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ABSTRACT 
 

Optical fiber based wavelength division multiplexing (WDM) is widely used to satisfy the high 

bandwidth demand using optical network. But dispersion, non-linearity and attenuation restrict the 

wavelength region and transmission bit rate for conventional fiber. Photonic crystal fibers (PCFs) are 

micro-structured optical fiber which are constructed by single material with multiple air holes 

periodically arranged around the core. PCFs have ability to be single mode over a broad range of 

wavelengths. Large number of available design parameters of solid core PCF makes the dispersion, 

nonlinearity and confinement loss highly configurable. PCFs are of great interest for optical 

communication in new wavelength regions and for new optical devices. As the stress and thermal 

effect on PCFs can alter the propagation properties significantly, it is very important to know and 

study the properties of PCF to fully understand the feasibility of using it as sensor for stress civil 

structures or acoustic pressure in underwater and underground communication systems. In this 

research work the effect of external stress and design parameters on propagation properties for 

square, hexagonal and octagonal air-hole arranged PCFs have been analyzed and simulated. The 

fiber designs are carried out for all types of PCFs by varying number of air hole rings and air hole 

diameter and different amount of stress is applied on the PCFs boundary and the effective indices, 

birefringence are calculated as a function of stress. It is found that external stress on PCF causes 

stress distribution and fiber deformation in fiber cross section. This deformation is not same for all 

type of fibers and in all direction (x and y), which causes different effective index and birefringence 

for all types of PCFs. Results show that external stress affects more on propagation properties of 

hexagonal PCF than square or octagonal and this effect is lower for larger number of air hole rings 

and air hole diameter. Our findings will help to find the appropriate designing of PCF for some of 

particular application. 
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Chapter 1 
 

 INTRODUCTION 
 

Optical fiber communication system is a subject of growing interest due to its extremely attractive 

features. Moreover, the rapid pace of advances in technology has surpassed the most optimistic 

predictions, creating additional advantages [1]. This has led researchers to put more effort on 

improving the various characteristics of different optical fibers by continuous study and research.  

 

1.1 PHOTONIC CRYSTAL FIBER 

Photonic crystal fibers (PCFs) are a new class of optical fibers. PCFs also known as microstructured 

fiber has arrays of holes running along its length [1]. Microstructured fibers guide light due to 

modified total internal reflection. Unlike conventional fibers, PCFs can be made entirely from a 

single material, typically undoped silica. The holes act to lower the effective refractive index in the 

cladding region and so that light is confined to the solid core, which has a relatively higher index. In 

a PCF, the number of holes and their sizes, shapes, orientations and placements can provide degrees 

of freedom and hence unique properties, which are not available in conventional optical fibers. The 

strong wavelength dependency of the effective refractive index and the inherently large design 

flexibility of the PCFs allow for a whole new range of novel properties [2-3]. Such properties 

include endlessly single-mode fibers, extremely nonlinear fibers and fibers with anomalous 

dispersion in the visible wavelength region. They could serve as a fiber host for developing a wide 

range of fiber devices for high power fiber laser, second harmonic generation, super continuum 

generation, radiation detection, etc. PCFs may be divided into two categories [4]: 

i) High index guiding fibers: Similar to conventional fibers, high index guiding fibers are 

guiding light in a solid core by the modified total internal reflection (M-TIR) principle. The 

total internal reflection is caused by the lower effective index in the microstructured air-filled 

region. 

ii) Low index guiding fibers:  Low index guiding fibers guide light by the photonic bandgap 

(PBG) effect. The light is confined to the low index core as the PBG effect makes 

propagation in the microstructured cladding region impossible. 
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1.2 HIGH INDEX GUIDING FIBERS  

PCFs with a solid core can operate on the same index guiding principle as conventional optical fiber. 

It relies on a high index core region, typically pure silica, surrounded by a lower effective index 

provided by the microstructured region that is shown in Fig.1.1. The refractive index of the 

microstructured cladding in PCFs exhibits a wavelength dependency very different from pure silica, 

which allows PCFs to be designed with a complete new set of properties. As an example, the strong 

wavelength dependence of the refractive index allows design of endlessly single-moded fibers, 

where only a single mode is supported regardless of optical wavelength. Furthermore, it is possible 

to alter the dispersion properties of the fibers, thereby making it possible to design fibers with an 

anomalous dispersion at visible wavelengths.  

 

 

 

Fig.1.1 Hexagonal air hole arranged solid core PCF. 

 

Index-guiding PCFs offer a lot of new opportunities. These opportunities stem from just a few 

special properties of the photonic crystal cladding, which are caused by the large refractive index 

contrast and the two-dimensional nature of the microstructure. These special properties allow 

achieving anomalous dispersion, the smallest attainable core size and the number of guided modes, 

the numerical aperture and the birefringence. Such structures are leading to novel sensors, high-

power fiber lasers and to developments in other research fields. Due to precise control of the 

refractive index profile, fibers with extremely large mode field diameters are made possible, 

supporting high beam quality fiber guidance and amplification.  
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1.3 LOW INDEX GUIDING FIBERS  

Photonic bandgap fibers are based on physical mechanisms fundamentally different from the M-TIR 

guiding fibers. The periodic microstructure in the PBG fiber cladding results in a so called photonic 

bandgab, where light in certain wavelength regions cannot propagate. In a PBG fiber, the core is 

created by introducing a defect in the PBG structure (e.g. an extra air hole), thereby creating an area 

where the light can propagate. As the light can only propagate at the defect region, a low index 

guiding core has been created. This is not possible in standard fibers and the low index guiding of 

PBG fibers therefore opens a whole new set of possibilities. In this way, it is possible to guide light 

in air, vacuum or any gas compatible with the fiber material.  

 

1.3.1 Hollow Core PBG Fibers  

A special class of PBG guiding fibers is the hollow core fibers, where the field is confined to an air-

filled core. The basic structure of a hollow core PBG fiber is shown in Fig.1.2.  Like other PBG 

fibers, air-core fibers only guide light in a limited spectral region. Outside this region, the fiber core 

is anti-guiding.  

 

 

Fig.1.2 Hexagonal air hole arranged hollow core PCF. 

 

Guiding light in a hollow core holds many promising applications like high power delivery without 

the risk of fiber damage, gas sensors or extreme low loss guidance in vacuum. Furthermore, this 

class of fiber has other spectacular properties not found in any other fiber type. They are almost 
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insensitive to bending (even at very small bending radii) and they have dramatically reduced 

sensitivity to Kerr effect (greater than 50), temperature transients (~6.5) and Faraday effect (smaller 

than 10). Extreme dispersion properties such as anomalous dispersion values in the thousands of 

ps/nm/km regime are easily obtained. Due to a negligible contribution from the core material (air), 

the total dispersion of PBG fibers is to a high degree dominated by waveguide dispersion.  

 

1.3.2 Solid Core PBG Fibers  

Another special class of PBG guiding fibers is the solid core PBG fibers. Here, the field is confined 

to a solid core and the cladding region typically consists of an array of high index regions embedded 

in silica material. Like other PBG fibers, solid core PBG fibers only guide light in a limited spectral 

region. This filtering effect in combination with a rare earth doped core such as Yb makes lasing and 

amplification possible at new wavelengths with weak fiber gain. Also, the combination of a doped 

solid core PBG fiber and special dispersion properties provides a new route for the laser community.  

 

1.4 FABRICATION OF PHOTONIC CRYSTAL FIBER 

Fabrication of PCF, like conventional fiber fabrication, starts with a fiber preform [5]. The Fig.1.3 

depicts the fabrication process of microstructured optical fiber. PCF preforms are formed by stacking 

a number of capillary silica tubes and rods to form the desired air/silica structure. This way of 

creating the preform allows a high level of design flexibility as the core size and shape as well as the 

index profile throughout the cladding region can be controlled.  

When the desired preform has been constructed, it is drawn to a fiber in a conventional high-

temperature drawing tower and hair-thin photonic crystal fibers are readily produced in kilometer 

lengths. Through careful process control, the air holes retain their arrangement all through the 

drawing process and even fibers with very complex designs and high air filling fraction can be 

produced.   

Finally, the fibers are coated to provide a protective standard jacket that allows robust handling of 

the fibers. The final fibers are comparable to standard fiber in both robustness and physical 

dimensions and can be both striped and cleaved using standard tools. 
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Fig.1.3 Fabrication process of microstructured optical fiber. 
 
 
 

1.5 APPLICATIONS 

The special properties of PCFs make them very attractive for a very wide range of applications. 

Some examples are [6]: 

• Fiber lasers and amplifiers, including high-power devices, mode-locked fiber lasers, etc. 

• Nonlinear devices e.g. for supercontinuum generation, Raman conversion, parametric 

amplification, or pulse compression 

• Telecom components, e.g. for dispersion control, filtering or switching 

• Fiber-optic sensors of various kinds 

• Quantum optics, e.g. generation of correlated photon pairs, electromagnetically induced 

transparency, or guidance of cold atoms. 

Even though PCFs have been around for several years, the huge range of possible applications is far 

from being fully explored. It is to be expected that this field will stay very lively for many years and 

many opportunities for further creative work, concerning both fiber designs and applications. 
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1.6 HISTORICAL DEVELOPMENT 

The idea of a photonic crystal fiber was presented for the first time by Yeh et al. in 1978. They 

proposed to clad a fiber core with Bragg grating, which is similar to 1D photonic crystal. A photonic 

crystal fiber made of 2D photonic crystal with an air core was invented by P. Russell in 1992 and the 

first PCF was reported at the Optical Fiber Conference (OFC) in 1996. A short overview of PCF 

development is presented in the table [7]. 

Table 1.1 Overview of photonic crystal fibers development. 

1978 Idea of the Bragg fiber 

1992 Idea of the photonic crystal fiber with air core 

1996 Fabrication of a single-mode fiber with photonic coating 

1997 Endlessly singe mode PCF 

1999 PCF with photonic bandgap and air core 

2000 Highly birefringent PCF 

2000 Supercontinuum generation with PCF 

2001 Fabrication of a Bragg fiber 

2001 PCF laser with double cladding 

2002 PCF with ultra-flattened dispersion 

2003 Bragg fiber with silica and air core 

2004 Four-wave mixing effect control  

2005 High energy with low-loss transitions between different PCFs 

2006  

to 

2010 

Analysis with different mechanism to improve performance in single mode region 

Application in communication fields, sensor, coupler, amplifier, medical science etc. 

Stress analysis to find out the stress effects on PCFs propagation properties 
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1.7 REVIEW OF PREVIOUS WORKS AND MOTIVATION 

Propagation properties of PCFs have been investigated widely using different analysis techniques 

and tools [8-25]. Most of the investigation carried out without considering effect of stress. It is very 

important to know the properties of PCF to fully understand the feasibility of using it as sensor for 

stress civil structures or acoustic pressure in underwater and underground communication systems. 

From some recent research, it is found that the stress and thermal effect on fiber can alter the 

propagation properties of PCFs [26-32]. 

 

Okamoto et al. (1981) presented a theoretical and experimental investigation of the transverse load 

sensitivity of Bragg gratings in birefringent fibers to conforming contact. The transverse load 

sensitivity of commercially available birefringent fiber is experimentally measured for two cases of 

conforming contact. The theoretical and experimental results show that birefringent optical fiber can 

be used to make modulus-independent measurements of contact load [25]. 

 

Zhaoming Zhu et al. (2003) presented a numerical study of stress-induced birefringence in 

microstructured optical fibers (MOFs), using a finite-element method. They showed that 

birefringence varies with external stress and stress induced birefringence is reduced with increase of 

air hole diameter.  Here the research carried out for hexagonal air hole arrangement with fixed pitch 

and different air hole diameters [27]. 

 

Marcin Szpulak et al. (2004) investigated external pressure induced birefringence of PCF for two 

specific hexagonal air hole arrangement. They calculated the sensitivity of phase group modal 

birefringence to hydrostatic pressure versus wavelength in two birefringent holey fibers of different 

construction. The results show that deformation of the holey structure and the stress-related 

contribution to the overall pressure sensitivities factors decrease the phase modal birefringence in 

both structures [28]. 

 

M. Shah Alam et al. (2004) discussed effects of external pressure on effective index and 

birefringence of PCFs. Here the research was carried out only for hexagonal air hole arrangement 

PCFs model with different air hole diameter [29]. 
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The pressure sensitivity of two photonic crystal fibers (PCFs) was measured by Bock et al. (2006). 

They also successfully developed a PCF pressure sensor. Although its very small mode-field area 

does not match the mode-field areas of commercially available phase modulation (PM) optical 

fibers, successful operation of the sensor has been achieved [30]. 

