
i

DESIGN AND IMPLEMENTATION OF A PROGRAMMABLE
CONVOLUTIONAL ENCODER AND VITERBI DECODER

by

Mohammad Bozlul Karim

MASTER OF ENGINEERING IN INFORMATION AND COMMUNICATION

TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

October, 2010

ii

The project titled “Design and Implementation of a Programmable Convolutional Encoder

and Viterbi Decoder” submitted by Mohammad Bozlul Karim, Roll No. M10063128P,

Session October-2006 has been accepted as satisfactory in partial fulfillment of the

requirement for the degree of Master of Engineering (ICT) held on 3rd

 October, 2010.

Board of Examiners

1. Dr. Md. Liakot Ali

Associate Professor

Institute of Information and Communication Technology

BUET, Dhaka-1000.

Chairman

2. Dr. Md Saiful Islam

Associate Professor

Institute of Information and Communication Technology

BUET, Dhaka-1000.

Member

3. Dr. Md. Abul Kashem Mia

Professor and Associate Director

Institute of Information and Communication Technology

BUET, Dhaka-1000.

Member

iii

Candidate’s Declaration

It is hereby declared that this project or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

Mohammad Bozlul Karim

iv

Dedicated to

My Daughter

v

Table of Contents

Title Page No.

Board of Examiners ii

Candidate Declaration iii

Table of Contents v

List of Figures vii

List of Tables x

Acknowledgement xi

Abstract xii

CHAPTER 1: Introduction

1.1 Overview 1

1.2 Literature Review 1

1.3 Objectives with Specific Aims and Possible Outcome 3

1.4 Organization of the Project 3

CHAPTER 2: Convolutional Coding and Viterbi Decoding 4

2.1 Coding and Decoding using Convolutional Codes 4

2.2 Code Parameters and the Structure of the Convolutional Code 5

2.3 Encoding of Bit Sequence 7

2.4 Encoding technique 9

 2.4.1 Look up Table 9

 2.4.2 State Diagram 10

 2.4.3 Tree Diagram 12

 2.4.4 Trellis Diagram 13

2.5 Decoding Technique 15

 2.5.1 Sequential Decoding 17

 2.5.1.1 Decoding using Sequential Decoding Algorithm 17

 2.5.1.2 Maximum Likelihood and Viterbi Decoding 21

vi

CHAPTER 3: Design and Implementation 28

3.1 Introduction 28

3.2 Verilog HDL (Hardware Definition Language) 28

3.3 Implementation using FPGA 27

3.4 Development Tool Quartus II 30

3.5 Field Programmable Gate Array (FPGA) 32

 3.5.1 Cyclone II FPGA DE2 Board 32

 3.5.2 Design Flow for FPGA Implementation using Quartus II 7.0 34

 3.5.3 Input Output Device 36

3.6 Analysis and Design Methodology 37

 3.6.1 Block Diagram 37

 3.6.2 Encoder Group Design. 38

 3.6.3 Decoder Group Design. 38

 3.6.4 Main Module of CEVD. 39

 3.6.5 Block Diagram of different Module. 40

 3.6.6 Important Task and Function. 45

 3.6.6.1 Next State Generator 45

 3.6.6.2 Output One 45

 3.6.6.3 Output Zero 45

 3.6.6.4 Humming Distance 45

 3.6.6.5 Maximum Path Weight 45

CHAPTER 4: Results and Discussions 46

4.1 Introduction 46

4.2 Simulation Result 46

 4.2.1 Simulation of Encoder Module 46

 4.2.2 Simulation of Decoder and Encoder Integrated Module. 48

4.3 Implementation on FPGA 50

4.4 Usage of Chip Area 52

4.5 Comparison 52

vii

CHAPTER 5: Conclusion

5.1 Conclusion 54

5.2 Future Work 54

References: 55

viii

List of Figures

Title Page No.

Figure 2.1: This (3,1,3) Convolutional encoder has 3 memory registers, 1 input bit

 and 3 output bits. 5

Figure 2.2: The states of a code indicate what is in the memory registers 7

Figure 2.3: A sequence consisting of a solo 1 bit as it goes through the encoder. 8

Figure 2.4: A convolutional encoder with 1/2 code rate and 4 memory register. 11

Figure 2.5: State diagram of encoder (2,1,4) [8] 11

Figure 2.6: Tree diagram of encoder (2,1,4) [8] 13

Figure 2.7: Trellis diagram of encoder (2,1,4) [8] 14

Figure 2.8: Encoded sequence, input bits 1011000, output bits 11011111010111 [8] 15

Figure 2.9: Sequential decoding 1 [8] 18

Figure 2.10: Sequential decoding 2 [8] 19

Figure 2.11: Sequential decoding 3 [8] 20

Figure 2.12: Sequential decoding 4 [8] 20

Figure 2.13: Viterbi decoding step 1 [8] 22

Figure 2.14: Viterbi decoding step 2 [8] 22

Figure 2.15: Viterbi decoding step 3 [8] 23

Figure 2.16: Viterbi decoding step 4 [8] 24

Figure 2.17: Viterbi decoding step 5 [8] 24

Figure 2.18: Viterbi decoding step 6 [8] 25

Figure 2.19: Viterbi decoding step 7 [8] 25

Figure 2.20: Viterbi decoding step 8 [8] 26

Figure 2.21: Maximum weighted path 26

Figure 3.1: Cyclone II FPGA DE2 Board 34

Figure 3.2: Digital system design and implementation using FPGA 35

Figure 3.3: Block diagram of the proposed system 37

Figure 3.4: Convolutional encoder group 38

Figure 3.5: Viterbi decoder group 39

Figure 3.6: Convolutional13 40

ix

Figure 3.7: Convolutional12 40

Figure 3.8: Encoder1315 41

Figure 3.9: Encoder1304 41

Figure 3.10: Encoder1215 41

Figure 3.11: Encoder1204 42

Figure 3.12: Decoder1315 42

Figure 3.13: Decoder1304 42

Figure 3.14: Decoder1215 43

Figure 3.15: Decoder1204 43

Figure 3.16: Encoded and decoder integrated module 44

Figure 3.17: Complete design block 44

Figure 4.1: Simulation of encoder module (3,1,3) with trellis length 15 47

Figure 4.2: Simulation of encoder module (3,1,3) with trellis length 4 47

Figure 4.3: Simulation of encoder module (2,1,3) with trellis length 15 48

Figure 4.4: Simulation of encoder module (2,1,3) with trellis length 4 48

Figure 4.5: Coding rate 1/3, trellis length 15 49

Figure 4.6: Coding rate 1/3, trellis length 4 49

Figure 4.7: Coding rate 1/2, trellis length 15 50

Figure 4.8: Coding rate 1/2, trellis length 4 50

Figure 4.9: SWITCH input LED output of coding rate 1/2 , trellis length 4 51

Figure 4.10: SWITCH input LED output of coding rate 1/2 , trellis length 15 51

Figure 4.11: SWITCH input LED output of coding rate 1/3 , trellis length 4 51

Figure 4.12: SWITCH input LED output of coding rate 1/3 , trellis length 15 51

x

List of Tables

Title Page No

Table 2.1: Generator Polynomials found by Busgang for good rate 1/2 codes 6

Table 2.2: This look up table uniquely describes the code (2,1,3) 10

Table 2.3: This look up table uniquely describes the code (3,1,3) 10

Table 2.4: Bit Agreement used as metric to decide between the received sequences

 and the 8 possible valid code sequences 16

Table 2.5: Hamming distance metrics 21

Table 4.1: Device utilization of Cyclone II FPGA 52

Table 4.2: Comparison of different implementations. 53

Appendix A

Project Coding

xi

Acknowledgement

At first I would like to express my heartiest thanks to my supervisor, Dr. Md. Liakot Ali, for

giving me the opportunity to do my master’s project under his supervision. I am also

grateful to him for all his support, advice and encouragement throughout this project.

I gratefully acknowledge the valued advice and support from Professor and Director Dr.

S.M. Lutful Kabir, Professor and Associate Director, Dr. Md. Abul Kashem Mia and

Associate Professor Dr. Md Saiful Islam of IICT, BUET.

Finally, I want to thank all my parents and family who helped me, making this work a

success.

xii

Abstract

This project presents the design of a programmable convolutional encoder and Viterbi

decoder (CEVD) using Verilog HDL. It is implemented on FPGA platform using coding

rate, trellis length as parameter for configuring the chip. High coding rate transmission is

reliable but takes more time to decode comparing with low coding rate. Long trellis length

causes the Viterbi algorithm to take more time to decode but reliable compare with short

trellis length. These combined effects are taken as consideration for design and

implementation of the proposed system. Four different CEVD are designed using 1/2, 1/3

coding rate and 4, 15 trellis length. The design is simulated using Quartus II EDA tool and

then implemented on the Cyclone II FPGA device. Simulation and implementation results

ensure the desired functionality of the proposed design. The proposed CEVD can be used as

an intellectual property for designing application specific integrated circuit (ASIC) related

to wireless communication.

1

Chapter 1

Introduction

1.1 Overview

At Present wireless communications methods and services have been enthusiastically adopted

by people throughout the world. Particularly during the past ten years, the mobile radio

communications industry has grown by orders of magnitude, fueled by digital and RF circuit

fabrication improvements, new large-scale circuit integration, and other miniaturization

technologies which make portable radio equipment smaller, cheaper, and more reliable.

Digital switching techniques have facilitated the large scale deployment of affordable, easy-

to-use radio communication networks. These trends will continue at an even greater pace

during the next decade.

Field programmable gate array (FPGA) is a semiconductor device containing programmable

logic components and programmable interconnects. It contains up to thousands of logic

element. The programmable logic components can be programmed to duplicate the

functionality of basic logic gates such as AND, OR, XOR, NOT or more complex

combinational functions such as decoders or simple math functions

Increasing the speed of the wireless communication requires a reliable solution for data

transfer. Now a day's error correction is one of the most crucial issue for reliable wireless

data communication. The approach to error correction coding taken by modern digital

communications system starts with the ground breaking work of Shannon, Hamming and

Golay [1-3]. Additive white gaussian noise (AWGN) properties of most of the

communication media introduce noise in original data during transmission. Channel coding is

a technique to introduce redundant code in original code to remove interference and error

during transmission. Coded data in transmission side thus increases by volume but error

2

effects become less compare with uncoded data. Receiver end receives this data and decodes

the data using some technique. Viterbi decoding is one of the popular techniques to decode

data effectively. Viterbi algorithm (VA) is an optimum decoding algorithm for the

convolutional code. Convolutional encoder and Viterbi decoder (CEVD) is widely used for

reliable data communication. Most of the wireless communications devices are portable and

smaller in size. Due to this fact scientists and researchers are trying to implement the encoder

and decoder in chip level. According to environment status, data speed and error tolerance a

comprehensive and parameterized CEVD decoder is highly needed. This demand issues are

motivating new approaches to implement configurable CEVD in FPGA.

1.2 Literature Review

A highly complex Viterbi decoder someway loses its advantages, when it is adopted to

decode sequences transmitted on a low-noise channel. In this case, low minimum distance

codes are more suitable for achieving a good performance, and a higher bit rate can be

transmitted by lowering the coding rate. Complexity of Viterbi algorithm increase in terms

of convolutionally encoded trellis length. Increasing the trellis length cause the algorithm to

take more time to decode. This will cause transmission speed lower but make the

transmission more reliable. Lowering the trellis length will increase the transmission speed

but reliability may decrease. Coding rate of convolutional encoder and trellis length of

Viterbi decoder has significant effect on reliability and speed of wireless data transmission.

Implementation of CEVD is done [4-7] separately considering the different coding rate and

trellis length. Implementation of CEVD using DSP [4] or µC platform is Slow. Other

Implementations are on FPGA platform but fixed constraint length and code rate or with

partial configuration facility [5-7]. Implementation using both configurable coding rate and

3

trellis length is not done. In this project a programmable convolutional with 1/2, 1/3 coding

rate and 4, 15 trellis length is done using Verilog HDL on Altera platform.

1.3 Objectives with Specific Aims and Possible Outcome:

 This project has following objectives:

• To design the convoutional encoder with different coding rate using Verilog HDL

• To simulate the encoder using Altera’s Quartus II Software.

