test Vector

FC Fault Coverage

XOR Exclusive-OR

XNOR Exclusive-NOR

ISCAS International Symposium on Circuits and Systems

IC Integrated Circuit

CAR Cellular Automata Register

DFT Design For Testability

FSIM Fault Simulator

ETD Easy-To-Detect

HTD Hard-To-Detect

VLSI Very Large Scale Integration

15

NG Number of Gates

NL Number of Lines

NPI Number of Primary Inputs

NPO Number of Primary Outputs

NS Number of Stems

CV Coefficient of Variation

IDDQ Integrated Circuit Quiescent Current

16

ACKNOWLEDGEMENT
(All praise be to Allah, The Beneficent, The Merciful)

First of all I would like to thank the almighty Allah for giving me the opportunity to conduct this

project. I would like to express my sincere thanks to my research project supervisor, Dr. Md.

Liakot Ali, for giving me the opportunity to conduct this project. Without his ever helping

personalities, this project would not have got the success.

I would like to convey my thanks to Professor Dr. Md. Saiful Islam, Director, IICT, BUET and

Assistant Professor Dr. Mohammad Shah Alam, IICT, BUET. Their motivation and inspiration

gave me the courage to do this work.

I gratefully acknowledge the restless support and advice of my fellow classmates and

friends during the design and implementation phase of this project. My special thanks to

all other teachers, students and staffs of IICT, BUET.

I would like to thank all of my friends and family members for their continuous support

and inspiration throughout the whole period of this undertaking.

17

ABSTRACT

With the increase of the complexities of VLSI circuit, testing problem has become more acute.

Testing at low cost with reliable performance is now a burning issue in the semiconductor world.

Test pattern generator is very important in VLSI Testing. Researchers have proposed different

testing approaches where test pattern generation plays an important role on performance of the

testing. Finding proper seed for a test pattern generator, finding optimum switching point from

pseudo-random test technique to deterministic test etc. are challenges in VLSI testing. Fault

simulation experiments have been conducted on a number of benchmark circuits to find the best

seed and optimum switching points. Recently Fibonacci pseudo-random test pattern generator

has been proved efficient in many cryptographic applications. Then we have evaluated the

effectiveness of a 64-bit Fibonacci test pattern generator in VLSI circuit testing. The project

focuses on design and simulation of a 64-bit Fibonacci test pattern generator capable of

generating sufficient long test pattern. By changing the seed and feedback connection, a set of

test vectors are generated for different benchmark circuits. Then we have conducted fault

simulation experiments on ISCAS (International Symposium on Circuits and Systems)

benchmark circuits for its evaluation in cost effective IC Testing. The result has been compared

with that of other researchers. It is found better as compared to all other results.

18

CHAPTER 1

INTRODUCTION

1.1 Overview

In this modern era, electronic equipment and products have become a part and parcel of our daily

life. Zero failure, reliability and longevity are now major business issues as well as customer‟s

expectation for the electronic goods. Accuracy and high reliability are essential and even life

critical for many applications, for example, in medical and aerospace. The key components of an

electronic product are integrated circuits (ICs). In IC manufacturing, various physical defects

may occur during numerous physical, chemical and thermal processes [1]. It is very unwise to

sell components to customers without being absolutely sure that the devices are functioning as

per specification. During the early stage of semiconductor technology, testing of IC was simple

and the designer did not need to be much concerned about that. With the dramatic improvement

of semiconductor technology, the design complexities and packing densities of IC have

exceedingly increased. Now millions of transistors are being integrated on a single chip. System-

on-a-chip (SOC) is a vision of this era. With the increase of the complexities of VLSI circuit,

testing problem has become more complex. Testing at low cost with reliable performance is now

a burning issue in the semiconductor world. If a fault can be detected at an earlier stage, it is

possible to avoid a larger cost of fault detection. Efficient testing method plays a vital role in the

economic success of VLSI circuits. Researchers have proposed different testing approaches.

They are exhaustive test technique, pseudo random test technique, weighted random test

technique, mixed mode test technique etc. Usually in all the testing approaches a number of test

patterns are applied to the circuit under test (CUT) and faults are detected. In a literature, it has

been shown that number of faults detected depends on the randomness of the test pattern. So test

19

pattern generation technique is very important in VLSI circuit testing. Usually linear feedback

shift register (LFSR) and cellular automata register (CAR) are widely used in test pattern

generation for testing ICs. Due to the limitations of integration and fabrication technology

previous researchers used 32-bit LFSR or CAR in designing IC tester or test processor chip.

However now integration technology has tremendously improved. In this project a 64-bit

Fibonacci test pattern generator which is a modified version of LFSR has been evaluated in

VLSI testing. Fibonacci test pattern generator has already been used in many cryptographic

applications and proved very much efficient. So, there are scopes of research to evaluate its

effectiveness in VLSI testing.

1.2 Motivation

Modern IC production facilities use computer controlled Automatic Test Equipment (ATE) for

testing ICs. With the increase of complexities of ICs, ATE suffers from the following drawbacks,

(i) high equipment cost ,(ii) slow test speed ,(iii) huge memory requirements ,(iv) yield less.

To ease the burden of IC testing using ATE, different test techniques have been proposed in the

literatures for the purpose of reducing the test cost using 32-bit test pattern generator [2-3].

Based on the proposed algorithms different researchers have shown their fault simulation results

to prove the effectiveness of their proposed techniques [2-8]. But the number of test patterns to

achieve full fault coverage is still high enough. In all the test techniques test pattern generation

plays a vital role because if the generated pattern has better randomness then performance of the

testing increases. Recently Fibonacci pseudo-random test pattern generator has been proved

efficient in many cryptographic applications. As a result in this project work we proposed a new

64-bit Fibonacci test pattern generator which is a modified version of LFSR .So there are scopes

20

of research to evaluate the Fibonacci pseudo-random test pattern generator to be used in VLSI

testing.

1.3 Objectives with Specific Aims and Possible Outcome

The proposed project has the following objectives:

 To design a Fibonacci test pattern generator capable of generating sufficient long test

pattern without repeating the sequence.

 To conduct fault simulation experiments on benchmark circuits.

 To evaluate the test pattern and find the fault coverage for different seeds and different

tap positions of the proposed test pattern generator.

 To determine the best seed and the optimum switching point for a mixed mode test.

 To compare the test results with that of other researchers.

1.4 Outline of the Project

The project is arranged in five chapters. Chapter 1 describes complexities and difficulties of

testing ICs of present days. Scope and motivation of the research work is presented in this

chapter.

Chapter 2 of this project describes different testing techniques of digital IC. It also covers the

theory of fault modeling and fault simulation, the details of LFSR, types of LFSR, test pattern

generation and primitive polynomial.

Chapter 3 of this project describes about the details design of the proposed FLFSR.

Chapter 4 of this project describes the simulation result of the ISCAS benchmark circuits using

Fibonacci test pattern generator by FSIM and comparison of fault simulation results with that of

21

other researchers. Extensive simulations are performed to study the effect of reseeding and

programmability of feedback polynomial in improving fault coverage.

Chapter 5 presents the conclusion and future work of the proposed system.

22

CHAPTER 2
FUNDAMENTALS OF IC TESTING

2.1 Introduction

This chapter includes the fundamental topics related to VLSI circuit testing. It has been

mentioned in the previous chapter that the aim of the research work presented in this project is to

design a Fibonacci test pattern generator and evaluates its effectiveness in VLSI circuit testing.

In order to give a better understanding for the reader of this project, different topics related to

digital IC testing such as fault modeling and fault simulation, different types of LFSR and

different types of testing techniques and their relative advantages and disadvantages have been

discussed in this chapter.

2.2 Preliminaries

Test pattern (test vector): To carry out the testing of a digital circuit, a set of signals are applied

to its input and then compare the corresponding output responses with that of a good circuit. The

input signals are called input test vectors and output signals are called response vectors. In a

sequence of test vectors, if the combination of binary 0 and 1 are at random and are not

predictable then it is called random test vectors. True random test vectors are not possible to

generate. Generally, after a certain period, the sequence repeats and so they are known as

pseudo-random test vectors.

Fault coverage: The percentage of detected faults over all possible detectable faults is known as

fault coverage. Typically, fault coverage refers to the percentage of single faults detected by the

test. As a rule, test engineers attempt to provide as close as possible to 100% fault coverage. Due

23

to the difficulty in developing such tests, however, in practice, a fault coverage that is too high is

difficult to achieve.

Fault simulation: An empirical method used to determine how faults affect the operation of a

circuit and/or also how much testing is required to obtain desired fault coverage. Fault simulation

plays a significant role in the testing of digital circuits. It determines which faults in the circuit

are detected by a given set of test patterns.

LFSR: A shift register formed by flip-flops and XOR gates, chained together, with a

synchronous clock, used either as input pattern generator or as signature analyzer. An LFSR with

a well-chosen feedback function can produce a sequence of bits which appears random and

which has a very long cycle.

Maximal Length Sequences (L): A maximal length sequence for a shift register of length N is

referred to as an m-sequence, and is defined as: L = 2N −1. An eight-stage LFSR, for example,

will have a set of m-sequences of length 255.

Pseudo-random pattern generator: It generates a binary sequence of patterns where the

patterns appear to be random in the local sense, but they are deterministically repeatable.

Random testing: The process of testing using a set of pseudo-randomly generated patterns.

MISR: Multiple-input LFSR.

Aliasing: It occurs if the faulty output produces the same signature as a fault-free output.

Built-in self-test (BIST): Built-in self-test is the capability of a digital circuit to carry out self

test using the built in hardware facilities. It reduces the costs of external test pattern generation

and fault simulation, the testing time and simplifies the external test equipment.

Off-line testing: A testing process carried out while the tested circuit is not in use.

On-line testing: Concurrent testing to detect errors while circuit is in operation.

24

Signature analysis/data compaction: A test where the output responses of a device over time

are compacted into a characteristic value called a signature, which is then compared to a known

good one.

Stuck-at fault: A fault model represented by a signal stuck at a fixed logic value (0 or 1).

Redundant Fault: If there is no test vector that can detect a fault in a circuit then the fault is

called redundant [9].

2.3 Different Approaches of IC Testing

With the evolution of test technology, various approaches have been developed for IC testing.

The choice of an approach depends on the factors such as fault coverage, test length, test

application time and simplicity of hardware. Major approaches for IC testing are as follows:

 Exhaustive approach

 Pseudo-exhaustive approach

 Deterministic approach

 Pseudo-random approach

 Weighted random approach

 Mixed-mode approach

2.3.1 Exhaustive approach

According to exhaustive approach all the possible combination of input test vectors is generated

and applied to the circuit-under-test (CUT) [1]. For a circuit with n number of inputs, the

possible combination of input vectors will be 2 n . Binary counter, Gray counter, linear feedback

shift register (LFSR) are generally used as exhaustive test pattern generator. This approach offers

25

100% fault coverage with a low computational cost. However with inputs roughly greater than

twenty test lengths become very long. If the number of inputs is high, then test length becomes

very long and takes much longer time for test generation. For example, the exhaustive testing of

the 8080 microprocessor would take over 2010 years, at one million tests a second.

2.3.2 Pseudo-exhaustive approach

In pseudo-exhaustive approach, circuits are logically partitioned into smaller parts and then each

part is tested exhaustively by much fewer number of test vectors than that of exhaustive

approach. To reduce hardware overhead and testing time, different algorithms have been

proposed for circuit-partitioning. Although pseudo-exhaustive method achieves the benefits of

exhaustive testing by using far fewer test patterns but the disadvantage of this approach is the

large test sets with the increase of complexities in circuits. Very often physical segmentation of

the circuit is necessary in this approach. Moreover, hardware implementation of pseudo-

exhaustive pattern generator is difficult and most of the design does not lead to minimal test set.

2.3.3 Deterministic approach

Deterministic approach allows CUT to be examined at first of the test and test vectors are

generated after that using any suitable algorithm for deterministic test pattern generation. For

deterministic test pattern generation different algorithms have been proposed such as Exclusive-

OR, D-algorithm, PODEM (path-oriented decision making) and FAN (Fan oriented test pattern)

[10]. This approach enables error signals to be generated due to presence of faults and propagate

26

Figure 2.1: Fault coverage versus random test vectors

them to some observable output form. This approach guarantees full fault coverage but large test

data volumes and computational complexities are the drawbacks of this approach.

2.3.4 Pseudo-random approach

Pseudo-random approach is now an established technique for low cost IC testing [11]. In this

approach, a set of test vectors is generated randomly from 2 n possible input patterns where n is

the number of inputs. Linear feedback shift registers (LFSRs) are commonly used for test pattern

generation for its simple structure and can also be used as output response analyzer and thereby

serves dual purposes. The main advantage of this approach is that random pattern generation

circuitry is simple and a large number of tests can be generated using smaller data storage. The

disadvantage of this approach is that the length of the test set that detects a set of faults is much

larger (usually 10 times or more) than deterministically generated test set for the same faults.

Figure 2.1 shows relationship between fault coverage and pseudo-random test vectors applied to

a typical complex circuit.

27

Figure 2.1 shows that in pseudo-random approach, almost 90% fault coverage can be achieved

using fewer number of test vectors. A large number of test vectors are needed to detect the

remaining faults. Another implication of this approach is that there are faults in some circuits

known as random pattern resistant faults where acceptable fault coverage cannot be achieved

even after applying a large number of test patterns. To illustrate this, an eight-input AND gate is

shown in Figure 2.2.

A stuck-at-1 fault at line 1 in Figure 2.2 can be detected by only one test vector which is

X1…..X8={01111111}. Hence the probability that this fault may be detected by a random

pattern is 1/256. The probability decreases with the increase of number of inputs.

2.3.5 Weighted random approach

Weighted random approach has been proposed to overcome the drawbacks of low fault coverage

due to hard-to-detect (HTD) and random pattern resistant faults in IC testing. It has been shown

that the biased or the weighted pseudo random vector (PRV) can test PRV resistant faults more

efficiently using a lower number of test vectors than the unbiased PRV. The disadvantage of this

approach is preprocessing is necessary to calculate the signal probabilities for every input and to

generate necessary weight set. Complex and additional hardware circuitry is necessary to design

8
7
6
5
4

9
3
2
1

X8
X7
X6
X5
X4
X3
X2
X1

1

AND8

Figure 2.2: An eight-input AND gate

28

weighted random pattern generator. Moreover, for complex circuits, multiple sets of weight are

necessary to achieve acceptable fault coverage. This leads to a large volume of test data to be

stored and manipulated.