Hongda Tian et al. (2008) investigated lateral stress induced characteristics of PCFs. The results of 

simulation show strong stress dependence of birefringence and confinement loss. Here hexagonal air 

hole arrangement with fixed pitch and air hole diameter was used [31]. 

 

M. A. Hossain et al. (2010) researched the effect of thermal and external stress on effective index, 

the birefringence and PMD. Here the research also carried on hexagonal air hole arrangement with 

fixed pitch and air hole diameter [32]. 

 

From previous works we have found that— 

 

i) Most of the works are carried out to find the stress effect on birefringence property with 

hexagonal air hole arrangement in PCFs.  

 

ii) A few works are done on confinement loss and PMD with limited design parameters. 

 

iii) Still the effect of external stress on effective area, effective index and confinement loss for 

different structured PCFs is unexplored using different design parameters like- air hole 

arrangement (hexagonal, square and octagonal), pitch, air-hole diameter, number of air-hole 

rings and shapes. 

 

It is also important to evaluate the effect of stress on propagation properties of PCFs with other 

possible air-hole arrangements and incorporating more design parameters. So in this work we have 

made an attempt to observe the effect of thermal and external stress on propagation properties of 

PCFs with hexagonal and octagonal air hole arranged PCF with different number of air hole rings 

and air hole diameter. In this paper it is shown that the effect of external stress is not same for 

different air hole arranged PCFs and hexagonal air hole arranged PCF is more sensitive than 

octagonal. 
 



  

 

9

1.8 AIMS AND OBJECTIVES 

 

PCFs recently attracted a great deal of interest because of their excellent propagation properties. 

Many research groups all over the world are making constant effort to establish the superiority of 

PCFs over conventional fibers because of its novel optical characteristics. Still PCF have some 

limitations like nonlinear effects, confinement loss and dispersion. Thermal and external stress can 

affect these propagation properties.  

The main goal of this research is to determine the behavior of PCF under thermal and external stress 

using analytical and simulation method. To achieve the goal, the following tasks will be carried out: 

 

i) To find the effect of different design parameters (air hole diameter, pitch, number of air hole 

rings, air hole arrangement) on propagation properties of PCF without considering external 

stress. 

 

ii) To find the effect of external stress including thermal stress on propagation properties 

(effective index, effective area, confinement loss, dispersion) of square, hexagonal and 

octagonal air hole arranged PCF with different design parameters. 

 

iii) To compare the results of propagation properties of PCF from step (i) and (ii). 

 

1.9 LAYOUT OF THESIS 

 

The thesis paper contains many sections and sub-sections, each of which explains a specific part of 

this thesis. Chapter 1 presents the basics conception of optical fiber which include different types of 

optical fibers, their applications, fabrication process and motivation. Chapter 2 discuss about the 

guiding mechanism and propagation properties that include effective index, birefringence, effective 

area, confinement loss, dispersion and others. Chapter 3 is the analysis method section where details 

of finite element method in stress analysis and optical analysis are discussed. Chapter 4 presents 

fiber design and materials properties. This chapter discuss about the PCFs structure and air filling 

fraction. Chapter 5 includes various results and corresponding graphical and physical explanation. 

The results are obtained under different stress conditions and variations of some structural 

parameters are also studied to optimize the design. Chapter 6 is the conclusion. 
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Chapter 2 
 

LIGHT GUIDING MECHANISM OF PCF  
 

Communication may be broadly defined as the transfer of information from one point to another. 

Fiber-optic communication is a method of transmitting information from one place to another by 

sending pulses of light through an optical fiber. Optical fiber is used by many telecommunications 

companies to transmit telephone signals, internet communication, and cable television signals. Due 

to much lower attenuation and interference, optical fiber has large advantages over existing copper 

wire in long-distance and high-demand applications [8-12]. 
 

In this chapter we have discussed the basic structure of optical fiber and PCF. Then, the light-

guiding mechanisms are presented. In solid-core photonic crystal fibers, where light is confined in a 

higher refractive index region, modified total internal reflection is exploited, which is quite similar to 

the guiding mechanism of standard optical fibers.  

 

2.1 STRUCTURE OF OPTICAL FIBER 
 

An optical fiber is a dielectric waveguide that operates at optical frequencies. This fiber waveguide 

is normally cylindrical in form [3]. The basic structure of an optical fiber is shown in Fig.2.1. (a). 
  

                       
(a)                   (b) 

Fig.2.1: (a) Basic structure of an optical fiber. (b) Cross section and refractive index profile of a 

conventional fiber. 
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The most widely accepted structure is the single solid dielectric cylinder with refractive index n1 

which is known as core. The core is surrounded by a solid dielectric cladding which has a refractive 

index n2 and less than n1. Refractive index profile of a conventional fiber is shown in Fig.2.1 (b). A 

conventional fiber with cylindrical symmetry consists of a central core surrounded by a cladding 

layer whose refractive index is slightly lower than that of the core. Such fibers are generally referred 

to as step-index fibers to distinguish them from graded-index fibers in which the refractive index of 

the core decreases gradually from centre to the core boundary. 

 

2.2 PROPAGATION MECHANISM 
 

The basic principle responsible for the guiding of light in conventional fibers is well known as (total 

internal reflection) TIR: A ray of light will be totally reflected at the interface between two dielectric 

media when it will incident from the medium with higher refractive index n1 to lower n2  and the 

incident angle is greater than the critical angle [1]. Where critical angle cθ  is the incident angle for 

which, angle of refraction 2θ  is 90º that is shown in Fig. 2.2.  

 

 
 

Fig.2.2 Critical angle and total internal reflection mechanism. 
     
How a light ray is launched into a fiber is shown in Fig. 2.3. The incident ray I1 enters the fiber at the 

angle θa. I1 is refracted upon entering the fiber and is transmitted to the core-cladding interface. The 

ray then strikes the core-cladding interface at the critical angle (θc). I1 is totally reflected back into 

the core and continues to propagate along the fiber. The incident ray I1 enters the fiber at an angle 
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greater than θa. Again, I2 is refracted upon entering the fiber and is transmitted to the core-cladding 

interface. I2 strikes the core-cladding interface at an angle less than the critical angle (θc). I2 is 

refracted into the cladding and is eventually lost. The light ray incident on the fiber core must be 

within the acceptance cone defined by the angle θa.  

 

 
Fig.2.3 Guiding mechanism of light in optical fiber. 

 

 

 
 

Fig.2.4 Schematic of a PCF cross section. The light grey areas are silica, the white areas are air holes 

and the dark grey areas are polymer coating. Λ is the hole-to-hole pitch and d is the hole diameter. 

Like conventional fibers, PCFs contain the two-layer structure: a core and a cladding layer 

surrounding the core (Fig. 2.4). Total internal reflection photonic crystal fibers (TIR PCFs) are also 
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known as index-guiding PCFs. The most typical TIR PCFs have a solid core (often fabricated from 

pure silica) surrounded by a cladding with a regular periodic array of air holes. These air holes make 

the effective refractive index of the cladding region lower than pure silica, so light is confined to the 

solid core area, which has a relatively higher refractive index. A schematic cross section of such a 

PCF cross is given in Fig.2.4, where the two parameters which characterize the dimensions of PCFs 

are the hole-to-hole pitch Λ and the air hole diameter d [4]. 
 

From the guidance mechanism point of view, TIR PCFs guide light by TIR, as conventional fibers 

do. Thus it is convenient to establish an effective refractive index model to analyze the behaviors 

and characteristics of such PCFs since many concepts can be borrowed directly from conventional 

fibers. 

 

However, this does not mean that TIR PCFs are just another kind of conventional fiber. There are 

three parameters known as hole-to-hole pitch Λ, air hole diameter d and core radius, ready to be 

controlled. The values of d/Λ and Λ, which are responsible for the air-filling ratio as well as the 

effective cladding index, can be adjusted over a large range. More degrees of design freedom enable 

TIR PCFs to exhibit some unique characteristics which are not obtainable in conventional fibers. 

 

 

2.3 MODES OF PROPAGATION 
 

Optical fiber is classified into two types on the basis of number of modes that propagate along the 

fiber [3]. 

(a) Single mode fiber: Single mode fibers allow only one mode to propagate, because the core size 

is small and approaches the operational wavelength. Single mode fibers currently exhibit the greatest 

transmission bandwidths and the lowest losses of the fiber transmission media [8-9].  

(b) Multimode fiber: Multimode fibers allow the propagation of a finite number of guided modes 

along a channel. They have large core diameter and light can be launched to them easily. As the 

number of modes increases, the modal dispersion increases and this affects the system bandwidth. 

2.3 GUIDING PROPERTIES OF OPTICAL FIBER  
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2.3.1 Effective Refractive Index 
 

In homogeneous transparent media, the refractive index n can be used to quantify the increase in the 

wave number (phase change per unit length) caused by the medium: the wave number is n times 

higher than it would be in vacuum. The effective refractive index neff has the analogous meaning for 

light propagation in a waveguide; the propagation constant is the effective index times the vacuum 

wave number: 

λ
πβ 2

effn=                                                            (2.1) 

The effective refractive index depends not only on the wavelength but also (for multimode 

waveguides) on the mode in which the light propagates. For this reason, it is also called effective 

mode index [11-13]. 
 

Again effective refractive index is a number that quantify the phase delay per unit length in a 

waveguide, relative to the phase delay in vacuum. The rate of change of the fundamental LP01 mode 

propagating along a straight fiber is determined by the phase propagation constant β. It is directly 

related to the wavelength of LP01 mode λ01 by the factor of 2π. Hence:  

,201 πβλ =  

     or  
β
πλ 2

01 =                                                                    (2.2) 

 

An effective refractive index for single mode fiber sometimes referred to as a phase index or 

normalized phase change coefficient, neff  [13-14]. It is defined by the ratio of the propagation 

constant of the fundamental mode to that of the vacuum wave number, k:  

k
neff

β
=                                                                           (2.3) 

hence the wavelength of the fundamental mode  λ01 is smaller than the vacuum wavelength λ by the 

factor 1/ neff. 

effn
λλ =01                                                                          (2.4) 

2.3.2 Dispersion 
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Dispersion is the broadening or spreading of optical signal while it propagates inside the fiber. The 

phenomenon of spreading of optical pulse as it travels along the fiber and limits the information 

capacity of the fiber is known as dispersion. It cause the signal spread out and lose of original shape 

which makes difficult to detect by receivers at the end of fiber span [15-16]. The phenomenon is 

shown in Fig.2.6. 

 
 

Fig.2.5  Effect of dispersion on optical signal. 

 

Dispersion depends on the phase velocity or phase delay of light in some medium or device on some 

other parameter. The phase velocity of a wave is the rate at which the phase of the wave propagates 

in space. Phase velocity is given in terms of angular frequency ω and propagation constant β. 

β
ω

=pv                                                                                                                    (2.5)  

There are various different types of dispersion in optical fiber. These types are: 

i) Chromatic dispersion  

ii) Intermodal dispersion 

iii) Polarization mode dispersion 

 

2.3.2.1 Chromatic dispersion  

The term “chromatic dispersion” covers all the phenomena associated with wavelength-dependent 

pulse spreading. Chromatic dispersion for single mode fiber can be divided into material and 

waveguide dispersion [16-17]. Material dispersion is caused by the wavelength dependence of the 

silica’s refractive index. Different colors light ray has different wavelength and light rays with 

different wavelengths travels with different speed. So at the fiber output the varying wavelength 

speed causes the light pulse spread in time.  
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2

2
)(

dλ
nd

c
λD eff

mat −=λ ps/(nm.km)                                (2.6) 

 

Again waveguide dispersion is caused by the fact that light is guided by an optical fiber. After 

entering a singlemode fiber, an information carrying pulse is distributed between the core and the 

cladding. Its major portion travels within the core, the rest within the cladding. Both portions 

propagate at different velocities science the core and cladding has different refractive indexes. The 

pulse will spread simply because light is confined within a structure having different refractive 

indexes.  

In a single mode fiber chromatic dispersion is sum of the material and waveguide dispersion. 
 

)()()( λλλ wgmat DDD += ps/(nm.km)              (2.7) 

 

But waveguide dispersion in a single mode fiber is relatively small compared to material dispersion. 

So that, the chromatic dispersion parameter for unit length can be defined as: 
 

2

2

dλ
nd

c
λD eff−= ps/(nm.km)                                           (2.8) 

 

2.3.2.2 Intermodal dispersion  

Intermodal dispersion results from different propagation characteristics of higher-order transverse 

modes in waveguides, such as multimode fibers. This effect can severely limit the possible data rate 

of a system for optical fiber communications based on multimode fibers. But single mode fiber does 

not show intermodal dispersion. 
 