• To design the Viterbi decoder with different Trellis length using Verilog HDL.

• To simulate the decoder using Altera’s Quartus II Software.

• To integrate the encoder and decoder and Implement it using Altera’s high capacity

 FPGA Kit

1.4 Organization of the Project

Chapter 1 of this report starts with demand issue of a configurable CEVD followed by a brief

background of latest research work.

Chapter 2 of this report describes the details of convolutional encoder encoding technique

and Viterbi decoder decoding step by step with proper example.

Chapter 3 of this report describes the detail design and implementation of programmable

CEVD.

Chapter 4 of this report describes the simulation result of the system and chip area used by

different module of the system

Chapter 5 of this report describes the conclusion and future work of the system.

4

Chapter 2

Convolutional Coding and Viterbi Decoding

2.1 Coding and Decoding using Convolutional Code

Coding is process to change the input data such a way that it is unrecognizable to certain

environment. This is done due to reduce the adverse effect of the environment. A

convolutional code introduces redundant bits into the data stream through the use of linear

shift registers. convolutional codes are commonly specified by three parameters; (n, k, m).

The information bits are input into shift registers and the output encoded bits are obtained by

modulo-2 addition of the input information bits and the contents of the shift registers. The

connections to the modulo-2 adders were developed heuristically with no algebraic or

combinatorial foundation. Convolutional codes are commonly specified by three parameters:

n, k, m where

 n = number of output bits

 k = number of input bits

 m = number of memory registers

 The quantity k/n called the code rate, is a measure of the efficiency of the code. Commonly

and k, n parameters range from 1 to 8, m from 2 to 10 and the code rate from 1/8 to 7/8

except for deep space applications where code rates as low as 1/100 or even longer have

been employed. Often the manufacturers of convolutional code chips specify the code by

parameters (n, k, L). The quantity L is called the constraint length of the code and is defined

by Constraint Length, L = k (m-1)

The constraint length L represents the number of bits in the Encoder memory that affect the

generation of the output bits. The constraint length L is also referred to by the capital letter

K, which can be confusing with the lower case k, which represents the number of input bits.

In some books K is defined as equal to product the of k and m. Often in commercial

5

specification, the codes are specified by (r, K), where r = the code rate k/n and K is the

constraint length. The constraint length K however is equal to L - 1.

2.2 Code Parameters and the Structure of the Convolutional Code

 The convolutional code structure is easy to draw from its parameters. First m boxes

representing the memory registers are drawn. Then modulo-2 adders to represent the n

output bits. Now the memory registers are connected to the adders based on the generator

polynomial as shown in Figure 2.1

Figure 2.1: This (3, 1, 3) convolutional, 3 memory registers, 1 input bit and 3 output bits

This is a rate 1/3 code. Each input bit is coded into 3 output bits. The constraint length of

the code is 2. The 3 output bits are produced by the 3 modulo-2 adders by adding up certain

bits in the memory registers. The selection of which bits are to be added to produce the

output bit is called the generator polynomial (g) for that output bit. For example, the first

output bit has a generator polynomial of (1, 1, 1). The output bit 2 has a generator

polynomial of (0, 1, 1) and the third output bit has a polynomial of (1, 0, 1). The output bits

just the sum of these bits.

 v = mod2 (u1 + u0 + u-1)

6

 v = mod2 (u0 + u-1)

 v = mod2 (u1 + u-1)

The polynomials give the code its unique error protection quality. One (3, 1, 4) code can

have completely different properties from an another one depending on the polynomials

chosen. There are many choices for polynomials for any order code. They do not all result

in output sequences that have good error protection properties. Petersen and Weldons book

contains a complete list of these polynomials. Efficient polynomials are found from this list

usually by computer simulation. A list of good polynomials for rate 1/2 codes is given

below.

Table 2.1: Generator Polynomials found by Busgang for good rate 1/2 codes

Constraint Length G1 G2

3 110 111

4 1101 1110

5 11010 11101

6 110101 111011

7 110101 110101

8 110111 1110011

9 110111 111001101

10 110111001 111001101

The (2, 1, 3) code in Figure 2.2 has a constraint length of 3. The shaded registers below hold

these bits. The unshaded register holds the incoming bit. This means that 3 bits or 8

different combination of these bits can be present in these memory registers. These 8

different combinations determine what output we will get for v1 and v2, the coded

sequence. The number of combinations of bits in the shaded registers are called the states of

the code and are defined by

7

 Number of states = 2L

Figure 2.2: The states of a code indicate what is in the memory registers

The output bit depends on this initial condition which changes at each time tick. Lets

examine the states of the code (2, 1, 3) shown Figure 2.2. This code outputs 2 bits for every

1 input bit. It is a rate 1/2 code. Its constraint length is 2. The total number of states is equal

to 4. The four states of this code (2, 1, 3) are: 00, 01, 10, 11.

2.3 Encoding of Bit Sequence

First a single bit 1 is passed through this Encoder as shown in Figure 2.3.

a) At time t = 0, we see that the initial state of the encoder is all zeros (the bits in the

 right most L register positions). The input bit 1 causes two bits 11 to be output.

 Output bits are computed by a mod 2 sum of all bits in the registers for the first

 bit and a mod2 sum of two bits for second output bit per the polynomial

 coefficients.

 b) At t = 1, the input bit 1 moves forward one register. The input register is now

 empty and is filled with a flush bit of 0. The encoder is now in state 10. The

 output bits are now again 11 by the same math.

8

c) The input bit 1 moves forward again. Now the encoder state is 01 and an another

 flush bit is moved into the input register. The output bits are now 10.

d) At time 3, the input bit moves from the last register and the input state is 00. The

 output bits are now 00. At time 3, the input bit 1 has passed completely thorough

 the encoder and the encoder has been flushed to an all zero state, ready for the

 next sequence. A single bit has produced an 8-bit output although nominally the

 code rate is 1/2. This shows that for small sequences the overhead is much higher

 than the nominal rate, which only applies to long sequences. If the same thing is

 done with a 0 bit, we would get an 8 bit all zero sequence.

 Figure 2.3: A sequence consisting of a solo 1 bit as it goes through the encoder [8]

9

The 1 bit has a response of 11 11 10 00 which is called the impulse response of this

Encoder. Thus the 0 bit similarly has an impulse response 00 00 00 00. Convolving the

input sequence with the code polynomials produced these two output sequences, which is

why these codes are called convolutional codes.

2.4 Encoding Technique

There are several method of designing the Encoder. These are

1. Lookup Table

2. State Diagram.

3. Tree Diagram.

4. Trillis Diagram.

 2.4.1 Lookup Table

The look up table consists of four items.

1. Input bit

2. The input state of the encoder, For code (2, 1, 3) the memory register bits are

 3-1 =2 bits So four possible states will be found for code (2, 1, 3)

 3. The output bits. For code (2, 1, 3) 2 bits are output and the choices are 00, 01, 10,

 11. For the code (3, 1, 3) 3 bits are output and the choices are 000, 001, 010,

 011, 100, 101, 110, 111.

 4. The output state which will be the input state for the next bit.

10

 Table 2.2: This look up table uniquely describes the code (2, 1, 3)

Input Bit Input State Output Bits Output State

0 00 00 00

1 00 11 10

0 01 10 00

1 01 01 10

0 10 11 01

1 10 00 11

0 11 01 01

1 11 10 11

 Table 2.3: This look up table uniquely describes the code (3, 1, 3)

Input Bit Input State Output Bits Output State

0 00 000 00

1 00 101 10

0 01 111 00

1 01 010 10

0 10 110 01

1 10 011 11

0 11 001 01

1 11 100 11

2.4.2 State Diagram

A state diagram for code (2, 1, 4) is shown in Figure 2.5. Each circle represents a state. At

any one time, the encoder resides in one of these states. The lines to and from it show state

transitions that are possible as bits arrive. Only two events can happen at each time, arrival

of a 1 bit or arrival of a 0 bit. Each of these two events allows the encoder to jump into a

different state. The state diagram does not have time as a dimension and hence it tends to be

not intuitive.

11

 Figure 2.4: A convolutional encoder with 1/2 code rate and 4 memory register

 Figure 2.5: State diagram of encoder (2, 1, 4) [8]

Compare the above State diagram to the encoder lookup table. The state diagram contains

the same information that is in the table lookup but it is a graphic representation. The solid

lines indicate the arrival of a 0 and the dashed lines indicate the arrival of a 1. The output

bits for each case are shown on the line and the arrow indicates the state transition. state

12

determines how many ways a travel can be done . Some encoder states allow outputs of 11

and 00 and some allow 01 and 10. No state allows all four options.

Encoding the sequence 1011 using the state diagram

(1) Always start at state 000. The arrival of a 1 bit outputs 11 and puts in state 100.

(2) The arrival of the next 0 bit outputs 11 and put in state 010.

(3) The arrival of the next 1 bit outputs 01 and puts in state 101.

(4) The last bit 1 takes to state 110 and outputs 11. So now the sequence 11 11 01

 11. But this is not the end. We have to take the Encoder back to all zero state.

(5) From state 110, go to state 011 outputting 01.

(6) From state 011 next state 001 outputting 01 and then

(7) To state 00 with a final output of 11.

 The final answer is : 11 11 01 11 01 01 11

This is the same answer as adding up the individual impulse responses for bits 1011000.

2.4.3 Tree Diagram

 Figure 2.6 shows the tree diagram for the code (2, 1, 4). The tree diagram attempts to show

the passage of time as travel deeper into the tree branches. It is somewhat better than a state

diagram but still not the preferred approach for representing convolutional codes. Here

instead of jumping from one state to another, branches of the tree is traverse depending on

whether a 1 or 0 is received. The first branch in Figure 2.6 indicates the arrival of a 0 or a 1

bit. The starting state is assumed to be 000 as no input first arrived. If a 0 is received,

upwards traverse is done and if a 1 is received, then downwards traverse is done. In Figure

2.6, the solid lines show the arrival of a 0 bit and the shaded lines the arrival of a 1 bit. The

first 2 bits show the output bits and the number inside the parenthes is the output state.

13

Considering the sequence 1011 as before. At branch 1, downwards traverse is done . The

output is 11 and the state is new 111. Now for 0 bit, upwards traverse is done. The output

bits are 11 and the state is now 011. The next incoming bit is 1. Going downwards and get

an output of 01 and now the output state is 101. The next incoming bit is 1 so going

downwards again and gets output bits 11. From this point, in response to a 0 bit input, an

output of 01 and an output state of 011 is found. If the sequence were longer, the tree

diagram would have been repeated.

 Figure 2.6: Tree diagram of encoder (2, 1, 4) [8]

2.4.4 Trellis Diagram

 Trellis diagrams are messy but generally preferred over both the tree and the state diagrams

because they represent linear time sequencing of events. The x-axis is discrete time and all

14

possible states are shown on the y-axis. We move horizontally through the trellis with the

passage of time. Each transition means new bits have arrived.

 Figure 2.7: Trellis diagram of encoder (2, 1, 4) [8]

The trellis diagram is drawn by lining up all the possible states (2L

parentheses. The arrows going upwards represent a 0 bit and going downwards represent a 1

bit. The trellis diagram is unique to each code, same as both the state and tree diagrams are.

) in the vertical axis.

Then each state to the next state is connected by the allowable codewords for that state.

There are only two choices possible at each state. These are determined by the arrival of

either a 0 or a 1 bit. The arrows show the input bit and the output bits are shown in

15

 Figure 2.8: Encoded Sequence, input bits 1011000, output bits 11011111010111 [8]

In Figure 2.8, the incoming bits are shown on the top. Starting at point 1 upward traverse is

done for a 0 bit and downward traverse is done for a 1 bit. The path taken by the bits of the

example sequence (1011000) is shown by the lines. Trellis diagram gives exactly the same

output sequence as the other three methods, namely the impulse response, state and the tree

2.5 Decoding Technique

There are several different approaches to decoding of convolutional codes. These are

grouped in two basic categories.