2.3.6 Mixed-mode approach

Mixed-mode approach was first proposed by Koenemann [12]. It is a hybrid test technique where

deterministic test technique is followed by pseudo-random test technique. This approach exploits

advantages of both the pseudo-random test technique and the deterministic test technique. A

generalized scheme of mixed-mode technique is presented in Figure 2.3.

Generally most of the faults in a typical circuit are easy-to-detect (ETD), which can be easily

detected using the first few PRVs and the remaining faults are HTD, which need long PRV

sequences to detect [1]. In the mixed-mode approach, PRV is generated using LFSR and is

applied to a CUT to detect all the ETD faults and then deterministic test sets are generated using

the same LFSR to target the remaining HTD faults using compacted test data named as seed.

Thereby all the faults of a circuit are detected in this approach.

Scan-chain LFSR

CUT

Seeds

Figure 2.3: Generalized scheme of the mixed-mode technique

29

A number of mixed-mode approaches have been proposed and it has been claimed that this

approach ensures complete fault coverage while offers reduced storage requirements, shorter test

application time, and smaller area overhead compared to weighted random approach [12-16].

2.4 Faults in IC

Faults in an IC can be defined in terms of its operation. The IC is faulty if it does not perform the

job it is supposed to do. Error in the operation of an IC is the manifestation of a fault while fault

is the manifestation of physical defect [17]. Physical defects in the IC occur during the numerous

physical, chemical and thermal processes in IC manufacturing. Some common defects are

particles (small bits of materials that bridge two lines), incorrect spacing (wide or narrow

variations in line spacing that may short a circuit), incorrect implant value (due to machine error

or blockages), misalignment (misplacing one layer with respect to the previous layer), holes

(exposed area that is unexpectedly etched), weak oxides and contamination (unwanted foreign

material).

Faults can be categorized in different ways. If the presence of faults changes the logic value of a

signal line in a circuit from zero to one or vice versa, they are referred to as logical faults while if

the fault causes some parameters of the circuit to change, such as current drawn by the circuit, it

is known as parametric fault [9]. It also can be classified as (a) transient (b) intermittent and (c)

permanent depending on the basis of duration of faults in a circuit. The presence of transient

faults is only for a short duration. The transient faults are generally caused by α-particle radiation

or power supply fluctuation. Intermittent faults appear regularly but not present continuously.

They are generally due to loose connections, bad designs or environmental effects like

30

temperature and humidity variations. Permanent faults remain present continuously. They are

predominantly caused by shorts and opens in the IC.

2.4.1 Fault Modeling

An IC may have different types of physical defects and the number of defects increases with the

increase of its complexities. If each of the physical defects of an IC needs to be considered for its

test, it would soon become unmanageable. In order to successfully tackle this problem, the

physical defects in a chip are represented at a higher level with the help of fault model. Any fault

from a fault model may represent many physical defects. Thus the use of fault models speeds up

the testing process of an IC. Most popular fault models are (a) stuck-at (b) stuck-open (c) stuck-

on (d) bridging (e) parametric and (f) delay fault. Brief discussion of different types of fault

models is given below:

Stuck-at fault model: Most commonly used fault model is the stuck-at fault model and it has

been proven reliable in practical applications [18]. The fault in this model makes a signal line in

a circuit permanently at logic 0 or vice versa. If the line is permanently at logic 0, it is said to be

stuck-at 0 (s-a-0) while if the line is permanently at logic 1, it is said to be stuck-at 1 (s-a-1).

Stuck-open fault model: The fault which makes a transistor in a circuit non-conducting is

known as stuck-open fault [9]. In order to detect a stuck-open fault, exact sequence of vectors is

required to be fed to the circuit. It usually requires a sequence consisting of two vectors to detect

stuck-open fault. The first vector is called the initialization vector and the second vector is called

the test vector. The sequence of these two vectors is referred to as two-pattern test.

31

Stuck-on fault model: If a fault causes a transistor in a circuit to conduct continuously, the

transistor is said to be stuck-on. Logic testing does not guarantee to detect this type of fault.

Integrated circuit quiescent current (IDDQ) testing (monitoring the quiescent current of a device)

is a very effective technique for detecting stuck-on faults.

Bridging fault model: Bridging fault indicates short between two or more signal lines in a

circuit. This may occur due to defective masking or etching, aluminum migration or breakdown

of insulators [9]. Bridging fault results in complex situation in a circuit. IDDQ testing is usually

used to detect these faults [17].

Parametric fault model: There may occur some faults in an IC, which do not affect the

functional behavior, but affect the performance and reliability of the circuit. They are known as

parametric faults, which include the substrate leakage current, gate-oxide leakage current,

variation in threshold voltage and capacitive coupling or cross talk. Parametric faults may create

functional error at any future instant. Usually, these faults are detected by accelerated stress

testing based on voltage, current, temperature, shock and vibration. IDDQ testing is also an

example of parametric test.

Delay fault model: This type of fault occurs due to the propagation delay of any signal in a

circuit [9]. The voltage on a faulty line could either be slow-to-rise or slow-to-fall. This fault

usually occurs due to stuck-on fault or structural impurities. This fault-model is classified two

types: (a) gate delay model and (b) path delay model. Gate delay model is based on the delay at

32

the inputs or output of a logic gate while path delay model is based on the cumulative

propagation delays along a circuit path.

2.4.2 Fault Coverage

Faults in an IC are detected by applying a set of binary input sequences (known as test patterns)

to the inputs of the IC. The test patterns make the fault effects observable at the outputs of the

IC. Fault detection ability of a set of test patterns are measured by fault coverage which is

defined as the percentage of ratio of the number of faults detected to the number of possible

faults [18]. Therefore,

FC (fault coverage) = x100%

Some faults in the circuits are undetectable. Therefore, the actual fault coverage:

 AFC = x100%

2.4.3 Fault Simulation

It consists of few processes such as (a) simulation of a circuit in the presence of faults (b)

comparison of the simulation results with those of the fault free simulation of the same circuit

and (c) determination of faults detected. Fault simulation technique is used for the followings:

 To evaluate (grade) a test set. The grade of a test set is expressed in terms of fault

coverage. Fault coverage of a test set for a circuit can be found out using fault simulation

technique.

 To generate a test set that can produce satisfactory fault coverage.

Number of detected faults

 Number of possible faults

Number of detected faults

 Number of possible faults-number of undetectable faults

33

 To analyze the operation of a circuit in the presence of faults. This is especially

important in high-reliability systems, since some faults may drastically affect the

operation of the circuit.

The most common types of fault simulation techniques are parallel, deductive and concurrent

fault simulations. In parallel fault simulation, effort is made to reduce computation time by

simulating more than one fault in one pass for a given set of input vectors. In this fault

simulation approach, the circuit being simulated must be expressed in Boolean terms due to

which memory and large sequential circuits are impractical or impossible to handle.

Deductive fault simulation relies upon the fault list data (input/output relationship of logic gates

under fault-free and chosen faulty condition). In this technique, fault lists are serially propagated

through the circuit to the primary output and all the detectable faults are counted after each pass

for each test vector. This method is not suitable for multiple logic values due to increasing

complexities.

At present, concurrent fault simulation is the preferred method of fault simulation. It consists of

simulating the fault-free circuit and concurrently simulating the faulty circuit only if the faulty

circuit‟s activity actually differs from that of the fault-free circuit [18]. This method is capable of

handling multiple logic values, which makes it suitable for increasingly complex circuits.

However, this approach requires more memory space than that of deductive fault simulation

approach.

34

2.5 Linear Feedback Shift Register (LFSR)

A linear feedback shift register (LFSR) is a shift register whose input bit is a linear function of its

previous state. It is widely used for test pattern generation as it is simple and most efficient

pseudo-random test pattern generator [19]. The initial value of the LFSR is called the seed.

However, a LFSR with a well-chosen feedback function can produce a sequence of bits which

appears random and which has a very long cycle. Figure 2.4 shows the basic structure of a

standard LFSR. It consists of a set of storage elements (D-Flip-Flops) and modulo-2 adder (X-

OR gate). The connection is in such a way that the state of each element is shifted to the next

element with the application of clock signal.

In Figure 2.4, All the operations are in Galois Field GF(2). S= (0S , 1S , ………., 1nS), the binary

n-tuples, represents the state of the LFSR. It can be represented in the polynomial form as

follows:

1

1
2

210)(

 n

n

n

n xSxSxSSxS

where ix denotes the ith stage of the LFSR. For example, 0x represents stage 0, 1x represents

stage 1 and so on. Feedback function of the LFSR is called the feedback polynomial or the

generator polynomial and can be represented as follows:

Figure 2.4: General structure of an n-bit LFSR

0S

2nS

1nS

h0h1hn-1 hn-2

35

nn

n xxhxhhxh

1
1

1
10)(

where ih {1,0} denotes the feedback tap in the ith stage of the LFSR. 0ih means there exists

no feedback link in the ith stage whereas 1ih means there exists feedback link in that stage.

With the application of clock signal, the LFSR goes into autonomous mode. The past state of the

LFSR (S(x)) changes to a new state and generates pseudo-random patterns. If the period of the

LFSR is u then the LFSR returns to the initial state after u number of shifts. The period (u) of the

LFSR depends on the feedback polynomial and initial state. If the initial state is all zero then u

will be 1 meaning that the state remains unchanged. Again if the initial state of the LFSR is non-

zero and the feedback polynomial is primitive then we become near exhaustive [20]. For an n-

stage LFSR with feedback connection based on the primitive polynomial, it goes through all the

states except all zero state i.e. 12 nu . The primitive polynomial is discussed in section 2.7.

Figure 2.5 shows a 4-stage LFSR. Its feedback polynomial is 41)(xxxh which is primitive

[20]. Assuming that the initial state of the LFSR is 1000, Table 2.1 shows all the states of the

LFSR when it is subjected to clock signal.

0S

1S 3S

Figure 2.5: A four stage LFSR

2S

stage1 stage2 stage3 stage 4

36

Table 2.1: States of the LFSR with feedback polynomial 41)(xxxh

states stage 4 stage 3 stage 2 stage 1
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 1 0 0 1
5 1 1 0 0
6 0 1 1 0
7 1 0 1 1
8 0 1 0 1
9 1 0 1 0
10 1 1 0 1
11 1 1 1 0
12 1 1 1 1
13 0 1 1 1
14 0 0 1 1
15 0 0 0 1
16 1 0 0 0

From the Table 2.1, it is seen that the state of the LFSR repeats after 15124 clock cycles.

2.5.1 LFSR Terminology

LFSRs sequence through 2N –1 states, where N is the number of registers in the LFSR. The

contents of the registers are shifted right by one position at each clock cycle. The feedbacks from

predefined registers or taps to the leftmost register are XORed together.

LFSRs have several variables:

• The number of stages in the shift registers

• The number of taps in the feedback path

• The position of each tap in the shift registers stage

• The initial starting condition of the shift register, often referred to as the FILL state

In the case of LFSRs with an XOR feedback, the FILL value must be non-zero to avoid the

LFSR locking up in the next state.

37

2.5.1.1 Shift Register Length

The shift register length is often referred to as the degree, and the longer the shift register, the

longer the duration of the presudo-random sequence before it repeats. For a shift register of fixed

length N, the number and duration of the sequences it can generate are determined by the number

and position of taps used to generate the parity feedback bit.

2.5.1.2 Shift Register Taps

The combination of taps and their location is often referred to as a polynomial, and expressed as

P(x) = X7+X3+ 1. Various conventions are used to map the polynomial terms to register stages in

the shift register implementation. In the polynomial P(x) = X7+X3+ 1, the trailing "1" represents

X0, which is the output of the last stage of the shift register. X3 is the output of register stage 3

and X7 the output of the XOR. A few points to note about LFSRs and the polynomial used to

describe them:

• The last tap of the shift register is the leading "1" and is always used in the shift register

feedback path.

• The length of the shift register can be deduced from the exponent of the highest order

term in the polynomial.

• The highest order term of the polynomial is the signal connecting the final XOR output

to the shift register input. It does not feed back into the parity calculation along with the

other taps identified in the polynomial.

2.6 LFSR Design

There are two major design of LFSR, namely the Galois LFSR (GLFSR) and Fibonacci LFSR

(FLFSR). Figure 2.6 and 2.8 shows these two types of LFSR each with characteristics

38

polynomial P(x) = 1 + c1x + c2x2 + … + cnxn. If a connection exists then ci=1, otherwise ci=0.

The Fibonacci implementation has logic in the feedback path, whereas the Galois

implementation has an output that is fed back to selected points in the feed forward path.

2.6.1 Galois Linear Feedback Shift Register (GLFSR)

Figure 2.6. Structure of Galois LFSR

Figure 2.7. 3-bit GLFSR with feedback ploynomial 1+x+x3

As shown in Figure 2.6, the data flow is from left to right and the feedback path is from right to

left. The polynomial increments from left to right with x0 term (the "1" in the polynomial) as the

first term. This is referred to as a Tap polynomial, as it indicates which taps (appropriate taps for

maximum-length LFSR is listed in section 3.4.4) are to be fed back from the shift register. Since

the XOR gate is in the shift register path, the Galois implementation is also known as an in-line

or modular type (M-type) or one-to-many LFSR.

39

2.6.2 Fibonacci Linear Feedback Shift Register (FLFSR)

Figure 2.8. Structure of Fibonacci LFSR

Figure 2.9. 3-bit FLFSR with feedback ploynomial 1+x2+x3

Figure 2.10. 8-bit FLFSR with feedback ploynomial 1+x4+x5+x6+x8

In Figure 2.8, the data flow is from left to right and the feedback path is from right to left, similar

to the Galois implementation. However, in Fibonacci implementation polynomial decrements

from left to right with x0 as the last term in the polynomial. This polynomial is referred to as a

Reciprocal Tap polynomial and the feedback taps (appropriate taps for maximum-length LFSR is

listed in section 3.4.4) are incrementally annotated from right to left along the shift register.