2.3.2.3 Polarization mode dispersion  

The difference in refractive indexes along the x axis and the y axis, xn  and yn  respectively is called 

birefringence B [19-20].  

yx nnB −=                                                                    (2.9)       
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This formula implies that yx nn > ; in other word, y is the fast axis, x the slow axis. Here “x” and “y” 

for these two axes have been chosen quite arbitrarily; usually the terms fast and slow are used to 

denote the appropriate axis. 

 
In conventional single-mode fibers without birefringence design, B is small and changes randomly 

along the fiber because of variations in the core shape and the anisotropic stress acting on the core. 

Coupling between the two orthogonal polarization modes is easy and random. As a result, light 

launched into the fiber with linear polarization quickly reaches a state of arbitrary polarization. This 

effect results in the form of pulse spread called polarization-mode dispersion (PMD) that is shown in 

Fig.2.5. PMD is one of the limitations on high speed and high bit rate communication systems 

because it causes pulse spreading [18-19]. 

 

 

 

Fig.2.6 Schematic illustration of how birefringence induces a differential group delay (DGD) 

between the fast and slow polarization modes. 

 

Again a large amount of birefringence can introduce intentionally in these fibers through design 

modifications so that small random birefringence fluctuations do not affect significantly the light 

polarization. In other words, coupling between the two orthogonal polarization modes can not occur 

because of the big difference between them. Such fibers are called polarization-maintaining (PM) 

fibers or highly birefringent fibers. Typically, B ∼ 10-4 for PM fibers [20]. 
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2.3.3 Mode field diameter 
 

Although most light travels inside an optical fiber’s core, the light actually spreads through a slightly 

larger volume including the inner edge of the fiber cladding. Mode field diameter is a measure of the 

spatial extent of the fundamental mode. It is generally taken as the distance between the opposite 

2
1

e  =0.135 points in relation to the corresponding value on the fiber axis. 

 

 
 

Fig.2.7 Mode field diameter of optical fiber. 
 

Mode field diameter (MFD) is important for single mode fibers only. Its effect is so small in 

multimode fibers that it really doesn’t matter any more. Mode field diameter plays an important role 

in estimating splice losses, source to fiber coupler losses, macro bending and micro bending losses, 

etc. For single mode fibers manufacturing, MFD is used as a rather more important parameter than 

fiber’s core size. 
 

2.3.4 Effective area 

Effective area (EA) is a quantitative measure of the area which a waveguide or fiber mode 

effectively covers in the transverse dimensions [21]. Modes of fibers have smooth transverse profiles 

where the definition of a mode area is not straightforward, particularly for complicated mode shapes 

where e.g. some 1/e2 intensity criterion as for Gaussian beams is not sensible. A useful definition for 

the effective mode area is  

∫∫

∫∫=
dxdy

dxdy)(
Aeff 4

22

E

E
                                                                                (2.10) 

where E is the electric field amplitude. 
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Fig.2.8 Effective area of optical fiber. 
 

An important consequence of a small mode area is that the optical intensities for a given power level 

are high, so that nonlinearities become important. Also, small mode area is usually the consequence 

of strong guiding, where bend losses and other effects of external disturbances are weak. 

2.3.5 Attenuation 

Attenuation is the loss of optical power as light travels along the fiber [4]. Signal attenuation is 

defined as the ratio of optical input power (Pi) to the optical output power (Po). Optical input power 

is the power injected into the fiber from an optical source. Optical output power is the power 

received at the fiber end or optical detector. The following equation defines signal attenuation as a 

unit of length: 

o

i
10db P

P10logα =L                                (2.11) 

Signal attenuation is a log relationship. Length (L) is expressed in kilometers. Therefore, the unit of 

attenuation is decibels/kilometer (dB/km). Mainly, attenuation is caused by absorption, scattering, 

and bending losses. Each mechanism of loss is influenced by fiber-material properties and fiber 

structure. However, loss is also present at fiber connections and leakage. 

2.3.5.1 Confinement loss 
 

In both solid-core and hollow-core PCFs it is necessary to consider another contribution to the 

losses, that is the leakage or confinement losses [22]. These are due to the finite number of air-holes 
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which can be made in the fiber cross section. As a consequence, all the PCF guided modes are leaky. 

For example, in solid-core PCFs light is confined within a core region by the air-holes. Light will 

move away from the core if the confinement provided by the air-holes is inadequate [23]. Because of 

the finite transverse extent of the confining structure, the effective index is a complex value; its 

imaginary part Im(neff) is related to losses L (in decibels per meter) through the relation  

 

)10ln(
10)Im(.40 6

λ
π ×

= effn
L      .                                            (2.12) 

 

This means that it is important to design such aspects of the PCF structure as air-hole diameter and 

hole-to-hole spacing, or pitch, in order to realize low-loss PCFs. In particular, the ratio between the 

air-hole diameter and the pitch must be designed to be large enough to confine light into the core. On 

the other hand, a large value of the ratio makes the PCF multi-mode. However, by properly 

designing the structure, the confinement loss of single-mode PCFs can be reduced to a negligible 

level. 

 

Recently, several analyses have been performed in order to find the guidelines to design PCFs with 

negligible leakage losses [1.32–1.37dB]. It has been demonstrated a strong dependence of the 

confinement losses on the number of air-hole rings, especially for fibers with high air-filling 

fraction.  
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Chapter 3 
 

STRESS ANALYSIS IN PCF 
 

PCFs have many uses as underwater and underground communication systems, sensor for stress, 

polarization maintaining fiber etc [19-20], [30]. Depending on fiber uses the propagation properties 

also varies. In practical hydrostatic pressure, axial force, twisting, and elongation may cause fiber 

deformation and change of these propagation properties. The Optical fiber fabrication requires high 

temperature. Again, the fiber is drawn from a cylindrical structure at high temperature. When the 

fiber is cooled to room temperature, different portions of the fiber show different amount of 

expansion due to differences in the thermal expansion coefficient. This induces a stress which is 

termed as thermal stress. This effect results in the change of refractive indices as well as 

birefringence and other associated properties. So it is essential to perform stress analysis before 

calculating propagation modes, to observe the changes of propagation properties by both external 

and thermal stress [26-27]. At first we explain the stress analysis and then optical analysis. 

 

3.1 STRESS ANALYSIS 
Let us consider a body that is long along its z-axis direction compared to its cross sectional area, 

such as optical fibers and waveguides. In this case, strain in the body along the z-direction εz is 

considered to be zero, except at both ends. Then we can assume, εz =0. Stress analysis based on this 

assumption is called a “plane strain problem” [28].  

The relationship between displacement and strain is given by 

x
uεx ∂

∂
= ,         (3.1a) 

y
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y ∂
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=ε ,                  (3.1b) 
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Next, the relationship between stress and strain is generally expressed as 
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Txzyy ∆++−= ασσνσε )]([
E
1 ;      (3.2b) 

;)]([
E
1 Tyxzz ∆++−= ασσνσε       (3.2c) 

G
τ xy
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Where, u and v be the displacements along the x- and y-axis directions respectively; εx, εy and εz  are 

principal strains along x-,y- and z-directions respectively; γxy is shear strain in the x-y plane; σx, σy, σz 

are principal stress along x-,y- and z-directions respectively; τxy is shear strain in the x-y plane; E and 

ν are the Young’s modulus and Poisson’s ratio; G, α and ∆T are shear modulus, thermal expansion 

coefficient, and temperature change. 

By putting εz =0 in (3.3), the relationship between stress and strain in the plane strain is given by 
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By putting σz =0 in (3.3), the relationship between stress and strain in the plane stress is given by 
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The components of stress, strain and initial strain due to thermal strain are expressed as 
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Now the relation between stress and strain can be expressed by (3.7-3.9): 

}],{}[{}{ 0εεσ −= D          (3.9) 
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So strain energy per unit length is obtained by 

Strain energy = 
2
1 ∫ ∫ stress.(strain−initial strain) dxdy = ∫∫ − dxdyt }]{}[{}{

2
1

0εεσ     (3.11) 

Where, {σ}t is a row vector of {σ}. The entire fiber structure is divided into small elements and the 

integral of (3.12) is carried out in each element. 

If triangular elements are applied, the strain component in the eth (e=1-N) element are obtained as 
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where xi, xj, xk and yi, yj, yk are the x and y coordinates of the three vertices of the triangular element 

and se is the cross sectional area of eth element. 

This is rewritten in matrix form as }{}{ e
e

e dB=ε ,        (3.13) 

Where, Be is strain matrix and de matrix represent displacements. 

So the strain energy of eth element, dxdyU eetee ∫∫ −= }}]{[{}{5.0 0εεσ      (3.14) 

Where e
tetet

ee
tetete DdBD ]}{}{[]}{}[{}{ 00 εεεσ −=−= .                                                                             (3.15) 

In this equation, element matrix De may be different in each element since Young’s modulus and 

Poisson’s ratio are different in core and substrate region. 

The strain energy of eth element can be expressed as 

}{}{}{}{
2
1 etee

e
te

e hddAdU −=       (3.16) 

Where Ae is a 6X6 element stiffness matrix and {he} is a 6X1 thermal stress vector, which are given 

by 

ee
t
eee BDBsA =       (3.17a) 
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}{}{ 0
e

e
t
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e DBsh ε= .      (3.17b) 

The total strain energy is obtained by summing element strain energy: 

}{}{}{}{
2
1 HddAdU tt −=                  (3.18) 

Where {d},A and {H} are the 2n×1 global strain vector, the 2n×2n global stiffness matrix and the 

2n×1 global thermal stress vector respectively. 

An external force applied to the body is approximated by the force concentrated at the node on the 

surface of the body. The total work done by the external force is then given by 

    }.{}{ L
t fdV =        (3.19) 

where {fL} is 2n×1 global load vector. 

So the total potential energy, lfHddAdP L
tt

t }]]{}[{}{}{}{
2
1[ +−= .   (3.20) 

Potential energy should be minimal by energy principle. So the partial derivative of Pt with respect 

to the displacement of each nodal point should be zero. We then have the 2nth order linear 

simultaneous equations: 

    }{}{}{ LfHdA += .      (3.21) 

The solution of the displacement vector is:  

}]{}[{}{ 1
LfHAd += −  

The solution gives the displacements at all nodal points of the fiber or waveguide under thermal 

stress and external forces. 

In optical fibers or waveguides under stress, the original refractive index of the material changes due 

to photoelastic effect. The new refractive index for x and y polarized light can be calculated from the 

following equation: 
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Here, C1, C2 are the elasto-optic coefficient of the fiber or waveguide material, nx0 , ny0 and nz0 are the 

unstressed refractive indices of the material and nx, ny and nz are the main diagonal element of the 

anisotropic refractive index tensor. 
 

3.2 FINITE ELEMENT METHOD 
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To study the distribution of stresses in an optical fiber, the finite element method (FEM) is a highly 

suitable method to be applied due to its flexibility and power [13-14]. For this purpose, the 

equilibrium equations need to be established through minimizing the total energy (Pt) of the fiber 

system, 

Pt = internal work – external work = ∫
s

t dsl εσ
2
1 –l ∫

L

t Fdl[d]l                                                      (3.23) 

Where l is the length of the optical fiber, σ and ε are the stress and strain vectors respectively, d the 

displacement vector at any point, and F is the external forces applied. The first integration takes 

place over the cross section of the fiber and the second integration along the boundary of the fiber 

section. The first integration represents the internal strain energy, while the second indicates the 

work contribution of the applied loads. 

 

3.3 OPTICAL ANALYSIS 

Optical analysis is performed for calculating the effective mode indices for different modes 

propagating within the fiber [8-12]. It involves dealing with perpendicular hybrid mode waves. The 

mode analysis is made on a cross-section in the x-y plane of the fiber. 

3.3.1 Perfectly Matched Layers 
 

Perfectly Matched Layer (PML) is an absorbing layer specially studied to absorb without reflection 

the electromagnetic waves [22-23]. Using this layer, we can estimate the confinement loss of any 

optical fibre. The PML formulation can be deduced from Maxwell’s equations by introducing a 

complex-valued coordinate transformation under the additional requirement that the wave 

impedance should remain unaffected. From the implementation viewpoint, it is more practical to 

describe the PML as an anisotropic material with losses.  

To define a PML, add an additional modeling domain (subdomain) outside the boundaries that you 

would like to be absorbing. The PML can have arbitrary thickness and is specified to be made of an 

artificial absorbing material. The material has anisotropic permittivity and permeability that match 

the permittivity and permeability of the physical medium outside the PML in such a way that there 

are no reflections. Introduce a new sub domain representing an absorbing layer with anisotropic 

material parameters  

permeability, Lrµµµ 0=  and 
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permittivity, Lrεεε 0= . 

 

An eigenvalue equation for the magnetic field H is derived from Helmholtz equation  

0)( 2
0

1 =−×∇×∇ − µε rr k                                                  (3.24) 

In 2-dimensional case, a circular PML is an absorbing region surrounding the fiber structure [34]. 