 1. Sequential decoding - Fano algorithm

 2. Maximum likely-hood decoding - Viterbi decoding

Both of these methods represent 2 different approaches to the same basic idea behind

decoding. If 3 bits were sent via a rate 1/2 code. 6 bits are received. (Ignoring flush bits for

now.) These six bits may or may not have errors. From the encoding process these bits map

uniquely. So a 3 bit sequence will have a unique 6 bit output. But due to errors, receiving

16

end can receive any and all possible combinations of the 6 bits. The permutation of 3 input

bits results in eight possible input sequences. Each of these has a unique mapping to a six

bit output sequence by the code. These form the set of permissible sequences and the

decoder's task is to determine which one was sent.

Table 2.4: Bit agreement used as metric to decide between the received sequence and the 8

 possible valid code sequences
Input Valid Code Sequence Received Sequence Bit Agreement

000 000000 111100 2

001 000011 111100 0

010 001111 111100 2

011 001100 111100 4

100 111110 111100 5

101 111101 111100 5

110 110001 111100 3

111 110010 111100 3

If we receive 111100. It is not one of the 8 possible sequences above. The decoding can be

done following two way

1. Comparing this received sequence to all permissible sequences and pick the one

 with the smallest hamming distance (or bit disagreement)

 2. A correlation can be created and pick the sequences with the best correlation.

The first procedure is basically what is behind hard decision decoding and the second the

soft-decision decoding. The bit agreements, also the dot product between the received

sequence and the codeword, show that an ambiguous answer can be found and original data

will not be found.

17

As the number of bits increase, the number of calculations required to do decoding in this

brute force manner increases such that it is no longer practical to do decoding this way. a

more efficient method is needed that does not examine all options and has a way of

resolving ambiguity such as here with two possible answers. (shown in bold in Table 2.4).

If a message of length s bits is received, then the possible number of codewords are 2S

.

2.5.1 Sequential Decoding

Sequential decoding was one of the first methods proposed for decoding a convolutionally

coded bit stream. It was first proposed by Wozencraft and later a better version was

proposed by Fano.

Sequential decoding allows both forwards and backwards movement through the trellis. The

decoder keeps track of its decisions, each time it makes an ambiguous decision, it tallies it.

If the tally increases faster than some threshold value, decoder gives up that path and

retraces the path back to the last fork where the tally was below the threshold.

Example:

If a Encoder with code (2, 1, 4) and Input Sequence is 1011 000 then the output sequence

will be: 11 11 01 11 01 01 11 (If no errors occurred)

Considering one error occurred at first position and the received output is

01 11 01 11 01 01 11

2.5.1.1 Decoding using Sequential Decoding Algorithm

Decision point 1: The decoder looks at the first two bits, 01. Right away it sees that an error

has occurred because the starting two bits can only be 00 or 11. Any one of this two has

18

error. The decoder randomly selects 00 as the starting choice. To correspond to 00, it

decodes the input bit as a 0. It puts a count of 1 into its error counter. It is now at point 2.

 Figure 2.9: Sequential decoding 1 [8]

Decision point 2: The decoder now looks at the next set of bits, which are 11. From here, it

makes the decision that a 1 was sent which corresponds exactly with one of the codewords.

This puts it at point 3.

Decision point 3: The received bits are 01, but the codeword choices are 11, 00. This is seen

as an error and the error count is increased to 2. Since error count is less than the threshold

value of 3 (which we have set based on channel statistics) the decoder proceeds ahead. It

arbitrarily selects the upper path and proceeds to point 4 making a decision that a 0 was

sent.

Decision point 4: It recognizes another error since the received bits are 11 but the codeword

choices are 10, 01. The error tally increases to 3 and that tells the decoder to turn back.

19

 Figure 2.10: Sequential decoding 2 [8]

Decision point 5: The decoder goes back to point 3 where the error tally was less than 3 and

takes the other choice to point 5. It again encounters an error condition. The received bits

are 11 but the codewords possible are 01, 10. The tally has again increased to 3. It turns

back again

Decision point 6: Both possible paths from point 3 have been exhausted. The decoder must

go further back than point 3. It goes back to pint 2. But here if it follows to point 2 the error

tally immediately goes up to 3. So it must turn back from point 2 back to point 1.

20

 Figure 2.11: Sequential decoding 3 [8]

From point 1, all choices encountered meet perfectly with the codeword choices and the

decoder successfully decodes the message as 1011000.

 Figure 2.12: Sequential decoding 4 [8]

The memory requirement of sequential decoding is manageable and so this method is used

with long constraint length codes where the S/N is also low. Some NASA planetary mission

links have used sequential decoding.

21

2.5.1.2 Maximum Likelihood and Viterbi Decoding

 Viterbi decoding is the best known implementation of the maximum likely-hood decoding.

The principal used to reduce the choices is this.

 1. The errors occur infrequently. The probability of error is small.

 2. The probability of two errors in a row is much smaller than a single error, that is the

 errors are distributed randomly.

The Viterbi decoder examines an entire received sequence of a given length. The decoder

computes a metric for each path and makes a decision based on this metric. All paths are

followed until two paths converge on one node. Then the path with the higher metric is kept

and the one with lower metric is discarded. The paths selected are called the survivors. For

an N bit sequence, total numbers of possible received sequences are 2N

2

. Of these only

KL

Table 2.5: Humming distance metrics

 are valid. The Viterbi algorithm applies the maximum-likelihood principles to limit the

comparison to 2 to the power of kL surviving paths instead of checking all paths. The most

common metric used is the hamming distance metric. This is just the dot product between

the received codeword and the allowable codeword.

Bits

Received

Valid Codeword1 Valid Codeword2 Humming

Metric 1

Humming

Metric 2

00 00 11 2 0

01 10 01 0 2

10 00 11 1 1

These metrics are cumulative so that the path with the largest total metric is the final

winner.

In the following example received sequence 01 11 01 11 01 01 11 is decoded using Viterbi

decoding algorithm.

22

At t = 0, received bit is 01. The decoder always starts at state 000. From this point it has two

paths available, but neither matches the incoming bits. The decoder computes the branch

metric for both of these and will continue simultaneously along both of these branches in

contrast to the sequential decoding where a choice is made at every decision point. The

metric for both branches is equal to 1, which means that one of the two bits was matched

with the incoming bits.

Figure 2.13: Viterbi decoding step 1 [8]

At t = 1, the decoder fans out from these two possible states to four states. The branch

metrics for these branches are computed by looking at the agreement with the codeword and

the incoming bits which are 11. The new metric is shown on the right of the trellis.

Figure 2.14: Viterbi decoding step 2 [8]

23

At t = 2, the four states have fanned out to eight to show all possible paths. The path metrics

calculated for bits 01 and added to pervious metrics from t = 1.

 Figure 2.15: Viterbi decoding step 3 [8]

At t = 4, the trellis is fully populated. Each node has at least one path coming into it. The

metrics are as shown in Figure 2.15.

At t = 5, the paths progress forward and now begin to converge on the nodes. Two metrics

are given for each of the paths coming into a node. Per the maximum likelihood principle, at

each node the path with the lower metric is discarded because it is least likely. This

discarding of paths at each node helps to reduce the number of paths that have to be

examined and gives the Viterbi method its strength.

24

Figure 2.16: Viterbi decoding step 4 [8]

Now at each node, one or more path is available for converging. The metrics for all paths

are given on the right. At each node, Only the path with the highest metric will be kept and

discard all others, shown in red. After discarding the paths with the smaller metric, the

following paths are left. The metric shown is that of the winner

path.

Figure 2.17: Viterbi decoding step 5 [8]

25

At t = 5, after discarding the paths as shown, again forward traverse and computation of

new metrics is done. At the next node, paths converge occurred and paths with lower

metrics is discarded.

Figure 2.18: Viterbi decoding step 6 [8]

At t= 6, the received bits are 11. Again the metrics are computed for all paths. All smaller

metrics paths are discarded but kept anyone if they are equal.

Figure 2.19: Viterbi decoding step 7 [8]

26

The 7-step trellis is complete. Now the path with the highest metric is winner. The path

traced by states 000, 100, 010, 101, 110, 011, 001, 000 and corresponding to bits 1011000 is

the decoded sequence.

 Figure 2.20: Viterbi decoding step 8 [8]

The maximum weighted path is shown in Figure 2.20

Figure 2.21: Maximum weighted path

27

The length of this trellis was 4bits + m bits. Ideally this should be equal to the length of the

message, but by a truncation process, storage requirements can be reduced and decoding

need not be delayed until the end of the transmitted sequence.

28

Chapter 3

Design and Implementation
3.1 Introduction

Verilog HDL is one of the most popular high definition language to design digital circuit. In

this project CEVD is designed and simulated using Verilog HDL in Altera’s Quartus II

environment. After simulating the result the design is implemented using Cyclone II FPGA

board. Convolutional encoder uses the lookup table to generate output data and next state of

the Encoder. Viterbi decoder is designed using the maximum likelihood algorithm.

3.2 Verilog HDL (Hardware Definition Language)

In the earlier, the conventional approach such as hand-draw and schematic based design

technique was the only choice to the designer to design a digital system. But now millions

of transistors are being integrated on a single chip integrated circuit (IC) where the

conventional design technique is insufficient to be used. It points towards having a new

approach for designing today’s complex digital system and that is hardware description

language (HDL).

HDL based design technique has been emerged as the most efficient solution. It offers the

following advantages over conventional based design approaches.

• It is technology independent. If a particular IC fabrication process becomes

outdated, it is possible to synthesize a new level design by only changing the

technology file but using the same HDL code.

• HDL shortens the design cycle of a chip by efficiently describing and simulating the

behavior of the chip. A complex circuit can be designed using a few lines of HDL

code.

• It lowers the cost of design of an IC.

29

• It improves design quality of a chip. Area and timing of the chip can be optimized

and analyzed in different stages of design.

There are different types of HDL available in the market. Some of these are vendor

dependent where the HDL code is only useable under the software provided by the specific

vendor. For example, Altera hardware description language (AHDL) from Altera company,

Lola (Logic Language) from European Silicon Structure (ES2) company etc. However

Verilog and VHDL (very high speed IC hardware description language) are the two vendor

independent HDL which are now widely accepted industry standard electronic design

automation (EDA) tool for designing digital system. Verilog HDL is introduced by Cadence

Data Systems, Inc. and later its control is transferred to a consortium of companies and

universities known as open Verilog international (OVI) whereas VHDL is used primarily by

defense contractors. Currently Verilog is widely used by IC designers. Verilog HDL is

IEEE standard and easier than VHDL. It is less error prone. It has many pre-defined

features very specific to IC design.For this reason Verilog is chosen to design and

implement AES processor.

3.3 Implementation using FPGA

In most FPGAs, programmable logic components (or logic blocks, in FPGA parlance) also

include memory elements, which may be simple flip-flops or more complete blocks of

memories. These logic blocks and interconnects can be programmed after the

manufacturing process by the customer/designer (hence the term "field programmable", i.e.

programmable in the field) so that the FPGA can perform whatever logical function is

needed.

There are various vendor manufacturers for different types of FPGA chip such as Altera,

Xilinx, Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, Atmel,

Achronix Semiconductor etc. Among them Altera and Xilinx are the most famous FPGA

http://en.wikipedia.org/wiki/Altera�
http://en.wikipedia.org/wiki/Xilinx�
http://en.wikipedia.org/wiki/Lattice_Semiconductor�
http://www.actel.com/�
http://www.quicklogic.com/�
http://en.wikipedia.org/wiki/Cypress_Semiconductor�
http://en.wikipedia.org/wiki/Atmel�
http://www.achronix.com/�

30

companies since both of the companies have lot of varieties of FPGA device from small

number of gate counts to higher number of gate counts. However Altera devices offer the

general benefits of PLDs as innovative architectures, advanced process technologies, state-

of-the-art development tools, and a wide selection of mega function. The common

advantages of Altera devices include: high performance, high-density logic integration,

cost-effectiveness, short development cycles with the Quartus II software, Mega core

functions, Benefits of in-system programming. In this work the FPGA device used is Altera

provided EP2C35F672C6 from Cyclone II family.

3.4 Development Tool Quartus II

The AES processor is designed using Quartus II EDA tool (provided by Altera Company)

which provides graphical user interface (GUI) to download the digital design AES into the

Cyclone II FPGA.