Since the XOR gate is in the feedback path, the Fibonacci implementation is also known as an

40

out-of-line or simple type (S-type) or many-to-one LFSR. In this project we are focusing on this

type of LFSR for our experiments.

The two 7-bit LFSRs with feedback polynomial 1+x+x3+x6+x7 cycle through the following states

when the registers are initially loaded with 0000001:

 Galois Fibonacci
 t g7···g1 f7···f1

0 0000001 0000001
1 0000010 1000000
2 0000100 1100000
3 0001000 1110000
4 0010000 1111000
5 0100000 0111100
6 1000000 1011110
7 1001011 1101111
8 1011101 0110111
9 1110001 0011011
10 0101001 1001101
11 1010010 1100110
12 1101111 0110011
13 0010101 0011001

 14 0101010 0001100
15 1010100 1000110
16 1100011 0100011
17 0001101 0010001
18 0011010 1001000
19 0110100 0100100
20 1101000 0010010

2.7 Primitive Polynomial

In an n-stage LFSR, it is possible to have many possible combination of feedback taps and

thereby many corresponding feedback polynomials. It has been mentioned that the period of the

LFSR depends on the feedback polynomials. If the sequence of pseudo-random numbers

generated by an n-stage LFSR has period (2n-1), then it is called maximum length LFSR (m-

41

sequence LFSR) and the corresponding feedback polynomial is called primitive polynomial. A

primitive polynomial is a polynomial that generates all elements of an extension field from a

base field. Primitive polynomials are also irreducible polynomials. For any prime or prime power

q and any positive integer n, there exists a primitive polynomial of degree n over GF(q) There

are

(2.5)

primitive polynomials over GF(), where is the totient function.

A polynomial of degree n over the finite field GF(2) (i.e., with coefficients either 0 or 1) is

primitive if it has polynomial order . For example, has order 3 since

(2.6)

(2.7)

(2.8)

Plugging in q=2 to equation (1), the numbers of primitive polynomials over GF(2) are

(2.9)

giving 1, 1, 2, 2, 6, 6, 18, 16, 48, ... (Sloane's A011260) for n=1, 2, The Table 2.2 lists the

primitive polynomials (mod 2) of orders 1 through 5.

For an n-stage LFSR, the maximum possible number of nth degree feedback polynomials is 2n

but the number of nth degree primitive polynomials are much less than 2n.

http://mathworld.wolfram.com/ExtensionField.html
http://mathworld.wolfram.com/IrreduciblePolynomial.html
http://mathworld.wolfram.com/PrimeNumber.html
http://mathworld.wolfram.com/PrimePower.html
http://mathworld.wolfram.com/PositiveInteger.html
http://mathworld.wolfram.com/TotientFunction.html
http://mathworld.wolfram.com/FiniteField.html
http://mathworld.wolfram.com/PolynomialOrder.html
http://oeis.org/A011260

42

Table 2.2: Primitive polynomials (mod 2) of orders 1 through 5

n primitive polynomials

1

2

3 ,

4 ,

5 , , ,

, ,

2.8 Coefficient of Variation (CV)

Coefficient of variation denoted as CV is relative measure in statistics. This measure developed

by Karl Pearson is the most commonly used measure of relative variation. It is used in such

problems where we want to compare the variability of two or more than two series. The series

for which the coefficient of variation is greater is said to be more variable or conversely less

consistent, less uniform, less stable, less homogeneous. On the other hand, the series for which

the coefficient of variation is less is said to be less variable or more consistent, more uniform,

more stable, more homogeneous [21]. CV is obtained as follows:

CV =
σ
X
× 100

where σ = Standard Deviation and

 X = Arithmetic Mean

43

Here we will describe details about arithmetic mean and standard deviation. The most popular

and widely used measure for representing the entire data by one value is what the arithmetic

mean, often referred to as mean in statistics. Its value is obtained by adding together all the

observations and by dividing this total by the number of observations. Thus if X1, X2, …, XN

represent the values of N items or observations, the arithmetic mean denoted by X̅ (read as Xbar)

is defined as :

 X = =

The standard deviation is by far the most important and widely used measure of studying

variation. It is a measure of how much “spread” or “variability” is present in data. If all the

numbers in the data series are very close to each other, the standard deviation is close to zero. If

the numbers are well dispersed, the standard deviation will tend to be large. Standard deviation is

denoted by the small Greek letter σ (read as sigma) and is defined as :

σ =√

If we square standard deviation, we get what is called Variance.

Hence Variance = σ2 or σ = √Variance

The standard deviation measures the absolute variation of a distribution; the greater amount of

variation, the greater the standard deviation. A small standard deviation means a high degree of

uniformity of the observations as well as homogeneity of a series, a large standard deviation

means just the opposite.

2.9 Summary

Different techniques for testing digital IC have been elaborated in this chapter. It can be

concluded from the review of different test techniques that the mixed mode approach

X1+X2+ …+XN
 N

ΣX
 N

Σ(X-X)2

 N

44

outperforms all other existing test technologies in terms of simplicity in hardware

implementation and control complexity, encoding efficiency, test application time and data

storage requirements. Pseudo-random vector generation using the LFSR has also been discussed

and shown that an LFSR having feedback connection based on primitive polynomial generates

maximal length sequence.

45

CHAPTER 3

EVALUATION TECHNIQUE FOR TEST PATTERN

GENERATOR

3.1 Introduction

This chapter presents the fault simulation technique for the evaluation of the proposed Fibonacci

test pattern generator. It also describes all the required tools for the above purpose.

3.2 Basic Test Arrangement
Now a days mixed-mode technique outperforms all other test techniques in VLSI testing. This

technique used in this project is a hybrid test technique of deterministic test approach followed

by pseudo-random test approach. This approach takes advantages of both the pseudo-random test

approach and deterministic test approach. In mixed mode approach, Circuit Under Test (CUT) is

first subjected under pseudo-random testing mode and then at an optimum point of fault

coverage it is switched to deterministic test mode. In this approach, pseudo-random test pattern

generation and proper switching point from pseudo-random test mode to deterministic test mode

are very important to make the testing process cost effective. This approach ensures complete

fault coverage while offers reduced storage requirements, shorter test application time, and

smaller area overhead compared to weighted random approach.

The basic arrangement for testing a digital IC is shown in Figure 3.1. A test pattern generator

generates a vector of binary inputs that are applied to the circuit-under-test (CUT). For each

input vector, the response is measured and compared with the expected output. More than a

46

single input vector is needed to adequately test the CUT, so a test vector set is created to

determine the functionality of the chip.

Figure 3.1: General IC testing process

Since each measurement takes time, it is needed a minimal test vector set to reduce the total time

to determine if the chip is functional or not. Test vector generation is one of the more challenging

aspects of testing.

3.3 Benchmark Circuits

To evaluate the performance of mixed-mode technique in IC testing, fault simulation

experiments have been conducted on ISCAS benchmark circuits. ISCAS benchmark circuits are

a set of combinational circuits focusing on different level of IC complexities. They are a group of

well-defined, gate level netlist and functions based on common building blocks. The circuits

were presented in the international symposium on circuits and systems held on 1985[22, 23].

These circuits are proposed with the objective of evaluating performance of test pattern

Data Compare CUT

Test Data Memory

Test Controller

Test Pattern
Generator

47

generation algorithm‟s, fault simulation, testability analysis, formal verification, logic synthesis,

design verification, test generation, clock distribution, power consumption, timing analysis,

technology mapping and layout synthesis. Its main advantage is that researchers all over the

world can work on a common set of problems, compare their results and cooperate with each

other. The HDL code of the ISCAS benchmark circuits is available on the website [24]. General

characteristics of ISCAS benchmark circuits are presented in Table 3.1.

Table 3.1: ISCAS Benchmark Circuits

Circuits Circuit

Function
*NG *NL *NS *NPI *NPO *NF

c432 Priority

Decoder
160 432 89 36 7 802

c499 Error Correcting

Circuit
221 499 59 41 32 1306

c880 ALU and

Control
383 880 125 60 26 1428

c1355 Error Correcting

Circuit
546 1355 259 41 32 1970

c1908 Error Correcting

Circuit
880 1908 385 33 25 1282

c2670 ALU and

Control
1193 2670 454 233 140 2588

c3540 ALU and

Control
1669 3540 579 50 22 2988

c5315 ALU and

Selector
2307 5315 806 178 123 5640

c6288 Multiplier 2517 6288 1456 32 32 9804

*NPI= Number of Primary Inputs, *NG= Number of Gates, *NS=Number of Stems, *NPO=
Number of Primary Outputs, *NL= Number of Lines, *NF= Total Number of Faults

48

3.4 Design of 64-bit FLFSR
A 64-bit FLFSR has been proposed in this project. Table 3.2 lists the appropriate taps for

maximum-length LFSR counters of up to 168 bits taken from Xilinx Data Books. An LFSR with

a well-chosen feedback function is capable of generating sufficient long test pattern.

3.4.1 64-bit Fibonacci Linear Feedback Shift Register

In order for an LFSR to iterate through its largest possible sequence of values, it must use a

polynomial which will produce such a sequence. The tap positions shown in Figure 3.2 will

produce maximum sequence lengths for the proposed 64-bit FLFSR. The design uses the

Fibonacci approach to implement test pattern generator.

3.4.2 Feedback

The LFSR feedback network performs modulo-2 summation as was discussed in Chapter 2.

These summations can be performed with either XOR or XNOR gates in the logic. However

XOR gate is used in this project. The design uses Fibonacci configuration of test pattern

generator. The output FB_Out is fed back to the first stage of the FLFSR. Figure 3.3 shows the

feedback logic using XOR gates for an LFSR with 4 taps. The tap numbers in Figure 3.2 are

taken from Table 3.2 for a 64-stage LFSR. Figure 3.3 shows the complete FLFSR arrangement

with feedback tap positions Q60, Q61,Q63, Q64, hence the characteristics ploynomial is

1+X60+X61+X63+X64.

49

Figure 3.2. Feedback Logic using XOR gates

 FB_Out

 …

Figure 3.3. 64-bit FLFSR with feedback logic

From Figure 3.3 we see that the outputs of the 60th, 61st, 63rd, 64th stages are XORed and fed

back to first stage of the proposed 64-bit FLFSR.

3.4.3 Conventions for Feedback Tap Specification

A given set of feedback connections can be expressed in a convenient and easy-to-use shorthand

form, with the connection numbers being listed within a pair of square brackets. In doing so,

connection g0 (defined in Figure 3.4) is implied, and not listed, since it is always connected.

Although gm is also always connected, it is listed in order to convey the shift register size (i.e. the

number of registers).

XOR

inst FB_Out

XOR

inst2

XOR

inst1

Q64

Q63

Q61

Q60

D Q

FF-1

D Q

FF-60

D Q

FF-61

D Q

FF-63

D Q

FF-64

D Q

FF-62

50

Figure 3.4. Galois implementation of LFSR

Specifically, a set of feedback connections, or taps, is denoted as

[f1, f2, f3, ..., fJ]

where subscript J is the total number of feedback taps (not including g0), f1 = m is the highest-

order feedback tap (and the size of the LFSR), and fj represent the remaining feedback taps. The

value of each fj is equal to the subscript of the corresponding connection g. Note that the tap

numbers fj are customarily arranged in descending order from left to right.

A set of feedback taps specified in this format is called a feedback tap set, feedback set, or

feedback pattern. As an example, the [8, 4, 3, 2] feedback set would signify an eight-stage shift

register with feedback connections at taps g8, g4, g3, g2, and, as always, at g0.

A related convention is that an LFSR with m shift register stages is said to be an Rm LFSR. For

example, an R8 generator is one with eight stages. An alternative to this convention is PNm, or

PN8 in this example. (PN is an acronym for pseudonoise, which is a term used in some industries

for maximal length pseudorandom sequences.)

3.4.4 Taps of Linear Feedback Shift Register

Table 3.2 lists the appropriate taps for maximum-length LFSR counters of up to 168 bits. The

basic description and the table for the first 40 bits was originally published in XCELL and

51

reprinted on page 9-24 of the 1993 and 1994 Xilinx Data Books. Responding to repeated

requests, the list is here extended to 168 bits. This information is based on unpublished research

done by Wayne Stahnke while he was at Fairchild Semiconductor in 1970.