The thickness is noted e and the internal radius rin, (ρ-rin) is the distance inside the PML measured 

from the interface between the PML and the edge of the computational window. The PML is 

schematically shown in Fig.3.2: 

 
 

 
 

Fig.3. 1 Cross section of optical fiber surrounded by circular PML. 

 
 

For the cylindrical PML, assuming cylindrical coordinates (ρ,ϕ,z), we get 
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The parameters sξ, sψ and sζ are the complex-valued coordinating scaling parameters. The interpretation of the parameters sρ, sϕ and sz 

is the same as for sξ, sψ and sζ. The sϕ and sz to be 1 in all regions, and let sρ take the following form 
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where R is a theoretical reflection coefficient at the interface between the PML and the edge of the 

computational window. The absorption of the PML will be optimal when reflection coefficient R at 

the interface between PML and pure silica region is small. 

The wave propagates in the z direction and has the form  

)(),(),,,( ztjeyxtzyx βω −=                                                                             (3.26) 

where ω is the angular frequency and β the propagation constant. An eigenvalue equation for the 

magnetic field H is derived from Helmholtz equation in the fiber cross section reduces to:  

0)]([ 2
0

2 =−×∇×∇ − kn                                                       (3.27) 

which is solved for the eigenvalue λ = −β2.  

As boundary condition along the outside of the cladding the magnetic field is set to zero. Because 

the amplitude of the field decays rapidly as a function of the radius of the cladding this is a valid 

boundary condition. 

This condition is expressed by the equation: 0=×   

In PML region 

In other regions 
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For a confined mode there is no energy flow in the radial direction, thus the wave must be 

evanescent in the radial direction in the cladding. This is true only if  

2nneff >  

On the other hand, the wave cannot be radially evanescent in the core region. Thus  

12 nnn eff <<  

The waves are more confined when neff is close to the upper limit in this interval. 

Effective mode index of a confined mode, 
0k
βneff =  

The effective index (neff) found here is a complex number and the real part is used to calculate 

dispersion and the imaginary part is used for confinement loss calculation.  
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Chapter 4 
 

PCF DESIGN PRINCIPLES 
 

High-index guiding PCFs have a solid core surrounded by a cladding with a regular periodic array of 

air holes. That show excellent propagation properties in contrast of conventional fibers. All of these 

properties are related to the fiber design, namely, pitch, air-hole diameter and number of air-hole 

rings around the core. In this chapter we shall discuss about the fiber design that we have considered 

for our experiment. We shall also find out the air filling ratios for different designed PCFs. 

 

4.1 PCF DESIGNING PARAMETERS 

 

We are considering three types of air hole arrangements for designing PCFs. 

 Square PCF (the structures are designed by square air hole arrangement). 

 Hexagonal PCF (the structures are designed by hexagonal air hole arrangement). 

 Octagonal PCF (the structures are designed by octagonal air hole arrangement). 

 

Here solid core index guiding PCFs are made by only single material (SiO2), where refractive index 

ns=1.45 [6]. Operating wave length varies from 1µm to 2µm. External stress is considered here from 

0Pa to 5GPa, d is the air-hole diameter, Λ is pitch (distance between two air holes) and Nr is the 

number of air hole rings [8-9].  

 

The dimensions of the structures of square and hexagonal PCFs initially are- 

Cross sectional radius, R = 12.0 µm 

Pitch, Λ  =2.5 µm 

Number of air hole rings, Nr = 1, 2, 3 and 4 

PML width, e = 1 µm 

Air hole diameter, d = 1.4 µm. 

 

To compare the propagation properties of both square and hexagonal PCFs the designs are varied by 

changing number of air hole rings assuming that other parameters are same. 
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(a)   (b)   (c)    (d) 

 

Fig.4.1 shows the cross-section of square PCF, where (a) Nr=1, (b) Nr=2, (c) Nr=3 and (d) Nr=4. 

 

            
(a)   (b)   (c)   (d) 

 

Fig.4.2 shows the cross-section of hexagonal PCF, where (a) Nr=1, (b) Nr=2, (c) Nr=3, (d) Nr=4. 

 

For hexagonal and octagonal structures initially the dimensions of the structure are-   

Cross sectional radius, R = 12.0 µm 

Pitch, Λ  =2.5 µm 

Number of air hole rings, Nr = 4 

PML width, e = 1 µm 

Air hole diameter, d = 0.8 µm, 1.0 µm, 1.2 µm, 1.4 µm 1.6 µm 

Designs are varied by changing air hole diameter.  
 

            
 

(a)   (b)   (c) 
                                                                                            

Fig.4.3 shows the cross-section of hexagonal PCF, where (a) d=0.8µm, (c) d=1.2µm, (c) d=1.6µm.  
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(a)   (b)   (c) 
 
 

Fig.4.4 shows the cross-section of octagonal PCF, where (a) d=0.8µm, (b) d=1.2µm, (c) d=1.6µm. 

 

 

4.2 AIR FILLING FRACTION 

 

Air filling fraction (AFF) of PCF is the ratio of total area of air in fiber cross section to total cross 

sectional area of the fiber [10-11]. It presents the amount of air in the fiber cross section. 

cell

hole

A
A

AFF =                                                       (4.1) 

where, 

Ahole= area of the air hole inside the unit triangle, 

Acell= area of the unit triangle. 

 

 

                   
 

(a)         (b)               (c) 
 

Fig.4.5 Fiber cross section (a) square, (b) hexagonal, (c) octagonal PCF. 
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                                     (a)          (b)                                (c) 
 

Fig.4.6 The unit triangle (a) square, (b) hexagonal, (c) octagonal PCF. 
 

Area of a circular air hole, 2a rhole π=  

where,     
2
dr =  

4

2dahole π=∴            (4.2) 

The unit triangle has ½ area of an air hole. Because, it covers 180o area of a circular air hole. 

So area of air hole in a triangle,  

8422

22 dda
A hole

hole ππ =
×

==          (4.3) 

 

From the figure we can see that the unit triangle for square PCF is a right triangle. 

We know that the area of a right triangle is 

heightbaseArea ××=
2
1  . 

We get the area of unit triangle for square PCF according to the rules of right angle,  
2

2
1

)( Λ=SqrcellA . 
 

∴ Air filling fraction for square PCF is 
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Again we know that the area of a triangle also can be calculated by the following equation 
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)(
2
1 CSinbaArea ×××=  

where, a and b are the lengths of two sides and C is the angle between them. 
 

 

We get the area of unit triangle for hexagonal PCF by following equation (4.1),  
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∴ Air filling fraction for hexagonal PCF is 
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Similarly we get the area of unit triangle for octagonal PCF by following equation (4.1),  
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∴ Air filling fraction for octagonal PCF is 
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From the above equations (4.4), (4.6) and (4.8) we find that  

OctaHexaSqr AFFAFFAFF ∠∠  

 

Total number of air holes in square PCFs is  
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Total number of air holes in hexagonal PCFs is  
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Total number of air holes in octagonal PCFs is  
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We considered here only circular shape air holes and area of each air hole is 2rπ . Under same 

number of air hole rings and air hole diameter As, Ah and Ao are the total air-hole cross sectional area 

for square, hexagonal and octagonal PCFs respectively.   

 
2rNA ss π×=                   (4.12) 

 
2rNA hh π×=                          (4.13) 

 
2rNA oo π×= .                         (4.14) 

 
 
From (4.12), (4.13) and (4.14) it can be shown that hAA 33.10 =  and hAAs 33.1= . That means total air-

hole cross sectional area for square and octagonal PCFs is about 33% greater than hexagonal with 

same Nr and d. 

 

4.2 SELLMEIER EQUATION AND COEFFICIENT 
 

For the specification of a wavelength-dependent refractive index of a transparent optical material, it 

is common to use Sellmeier formula [33]. This formula is very useful, as it makes possible to 

describe accurately the refractive index of material in a wide wavelength range with only a few so-

called Sellmeier coefficients, which are usually obtained from measured data with some least-square 

fitting algorithm. Sellmeier coefficients for many optical materials are available in databases. 

 

In its most general form, the Sellmeier equation is given as: 
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The usual form of the equation for glass is  

 

3
2

2
3

2
2

2
2

1
2

2
12 1)(

B
A

B
A

B
An

−
+

−
+

−
+=

λ
λ

λ
λ

λ
λ

λ    (4.16) 

where n is the refractive index, λ is the vacuum wavelength, and A1, A2, A3, B1, B2 and B3 are 

experimentally determined Sellmeier coefficients. These coefficients are usually quoted for λ in 

micrometers. The value of the coefficients is given in Table 4.1. 
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Table 4.1: Sellmeier coefficients. 

 

Material A1 B1 (µm) A2   B2 (µm) A3  B3 (µm) 

Silica (SiO2 ) 0.6961663 0.0684043 0.4079426 0.1162414 0.8974794 9.896161 

 

By calculation, 

                        n  =1.444 

 where, operating wavelength, λ is taken to be 1.55 µm. 

 

For analysis of the fiber, the geometrical and mechanical parameters are shown in Table 4.2. 

 

Table 4.2: Core, cladding and hole parameters. 

 

Parameter  Core (SiO2) Cladding(SiO2)  Air hole 

Young’s modulus, E 7830 Kg/mm2 

 

7830 Kg/mm2 

 

1.42×105 pa 

 

Poisson’s ratio, ν 0.186 0.186 0.186 

 

Elasto-optic 

coefficient 

C1=0.757×10-12 m2/N 

C2=0.4185×10-11 m2/N 

C1=0.757×10-12 m2/N 

C2=0.4185×10-11 m2/N 

C1=0.757×10-12 m2/N 

C2=0.4185×10-11 

m2/N 

Thermal expansion 

coefficient, α 

2×10-6 /°C 

 

1×10-6 /°C 

 

3.43×10-3 /°C 
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Chapter 5 

 

RESULTS AND DISCUSSION 
      

To carry out our experiment here we have considered three different types of air hole arrangements 

for fiber design (square, hexagonal and octagonal). We have used COMSOL Multiphysics as a 

modeling and simulation tool, where a combination of structural mechanics module and 

electromagnetic module has been used to carry out the stress analysis and optical mode analysis of 

the PCFs respectively [34]. The Finite Element Method (FEM) offers the ability to examine arbitrary 

fiber configurations, specifically through deformation where the fiber is no longer circularly 

symmetric [13-14]. Electromagnetic module has been used to carry out the stress analysis and 

optical mode analysis of the PCFs respectively. External stress causes change of refractive index of 

fiber and we have obtained this result from plain stress analysis then we have used these results as 

input information for optical analysis by FEM. We have got the modal effective index as the output 

of optical analysis. For all types of fibers we have observed the effect of stress on their propagation 

properties like− effective index, birefringence, confinement loss, effective area and polarization 

mode dispersion. Then we have compared the results for square, hexagonal and octagonal PCFs. 

Thus our research findings will help to identify the proper design scheme of PCF for particular 

application. 

 

5.1 SQUARE PCFs 

 

Depending on the air arrangement the PCFs are called square, hexagonal, octagonal etc. Square 

PCFs are designed by square air hole arrangement [9]. Here we have designed different square PCFs 

by varying number of air hole rings. At first we designed the PCFs using COMSOL metaphysics 

drawing environment. To observe stress effect on the PCFs we have to find out the propagation 

properties of unstressed and stressed PCFs. For unstressed PCFs optical analysis is performed for 

calculating the effective mode indices for different modes propagating within the fiber. Then we 

carried out stress analysis to investigate the diversity of propagation characteristics in PCFs under 
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lateral forces from different directions. Stress distribution in the fiber's cross section and deformation 

of the fiber's structure both factor induces different modal effective index in both axis (x and y). The 

stress-induced effective index of the fundamental guided mode, birefringence and confinement loss 

are analyzed here separately.  

Fig. 5.1 shows the vector displacement over the cross section of the PCF under external stress with a 

maximum displacement and the minimum displacement, where the arrow direction shows pressure is 

applied uniformly from all directions. Fig.5.2 shows the surface total displacement for hexagonal air-

hole arrangement, which occurred due to effect of external stress and causes deformation in fiber 

structure. This deformation causes change in material refractive index. The effect of stress on the 

refractive index also causes a change in the mode field distribution. For the fundamental x polarized 

mode, the surface power flow is shown in the Fig.5.3. 

 
Fig. 5.1 Arrow displacement under external stress for square air hole arrangement PCF with 

external stress 5GPa, where d=1.2µm, Λ=2.5 µm and Nr=4. 
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Fig. 5.2 Surface total displacement under external stress for square air hole arrangement PCF with 

external stress 5GPa, where d=1.2µm, Λ=2.5µm and Nr=4. 