Quartus II software provides a simple, automated mechanism to allow designers to obtain the

best performance for their designs. This software provides the way to design the solution

through Verilog HDL and complile the design to ensure the workability and efficiency

logically. The tool programmer allows using files generated by the compiler to program

and/or configuring all devices supported by the Quartus II software. Programmer and

supported programming hardware tool is used to easily program or configure a working

device in minutes. After a successful compilation, download configuration data into a device

through the, ByteBlaster or USB-Blaster communications cables, or through the Altera

Programming Unit (APU).The program or configure devices can be in Passive Serial mode,

Active Serial Programming mode, JTAG mode, or In-Socket Programming mode.

Program an Altera Device: When the design is ready to program or configure a device, it

needs to open the programmer and create a chain description file (.cdf) that stores device

31

name, device order, programming and hardware setup information. CDFs can be used to

program or configure one or more devices in a JTAG chain or a passive serial chain.

Compiling Mode: The Quartus II Compiler consists of a set of independent modules that

check the design for errors, synthesize the logic, fit the design into an Altera device, and

generate output files for simulation, timing analysis, software building, and device

programming. The basic compiler consists of the analysis & synthesis, fitter, assembler, and

timing analyzer modules. Each of the compiler modules can be run individually or together

from the Quartus II user interface. Alternatively, these modules can be run independently

with the appropriate command line executable.

Compile the Design: The compiler automatically locates and uses all non-design files

associated with the design, such as include files (.inc) containing AHDL function prototype

statements; memory initialization files (.mif) or hexadecimal intel-format files (.hex)

containing the initial content of memories; as well as Quartus II project Files (.qpf) and

Quartus II settings files (.qsf) containing project and setting information. During

compilation, the compiler generates information, warning, and error messages that appear

automatically in the messages window.

Simulation Mode: Simulation allows testing a design thoroughly to ensure that it responds

correctly in every possible situation before configuring a device. Depending on the type of

information need, functional or timing simulation can be performed with the simulator.

Functional simulation tests only the logical operation of a design by simulating the behavior

of flattened netlist extracted from the design files, while timing simulation uses a fully

compiled netlist containing timing information to test both the logical operation and the

worst-case timing for the design in the target device. Before running a simulation, it is

necessary to specify input vectors as the stimuli for the Quartus II Simulator. The simulator

32

uses these input vectors to simulate the output signals that a programmed device would

produce under the same conditions. The simulator supports input vector stimuli in the form

of a vector waveform file (.vwf), vector table output file (.tbl), power input file (.pwf), or a

Quartus II generated vector file (.vec) or simulator channel file (.scf).

3.5 Field Programmable Gate Array (FPGA)

A field programmable gate array (FPGA) or programmable logic device (PLD) is a

semiconductor device containing programmable logic components and programmable

interconnects. It contains up to thousands of gates. The programmable logic components can

be programmed to duplicate the functionality of basic logic gates such as AND, OR, XOR,

NOT or more complex combinational functions such as decoders or simple math functions. In

most FPGAs, programmable logic components also include memory elements, which may be

simple flip-flops or more complete blocks of memories. These logic blocks and interconnects

can be programmed after the manufacturing process by the customer/designer (hence the

term" field programmable") so that the FPGA can perform whatever logical function is

needed.

3.5.1 Cyclone II FPGA DE2 board

Altera's Cyclone

• Altera Cyclone II 2C35 FPGA with 35000 LEs

 II FPGA family is designed on an all-layer-copper, low-k, 1.2-V SRAM

process and is optimized for the smallest possible die size. Built on TSMC’s highly

successful 90-nm process technology using 300-mm wafers, the Cyclone II FPGA family

offers higher densities, more features, exceptional performance, and the benefits of

programmable logic at ASIC prices. The Cyclone II FPGA family extends the reach of

FPGAs further into cost-sensitive, high-volume applications, continuing the success of the

Cyclone FPGA family. Cyclone II FPGA has following facilities.

• Altera Serial Configuration deivices (EPCS16) for Cyclone II 2C35

33

• USB Blaster built in on board for programming and user API controlling

• JTAG Mode and AS Mode are supported

• 8Mbyte (1M x 4 x 16) SDRAM

• 512K byte(256K X16) SRAM

• 4Mbyte Flash Memory (upgradeable to 4Mbyte)

• SD Card Socket

• 4 Push-button switches

• 18 DPDT switches

• 9 Green User LEDs

• 18 Red User LEDs

• 16 x 2 LCD Module

• 50MHz Oscillator and 27MHz Oscillator for external clock sources

• 24-bit CD-Quality Audio CODEC with line-in, line-out, and microphone-in jacks

• VGA DAC (10-bit high-speed triple DACs) with VGA out connector

• TV Decoder (NTSC/PAL) and TV in connector

• 10/100 Ethernet Controller with socket.

• USB Host/Slave Controller with USB type A and type B connectors.

• RS-232 Transceiver and 9-pin connector

• PS/2 mouse/keyboard connector

• IrDA transceiver

• Two 40-pin Expansion Headers with diode protection

34

Figure 3.1: Cyclone II FPGA DE2 Board

3.5.2 Design Flow for FPGA Implementation using Quartus II 7.0

Figure 3.2 shows flow diagram of a design to be realized into FPGA hardware. Once the sub-

modules of a design are identified, each of the modules is designed, compiled and

synthesized using FPGA vendor provided software. Then functional simulation is performed

upon each module. The correct simulation results ensure the proper functionality of a design.

Once the simulation results of all the sub-modules are as desired then they are integrated and

simulated again. Then for hardware realization, suitable FPGA device is selected for the

design, inputs and outputs are assigned to specific pins of the FPGA. It is again compiled and

synthesized.

35

After that timing simulation of the design is performed to ensure that the design functions in

real time. Then the design is downloaded into the FPGA.

Figure 3.2: Digital system design and implementation using FPGA

36

So to implement the circuits that will be designed on the FPGA there are few key steps.

1. Start new project

2. Create a new Verilog HDL file

3. Write the program using Verilog HDL.

4. Compile the code.

5. Correct any syntax errors.

6. Create a vector web form file

7. Pin assignment

8. Simulate the circuit to make sure that getting the expected behavior.

9. Download the program onto the FPGA

10. Test the operation of circuit.

Quartus II helps to implement all of the above easily.

3.5.3 Input Output Device

The DE2 board provides 18 toggle switches, called SW17¡0, that can be used as inputs to a

circuit, and 18 red lights, called LEDR17¡0, that can be used to display output values. Single

assignment statement has been used for all 18 input output device.

37

3.6 Analysis and Design Methodology

3.6.1 Block Diagram

The project block diagram (Figure 3.3) shows the total design at a glance with functionality

of different module

 Figure 3.3: Block diagram of the proposed System

Block diagram shows different functions designed to modularized the total system. Input

data first feed into convolutional encoder. Convolutional encoder make this data two or

three fold according to different code rate. Using random error generator errors in different

bit position are introduced in encoder output data. Next state generator function used this

erroneous data in sequential manner combining 2 bits for 1/2 code rate and 3 bits for 1/3

code rate. This combined bits are compared with '0' output comparator and '1' output

comparator and path matrix with path weights are generated. After completing the pattern

matching maximum weighted path finding function is used to find the best survival path.

38

3.6.2 Encoder Group Design

Four separate encoder blocks are integrated in this encoder group design. These are

 1) Encoder module 1 with 1/2 code rate, 3 constraint length, 4 trellis length

 2) Encoder module 2 with 1/2 code rate, 3 constraint length, 15 trellis length

 3) Encoder module 1 with 1/3 code rate, 3 constraint length, 4 trellis length

 4) Encoder module 2 with 1/3 code rate, 3 constraint length, 15 trellis length

Figure 3.4: Convolutional encoder group

Selection variable S1 and S0 is used to select different module of convolutional encoder and

corresponding output of this module is taken to transmit. Internal calculation of each

module will be activated after receiving the predefined selection bit combination. The

module without valid selection bit combination will always output '0' bit.

3.6.3 Decoder Group Design

Four separate decoder blocks are integrated in this decoder group design. These are

 1) Decoder module 1 with 1/2 code rate, 3 constraint length, 4 trellis length

 2) Decoder module 2 with 1/2 code rate, 3 constraint length, 15 trellis length

39

 3) Decoder module 3 with 1/3 code rate, 3 constraint length, 4 trellis length

 4) Decoder module 4 with 1/3 code rate, 3 constraint length, 15 trellis length

Figure 3.5: Viterbi decoder group

Verilog HDL provide task and function facility to modularize the large design. Each decoder

module is sub divided into different tasks and function. Next state generator, hamming

distance calculation, branch matrices calculation all this are implemented using task and

function. S1 and S0 Selection variable are used to select different Viterbi decoders. This

Decoder selection variable has one to one relation with encoder selection variable.

3.6.4 Main Module of CEVD

Each module is individually design with corresponding input data, output data and Enable

signal. Enable signal is used to choice different encoder and decoder. According to four

binary combination of two enable signal corresponding encoder and decoder output is

selected.

40

3.6.5 Block Diagram of different Module

Total project work is divided into ten different module. Smaller modules are embedded to

large module. Block diagram shows the functionality, input, output and interface facility to

other module. Each module is described below.

Convolutional13 Module: 1/3 code rate convolutional encoder is Shown in figure 3.6.

Convolutional encoder takes three binary data as input. In these data two LSB bits are

previous memory register data and MSB bit is the new data. After processing the module 2

operation three output bits are generated. rst is use to enable the circuit.

rst

idata[2..0]

clk

odata[2..0]

conv olutional13

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

Figure 3.6: Convolutional13

Convolutional12 Module: This is same as convolutional encoder with code rate 1/3 except

that this encoder produce two output bit at a time. Only two module 2 operation is done here.

Figure 3.7 shows this 1/2 code rate convolutional encoder.

rst

idata[2..0]

clk

odata[1..0]

conv olutional12

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

Figure 3.7: Convolutional12

Encoder1315 Module: According to the figure 3.8 this module use 15 binary data as input

and produce 51 binary data as output . This module use convolutional13 module as sub

module for fifteen times. Output is generated using parallel execution of fifteen sub modules.

rst is used as selection variable where '100' value is fixed for this module to be activated.

41

rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1315

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

Figure 3.8: Encoder1315

Encoder1304 Module: This module use 4 binary data as input and produce 18 binary data as

output shown in figure 3.9. Here extra 33 bits of output port remain '0' . This is done due to

make the same length of output register for whole design. This module use convolutional13

module as sub module for four times. Output is generated using parallel execution of four sub

modules . rst is used as selection variable where '101' value is fixed for this module to be

activated.

rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1304

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

VCC
Encoded Data INPUT

Figure 3.9: Encoder1304

Encoder1215 Module: This module use 15 binary data as input and produce 34 binary data

as output shown in Figure 3.10. This module uses convolutional12 module as sub module for

fifteen times. Output is generated using parallel execution of fifteen sub modules. rst is used

as selection variable where '110' value is fixed for this module to be activated

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1215

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded SequenceOUTPUT

Figure 3.10: Encoder1215

Encoder1204 Module: This module use 4 binary data as input and produce 12 binary data as

42

output shown in Figure 3.11. Here extra 21 bits of output port remain '0'. This module use

convolutional12 module as sub module for four times. Output is generated using parallel

execution of four sub modules. rst is used as selection variable where '111' value is fixed for

this module to be activated.

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1204

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

Figure 3.11: Encoder1204

Decoder1315 Module: According to Figure 3.12 this module decode 1/3 code rate and 15

trellis length encoded data at a time. rst is use to activate this decoder where '100' is fixed for

this module to be activated. Input data is 51 bit length and output is 15 bit length.

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1315

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

Figure 3.12: Decoder1315

Decoder1304 Module: This module decode 1/3 code rate and 4 trellis length encoded data at

a time. rst is use to activate this decoder where '101' is fixed for this module to be activated.

Input data is 18 bit length and output is 4 bit length. The remaining 33 input bit and 11 output

bit will be ‘0’. The Figure 3.13 depict the module.

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1304

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

Figure 3.13: Decoder1304

43

Decoder1215 Module: According to Figure 3.14 this module decode 1/2 code rate and 15

trellis length encoded data at a time. rst is use to activate this decoder where '110' is fixed for

this module to be activated. Input data is 34 bit length and output is 15 bit length.

