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Abstract 

This project presents the design of a programmable convolutional encoder and Viterbi 

decoder (CEVD) using Verilog HDL. It is implemented on FPGA platform using coding 

rate, trellis length as parameter for configuring the chip. High coding rate transmission is 

reliable but takes more time to decode comparing with low coding rate. Long trellis length 

causes the Viterbi algorithm to take more time to decode but reliable compare with short 

trellis length. These combined effects are taken as consideration for design and 

implementation of the proposed system. Four different CEVD are designed using 1/2, 1/3 

coding rate and 4, 15 trellis length. The design is simulated using Quartus II EDA tool and 

then implemented on the Cyclone II FPGA device. Simulation and implementation results 

ensure the desired functionality of the proposed design. The proposed CEVD can be used as 

an intellectual property for designing application specific integrated circuit (ASIC) related 

to wireless communication.    
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Chapter 1 

Introduction 
 

1.1 Overview 
 

At Present wireless communications methods and services have been enthusiastically adopted 

by people throughout the world. Particularly during the past ten years, the mobile radio 

communications industry has grown by orders of magnitude, fueled by digital and RF circuit 

fabrication improvements, new large-scale circuit integration, and other miniaturization 

technologies which make portable radio equipment smaller, cheaper, and more reliable. 

Digital switching techniques have facilitated the large scale deployment of affordable, easy-

to-use radio communication networks. These trends will continue at an even greater pace 

during the next decade.  

Field programmable gate array (FPGA) is a semiconductor device containing programmable 

logic components and programmable interconnects. It contains up to thousands of logic 

element. The programmable logic components can be programmed to duplicate the 

functionality of basic logic gates such as AND, OR, XOR, NOT or more complex 

combinational functions such as decoders or simple math functions  

Increasing the speed of the wireless communication requires a reliable solution for data 

transfer. Now a day's error correction is one of the most crucial issue for reliable wireless 

data communication. The approach to error correction coding taken by modern digital 

communications system starts with the ground breaking work of Shannon, Hamming and 

Golay [1-3]. Additive white gaussian noise (AWGN) properties of most of the 

communication media introduce noise in original data during transmission. Channel coding is 

a technique to introduce redundant code in original code to remove interference and error 

during transmission. Coded data in transmission side thus increases by volume but error 



2 

 

 
 

effects become less compare with uncoded data. Receiver end receives this data and decodes 

the data using some technique. Viterbi decoding is one of the popular techniques to decode 

data effectively. Viterbi algorithm (VA) is an optimum decoding algorithm for the 

convolutional code. Convolutional encoder and Viterbi decoder (CEVD) is widely used for 

reliable data communication. Most of the wireless communications devices are portable and 

smaller in size. Due to this fact scientists and researchers are trying to implement the encoder 

and decoder in chip level. According to environment status, data speed and error tolerance a 

comprehensive and parameterized CEVD decoder is highly needed. This demand issues are 

motivating new approaches to implement configurable CEVD in FPGA. 

 

1.2 Literature Review 

 

A highly complex Viterbi decoder someway loses its advantages, when it is adopted to 

decode sequences transmitted on a low-noise channel. In this case, low minimum distance 

codes are more suitable for achieving a good performance, and a higher bit rate can be 

transmitted by lowering the coding rate. Complexity of Viterbi algorithm increase in terms 

of convolutionally encoded trellis length. Increasing the trellis length cause the algorithm to 

take more time to decode. This will cause transmission speed lower but make the 

transmission more reliable. Lowering the trellis length will increase the transmission speed 

but reliability may decrease. Coding rate of convolutional encoder and trellis length of 

Viterbi decoder has significant effect on reliability and speed of wireless data transmission. 

Implementation of CEVD is done [4-7] separately considering the different coding rate and 

trellis length. Implementation of CEVD using DSP [4] or µC platform is Slow. Other 

Implementations are on FPGA platform but fixed constraint length and code rate or with 

partial configuration facility [5-7]. Implementation using both configurable coding rate and 
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trellis length is not done. In this project a programmable convolutional with 1/2, 1/3 coding 

rate and 4, 15 trellis length is done using Verilog HDL on Altera platform. 

      

1.3 Objectives with Specific Aims and Possible Outcome: 

      This project has following objectives: 

• To design the convoutional encoder with  different coding rate using Verilog HDL 

• To simulate the encoder using Altera’s Quartus II Software. 

• To design the Viterbi decoder with different Trellis length using Verilog HDL. 

• To simulate the decoder using Altera’s Quartus II Software. 

• To integrate the encoder and decoder and Implement it using Altera’s high capacity  

      FPGA Kit  

      

1.4 Organization of the Project 

Chapter 1 of this report starts with demand issue of a configurable CEVD followed by a brief 

background of latest research work.     

Chapter 2 of this report describes the details of convolutional encoder encoding technique 

and Viterbi decoder decoding step by step with proper example.    

Chapter 3 of this report describes the detail design and implementation of programmable 

CEVD.  

Chapter 4 of this report describes the simulation result of the system and chip area used by 

different module of the system   

Chapter 5 of this report describes the conclusion and future work of the system. 
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Chapter 2 

Convolutional Coding and Viterbi Decoding  
 
2.1 Coding and Decoding using Convolutional Code 

Coding is process to change the input data such a way that it is unrecognizable to certain 

environment. This is done due to reduce the adverse effect of the environment. A 

convolutional code introduces redundant bits into the data stream through the use of linear 

shift registers. convolutional codes are commonly specified by three parameters; (n, k, m). 

The information bits are input into shift registers and the output encoded bits are obtained by 

modulo-2 addition of the input information bits and the contents of the shift registers. The 

connections to the modulo-2 adders were developed heuristically with no algebraic or 

combinatorial foundation. Convolutional codes are commonly specified by three parameters:  

n, k, m where 

 n = number of output bits  

 k = number of input bits  

 m = number of memory registers  

 The quantity k/n called the code rate, is a measure of the efficiency of the code. Commonly 

and k, n parameters range from 1 to 8,  m from 2 to 10 and the code rate from 1/8 to 7/8 

except for deep space applications where code rates as low as 1/100 or even longer have 

been employed. Often the manufacturers of convolutional code chips specify the code by 

parameters (n, k, L). The quantity L is called the constraint length of the code and is defined 

by Constraint Length, L = k (m-1)  

The constraint length L represents the number of bits in the Encoder memory that affect the  

generation of the output bits. The constraint length L is also referred to by the capital letter 

K, which can be confusing with the lower case k, which represents the number of input bits. 

In some books K is defined as equal to product the of k and m. Often in commercial 
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specification, the codes are specified by (r, K), where r = the code rate k/n and K is the 

constraint length. The constraint length K however is equal to L - 1. 

 

2.2 Code Parameters and the Structure of the Convolutional Code  

 The convolutional code structure is easy to draw from its parameters. First m boxes 

representing the memory registers are drawn. Then modulo-2 adders to represent the n 

output bits. Now the memory registers are connected to the adders based on the generator 

polynomial as shown in Figure 2.1  

  
Figure 2.1: This (3, 1, 3) convolutional, 3 memory registers, 1 input bit and 3 output bits  

 

This is a rate 1/3 code. Each input bit is coded into 3 output bits. The constraint length of 

the code is 2. The 3 output bits are produced by the 3 modulo-2 adders by adding up certain 

bits in the memory registers. The selection of which bits are to be added to produce the 

output bit is called the generator polynomial (g) for that output bit. For example, the first 

output bit has a generator polynomial of (1, 1, 1). The output bit 2 has a generator 

polynomial of (0, 1, 1) and the third output bit has a polynomial of (1, 0, 1). The output bits 

just the sum of these bits.  

 v = mod2 (u1 + u0 + u-1)  
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 v = mod2 (u0 + u-1)  

 v = mod2 (u1 + u-1)  

The polynomials give the code its unique error protection quality. One (3, 1, 4) code can 

have completely different properties from an another one depending on the polynomials 

chosen. There are many choices for polynomials for any order code. They do not all result 

in output sequences that have good error protection properties. Petersen and Weldons book 

contains a complete list of these polynomials. Efficient polynomials are found from this list 

usually by computer simulation. A list of good polynomials for rate 1/2 codes is given 

below.  

 

Table 2.1: Generator Polynomials found by Busgang for good rate 1/2 codes 

Constraint Length           G1     G2 

3 110    111  

4 1101    1110 

5 11010    11101 

6 110101    111011 

7 110101    110101 

8 110111    1110011 

9 110111    111001101 

10 110111001    111001101 

      

 

The (2, 1, 3) code in Figure 2.2 has a constraint length of 3. The shaded registers below hold 

these bits. The unshaded register holds the incoming bit. This means that 3 bits or 8 

different combination of these bits can be present in these memory registers. These 8 

different combinations determine what output we will get for v1 and v2, the coded 

sequence. The number of combinations of bits in the shaded registers are called the states of 

the code and are defined by 
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        Number of states = 2L 

 

Figure 2.2: The states of a code indicate what is in the memory registers 

 

The output bit depends on this initial condition which changes at each time tick. Lets 

examine the states of the code (2, 1, 3) shown Figure 2.2.  This code outputs 2 bits for every 

1 input bit. It is a rate 1/2 code. Its constraint length is 2. The total number of states is equal 

to 4. The four states of this code (2, 1, 3) are: 00, 01, 10, 11. 

 

2.3 Encoding of Bit Sequence  

First a single bit 1 is passed through this Encoder as shown in Figure 2.3.  

a) At time t = 0, we see that the initial state of the encoder is all zeros (the bits in the  

    right most L register positions). The input bit 1 causes two bits 11 to be output.  

    Output bits are computed by a mod 2 sum of all bits in the registers for the first  

    bit and a mod2 sum of two bits for second output bit per the polynomial    

    coefficients.  

 b) At t = 1, the input bit 1 moves forward one register. The input register is now  

     empty and is filled with a flush bit of 0. The encoder is now in state 10. The  

     output bits are now again 11 by the same math.  
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c) The input bit 1 moves forward again. Now the encoder state is 01 and an another  

    flush bit is moved into the input register. The output bits are now 10.  

d) At time 3, the input bit moves from the last register and the input state is 00. The  

    output bits are now 00. At time 3, the input bit 1 has passed completely thorough  

    the encoder and the encoder has been flushed to an all zero state, ready for the  

    next sequence. A single bit has produced an 8-bit output although nominally the  

    code rate is 1/2. This shows that for small sequences the overhead is much higher  

    than the nominal rate, which only applies to long sequences. If the same thing is  

   done with a 0 bit, we would get an 8 bit all zero sequence.        

 

 

  Figure 2.3: A sequence consisting of a solo 1 bit as it goes through the encoder [8]  
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The 1 bit has a response of 11 11 10 00 which is called the impulse response of this 

Encoder. Thus the 0 bit similarly has an impulse response 00 00 00 00. Convolving the 

input sequence with the code polynomials produced these two output sequences, which is 

why these codes are called convolutional codes. 

 

2.4 Encoding Technique  

There are several method of designing the Encoder. These are  

1. Lookup Table 

2. State Diagram. 

3. Tree Diagram. 

4. Trillis Diagram. 

 

 2.4.1 Lookup Table 

The look up table consists of four items.  

1. Input bit  

2. The input state of the encoder, For code (2, 1, 3) the memory register bits are  

   3-1 =2 bits So four possible states will be found for code (2, 1, 3)  

            3. The output bits. For code (2, 1, 3) 2 bits are output and the choices are 00, 01, 10,  

               11. For the code (3, 1, 3)  3 bits are output and the choices are 000, 001, 010,  

               011, 100, 101, 110, 111.     