 
Fig. 5.3 Surface power flow, time average z component under external stress for square air hole 

arrangement with external stress 5GPa, where d=1.4µm, Λ=2.5µm and Nr=4. 

 

5.1.1 Effective Index 
 

At first we have considered unstressed PCF to observe the variation of effective index as a function 

of wavelength. Fig.5.4 shows that effective index decreases with the increase of wavelength, where 

we considered λ=1µm to 2 µm, d=1.6 µm, Λ=2.5µm and Nr=4. This result matches with the result 

found in [14].  
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Fig. 5.4 Effective index as a function of wavelength for unstressed square air hole arrangement, 
where λ=1.55µm, d=1.4µm and Λ=2.5µm. 

 
 

Fig. 5.5 Effective index as a function of wavelength and external stress for square air hole 
arrangement, where λ=1.55µm, d=1.4µm and Λ=2.5µm. 

 

 

The stress-induced corrections of the refractive index are known from plain stress analysis; we 

utilized these data as input information for optical analysis by FEM. We have got the modal 

effective index as the output of optical analysis. The stress induced effective index is not same for 

different structured PCFs. To observe the stress effect on fibers propagation properties we applied 0, 

1 and 5 GPa pressure on fiber boundary. This pressure has been applied uniformly from each side. 

We have changed the fiber structure by varying number of air hole rings 1, 3 and 4. To compare this 

changes for different number of air hole ring PCFs we considered all parameters same (λ=1.55µm, 
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d=1.55 µm, Λ=2.5µm) for all structures. Fig.5.5 shows that effective index decreases with the 

increase of wavelength for all square air hole arranged PCFs with Nr=1, 3 and 4. It also shows that 

external stress causes change of effective index. Without considering external stress (P=0GPa) 

effective indices remains almost same for PCFs with Nr=1, 3 and 4. Furthermore, with the increase 

of external stress effective index increases but this change is noticeable for P=5GPa than P=1GPa.  
 

 

5.1.2 Birefringence 
 

External stress on PCF causes stress distribution and fiber deformation in fiber cross section. This 

deformation is not same for all type of fiber and in all direction (x and y), which causes different 

birefringence for square PCFs. For unstressed (P=0GPa) square PCFs birefringence is very small 

and it is negligible. Considering external stress it increases with the increase of stress. But this 

changes is very small and it is order of 10-6 for square PCF with Nr=4. Fig.5.6 depicts the variation 

of birefringence as a function of wavelength and external stress for square PCFs with Nr=1, 2 and 3.  

Here 1GPa and 5GPa external stress have been applied on fiber boundary to observe the stress effect 

on birefringence properties. From the figure we can see that birefringence increases with the increase 

of wavelength and the change is more with larger operating wavelength. It is also found that external 

stress induced birefringence become higher for lower number of air hole rings with whole operating 

wavelengths (1µm to 2µm). 
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Fig. 5.6 Birefringence as a function of wavelength and external stress for square PCFs with different 
number of air hole rings, where d=1.4µm, Λ=2.5µm and R=12.0µm. 

 
 

5.1.3 Confinement Loss 
 

Without considering external stress confinement loss as a function of wavelength and number of air 

hole rings for square PCFs with Nr=1, 2, 3 and 4 are shown in Fig.5.7. The comparison between the 

confinement losses of square PCFs with Nr=1 and 2, Nr=2 and 3, Nr=3 and 4 are shown in Fig.5.7 

(a), (b) and (c) respectively. The figures depict that confinement loss increases with the increases of 

wavelength. We also found that confinement loss reaches of order of 10-4 for the square PCF with 

Nr=1. But it significantly decreases with the increase of number of air hole rings. At 1.6-6 µm 

wavelength unstressed square PCF with Nr=1 shows confinement loss 6.5-4, Nr=2 shows 2.934-6 and 

Nr=3 shows 3.751-9. Fig.5.8 (a), (b), (c) and (d) shows confinement loss as a function of wavelength 

and external stress for square PCFs with Nr=1, Nr=2, Nr=3 and Nr=4 respectively. In each case it is 

found that confinement loss increases with the increase of external stress. Furthermore we have 

found that external stress induced confinement loss increases sharply for PCFs with lower number of 

air hole rings than higher number of air hole rings. External stress induced confinement loss for 

PCFs with Nr=1 changes from order of 10-4 (P=0GPa) to 101 (P=5GPa). Confinement loss for square 

PCFs with lower number of air hole rings are more stress sensitive than higher number of air hole 

rings. 
 

 
(a) (b) 
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(c) 

Fig.5.7 Confinement loss as a function of wavelength for square PCFs, where d=1.4µm, 
Λ=2.5µm, e=1µm, R=12.0µm and (a) Nr=1 and 2, (b) Nr=2 and 3, (c) Nr=3 and 4 

 
    (a)                                                                             (b) 

 
 

 
(c)                                                                                   (d) 
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Fig.5.8 Confinement loss as a function of wavelength and external stress for square PCFs, where 

d=1.4µm, Λ=2.5µm, e=1µm, R=12.0µm and (a) Nr=1, (b) Nr=2, (c) Nr=3 and (d) Nr=4. 

 
5.1.4 Effective area 

 

Fig.5.9 shows without considering external stress effective area increases with the increase of 

wavelength for square PCFs with Nr=1, 2, 3 and 4, where d=1.4µm, Λ=2.5µm and R=12.0µm. It 

also shows that effective area of square shape PCFs always greater for lower number of air hole 

rings than higher number of air hole rings. But with the increase of number of air hole rings effective 

area decreases more sharply with longer wavelength. Fig.5.10 depicts effective area increases with 

the increase of external stress, where d=1.44µm, Λ=2.5µm, Nr=4, R=12.0µm and λ=1.55µm. But 

this change is very small. Again Fig.5.11 presents external stress induced effective area increases 

more sharply for smaller wavelength than larger. 

 
 

Fig.5.9 Without considering external stress effective area as a function of wave length for square PCFs, 
where d=1.4µm, Λ=2.5µm and R=12.0µm. 
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Fig.5.10 Effective area as a function of external stress for square PCFs, where d=1.44µm, Λ=2.5µm, 
Nr=4, R=12.0µm and λ=1.55µm. 

 

 
 

Fig.5.11 Effective area as a function of wavelength and external stress for square PCFs, where d=1.44µm, 
Λ=2.5µm, Nr=4 and R=12.0µm. 

5.1.5 Dispersion 
 

For square lattice PCFs without any external stress dispersion increases almost linearly with the 

increase of wavelength which is shown in Fig.5.12, where d=1.4µm, Λ=2.5µm P=0GPa and 

λ=1.55µm. It also shows dispersion increases with the increase of number of air hole rings but this 

change is very small. Furthermore Fig.5.13 shows the external stress effect on square PCF with 

Nr=4. From the figure it is clear that external stress induces dispersion and with higher external 

stress dispersion is also high. 
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Fig. 5.12 Dispersion as a function of wavelength and number of air hole rings for square PCFs, where 
d=1.4µm, Λ=2.5µm, P=0GPa and λ=1.55µm. 

 

 

 
 

Fig. 5.13 External stress induced dispersion as a function of wavelength for square PCFs, where d=1.4µm, 
Λ=2.5µm and Nr=4. 

5.2 HEXAGONAL PCFs 

 

Here hexagonal PCFs are designed by hexagonal air hole arrangement in fiber cross section. Like 

square PCFs air holes for hexagonal PCFs are considered only circular shaped. From chapter 4 it is 

clear AFF is greater for hexagonal PCF than square. Again with same air hole diameter, pitch and 

number of air hole rings total area of air in fiber cross section is greater for square.  

To observe the effect of design parameters on fiber propagation properties we have varied air hole 

diameters and number of air hole rings to design different fiber structures. Then we identified the 

changes of effective index, birefringence, confinement loss and effective area with the change of 

design parameters. Again to observe stress effect on different structured PCFs different external 

stress has been applied uniformly on fiber boundary from all direction.  

The stress distribution over the hexagonal PCF cross section is shown in Fig5.14, where d=1.2µm, 

Λ=2.5 µm and Nr=4. It shows arrow displacement under external stress, where the arrow direction 

shows pressure is applied uniformly from all directions. Fig.5.15 shows the surface total 

displacement for hexagonal air-hole arrangement, which occurred for external stress effect and 

causes deformation in fiber structure. This deformation causes change in material refractive index. 

The effect of stress on the refractive index also causes a change in the mode field distribution. The 

Fig.5.16 shows the surface power flow for the fundamental x polarized single mode. It also shows 

the modal solution gives complex effective refractive index. 
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Fig. 5.14 Arrow displacement under external stress for hexagonal air hole arrangement PCF with 

external stress 5GPa, where d=1.2µm, Λ=2.5 µm and Nr=4.  

 
Fig. 5.15 Surface total displacement under external stress for hexagonal air hole arrangement PCF 

with external stress 5GPa, where d=1.2µm, Λ=2.5µm and Nr=4. 
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Fig. 5.16 Surface power flow, time average z component under external stress for hexagonal air 

hole arrangement with external stress 5GPa, where d=1.4µm, Λ=2.5µm and Nr=4. 
 
 

 

5.2.1 Effective Index 
 

Effective index of hexagonal PCFs with different structure have been observe here. At first we 

observed the change of effective index as a function of wavelength for hexagonal PCFs with 

different number of air hole rings (Nr=1, 2, 3 and 4) then we find out the change of effective index 

with different air hole diameter. Fig.5.17 shows effective index as a function of wavelength and 

external stress, where d=1.4µm and Λ=2.5µm. We can observe from this figure that effective index 

decreases with the increase of wavelength and hexagonal PCFs with larger number of air hole rings 

shows lower effective index. Again, unstressed hexagonal PCFs with different number of air hole 

ring show almost same effective index. Furthermore it also depicts that higher external stress induces 

higher effective index. The stress effect is comparatively higher for the PCFs with larger Nr.  
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Fig.5.17 Effective index as a function of wavelength and external stress for hexagonal air hole 

arrangement, where d=1.4µm and Λ=2.5µm. 

 

External stress causes fiber deformation and stress distribution in fiber cross section. These facts 

make change of effective index. Amount of deformation varies depending on fiber AFF and PCFs 

with different AFF have been designed here by varying air hole diameter (d=0.8µm to 1.6 µm). 

Fig.5.18 shows the changes of effective index as a function of external stress and air hole diameter, 

where λ=1.55µm, Λ=2.5µm and Nr=4. It depicts that effective index increases linearly with the 

increase of external stress. Again it shows that effective index is higher for PCFs with larger air hole 

diameter. 
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Fig.5.18 Effective index as a function of external stress and air hole diameter for hexagonal air hole 
arrangement, where λ=1.55µm, Λ=2.5µm and Nr=4. 

 

5.2.2 Birefringence 
 

Stress distribution in the fiber's cross section and deformation of the fiber's structure both factor 

induces different modal effective index in both axis (x and y), which causes modal birefringence. So 

stress induced birefringence is also different for hexagonal PCFs with different designed structure. 

Here external stress induced changes of birefringence property for different hexagonal PCFs  have 

been observed by varying number of air hole rings and air hole diameter. Fig. 5.19 shows 

birefringence as a function of wavelength, number of air hole rings and external stress for hexagonal 

air hole arrangement, where d=1.4µm and Λ=2.5µm. From this figure we can see that birefringence 

increases with the increase of wavelength. Again it shows that birefringence is very high for Nr=1 

(order of 10-4) and it decreases very sharply for higher number of air hole rings. At Nr=4 

birefringence is order of 10-6 and external stress induced changes is very negligible. It also depicts 

that with the increase of external stress birefringence also increases. Fig.5.20 shows birefringence as 

a function of external stress and air hole diameter for hexagonal air hole arrangement, where 

λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. This figure shows that birefringence increases with the 

increase of air hole diameter as well as external stress.  
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Fig.5.19 Birefringence as a function of wavelength, number of air hole rings and external stress for 

hexagonal air hole arrangement, where d=1.4µm and Λ=2.5µm. 
 
 
 

 
 
 

Fig.5.20 Birefringence as a function of external stress and air hole diameter for hexagonal air hole 

arrangement, where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 
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5.2.3 Confinement Loss 
 

All the PCF guided modes are leaky. In solid-core PCFs light is confined within a core region by the 

air-holes. Light will move away from the core if the confinement provided by the air-holes is 

inadequate. Because of the finite transverse extent of the confining structure, the effective index is a 

complex value; its imaginary part is related to losses. Due to external stress deformation of the 

fiber's structure causes confinement loss. 