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1215

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

Figure 3.14: Decoder1215

Decoder1204 Module: According to Figure 3.15 this module decode 1/2 code rate and 4

trellis length encoded data at a time. rst is use to activate this decoder where '111' is fixed for

this module to be activated. Input data is 12 bit length and output is 4 bit length. The

remaining 21 input bit and 11 output bit will be '0' .

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1204

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

Figure 3.15: Decoder1204

Encoded and Decoder Integrated Module: All encoder and decoder modules are integrated

with this module shown in Figure 3.16. Selection variable is used to choice the encoder and

decoder module group at a time. There is no separate module for convolutional13 and

convolutional12 due to the fact that these are integrated within each encoder module.

44

rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1315

inst

rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1304

inst1

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1215

inst2

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1204

inst3

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1315

inst4

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1304

inst5

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1215

inst6

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1204

inst7

V
C

C
C

E
V

D
 S

e
le

c
ti
o
n

IN
P

U
T

V
C

C
In

p
u
t

D
a
ta

IN
P

U
T

V
C

C
C

lo
c
k

IN
P

U
T

O
u
tp

u
t

D
a
ta

O
U

T
P

U
T

Figure 3.16: Encoded and decoder integrated module

Complete Design Block: Figure 3.17 depict the complete design block of CEVD. Three

input pin and one output is shown in this block. CEVD group selector select the encoder

decoder group. Row data is binary data and output data is the same to row data after

performing the encode and decode operation.

rst[2..0]

idata[14..0]

clk

coutput[14..0]

cev dIntq

inst

VCC
CEVD group selector INPUT

VCC
Row data INPUT

VCC
Clock INPUT

Ouput DataOUTPUT

Figure 3.17: Complete design block

45

3.6.6 Important task and function

3.6.6.1 Next State Generator

This function take memory register data, one binary input data and generate the next state

of the memory register.

3.6.6.2 Output One

This function take memory register, '1' as incoming binary data and generate the 2 or 3

output according to the Encoder coding rate.

3.6.6.3 Output Zero

This function take memory register, '0' as incoming binary data and generate the 2 or 3

output according to the Encoder coding rate.

3.6.6.4 Hamming Distance

This function take two same length binary string as input and output the humming distance

of these two strings.

3.6.6.5 Maximum Path Weight

This function use global array of total path and total weight of different path as input and

return maximum weighted path.

46

 Chapter 4

Results and Discussions
4.1 Introduction

This Chapter show the simulation result and usage of chip area of the proposed system.

Quartus II 7.0 web edition is used for simulation of entire design. Simulation is done using

timing diagram.

4.2 Simulation Result

The simulation of the total project is done step by step to check the validity of encoder and

decoder module. After performing different smaller modules simulation modules are

integrated part by part according to design consideration. The integrated modules are then

simulated to justify the overall outcome. Thus simulation phase is solely divided into two part

1) Simulation of encoder module

2) Simulation of decoder and encoder integrated module.

4.2.1 Simulation of Encoder Module

In this simulation phase input data is considered as 'idata' in the following Figure 4.1. 'rst' is

selection variable to chose different coding rate encoder and 'odatathree' is the output coded

data from 1/3 encoder. According to Figure 4.1 'idata' is 15 bit long to produce the trellis

length 15. 'rst' is set to 100 which is fixed for 1/3 coding rate and 15 trellis length.

47

Figure 4.1: Simulation of encoder module (3,1,3) with trellis length 15

Figure 4.2 below depict the simulation of 1/3 coding rate, 4 trellis length. Here the 'rst' value

is set to 101 fixed for this coding rate and trellis length. From the input bit 101100100111010

only 1010 from LSB is converted by encoder leaving the rest of 11 bits to binary 0 in

'odatathree'.

Figure 4.2: Simulation of encoder module (3,1,3) with trellis length 4

The next two Figure 4.3 and Figure 4.4 are same to above simulation but only difference is

the code rate 1/2 so the output sequence is double by input sequence. Here value of 'rst' is

also different and unique in order to maintain selection criteria.

48

Figure 4.3: Simulation of encoder module (2,1,3) with trellis length 15

Figure 4.4: Simulation of encoder module (2,1,3) with trellis length 4

4.2.2 Simulation of Decoder and Encoder Integrated Module

In this simulation phase the decoder module is designed separately and integrated with

Encoder module due to the fact that the output of encoder will be the input of decoder. Here

'idata' is input data in binary format . 'odatatwo', 'odatathree' is for rate 1/2 and 1/3 encoding

output. 'rst' is used to select different coding rate and trellis length. 'rst' is three bit and MSB

of 'rst' is always high when the system is in operation . Deep purple area of 'coutput' Indicate

the total delay it taken for decoding algorithm. For long trellis length and high code rate it

will take more time so the region is expanded compare with sort trellis length and low code

rate. After encoding the input data bit the sequence in output is altered randomly to test error

49

recovery functionality of decoder. Thus output in from encoder module is erroneous output

rather then original output.

In the following Figure 4.5 as 'rst' is 100 the overall integrated module activates the code rate

1/3 and trellis length 15 encoder and decoder. The Figure show that 'odatatwo' is 0 bit

sequence as it is inactivated.

 Figure 4.5: Coding rate 1/3, trellis length 15

In the following Figure 4.6 when 'rst' is 101 the overall integrated module activates the code

rate 1/3 and trillis length 4 encoder and decoder. The Figure show that 'odatatwo' is 0 bit

sequence as it is inactivated and only four LSB bit of input data is encoded and decoded

remaining the rest of the bit intact.

Figure 4.6: Coding rate 1/3, trellis length 4

50

Figure 4.7 shows the 'rst' variable 110 which imply that code rate 1/2 and trillis length 15 is
activated.

 Figure 4.7: Coding rate 1/2, trellis length 15

Figure 4.8 shows the 'rst' variable 111 which imply that code rate 1/2 and trillis length 15 is
activated.

 Figure 4.8: Coding rate 1/2, trellis length 4

4.3 Implementation on FPGA

IICT,BUET owns a Altera’s DE2 FPGA board to implement any complex digital design. The

proposed design has been implemented on the FPGA mounted on the DE2 board. Leftmost

three SWITCH on this board used as selection variable and remaining fifteen SWITCH is for

binary input. Fifteen red LED is used as output binary data.

51

Figure 4.9: SWITCH input LED output of coding rate 1/2, trellis length 4

Figure 4.10: SWITCH input LED output of coding rate 1/2, trellis length 15

Figure 4.11: SWITCH input LED output of coding rate 1/3, trellis length 4

Figure 4.12: SWITCH input LED output of coding rate 1/3, trellis length 15

52

For input data 110100110111001 Figure 4.9 shows coding rate 1/2, trellis length 4 output.

Figure 4.10 shows coding rate 1/2, trellis length 15 output. Figure 4.11 shows coding rate

1/3, trellis length 4 outputs. Figure 4.12 shows coding rate 1/3, trellis length 15 output. So it

shows that the CEVD is working correctly.

4.4 Usage of Chip Area

Cyclone II FPGA has total 33216 logic cell. Among these only 22.2904% is used for

implementing this encoder and decoder. Area usage for each module is given bellow. The

proposed system can expand five times with same complexity.

Table 4.1: Device utilization of Cyclone II FPGA

Module Code Rate Trellis

Length

Logic Cell Percent of total

Logic Cell

Encoder 1/3 15 23 0.0692 %

Encoder 1/3 4 2 0.0060 %

Encoder 1/2 15 16 0.0481 %

Encoder 1/2 4 6 0.0180 %

Decoder 1/3 15 3310 9.9650 %

Decoder 1/3 4 115 0.3462 %

Decoder 1/2 15 3598 10.8321 %

Decoder 1/2 4 287 0.8640 %

4.5 Comparison

A tabular comparison of different system of research work is given below

The performance of the CEVD achieved in this research has been compared with that of other

researchers [4-6]. It has been shown in the Table 4.2.

53

Table 4.2: Comparison of different Implementations

Research work Variable Trillis
Length

Variable Code Rate

Azim, C.F. al[4]
DSP

No No

Bissi, L et. al.[6]
Xilinx XCV300PQ240-4 FPGA

No Yes

Wong, Y.S. al [5]
Xilinx Virtex-II Pro,XC2vp30

FPGA

Yes No

This research Yes Yes

From Table 4.2 it is observed that variable trellis and variable code rate are separately

implemented in different research. Simultaneous variation on this two parameter is only done

in this research project. Research paper [4] shows the simple implementation of the encoder

and decoder with DSP which is slow in operation. Research paper [6] use variable code rate

without changing the trellis length. Research paper [5] user variable trellis length in same

code rate. So dynamicity is done in this research work.

54

Chapter 5

Conclusion

5.1 Conclusion

The objective of the proposed research was to design a programmable CEVD using code rate

and trellis length as parameter. The proposed CEVD has been designed using Verilog HDL.

The simulation result of each module and that of whole integrated module of the CEVD

verify its desired functionality. Hardware implementation results also validate the truth.

Comparison with different researcher's approaches to implement the CEVD is also done.

Comparison shows limited configuration facility of different researcher's approaches.

According to the demand of environment and error recoverability flexible configuration

facility is introduced in proposed system. Thus whenever the proposed system operates on

low noisy environment high code rate and long trellis length Viterbi decoder can be switched

to low code rate and short trellis length Viterbi decoder. Also for high noisy environment low

code rate and short trellis length Viterbi decoder can be switched to high code rate and long

trellis length Viterbi decoder The proposed system is fully code based using verilog HDL

modularized facility of task and function. Thus the system can be easily expandable in

compare with other.

5.2 Future Work

Wireless environment can be classified according to different noise level where each

environment will use fixed code rate, trellis length and constraint length. According to the

chip area used by the project the design can be expanded seven times with same complexity.

Thus the total system may be parameterized on different environmental aspect. Also power

analysis can be done on the proposed system.

55

References:

[1] Shannon, C.E. “A mathematical theory of Communication”, Bell Sys.Tech .J. vol. 27,

pp. 379-423 and 23- 656, 1948.

[2] Hamming, R.W. “Error detecting and correcting codes”, Bell Sys.Tech .J. vol. 29, pp.

147-160, 1960.

[3] Golay, M. J. E. “Notes on digital coding”, Proc. IEEE, Vol. 37, p. 657, 1949.

[4] Azim, C.F., Monir, M.G. “Implementation of Viterbi Decoder for WCDMA

System”, Proceedings of IEEE International Conference (NMIC 2005), pp. 1-3, 2005.

[5] Wong, Y.S., Jian, W., Hui, C. O., Kyun, Ng. C., Noordi, N.K. “Implementation of

Convolutional Encoder and Viterbi Decoder using VHDL”, In Proceedings of IEEE

International conference on Research and Development Malaysia, November 2009.

[6] Bissi, L., Placidi, P., Baruffa, G., Scorzoni, A. “A Multi- Standard Reconfigurable

Viterbi Decoder using Embedded FPGA blocks”, In Proceedings of the 9th

 EUROMICRO

Conference on Digital System Design (DSD’06),pp. 146-153, 2006.

[7] Shaker, S.W., Elramly, S.H., Shehata, K.A. “FPGA Implementation of a reconfigurable

Viterbi Decoder for WiMax Receiver”, IEEE International conference on Microelectronics,

pp. 246-267, 2009.

[8] Charan, L., Editor www.complextoreal.com, Tutorial 12, Coding and decoding with

Convolutional Codes.