            4. The output state which will be the input state for the next bit.     
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           Table 2.2: This look up table uniquely describes the code (2, 1, 3) 

Input Bit Input State Output Bits Output State 

0 00 00 00 

1 00 11 10 

0 01 10 00 

1 01 01 10 

0 10 11 01 

1 10 00 11 

0 11 01 01 

1 11 10 11 

             

          Table 2.3: This look up table uniquely describes the code (3, 1, 3) 

Input Bit Input State Output Bits Output State 

0 00 000 00 

1 00 101 10 

0 01 111 00 

1 01 010 10 

0 10 110 01 

1 10 011 11 

0 11 001 01 

1 11 100 11 

 

2.4.2 State Diagram  

A state diagram for code (2, 1, 4) is shown in Figure 2.5. Each circle represents a state. At 

any one time, the encoder resides in one of these states. The lines to and from it show state 

transitions that are possible as bits arrive. Only two events can happen at each time, arrival 

of a 1 bit or arrival of a 0 bit. Each of these two events allows the encoder to jump into a 

different state. The state diagram does not have time as a dimension and hence it tends to be 

not intuitive. 
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  Figure 2.4:  A convolutional encoder with 1/2 code rate and 4 memory register  

 

            

                                          Figure 2.5:  State diagram of encoder (2, 1, 4) [8] 

 

Compare the above State diagram to the encoder lookup table. The state diagram contains 

the same information that is in the table lookup but it is a graphic representation. The solid 

lines indicate the arrival of a 0 and the dashed lines indicate the arrival of a 1. The output 

bits for each case are shown on the line and the arrow indicates the state transition. state 
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determines how many ways a travel can be done . Some encoder states allow outputs of 11 

and 00 and some allow 01 and 10. No state allows all four options.  

  

Encoding the sequence 1011 using the state diagram   

(1) Always start at state 000. The arrival of a 1 bit outputs 11 and puts in state 100.   

(2) The arrival of the next 0 bit outputs 11 and put in state 010.   

(3) The arrival of the next 1 bit outputs 01 and puts in state 101.   

(4) The last bit 1 takes to state 110 and outputs 11. So now the sequence 11 11 01  

      11.  But this is not the end. We have to take the Encoder back to all zero state.  

(5) From state 110, go to state 011 outputting 01.   

(6) From state 011 next state 001 outputting 01 and then   

(7) To state 00 with a final output of 11.  

 The final answer is : 11 11 01 11 01 01 11  

This is the same answer as adding up the individual impulse responses for bits 1011000. 

 

2.4.3 Tree Diagram  

 Figure 2.6 shows the tree diagram for the code (2, 1, 4). The tree diagram attempts to show 

the passage of time as travel deeper into the tree branches. It is somewhat better than a state 

diagram but still not the preferred approach for representing convolutional codes. Here 

instead of jumping from one state to another, branches of the tree is traverse depending on  

whether a 1 or 0 is received. The first branch in Figure 2.6 indicates the arrival of a 0 or a 1 

bit. The starting state is assumed to be 000 as no input first arrived. If a 0 is received, 

upwards traverse is done and if a 1 is received, then downwards traverse is done. In Figure 

2.6, the solid lines show the arrival of a 0 bit and the shaded lines the arrival of a 1 bit. The 

first 2 bits show the output bits and the number inside the parenthes is the output state.  
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Considering the sequence 1011 as before. At branch 1, downwards traverse is done . The 

output is 11 and the state is new 111. Now for 0 bit, upwards traverse is done. The output 

bits are 11 and the state is now 011. The next incoming bit is 1. Going downwards and get 

an output of 01 and now the output state is 101. The next incoming bit is 1 so going 

downwards again and gets output bits 11. From this point, in response to a 0 bit input, an 

output of 01 and an output state of 011 is found. If the sequence were longer, the tree 

diagram would have been repeated. 

  

 

                                       Figure 2.6: Tree diagram of encoder (2, 1, 4) [8] 

2.4.4 Trellis Diagram  

 Trellis diagrams are messy but generally preferred over both the tree and the state diagrams 

because they represent linear time sequencing of events. The x-axis is discrete time and all 
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possible states are shown on the y-axis. We move horizontally through the trellis with the 

passage of time. Each transition means new bits have arrived. 

 

                                     

                                       Figure 2.7:  Trellis diagram of encoder (2, 1, 4) [8] 

The trellis diagram is drawn by lining up all the possible states (2L

parentheses. The arrows going upwards represent a 0 bit and going downwards represent a 1 

bit. The trellis diagram is unique to each code, same as both the state and tree diagrams are.  

) in the vertical axis. 

Then each state to the next state is connected by the allowable codewords for that state. 

There are only two choices possible at each state. These are determined by the arrival of 

either a 0 or a 1 bit. The arrows show the input bit and the output bits are shown in 
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          Figure 2.8: Encoded Sequence, input bits 1011000, output bits 11011111010111 [8] 

 

In Figure 2.8, the incoming bits are shown on the top. Starting at point 1 upward traverse is 

done for a 0 bit and downward traverse is done for a 1 bit. The path taken by the bits of the 

example sequence (1011000) is shown by the lines. Trellis diagram gives exactly the same 

output sequence as the other three methods, namely the impulse response, state and the tree  

 

2.5 Decoding Technique  

There are several different approaches to decoding of convolutional codes. These are 

grouped in two basic categories.  

    1. Sequential decoding - Fano algorithm  

    2. Maximum likely-hood decoding - Viterbi decoding   

Both of these methods represent 2 different approaches to the same basic idea behind 

decoding. If 3 bits were sent via a rate 1/2 code. 6 bits are received. (Ignoring flush bits for 

now.) These six bits may or may not have errors. From the encoding process these bits map 

uniquely. So a 3 bit sequence will have a unique 6 bit output. But due to errors, receiving 
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end can receive any and all possible combinations of the 6 bits. The permutation of 3 input 

bits results in eight possible input sequences. Each of these has a unique mapping to a six 

bit output sequence by the code. These form the set of permissible sequences and the 

decoder's task is to determine which one was sent.  

 

Table 2.4: Bit agreement used as metric to decide between the received sequence and the 8 

                  possible valid code sequences 
Input Valid Code Sequence Received Sequence Bit Agreement 

000 000000 111100 2 

001 000011 111100 0 

010 001111 111100 2 

011 001100 111100 4 

100 111110 111100 5 

101 111101 111100 5 

110 110001 111100 3 

111 110010 111100 3 

                

 

If we receive 111100. It is not one of the 8 possible sequences above. The decoding can be 

done following two way 

1. Comparing this received sequence to all permissible sequences and pick the one  

 with the smallest hamming distance (or bit disagreement)   

 2. A correlation can be created and pick the sequences with the best correlation. 

The first procedure is basically what is behind hard decision decoding and the second the 

soft-decision decoding. The bit agreements, also the dot product between the received 

sequence and the codeword, show that an ambiguous answer can be found and original data 

will not be found.   
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As the number of bits increase, the number of calculations required to do decoding in this 

brute force manner increases such that it is no longer practical to do decoding this way. a 

more efficient method is needed that does not examine all options and has a way of 

resolving ambiguity such as here with two possible answers. (shown in bold in Table 2.4 ). 

If a message of length s bits is received, then the possible number of codewords are 2S

 

.  

2.5.1 Sequential Decoding 

Sequential decoding was one of the first methods proposed for decoding a convolutionally 

coded bit stream. It was first proposed by Wozencraft and later a better version was 

proposed by Fano.   

Sequential decoding allows both forwards and backwards movement through the trellis. The  

decoder keeps track of its decisions, each time it makes an ambiguous decision, it tallies it. 

If the tally increases faster than some threshold value, decoder gives up that path and 

retraces the path back to the last fork where the tally was below the threshold.  

 

Example:  

If a Encoder with code (2, 1, 4) and Input Sequence is 1011 000 then the output sequence 

will be: 11 11 01 11 01 01 11 (If no errors occurred )  

Considering one error occurred at first position and the received output is  

01 11 01 11 01 01 11 

 

 

2.5.1.1 Decoding using Sequential Decoding Algorithm 

Decision point 1: The decoder looks at the first two bits, 01. Right away it sees that an error 

has occurred because the starting two bits can only be 00 or 11. Any one of this two has 
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error. The decoder randomly selects 00 as the starting choice. To correspond to 00, it 

decodes the input bit as a 0. It puts a count of 1 into its error counter. It is now at point 2. 

 

 

                                              Figure 2.9: Sequential decoding 1 [8] 

 

Decision point 2: The decoder now looks at the next set of bits, which are 11. From here, it 

makes the decision that a 1 was sent which corresponds exactly with one of the codewords. 

This puts it at point 3.  

 

Decision point 3: The received bits are 01, but the codeword choices are 11, 00. This is seen 

as an error and the error count is increased to 2. Since error count is less than the threshold 

value of 3 (which we have set based on channel statistics) the decoder proceeds ahead. It 

arbitrarily selects the upper path and proceeds to point 4 making a decision that a 0 was 

sent.  

Decision point 4: It recognizes another error since the received bits are 11 but the codeword 

choices are 10, 01. The error tally increases to 3 and that tells the decoder to turn back.  
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                                         Figure 2.10:  Sequential decoding 2 [8] 

 

Decision point 5: The decoder goes back to point 3 where the error tally was less than 3 and 

takes the other choice to point 5. It again encounters an error condition. The received bits 

are 11 but the codewords possible are 01, 10. The tally has again increased to 3. It turns 

back again  

 

Decision point 6: Both possible paths from point 3 have been exhausted. The decoder must 

go further back than point 3. It goes back to pint 2. But here if it follows to point 2 the error 

tally immediately goes up to 3. So it must turn back from point 2 back to point 1. 
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                                     Figure 2.11: Sequential decoding 3 [8] 

From point 1, all choices encountered meet perfectly with the codeword choices and the 

decoder successfully decodes the message as 1011000. 

 

 

                                     Figure 2.12: Sequential decoding 4 [8] 

 

The memory requirement of sequential decoding is manageable and so this method is used 

with long constraint length codes where the S/N is also low. Some NASA planetary mission 

links have used sequential decoding. 
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2.5.1.2 Maximum Likelihood and Viterbi Decoding  

 Viterbi decoding is the best known implementation of the maximum likely-hood decoding. 

The principal used to reduce the choices is this.  

      1. The errors occur infrequently. The probability of error is small.  

      2. The probability of two errors in a row is much smaller than a single error, that is the  

          errors are distributed randomly.  

The Viterbi decoder examines an entire received sequence of a given length. The decoder 

computes a metric for each path and makes a decision based on this metric. All paths are 

followed until two paths converge on one node. Then the path with the higher metric is kept 

and the one with lower metric is discarded. The paths selected are called the survivors. For 

an N bit sequence, total numbers of possible received sequences are 2N

2

. Of these only 

KL

Table 2.5: Humming distance metrics 

 are valid. The Viterbi algorithm applies the maximum-likelihood principles to limit the 

comparison to 2 to the power of kL surviving paths instead of checking all paths. The most 

common metric used is the hamming distance metric. This is just the dot product between 

the received codeword and the allowable codeword.  

Bits 

Received 

Valid Codeword1 Valid Codeword2 Humming 

Metric 1 

Humming 

Metric 2 

00 00 11 2 0 

01 10 01 0 2 

10 00 11 1 1 

 

These metrics are cumulative so that the path with the largest total metric is the final 

winner.  

In the following example received sequence 01 11 01 11 01 01 11 is decoded using Viterbi 

decoding algorithm. 
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At t = 0, received bit is 01. The decoder always starts at state 000. From this point it has two 

paths available, but neither matches the incoming bits. The decoder computes the branch 

metric for both of these and will continue simultaneously along both of these branches in 

contrast to the sequential decoding where a choice is made at every decision point. The 

metric for both branches is equal to 1, which means that one of the two bits was matched 

with the incoming bits. 

 

Figure 2.13: Viterbi decoding step 1 [8] 

At t = 1, the decoder fans out from these two possible states to four states. The branch 

metrics for these branches are computed by looking at the agreement with the codeword and 

the incoming bits which are 11. The new metric is shown on the right of the trellis.  

 

Figure 2.14: Viterbi decoding step 2 [8] 
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At t = 2, the four states have fanned out to eight to show all possible paths. The path metrics 

calculated for bits 01 and added to pervious metrics from t = 1. 