External stress effect on confinement loss as a function of wavelength and number of air hole rings 

for unstressed hexagonal PCFs with Nr=1, 2, 3 and 4 are shown in Fig.5.21, where P=0GPa, 

d=1.4µm, Λ=2.5µm, e=1µm, R=12. The variation of confinement loss against external stress for 

hexagonal PCFs with Nr=1 and 2, Nr=2 and 3, Nr=3 and 4 are shown in Fig.5.21 (a), (b) and (c) 

respectively. The figures show that confinement loss increases with the increases of wavelength but 

it significantly decreases with the increase of number of air hole rings. We also found that 

confinement loss reaches of the order of 10-3 for the hexagonal PCF with Nr=1. At 1.6-6 µm 

wavelength hexagonal PCF with Nr=1 shows confinement loss 5-3, Nr=2 shows 3.934-6 and Nr=3 

shows 7.249-9. Fig.5.22 shows confinement loss as a function of wavelength and external stress, 

where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. It is clear from the figure that higher external 

stress induces higher confinement loss. Again from the Fig.5.23 it is clear that confinement loss 

gradually decreases with the increase of air hole diameter, where λ=1.55µm, d=1.4µm, Λ=2.5µm 

and Nr=4. It also shows that confinement loss increases with the increase of external stress and it is 

very high for larger external stress with smaller air hole diameter.  

 

 
(a)       (b) 
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(c) 

 

Fig.5.21 Confinement loss as a function of wavelength for hexagonal PCFs, where P=0GPa, d=1.4µm, 
Λ=2.5µm, e=1µm, R=12.0µm and (a) Nr=1 and 2, (b) Nr=2 and 3, (c) Nr=3 and 4. 

 

 
 

Fig.5.22 Confinement loss as a function of wavelength and external stress for hexagonal PCFs, where 
λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 

 

 
 

Fig.5.23 Confinement loss as a function of external stress and air hole diameter for hexagonal PCFs, where 
λ=1.55µm, Λ=2.5µm and Nr=4. 
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5.2.4 Effective area 

 

Effective area increases with the increase of external stress for hexagonal PCFs. Fig.5.24 shows 

effective area as a function of wavelength and number of air hole rings, where P=0GPa, d=1.4µm 

and Λ=2.5µm. From the figure we can see that hexagonal PCF with Nr=1 shows comparatively 

higher effective area than Nr=2, 3 and 4. Again it also shows that effective area increases with the 

increase of wavelength and it is almost same for higher number of air hole rings.  

 

 
 

Fig.5.24 Effective area as function of wavelength and number of air hole rings for hexagonal PCFs, 
where P=0GPa, d=1.4µm and Λ=2.5µm. 

 

 

Fig.5.25 depicts the change of effective area against air hole diameter, where λ=1.55µm, d=1.4µm, 

Λ=2.5µm, P=0GPa and Nr=4. We get from the results that effective area decreases with the increase 

of air hole diameter and this change is very sharp for smaller air hole diameter than larger. Fig.5.26 

shows the comparison between 0GPa, 1GPa and 5GPa external stress induced effective areas as a 

function of wavelength, where d=1.4µm, Λ=2.5µm and Nr=4. The figure depicts that effective area 

increases as a function of wavelength in hexagonal air hole arranged PCF.  It also shows that with 

the increase of external stress effective area also increases but the rate of change is higher for shorter 

wavelength than longer. 
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Fig.5.25 Effective area as a function of air hole diameter for hexagonal PCF, where λ=1.55µm, 
d=1.4µm, Λ=2.5µm, P=0GPa and Nr=4. 

 
 

      
 

Fig.5.26 Effective area as a function of wavelength and external stress for hexagonal PCF, where 
d=1.4µm, Λ=2.5µm and Nr=4. 

 
 

5.2.5 Dispersion 
  

Fig.5.27 shows dispersion as a function of wavelength and number of air hole rings, where d=1.4µm 

and Λ=2.5µm. It shows that dispersion increases with the increase of number of air hole rings. 
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Hexagonal PCF with Nr=1 exhibits negative dispersion but hexagonal PCFs with Nr=2 and 3 

exhibits positive dispersion. Again it also shows that external stress induces higher dispersion. This 

is more clear from Fig.5.28 that shows dispersion as a function of wavelength and external stress, 

where d=1.4µm, Λ=2.5µm and Nr=4. That depicts the effect of external stress on dispersion 

properties with external stress P=0, 1 and 5GPa. From the figure it is clear that higher external stress 

causes greater dispersion. 

It is also found that hexagonal PCF with higher air hole diameter shows higher dispersion and this 

increases with the increase of external stress. Fig.5.29 shows dispersion as a function of wavelength 

and air hole diameter with external stress P=0GPa and 5GPa, where Λ=2.5µm and Nr=4. It depicts 

that hexagonal PCFs with larger air hole diameter induce higher dispersion than smaller air hole 

diameter.  Hexagonal PCFs with d=08µm shows negative dispersion but hexagonal PCFs with 

d=1.4µm and 1.6µm exhibits positive dispersion.  

We know that area of air in PCF cross section can be varied by varying air hole diameter and 

number of air hole rings. With the increase of number air hole ring and air hole diameter  amount of 

air in fiber cross section increases. From the results it is clear that hexagonal PCFs shows negative 

dispersion with less amount of air in fiber cross section but it shows positive dispersion with greater 

amount of air in fiber cross section. 

 
 

Fig.5.27 Dispersion as a function of wavelength and number of air hole rings for hexagonal PCFs, 
where d=1.4µm and Λ=2.5µm. 
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Fig5.28 Dispersion as a function of wavelength and external stress for hexagonal PCF, where 

d=1.4µm, Λ=2.5µm and Nr=4. 

 

 
 

Fig.5.29 Dispersion as a function of wavelength and air hole diameter for hexagonal PCFs, where 

Λ=2.5µm and Nr=4. 
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5.3 OCTAGONAL PCFs 
 

In this section we have observed the propagation properties of octagonal PCFs, where the fibers have 

been designed by octagonal air hole arrangement [11]. At first the results have been found for 

unstressed PCFs then external stress have been applied on fiber boundary to identify the effect on 

PCFs propagation properties. With the change of air hole diameter, total amount of air in fiber cross 

section also changes. To observe the effect of this change on octagonal PCFs propagation properties, 

we have designed the fiber structures by varying only air hole diameter, where other design 

parameters have been considered same. From the simulation result we have got the modal solution of 

all octagonal PCFs. Then we have used these results to calculate effective index, birefringence, 

confinement loss, effective area and dispersion for all octagonal PCFs. Again we repeated the 

experiment for stressed PCFs and we found the changes of propagation properties of octagonal PCFs 

due to external stress. Fig.5.30 shows the arrow displacement under external stress for octagonal air 

hole arrangement PCF with external stress 5GPa, where d=1.2µm, Λ=2.5 µm and Nr=4. Here the 

arrows show that uniform stress have been applied on fiber boundary from all direction. Fig.5.31 

shows surface total displacement under external stress for octagonal air hole arrangement PCF with 

external stress 5GPa, where d=1.2µm, Λ=2.5µm and Nr=4. The color bur indicates amount of 

displacement in fiber cross section due to external stress. Fig.5.32 presents surface power flow, time 

average z component under external stress for octagonal air hole arrangement with external stress 

5GPa, where d=1.4µm, Λ=2.5µm and Nr=4. It shows the single mode power flow through the core 

and the effective index of eigenvalule solution. 

  
Fig.5.30 Arrow displacement under external stress for octagonal PCF with external stress 5GPa, 

where d=1.2µm, Λ=2.5 µm and Nr=4. 
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Fig.5.31 Surface total displacement under external stress for octagonal PCF with external stress 

5GPa, where d=1.2µm, Λ=2.5µm and Nr=4. 
 

 
Fig. 5.32 Surface power flow, time average z component under external stress for octagonal PCF 

with external stress 5GPa, where d=1.4µm, Λ=2.5µm and Nr=4. 
 

 

5.3.1 Effective Index 
 

At first to compare the results we considered here two octagonal PCF structures with different air 

hole diameter (d=0.8µm and 1.6µm), where both PCFs are considered under both stressed (P=5GPa) 

and unstressed (P=0GPa) condition. The experimental results show that effective index decreases 

with the increase of wavelength for octagonal PCF that is given in Fig.5.33, where Λ=2.5µm and 

Nr=4. Again Fig.5.34 shows effective index as a function of external stress and air hole diameter for 
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octagonal PCF, where λ=1.55µm, Λ=2.5µm and Nr=4. In this figure we have considered different 

octagonal PCF structures by varying air hole diameter (d=0.8 µm, 1.0 µm, 1.2 µm, 1.4 µm and 1.6 

µm). We have observed the variation of effective index with the change of external stress (P=0GPa, 

1GPa, 2GPa, 3GPa, 4GPa and 5GPa). Both figures depicts that effective index is higher for smaller 

air diameter than larger. It is also clear that higher external stress causes higher effective index and 

this change is more for longer wavelength.   
 

 
 

Fig. 5.33 Effective index as a function of wavelength, air hole diameter and external stress for 
octagonal PCF, where Λ=2.5µm and Nr=4. 

 

 
 

Fig.5.34 Effective index as a function of external stress and air hole diameter for octagonal PCF, 
where λ=1.55µm, Λ=2.5µm and Nr=4. 
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5.3.2 Birefringence 
 

Birefringence is the difference between modal effective index of x and y axis. Fig.5.35 shows 

birefringence as a function of wavelength for octagonal PCF, where d=1.4µm, Λ=2.5µm and Nr=4. 

It shows that birefringence increases with the increase of wavelength. But it is very small (order of 

10-6) for all operating wavelengths (λ=1.0µm to 2.0µm). Again Fig.5.36 shows the effect of external 

stress and variation of air hole diameter on birefringence properties of octagonal PCFs. Fig.5.36 (a) 

shows birefringence as a function of air hole diameter, where λ=1.55µm, Λ=2.5µm and Nr=4. In this 

figure we have considered octagonal PCFs have been designed by varying air hole diameter from 

d=0.8µm to d=1.6µm and external stress have been applied periodically from 0GPa to 5GPa on the 

fiber boundary. The figure depicts that birefringence is peak for the octagonal PCF with d=1.4µm. 

We can also see that birefringence increases with the increase of external stress for octagonal PCFs 

with all air hole diameters. Furthermore birefringence for stressed and unstressed octagonal PCFs 

with different air hole diameter not greater than order of 10-6. Now Fig.5.36 (b) specially shows 

birefringence as a function of external stress for octagonal PCF with d=1.4 µm, where λ=1.55µm, 

Λ=2.5µm and Nr=4. From this figure it is clear that birefringence increases almost linearly with the 

increase of external stress for octagonal PCF with d=1.4 µm.  

 

 
 

Fig.5.35 Birefringence as a function of wavelength for octagonal PCF, where d=1.4µm, Λ=2.5µm  
and Nr=4.     
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(a)        (b) 
 

Fig.5.36 (a) Birefringence as a function of air hole diameter, (b) birefringence as a function of external stress 
for octagonal PCFs, where λ=1.55µm, Λ=2.5µm and Nr=4. 

 

 

5.3.3 Confinement Loss 

 

With the change of air hole diameter total amount of air also changes in fiber cross section. 

Confinement loss is very much dependent on total amount of air in PCF cross section. This change is 

very large for octagonal PCFs. Confinement is very high for octagonal PCFs with smaller air hole 

diameter and it increases with the increase of external stress. Here we have presented the results 

separately for different PCFs by varying air hole diameter, which is shown in Fig.5.37 (a) d=0.8µm, 

(b) d=1.0µm, (c) d=1.2µm, (d) d=1.4µm and 1.6µm, where λ=1.55µm, Λ=2.5µm and Nr=4. From 

the figures we can find with the application of P=0GPa to 3GPa external stress confinement 

increases with the increase of external stress but it remains almost unchanged with higher stress. 

Octagonal PCFs with d=0.8µm causes confinement loss of order of 10-3, d=1.0µm causes 

confinement loss of order of 10-5, d=1.2µm causes confinement loss of order of 10-8, d=1.4µm 

d=1.6µm both causes confinement loss of order of 10-13. From the experimental data we can see that 

with larger air hole diameter (d>1.4µm) octagonal PCFs show very low confinement loss and they 

remains almost flattened with the increase of external stress. Fig.5.38. shows confinement loss as a 

function of wavelength for octagonal PCF, where d=1.4µm, Λ=2.5µm and Nr=4. From the figures 
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we can see that confinement loss for unstressed (P=0GPa) octagonal PCF increases with the increase 

of wavelength and this change is more sharp when λ>1.4µm. But it remains almost unchanged over 

the operating wavelength with higher external stress (P=5GPa).  