56

Appendix A

--Project Coding--

 -- Convolutional Encoder Module (3,1,3)

module convolutional13(rst,idata , odata) ;

input rst ;

input [2:0]idata;

output [2:0]odata;

reg [2:0] odata;

always @(rst or idata)

 begin

 if (rst==1'b1)

 begin

 case(idata)

 3'b000: odata=3'b000;

 3'b001: odata=3'b111;

 3'b010: odata=3'b011;

 3'b011: odata=3'b100;

 3'b100: odata=3'b101;

 3'b101: odata=3'b010;

 3'b110: odata=3'b110;

 3'b111: odata=3'b001;

 endcase

 odata=odata;

 end

 else

 begin

 odata=0;

 end

 end

endmodule

--Convolutional Encoder Module (2,1,3)

module convolutional12(rst,idata , odata) ;

input rst ;

input [2:0]idata;

output [1:0]odata;

reg [1:0] odata;

57

always @(rst or idata)

 begin

 if (rst==1)

 begin

 case(idata)

 3'b000: odata=2'b00;

 3'b001: odata=2'b01;

 3'b010: odata=2'b11;

 3'b011: odata=2'b10;

 3'b100: odata=2'b11;

 3'b101: odata=2'b10;

 3'b110: odata=2'b00;

 3'b111: odata=2'b01;

 endcase

 odata=odata;

 end

 else

 begin

 odata=0;

 end

 end

--Encoder Module (3,1,3) With Trillis length 15

module encoder1315(rst, rowData , encoderdata);

input [2:0] rst;

input [14:0]rowData;

output [50:0] encoderdata;

reg [50:0] encoderdata;

wire [14:0] mdata ;

wire [2:0] ndata [16:0] ;

assign mdata = rowData;

58

convolutional13 c131(1'b1, {mdata[0],1'b0 , 1'b0} ,ndata[0]);

convolutional13 c132(1'b1, {mdata[1],mdata[0], 1'b0} ,ndata[1]);

convolutional13 c133(1'b1, {mdata[2],mdata[1],mdata[0]} ,ndata[2]);

convolutional13 c134(1'b1, {mdata[3],mdata[2],mdata[1]} ,ndata[3]);

convolutional13 c135(1'b1, {mdata[4],mdata[3],mdata[2]} ,ndata[4]);

convolutional13 c136(1'b1, {mdata[5],mdata[4],mdata[3]} ,ndata[5]);

convolutional13 c137(1'b1, {mdata[6],mdata[5],mdata[4]} ,ndata[6]);

convolutional13 c138(1'b1, {mdata[7],mdata[6],mdata[5]} ,ndata[7]);

convolutional13 c139(1'b1, {mdata[8],mdata[7],mdata[6]} ,ndata[8]);

convolutional13 c13a(1'b1, {mdata[9],mdata[8],mdata[7]} ,ndata[9]);

convolutional13 c13b(1'b1, {mdata[10],mdata[9],mdata[8]} ,ndata[10]);

convolutional13 c13c(1'b1, {mdata[11],mdata[10],mdata[9]} ,ndata[11]);

convolutional13 c13d(1'b1, {mdata[12],mdata[11],mdata[10]} ,ndata[12]);

convolutional13 c13e(1'b1, {mdata[13],mdata[12],mdata[11]} ,ndata[13]);

convolutional13 c13f(1'b1, {mdata[14],mdata[13],mdata[12]} ,ndata[14]);

convolutional13 c13g(1'b1, { 1'b0 ,mdata[14],mdata[13]} ,ndata[15]);

convolutional13 c13h(1'b1, { 1'b0 , 1'b0,mdata[14]} ,ndata[16]);

always @(rst or rowData)

 begin

 if (rst==3'b100)

 begin

encoderdata={ndata[16],ndata[15],ndata[14],ndata[13],ndata[12],ndata[11],ndata[10],ndata[9],ndata[8],ndata[7]

,ndata[6],ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};

 encoderdata=encoderdata;

 end

 else

 begin

 encoderdata=0;

 end

 end

endmodule

--Encoder Module (3,1,3) With Trillis length 4

59

module encoder1304(rst, rowData , encoderdata);

input [2:0]rst;

input [14:0]rowData;

output [50:0] encoderdata;

reg [50:0] encoderdata;

wire [14:0] mdata ;

wire [2:0] ndata [5:0] ;

assign mdata = rowData;

convolutional13 d131(1'b1, {mdata[0],1'b0 , 1'b0} ,ndata[0]);

convolutional13 d132(1'b1, {mdata[1],mdata[0], 1'b0} ,ndata[1]);

convolutional13 d133(1'b1, {mdata[2],mdata[1],mdata[0]} ,ndata[2]);

convolutional13 d134(1'b1, {mdata[3],mdata[2],mdata[1]} ,ndata[3]);

convolutional13 d135(1'b1, { 1'b0 ,mdata[3],mdata[2]} ,ndata[4]);

convolutional13 d136(1'b1, { 1'b0, 1'b0,mdata[3]} ,ndata[5]);

always @(rst or rowData)

 begin

 if (rst==3'b101)

 begin

encoderdata={32'b00000000000000000000000000000000,ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]

};

 encoderdata=encoderdata;

 end

 else

 begin

 encoderdata=0;

 end

 end

endmodule

-- Encoder Module (2,1,3) With Trillis length 15

60

module encoder1215(rst, rowData , encoderdata);

input [2:0] rst;

input [14:0]rowData;

output [33:0] encoderdata;

reg [33:0] encoderdata;

wire [14:0] mdata ;

wire [1:0] ndata [16:0] ;

assign mdata = rowData;

convolutional12 c121 (1'b1, {mdata[0], 1'b0 ,1'b0 } ,ndata[0]);

convolutional12 c122 (1'b1, {mdata[1], mdata[0] ,1'b0 } ,ndata[1]);

convolutional12 c123 (1'b1, {mdata[2], mdata[1] ,mdata[0] } ,ndata[2]);

convolutional12 c124 (1'b1, {mdata[3], mdata[2] ,mdata[1] } ,ndata[3]);

convolutional12 c125 (1'b1, {mdata[4], mdata[3] ,mdata[2] } ,ndata[4]);

convolutional12 c126 (1'b1, {mdata[5], mdata[4] ,mdata[3] } ,ndata[5]);

convolutional12 c127 (1'b1, {mdata[6], mdata[5] ,mdata[4] } ,ndata[6]);

convolutional12 c128 (1'b1, {mdata[7], mdata[6] ,mdata[5] } ,ndata[7]);

convolutional12 c129 (1'b1, {mdata[8], mdata[7] ,mdata[6] } ,ndata[8]);

convolutional12 c12a (1'b1, {mdata[9], mdata[8] ,mdata[7] } ,ndata[9]);

convolutional12 c12b (1'b1, {mdata[10],mdata[9] ,mdata[8] } ,ndata[10]);

convolutional12 c12c (1'b1, {mdata[11],mdata[10] ,mdata[9] } ,ndata[11]);

convolutional12 c12d (1'b1, {mdata[12], mdata[11] ,mdata[10] } ,ndata[12]);

convolutional12 c12e (1'b1, {mdata[13],mdata[12] ,mdata[11] } ,ndata[13]);

convolutional12 c12f (1'b1, {mdata[14],mdata[13] ,mdata[12] } ,ndata[14]);

convolutional12 c12g (1'b1, {1'b0 , mdata[14],mdata[13] } ,ndata[15]);

convolutional12 c12h (1'b1, {1'b0 , 1'b0 ,mdata[14] } ,ndata[16]);

always @(rst or rowData)

 begin

 if (rst==3'b110)

 begin

encoderdata={ndata[16],ndata[15],ndata[14],ndata[13],ndata[12],ndata[11],ndata[10],ndata[9],ndata[8],ndata[7]

,ndata[6],ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};

 encoderdata=encoderdata;

 end

 else

 begin

 encoderdata=0;

61

 end

 end

endmodule

-- Encoder Module (2,1,3) With Trillis length 4

module encoder1204(rst, rowData , encoderdata);

input [2:0] rst;

input [14:0]rowData;

output [33:0] encoderdata;

reg [33:0] encoderdata;

wire [14:0] mdata ;

wire [1:0] ndata [5:0] ;

assign mdata = rowData;

convolutional12 d121 (1'b1, {mdata[0], 1'b0 ,1'b0 } ,ndata[0]);

convolutional12 d122 (1'b1, {mdata[1], mdata[0] ,1'b0 } ,ndata[1]);

convolutional12 d123 (1'b1, {mdata[2], mdata[1] ,mdata[0] } ,ndata[2]);

convolutional12 d124 (1'b1, {mdata[3], mdata[2] ,mdata[1] } ,ndata[3]);

convolutional12 d125 (1'b1, {1'b0 , mdata[3], mdata[2] } ,ndata[4]);

convolutional12 d126 (1'b1, {1'b0 , 1'b0 ,mdata[3] } ,ndata[5]);

always @(rst or rowData)

 begin

 begin

 if (rst==3'b111)

 begin

 encoderdata={22'b0000000000000000000000,ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};

 encoderdata=encoderdata;

 end

 else

 begin

 encoderdata=0;

 end

 end

 end

62

endmodule

--Decoder Module (3,1,3) With Trillis length 4

module decoder1304(rst , rowData , decoderdata);

input [2:0] rst;

input [50:0]rowData;

reg [50:0]rowData1;

output [14:0] decoderdata;

reg [14:0] decoderdata;

reg [35:0]pathmatrix[7:0] ;

integer pathweight[7:0];

integer pWeight;

reg [35:0]pString;

function [1:0]nextstateOneThird(input [1:0]pstate , input inputdata);

 begin

 nextstateOneThird = 2'b00;

 if ((pstate == 2'b00) && (inputdata == 1'b0))

 nextstateOneThird = 2'b00;

 else if ((pstate == 2'b00) && (inputdata == 1'b1))

 nextstateOneThird = 2'b10;

 else if ((pstate == 2'b10) && (inputdata == 1'b0))

 nextstateOneThird = 2'b01;

 else if ((pstate == 2'b10) && (inputdata == 1'b1))

 nextstateOneThird = 2'b11;

 else if ((pstate == 2'b01) && (inputdata == 1'b0))

 nextstateOneThird = 2'b00;

 else if ((pstate == 2'b01) && (inputdata == 1'b1))

 nextstateOneThird = 2'b10;

 else if ((pstate == 2'b11) && (inputdata == 1'b0))

 nextstateOneThird = 2'b01;

 else if ((pstate == 2'b11) && (inputdata == 1'b1))

 nextstateOneThird = 2'b11;

 end

endfunction

function [2:0]outputOneOneThird(input [1:0]pstate);

63

 begin

 outputOneOneThird = 3'b000;

 if (pstate == 2'b00)

 outputOneOneThird = 3'b101;

 else if (pstate == 2'b01)

 outputOneOneThird = 3'b010;

 else if (pstate == 2'b10)

 outputOneOneThird = 3'b110;

 else if (pstate == 2'b11)

 outputOneOneThird = 2'b001;

 end

endfunction

function [2:0]outputZeroOneThird(input [1:0]pstate);

 begin

 outputZeroOneThird = 3'b000;

 if (pstate == 2'b00)

 outputZeroOneThird = 3'b000;

 else if (pstate == 2'b10)

 outputZeroOneThird = 3'b011;

 else if (pstate == 2'b01)

 outputZeroOneThird = 3'b111;

 else if (pstate == 2'b11)

 outputZeroOneThird = 3'b100;

 end

endfunction

function [31:0]hummingDistanceOneThird(input [2:0]p1String, input [2:0]p2String);

 begin

 hummingDistanceOneThird = 0;

 if (p1String[0]==p2String[0])

 begin

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 if (p1String[1]==p2String[1])

 begin

64

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 if (p1String[2]==p2String[2])

 begin

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 end

endfunction

function [31:0] findMaxpathWeightOneThird(input a1);

 integer i;

 integer j;

 begin

 findMaxpathWeightOneThird=0;

 j=0;

 for(i=0; i<=3; i=i+1)

 begin

 if (pathweight[i]> j)

 begin

 j=pathweight[i];

 findMaxpathWeightOneThird=i;

 end

 end

 end

endfunction

task optimizePathMatrixOneThird(input a1);

 reg [35:0]temppathmatrix[7:0];

 integer temppathweight[7:0];

 integer i;

 begin

 for (i=0; i<=3; i=i+1)

 begin

 if (pathweight[2*i] > pathweight[2*i+1])