 

 

 Figure 2.15: Viterbi decoding step 3 [8] 

At t = 4, the trellis is fully populated. Each node has at least one path coming into it. The 

metrics are as shown in Figure 2.15.  

 

At t = 5, the paths progress forward and now begin to converge on the nodes. Two metrics 

are given for each of the paths coming into a node. Per the maximum likelihood principle, at 

each node the path with the lower metric is discarded because it is least likely. This 

discarding of paths at each node helps to reduce the number of paths that have to be 

examined and gives the Viterbi method its strength. 
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Figure 2.16: Viterbi decoding step 4 [8] 

 

Now at each node, one or more path is available for converging. The metrics for all paths 

are given on the right. At each node, Only the path with the highest metric will be kept and 

discard all others, shown in red. After discarding the paths with the smaller metric, the 

following paths are left. The metric shown is that of the winner 

path.

 

 

Figure 2.17: Viterbi decoding step 5 [8] 
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At t = 5, after discarding the paths as shown, again forward traverse and computation of 

new metrics is done. At the next node, paths converge occurred and paths with lower 

metrics is discarded. 

 

 

  

Figure 2.18: Viterbi decoding step 6 [8] 

 

At t= 6, the received bits are 11. Again the metrics are computed for all paths. All smaller 

metrics paths are discarded but kept anyone if they are equal. 

 

Figure 2.19: Viterbi decoding step 7 [8] 
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The 7-step trellis is complete. Now the path with the highest metric is winner. The path 

traced by states 000, 100, 010, 101, 110, 011, 001, 000 and corresponding to bits 1011000 is 

the decoded sequence. 

 

 Figure 2.20: Viterbi decoding step 8 [8] 

 

The maximum weighted path is shown in Figure 2.20 

 

 

Figure 2.21: Maximum weighted path 
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The length of this trellis was 4bits + m bits. Ideally this should be equal to the length of the 

message, but by a truncation process, storage requirements can be reduced and decoding 

need not be delayed until the end of the transmitted sequence. 
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Chapter 3 

Design and Implementation 
3.1 Introduction 

Verilog HDL is one of the most popular high definition language to design digital circuit. In 

this project CEVD is designed and simulated  using  Verilog HDL in Altera’s Quartus II 

environment. After simulating the result the design is implemented using Cyclone II FPGA 

board. Convolutional encoder uses the lookup table to generate output data and next state of 

the Encoder. Viterbi  decoder is designed using the maximum likelihood algorithm.       

 

3.2 Verilog HDL (Hardware Definition Language) 

In the earlier, the conventional approach such as hand-draw and schematic based design 

technique was the only choice to the designer to design a digital system. But now millions 

of transistors are being integrated on a single chip integrated circuit (IC) where the 

conventional design technique is insufficient to be used. It points towards having a new 

approach for designing today’s complex digital system and that is hardware description 

language (HDL). 

HDL based design technique has been emerged as the most efficient solution. It offers the 

following advantages over conventional based design approaches. 

• It is technology independent. If a particular IC fabrication process becomes 

outdated, it is possible to synthesize a new level design by only changing the 

technology file but using the same HDL code. 

• HDL shortens the design cycle of a chip by efficiently describing and simulating the 

behavior of the chip. A complex circuit can be designed using a few lines of HDL 

code. 

• It lowers the cost of design of an IC. 
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•  It improves design quality of a chip. Area and timing of the chip can be optimized 

and analyzed in different stages of design. 

There are different types of HDL available in the market. Some of these are vendor 

dependent where the HDL code is only useable under the software provided by the specific 

vendor. For example, Altera hardware description language (AHDL) from Altera company, 

Lola (Logic Language) from European Silicon Structure (ES2) company etc. However 

Verilog and VHDL (very high speed IC hardware description language) are the two vendor 

independent HDL which are now widely accepted industry standard electronic design 

automation (EDA) tool for designing digital system. Verilog HDL is introduced by Cadence 

Data Systems, Inc. and later its control is transferred to a consortium of companies and 

universities known as open Verilog international (OVI) whereas VHDL is used primarily by 

defense contractors. Currently Verilog is widely used by IC designers. Verilog HDL is 

IEEE standard and easier than VHDL. It is less error prone. It has many pre-defined 

features very specific to IC design.For this reason Verilog is chosen to design and 

implement AES processor. 

 

3.3 Implementation using FPGA 

In most FPGAs, programmable logic components (or logic blocks, in FPGA parlance) also 

include memory elements, which may be simple flip-flops or more complete blocks of 

memories. These logic blocks and interconnects can be programmed after the 

manufacturing process by the customer/designer (hence the term "field programmable", i.e. 

programmable in the field) so that the FPGA can perform whatever logical function is 

needed. 

There are various vendor manufacturers for different types of FPGA chip such as Altera, 

Xilinx, Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, Atmel, 

Achronix Semiconductor etc. Among them Altera and Xilinx are the most famous FPGA 

http://en.wikipedia.org/wiki/Altera�
http://en.wikipedia.org/wiki/Xilinx�
http://en.wikipedia.org/wiki/Lattice_Semiconductor�
http://www.actel.com/�
http://www.quicklogic.com/�
http://en.wikipedia.org/wiki/Cypress_Semiconductor�
http://en.wikipedia.org/wiki/Atmel�
http://www.achronix.com/�
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companies since both of the companies have lot of varieties of FPGA device from small 

number of gate counts to higher number of gate counts. However Altera devices offer the 

general benefits of PLDs as innovative architectures, advanced process technologies, state-

of-the-art development tools, and a wide selection of mega function. The common 

advantages of Altera devices include: high performance, high-density logic integration, 

cost-effectiveness, short development cycles with the Quartus II software, Mega core 

functions, Benefits of in-system programming. In this work the FPGA device used is Altera 

provided EP2C35F672C6 from Cyclone II family. 

 

3.4 Development Tool Quartus II 

The AES processor is designed using Quartus II EDA tool (provided by Altera Company) 

which provides graphical user interface (GUI) to download the  digital design AES into the 

Cyclone II FPGA. 

Quartus II software provides a simple, automated mechanism to allow designers to obtain the 

best performance for their designs. This software provides the way to design the solution 

through Verilog HDL and complile the design to ensure the workability and efficiency 

logically. The tool programmer allows using files generated by the compiler to program 

and/or configuring all devices supported by the Quartus II software. Programmer and 

supported programming hardware tool is used to easily program or configure a working 

device in minutes. After a successful compilation, download configuration data into a device 

through the, ByteBlaster or USB-Blaster communications cables, or through the Altera 

Programming Unit (APU).The program or configure devices can be in Passive Serial mode, 

Active Serial Programming mode, JTAG mode, or In-Socket Programming mode.  

Program an Altera Device: When the design is ready to program or configure a device, it 

needs to open the programmer and create a chain description file (.cdf) that stores device 
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name, device order, programming and hardware setup information. CDFs can be used to 

program or configure one or more devices in a JTAG chain or a passive serial chain. 

Compiling Mode: The Quartus II Compiler consists of a set of independent modules that 

check the design for errors, synthesize the logic, fit the design into an Altera device, and 

generate output files for simulation, timing analysis, software building, and device 

programming. The basic compiler consists of the analysis & synthesis, fitter, assembler, and 

timing analyzer modules. Each of the compiler modules can be run individually or together 

from the Quartus II user interface. Alternatively, these modules can be run independently 

with the appropriate command line executable. 

Compile the Design: The compiler automatically locates and uses all non-design files 

associated with the design, such as include files (.inc) containing AHDL function prototype 

statements; memory initialization files (.mif) or hexadecimal intel-format files (.hex) 

containing the initial content of memories; as well as Quartus II project Files (.qpf) and 

Quartus II settings files (.qsf) containing project and setting information. During 

compilation, the compiler generates information, warning, and error messages that appear 

automatically in the messages window.  

Simulation Mode:  Simulation allows testing a design thoroughly to ensure that it responds 

correctly in every possible situation before configuring a device. Depending on the type of 

information need, functional or timing simulation can be performed with the simulator. 

Functional simulation tests only the logical operation of a design by simulating the behavior 

of flattened netlist extracted from the design files, while timing simulation uses a fully 

compiled netlist containing timing information to test both the logical operation and the 

worst-case timing for the design in the target device. Before running a simulation, it is 

necessary to specify input vectors as the stimuli for the Quartus II Simulator. The simulator 



32 

 

 
 

uses these input vectors to simulate the output signals that a programmed device would 

produce under the same conditions. The simulator supports input vector stimuli in the form 

of a vector waveform file (.vwf), vector table output file (.tbl), power input file (.pwf), or a 

Quartus II generated vector file (.vec) or simulator channel file (.scf).  

3.5 Field Programmable Gate Array (FPGA) 

A field programmable gate array (FPGA) or programmable logic device (PLD) is a 

semiconductor device containing programmable logic components and programmable 

interconnects. It contains up to thousands of gates. The  programmable logic components can 

be programmed to duplicate the functionality of basic logic gates such as AND, OR, XOR, 

NOT or more complex combinational functions such as decoders or simple math functions. In 

most FPGAs,  programmable logic components also include memory elements, which may be 

simple flip-flops or more complete blocks of memories. These logic blocks and interconnects 

can be programmed after the manufacturing process by the customer/designer (hence the 

term" field programmable") so that the FPGA can perform whatever logical function is 

needed. 

3.5.1 Cyclone II FPGA DE2 board  

Altera's  Cyclone 

• Altera Cyclone II 2C35 FPGA with 35000 LEs  

 II FPGA family is designed on an all-layer-copper, low-k, 1.2-V SRAM 

process and is optimized for the smallest possible die size. Built on TSMC’s highly 

successful 90-nm process technology using 300-mm wafers, the Cyclone II FPGA family 

offers higher densities, more features, exceptional performance, and the benefits of 

programmable logic at ASIC prices. The Cyclone II FPGA family extends the reach of 

FPGAs further into cost-sensitive, high-volume applications, continuing the success of the 

Cyclone FPGA family. Cyclone II FPGA has following facilities. 

• Altera Serial Configuration deivices (EPCS16) for Cyclone II 2C35  
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• USB Blaster built in on board for programming and user API controlling  

• JTAG Mode and AS Mode are supported  

• 8Mbyte (1M x 4 x 16) SDRAM  

• 512K byte(256K X16) SRAM  

• 4Mbyte Flash Memory (upgradeable to 4Mbyte)  

• SD Card Socket  

• 4 Push-button switches  

• 18 DPDT switches  

• 9 Green User LEDs  

• 18 Red User LEDs  

• 16 x 2 LCD Module  

• 50MHz Oscillator and 27MHz Oscillator for external clock sources  

• 24-bit CD-Quality Audio CODEC with line-in, line-out, and microphone-in jacks  

• VGA DAC (10-bit high-speed triple DACs) with VGA out connector  

• TV Decoder (NTSC/PAL) and TV in connector  

• 10/100 Ethernet Controller with socket.  

• USB Host/Slave Controller with USB type A and type B connectors.  

• RS-232 Transceiver and 9-pin connector  

• PS/2 mouse/keyboard connector  

• IrDA transceiver  

• Two 40-pin Expansion Headers with diode protection 
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Figure 3.1: Cyclone II FPGA DE2 Board 

 
3.5.2 Design Flow for FPGA Implementation using Quartus II 7.0 
 

Figure 3.2 shows flow diagram of a design to be realized into FPGA hardware. Once the sub-

modules of a design are identified, each of the modules is designed, compiled and 

synthesized using FPGA vendor provided software. Then functional simulation is performed 

upon each module. The correct simulation results ensure the proper functionality of a design. 

Once the simulation results of all the sub-modules are as desired then they are integrated and 

simulated again. Then for hardware realization, suitable FPGA device is selected for the 

design, inputs and outputs are assigned to specific pins of the FPGA. It is again compiled and 

synthesized.  
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After that timing simulation of the design is performed to ensure that the design functions in 

real time. Then the design is downloaded into the FPGA. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Digital system design and implementation using FPGA 
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So to implement the circuits that will be designed on the FPGA there are few key steps. 