 

 
 

(a) (b) 
 
 

 
 

(c)       (d) 
 

Fig.5.37 Confinement loss as a function of external stress and air hole diameter for octagonal 
PCFs (a) d=0.8µm, (b) d=1.0µm, (c) d=1.2µm, (d) d=1.4µm and 1.6µm, where λ=1.55µm, 

Λ=2.5µm and Nr=4. 
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Fig.5.38 Confinement loss as a function of wavelength for octagonal PCF, where d=1.4µm,  
Λ=2.5µm and Nr=4.     

 

 

5.3.4 Effective Area 

 

Fig.5.39 shows that effective area as a function of wavelength for octagonal PCF, where d=1.4µm, 

Λ=2.5µm and Nr=4. Here the figure shows that effective area increases with the increase of 

wavelength, which matches with the result found in [8]. The results are shown for both unstressed 

(P=0GPa) and stressed (P=5GPa) octagonal PCFs. With the application of external stress effective 

area of octagonal PCF increases for smaller wavelength, it remains almost unchanged for λ=1.6µm 

and decreases with larger wavelength. External stress induce change of effective area of octagonal 

PCF is very small.  

Fig.5.40 shows that effective area as function of external stress for octagonal PCF, where d=1.4µm, 

Λ=2.5µm and Nr=4. From the figure we can see that effective area increases with the increase of 

external stress and this change is very small. From the experimental data we can see that effective 

area of octagonal PCF with external stress P=0GPa is 9.4224µm2 and P=5GPa is 9.4734 µm2, where 

λ=1.6µm, d=1.0µm, Λ=2.5µm and Nr=4. 
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Fig.5.39 Effective area as function of wavelength for octagonal PCF, where d=1.4µm, Λ=2.5µm and 
Nr=4. 

 

 
 

Fig.5.40 Effective area as function of external stress for octagonal PCF, where λ=1.55µm, d=1.4µm, 
Λ=2.5µm and Nr=4. 
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5.3.5 Dispersion 

 

Fig.5.41 shows dispersion as a function of wavelength for octagonal PCF, where Λ=2.5µm and 

Nr=4. The figure shows dispersion for octagonal PCFs with d=1.4µm and d=1.6µm. Dispersion 

increases linearly with the increase of wavelength for both types of octagonal PCFs. Again we can 

see that dispersion for octagonal PCF with d=1.6µm is higher than d=1.4µm. Furthermore external 

stress causes increase of dispersion. From the figure it is clear that external stress induced dispersion 

of octagonal PCF with d=1.4µm increases comparatively more than d=1.6µm. Furthermore stress 

induced change of dispersion for octagonal PCF with d=1.6µm is very small.  

 

 
 

Fig.5.41 Dispersion as a function of wavelength for octagonal PCFs, where Λ=2.5µm and Nr=4. 
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5.4 COMPARISON BETWEEN SQUARE, HEXAGONAL AND OCTAGONAL PCFs  

 

In section 5.1, 5.2 and 5.3 we have discussed about external stress effect on square, hexagonal and 

octagonal PCFs propagation properties respectively.  Now in this section a comparison of stress 

effect on square, hexagonal and octagonal PCFs is going to be made with same design and operating 

parameters.   

 

5.4.1 Effective Index 
 

Here we have made the comparison of external stress effect on effective index for square, hexagonal 

and octagonal PCFs with different number of air hole rings and air hole diameter. Fig.5.42 shows 

effective index as a function of wavelength, number of air hole ring and external stress for square 

and hexagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. From the figure we can see that effective 

index decreases with the decreases of wavelength. Again effective index of square PCFs is always 

higher than hexagonal and PCFs with higher number of air hole rings show higher effective index. 

With the application of 5GPa external stress effective index increases and this change is 

comparatively greater for square than hexagonal.   

  

 
 

Fig.5.42 Effective index as a function of wavelength, number of air hole ring and external stress for 
square and hexagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. 
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Now Fig.5.43 shows effective index as a function of air hole diameter and external stress for 

hexagonal and octagonal PCFs, where λ=1.55µm, Λ=2.5µm and Nr=4. We can see from this figure 

that effective index decreases with the increase of air hole diameter for hexagonal and octagonal 

PCFs. Effective index of hexagonal PCF is always higher than octagonal. It also shows that higher 

external stress induces higher effective index and this effect is comparatively larger for the PCFs 

with larger air hole diameter.  

 

 
 

Fig.5.43 Effective index as a function of air hole diameter and external stress for hexagonal and 

octagonal PCFs, where λ=1.55µm, Λ=2.5µm and Nr=4. 
 

 

Fig.5.44 shows the combined result of effective index as a function of wavelength for square, 

hexagonal and octagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. The figure depicts that for all 

PCFs (square, hexagonal and octagonal) effective index decreases with the decrease of wavelength.  

It also shows that effective index of octagonal PCFs is less than both square and hexagonal. With the 

increase of external stress effective index increases for all types of PCFs but this change is 

comparatively more for square and hexagonal PCFs than octagonal. 

 



  

 

68

 
 

5.44 Effective index as a function of wavelength for square, hexagonal and octagonal PCFs, where 
d=1.4µm, Λ=2.5µm and Nr=4. 

 
 

5.4.2 Birefringence 

 

Birefringence increases with the increase of wavelength for square, hexagonal and octagonal PCFs. 

Fig.5.45 shows birefringence as a function of wavelength for (a) square, hexagonal and octagonal 

PCFs (b) square and octagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. From Fig.5.45 (a) 

depicts that without considering external stress birefringence is almost same (order of 10-6) for 

square and hexagonal PCFs. With 5GPa external stress birefringence increases very sharply (order of 

10-4) for hexagonal PCF but this change is very low for square and octagonal PCF. Again Fig.5.45 

(b) shows that for unstressed octagonal PCFs birefringence is lower than square. But birefringence 

for octagonal PCF with 5GPa external stress is comparatively higher than square. 

Again Fig.5.46 shows birefringence as a function of external stress for (a) square, hexagonal and 

octagonal PCFs, (b) square and octagonal PCFs, where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 

From Fig.5.46 (a) we can see that with the increase of external stress birefringence increases almost 

linearly for hexagonal PCFs and it is always higher than square and octagonal PCFs. Furthermore 

Fig.5.46 (b) presents that change of birefringence properties due to external stress effect is more for 

octagonal PCFs than square. 
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(a)       (b) 
 

Fig.5.45 Birefringence as a function of wavelength and external stress for (a) square, hexagonal and 

octagonal PCFs (b) square and octagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. 

 

 

 
 

(a)       (b) 
 

Fig.5.46 Birefringence as a function of external stress for (a) square, hexagonal and octagonal PCFs, 

(b) square and octagonal PCFs, where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 
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5.4.3 Confinement Loss 

 
The following figures Fig.5.47 (a) and (b) show confinement loss as a function of wavelength for 

square and hexagonal PCFs, where d=1.4µm and Λ=2.5µm. Fig.5.47 (a) shows the results for the 

PCFs with Nr=1 and Fig.5.47 (b) shows the result for the PCFs with Nr=4. Both figures depict that 

confinement loss increase with the increase of wavelength and it is always higher for hexagonal 

PCFs than square. They also show that higher external stress induces higher confinement loss. It is 

noticeable that external stress induced confinement loss is very high for both square and hexagonal 

PCFs with Nr=1 and it increases sharply for all operating wavelengths (λ=1.0µm to 2.0µm). 

Furthermore square and hexagonal PCFs with Nr=4 shows low confinement loss (order of 10-4) and 

it increases very slowly against external stress for smaller wavelengths (λ smaller than 1.4µm) but 

with longer wavelengths (λ greater than 1.4µm) it increases very sharply. 

 

 
 

(a) (b) 
 

Fig.5.47 Confinement loss as a function of wavelength for square and hexagonal PCFs with (a) Nr=1 
and (b) Nr=4, where d=1.4µm and Λ=2.5µm. 

 

 

We have presented here the combined results for different hexagonal and octagonal PCFs to observe 

the variation of external stress induced confinement loss as a function of air hole diameter. Fig.5.48 
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(a) and (b) show confinement loss as a function of external stress and air hole diameter for 

hexagonal and octagonal PCFs, where  λ=1.55µm, Λ=2.5µm, Nr=4 and (a) d=0.8µm to 1.0µm and 

(b) d=1.2µm to 1.6µm. The figures show that confinement loss is always higher for hexagonal PCFs 

than octagonal and it increases with the increase of stress. It also shows that both PCFs with larger 

air hole diameter show low confinement loss than smaller. 

 

 
 

(a)       (b) 
 

Fig.5.48 Confinement loss as a function of external stress and air hole diameter for hexagonal and 

octagonal PCFs, where λ=1.55µm, Λ=2.5µm and Nr=4. 
 
 
 
 

Now Fig.5.49 (a) presents confinement loss as a function of wavelength and external stress and (b) 

presents confinement loss as a function of external stress for square, hexagonal and octagonal PCFs. 

These figures show the combined results for square, hexagonal and octagonal PCFs. To compare the 

results we considered same design and operating parameters (where λ=1.55µm, d=1.4µm, Λ=2.5µm 

and Nr=4) for them. They depicts that confinement for hexagonal PCFs is higher than square and 

octagonal. Again confinement loss of square PCFs is higher than octagonal. External stress causes 

increase of confinement loss for all types of PCFs and this change is more for hexagonal PCFs than 

others. 
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(a)       (b) 
 

Fig.5.49 (a) confinement loss as a function of wavelength and external stress for square, hexagonal 
and octagonal and (b) confinement loss as a function of external stress for square, hexagonal and 

octagonal PCFs, where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 
 

 

5.4.4 Effective Area 

 

Fig.5.50 shows that effective area as a function of wavelength and number of air hole rings for 

square and hexagonal PCFs, where d=1.4µm and Λ=2.5µm. It depicts that effective area increases 

with the increase of wavelength for both square and hexagonal PCFs and it is always higher for 

square PCFs. Furthermore it shows that with the increase of Nr it decreases for both types of PCFs 

that matches with the result found in [21]. 

Fig.5.51 shows effective area as a function of wavelength and external stress for hexagonal and 

octagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. This figure shows that effective area 

increases with the increases of wavelength and it is always higher for hexagonal PCFs than 

octagonal. It also shows 5GPa external stress induces higher effective area with shorter wavelength 

than longer. But external stress induced change of effective area is very small for all types of PCFs. 

That is shown in Fig.5.52, which presents the combined results of effective area as a function of 

external stress for square, hexagonal and octagonal PCFs. To compare the results here we have 
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considered same parameters λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4 for all PCFs. From this figure 

we can find also that effective area of hexagonal and square PCFs are higher than octagonal. 

 
 

Fig.5.50 Effective area as a function of wavelength and number of air hole rings for square and 
hexagonal PCFs, where d=1.4µm and Λ=2.5µm. 

 

 
 

Fig.5.51 Effective area as a function of wavelength and external stress for hexagonal and octagonal 
PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. 
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Fig.5.52 Effective area as a function of external stress for square, hexagonal and octagonal PCFs, 
where λ=1.55µm, d=1.4µm, Λ=2.5µm and Nr=4. 

 
 

5.4.5 Dispersion 

 

Dispersion for all types of PCFs (square, hexagonal and octagonal) increases linearly with the 

increase of wavelength that is shown in Fig.5.53 and Fig.5.54. Dispersion as a function of 

wavelength and number of air hole rings for unstressed square and hexagonal PCFs has been shown 

in Fig.5.53, where d=1.4µm, Λ=2.5µm and P=0GPa. This figure depicts the change of dispersion 

properties for square and hexagonal PCFs with different air hole diameter. With the increase of 

number of air hole diameter dispersion also increases for both types of PCFs but hexagonal PCF 

with Nr=1 shows comparatively very low dispersion than Nr=2 and 3. Square and hexagonal PCFs 

with Nr=2 and 3 generates almost same dispersion.  

Fig.5.54 shows dispersion as a function of wavelength and external stress for square, hexagonal and 

octagonal PCFs, where all design and operating parameters are same (d=1.4µm, Λ=2.5µm and 

Nr=4). To compare the stress effect on the PCFs we considered here P=0GPa (unstressed) and 5GPa. 

From the figure we can find that dispersion for octagonal PCF is higher than hexagonal and square. 

Again hexagonal PCF shows higher dispersion than square. With 5GPa external stress all types of 

PCFs show higher dispersion than 0GPa and this change is greater for octagonal PCFs. 
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Fig.5.53 Dispersion as a function of wavelength and number of air hole rings for square and 
hexagonal PCFs, where d=1.4µm, Λ=2.5µm and P=0GPa. 