65

 begin

 temppathmatrix[i]= pathmatrix[2*i];

 temppathweight[i]= pathweight[2*i];

 end

 else

 begin

 temppathmatrix[i]= pathmatrix[2*i+1];

 temppathweight[i]= pathweight[2*i+1];

 end

 end

 for (i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = temppathmatrix[i];

 pathweight[i] = temppathweight[i];

 end

 end

endtask

task viterbi12(input [50:0]adata , output [14:0]bdata);

reg errorFlag;

reg [1:0]nstate;

reg [1:0]nstatep;

reg [2:0]soutput;

integer a;

integer b;

integer i;

integer p;

begin

 b=0;

 p=0;

 errorFlag=0;

 nstate=2'b00;

 nstatep=2'b00;

 for (a=0; a<=5; a=a+1)

 begin

66

 soutput = {adata[3*a+2],adata[3*a+1],adata[3*a]};

 if (errorFlag==0)

 begin

 if (outputOneOneThird(nstate) == soutput)

 begin

 nstate = nextstateOneThird(nstate, 1);

 pathmatrix[0][2*a+3] = nstate[1];

 pathmatrix[0][2*a+2] = nstate[0];

 end

 else if (outputZeroOneThird(nstate) == soutput)

 begin

 nstate = nextstateOneThird(nstate, 0);

 pathmatrix[0][2*a+3] = nstate[1];

 pathmatrix[0][2*a+2] = nstate[0];

 end

 else

 begin

 errorFlag=1;

 end

 end

 if (errorFlag==1)

 begin

 p=3;

 for(b=0; b<=3; b=b+1)

 begin

 nstate = { pathmatrix[b][2*a+1],pathmatrix[b][2*a]};

 pString=pathmatrix[b];

 pWeight=pathweight[b];

 pathweight[b] = pWeight + hummingDistanceOneThird(outputOneOneThird(nstate),

soutput);

 nstatep = nextstateOneThird(nstate, 1);

 pathmatrix[b][2*a+3] = nstatep[1];

 pathmatrix[b][2*a+2] = nstatep[0];

 pathweight[b+p+1] = pWeight +

hummingDistanceOneThird(outputZeroOneThird(nstate), soutput);

67

 nstatep = nextstateOneThird(nstate, 0);

 pathmatrix[b+p+1]=pString;

 pathmatrix[b+p+1][2*a+3] = nstatep[1];

 pathmatrix[b+p+1][2*a+2] = nstatep[0];

 end

 optimizePathMatrixOneThird(1);

 end

 end

 p = findMaxpathWeightOneThird(1);

 bdata=15'b000000000000000;

 for(i=0; i<=3; i=i+1)

 begin

 bdata[i]= pathmatrix[p][2*i+3];

 end

end

endtask

task clearPathWeightmatrix(input a1);

 integer i;

 begin

 for(i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = 0;

 pathweight[i] = 0;

 end

 end

endtask

always @(rst or rowData)

 begin

 if (rst==3'b101)

 begin

 clearPathWeightmatrix(1);

 rowData1=rowData;

 rowData1[0]=0;

 viterbi12(rowData1,decoderdata);

68

 decoderdata=decoderdata;

 end

 else

 begin

 decoderdata=0;

 end

 end

endmodule

--Decoder Module (3,1,3) With Trillis length 15

module decoder1315(rst , rowData , decoderdata);

input [2:0] rst;

input [50:0]rowData;

reg [50:0]rowData1;

output [14:0] decoderdata;

reg [14:0] decoderdata;

reg [35:0]pathmatrix[7:0] ;

integer pathweight[7:0];

integer pWeight;

reg [35:0]pString;

function [1:0]nextstateOneThird(input [1:0]pstate , input inputdata);

 begin

 nextstateOneThird = 2'b00;

 if ((pstate == 2'b00) && (inputdata == 1'b0))

 nextstateOneThird = 2'b00;

 else if ((pstate == 2'b00) && (inputdata == 1'b1))

 nextstateOneThird = 2'b10;

 else if ((pstate == 2'b10) && (inputdata == 1'b0))

 nextstateOneThird = 2'b01;

 else if ((pstate == 2'b10) && (inputdata == 1'b1))

 nextstateOneThird = 2'b11;

 else if ((pstate == 2'b01) && (inputdata == 1'b0))

 nextstateOneThird = 2'b00;

 else if ((pstate == 2'b01) && (inputdata == 1'b1))

69

 nextstateOneThird = 2'b10;

 else if ((pstate == 2'b11) && (inputdata == 1'b0))

 nextstateOneThird = 2'b01;

 else if ((pstate == 2'b11) && (inputdata == 1'b1))

 nextstateOneThird = 2'b11;

 end

endfunction

function [2:0]outputOneOneThird(input [1:0]pstate);

 begin

 outputOneOneThird = 3'b000;

 if (pstate == 2'b00)

 outputOneOneThird = 3'b101;

 else if (pstate == 2'b01)

 outputOneOneThird = 3'b010;

 else if (pstate == 2'b10)

 outputOneOneThird = 3'b110;

 else if (pstate == 2'b11)

 outputOneOneThird = 2'b001;

 end

endfunction

function [2:0]outputZeroOneThird(input [1:0]pstate);

 begin

 outputZeroOneThird = 3'b000;

 if (pstate == 2'b00)

 outputZeroOneThird = 3'b000;

 else if (pstate == 2'b10)

 outputZeroOneThird = 3'b011;

 else if (pstate == 2'b01)

 outputZeroOneThird = 3'b111;

 else if (pstate == 2'b11)

 outputZeroOneThird = 3'b100;

 end

endfunction

function [31:0]hummingDistanceOneThird(input [2:0]p1String, input [2:0]p2String);

70

 begin

 hummingDistanceOneThird = 0;

 if (p1String[0]==p2String[0])

 begin

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 if (p1String[1]==p2String[1])

 begin

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 if (p1String[2]==p2String[2])

 begin

 hummingDistanceOneThird = hummingDistanceOneThird + 1;

 end

 end

endfunction

function [31:0] findMaxpathWeightOneThird(input a1);

 integer i;

 integer j;

 begin

 findMaxpathWeightOneThird=0;

 j=0;

 for(i=0; i<=3; i=i+1)

 begin

 if (pathweight[i]> j)

 begin

 j=pathweight[i];

 findMaxpathWeightOneThird=i;

 end

 end

 end

endfunction

task optimizePathMatrixOneThird(input a1);

 reg [35:0]temppathmatrix[7:0];

71

 integer temppathweight[7:0];

 integer i;

 begin

 for (i=0; i<=3; i=i+1)

 begin

 if (pathweight[2*i] > pathweight[2*i+1])

 begin

 temppathmatrix[i]= pathmatrix[2*i];

 temppathweight[i]= pathweight[2*i];

 end

 else

 begin

 temppathmatrix[i]= pathmatrix[2*i+1];

 temppathweight[i]= pathweight[2*i+1];

 end

 end

 for (i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = temppathmatrix[i];

 pathweight[i] = temppathweight[i];

 end

 end

endtask

task viterbi12(input [50:0]adata , output [14:0]bdata);

reg errorFlag;

reg [1:0]nstate;

reg [1:0]nstatep;

reg [2:0]soutput;

integer a;

integer b;

integer i;

integer p;

72

begin

 b=0;

 p=0;

 errorFlag=0;

 nstate=2'b00;

 nstatep=2'b00;

 for (a=0; a<=16; a=a+1)

 begin

 soutput = {adata[3*a+2],adata[3*a+1],adata[3*a]};

 if (errorFlag==0)

 begin

 if (outputOneOneThird(nstate) == soutput)

 begin

 nstate = nextstateOneThird(nstate, 1);

 pathmatrix[0][2*a+3] = nstate[1];

 pathmatrix[0][2*a+2] = nstate[0];

 end

 else if (outputZeroOneThird(nstate) == soutput)

 begin

 nstate = nextstateOneThird(nstate, 0);

 pathmatrix[0][2*a+3] = nstate[1];

 pathmatrix[0][2*a+2] = nstate[0];

 end

 else

 begin

 errorFlag=1;

 end

 end

 if (errorFlag==1)

 begin

 p=3;

 for(b=0; b<=3; b=b+1)

 begin

 nstate = { pathmatrix[b][2*a+1],pathmatrix[b][2*a]};

 pString=pathmatrix[b];

 pWeight=pathweight[b];

 pathweight[b] = pWeight + hummingDistanceOneThird(outputOneOneThird(nstate),

soutput);

73

 nstatep = nextstateOneThird(nstate, 1);

 pathmatrix[b][2*a+3] = nstatep[1];

 pathmatrix[b][2*a+2] = nstatep[0];

 pathweight[b+p+1] = pWeight +

hummingDistanceOneThird(outputZeroOneThird(nstate), soutput);

 nstatep = nextstateOneThird(nstate, 0);

 pathmatrix[b+p+1]=pString;

 pathmatrix[b+p+1][2*a+3] = nstatep[1];

 pathmatrix[b+p+1][2*a+2] = nstatep[0];

 end

 optimizePathMatrixOneThird(1);

 end

 end

 p = findMaxpathWeightOneThird(1);

 for(i=0; i<=14; i=i+1)

 begin

 bdata[i]= pathmatrix[p][2*i+3];

 end

end

endtask

task clearPathWeightmatrix(input a1);

 integer i;

 begin

 for(i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = 0;

 pathweight[i] = 0;

 end

 end

endtask

74

always @(rst or rowData)

 begin

 rowData1=0;

 if (rst==3'b100)

 begin

 clearPathWeightmatrix(1);

 rowData1=rowData;

 rowData1[0]=0;

 viterbi12(rowData1,decoderdata);

 decoderdata=decoderdata;

 end

 else

 begin

 decoderdata=0;

 end

 end

endmodule

--Decoder Module (2,1,3) With Trillis length 4

module decoder1204(rst , rowData , decoderdata);

input [2:0] rst;

input [33:0]rowData;

reg [33:0]rowData1;

output [14:0] decoderdata;

reg [14:0] decoderdata;

reg [35:0]pathmatrix[7:0] ;

integer pathweight[7:0];

integer pWeight;

reg [35:0]pString;

function [1:0]nextstateHalf(input [1:0]pstate , input inputdata);

 begin

75

 nextstateHalf = 2'b00;

 if ((pstate == 2'b00) && (inputdata == 1'b0))

 nextstateHalf = 2'b00;

 else if ((pstate == 2'b00) && (inputdata == 1'b1))

 nextstateHalf = 2'b10;

 else if ((pstate == 2'b01) && (inputdata == 1'b0))

 nextstateHalf = 2'b00;

 else if ((pstate == 2'b01) && (inputdata == 1'b1))

 nextstateHalf = 2'b10;

 else if ((pstate == 2'b10) && (inputdata == 1'b0))

 nextstateHalf = 2'b01;

 else if ((pstate == 2'b10) && (inputdata == 1'b1))

 nextstateHalf = 2'b11;

 else if ((pstate == 2'b11) && (inputdata == 1'b0))

 nextstateHalf = 2'b01;

 else if ((pstate == 2'b11) && (inputdata == 1'b1))

 nextstateHalf = 2'b11;

 end

endfunction

function [1:0]outputOneHalf(input [1:0]pstate);

 begin

 // 110 111

 outputOneHalf = 2'b00;

 if (pstate == 2'b00)

 outputOneHalf = 2'b11;

 else if (pstate == 2'b01)

 outputOneHalf = 2'b01;

 else if (pstate == 2'b10)

 outputOneHalf = 2'b00;

 else if (pstate == 2'b11)

 outputOneHalf = 2'b10;

 end

endfunction

function [1:0]outputZeroHalf(input [1:0]pstate);

 begin

76

 outputZeroHalf = 2'b00;

 if (pstate == 2'b00)

 outputZeroHalf = 2'b00;

 else if (pstate == 2'b01)

 outputZeroHalf = 2'b10;

 else if (pstate == 2'b10)

 outputZeroHalf = 2'b11;

 else if (pstate == 2'b11)

 outputZeroHalf = 2'b01;

 end

endfunction

function [31:0]hummingDistanceHalf(input [1:0]p1String, input [1:0]p2String);

 begin

 hummingDistanceHalf = 0;

 if (p1String[0]==p2String[0])

 begin

 hummingDistanceHalf = hummingDistanceHalf + 1;

 end

 if (p1String[1]==p2String[1])

 begin

 hummingDistanceHalf = hummingDistanceHalf + 1;

 end

 end

endfunction

function [31:0] findMaxpathWeightHalf(input a1);

 integer i;

 integer j;

 begin

 findMaxpathWeightHalf=0;

 j=0;

 for(i=0; i<=3; i=i+1)

 begin

 if (pathweight[i]> j)