1. Start new project 

2. Create a new Verilog HDL file 

3. Write the program using Verilog HDL. 

4. Compile the code. 

5. Correct any syntax errors. 

6. Create a vector web form file 

7. Pin assignment 

8. Simulate the circuit to make sure that getting the expected behavior. 

9. Download the program onto the FPGA 

10. Test the operation of circuit. 

Quartus II helps to implement all of the above easily.  

 

3.5.3 Input Output Device 

The DE2 board provides 18 toggle switches, called SW17¡0, that can be used as inputs to a 

circuit, and 18 red lights, called LEDR17¡0, that can be used to display output values. Single 

assignment statement has been used for all 18 input output device. 
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3.6 Analysis and Design Methodology 

3.6.1 Block Diagram 

The project block diagram (Figure 3.3) shows the total design at a glance with functionality 

of different module  

 
    Figure 3.3:  Block diagram of the proposed System 

Block diagram shows different functions designed to modularized the total system. Input 

data first feed into convolutional encoder. Convolutional encoder make this data two or 

three fold according to different code rate. Using random error generator errors in different 

bit position are introduced in encoder output data. Next state generator function used this 

erroneous data in sequential manner combining 2 bits for 1/2 code rate and 3 bits for 1/3 

code rate. This combined bits are compared with '0' output comparator and '1' output 

comparator and path matrix with path weights are generated. After completing the pattern 

matching maximum weighted path finding function is used to find the best survival path.   
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3.6.2 Encoder Group Design 

Four separate encoder blocks are integrated in this encoder group design. These are 

     1)  Encoder module 1 with 1/2 code rate, 3 constraint length, 4 trellis length       

     2)  Encoder module 2 with 1/2 code rate, 3 constraint length, 15 trellis length       

     3)  Encoder module 1 with 1/3 code rate, 3 constraint length, 4 trellis length       

    4)  Encoder module 2 with 1/3 code rate, 3 constraint length, 15 trellis length       

 

Figure 3.4:  Convolutional encoder group 

Selection variable S1 and S0 is used to select different module of convolutional encoder and 

corresponding output of this module is taken to transmit. Internal calculation of each 

module will be activated after receiving the predefined selection bit combination. The 

module without valid selection bit combination will always output '0' bit.  

 

3.6.3 Decoder Group Design 

Four separate decoder blocks are integrated in this decoder group design. These are 

     1)  Decoder module 1 with 1/2 code rate, 3 constraint length, 4 trellis length       

     2)  Decoder module 2 with 1/2 code rate, 3 constraint length, 15 trellis length       



39 

 

 
 

     3)  Decoder module 3 with 1/3 code rate, 3 constraint length, 4 trellis length       

     4)  Decoder module 4 with 1/3 code rate, 3 constraint length, 15 trellis length       

 

    
Figure 3.5:  Viterbi   decoder group 

 

Verilog HDL provide task and function facility to modularize the large design. Each decoder 

module is sub divided into different tasks and function. Next state generator, hamming 

distance calculation, branch matrices calculation all this are implemented using task and 

function. S1 and S0 Selection variable are used to select different Viterbi  decoders. This 

Decoder selection variable has one to one relation with encoder selection variable.   

 

3.6.4 Main Module of CEVD 

Each module is individually design with corresponding input data, output data and Enable 

signal. Enable signal is used to choice different encoder and decoder. According to four 

binary combination of two enable signal corresponding encoder and decoder output is 

selected.  
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3.6.5 Block Diagram of different Module 

Total project work is divided into ten different module. Smaller modules are embedded to 

large module.  Block diagram shows the functionality, input, output and interface facility to 

other module. Each module is described below.           

Convolutional13 Module: 1/3 code rate convolutional encoder is Shown in figure 3.6. 

Convolutional encoder takes three binary data as input. In these data two LSB bits are 

previous memory register data and MSB bit is the new data. After processing the module 2 

operation three output bits are generated. rst is use to enable the circuit.      

 

rst

idata[2..0]

clk

odata[2..0]

conv olutional13

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

 
 

Figure 3.6: Convolutional13 

 

Convolutional12 Module: This is same as convolutional encoder with code rate 1/3 except 

that this encoder produce two output bit at a time. Only two module 2 operation is done here.  

Figure 3.7 shows this 1/2 code rate convolutional encoder.     

rst

idata[2..0]

clk

odata[1..0]

conv olutional12

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

 
 

Figure 3.7: Convolutional12 
 

Encoder1315 Module: According to the figure 3.8 this module use 15 binary data as input 

and produce 51 binary data as output . This module use convolutional13 module as sub 

module for fifteen times. Output is generated using  parallel execution of fifteen sub modules.  

rst is used as selection variable where  '100' value is fixed for this module to be activated.         
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rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1315

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

 
 

Figure 3.8: Encoder1315 

 

Encoder1304 Module: This module use 4 binary data as input and produce 18 binary data as 

output shown in figure 3.9. Here extra 33 bits of output port remain '0' . This is done due to 

make the same length of output register for whole design. This module use convolutional13 

module as sub module for four times. Output is generated using parallel execution of four sub 

modules . rst is used as selection variable where  '101' value is fixed for this module to be 

activated.       

   

rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]

encoder1304

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

VCC
Encoded Data INPUT

 
Figure 3.9: Encoder1304 

 

Encoder1215 Module: This module use 15 binary data as input and produce 34 binary data 

as output shown in Figure 3.10. This module uses convolutional12 module as sub module for 

fifteen times. Output is generated using parallel execution of fifteen sub modules. rst is used 

as selection variable where  '110' value is fixed for this module to be activated 

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1215

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded SequenceOUTPUT

 
 

Figure 3.10: Encoder1215 
 
 
 

Encoder1204 Module: This module use 4 binary data as input and produce 12 binary data as 
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output shown in Figure 3.11. Here extra 21 bits of output port remain '0'. This module use 

convolutional12 module as sub module for four times. Output is generated using parallel 

execution of four sub modules. rst is used as selection variable where  '111' value is fixed for 

this module to be activated.         

rst[2..0]

rowData[14..0]

clk

encoderdata[33..0]

encoder1204

inst

VCC
Selection INPUT

VCC
Row Data INPUT

VCC
Clock INPUT

Encoded DataOUTPUT

 
 

Figure 3.11: Encoder1204 

 

Decoder1315 Module: According to Figure 3.12 this module decode 1/3 code rate and 15 

trellis length encoded data at a time. rst is use to activate this  decoder where '100' is fixed for 

this module to be activated. Input data is 51 bit length and output is 15 bit length.       

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1315

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

 
Figure 3.12: Decoder1315 

 

Decoder1304 Module: This module decode 1/3 code rate and 4 trellis length encoded data at 

a time. rst is use to activate this  decoder where '101' is fixed for this module to be activated. 

Input data is 18 bit length and output is 4 bit length. The remaining 33 input bit and 11 output 

bit will be ‘0’. The Figure 3.13 depict the module.        

rst[2..0]

rowData[50..0]

clk

decoderdata[14..0]

decoder1304

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

 
 

Figure 3.13: Decoder1304 
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Decoder1215 Module: According to Figure 3.14 this module decode 1/2 code rate and 15 

trellis length encoded data at a time. rst is use to activate this  decoder where '110' is fixed for 

this module to be activated. Input data is 34 bit length and output is 15 bit length.       

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1215

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

 
 

Figure 3.14: Decoder1215 
 

Decoder1204 Module: According to Figure 3.15 this module decode 1/2 code rate and 4 

trellis length encoded data at a time. rst is use to activate this  decoder where '111' is fixed for 

this module to be activated. Input data is 12 bit length and output is 4 bit length. The 

remaining 21 input bit and 11 output bit will be '0' .          

rst[2..0]

rowData[33..0]

clk

decoderdata[14..0]

decoder1204

inst

VCC
Selection INPUT

VCC
Encoded Data INPUT

VCC
Clock INPUT

Decoded DataOUTPUT

 
 

Figure 3.15: Decoder1204 
 

 

Encoded and Decoder Integrated Module: All encoder and decoder modules are integrated 

with this module shown in Figure 3.16.  Selection variable is used to choice the encoder and 

decoder module group at a time. There is no separate module for convolutional13 and  

convolutional12 due to the fact that these are integrated within each encoder module.   
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rst[2..0]

rowData[14..0]

clk

encoderdata[50..0]
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Figure 3.16: Encoded and decoder integrated module 
 

Complete Design Block: Figure 3.17 depict the complete design block of CEVD. Three 

input pin and one output is shown in this block. CEVD group selector select the encoder 

decoder group. Row data is binary data and output data is the same to row data after 

performing the encode and decode operation.    

rst[2..0]

idata[14..0]

clk

coutput[14..0]

cev dIntq

inst

VCC
CEVD group selector INPUT

VCC
Row data INPUT

VCC
Clock INPUT

Ouput DataOUTPUT

 
Figure 3.17: Complete design block 
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3.6.6 Important task and function 

3.6.6.1 Next State Generator  

This function take memory register data, one binary input data  and generate the next state 

of the memory register.       

3.6.6.2 Output One  

This function take memory register, '1' as incoming binary data and generate the 2 or 3 

output according to the Encoder coding rate. 

3.6.6.3 Output Zero  

This function take memory register, '0' as incoming binary data and generate the 2 or 3 

output according to the Encoder coding rate. 

3.6.6.4 Hamming Distance  

This function take two same length binary string as input and output the humming distance 

of these two strings.  

3.6.6.5 Maximum Path Weight  

This function use global array of total path and total weight of different path as input and 

return maximum weighted path.  
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 Chapter 4 

Results and Discussions 
4.1 Introduction 

This Chapter show the simulation result and usage of chip area of the proposed system. 

Quartus II 7.0 web edition is used for simulation of entire design. Simulation is done using 

timing diagram.   

 

4.2 Simulation Result 

The simulation of the total project is done step by step to check the validity of encoder and 

decoder module. After performing different smaller modules simulation modules are 

integrated part by part according to design consideration. The integrated modules are then 

simulated to justify the overall outcome. Thus simulation phase is solely divided into two part        

1) Simulation of encoder module  

2) Simulation of decoder and encoder integrated module.  

 

4.2.1 Simulation of Encoder Module 

In this simulation phase input data is considered as 'idata' in the following Figure 4.1. 'rst' is 

selection variable to chose different coding rate encoder  and 'odatathree' is the output coded 

data from 1/3 encoder. According to Figure 4.1 'idata' is 15 bit long to produce the trellis 

length 15. 'rst' is set to 100 which is fixed for 1/3 coding rate and 15 trellis length.  
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Figure 4.1: Simulation of encoder module (3,1,3) with trellis length 15 

 

Figure 4.2 below depict the simulation of 1/3 coding rate, 4 trellis length. Here the 'rst' value 

is set to 101 fixed for this coding rate and trellis length. From the input bit 101100100111010 

only 1010 from LSB is converted by encoder leaving the rest of 11 bits to binary 0 in 

'odatathree'.       

 

 

                                 

Figure 4.2: Simulation of encoder module (3,1,3) with trellis length 4 

 

The next two Figure 4.3 and Figure 4.4 are same to above simulation but only difference is 

the code rate 1/2 so the output sequence is double by input sequence. Here value of 'rst' is 

also different and unique in order to maintain selection criteria. 
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Figure 4.3: Simulation of encoder module (2,1,3) with trellis length 15 

 

 

 

 

Figure 4.4: Simulation of encoder module (2,1,3) with trellis length 4 

 

 

4.2.2 Simulation of Decoder and Encoder Integrated Module 

In this simulation phase the decoder module is designed separately and integrated with 

Encoder module due to the fact that the output of encoder will be the input of decoder.  Here    

'idata' is input data in binary format . 'odatatwo', 'odatathree' is for rate 1/2  and 1/3  encoding 

output. 'rst' is used to select different coding rate and trellis length. 'rst' is three bit and MSB 

of 'rst' is always high when the system is in operation . Deep purple area of 'coutput' Indicate 

the total delay it taken for decoding algorithm. For long trellis length and high code rate it 

will take more time so the region is expanded compare with sort trellis length and low code 

rate. After encoding the input data bit the sequence in output is altered randomly to test error 
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recovery functionality of decoder. Thus output in from encoder module is erroneous output 

rather then original output.    