52

Table 3.2: Taps for maximum-length LFSR counters

n XOR from n XOR from n XOR from n XOR from
3 3,2 45 45,44,42,41 87 87,74 129 129,124
4 4,3 46 46,45,26,25 88 88,87,17,16 130 130,127
5 5,3 47 47,42 89 89,51 131 131,130,84,83
6 6,5 48 48,47,21,20 90 90,89,72,71 132 132,103
7 7,6 49 49,40 91 91,90,8,7 133 133,132,82,81
8 8,6,5,4 50 50,49,24,23 92 92,91,80,79 134 134,77
9 9,5 51 51,50,36,35 93 93,91 135 135,124
10 10,7 52 52,49 94 94,73 136 136,135,11,10
11 11,9 53 53,52,38,37 95 95,84 137 137,116
12 12,6,4,1 54 54,53,18,17 96 96,94,49,47 138 138,137,131,130
13 13,4,3,1 55 55,31 97 97,91 139 139,136,134,131
14 14,5,3,1 56 56,55,35,34 98 98,87 140 140,111
15 15,14 57 57,50 99 99,97,54,52 141 141,140,110,109
16 16,15,13,4 58 58,39 100 100,63 142 142,121
17 17,14 59 59,58,38,37 101 101,100,95,94 143 143,142,123,122
18 18,11 60 60,59 102 102,101,36,35 144 144,143,75,74
19 19,6,2,1 61 61,60,46,45 103 103,94 145 145,93
20 20,17 62 62,61,6,5 104 104,103,94,93 146 146,145,87,86
21 21,19 63 63,62 105 105,89 147 147,146,110,109
22 22,21 64 64,63,61,60 106 106,91 148 148,121
23 23,18 65 65,47 107 107,105,44,42 149 149,148,40,39
24 24,23,22,17 66 66,65,57,56 108 108,77 150 150,97
25 25,22 67 67,66,58,57 109 109,108,103,102 151 151,148
26 26,6,2,1 68 68,59 110 110,109,98,97 152 152,151,87,86
27 27,5,2,1 69 69,67,42,40 111 111,101 153 153,152
28 28,25 70 70,69,55,54 112 112,110,69,67 154 154,152,27,25
29 29,27 71 71,65 113 113,104 155 155,154,124,123
30 30,6,4,1 72 72,66,25,19 114 114,113,33,32 156 156,155,41,40
31 31,28 73 73,48 115 115,114,101,100 157 157,156,131,130
32 32,22,2,1 74 74,73,59,58 116 116,115,46,45 158 158,157,132,131
33 33,20 75 75,74,65,64 117 117,115,99,97 159 159,128
34 34,27,2,1 76 76,75,41,40 118 118,85 160 160,159,142,141
35 35,33 77 77,76,47,46 119 119,111 161 161,143
36 36,25 78 78,77,59,58 120 120,113,9,2 162 162,161,75,74
37 37,5,4,3,2,1 79 79,70 121 121,103 163 163,162,104,103
38 38,6,5,1 80 80,79,43,42 122 122,121,63,62 164 164,163,151,150
39 39,35 81 81,77 123 123,121 165 165,164,135,134
40 40,38,21,19 82 82,79,47,44 124 124,87 166 166,165,128,127
41 41,38 83 83,82,38,37 125 125,124,18,17 167 167,161
42 42,41,20,19 84 84,71 126 126,125,90,89 168 168,166,153,151
43 43,42,38,37 85 85,84,58,57 127 127,126
44 44,43,18,17 86 86,85,74,73 128 128,126,101,99

53

3.5 Illustration of FLFSR Working

Consider a 4-bit Fibonacci LFSR with characteristics ploynomial 1+X3+X4. The XOR gate

provides feedback to the register that shifts bits from left to right. The maximal sequence consists

of every possible state except the "0000" state.

(a)

(b)

http://en.wikipedia.org/wiki/XOR_gate

54

(c)

Figure 3.5. (a) Block Diagram, (b) truth table, (c) state diagram of 4-bit FLFSR with
characteristics ploynomial 1+X3+X4

Note that in Figure 3.5(a) the outputs of 3rd and fourth stage of the LFSR are XORed and are fed

back to the first stage. Since the LFSR has four stages, the truth table in Figure 3.5(b) shows that

it has 15 different states. After 15th clock cycle the LFSR repeats its states. The 15 distinct states

of the LFSR are also depicted with the state diagram in Figure 3.5(c).

3.6 Test Pattern Generation using FLFSR

Algorithm of the program for generating random numbers is given below.

Algorithm:
Read the number of stages (m), number of feedback taps, and their position in the FLFSR;

Read reseeding position;

Initialize the stage with the entered position to 1 and all other stages to 0;

Read the number of test vectors and number of primary inputs of CUT;

Loop1

{

55

 Store the values of the tap positions of the FLFSR into temporary variables;

 Loop2

 {

 Store the values of the tap positions of the FLFSR into temporary variables;

 Loop3

{

 Assign the value of (m-i-2)th stage of the FLFSR to (m-i-1)th stage;

 Repeat the process equal to the number of stages of the FLFSR;

}

Calculate the XORed output of the temporary variables and assign it to first stage

of the FLFSR;

 Write the value of the (m-1)th stage of the FLFSR in the test vector file;

Repeat the process equal to the number of primary inputs of the FLFSR;

}

}

Move to the next line of the test vector file and repeat Loop1 equal to the number of test

vectors;

End;

Figure 3.5 shows the flowchart of test vector file generation using the proposed 64-bit FLFSR in

this project. This will give the reader a better understanding of how test patterns are generated

using the proposed technique.

56

 No

 Yes

 No

 Yes

 No

 Yes

Figure 3.6: Flow Chart

Start

Read the number of stages (m), number of feedback taps, and their positions

Read the number of test vectors and number of primary inputs of CUT

k=1;
k<=no. of test

vectors

j=1;
j<=no. of primary

inputs

Store the values of the tap positions of the FLFSR into temporary variables

i=0;
i<=no. of stages-1

Assign the value of (m-i-1)th stage of the FLFSR to (m-i-2)th stage

Calculate the XORed output of the temporary variables and assign it to

first stage of the FLFSR

Write the value of (m-1)th stage of the FLFSR in the test vector file

j=j+1

Stop

k=k+1

57

A pictorial representation of test vector file generation using FLFSR is given below.

 Test Vector File

Figure 3.7. Test vector file generation using FLFSR

Figure 3.7 illustrates how a test vector file is generated from the binary streams output by the

proposed Fibonacci test pattern generator. For simplicity here a 4-bit FLFSR with characteristics

ploynomial 1+X3+X4 is considered. After each clock pulse outputs of each FLFSR stage is

shifted right and the output of the final stage of the FLFSR is written in the test vector file. This

process continues until the number of bits in the first line of the vector file equals to the primary

inputs of the CUT. After completion of filling the first line of the test vector file, writing on the

second line starts as shown Figure 3.7. In this way writing is completed on line n (equals to the

no. of test vectors) of the test vector file which would be used as an input of the CUT.

58

3.7 Techniques for Determining Best Seed

An LFSR generates a PRV sequence for a particular seed and achieves reasonable fault

coverage. To achieve highest percentage of fault coverage, PRV sequences are generated for

different seeds. It is observed that for a particular seed the LFSR achieves the highest fault

coverage as compared to other seeds. This particular seed is called the best seed or proper seed in

the context of IC testing. One would simply ask that why the fault coverage is high for that

particular seed. The answer can be easily given in terms of coefficient of variation (CV)

discussed in chapter 2. Theoretically, the seed for which CV is maximum will be the best seed

because the fault coverage is the highest for that seed.

Algorithm of the MATLAB program for measuring CV is given below.

Algorithm:
Read the random sequence with 1 and 0 for a particular seed.

Compute the Standard Deviation (σ) of the random sequence.

Compute the Mean (X) of the random sequence.

Divide σ by X and multiply the result by100.

Figure 3.8 shows the Flowchart for the measurement of CV.

59

Figure 3.8: Flowchart for measuring CV

3.8 Software Requirements for Proposed Work

In this section we will discuss about different software used in this project to perform the

simulation works.

3.8.1 Fault Simulator (FSIM)
FSIM is a fault simulator for combinational circuits. It employs the parallel pattern single fault

propagation technique. FSIM has been developed in the Bradley Department of Electrical

Engineering, Virginia Polytechnic Institute & State University (VPI&SU) and the copy right

belongs to VPI&SU. A FSIM emulates the behavior of a circuit in the presence of the given set

of faults. Because of its inherent low-complexity, the fault simulator serves many purposes in

VLSI testing. In fact, as the circuit simulator in circuit design, the fault simulator is regarded as

the most fundamental tool in testing.

Start

Read the random sequence with 1 and 0 for a particular seed

Compute the Standard Deviation (σ) of the random sequence.

Stop

Compute the Mean (X) of the random sequence.

Divide σ by X and multiply the result by100.

60

The FSIM is the most fundamental tool in VLSI testing. It serves many applications. We will

summarize the major applications in the following.

(1) The most prominent application is to evaluate the quality of a given test set for a circuit under

test (CUT). The fault simulator simulates the circuit under different inserted faults and

determines the number of faults detected by the test set, usually in terms of fault coverage

which is the percentage of detected faults over all considered faults. The test engineer then

decides whether the obtained fault coverage is acceptable or not.

(2) If the fault coverage is lower than expectation, more test patterns must be included into the

test set. These extra patterns are preferably generated by an automatic test pattern generator

(ATPG). Here the fault simulator also plays an important role. The simulator is used to find

out the detected faults for each newly generated test pattern from ATPG, thereby

significantly reduces the CPU time of high-complexity ATPG.

(3) In VLSI testing, sometimes we need to investigate why the tested IC fails. The first step of

such diagnosis is to locate the defect. Although the fault is only the behavioral model of

defects, the location of fault generally gives a good indicator of defect location. To find out

the fault location for a failed IC, we first need to construct a fault dictionary, with the help

of a fault simulator, which lists the complete faulty behavior of all considered faults.

(4) In addition, a fault simulator serves the application of reliability analysis of ICs, in which the

faulty behavior from considered faults is simulated to see whether or not the faults adversely

affect the function or performance of a system. In summary, fault simulation plays an

essential role in VLSI testing. Its efficiency determines the performance of the above

applications. As the size of circuits and test sets grow increasingly, the demand of efficient

fault simulation algorithm becomes even more acute.

61

3.8.2 MATLAB
MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation

programming language. Developed by MathWorks, MATLAB allows matrix manipulations,

plotting of functions and data, implementation of algorithms, creation of user interfaces, and

interfacing with programs written in other languages. It is a high-level language and interactive

environment for numerical computation, visualization, and programming. Using MATLAB, one

can analyze data, develop algorithms, and create models and applications. The language, tools,

and built-in math functions enable one to explore multiple approaches and reach a solution faster

than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB

can be used for a range of applications, including signal processing and communications, image

and video processing, control systems, test and measurement, computational finance, and

computational biology. More than a million engineers and scientists in industry and academia

use MATLAB, the language of technical computing.

3.9 Summary

This chapter mainly discusses the design and functional operation of the proposed system.

Necessary software and hardware to implement the design are also described. The test pattern

generator is capable of generating PRVs of sufficient length since it is a 64-bit LFSR having

feedback connection based on the primitive polynomial.

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/MathWorks
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface

62

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction
This chapter presents the fault simulation results of different ISCAS benchmark circuits using

the pseudo random test vectors generated by the proposed 64-bit FLFSR. FSIM is used to carry

out the simulation process.

4.2 Fault Simulation
„FSIM‟ is a digital fault simulator [25] which is used for conducting the fault simulation

experiments on the ISCAS benchmark circuits. It is a process by which fault coverage of a

circuit is determined for a set of test pattern. It shows that if an LFSR is initialized with proper

seed, it generates PRV sequences, which detect the maximum faults of a CUT using lower

number of PRVs than that of using other seeds of the same LFSR. In this project, similar

experiments have been carried out on the ISCAS benchmark circuits using fault simulator to find

the appropriate seed of the FLFSR for generating PRV sequences with better fault detection

capability.

A computer program has been developed using C programming language to generate PRV for

fault simulation experiments. The program represents the FLFSR that is used in the proposed

system. It can generate PRV of any predefined number of test length by user and can store in a

file. The source code of the program has been presented in Appendix A1. The commands by

which fault simulation experiments have been conducted using FSIM is specified in Appendix

A2. When the program is executed, it generates a test vector file. Appendix A3 shows a sample

of test vectors for benchmark circuit c432.bench.

63

In IC testing, maximum fault coverage using minimum test application time is the most

desirable. Researchers have shown that better randomness and less correlation in the PRV

sequences result in better fault detection capability [26-28]. Fault simulation experiments on

ISCAS benchmark circuits has been carried out using FSIM to find the best seed of the LFSR for

generating PRV sequences with better fault detection capability.

Since in the mixed mode approach, deterministic test is followed by pseudo-random test, the

performance of IC testing in this approach largely depends on the optimum switching from the

pseudo-random test mode to the deterministic test mode. The fewer the number of deterministic

test vectors, the less the data storage requirements. Fault detection profile of the PRV sequences

for a circuit helps to determine the appropriate switching moment from the pseudo-random test

mode to the deterministic test mode. In this project, PRV sequences have been generated using

best seed of the FLFSR for the benchmark circuits and then fault simulation experiments have

been conducted with the PRV sequences to determine its fault detection profile for the

benchmark circuits using the FSIM.

4.3 Fault Simulation Results of the ISCAS Benchmark Circuits

Pseudo-random testing is a cost-effective means of testing VLSI circuits. Using Fibonacci

pseudo-random test patterns it is possible to achieve a maximum percentage of fault coverage

only applying fewer number of test vectors. This fact has been verified in this project. Fault

simulation experiments using FLFSR have been conducted out on the ISCAS Benchmark

circuits. The fault simulation results have been compared with that of other researchers [2-8].

64

The technique of maximization of fault detection using PRV sequences is presented in the

literature [29] where „FSIM‟ digital fault simulator [25] is used in conducting the fault

simulation experiments on the ISCAS benchmark circuits.

Forty different seeds have been used to generate PRV sequences. The PRV sequences are

applied to the benchmark circuits and fault coverage (%) versus number of PRVs are measured

with respect to every seed. Figure 4.1 shows the fault detection profile of the PRV sequences for

the benchmark circuit c432.bench.

Figure 4.1: Fault detection profile of PRV for the benchmark circuit c432.bench

Figure 2.1 in section 2.3.4 shows the relationship between fault coverage and pseudo-random test

vectors applied to a typical circuit. Here Figure 4.1 shows that the first few PRVs detect the

maximum faults of the circuit c432.bench. Then the slope of the fault detection profile of the

PRV rapidly decreases with the increase of number of test vectors. More than 80 % fault

coverage is achieved using only 50 test vectors. These faults are ETD faults. After the detection

of the ETD faults, much higher number of test vectors is needed to detect the remaining faults.

65

These remaining faults are HTD faults and random resistant faults. These faults cause potential

difficulties in achieving acceptable fault coverage in the pseudo-random testing of IC. Fault

detection profile of the PRV sequences for the rest of the benchmark circuits is similar to that as

shown in Figure 4.1. It clearly indicates that with the increase of number of test vectors,

increase of fault coverage sharply decreases and goes towards zero. When the increment of fault

coverage is very low or almost zeros then the mode of test is switched from the pseudo-random

test to the deterministic test. For example, in the simulation result as shown in Appendix A4,

when number of PRV is 200 for circuit c432.bench then it is appropriate to switch from the

pseudo-random test mode to the deterministic mode. Note that the best seed is represented using

the bold letter in the table in Appendix A4. Fault simulation results for the rest of the benchmark

circuits follow the similar profile.