77

 begin

 j=pathweight[i];

 findMaxpathWeightHalf=i;

 end

 end

 end

endfunction

task optimizePathMatrixHalf(input a1);

 reg [35:0]temppathmatrix[7:0] ;

 integer temppathweight[7:0];

 integer i;

 begin

 for (i=0; i<=3; i=i+1)

 begin

 if (pathweight[2*i] > pathweight[2*i+1])

 begin

 temppathmatrix[i]= pathmatrix[2*i];

 temppathweight[i]= pathweight[2*i];

 end

 else

 begin

 temppathmatrix[i]= pathmatrix[2*i+1];

 temppathweight[i]= pathweight[2*i+1];

 end

 end

 for (i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = temppathmatrix[i];

 pathweight[i] = temppathweight[i];

 end

 end

78

endtask

task viterbi11(input [33:0]adata , output [14:0]bdata);

 reg errorFlag;

 reg [1:0]nstate;

 reg [1:0]nstatep;

 reg [1:0]soutput;

 integer a;

 integer b;

 integer i;

 integer p;

 begin

 p=0;

 errorFlag=0;

 nstate=2'b00;

 for (a=0; a<=5; a=a+1)

 begin

 soutput = {adata[2*a],adata[2*a+1]};

 if (errorFlag==0)

 begin

 if (outputOneHalf(nstate) == soutput)

 begin

 nstate = nextstateHalf(nstate, 1);

 pathmatrix[0][2*a+2] = nstate[1];

 pathmatrix[0][2*a+3] = nstate[0];

 end

 else if (outputZeroHalf(nstate) == soutput)

 begin

 nstate = nextstateHalf(nstate, 0);

 pathmatrix[0][2*a+2] = nstate[1];

 pathmatrix[0][2*a+3] = nstate[0];

 end

79

 else

 begin

 errorFlag=1;

 end

 end

 if (errorFlag==1)

 begin

 p=3;

 for(b=0; b<=3; b=b+1)

 begin

 nstate = { pathmatrix[b][2*a],pathmatrix[b][2*a+1]};

 pString=pathmatrix[b];

 pWeight=pathweight[b];

 pathweight[b] = pWeight + hummingDistanceHalf(outputOneHalf(nstate), soutput);

 nstatep = nextstateHalf(nstate, 1);

 pathmatrix[b][2*a+2] = nstatep[1];

 pathmatrix[b][2*a+3] = nstatep[0];

 pathweight[b+p+1] = pWeight + hummingDistanceHalf(outputZeroHalf(nstate),

soutput);

 nstatep = nextstateHalf(nstate, 0);

 pathmatrix[b+p+1]=pString;

 pathmatrix[b+p+1][2*a+2] = nstatep[1];

 pathmatrix[b+p+1][2*a+3] = nstatep[0];

 end

 optimizePathMatrixHalf(1);

 end

 end

 p = findMaxpathWeightHalf(1);

 bdata=15'b000000000000000;

 for(i=0; i<=3; i=i+1)

 begin

 bdata[i]= pathmatrix[p][2*(i+1)];

 end

80

 end

endtask

task clearPathWeightmatrix(input a1);

 integer i;

 begin

 for(i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = 0;

 pathweight[i] = 0;

 end

 end

endtask

always @(rst or rowData)

 begin

 if (rst==3'b111)

 begin

 clearPathWeightmatrix(1);

 rowData1=rowData;

 rowData1[0]=0;

 viterbi11(rowData1,decoderdata);

 decoderdata=decoderdata;

 end

 else

 begin

 decoderdata=0;

 end

 end

endmodule

--Decoder Module (2,1,3) With Trillis length 15

81

module decoder1215(rst , rowData , decoderdata);

input [2:0] rst;

input [33:0]rowData;

reg [33:0]rowData1;

output [14:0] decoderdata;

reg [14:0] decoderdata;

reg [35:0]pathmatrix[7:0] ;

integer pathweight[7:0];

integer pWeight;

reg [35:0]pString;

function [1:0]nextstateHalf(input [1:0]pstate , input inputdata);

 begin

 nextstateHalf = 2'b00;

 if ((pstate == 2'b00) && (inputdata == 1'b0))

 nextstateHalf = 2'b00;

 else if ((pstate == 2'b00) && (inputdata == 1'b1))

 nextstateHalf = 2'b10;

 else if ((pstate == 2'b01) && (inputdata == 1'b0))

 nextstateHalf = 2'b00;

 else if ((pstate == 2'b01) && (inputdata == 1'b1))

 nextstateHalf = 2'b10;

 else if ((pstate == 2'b10) && (inputdata == 1'b0))

 nextstateHalf = 2'b01;

 else if ((pstate == 2'b10) && (inputdata == 1'b1))

 nextstateHalf = 2'b11;

 else if ((pstate == 2'b11) && (inputdata == 1'b0))

 nextstateHalf = 2'b01;

 else if ((pstate == 2'b11) && (inputdata == 1'b1))

 nextstateHalf = 2'b11;

 end

endfunction

function [1:0]outputOneHalf(input [1:0]pstate);

82

 begin

 // 110 111

 outputOneHalf = 2'b00;

 if (pstate == 2'b00)

 outputOneHalf = 2'b11;

 else if (pstate == 2'b01)

 outputOneHalf = 2'b01;

 else if (pstate == 2'b10)

 outputOneHalf = 2'b00;

 else if (pstate == 2'b11)

 outputOneHalf = 2'b10;

 end

endfunction

function [1:0]outputZeroHalf(input [1:0]pstate);

 begin

 outputZeroHalf = 2'b00;

 if (pstate == 2'b00)

 outputZeroHalf = 2'b00;

 else if (pstate == 2'b01)

 outputZeroHalf = 2'b10;

 else if (pstate == 2'b10)

 outputZeroHalf = 2'b11;

 else if (pstate == 2'b11)

 outputZeroHalf = 2'b01;

 end

endfunction

function [31:0]hummingDistanceHalf(input [1:0]p1String, input [1:0]p2String);

 begin

 hummingDistanceHalf = 0;

 if (p1String[0]==p2String[0])

 begin

 hummingDistanceHalf = hummingDistanceHalf + 1;

83

 end

 if (p1String[1]==p2String[1])

 begin

 hummingDistanceHalf = hummingDistanceHalf + 1;

 end

 end

endfunction

function [31:0] findMaxpathWeightHalf(input a1);

 integer i;

 integer j;

 begin

 findMaxpathWeightHalf=0;

 j=0;

 for(i=0; i<=3; i=i+1)

 begin

 if (pathweight[i]> j)

 begin

 j=pathweight[i];

 findMaxpathWeightHalf=i;

 end

 end

 end

endfunction

task optimizePathMatrixHalf(input a1);

 reg [35:0]temppathmatrix[7:0] ;

 integer temppathweight[7:0];

 integer i;

 begin

 for (i=0; i<=3; i=i+1)

 begin

 if (pathweight[2*i] > pathweight[2*i+1])

 begin

84

 temppathmatrix[i]= pathmatrix[2*i];

 temppathweight[i]= pathweight[2*i];

 end

 else

 begin

 temppathmatrix[i]= pathmatrix[2*i+1];

 temppathweight[i]= pathweight[2*i+1];

 end

 end

 for (i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = temppathmatrix[i];

 pathweight[i] = temppathweight[i];

 end

 end

endtask

task viterbi11(input [33:0]adata , output [14:0]bdata);

 reg errorFlag;

 reg [1:0]nstate;

 reg [1:0]nstatep;

 reg [1:0]soutput;

 integer a;

 integer b;

 integer i;

 integer p;

 begin

 p=0;

 errorFlag=0;

 nstate=2'b00;

 for (a=0; a<=16; a=a+1)

 begin

85

 soutput = {adata[2*a],adata[2*a+1]};

 if (errorFlag==0)

 begin

 if (outputOneHalf(nstate) == soutput)

 begin

 nstate = nextstateHalf(nstate, 1);

 pathmatrix[0][2*a+2] = nstate[1];

 pathmatrix[0][2*a+3] = nstate[0];

 end

 else if (outputZeroHalf(nstate) == soutput)

 begin

 nstate = nextstateHalf(nstate, 0);

 pathmatrix[0][2*a+2] = nstate[1];

 pathmatrix[0][2*a+3] = nstate[0];

 end

 else

 begin

 errorFlag=1;

 end

 end

 if (errorFlag==1)

 begin

 p=3;

 for(b=0; b<=3; b=b+1)

 begin

 nstate = { pathmatrix[b][2*a],pathmatrix[b][2*a+1]};

 pString=pathmatrix[b];

 pWeight=pathweight[b];

 pathweight[b] = pWeight + hummingDistanceHalf(outputOneHalf(nstate), soutput);

 nstatep = nextstateHalf(nstate, 1);

 pathmatrix[b][2*a+2] = nstatep[1];

 pathmatrix[b][2*a+3] = nstatep[0];

 pathweight[b+p+1] = pWeight + hummingDistanceHalf(outputZeroHalf(nstate),

86

soutput);

 nstatep = nextstateHalf(nstate, 0);

 pathmatrix[b+p+1]=pString;

 pathmatrix[b+p+1][2*a+2] = nstatep[1];

 pathmatrix[b+p+1][2*a+3] = nstatep[0];

 end

 optimizePathMatrixHalf(1);

 end

 end

 p = findMaxpathWeightHalf(1);

 for(i=0; i<=14; i=i+1)

 begin

 bdata[i]= pathmatrix[p][2*(i+1)];

 end

 end

endtask

task clearPathWeightmatrix(input a1);

 integer i;

 begin

 for(i=0; i<=7; i=i+1)

 begin

 pathmatrix[i] = 0;

 pathweight[i] = 0;

 end

 end

endtask

always @(rst or rowData)

 begin

 if (rst==3'b110)

 begin

 clearPathWeightmatrix(1);

87

 rowData1=rowData;

 rowData1[0]=0;

 viterbi11(rowData1,decoderdata);

 decoderdata=decoderdata;

 end

 else

 begin

 decoderdata=0;

 end

 end

endmodule

--Convolutional Encoder and Viterbi Decoder Main Module

module cevdIntq(rst, idata, , coutput , odatathree ,odatatwo);

input [14:0]idata;

input [2:0] rst;

 output [50:0] odatathree;

 output [33:0] odatatwo;

output [14:0] coutput;

 reg [50:0] odatathree;

 reg [33:0] odatatwo;

reg [14:0] coutput;

wire [50:0] edata1315;

wire [50:0] edata1304;

wire [33:0] edata1215;

wire [33:0] edata1204;

wire [14:0] ddata1315;

wire [14:0] ddata1304;

wire [14:0] ddata1215;

88

wire [14:0] ddata1204;

encoder1315 con11(rst, idata , edata1315);

encoder1304 con12(rst, idata , edata1304);

encoder1215 con13(rst, idata , edata1215);

encoder1204 con14(rst, idata , edata1204);

decoder1315 dec11(rst , edata1315 , ddata1315);

decoder1304 dec14(rst , edata1304 , ddata1304);

decoder1215 dec13(rst , edata1215 , ddata1215);

decoder1204 dec12(rst , edata1204 , ddata1204);

 always @(rst or coutput or edata1215 or ddata1215 or edata1204 or ddata1204 or edata1315 or ddata1315 or

edata1304 or ddata1304)

 begin

 coutput=0;

 odatatwo=0;

 odatathree=0;

 if (rst==3'b100)

 begin

 odatathree = edata1315;

 coutput = ddata1315;

 end

 else if (rst==3'b101)

 begin

 odatathree = edata1304;

 coutput = ddata1304;

 end

 else if (rst==3'b110)

 begin

 odatatwo = edata1215;

 coutput = ddata1215;

 end

 else if (rst==3'b111)

 begin

89

 odatatwo = edata1204;

 coutput = ddata1204;

 end

 coutput = coutput;

 odatatwo=odatatwo;

 odatathree = odatathree;

 end

endmodule

	1 First
	Board of Examiners

	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Coding1