In the following Figure 4.5 as 'rst' is 100 the overall integrated module activates the code rate 

1/3 and trellis length 15 encoder and decoder. The Figure show that 'odatatwo' is 0 bit 

sequence as it is inactivated.    

 

   
 

       Figure 4.5:  Coding rate 1/3, trellis length 15     

 

In the following Figure 4.6 when 'rst' is 101 the overall integrated module activates the code 

rate 1/3 and trillis length 4 encoder and decoder. The Figure show that 'odatatwo' is 0 bit 

sequence as it is inactivated and only four LSB bit of input data is encoded and decoded 

remaining the rest of the bit intact.    

 

 
 

 
        

Figure 4.6: Coding rate 1/3, trellis length 4     
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Figure 4.7 shows the 'rst' variable 110 which imply that code rate 1/2 and trillis length 15 is 
activated.   
 

 
 
 
       

 Figure 4.7: Coding rate 1/2, trellis length 15     
 
Figure 4.8 shows the 'rst' variable 111 which imply that code rate 1/2 and trillis length 15 is 
activated.   

 
 

 
 
   

     Figure 4.8: Coding rate 1/2, trellis length 4     

 

4.3 Implementation on FPGA 

IICT,BUET owns a Altera’s DE2 FPGA board to implement any complex digital design. The 

proposed design has been implemented on the FPGA mounted on the DE2 board. Leftmost 

three SWITCH on this board used as selection variable and remaining fifteen SWITCH is for 

binary input. Fifteen red LED is used as output binary data.    
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Figure 4.9: SWITCH input LED output of coding rate 1/2, trellis length 4 

 

 

Figure 4.10: SWITCH input LED output of coding rate 1/2, trellis length 15 

 

 

Figure 4.11: SWITCH input LED output of coding rate 1/3, trellis length 4 

 

 

Figure 4.12: SWITCH input LED output of coding rate 1/3, trellis length 15 
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For input data 110100110111001 Figure 4.9 shows coding rate 1/2, trellis length 4 output. 

Figure 4.10 shows coding rate 1/2, trellis length 15 output. Figure 4.11 shows coding rate 

1/3, trellis length 4 outputs. Figure 4.12 shows coding rate 1/3, trellis length 15 output. So it 

shows that the CEVD is working correctly. 

 

4.4 Usage of Chip Area 

Cyclone II FPGA has total 33216 logic cell. Among these only 22.2904% is used for 

implementing this encoder and decoder. Area usage for each module is given bellow. The 

proposed system can expand five times with same complexity.  

     

Table 4.1: Device utilization of Cyclone II FPGA 

Module Code Rate Trellis 

Length 

Logic Cell Percent of total 

Logic Cell  

Encoder  1/3 15 23 0.0692 % 

Encoder 1/3 4 2 0.0060 % 

Encoder 1/2 15 16 0.0481 % 

Encoder 1/2 4 6 0.0180 % 

Decoder 1/3 15 3310 9.9650 % 

Decoder 1/3 4 115 0.3462 % 

Decoder 1/2 15 3598 10.8321 % 

Decoder 1/2 4 287 0.8640 % 

 
 
  
 

4.5 Comparison  

A tabular comparison of different system of research work is given below 

The performance of the CEVD achieved in this research has been compared with that of other 

researchers [4-6]. It has been shown in the Table 4.2.  
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Table 4.2: Comparison of different Implementations 

Research work Variable Trillis 
Length 

Variable Code Rate 

Azim,  C.F. al[4]    
DSP 

 
 

   

No No 

Bissi, L et. al.[6] 
Xilinx XCV300PQ240-4 FPGA 

No Yes 

Wong, Y.S. al [5] 
Xilinx Virtex-II Pro,XC2vp30 

FPGA 

Yes No 

This research Yes Yes 

 

From Table 4.2 it is observed that variable trellis and variable code rate are separately 

implemented in different research. Simultaneous variation on this two parameter is only done 

in this research project. Research paper [4] shows the simple implementation of the encoder 

and decoder with DSP which is slow in operation. Research paper [6] use variable code rate 

without changing the trellis length. Research paper [5] user variable trellis length in same 

code rate.  So dynamicity is done in this research work. 
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Chapter 5 

Conclusion 

5.1 Conclusion 

The objective of the proposed research was to design a programmable CEVD using code rate 

and trellis length as parameter. The proposed CEVD has been designed using Verilog HDL. 

The simulation result of each module and that of whole integrated module of the CEVD 

verify its desired functionality. Hardware implementation results also validate the truth. 

Comparison with different researcher's approaches to implement the CEVD is also done. 

Comparison shows limited configuration facility of different researcher's approaches. 

According to the demand of environment and error recoverability flexible configuration 

facility is introduced in proposed system. Thus whenever the proposed system operates on 

low noisy environment high code rate and long trellis length Viterbi decoder can be switched 

to low code rate and short trellis length Viterbi decoder. Also for high noisy environment low 

code rate and short trellis length Viterbi decoder can be switched to high code rate and long 

trellis length Viterbi decoder   The proposed system is fully code based using verilog HDL 

modularized facility of task and function. Thus the system can be easily expandable in 

compare with other.  

 

5.2 Future Work 

Wireless environment can be classified according to different noise level where each 

environment will use fixed code rate, trellis length and constraint length. According to the 

chip area used by the project the design can be expanded seven times with same complexity. 

Thus the total system may be parameterized on different environmental aspect. Also power 

analysis can be done on the proposed system.   



55 

 

 
 

References:  

[1] Shannon, C.E. “A mathematical theory of    Communication”, Bell Sys.Tech .J. vol. 27,  

pp. 379-423 and 23- 656, 1948. 

 

[2] Hamming, R.W.  “Error detecting and correcting codes”, Bell Sys.Tech .J. vol. 29,  pp. 

147-160, 1960. 

 

[3] Golay,  M. J. E.  “Notes on digital coding”, Proc. IEEE, Vol. 37,  p. 657, 1949. 

 

[4] Azim, C.F.,  Monir, M.G. “Implementation  of  Viterbi  Decoder for  WCDMA 

System”, Proceedings of  IEEE International Conference (NMIC 2005), pp. 1-3, 2005.      

 

[5] Wong, Y.S., Jian, W., Hui, C. O., Kyun, Ng. C., Noordi, N.K.   “Implementation of 

Convolutional Encoder and Viterbi Decoder using VHDL”, In Proceedings of IEEE 

International conference on Research and Development Malaysia, November 2009. 

 

[6] Bissi, L.,  Placidi, P.,  Baruffa, G.,  Scorzoni, A. “A Multi- Standard Reconfigurable 

Viterbi  Decoder using Embedded FPGA blocks”, In Proceedings of the 9th

 

  EUROMICRO 

Conference on Digital System Design (DSD’06),pp. 146-153, 2006.    

[7] Shaker, S.W., Elramly, S.H., Shehata, K.A. “FPGA Implementation of a   reconfigurable 

Viterbi Decoder for WiMax Receiver”, IEEE International conference on Microelectronics,   

pp. 246-267, 2009.  

 

[8] Charan, L., Editor www.complextoreal.com, Tutorial 12, Coding and decoding with 

Convolutional Codes.  
 



56 

 

 
 

Appendix A 

--Project Coding-- 

 -- Convolutional Encoder Module (3,1,3)  

module convolutional13(rst,idata , odata) ; 

input rst ; 

input [2:0]idata;   

output [2:0]odata;  

reg [2:0] odata; 

always @(rst or idata   ) 

 begin 

    if (rst==1'b1)         

     begin 

       case(idata) 

         3'b000: odata=3'b000;  

         3'b001: odata=3'b111;  

         3'b010: odata=3'b011; 

         3'b011: odata=3'b100; 

         3'b100: odata=3'b101; 

         3'b101: odata=3'b010; 

         3'b110: odata=3'b110; 

         3'b111: odata=3'b001; 

        endcase  

       odata=odata;  

     end 

     else 

     begin 

     odata=0; 

     end  

 end 

endmodule 

 

 

--Convolutional Encoder Module (2,1,3) 

module convolutional12(rst,idata , odata) ; 

input rst ; 

input [2:0]idata;   

output [1:0]odata;  

reg [1:0] odata; 
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always @(rst or idata   ) 

 begin 

    if (rst==1)         

     begin 

       case(idata) 

                       3'b000: odata=2'b00;  

         3'b001: odata=2'b01;  

         3'b010: odata=2'b11; 

         3'b011: odata=2'b10; 

         3'b100: odata=2'b11; 

         3'b101: odata=2'b10; 

         3'b110: odata=2'b00; 

         3'b111: odata=2'b01; 

        endcase  

       

         odata=odata;  

     end 

      

    else 

     begin 

     odata=0; 

     end  

 end 

 

 

--Encoder Module (3,1,3) With Trillis length 15 

 

module encoder1315(rst, rowData , encoderdata ); 

input [2:0] rst; 

input [14:0]rowData; 

 

output [50:0] encoderdata; 

reg [50:0] encoderdata; 

wire [14:0] mdata ; 

wire [2:0] ndata [16:0] ; 

 

assign  mdata = rowData; 

 



58 

 

 
 

convolutional13 c131(1'b1, {mdata[0],1'b0    ,    1'b0} ,ndata[0] );  

convolutional13 c132(1'b1, {mdata[1],mdata[0],    1'b0} ,ndata[1] );  

convolutional13 c133(1'b1, {mdata[2],mdata[1],mdata[0]} ,ndata[2] );  

convolutional13 c134(1'b1, {mdata[3],mdata[2],mdata[1]} ,ndata[3] );  

convolutional13 c135(1'b1, {mdata[4],mdata[3],mdata[2]} ,ndata[4] );  

convolutional13 c136(1'b1, {mdata[5],mdata[4],mdata[3]} ,ndata[5] );  

convolutional13 c137(1'b1, {mdata[6],mdata[5],mdata[4]} ,ndata[6] );  

convolutional13 c138(1'b1, {mdata[7],mdata[6],mdata[5]} ,ndata[7] );  

convolutional13 c139(1'b1, {mdata[8],mdata[7],mdata[6]} ,ndata[8] );  

convolutional13 c13a(1'b1, {mdata[9],mdata[8],mdata[7]} ,ndata[9] );  

convolutional13 c13b(1'b1, {mdata[10],mdata[9],mdata[8]} ,ndata[10] );  

convolutional13 c13c(1'b1, {mdata[11],mdata[10],mdata[9]} ,ndata[11] );  

convolutional13 c13d(1'b1, {mdata[12],mdata[11],mdata[10]} ,ndata[12] );  

convolutional13 c13e(1'b1, {mdata[13],mdata[12],mdata[11]} ,ndata[13] );  

convolutional13 c13f(1'b1, {mdata[14],mdata[13],mdata[12]} ,ndata[14] );  

convolutional13 c13g(1'b1, {    1'b0 ,mdata[14],mdata[13]} ,ndata[15] );  

convolutional13 c13h(1'b1, {    1'b0 ,     1'b0,mdata[14]} ,ndata[16] );  

 

always @(rst or rowData   ) 

 begin 

    if (rst==3'b100)         

     begin 

  

encoderdata={ndata[16],ndata[15],ndata[14],ndata[13],ndata[12],ndata[11],ndata[10],ndata[9],ndata[8],ndata[7]

,ndata[6],ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};   

      encoderdata=encoderdata;  

     end 

     

    else 

     begin 

     encoderdata=0; 

     end  

    

 end 

endmodule 

 

 

 