 

 
 

Fig.5.54 Dispersion as a function of wavelength and external stress for square, hexagonal and 
octagonal PCFs, where d=1.4µm, Λ=2.5µm and Nr=4. 
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5.5 RESULTS IN BRIEF 

 

The experimental results in brief have been shown here in table 5.1. From the table we can find find 

that without external stress square and octagonal PCFs show comparatively low confinement loss 

where as square PCF shows high birefringence and high confinement loss. Again octagonal PCFs 

show comparatively higher dispersion than others. 

 

Table 5.1 Experimental results in brief. 

Properties Square PCF Hexagonal PCF Octagonal PCF 

Without external 

stress 

-Low birefringence 

-low confinement loss 

-low dispersion. 

-High birefringence 

(order of 10-4) 

-high confinement loss 

-low dispersion. 

-Very low birefringence 

-very low confinement 

loss (order of 10-12)  

-Comparatively high 

dispersion. 

Considering external 

stress 

Less stress sensitive for 

-birefringence 

-dispersion and 

-confinement loss. 

-Stress induced 

birefringence is high  

-high sensitivity for 

confinement loss 

-Very low stress 

sensitivity for 

birefringence, and 

confinement loss 

properties. 

 

Table 5.2 Applications of Different Designed PCFs. 

Type of PCF Propagation properties Suggested Applications 

Square  Low birefringence, low 

confinement loss and low 

dispersion 

Good for the uses as 

waveguide in communication 

system 

Hexagonal High birefringence Good as polarization 

maintaining fiber 

Octagonal Low birefringence, low 

confinement loss and high 

dispersion 

Good as dispersion 

compensator fiber 
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5.6 VERIFICATION OF OUR EXPERIMENTAL RESULT WITH PUBLISHED WORK 
 

In the following Fig. 5.55 and Fig. 5.56 we have verified our experimental results with the published 

work in [32]. Fig. 5.55 shows effective index as function of wavelength, where (a) presents the 

results for [32] and (b) presents our experimental results. From this figure we can see that our 

experimental results match with the published results. Again Fig. 5.56 presents birefringence against 

wavelength, where (a) presents the results for [32] and (b) presents our experimental results. This 

figure also shows that our calculated results agree with the results from [32]. Now it is clear that our 

experimental process is correct.  

 
   (a)       (b) 

Fig. 5.55 Effect of external stress on effective index and birefringence (4-ring PCF with d=1.4µm, 
Λ=2.3µm) (a) Hossain et. al. (2010) and (b) Our experimental result. 
 

 
   (a)       (b) 

Fig. 5.56 Phase birefringence versus wavelength (four-ring PCF with d=1.4 µm, A=2.3 µm) at 
different external pressure conditions (a) Hossain et. al. (2010) and (b) Our experimental result. 
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5.7 COMPARISON WITH OTHER RELATED PUBLISHED WORKS 

 

Many experiments and investigation has been carried out using different analysis techniques and 

tools to understand the propagation properties of various PCFs. Propagation properties of PCFs have 

been investigated widely using different analysis techniques and tools. But few works has been done 

to understand the external stress effects on PCFs. These research works mainly carried out on 

effective index, birefringence, polarization mode dispersion and confinement loss properties only for 

hexagonal air-holes arranged PCFs with few design parameters. Here we have made a comparison of 

our research work with other published works. Table 5.1 shows the relative comparison among 

different research works. 

 

Table 5.3 Comparison among different related research works. 

Pr
op

er
tie

Ref. of 

research 

works 

Shape of PCF Performance  of propagation 

properties under external 

stress 

Numerical data  

 

Zhu et al. 

(2003) 

[27]  

 

Hexagonal PCFs by 

varying air hole 

diameter. 

 
 

 

Birefringence increases with the 

increase of stress and decreases 

with the increase of air hole 

diameter. 

 

At 2GPa external stress it 

shows order of 10-4 

birefringence. 

Alam et al. 

(2004) 

[29] 

Hexagonal PCFs 

with both symmetric 

and asymmetric air 

holes are 

considered. 

Birefringence increases more when 

the air hole diameter is larger. The 

x-polarized fundamental mode gets 

higher effective refractive index at 

high external stress. 

At 2GPa when d = 5µm, 

the birefringence is about 

16 times larger than that 

of d = 3µm and the value 

is order of 10-5. 

B
ir

ef
ri

ng
en

ce
 

Tian et al. 

(2008) 

[31] 

Hexagonal PCFs 

with fixed pitch and 

the air hole 

diameter. 

Birefringence increases with the 

increase of stress. The dependence 

of wavelength on phase modal 

birefringence is significantly 

decreased when stress optical 

effect is considered. 

At 2GPa external stress 

induced birefringence 

reaches to order of 10-3.  
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B
ir

ef
ri

ng
en

ce
 In this 

research 

work 

Square, hexagonal 

and octagonal PCFs 

with different 

number of air hole 

rings and air hole 

diameter. 

 

With the increase of external stress 

birefringence increases almost 

linearly for all types of PCFs and it 

is always higher for hexagonal than 

square and octagonal. Again 

change of birefringence properties 

due to external stress effect is more 

for octagonal PCFs than square. 

 

 

At external stress 2GPa, 

hexagonal, octagonal and 

square PCFs show 

birefringence of order of 

10-4, 10-5 and 10-6 

respectively.  

 

Tian et al. 

(2008) 

[31] 

 

Hexagonal PCFs 

with fixed pitch and 

the air hole 

diameter, where 

5.0=Λd . 

 

The results of simulation show us 

strong stress dependence of 

confinement loss. Where 

confinement loss increases with the 

increase of external stress. 

 

 

Fig.4 shows that at 1.6 

µm wavelength force 

2GPa causes confinement 

loss around order of 10-3 

(dB/Km). 

C
on

fin
em

en
t l

os
s 

In this 

research 

work 

Square, hexagonal 

and octagonal PCFs 

with different 

number of air hole 

rings and air hole 

diameter. 

 

Confinement loss increases with 

the increase of stress and this 

change is very sharp for longer 

wavelength. It is always higher for 

hexagonal PCFs than square and 

octagonal. PCFs with larger air 

hole diameter and higher number 

of air hole rings show lower 

confinement loss.  

With pitch 2.5 µm air 

hole diameter 1.4µm and 

number of air hole rings 

4, square, hexagonal and 

octagonal PCFs with 

external stress 2GPa 

show confinement loss of 

order of 10-7, 10-5 and 

10-12 respectively.   

 

 As far we know external effects on effective area and material dispersion has not been 

explore for PCFs. In our research work we have also observed these two properties for 

stressed and unstressed PCFs. 
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Table  5.4 Comparison in Brief. 

Ref. Design of PCF Properties Numerical Data 

Zhu et al. 

(2003) [27]  

Hexagonal PCFs by 

varying air hole diameter. 

Birefringence 

Increases with the increase 

of stress 

At 2GPa external stress it 

shows order of 10-4 

birefringence. 

Alam et al. 

(2004) [29]  

 

 

Hexagonal PCFs with 

both symmetric and 

asymmetric air holes. 

Birefringence 

Increases with the increase 

of stress 

At 2GPa when d = 5µm, the 

birefringence is about 16 

times larger than that of d = 

3µm and the value is order 

of 10-5. 

Tian et al. 

(2008) [31]  

Hexagonal PCFs with 

fixed pitch and the air 

hole diameter.  

Birefringence 

Increases with the increase 

of stress 

At 2GPa external stress 

induced birefringence 

reaches to order of 10-3.  

In our research 

work 

Square 

Hexagonal, 

Octagonal, 

Nr=1, 2, 3 and 4, 

d=0.8 t0 2.0µm 

Variation of birefringence 

with different design 

parameters.  

Change of birefringence 

with the application of 

stress. 

At external stress 2GPa, 

hexagonal, octagonal and 

square PCFs show 

birefringence of order of 10-

4, 10-5 and 10-6 

respectively.  

 

 

5.8 FABRICATION CHALLENGES OF PCFS 

 

The main fabrication problems are presence of deformed air holes, emergence of additional holes, 

and perturbations of the structure's symmetry. Only small amounts of dust on the glass surface can 

result in a significant increase in fiber attenuation as well as lead to fiber breaks during fabrication or 

subsequent rewinding. PCFs therefore need to be fabricated under strict clean room conditions. 
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Chapter 6 
 

CONCLUSION  
   

6.1 CONCLUSION OF THIS WORK 

 

In this research work, analysis has been carried out to observe the effect of uniform thermal and 
external stress on propagation properties of square, hexagonal and octagonal air hole arranged PCFs. 
We have considered here both stressed and unstressed PCFs to understand the effect of stress on the 
propagation properties like− effective index, birefringence, confinement loss, effective area and 
dispersion. The COMSOL Multiphysics FEMLAB modeling has been used as simulation tool, where 
a combination of structural mechanics module and electromagnetic module has been used to carry 
out the stress analysis and optical mode analysis of the PCFs respectively. At first uniform external 
stress has been applied on fiber boundary from all direction and stress analysis has been carried out 
to find out the stress induced changes of fiber materials properties due to stress-optical effect. Then 
mode analysis with FEM has been made on the cross-section of a fiber in the x-y plane to find out 
the effect of external stress on propagation properties of PCFs.  

 

From analysis and experiment we have found that AFF of square PCF smaller than AFF of 
hexagonal PCF smaller than AFF of octagonal PCF. Again total amount of air in fiber cross section 
is 33% greater for octagonal PCF than square and hexagonal PCFs, where all design parameters are 
considered same. Fiber propagation properties can vary with the change of AFF and total amount of 
air in the fiber cross section. Again with the application of external stress fiber deformation takes 
place and amount of deformation is not same for all PCFs. It varies depending on AFF, total amount 
of air and circular symmetry in fiber cross section. Fiber deformation and stress distribution in fiber 
cross section both causes change in fiber propagation properties.   
 

It is further observed that effective index of octagonal PCFs is less than both square and hexagonal 
PCFs with higher number of air hole rings show lower effective index. Effective index decreases 
with the increase of air hole diameter. With the increase of external stress effective index increases 
for all types of PCFs but this change is comparatively more for square and hexagonal PCFs than 
octagonal and stress induced change is higher for the PCFs with larger air hole diameter.  
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With the increase of external stress birefringence increases almost linearly for hexagonal PCFs and it 
is always higher than square and octagonal PCFs. Again the change of birefringence properties due 
to external stress effect is more for octagonal PCFs than square.  
 

Confinement loss for hexagonal PCFs is higher than square and octagonal PCFs and it increases with 
the increase of stress. PCFs with lower number of air hole rings, show very high confinement loss. 
For this case stress induced changes also higher. It is also found that PCFs with larger air hole 
diameter show low confinement loss than smaller.  
 
Effective area increases with the increases of wavelength but this change is very small. Again it is 
always higher for hexagonal PCFs than square and octagonal. As well as 5GPa external stress 
induces comparatively higher effective area with shorter wavelength than longer for all types of 
PCFs. 
 
We also found that dispersion for octagonal PCF is higher than hexagonal and square. Furthermore 
hexagonal PCF shows higher dispersion than square. With 5GPa external stress all types of PCFs 
show higher dispersion than 0GPa and this change is greater for octagonal than other PCFs. 
 
There are many applications of PCFs. Depending on the type of application specific properties of 
PCFs get importance. Such as for PMF and sensor high birefringence fibers are suitable. Again a 
fiber with very low birefringence, confinement loss and dispersion is applicable for under water and 
under communication system. PCFs with large effective area are used as optical amplifier and so on. 
Large design flexibility of PCF allows controlling its novel properties. In this research work we have 
explored external stress effect on these properties. Our finding will help to find the appropriate 
designing of PCF for some of particular application.     
 
 
6.2 RECOMMENDATION FOR FUTURE WORKS  
 

In this research work we have carried out our research to find out the effect of uniform stress and 
thermal effects on different PCFs. Further external stress effect on other novel PCFs should be 
observed to identify their properties for both stressed and unstressed conditions. So future research 
work related to our work can be done as in the following direction. 
 

1. External stress effect on other standard PCFs (with other designs) should be done to 
understand their performance under external stress and thermal effect. 
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2. It is also important to observe the effect of non uniform stress on PCFs propagation 
properties under ground and communication system. 

 
3. External stress induced changes are not same in both x and y coordinates. That causes 

different polarized propagation properties, which play significant role to characterize the 
PCFs. New research can be done to find out the effects for different coordinates.   

 
4. Amount of deformation as well as stability of PCFs structure and related changes of 

propagation properties under external stress can be find out though further research work. 
 

5. It is also important to know the permanence and durability of stress induced fiber 
deformation (strain) after removal of stress.     

 
6. Theoretical analysis and formulation can be done to establish the relationship between 

external stress, fiber deformation and change of propagation properties. 
 
In summary, effect of stress may have positive or negative effect on PCFs performance depending 
on its application in practical field. So, further research works should be carried out to find out the 
roles of stress on PCFs by using different design and analysis methods.    
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