Another experiment has been carried out on ISCAS Benchmark Circuit c432.bench. Three

different seeds have been chosen arbitrarily and with respect to every seed, a set of test vectors

have been generated. The fault simulation results have been presented in Table 4.1. From this

table it can be proved that maximum percentage of faults in the circuit can be detected by using

small number of test vectors and the rate of fault coverage decreases with the increase of number

of test vectors. Almost 80-90% fault coverage can be achieved applying only 60-70 test vectors.

The main reason of this is that the most of the faults in the circuit are easy to detect but there are

some other faults which are hard to detect. These undetectable faults are called PRV resistant

faults. Table 4.1 also compares the fault detection profile of the test vectors generated with

respect to three different seeds of the FLFSR. This shows that a significant improvement in the

fault coverage can be gained by changing the seed of the FLFSR.

66

Table 4.1: Fault coverage for different PRVs for benchmark circuit c432.bench

PRV FC1 (%) FC2 (%) FC3 (%)

10 49.05 33.21 36.26
20 62.21 46.18 55.15
30 71.37 67.18 66.22
40 75.38 75.95 77.29
50 84.54 82.06 84.73
60 86.83 84.54 87.77
70 88.74 87.41 90.65
80 91.03 90.08 91.6
90 91.99 90.65 93.89
100 93.51 93.89 95.23

Abbreviations used in the following Table 4.1.

PRV= Pseudo Random test Vector

FC1= Fault coverage for seed1

FV2= Fault coverage for seed2

FC3= Fault coverage for seed3

Experiments are successful to use two sample of 64 degree feedback polynomial such as

1+x60+x61+x63+x64 and 1+x+x3+x4+x64 on achieving full fault coverage. For any of these

feedback polynomials, a test vector file is generated. FC Comparison is shown in Table 4.2.

67

Table 4.2: FC (%) Comparison for two different feedback polynomials

ISCAS
Benchmark

Circuits

NTV Polynomial1
(1+x+x3+x4+x64)

Polynomial2
(1+x60+x61+x63+x64)

c432 200 98.09 98.28
c499 190 96.17 96.70
c880 120 90.13 93.52
c1355 180 91.49 92.00
c1908 880 94.41 96.33
c2670 250 82.71 83.55
c3540 540 91.80 91.57
c5315 560 98.30 98.24
c6288 60 99.47 99.11

 NTV=No. of TV

To analyze the effect of reseeding and polynomial programmability on achieving full fault

coverage, experiments have also been performed on different ISCAS benchmark circuits. Two

sample of 64 degree feedback polynomial such as 1+x60+x61+x63+x64 and 1+x+x3+x4+x64 have

been chosen. The seed of an FLFSR is defined as the initial value of the stages of the FLFSR

before starting to generate the test vectors. Forty different seeds have been used to generate PRV

sequences. The PRV sequences are applied to the benchmark circuits and fault coverage versus

number of PRV are measured with respect to every seed. For seed of the FLFSR in the

experiment, one of the stages of the FLFSR has set to „1‟ and others to „0‟ and in this project „1‟

is mentioned as seed for simplicity. For any of the feedback polynomials, a test vector file is

generated for different seeds. Figure 4.2 and 4.3 represent fault simulation results of the circuit

c432.bench for the two selected feedback polynomials. Figure 4.2 shows that fault detection

capability of the PRV sequences for the benchmark circuits varies with the seed of the FLFSR. It

is possible to determine the best seed of the FLFSR for the benchmark circuits out of the given

68

seeds. The best seed of the FLFSR produces the highest fault coverage using lowest number of

PRV sequences. For example, seed number „24‟ in Figure 4.2 can be considered the best seed of

the FLFSR for the benchmark circuit c432.bench. The best seed of the FLFSR for the benchmark

circuit c432.bench is highlighted using bold letter in the Appendix A4. Similarly, Figure 4.4,

Figure 4.6, Figure 4.8, Figure 4.10, Figure 4.12, Figure 4.14, Figure 4.16 and Figure 4.18

represent fault simulation results highlighting the best seed of the circuits c499.bench,

c880.bench, c1355.bench, c1908.bench, c2670.bench, c3540.bench, c5315.bench, c6288.bench

respectively. The tabulated results are presented in Appendices A4 to A21.

In Figure 4.2, best seed of circuit c432.bench for feedback polynomial 1+x60+x61+x63+x64 is

indicated by the arrow sign where the fault coverage is 98.28% and the required number of test

vectors is 200. At this point of testing, pseudo-random test mode can be switched to

deterministic test mode.

Figure 4.2. Fault simulation result of circuit c432.bench (for feedback polynomial
1+x60+x61+x63+x64)

69

Figure 4.3. Fault simulation result of circuit c432.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.4, seed „7‟ of circuit c499.bench for feedback polynomial 1+x60+x61+x63+x64 can be

considered as the best seed where the fault coverage is 96.70% and the required number of test

vectors is 190. The best seed is indicated by the arrow sign.

Figure 4.4. Fault simulation result of circuit c499.bench (for feedback polynomial
1+x60+x61+x63+x64)

70

Figure 4.5. Fault simulation result of circuit c499.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.6, seed „27‟ of circuit c880.bench for feedback polynomial 1+x60+x61+x63+x64 can be

considered as the best seed where the fault coverage is 93.52% and the required number of test

vectors is 120. The best seed is indicated by the arrow sign.

Figure 4.6. Fault simulation result of circuit c880.bench (for feedback polynomial
1+x60+x61+x63+x64)

71

Figure 4.7. Fault simulation result of circuit c880.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.8, seed „21‟ of circuit c1355.bench for feedback polynomial 1+x60+x61+x63+x64 can

be considered as the best seed where the fault coverage is 92.00% and the required number of

test vectors is 180. The best seed is indicated by the arrow sign.

Figure 4.8. Fault simulation result of circuit c1355.bench (for feedback polynomial
1+x60+x61+x63+x64)

72

Figure 4.9. Fault simulation result of circuit c1355.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.10, seed „24‟ of circuit c1908.bench for feedback polynomial 1+x60+x61+x63+x64 can

be considered as the best seed where the fault coverage is 96.33% and the required number of

test vectors is 880. The best seed is indicated by the arrow sign.

Figure 4.10. Fault simulation result of circuit c1908.bench (for feedback polynomial
1+x60+x61+x63+x64)

73

Figure 4.11. Fault simulation result of circuit c1908.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.12, seed „36‟ of circuit c2670.bench for feedback polynomial 1+x60+x61+x63+x64 can

be considered as the best seed where the fault coverage is 83.55% and the required number of

test vectors is 250. The best seed is indicated by the arrow sign.

Figure 4.12. Fault simulation result of circuit c2670.bench (for feedback polynomial
1+x60+x61+x63+x64)

74

Figure 4.13. Fault simulation result of circuit c2670.bench (for feedback polynomial
1+x+x3+x4+x64)

In Figure 4.14, seed „17‟ of circuit c3540.bench for feedback polynomial 1+x+x3+x4+x64 can be

considered as the best seed where the fault coverage is 91.80% and the required number of test

vectors is 540. The best seed is indicated by the arrow sign.

Figure 4.14. Fault simulation result of circuit c3540.bench (for feedback polynomial
1+x+x3+x4+x64)

75

Figure 4.15. Fault simulation result of circuit c3540.bench (for feedback polynomial
1+x60+x61+x63+x64)

In Figure 4.16, seed „22‟ of circuit c5315.bench for feedback polynomial 1+x+x3+x4+x64 can be

considered as the best seed where the fault coverage is 98.30% and the required number of test

vectors is 560. The best seed is indicated by the arrow sign.

Figure 4.16. Fault simulation result of circuit c5315.bench (for feedback polynomial
1+x+x3+x4+x64)

76

Figure 4.17. Fault simulation result of circuit c5315.bench (for feedback polynomial
1+x60+x61+x63+x64)

In Figure 4.18, seed „11‟ of circuit c6288.bench for feedback polynomial 1+x+x3+x4+x64 can be

considered as the best seed where the fault coverage is 99.47% and the required number of test

vectors is 60. The best seed is indicated by the arrow sign.

Figure 4.18. Fault simulation result of circuit c6288.bench (for feedback polynomial
1+x+x3+x4+x64)

77

Figure 4.19. Fault simulation result of circuit c6288.bench (for feedback polynomial
1+x60+x61+x63+x64)

It is also seen that fault detection profile of the PRV sequences for a benchmark circuit is not

exactly same as that of other circuit. For example, number of PRVs to achieve 80 to 90 percent

fault coverage for the circuit c880.bench, c1355.bench, c1908.bench and c5315.bench are much

more than that for the circuits c432.bench, c499.bench and c3540.bench. It is due to the different

complexity levels of the circuits as mentioned in Table 3.2. The benchmark circuits are having

different number of gate density, primary inputs and outputs, number of lines and nodes and with

different number of total faults.

The screenshots of fault simulation result on the ISCAS benchmark circuit c432.bench using the

PRV sequences generated by the proposed FLFSR is presented in Appendix A22.

First it shows the number of inputs, outputs, gates and the level of the circuit. The name of the

test vector file is output1.test is also shown. The figure shows that the percentage of fault

coverage is 98.282 using 200 number of test vectors. Among the 524 faults 515 faults are

78

detected and the remaining 9 faults were undetected. It also shows the amount of memory used

and the total CPU time required. Similarly Appendix A23 and Appendix A24 shows the

screenshots of fault simulation result of circuit c499.bench and c1908.bench circuits respectively

with the same meanings.

To determine the optimum switching point from the pseudo-random test mode to the

deterministic test mode, fault simulation experiments have been carried out on the ISCAS

benchmark circuits using the PRV sequences generated based on the best seed of the LFSR as

presented in Appendix A4 to A21.

Once the optimal switching moment from the pseudo-random test to the deterministic test mode

is determined and the number of PRVs (PRV generated using the best seed) detecting the

maximum ETD faults are also determined using the fault simulation technique, the remaining

faults (HTD) are targeted using the deterministic test vectors. The deterministic test vectors are

generated using the FSIM.

4.3.1 Best Seed Determination

For measuring CV of a PRV sequence for a particular seed for a benchmark circuit, MATLAB

R2012b is used. To compare the value of CV of PRV sequences generated for different seeds, we

have selected a number of different seeds randomly. We have measured the CV of PRV

sequences for different seeds and reported accordingly. The source code of MATLAB program

for finding CV is given in Appendix A25.The result is given in Table 4.3.

79

Table 4.3. CV of PRV sequences for different seeds for different benchmark circuits.

c432

Seed
6

Seed
15

Seed
23

Seed
24

Seed
26

Seed
35

Seed
38

Seed
42

Seed
51

Seed
59

118.54 115.58 116.51 119.01 118.41 118.30 118.30 115.31 113.86 113.77

c499
Seed

5
Seed

7
Seed
12

Seed
18

Seed
24

Seed
33

Seed
42

Seed
47

Seed
54

Seed
60

109.51 112.39 111.25 111.70 108.25 110.23 109.35 110.13 111.47 110.88

From Table 4.3 it is observed clearly that the value of CV of the PRV sequence is maximum for

the seed 24 for benchmark circuit c432.bench. So, we can say that the PRV sequence generated

for seed 24 is more random as compared to other seeds. As a result, seed 24 for circuit

c432.bench is determined as the best seed. In similar way, we can say that seed 7 for circuit

c499.bench is the best seed. Results of CV for the rest of the benchmark circuits follow the

similar profile. The screenshot of the output of the MATLAB program for finding CV is given in

Appendix A26.

Figure 4.20. CV for different seeds for circuit c432.bench

80

Figures 4.20 graphically shows the CV of different seeds as indicated in the X-axis. It is clear

from the figure that seed 24 has the peak value.

(a) (b) (c)

Figure 4.21. Image representation of PRV sequences

This section demonstrates the effectiveness of the proposed FLFSR in terms of fault coverage.

Figure 4.21 (a) and (c) shows the image representation of the PRV sequence generated from a

general LFSR and 4.21(b) shows the same generated from our proposed 64-bit FLFSR. The

images are created from a test vector file of 7200 bits using MATLAB. It‟s quite clear that image

(b) is more random than image (a) or (c).This may provide one possible explanation as to why

the proposed FLFSR admit significantly higher fault coverage.

4.3.2 Comparison

Summary of the fault simulation results of the ISCAS benchmark circuits using the proposed 64-

bit FLFSR is presented in Table 4.4.

81

Table 4.4: Summary of fault simulation results of the ISCAS benchmark circuits with using
proposed technique

ISCAS

Benchmark
Circuits

Total Number of
Faults Inserted

Number of Test Vectors Total Number of
Test Vectors

% Fault
Coverage

Random Determini
stic

c432 802 200 222 9 209 100
c499 1306 190 25 215 100
c880 1428 120 61 181 100
c1355 1970 180 126 306 100
c1908 1282 880 69 949 100
c2670 2588 250 452 702 100
c3540 2988 540 281 821 100
c5315 5640 560 91 651 100
c6288 9804 60 414 101 100

Table 4.4 shows the total number of test vectors required to achieve the complete fault coverage

for the ISCAS benchmark circuits using the FLFSR. It shows that 100% fault coverage has been

achieved for all the benchmark circuits. The results presented in Table 4.5 can be compared with

that of other researchers [2-8]. Comparison of the fault simulation results is presented in Table

4.5.

Table 4.5: Comparison of fault simulation results of the ISCAS benchmark circuits with that of
other researchers

ISCAS
Benchmark

Circuits

*NTV1 *NTV2 *NTV3 *NTV4 *NTV5 *NTV6 *NTV7

c432 209 214 224 320 512 1024 320
c499 215 225 512 - - - -
c880 181 248 160 416 260 1280 160
c1355 306 314 512 1664 2244 2098 2784
c1908 949 969 992 2496 2308 5376 3916
c2670 702 724 288 6240 10766 5888 6400
c3540 821 271 640 9504 12220 3840 4352
c5315 651 388 640 1950 1316 2048 1024
c6288 101 234 64 - - - -

82

The fault simulation results of the benchmark circuits „c499‟ and „c6288‟ from other researchers

are not available. The „–„ sign in Table 4.5 is to indicate the unavailability of the actual data. It

shows that the proposed 64-bit Fibonacci test pattern generator in mixed mode approach is

capable of producing 100% fault coverage using lowest number of test vectors than that of all

other researchers.