--Encoder Module (3,1,3) With Trillis length 4 
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module encoder1304(rst, rowData , encoderdata ); 

input [2:0]rst; 

input [14:0]rowData; 

 

output [50:0] encoderdata; 

reg [50:0] encoderdata; 

wire [14:0] mdata  ; 

wire [2:0] ndata [5:0]  ; 

 

assign  mdata = rowData; 

 

convolutional13 d131(1'b1, {mdata[0],1'b0    ,    1'b0} ,ndata[0] );  

convolutional13 d132(1'b1, {mdata[1],mdata[0],    1'b0} ,ndata[1] );  

convolutional13 d133(1'b1, {mdata[2],mdata[1],mdata[0]} ,ndata[2] );  

convolutional13 d134(1'b1, {mdata[3],mdata[2],mdata[1]} ,ndata[3] );  

convolutional13 d135(1'b1, { 1'b0   ,mdata[3],mdata[2]} ,ndata[4] );  

convolutional13 d136(1'b1, { 1'b0,       1'b0,mdata[3]} ,ndata[5] );  

 

always @(rst or rowData   ) 

 begin 

    if (rst==3'b101)         

     begin 

      

      

encoderdata={32'b00000000000000000000000000000000,ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]

};   

      encoderdata=encoderdata;  

     end 

     

    else 

     begin 

     encoderdata=0; 

     end  

    

 end 

endmodule 

 

 

-- Encoder Module (2,1,3) With Trillis length 15 
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module encoder1215(rst, rowData , encoderdata ); 

input [2:0] rst; 

input [14:0]rowData; 

 

output [33:0] encoderdata; 

reg [33:0] encoderdata; 

wire [14:0] mdata ; 

wire [1:0] ndata [16:0]  ; 

assign  mdata = rowData; 

convolutional12 c121 (1'b1, {mdata[0], 1'b0     ,1'b0      } ,ndata[0] );  

convolutional12 c122 (1'b1, {mdata[1], mdata[0] ,1'b0      } ,ndata[1] );  

convolutional12 c123 (1'b1, {mdata[2], mdata[1] ,mdata[0]  } ,ndata[2] );  

convolutional12 c124 (1'b1, {mdata[3], mdata[2] ,mdata[1]  } ,ndata[3] );  

convolutional12 c125 (1'b1, {mdata[4], mdata[3] ,mdata[2]  } ,ndata[4] );  

convolutional12 c126 (1'b1, {mdata[5], mdata[4] ,mdata[3]  } ,ndata[5] );  

convolutional12 c127 (1'b1, {mdata[6], mdata[5] ,mdata[4]  } ,ndata[6] );  

convolutional12 c128 (1'b1, {mdata[7], mdata[6] ,mdata[5]  } ,ndata[7] );  

convolutional12 c129 (1'b1, {mdata[8], mdata[7] ,mdata[6]  } ,ndata[8] );  

convolutional12 c12a (1'b1, {mdata[9], mdata[8] ,mdata[7]  } ,ndata[9] );  

convolutional12 c12b (1'b1, {mdata[10],mdata[9] ,mdata[8]  } ,ndata[10] );  

convolutional12 c12c (1'b1, {mdata[11],mdata[10] ,mdata[9]  } ,ndata[11] );  

convolutional12 c12d (1'b1, {mdata[12], mdata[11] ,mdata[10]  } ,ndata[12] );  

convolutional12 c12e (1'b1, {mdata[13],mdata[12] ,mdata[11]  } ,ndata[13] );  

convolutional12 c12f (1'b1, {mdata[14],mdata[13] ,mdata[12]  } ,ndata[14] );  

convolutional12 c12g (1'b1, {1'b0 ,    mdata[14],mdata[13]  } ,ndata[15] );  

convolutional12 c12h (1'b1, {1'b0 ,    1'b0     ,mdata[14] }  ,ndata[16] );  

 

always @(rst or rowData   ) 

 begin 

    if (rst==3'b110)         

     begin 

           

encoderdata={ndata[16],ndata[15],ndata[14],ndata[13],ndata[12],ndata[11],ndata[10],ndata[9],ndata[8],ndata[7]

,ndata[6],ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};   

      encoderdata=encoderdata;  

     end 

        else 

     begin 

     encoderdata=0; 
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     end  

    

 end 

endmodule 

 

-- Encoder Module (2,1,3) With Trillis length 4 

module encoder1204(rst, rowData , encoderdata ); 

input [2:0] rst; 

input [14:0]rowData; 

 

output [33:0] encoderdata; 

reg [33:0] encoderdata; 

wire [14:0] mdata ; 

wire [1:0] ndata [5:0]  ; 

assign  mdata = rowData; 

 

convolutional12 d121 (1'b1, {mdata[0], 1'b0     ,1'b0      } ,ndata[0] );  

convolutional12 d122 (1'b1, {mdata[1], mdata[0] ,1'b0      } ,ndata[1] );  

convolutional12 d123 (1'b1, {mdata[2], mdata[1] ,mdata[0]  } ,ndata[2] );  

convolutional12 d124 (1'b1, {mdata[3], mdata[2] ,mdata[1]  } ,ndata[3] );  

convolutional12 d125 (1'b1, {1'b0 ,    mdata[3], mdata[2]  } ,ndata[4] );  

convolutional12 d126 (1'b1, {1'b0 ,    1'b0     ,mdata[3] }  ,ndata[5] );  

 

always @(rst or rowData   ) 

 begin 

    begin 

    if (rst==3'b111)         

     begin      

      encoderdata={22'b0000000000000000000000,ndata[5],ndata[4],ndata[3],ndata[2],ndata[1],ndata[0]};   

      encoderdata=encoderdata;  

     end 

   else 

      begin 

       encoderdata=0; 

      end  

    

 end 

 

 end 
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endmodule 

--Decoder Module (3,1,3) With Trillis length 4 

module decoder1304(rst , rowData , decoderdata ); 

input [2:0] rst; 

input [50:0]rowData; 

reg [50:0]rowData1; 

 

output [14:0] decoderdata; 

reg [14:0] decoderdata; 

 

reg [35:0]pathmatrix[7:0] ; 

integer pathweight[7:0]; 

integer pWeight;  

reg [35:0]pString; 

 

function [1:0]nextstateOneThird(input [1:0]pstate , input inputdata  ); 

  begin 

          

        nextstateOneThird = 2'b00; 

     if ((pstate == 2'b00) &&  (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b00;  

  else if ((pstate == 2'b00) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b10; 

  else if ((pstate == 2'b10) && (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b01; 

  else if ((pstate == 2'b10) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b11; 

  else if ((pstate == 2'b01) && (inputdata == 1'b0 ))  

         nextstateOneThird = 2'b00; 

  else if ((pstate == 2'b01) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b10; 

  else if ((pstate == 2'b11) && (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b01; 

  else if ((pstate == 2'b11) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b11; 

  end  

endfunction 

 

function [2:0]outputOneOneThird(input [1:0]pstate ); 
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  begin   

  

       outputOneOneThird = 3'b000; 

       if  (pstate == 2'b00)  

        outputOneOneThird = 3'b101; 

   else if  (pstate == 2'b01 ) 

        outputOneOneThird = 3'b010; 

   else if  (pstate == 2'b10 ) 

        outputOneOneThird = 3'b110; 

   else if  (pstate == 2'b11 ) 

        outputOneOneThird = 2'b001; 

  end 

endfunction 

 

function [2:0]outputZeroOneThird(input [1:0]pstate ); 

 begin 

      outputZeroOneThird = 3'b000;   

       if (pstate == 2'b00)  

        outputZeroOneThird = 3'b000; 

   else if (pstate == 2'b10)  

        outputZeroOneThird = 3'b011; 

   else if (pstate == 2'b01)  

        outputZeroOneThird = 3'b111; 

   else if (pstate == 2'b11)  

        outputZeroOneThird = 3'b100; 

    

 end  

endfunction 

 

function [31:0]hummingDistanceOneThird(input [2:0]p1String, input [2:0]p2String ); 

  begin  

   hummingDistanceOneThird = 0; 

      

   if  (p1String[0]==p2String[0])  

       begin 

       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end  

   if  (p1String[1]==p2String[1])  

       begin 
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       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end 

   if  (p1String[2]==p2String[2])  

       begin 

       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end 

      

  end 

endfunction 

 

function  [31:0] findMaxpathWeightOneThird(input a1 ); 

  integer i; 

  integer j; 

  begin 

    findMaxpathWeightOneThird=0;  

    j=0;  

  for(i=0; i<=3; i=i+1) 

     begin 

      if (pathweight[i]> j)  

         begin         

         j=pathweight[i];      

         findMaxpathWeightOneThird=i;           

         end     

     end 

   end   

endfunction 

 

task optimizePathMatrixOneThird(input a1); 

 

  reg [35:0]temppathmatrix[7:0];     

  integer temppathweight[7:0]; 

  integer i; 

 

   

  begin 

   

  for (i=0; i<=3; i=i+1 ) 

   begin 

    if  (pathweight[2*i] > pathweight[2*i+1]) 
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      begin 

      temppathmatrix[i]=  pathmatrix[2*i];   

      temppathweight[i]=  pathweight[2*i]; 

      end 

    else 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i+1];   

      temppathweight[i]=  pathweight[2*i+1]; 

      end 

   end 

 

  for (i=0; i<=7; i=i+1) 

   begin 

     pathmatrix[i] = temppathmatrix[i]; 

     pathweight[i] = temppathweight[i]; 

 

   end  

 

 end  

endtask 

 

task viterbi12(input [50:0]adata , output [14:0]bdata  ); 

reg errorFlag; 

reg [1:0]nstate; 

reg [1:0]nstatep; 

reg [2:0]soutput; 

integer a; 

integer b;  

integer i; 

integer p; 

 

begin 

 b=0; 

 p=0; 

 errorFlag=0; 

 nstate=2'b00; 

 nstatep=2'b00; 

    for (a=0; a<=5; a=a+1)  

     begin 
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        soutput = {adata[3*a+2],adata[3*a+1],adata[3*a]}; 

        if (errorFlag==0) 

          begin 

            if   (outputOneOneThird(nstate) == soutput  )  

              begin 

                nstate = nextstateOneThird(nstate, 1);                       

                pathmatrix[0][2*a+3] = nstate[1]; 

                pathmatrix[0][2*a+2] = nstate[0];                

              end  

            else if (outputZeroOneThird(nstate) == soutput)   

             begin  

                nstate = nextstateOneThird(nstate, 0); 

                pathmatrix[0][2*a+3] = nstate[1]; 

                pathmatrix[0][2*a+2] = nstate[0];                 

             end 

            else 

              begin      

                errorFlag=1;  

              end             

          end             

        if (errorFlag==1) 

          begin 

            p=3;   

            for(b=0; b<=3; b=b+1)  

              begin 

               nstate = { pathmatrix[b][2*a+1],pathmatrix[b][2*a]};          

               pString=pathmatrix[b];        

               pWeight=pathweight[b]; 

               pathweight[b] = pWeight + hummingDistanceOneThird(outputOneOneThird(nstate), 

soutput);  

               nstatep = nextstateOneThird(nstate, 1); 

                

               pathmatrix[b][2*a+3] = nstatep[1]; 

               pathmatrix[b][2*a+2] = nstatep[0]; 

                

                

               pathweight[b+p+1]  = pWeight + 

hummingDistanceOneThird(outputZeroOneThird(nstate), soutput);  
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               nstatep = nextstateOneThird(nstate, 0); 

               pathmatrix[b+p+1]=pString; 

               pathmatrix[b+p+1][2*a+3] = nstatep[1]; 

               pathmatrix[b+p+1][2*a+2] = nstatep[0];      

             end            

                 optimizePathMatrixOneThird(1); 

          end 

 

  end    

 p = findMaxpathWeightOneThird(1); 

    bdata=15'b000000000000000; 

    for(i=0; i<=3; i=i+1)  

     begin   

       bdata[i]= pathmatrix[p][2*i+3]; 

     end 

     

end 

endtask 

 

task clearPathWeightmatrix(input a1); 

 integer i; 

 begin 

  for(i=0; i<=7; i=i+1) 

     begin 

      pathmatrix[i] = 0;  

      pathweight[i] = 0; 

     end 

 end 

endtask 

 