4.4 Summary

Fault Simulation results of the ISCAS benchmark circuits presented in this chapter verify the

effectiveness of the proposed approach in IC testing. The results obtained from the fault

simulation experiments on the different ISCAS benchmark circuits show that the proposed 64-bit

FLFSR produces 100% fault coverage for the benchmark circuits using much lower number of

test vectors than that of other researchers.

*NTV1 = Number of test vectors required using FLFSR based mixed-mode technique in
the present work

*NTV2 = Number of test vectors required using LFSR based mixed-mode technique [2]

*NTV3 = Number of test vectors required using LFSR based mixed-mode technique [3]
*NTV4 = Number of test vectors using weighted random technique [5]
*NTV5 = Number of test vectors using weighted random technique [6]
*NTV6 = Number of test vectors using weighted random technique [7]
*NTV7 = Number of test vectors using weighted random technique [8]

 al.1987)

83

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Test pattern generator is an important module for any IC tester. Performance of the tester in

terms of testing time, test economics etc largely depends on it. This project evaluates a 64-bit

FLFSR for its effectiveness in VLSI testing. Fault simulation experiments have been conducted

on a number of ISACS benchmark circuits for this purpose. The fault simulation results show

that complete fault coverage can be achieved using lower number of test vectors than that of

other researchers. Moreover best seed and optimum switching point have also been examined by

conducting fault simulation experiments on ISCAS benchmark circuits. Determination of best

seed has again been verified by calculating the coefficient of variation of the random sequences

that have applied to the benchmark circuits. Based on the result in the project initiative can be

taken for designing low cost IC Tester.

5.2 Future Work

For this project we recommend the following future works.

i) Fault simulation experiments can be conducted on the other types of benchmark

circuits and can be tested the effectiveness of the proposed 64-bit FLFSR.

ii) The test results in this project can be used in designing low cost IC tester.

84

REFERENCES

[1] Stanely, L. H., “VLSI testing (digital and mixed analogue/digital techniques) “, IEEE,

London, U. K., 1998.

[2] Kabir, A., Ali, L., “Design of GLFSR based test processor chip” Proceedings of 2009 Student

Conference on Research and Development (SCOReD 2009), UPM Serdang, Malaysia,16-18

Nov. 2009.

[3] Ali, L., Roslina, S., Ishak, A., Alauddin, M. A, Bambang, S. S., “Challenge and directions for

IC testing”, Integration, the VLSI Journal, pp. 17-28, vol 37(1), Elsevier Science,

Netherland, Feb. 2004.

[4] Ali, L., “Design of a test processor chip using multiple polynomial, multiple seed linear

feedback shift register”, M.Sc Thesis, Universiti Kebangsaan Malaysia, 1998.

[5] Iftekhar, A., “VLSI circuit testing using probabilistic approach”, Ph.D Thesis, Universiti

Kebangsaan Malaysia, 1995.

[6] Wunderlich, H. J., “Multiple distributions for biased random test patterns”, IEEE Trans.

on Comp.-Aided Design, vol. 9 (6), pp. 584-593, 1990.

[7] Waicukauski, J. A., Lindbloom, E., Eicheblberger, E. B., and Forlenza, O. P., “A method for

generating weighted random test patterns”, IBM Journal of research and development, vol.

33(2): 149-161, 1989.

[8] Lisanke, R., Braglez, F., Degeus, A. J., and Gregory, D., “Testability-driven random test-

pattern generation”, IEEE Trans. Comp.-Aided Design, vol. 6(6), pp. 1082-1087, 1987.

[9] Niraj, K. J., and Sandip, K., “Testing and reliable design of CMOS circuits”, Kluwer

academic publishers, USA, 1990.

85

[10] Hamzaoglu, I., and Patel, J. H., “New techniques for deterministic test pattern generation”,

6th IEEE Proc. of VLSI Test Symposium, pp. 446-452, 1998.

[11] David, R., “Random testing of digital circuits: Theory and Applications”, Marcel Dekker

Inc., New York, 1998.

[12] Koenemann, B., “LFSR-coded test patterns for scan designs”, Proc. of European Test Conf.,

Germany, pp. 237-242, 1991.

[13] Venkataraman, S., Rajski, J., Hellebrand, S., and Tarnick, S., “An efficient bist scheme

based on reseeding of multiple polynomial linear feedback shift registers”, IEEE/ACM Int.

Conf. on Comp.-Aided Design, pp. 572-577, 1993.

[14] Hellebrand, S., Tarnick, S., Rajski, J., and Courtois, B., “Generation of vector patterns

through reseeding of multiple-polynomial linear feedback shift registers”, IEEE Proc. of Int.

Test Conf., pp. 120-129, 1992.

[15] Rajski, J., Tyszer, J., and Zacharia, N., “Test data decompression for multiple scan designs

with boundary scan”, IEEE Trans. on Comp., vol. 47(11), pp. 1188-1200, 1998.

[16] Krishna, C. V., Jas, A., and Touba, N. A., “Test vector encoding using partial LFSR

reseeding”, Proc. of Int. Test Conf., pp. 885 –893, 2001.

[17] Rajsuman, R., “IDDQ tesing for CMOS VLSI”, Artech House, Boston, 1995.

[18] Fujiwara, H., “Logic testing and design for testability”, Cambridge:MIT Press, 1985.

[19] Dufaza, C., “Theoretical properties of LFSRs for built-in self test”, Integration, the VLSI

Journal, vol. 25(1), pp. 17-35, 1998.

[20] Bardell, P. H., McAnney, W. H., and Savir, J., “Built-in test for VLSI: Pseudo-random

techniques”, John Wiley and Sons, New York, USA, 1987.

[21] Gupta, S. P., and Gupta, M. P., “Business Statistics”, New Delhi, 2006.

86

[22] Brglez, F., and Fuziwara, H., “A neural netlist of 10 combinational bench-mark circuits and

target translator in FORTRAN”, Special session on ATPG and fault simulation, Int. Symp.

on Circuits and Systems, Kyoto, Japan, 1985.

[23] Brglez, F., Bryan, D., and Kozminski, K., “Combinational profiles of sequential benchmark

circuits”, Proc. of ISCAS, pp. 1929-1934, 1989.

[24] Anon., http://www.fm.vslib.cz/~kes/asic/iscas, 2004b.

[25] Lee, H. K., and Ha, D. S., “An efficient, forward fault simulation algorithm based on the

parallel pattern fault propagation”, Int. Test Conference, pp. 946-955, Nashville, TN, 1991.

[26] Eichelberge,r E. B., and Lindbloom, E., “Random-pattern coverage enhancement and

diagnosis for LSSD logic self-test”, IBM Journal of Research and Development, vol. 27(3),

pp. 265-272, 1983.

[27] Gloster, C. S. Jr., and Brglez, F., “Boundary scan with cellular automata-based built-in self-

test”, Int. Test Conf., pp. 138-145, 1988.

[28] Brglez, F., Gloster, C., and Kedem, G., “Hardware-based weighted random pattern

generation for boundary scan”, Int. Test Conf. pp. 264-273, 1989.

 [29] Ali, L., Roslina, S., Ishak, A., Alauddin, M. A, Bambang, S.S., “Maximization of fault

detection in IC testing”, Proceedings of Int. Conf. on semiconductor Electronics, pp. 557-

560, Malaysia, 2002.

http://www.fm.vslib.cz/~kes/asic/iscas

87

APPENDIX A1
COMPUTER PROGRAM FOR GENERATING RANDOM NUMBERS

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<ctype.h>
main()
{
 clrscr();
 FILE *fpt;
 char fname[10];
 int vector[70],i,j,tap1,tap2,tap3,tap4,stage,k,temp1,temp2,temp3,temp4,temp5,temp6,clk,
 width,tap[10],n,u,v;
 int pos;
 printf("\n \n No. of Stages of FLFSR =");
 scanf("%d",&stage);
 printf("\n \n Test vector Width =");
 scanf("%d",&width);
 printf("Enter Tap1=");
 scanf("%d",&tap1);
 printf("Enter Tap2=");
 scanf("%d",&tap2);
 printf("Enter Tap3=");
 scanf("%d",&tap3);
 printf("Enter Tap4=");
 scanf("%d",&tap4);
 printf("Enter the seed position=");
 scanf("%d",&pos);
 printf("How many test vectors=");
 scanf("%d",&clk);
 printf("Enter the name of the file=");
 scanf("%s",&fname);
 fpt=fopen(fname,"w");
 for(i=0;i<= stage -1;i++)
 {
 if(i==(pos-1))
 vector[i]=1;
 else
 vector[i]=0;
 }
 for(k=1;k<=clk;k++)
 {
 fprintf(fpt,"%d:",k);

88

 for(j=1;j<=width;j++)
 {
 temp1=vector[tap1-1];
 temp2=vector[tap2-1];
 temp3=vector[tap3-1];
 temp4=vector[tap4-1];
 for(i=0;i<stage-1;i++)
 vector[stage -i-1]=vector[stage -i-2];
 vector[0]=temp1^temp2^temp3^temp4;
 fprintf(fpt,"%d",vector[stage -1]);
 }
 fprintf(fpt,"\n");

 }
 getch();
}

89

APPENDIX A2
COMMAND FOR FAULT SIMULATION USING FSIM

Format: fsim [options] circuit_file [> outfile]

OPTIONS: Several options as listed below are available for

 atalanta. If an option is not specified, the default

 value is used.

-r n Test patterns are generated internally using the random number

 generator (random()). The simulation stops when either n

 patterns are applied or all faults are detected.

 (default: -r 224)

-s n Initial seed for the random number generator (random()).

 If n=0, the initial seed is the current time.

 (default: -s 0)

-t filename Test pattern file.

 Test patterns are read from the file.

 The simulation stops when either all test patterns

 are applied or all faults are detected.

 (default: random patterns are used)

-l filename Log file is created

 (default: no logfile is created)

-f filename The options are read from the named file

90

For example for the following command

fsim -t output.test c432.isc

 --- The test patterns are read from the file " output.test".

 The simulation stops when all test patterns in output.test

 are simulated or all faults are detected.

Where output.test is the test vector file.

For example test pattern file for the circuit c432.bench

1:000000000000000000000000000000000000

2:000100000000000000000000000000000000

3:000000000000000000000000000110110000

4:000000000000000000000000000000000000

5:000000000000000101000101000000000000

The test pattern begins after colon (:). After n bits, where n is the number of primary inputs of

the circuit, all the following characters are ignored until the next colon (:) is read. The j'th bit of a

test pattern is the value to be applied to the j'th input of the circuit. For example, c432 has 36

inputs named input1, input2, input3, input6 … input36 which appear in the order in the netlist.

The first bit of a test pattern is the value for input1, the second for input2, ..., and the last bit for

input36.

91

APPENDIX A3
RANDOM TEST VECTORS FOR ISCAS85 BENCHMARK CIRCUIT C432.BENCH

1:000000000000000000000000000000000000
2:000100000000000000000000000000000000
3:000000000000000000000000000110110000
4:000000000000000000000000000000000000
5:000000000000000101000101000000000000
6:000000000000000000000000000000000000
7:000111011011011100000000000000000000
8:000000000000000000000000000100010000
9:000100010000000000000000000000000000
10:000000000000000110101011000110101011
11:000000000000000000000000000000000000
12:000101010001010001010001010100000000
13:000000000000000000000000000111000110
14:110110110110110001110000000000000000
15:000000000000000100000001000000000000
16:000100000001000000000000000000000000
17:000110110001101100000000000110110001
18:101100000000000000000000000101000100
19:010001010000000101000100010001010000
20:000000000000000111011010101010110111
21:000111011010101010110111000000000000
22:000100010001000000010001000000010001
23:000000010001000100000000000110101010
24:101100011010101100011010101100011010
25:101010110000000101010000000101000101
26:000101000101000101000101000000010101
27:000111000111000111011011011011011011
28:011011011011011100011100011000000000
29:000000010000000000000000000000000000
30:000100000000000110100000000000011011
31:000000000000000000000000000110110000
32:000101011110000000010100010100000000
33:000000000000000101000101000111001111
34:001000011101101101110000000000000000
35:000111011011011000001101101001110001
36:000000010001000000000000000100010000
37:000010101010000110100000101100011010
38:101100000000000110101011000011100000
39:111101011110111101000101000101010000
40:000101010001010110000010100111101111
41:101111111011011011000111000111000110
42:110010101011101010111011011011000110

92

43:000000010000000000000001000110100001
44:101100011010000000010001101000011011
45:000000000001101001011111010001000101
46:111000011010010111110100010100000001
47:010110011110111110101011111100110101
48:100111101111101101110001110010111011
49:101101110001110010111010101110111011
50:011000010000000010111010101000010000
51:000010111011000110101010000010111011
52:000011111011000011111011000011111010
53:010001010000111011111010010110010110
54:010110010110010110010111100010110111
55:100010110111100110110110110110110110
56:110110110111110001110001110001110001
57:110111000000000000000000000000000001
58:101000000000000000000000000101000100
59:000000000000000000000001010111100000
60:000000000000000111011010110000000000
61:000000000001110011110010000000000000
62:000100010001010101000000000000000001
63:000011011010011000000000000110101010
64:110000011100000000000001101110100001
65:101110100000000101010000010101010000
66:010000000001010010111111010010111110
67:000111000111011100000111011011000001
68:110100111100111100111101001100000000
69:010100010100010000010101000111010110
70:110110110111110111010000011101101101
71:101011011100011000011010000000000001
72:101101011111010001000000000101000100
73:000110110101111000000001010000101110
74:111110101100000111011010110101000010
75:111100100001110111111110101101110101
76:010100010001010010011111111110100111
77:000101100001110100010110000001101010
78:110100001010000001111010000011101011
79:000111101110101001010100010011111110
80:111001001111111010001101010000111010
81:110010010001101001010001101001000101
82:000111110010100111100011010110000010
83:010110010110010110001011011000101010
84:101010110000101010101011000110110110
85:110110100111000010011000000000010101
86:111000000001010001000000000000011010
87:000111001110100000011100111100100001
88:110110101100000000010101111100001100

93

89:111110010000110110100111000100010101
90:010000011100111010011011110101010011
91:101000011010000010101100000111010000
92:110011101100111110000101001111110101
93:111011100101010100011111101111001001
94:110101001111010101001110111110100101
95:000001100010011011101000100110010101
96:111000010100101101111001011101011001
97:001100101111010011110100111100111101
98:001100011101011101101011000111101111
99:111101011111010110110111110111000001
100:101101000101010000111011000011101110
101:111010000001101101000101010000111011
102:000111100010010110001010101011111001
103:010000111011000111100010010000110001
104:000110100110000001110101010111100010
105:010000110001000011101100101001011011
106:101001000110000011110001000011101100
107:101110001001101010011000101110001001
108:101010011000101110001001101110000100
109:110100101110011110000100110100101110
110:011110000100110010001110011011001110
111:011011001110011011001110011011001110
112:011110010000011100011100011100011100
113:011100011100011100011100011011010011
114:010000000000000000000000000000000000
115:000000000000000100001101101111000000
116:000000000000000000000000000000000000
117:000110111010000011100100000000000000
118:000000000000000000000000000101001011
119:111010000100110000000000000000000000
120:000000000000000111010011110111111110
121:011101000000000000000000000000000000
122:000100011101011101100001011001111100
123:000000000000000000000000000110100001
124:101101001011111011101010010000000000
125:000000000000000101011111010000110011
126:110110101100100011000000000000000000
127:000111001110111111101111011100010101
128:100100110100000000000000000100001100
129:101100011011110100001100101100011011
130:110000000000000110111011101101000100
131:111111111011101101000100111001000000
132:000101001010101000111010010100000110
133:101000111010010001001100000111010010
134:000011000011100101110101010011000011

94

135:100010100111010100011100011010110110
136:000101110110000101110110000001101010
137:011001100000000101010000101111110100
138:101111110100101001010100101111111010
139:000111000111111111001111001111001111
140:001010010001001111000111111100000000
141:100000101101101101101101101010100010
142:100101100000100010010000110110111100
143:000000000000000100001101101001101010
144:110101000011101000001110010000000000
145:000110111010000110110100010010011110
146:001111101000010011000000000101001011
147:111101000011101000001011000001011111
148:111001110100000111010011110011111110
149:001111101111010101111110000101100111
150:110100011101011011010001000001011011
151:111000111001001111101110101111100001
152:101000001110101101111000110100000001
153:000101011010110111010011010111101000
154:110100011100001011110001101011001001
155:010001011101101011111111001011100000
156:011111111000010101011000010110111101
157:000101110000101011100010010010000100
158:111100001010111110001111111011110001
159:111001100001000000011110010110011110
160:011101000001000110111000001101111011
161:101100010011010110111011011001111101
162:101001001000101010011110101001001001
163:101010001010000011101011000110000001
164:011000101011110010000000110100110110
165:111010001101010001101001111010011001
166:111010011000101011011000001011110010
167:100110010110101111101111101111101110
168:011001000010101111111010101011110110
169:010111011011011011011010011111001111
170:100111000111000001111100110111010000
171:000000000001101010101101010110000000
172:000101001010111001011111000000000001
173:010100000100100010101000000111010010
174:011001011110100100000001110001110110
175:000101100011100100011100001111011111
176:111000110001000000000100101111101000
177:000100100000011001110110000100001100
178:101100000110001111011111100110000110
179:010111100100101110111011101101010101
180:100001110110010111101101110111110100

95

181:001110101010101000100000101011000100
182:110111111000010101101111111000110000
183:000011010110111001010010011001100100
184:111100100011000100001101000010101010
185:001001010100001111111100010110100100
186:110010111010111111100000110100010001
187:111001000010001110011000011110111011
188:011100010010101011101010001101001111
189:010000011110110011101010000100001000
190:100001101100110010110101111111010011
191:100111001100111110111101010111010001
192:111110110010111000111101000110001111
193:110101101111100011011110001001100110
194:111000000111111001100001001110100011
195:010000100111000100111111001000100100
196:100101111011100100111100101111110010
197:000010010100101001010000000001111110
198:100100010110101111001010011011000101
199:001010010111000001001001111000101110
200:010111101010101100010011010010100111

96

APPENDIX A4
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C432.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 288 97.71 0.500
3 256 97.14 0.500
5 350 98.86 0.250
6 256 97.52 0.517
8 350 99.05 0.250
9 320 98.66 0.250

11 320 97.52 0.250
12 288 98.66 0.517
14 288 98.09 0.517
15 320 97.14 0.500
17 320 98.66 0.517
18 288 97.33 0.250
20 350 98.66 0.250
21 320 98.47 0.500
23 288 97.71 0.250
24 200 98.28 0.500
26 256 96.95 0.250
27 350 98.66 0.250
29 256 98.09 0.250
30 320 98.09 0.500
32 232 97.90 0.250
33 288 98.86 0.500
35 256 97.14 0.500
36 350 99.05 0.250
38 256 96.95 0.250
39 350 97.90 0.250
41 320 98.66 0.500
42 320 98.66 0.250
44 288 99.05 0.500
45 288 98.66 0.500
47 320 97.52 0.250
48 320 98.66 0.250
50 288 98.09 0.250
51 350 97.33 0.250
53 224 97.71 0.250
54 320 97.90 0.500
56 288 98.66 0.500
57 256 98.28 0.250
59 350 98.09 0.500
60 256 98.86 0.500

97

APPENDIX A5
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C432.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 256 98.66 0.500
3 350 98.47 0.250
5 256 97.90 0.250
6 288 98.09 0.500
8 320 98.66 0.500
9 288 98.47 0.250

11 256 98.86 0.500
12 350 98.09 0.250
14 256 98.86 0.250
15 350 99.24 0.500
17 320 97.90 0.500
18 320 98.66 0.250
20 288 98.47 0.517
21 288 98.47 0.500
23 320 98.47 0.500
24 200 98.09 0.500
26 320 99.24 0.500
27 288 98.28 0.500
29 350 98.28 0.250
30 320 98.09 0.500
32 232 98.09 0.250
33 288 97.90 0.500
35 256 98.09 0.250
36 350 99.05 0.500
38 256 98.09 0.250
39 350 98.66 0.250
41 320 98.66 0.250
42 320 98.28 0.517
44 288 98.66 0.500
45 288 98.47 0.250
47 320 99.05 0.500
48 320 98.09 0.500
50 288 99.05 0.250
51 350 99.24 0.250
53 224 97.14 0.250
54 320 98.66 0.517
56 288 98.47 0.500
57 256 98.28 0.250
59 350 98.66 0.250
60 256 98.47 0.250

98

APPENDIX A6
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C499.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 480 98.15 0.250
3 384 97.89 0.517
5 512 98.29 0.500
7 190 96.70 0.500
8 416 98.02 0.500
9 480 98.29 0.250

11 512 98.15 0.250
12 448 98.02 0.250
14 448 98.15 0.500
15 480 98.55 0.250
17 416 98.42 0.250
18 384 97.76 0.500
20 512 98.29 0.250
21 512 98.81 0.250
23 384 98.02 0.517
24 576 98.42 0.517
26 416 97.76 0.250
27 512 98.15 0.517
29 448 98.15 0.500
30 480 98.29 0.250
32 512 98.81 0.250
33 480 98.29 0.250
35 384 98.42 0.517
36 512 98.81 0.250
38 416 98.02 0.517
39 352 98.15 0.500
41 480 98.55 0.517
42 512 98.81 0.250
44 448 98.02 0.500
45 448 98.42 0.250
47 480 97.89 0.250
48 416 98.29 0.500
50 384 98.15 0.500
51 512 98.15 0.250
53 512 98.15 0.250
54 384 97.76 0.250
56 576 98.55 0.250
57 416 98.02 0.250
59 512 98.55 0.250
60 448 98.02 0.250

99

APPENDIX A7
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C499.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 448 98.02 0.250
3 512 98.15 0.250
5 416 98.02 0.250
7 190 96.17 0.250
8 576 98.68 0.500
9 384 98.29 0.250

11 512 98.02 0.517
12 512 97.89 0.250
14 384 97.49 0.250
15 416 98.29 0.250
17 480 97.76 0.250
18 448 98.29 0.500
20 448 97.76 0.250
21 512 98.55 0.250
23 480 98.42 0.250
24 416 98.02 0.500
26 512 98.55 0.250
27 384 96.70 0.250
29 480 98.02 0.517
30 350 97.36 0.250
32 512 98.42 0.250
33 480 98.29 0.250
35 384 97.76 0.250
36 512 98.55 0.517
38 416 98.15 0.500
39 352 98.29 0.500
41 480 98.55 0.250
42 512 98.15 0.250
44 448 98.02 0.517
45 448 98.29 0.517
47 480 98.15 0.500
48 416 98.29 0.517
50 384 98.29 0.250
51 512 98.29 0.250
53 512 97.89 0.250
54 384 98.29 0.517
56 576 98.68 0.500
57 416 98.15 0.500
59 512 98.55 0.500
60 448 98.15 0.500

100

APPENDIX A8
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C880.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 256 94.27 0.250
3 224 94.90 0.517
5 256 94.59 0.500
6 256 93.52 0.500
8 224 94.90 0.517
9 256 94.80 0.500

11 224 94.27 0.250
12 256 94.90 0.250
14 192 93.21 0.500
15 256 94.69 0.250
17 192 93.84 0.250
18 256 95.65 0.500
20 260 94.80 0.250
21 224 94.59 0.250
23 256 94.16 0.517
24 160 90.66 0.517
26 192 92.25 0.250
27 120 93.52 0.500
29 260 94.27 0.517
30 224 92.68 0.500
32 160 90.45 0.250
33 256 93.74 0.500
35 224 92.68 0.250
36 256 93.21 0.517
38 256 92.46 0.250
39 224 93.42 0.250
41 256 94.59 0.517
42 224 92.57 0.500
44 256 93.84 0.250
45 160 91.30 0.250
47 192 93.21 0.250
48 256 93.42 0.250
50 192 92.04 0.250
51 256 94.80 0.500
53 260 95.33 0.250
54 224 92.04 0.250
56 256 94.80 0.250
57 160 92.46 0.500
59 192 92.89 0.250
60 260 94.69 0.500

101

APPENDIX A9
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C880.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 256 94.69 0.250
3 224 95.65 0.250
5 256 95.12 0.500
6 256 94.27 0.250
8 224 94.48 0.250
9 256 95.54 0.517

11 224 95.01 0.517
12 256 94.69 0.250
14 160 92.14 0.250
15 192 92.99 0.250
17 256 94.90 0.250
18 192 93.10 0.250
20 256 95.12 0.500
21 260 94.69 0.250
23 224 93.95 0.250
24 256 95.01 0.250
26 160 92.14 0.250
27 120 90.13 0.250
29 192 94.59 0.250
30 260 95.44 0.500
32 160 92.99 0.250
33 256 95.54 0.500
35 224 94.48 0.517
36 256 95.97 0.250
38 256 95.44 0.250
39 224 94.48 0.250
41 256 95.86 0.250
42 224 92.99 0.500
44 256 95.01 0.517
45 160 93.95 0.517
47 192 93.95 0.250
48 256 95.86 0.500
50 192 93.63 0.250
51 256 94.59 0.250
53 260 96.29 0.250
54 224 93.95 0.500
56 256 94.27 0.500
57 160 92.46 0.517
59 192 94.37 0.250
60 260 95.54 0.250

102

APPENDIX A10
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1355.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 1152 98.41 0.500
3 1088 98.09 0.500
5 736 96.32 0.250
6 672 95.87 0.250
8 960 98.54 0.500
9 928 97.52 0.250

11 864 97.21 0.250
12 1120 98.29 0.250
14 1056 98.29 0.517
15 640 96.57 0.517
17 640 96.89 0.250
18 576 96.06 0.517
20 832 97.84 0.517
21 180 92.00 0.517
23 896 97.01 0.250
24 800 96.82 0.500
26 768 97.27 0.250
27 960 98.09 0.250
29 704 95.74 0.250
30 512 94.41 0.500
32 512 96.38 0.250
33 1152 98.16 0.500
35 1088 97.84 0.250
36 512 96.25 0.517
38 736 97.59 0.250
39 672 96.57 0.500
41 960 98.03 0.250
42 928 98.16 0.250
44 864 97.01 0.500
45 1120 98.48 0.517
47 1056 97.71 0.500
48 640 96.13 0.500
50 640 96.44 0.500
51 576 96.44 0.250
53 832 97.46 0.500
54 896 98.16 0.250
56 816 97.21 0.500
57 768 96.76 0.250
59 960 97.52 0.500
60 728 96.44 0.250

103

APPENDIX A11
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1355.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 704 96.95 0.517
3 960 97.65 0.250
5 768 96.70 0.517
6 800 96.70 0.517
8 896 97.78 0.250
9 832 97.90 0.500

11 576 95.81 0.517
12 640 96.13 0.517
14 640 95.55 0.517
15 1056 97.59 0.250
17 1120 98.29 0.250
18 864 98.09 0.500
20 928 98.09 0.500
21 180 91.49 0.500
23 960 98.09 0.517
24 672 97.46 0.500
26 736 97.78 0.250
27 1088 98.41 0.500
29 1152 98.48 0.517
30 512 96.70 0.250
32 512 95.62 0.250
33 1152 97.65 0.500
35 1088 97.84 0.517
36 512 95.62 0.517
38 736 97.27 0.250
39 672 96.63 0.250
41 960 98.41 0.500
42 928 97.78 0.250
44 864 96.13 0.500
45 1120 98.29 0.250
47 1056 98.35 0.500
48 640 96.70 0.250
50 640 96.76 0.250
51 576 96.00 0.250
53 832 97.78 0.517
54 896 97.59 0.500
56 820 97.46 0.517
57 780 97.52 0.500
59 960 98.22 0.500
60 712 97.08 0.500

104

APPENDIX A12
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1908.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 1632 97.07 0.767
3 1184 97.13 0.517
5 1376 96.91 0.250
6 1120 96.06 0.250
8 1312 95.74 0.500
9 960 95.26 0.250