 

always @( rst or rowData   ) 

 begin 

    if (rst==3'b101 ) 

      begin 

       clearPathWeightmatrix(1); 

       rowData1=rowData; 

       rowData1[0]=0; 

       viterbi12(rowData1,decoderdata); 
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       decoderdata=decoderdata;  

      end 

    else 

      begin 

       decoderdata=0; 

      end  

    

 end 

 

endmodule 

--Decoder Module (3,1,3) With Trillis length 15 

module decoder1315(rst , rowData , decoderdata ); 

input [2:0] rst; 

input [50:0]rowData; 

reg [50:0]rowData1; 

 

output [14:0] decoderdata; 

reg [14:0] decoderdata; 

 

reg [35:0]pathmatrix[7:0] ; 

integer pathweight[7:0]; 

integer pWeight;  

reg [35:0]pString; 

 

function [1:0]nextstateOneThird(input [1:0]pstate , input inputdata  ); 

  begin 

          

        nextstateOneThird = 2'b00; 

     if ((pstate == 2'b00) &&  (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b00;  

  else if ((pstate == 2'b00) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b10; 

  else if ((pstate == 2'b10) && (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b01; 

  else if ((pstate == 2'b10) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b11; 

  else if ((pstate == 2'b01) && (inputdata == 1'b0 ))  

         nextstateOneThird = 2'b00; 

  else if ((pstate == 2'b01) && (inputdata == 1'b1 )) 
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         nextstateOneThird = 2'b10; 

  else if ((pstate == 2'b11) && (inputdata == 1'b0 )) 

         nextstateOneThird = 2'b01; 

  else if ((pstate == 2'b11) && (inputdata == 1'b1 )) 

         nextstateOneThird = 2'b11; 

  end  

endfunction 

 

function [2:0]outputOneOneThird(input [1:0]pstate ); 

  begin   

  

       outputOneOneThird = 3'b000; 

       if  (pstate == 2'b00)  

        outputOneOneThird = 3'b101; 

   else if  (pstate == 2'b01 ) 

        outputOneOneThird = 3'b010; 

   else if  (pstate == 2'b10 ) 

        outputOneOneThird = 3'b110; 

   else if  (pstate == 2'b11 ) 

        outputOneOneThird = 2'b001; 

  end 

endfunction 

 

function [2:0]outputZeroOneThird(input [1:0]pstate ); 

 begin 

      outputZeroOneThird = 3'b000;   

       if (pstate == 2'b00)  

        outputZeroOneThird = 3'b000; 

   else if (pstate == 2'b10)  

        outputZeroOneThird = 3'b011; 

   else if (pstate == 2'b01)  

        outputZeroOneThird = 3'b111; 

   else if (pstate == 2'b11)  

        outputZeroOneThird = 3'b100; 

    

 end  

endfunction 

 

function [31:0]hummingDistanceOneThird(input [2:0]p1String, input [2:0]p2String ); 



70 

 

 
 

  begin  

   hummingDistanceOneThird = 0; 

      

   if  (p1String[0]==p2String[0])  

       begin 

       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end  

   if  (p1String[1]==p2String[1])  

       begin 

       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end 

   if  (p1String[2]==p2String[2])  

       begin 

       hummingDistanceOneThird = hummingDistanceOneThird + 1; 

       end 

      

  end 

endfunction 

 

function  [31:0] findMaxpathWeightOneThird(input a1 ); 

  integer i; 

  integer j; 

  begin 

    findMaxpathWeightOneThird=0;  

    j=0;  

  for(i=0; i<=3; i=i+1) 

     begin 

      if (pathweight[i]> j)  

         begin         

         j=pathweight[i];      

         findMaxpathWeightOneThird=i;           

         end     

     end 

   end   

endfunction 

 

task optimizePathMatrixOneThird(input a1); 

 

  reg [35:0]temppathmatrix[7:0];     
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  integer temppathweight[7:0]; 

  integer i; 

 

   

  begin 

   

  for (i=0; i<=3; i=i+1 ) 

   begin 

    if  (pathweight[2*i] > pathweight[2*i+1]) 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i];   

      temppathweight[i]=  pathweight[2*i]; 

      end 

    else 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i+1];   

      temppathweight[i]=  pathweight[2*i+1]; 

      end 

   end 

 

  for (i=0; i<=7; i=i+1) 

   begin 

     pathmatrix[i] = temppathmatrix[i]; 

     pathweight[i] = temppathweight[i]; 

 

   end  

 

 end  

endtask 

 

task viterbi12(input [50:0]adata , output [14:0]bdata  ); 

reg errorFlag; 

reg [1:0]nstate; 

reg [1:0]nstatep; 

reg [2:0]soutput; 

integer a; 

integer b;  

integer i; 

integer p; 
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begin 

 b=0; 

 p=0; 

 errorFlag=0; 

 nstate=2'b00; 

 nstatep=2'b00; 

    for (a=0; a<=16; a=a+1)  

     begin 

        soutput = {adata[3*a+2],adata[3*a+1],adata[3*a]}; 

        if (errorFlag==0) 

          begin 

            if   (outputOneOneThird(nstate) == soutput  )  

              begin 

                nstate = nextstateOneThird(nstate, 1);                       

                pathmatrix[0][2*a+3] = nstate[1]; 

                pathmatrix[0][2*a+2] = nstate[0];                

              end  

            else if (outputZeroOneThird(nstate) == soutput)   

             begin  

                nstate = nextstateOneThird(nstate, 0); 

                pathmatrix[0][2*a+3] = nstate[1]; 

                pathmatrix[0][2*a+2] = nstate[0];                 

             end 

            else 

              begin      

                errorFlag=1;  

              end             

          end             

        if (errorFlag==1) 

          begin 

            p=3;   

            for(b=0; b<=3; b=b+1)  

              begin 

               nstate = { pathmatrix[b][2*a+1],pathmatrix[b][2*a]};          

               pString=pathmatrix[b];        

               pWeight=pathweight[b]; 

               pathweight[b] = pWeight + hummingDistanceOneThird(outputOneOneThird(nstate), 

soutput);  
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               nstatep = nextstateOneThird(nstate, 1); 

                

               pathmatrix[b][2*a+3] = nstatep[1]; 

               pathmatrix[b][2*a+2] = nstatep[0]; 

                

                

               pathweight[b+p+1]  = pWeight + 

hummingDistanceOneThird(outputZeroOneThird(nstate), soutput);  

                

               nstatep = nextstateOneThird(nstate, 0); 

               pathmatrix[b+p+1]=pString; 

               pathmatrix[b+p+1][2*a+3] = nstatep[1]; 

               pathmatrix[b+p+1][2*a+2] = nstatep[0];      

             end            

                 optimizePathMatrixOneThird(1); 

          end 

 

  end    

 p = findMaxpathWeightOneThird(1); 

    for(i=0; i<=14; i=i+1)  

     begin   

       bdata[i]= pathmatrix[p][2*i+3]; 

     end 

 

end 

endtask 

 

task clearPathWeightmatrix(input a1); 

 integer i; 

 begin 

  for(i=0; i<=7; i=i+1) 

     begin 

      pathmatrix[i] = 0;  

      pathweight[i] = 0; 

     end 

   

 end 

endtask 
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always @( rst or rowData   ) 

 begin 

   rowData1=0;   

   if (rst==3'b100)         

      begin 

       clearPathWeightmatrix(1); 

       rowData1=rowData; 

       rowData1[0]=0; 

       viterbi12(rowData1,decoderdata); 

       decoderdata=decoderdata;  

      end 

    else 

      begin 

       decoderdata=0; 

      end  

    

 end 

 

endmodule 

--Decoder Module (2,1,3) With Trillis length 4 

module decoder1204(rst , rowData , decoderdata ); 

input [2:0] rst; 

input [33:0]rowData; 

reg [33:0]rowData1; 

 

output [14:0] decoderdata; 

reg [14:0] decoderdata; 

 

 

reg [35:0]pathmatrix[7:0] ; 

integer pathweight[7:0]; 

 

integer pWeight;  

reg [35:0]pString; 

 

 

function [1:0]nextstateHalf(input [1:0]pstate , input inputdata  ); 

  begin 
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         nextstateHalf = 2'b00; 

       if ((pstate == 2'b00) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b00;  

  else if ((pstate == 2'b00) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b10; 

  else if ((pstate == 2'b01) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b00; 

  else if ((pstate == 2'b01) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b10; 

  else if ((pstate == 2'b10) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b01; 

  else if ((pstate == 2'b10) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b11; 

  else if ((pstate == 2'b11) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b01; 

     else if ((pstate == 2'b11) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b11; 

  end  

endfunction 

 

function [1:0]outputOneHalf(input [1:0]pstate ); 

  begin   

     //   110 111 

           outputOneHalf = 2'b00; 

       if  (pstate == 2'b00)  

        outputOneHalf = 2'b11; 

   else if  (pstate == 2'b01 ) 

        outputOneHalf = 2'b01; 

   else if  (pstate == 2'b10 ) 

        outputOneHalf = 2'b00; 

   else if  (pstate == 2'b11 ) 

        outputOneHalf = 2'b10; 

   end 

endfunction 

 

 

function [1:0]outputZeroHalf(input [1:0]pstate ); 

 begin 

         



76 

 

 
 

        outputZeroHalf = 2'b00;   

       if (pstate == 2'b00)  

        outputZeroHalf = 2'b00; 

   else if (pstate == 2'b01)  

        outputZeroHalf = 2'b10; 

   else if (pstate == 2'b10)  

        outputZeroHalf = 2'b11; 

   else if (pstate == 2'b11)  

        outputZeroHalf = 2'b01; 

    

 end  

endfunction 

 

 

function [31:0]hummingDistanceHalf(input [1:0]p1String, input [1:0]p2String ); 

  begin  

   hummingDistanceHalf = 0; 

      

   if  (p1String[0]==p2String[0])  

       begin 

       hummingDistanceHalf = hummingDistanceHalf + 1; 

       end  

   if  (p1String[1]==p2String[1])  

       begin 

       hummingDistanceHalf = hummingDistanceHalf + 1; 

       end 

      

  end 

endfunction 

 

function  [31:0] findMaxpathWeightHalf(input a1 ); 

  integer i; 

  integer j; 

  begin 

    findMaxpathWeightHalf=0;  

    j=0;  

  for(i=0; i<=3; i=i+1) 

     begin 

      if (pathweight[i]> j)  
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         begin         

         j=pathweight[i];      

         findMaxpathWeightHalf=i;           

         end     

     end 

   end   

endfunction 

 

 

task optimizePathMatrixHalf(input a1); 

 

  reg [35:0]temppathmatrix[7:0] ;     

  integer temppathweight[7:0]; 

  integer i; 

 

   

  begin 

  for (i=0; i<=3; i=i+1 ) 

   begin 

    if  (pathweight[2*i] > pathweight[2*i+1]) 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i];   

      temppathweight[i]=  pathweight[2*i]; 

      end 

    else 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i+1];   

      temppathweight[i]=  pathweight[2*i+1]; 

      end 

   end 

 

  for (i=0; i<=7; i=i+1) 

   begin 

     pathmatrix[i] = temppathmatrix[i]; 

     pathweight[i] = temppathweight[i]; 

 

   end  

 

 end  
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endtask 

 

 

 

task viterbi11(input [33:0]adata , output [14:0]bdata  ); 

 reg errorFlag; 

 reg [1:0]nstate; 

 reg [1:0]nstatep; 

 reg [1:0]soutput; 

 integer a; 

 integer b;  

 integer i; 

 integer p; 

 

 begin 

 p=0; 

 errorFlag=0; 

 nstate=2'b00; 

    

 for (a=0; a<=5; a=a+1)  

     begin 

        soutput = {adata[2*a],adata[2*a+1]}; 