11 1280 96.97 0.250
12 992 95.37 0.767
14 992 96.91 0.767
15 1504 96.65 0.767
17 1344 95.90 0.250
18 1408 97.50 0.517
20 1344 97.34 0.500
21 1600 97.07 0.500
23 1472 97.07 0.517
24 880 96.33 0.500
26 1312 96.49 0.500
27 1568 97.98 0.517
29 1184 96.33 0.500
30 864 94.52 0.250
32 992 95.42 0.517
33 1632 98.24 0.517
35 1184 96.33 0.250
36 1376 97.29 0.517
38 1120 96.17 0.500
39 1312 96.65 0.250
41 960 92.87 0.500
42 1280 96.81 0.500
44 992 96.06 0.517
45 992 95.37 0.500
47 1504 98.08 0.517
48 1344 96.59 0.500
50 1408 96.22 0.250
51 1344 97.23 0.500
53 1600 97.77 0.517
54 1472 96.81 0.250
56 1312 96.91 0.517
57 1568 98.14 0.500
59 1184 96.28 0.500
60 864 96.28 0.250

105

APPENDIX A13
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C1908.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 864 92.82 0.500
3 1184 96.12 0.517
5 1568 98.46 0.517
6 1312 95.42 0.250
8 1472 96.69 0.500
9 1600 97.18 0.250

11 1344 96.70 0.250
12 1408 97.23 0.500
14 1344 96.81 0.250
15 1504 96.86 0.517
17 992 94.36 0.500
18 992 96.06 0.250
20 1280 96.38 0.767
21 960 96.43 0.250
23 1312 96.43 0.517
24 880 94.41 0.250
26 1120 94.99 0.767
27 1376 96.86 0.767
29 1184 96.70 0.250
30 1632 96.64 0.250
32 992 94.84 0.500
33 1632 96.06 0.500
35 1184 95.42 0.250
36 1376 97.61 0.500
38 1120 97.61 0.250
39 1312 95.42 0.250
41 960 95.05 0.500
42 1280 97.02 0.250
44 992 95.42 0.517
45 992 96.17 0.500
47 1504 97.18 0.517
48 1344 96.65 0.250
50 1408 95.74 0.500
51 1344 96.54 0.250
53 1600 97.71 0.250
54 1472 97.82 0.250
56 1312 96.43 0.500
57 1568 97.45 0.500
59 1184 95.32 0.517
60 864 94.57 0.250

106

APPENDIX A14
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C2670.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 416 83.25 0.517
3 448 82.85 0.250
5 288 82.82 0.767
6 992 84.02 0.767
8 736 83.91 0.767
9 320 83.15 0.250

11 480 83.11 0.500
12 320 82.71 0.500
14 768 83.95 0.250
15 672 83.22 0.767
17 640 83.51 0.250
18 672 83.66 0.517
20 736 83.76 0.250
21 672 83.62 0.250
23 832 84.24 0.250
24 768 83.87 0.250
26 448 83.33 0.250
27 672 84.09 0.250
29 412 83.11 0.517
30 288 83.22 0.500
32 416 83.84 0.500
33 448 83.51 0.517
35 288 83.00 0.500
36 250 83.55 0.500
38 992 84.35 0.500
39 736 83.98 0.250
41 320 82.09 0.500
42 480 83.98 0.250
44 320 82.34 0.517
45 768 83.95 0.500
47 672 84.17 0.500
48 640 84.35 0.517
50 672 83.18 0.500
51 736 84.09 0.500
53 672 83.84 0.517
54 832 84.06 0.517
56 768 84.02 0.517
57 448 83.00 0.500
59 672 83.87 0.500
60 412 82.96 0.250

107

APPENDIX A15
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C2670.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 412 82.96 0.517
3 672 83.76 0.767
5 448 83.29 0.250
6 768 84.09 0.767
8 832 83.76 0.517
9 672 83.87 0.250

11 736 84.17 0.250
12 672 83.84 0.517
14 640 83.87 0.517
15 672 83.91 0.250
17 768 83.76 0.517
18 320 81.40 0.517
20 480 83.73 0.517
21 320 82.38 0.517
23 736 84.13 0.500
24 992 84.06 0.767
26 288 83.22 0.517
27 448 83.40 0.767
29 416 83.25 0.250
30 288 82.20 1.033
32 416 83.40 0.250
33 448 83.58 0.517
35 288 83.29 0.250
36 250 82.71 0.517
38 992 84.42 0.500
39 736 84.20 0.517
41 320 83.15 0.250
42 480 83.87 0.250
44 320 82.93 0.517
45 768 84.02 0.500
47 672 83.91 0.517
48 640 83.95 0.250
50 672 83.84 0.250
51 736 83.73 0.517
53 672 84.17 0.500
54 832 83.80 0.517
56 768 83.95 0.517
57 448 83.25 0.250
59 672 83.91 0.517
60 412 83.62 0.250

108

APPENDIX A16
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C3540.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 896 93.58 0.250
3 864 93.85 0.250
5 896 93.90 0.250
6 960 93.85 1.033
8 800 93.09 0.517
9 928 94.08 1.017

11 640 92.50 0.767
12 992 94.46 0.767
14 864 93.61 0.500
15 800 93.61 0.517
17 540 91.57 0.517
18 896 93.23 0.767
20 768 92.94 0.250
21 800 93.29 1.017
23 960 94.11 0.517
24 832 93.44 0.500
26 800 93.26 0.517
27 928 93.87 0.250
29 928 94.20 0.767
30 736 91.83 0.517
32 640 93.15 0.517
33 896 93.87 0.517
35 864 92.97 0.767
36 896 92.68 0.517
38 960 94.49 0.517
39 800 92.88 0.250
41 928 93.47 0.500
42 640 92.01 0.517
44 992 93.55 0.517
45 864 93.79 0.517
47 800 93.76 0.517
48 896 93.79 0.517
50 768 92.77 0.500
51 800 94.11 0.767
53 960 94.20 0.517
54 832 93.99 0.517
56 800 92.68 0.517
57 928 93.50 0.500
59 928 94.11 0.517
60 736 93.44 0.517

109

APPENDIX A17
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C3540.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 736 93.76 0.517
3 928 94.78 0.767
5 928 94.31 0.500
6 800 93.29 0.517
8 832 94.08 0.517
9 960 94.55 0.517

11 800 93.61 0.517
12 768 94.14 0.250
14 896 93.44 0.500
15 800 93.50 0.517
17 540 91.80 0.517
18 864 93.99 0.500
20 992 94.22 0.517
21 640 93.41 0.517
23 928 94.60 0.517
24 800 93.32 0.767
26 960 94.52 0.517
27 896 93.96 0.500
29 864 93.52 0.517
30 896 93.64 0.517
32 640 92.04 0.500
33 896 94.14 0.517
35 864 94.05 0.500
36 896 93.85 0.767
38 960 94.78 0.517
39 800 92.39 0.517
41 928 93.70 0.517
42 640 93.35 0.517
44 992 93.55 0.517
45 864 93.90 0.517
47 800 93.47 0.500
48 896 93.90 0.517
50 768 93.52 0.517
51 800 93.87 0.517
53 960 94.31 0.517
54 832 93.96 0.517
56 800 93.29 0.517
57 928 93.06 0.517
59 928 94.55 0.250
60 736 93.32 0.500

110

APPENDIX A18
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C5315.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 768 98.51 0.517
3 1152 98.75 0.767
5 1056 98.73 0.767
6 640 98.34 0.500
8 640 98.17 0.517
9 864 98.52 0.517

11 960 98.62 0.500
12 960 98.62 0.767
14 768 98.39 0.500
15 1088 98.79 0.517
17 928 98.49 0.517
18 960 98.79 0.517
20 928 98.60 0.517
21 1088 98.75 0.517
22 600 98.26 0.517
24 832 98.52 0.517
26 1056 98.65 0.250
27 1088 98.71 0.517
29 736 98.36 0.517
30 1248 98.80 0.767
32 640 98.22 0.517
33 780 98.32 0.517
35 1140 98.77 0.517
36 1056 98.64 0.500
38 640 98.28 0.517
39 640 98.28 0.500
41 864 98.54 0.517
42 960 98.75 0.767
44 960 98.65 0.767
45 768 98.54 0.250
47 1088 98.64 0.767
48 928 98.69 0.767
50 960 98.54 0.517
51 928 98.60 0.767
53 1088 98.77 0.517
54 832 98.69 0.250
56 1056 98.64 0.250
57 1088 98.62 0.517
59 740 98.45 0.517
60 1236 98.69 0.517

111

APPENDIX A19
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C5315.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 1248 98.75 0.517
3 736 98.43 0.767
5 1088 98.69 0.517
6 1056 98.71 0.767
8 832 98.51 0.517
9 1088 98.67 0.767

11 928 98.60 0.517
12 960 98.47 0.500
14 928 98.60 0.517
15 1088 98.73 0.517
17 768 98.71 0.517
18 960 98.56 0.517
20 960 98.60 0.517
21 864 98.67 0.517
22 560 98.30 0.517
24 640 98.28 0.500
26 640 98.36 0.767
27 1056 98.71 0.517
29 1152 98.65 0.767
30 740 98.58 0.517
32 768 98.28 0.767
33 1152 98.69 0.517
35 1056 98.65 0.500
36 640 98.22 0.500
38 640 98.41 0.500
39 864 98.36 0.517
41 960 98.64 0.517
42 960 98.79 0.767
44 768 98.56 0.517
45 1088 98.71 0.500
47 928 98.62 0.517
48 960 98.71 0.517
50 928 98.54 0.517
51 1088 98.62 0.767
53 832 98.45 0.517
54 1056 98.67 0.767
56 1088 98.71 0.517
57 736 98.58 0.517
59 1248 98.71 0.767
60 640 98.04 0.517

112

APPENDIX A20
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C6288.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 96 99.30 0.767
3 96 99.25 0.767
5 96 99.29 0.767
6 96 99.21 0.517
8 64 98.39 0.517
9 64 98.35 0.767

11 60 99.11 0.517
12 64 98.75 0.517
14 96 99.33 0.767
15 96 99.21 0.767
17 96 98.84 0.767
18 64 97.57 0.767
20 64 97.68 0.517
21 96 99.03 0.767
23 96 98.83 0.517
24 96 99.02 0.767
26 64 98.22 0.767
27 64 98.57 0.767
29 128 99.48 0.767
30 128 99.46 0.767
32 64 97.81 0.767
33 128 99.51 0.767
35 128 99.54 0.767
36 96 99.15 0.767
38 96 99.21 0.767
39 64 98.46 0.517
41 64 98.35 0.517
42 64 98.72 0.767
44 96 99.43 0.767
45 96 99.46 0.767
47 96 99.21 0.767
48 64 97.92 0.767
50 64 97.57 0.767
51 96 98.74 0.767
53 96 99.06 0.517
54 96 99.04 0.767
56 64 98.06 0.767
57 64 98.19 0.767
59 128 99.42 0.767
60 128 99.46 0.767

113

APPENDIX A21
FAULT SIMULATION RESULT FOR BENCH MARK CIRCUIT C6288.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X+X3+X4+X64)

Seed No. of Test Vectors Fault Coverage (%) CPU Time (sec)

2 128 99.56 0.767
3 128 99.56 0.517
5 64 99.30 0.517
6 64 99.43 0.767
8 96 99.46 0.767
9 96 99.48 0.767

11 60 99.47 0.767
12 96 99.33 0.767
14 64 99.30 0.767
15 64 99.46 0.517
17 96 99.48 0.767
18 96 99.33 0.767
20 96 99.54 0.517
21 64 99.38 0.767
23 64 99.38 0.767
24 64 99.30 0.767
26 64 99.37 0.517
27 64 99.15 0.767
29 96 99.41 0.767
30 96 99.37 0.517
32 64 99.48 1.017
33 96 99.34 0.767
35 96 99.38 0.517
36 96 99.46 0.767
38 96 99.54 0.767
39 64 99.14 0.767
41 64 99.26 0.767
42 64 99.02 0.767
44 96 99.35 0.767
45 96 99.51 0.767
47 96 99.56 0.767
48 64 99.23 0.767
50 64 99.23 0.517
51 96 99.48 0.767
53 96 99.46 0.767
54 96 99.51 0.767
56 64 99.30 0.767
57 64 99.38 0.517
59 128 99.54 0.767
60 128 99.51 0.517

114

APPENDIX A22
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C432.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

115

APPENDIX A23
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C499.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

116

APPENDIX A24
SCRRENSHOT OF FAULT SIMULATION RESULT OF CIRCUIT C1908.BENCH

(FOR FEEDBACK POLYNOMIAL 1+X60+X61+X63+X64)

117

APPENDIX A25
MATLAB PROGRAM FOR MEASURING CV OF PRV SEQUENCES

clc, clear all, close all
format short
load tvf.mat

x = seed06;
cv_x(1) = std(x)/mean(x)*100;

x = seed15;
cv_x(2) = std(x)/mean(x)*100;

x = seed23;
cv_x(3) = std(x)/mean(x)*100;

x = seed24;
cv_x(4) = std(x)/mean(x)*100;

x = seed26;
cv_x(5) = std(x)/mean(x)*100;

x = seed35;
cv_x(6) = std(x)/mean(x)*100;

x = seed38;
cv_x(7) = std(x)/mean(x)*100;

x = seed42;
cv_x(8) = std(x)/mean(x)*100;

x = seed51;
cv_x(9) = std(x)/mean(x)*100;

x = seed59;
cv_x(10) = std(x)/mean(x)*100;

cv(:,2)=cv_x';
cv(:,1)=[6 15 23 24 26 35 38 42 51 59]';

cv

118

APPENDIX A26
SCREENSHOT OF THE OUTPUT OF MATLAB PROGRAM FOR MEASURING CV FOR

C432.BENCH

119

OUTCOME OF THIS PROJECT

[1] Ahmed, M. T., and Ali, L., “Implementation of Fibonacci Test Pattern Generator for Cost

Effective IC Testing”, Proceedings of International Conference on Informatics, Electronics

& Vision, Dhaka, Bangladesh, 2012.

[2] Ahmed, M.T., and Ali, L., “Implementation of Fibonacci Test Pattern Generator for Cost

Effective IC Testing”, International Journal of Electronics & Informatics (Invited for

submission).