        

        if (errorFlag==0) 

          begin 

            if   (outputOneHalf(nstate) == soutput  )  

              begin 

                nstate = nextstateHalf(nstate, 1); 

                pathmatrix[0][2*a+2] = nstate[1]; 

                pathmatrix[0][2*a+3] = nstate[0]; 

                

              end  

            else if (outputZeroHalf(nstate) == soutput)   

             begin  

                nstate = nextstateHalf(nstate, 0); 

                pathmatrix[0][2*a+2] = nstate[1]; 

                pathmatrix[0][2*a+3] = nstate[0]; 

                 

             end 
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            else 

              begin      

                errorFlag=1;  

              end 

             

           end 

         if  (errorFlag==1) 

           begin            

              p=3;   

              for(b=0; b<=3; b=b+1)  

                begin 

               nstate = { pathmatrix[b][2*a],pathmatrix[b][2*a+1]};          

               pString=pathmatrix[b];        

               pWeight=pathweight[b]; 

               pathweight[b] = pWeight + hummingDistanceHalf(outputOneHalf(nstate), soutput);  

               nstatep = nextstateHalf(nstate, 1); 

               pathmatrix[b][2*a+2] = nstatep[1]; 

               pathmatrix[b][2*a+3] = nstatep[0]; 

                

                

               pathweight[b+p+1]  = pWeight + hummingDistanceHalf(outputZeroHalf(nstate), 

soutput);  

                

               nstatep = nextstateHalf(nstate, 0); 

               pathmatrix[b+p+1]=pString; 

               pathmatrix[b+p+1][2*a+2] = nstatep[1]; 

               pathmatrix[b+p+1][2*a+3] = nstatep[0]; 

             end 

               optimizePathMatrixHalf(1); 

           end 

 

     end      

     p = findMaxpathWeightHalf(1); 

     bdata=15'b000000000000000; 

     for(i=0; i<=3; i=i+1)  

      begin   

        bdata[i]= pathmatrix[p][2*(i+1)]; 

      end 
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 end 

endtask 

 

 

task clearPathWeightmatrix(input a1); 

 integer i; 

 begin 

 for(i=0; i<=7; i=i+1) 

    begin 

     pathmatrix[i] = 0;  

     pathweight[i] = 0; 

    end 

    

  end 

endtask 

 

 

always @( rst or rowData   ) 

 begin 

    if (rst==3'b111)         

     begin 

      clearPathWeightmatrix(1); 

       rowData1=rowData; 

       rowData1[0]=0; 

 

      viterbi11(rowData1,decoderdata); 

       

      decoderdata=decoderdata;  

       

     end 

     else 

      begin 

       decoderdata=0; 

      end  

    

 end 

 

endmodule 

--Decoder Module (2,1,3) With Trillis length 15 



81 

 

 
 

module decoder1215(rst , rowData , decoderdata ); 

input [2:0] rst; 

input [33:0]rowData; 

reg [33:0]rowData1; 

 

output [14:0] decoderdata; 

reg [14:0] decoderdata; 

 

 

reg [35:0]pathmatrix[7:0] ; 

integer pathweight[7:0]; 

 

integer pWeight;  

reg [35:0]pString; 

 

 

function [1:0]nextstateHalf(input [1:0]pstate , input inputdata  ); 

  begin 

         nextstateHalf = 2'b00; 

       if ((pstate == 2'b00) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b00;  

  else if ((pstate == 2'b00) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b10; 

  else if ((pstate == 2'b01) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b00; 

  else if ((pstate == 2'b01) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b10; 

  else if ((pstate == 2'b10) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b01; 

  else if ((pstate == 2'b10) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b11; 

  else if ((pstate == 2'b11) && (inputdata == 1'b0 )) 

         nextstateHalf = 2'b01; 

     else if ((pstate == 2'b11) && (inputdata == 1'b1 )) 

         nextstateHalf = 2'b11; 

  end  

endfunction 

 

function [1:0]outputOneHalf(input [1:0]pstate ); 
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  begin   

     //   110 111 

           outputOneHalf = 2'b00; 

       if  (pstate == 2'b00)  

        outputOneHalf = 2'b11; 

   else if  (pstate == 2'b01 ) 

        outputOneHalf = 2'b01; 

   else if  (pstate == 2'b10 ) 

        outputOneHalf = 2'b00; 

   else if  (pstate == 2'b11 ) 

        outputOneHalf = 2'b10; 

   end 

endfunction 

 

 

function [1:0]outputZeroHalf(input [1:0]pstate ); 

 begin 

         

        outputZeroHalf = 2'b00;   

       if (pstate == 2'b00)  

        outputZeroHalf = 2'b00; 

   else if (pstate == 2'b01)  

        outputZeroHalf = 2'b10; 

   else if (pstate == 2'b10)  

        outputZeroHalf = 2'b11; 

   else if (pstate == 2'b11)  

        outputZeroHalf = 2'b01; 

    

 end  

endfunction 

 

 

function [31:0]hummingDistanceHalf(input [1:0]p1String, input [1:0]p2String ); 

  begin  

   hummingDistanceHalf = 0; 

      

   if  (p1String[0]==p2String[0])  

       begin 

       hummingDistanceHalf = hummingDistanceHalf + 1; 
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       end  

   if  (p1String[1]==p2String[1])  

       begin 

       hummingDistanceHalf = hummingDistanceHalf + 1; 

       end 

      

  end 

endfunction 

 

function  [31:0] findMaxpathWeightHalf(input a1 ); 

  integer i; 

  integer j; 

  begin 

    findMaxpathWeightHalf=0;  

    j=0;  

  for(i=0; i<=3; i=i+1) 

     begin 

      if (pathweight[i]> j)  

         begin         

         j=pathweight[i];      

         findMaxpathWeightHalf=i;           

         end     

     end 

   end   

endfunction 

 

 

task optimizePathMatrixHalf(input a1); 

 

  reg [35:0]temppathmatrix[7:0] ;     

  integer temppathweight[7:0]; 

  integer i; 

 

   

  begin 

  for (i=0; i<=3; i=i+1 ) 

   begin 

    if  (pathweight[2*i] > pathweight[2*i+1]) 

      begin 
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      temppathmatrix[i]=  pathmatrix[2*i];   

      temppathweight[i]=  pathweight[2*i]; 

      end 

    else 

      begin 

      temppathmatrix[i]=  pathmatrix[2*i+1];   

      temppathweight[i]=  pathweight[2*i+1]; 

      end 

   end 

 

  for (i=0; i<=7; i=i+1) 

   begin 

     pathmatrix[i] = temppathmatrix[i]; 

     pathweight[i] = temppathweight[i]; 

 

   end  

 

 end  

endtask 

 

 

 

task viterbi11(input [33:0]adata , output [14:0]bdata  ); 

 reg errorFlag; 

 reg [1:0]nstate; 

 reg [1:0]nstatep; 

 reg [1:0]soutput; 

 integer a; 

 integer b;  

 integer i; 

 integer p; 

 

 begin 

 p=0; 

 errorFlag=0; 

 nstate=2'b00; 

    

 for (a=0; a<=16; a=a+1)  

     begin 
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        soutput = {adata[2*a],adata[2*a+1]}; 

        

        if (errorFlag==0) 

          begin 

            if   (outputOneHalf(nstate) == soutput  )  

              begin 

                nstate = nextstateHalf(nstate, 1); 

                pathmatrix[0][2*a+2] = nstate[1]; 

                pathmatrix[0][2*a+3] = nstate[0]; 

                

              end  

            else if (outputZeroHalf(nstate) == soutput)   

             begin  

                nstate = nextstateHalf(nstate, 0); 

                pathmatrix[0][2*a+2] = nstate[1]; 

                pathmatrix[0][2*a+3] = nstate[0]; 

                 

             end 

            else 

              begin      

                errorFlag=1;  

              end 

             

           end 

         if  (errorFlag==1) 

           begin            

              p=3;   

              for(b=0; b<=3; b=b+1)  

                begin 

               nstate = { pathmatrix[b][2*a],pathmatrix[b][2*a+1]};          

               pString=pathmatrix[b];        

               pWeight=pathweight[b]; 

               pathweight[b] = pWeight + hummingDistanceHalf(outputOneHalf(nstate), soutput);  

               nstatep = nextstateHalf(nstate, 1); 

               pathmatrix[b][2*a+2] = nstatep[1]; 

               pathmatrix[b][2*a+3] = nstatep[0]; 

                

                

               pathweight[b+p+1]  = pWeight + hummingDistanceHalf(outputZeroHalf(nstate), 
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soutput);  

                

               nstatep = nextstateHalf(nstate, 0); 

               pathmatrix[b+p+1]=pString; 

               pathmatrix[b+p+1][2*a+2] = nstatep[1]; 

               pathmatrix[b+p+1][2*a+3] = nstatep[0]; 

             end 

               optimizePathMatrixHalf(1); 

           end 

 

     end      

     p = findMaxpathWeightHalf(1); 

     for(i=0; i<=14; i=i+1)  

      begin   

        bdata[i]= pathmatrix[p][2*(i+1)]; 

      end 

      

 end 

endtask 

 

 

task clearPathWeightmatrix(input a1); 

 integer i; 

 begin 

 for(i=0; i<=7; i=i+1) 

    begin 

     pathmatrix[i] = 0;  

     pathweight[i] = 0; 

    end 

    

  end 

endtask 

 

 

always @( rst or rowData   ) 

 begin 

    if (rst==3'b110)         

     begin 

      clearPathWeightmatrix(1); 
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       rowData1=rowData; 

       rowData1[0]=0; 

 

      viterbi11(rowData1,decoderdata); 

       

      decoderdata=decoderdata;  

       

     end 

     else 

      begin 

       decoderdata=0; 

      end  

    

 end 

 

endmodule 

 

--Convolutional Encoder and Viterbi Decoder Main Module 

module cevdIntq(rst, idata, , coutput , odatathree ,odatatwo  ); 

input [14:0]idata;   

input [2:0] rst; 

 

 output [50:0] odatathree; 

 output [33:0] odatatwo; 

output [14:0] coutput; 

 

 reg [50:0] odatathree; 

 reg [33:0] odatatwo; 

 

reg [14:0] coutput; 

 

wire [50:0] edata1315; 

wire [50:0] edata1304; 

wire [33:0] edata1215; 

wire [33:0] edata1204; 

 

wire [14:0] ddata1315; 

wire [14:0] ddata1304; 

wire [14:0] ddata1215; 
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wire [14:0] ddata1204; 

 

 

encoder1315 con11(rst, idata , edata1315 ); 

encoder1304 con12(rst, idata , edata1304 ); 

encoder1215 con13(rst, idata , edata1215 ); 

encoder1204 con14(rst, idata , edata1204 ); 

 

decoder1315 dec11(rst , edata1315 , ddata1315 );  

decoder1304 dec14(rst , edata1304 , ddata1304 );  

decoder1215 dec13(rst , edata1215 , ddata1215 );   

decoder1204 dec12(rst , edata1204 , ddata1204 );   

  

  

  

 always @(rst  or coutput or edata1215 or ddata1215 or edata1204 or ddata1204 or edata1315 or ddata1315 or 

edata1304 or ddata1304) 

      begin  

         

         coutput=0; 

         odatatwo=0; 

         odatathree=0;  

     if (rst==3'b100)  

            begin  

             odatathree = edata1315; 

          coutput    = ddata1315; 

         end 

      else if (rst==3'b101)  

            begin  

             odatathree = edata1304; 

             coutput    = ddata1304; 

            end 

      else if (rst==3'b110)  

            begin 

             odatatwo = edata1215; 

             coutput  = ddata1215;      

            end 

   else if (rst==3'b111)  

            begin 
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             odatatwo = edata1204; 

             coutput  = ddata1204; 

            end 

          coutput  = coutput;  

          odatatwo=odatatwo; 

          odatathree = odatathree;  

           

         end 

endmodule 
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