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ABSTRACT 

 

With increased channel capacity, launched optical powers, bit rates and number of 

wavelength channels, the cross phase modulation (XPM) has become the most 

important nonlinear effect and limits system performance. On the other hand, group 

velocity dispersion (GVD) is one of the linear effects in the optical fiber that also 

restricts bit rates. In high bit rate and first order GVD compensated system, the effect 

of second order GVD become significant and also play a critical role in limiting the 

system performance. As a result the combined effects of XPM with first- and second 

order GVD cause further deterioration of transmission performance in a WDM 

system. 

 

 In this research work, analysis has been carried out to find expressions of pulse 

broadening factor as well as normalized output by solving the nonlinear Schrodinger 

equation (NLSE) analytically, considering the effect of XPM with first- and second 

order GVD. The results are evaluated at various data rates, different input powers as a 

function of transmission distance using standard single mode fiber (SSMF) and large 

effective area fiber (LEAF). The pulse broadening is strongly dependent on the effects 

of XPM with first- and second order GVD. Though at shorter distance and low bit 

rates the effect of second order GVD is not noticeable but as the bit rate increases its 

effect becomes significant and impacts the system performance. It is observed that the 

data rate and fiber length have higher impact on pulse broadening than the input 

power. The results are computed for SSMF and LEAF using analytical derivation and 

numerical simulation done through split step Fourier method with same data rate and 

input power.  It is found that the effects of XPM with first- and second orders GVD is 

more effective in SSMF fiber than that of LEAF fiber. Thus the findings of this work 

can predict the amount of performance degradation due to the effects of XPM with 

first- and second order GVD and may be helpful to design high speed long haul 

WDM fiber-optic transmission link. 

 

 

 

 



CHAPTER 1 

INTRODUCTION 

 

1.1 Optical Fiber Communication 

Communication means the exchange of information which may be voice, video or 

data. So, a communication system transmits information from one place to another 

place. Optical fiber communication is a communication system that employs optical 

fibers for information transmission. Such systems have been deployed worldwide 

since 1980 [1].  

 

Twenty first century is the era of information technology (IT). IT has achieved an 

exponential growth through the modern telecommunication systems. Particularly, 

optical fiber communication plays a vital role in the development of high quality and 

high-speed telecommunication systems. Today, optical fibers are not only used in 

telecommunication links but also used in the Internet and local area networks (LAN) 

to achieve high signaling rates [2].  

 

Optical transmission is a preferred medium for long distance, high bandwidth 

communication system running at speeds in the range of gigabit per second or higher. 

The important impairments in optical fiber are attenuation, dispersion and 

nonlinearities. Initially in 1966 optical fiber had extremely high loss which exceeded 

1000 dB/km. In the third generation 1.55-μm wavelength region the attenuation in the 

single-mode fiber become lowest (0.2 dB/km) [3].  

 

The impairment that limits a fiber’s bandwidth is known as dispersion. Dispersion is 

the spreading of the optical pulses as they travel down the fiber. In late 1990s 

wavelength division multiplexing (WDM) systems have been widely deployed as a 

solution for higher bit rate transmission. Wavelength division multiplexing (WDM) 

solves dispersion problems by keeping the transmission rates of each channel at 

reasonably low levels (e.g. 10Gbps) and achieving a high total data rate by combining 

several channels together [4].  
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Light from lasers and LEDs is not highly monochromatic. It consists of some 

harmonics near the fundamental frequency.  The different spectral components of the 

optical pulse travel at slightly different group velocities that lead to dispersion called 

group velocity dispersion (GVD).  As the pulses spread or broaden due to GVD, they 

tend to overlap and are no longer distinguishable by the receiver as 0s and 1s. As a 

result errors and loss of information occur. The GVD includes first order group 

velocity dispersion, higher order group velocity dispersion. 

 

The first order GVD is one of the most relevant factors that limit transmission length 

in high rate optical communication systems. It is possible to cancel first-order GVD 

using dispersion compensation fibers or fiber Gratings.  As the transmission speed is 

increased, the influence of higher-order (second-order) dispersion is greater. The 

second order GVD is determinant on the pulse shape, pulse amplitude, pulse 

broadening and consequently in inter-symbol interference [5].  

 

 In long distance transmission links above 100 km including analog signals over 

optical fibers, high transmission powers are involved which give rise to nonlinear 

effects such as self-phase modulation (SPM) in a single channel system and cross 

phase modulation (XPM) between channels in a WDM system and can be highly 

detrimental in the presence of dispersion. These nonlinear effects limit performance in 

both digital and analog fiber optic communication systems [6]. 

 

The process towards ever increasing speeds in fiber encounters an obstacle in the 

form of the group velocity dispersion (GVD) in the optical fiber that restricts bit rates.  

 

On the other hand, with increased channel capacity, launched optical powers, bit rates 

and number of wavelength channels in WDM system, the XPM has become the most 

important nonlinear effect and limits system performance [7].  

 

As a result, the combined effects of XPM and GVD may cause further deterioration of 

transmission performance in a WDM system. Thus, it is essential to study the impact 

of XPM and GVD on the propagating pulse to predict the performance limitation or 

system outage accurately due to these effects in the WDM transmission system.  
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1.2 Related Research Works 

Over the years, lot of research works has been carried out to study the harmful impact 

of fiber linearity and nonlinearity on optical transmission system. The XPM is the 

most important effect among the different types of fiber nonlinearities that limits 

system performance. On the other hand, GVD is one of the linear effects that restrict 

bit rates.  In the following section, we are describing some of the research works those 

are carried out to evaluate the impact of XPM and GVD in WDM optical transmission 

system. 

 

Miyagi M. et al. (1979) investigated the Pulse spreading in a single-mode optical fiber 

due to the second order GVD term of the waveguide when an optical source with a 

finite spectral width is modulated by a Gaussian-shaped pulse [8].  

 

Hui et al. (1998) evaluated spectral characteristics of XPM in multi-span WDM 

systems both experimentally and theoretically in terms of crosstalk [9]. They found 

that the crosstalk level is dependent on optical channel spacing and fiber dispersion.  

 

Majumder et al. (1998) evaluated the impact of GVD on the performance in a WDM 

optical network in terms of BER by analytically [10]. They have shown that the 

performance of the system highly degrades in presence of fiber dispersion and 

presence of dispersion imposes several restrictions on the number of nodes and the 

node spacing. 

 

Hoon (2003) investigated, theoretically and experimentally the SPM and XPM 

induced phase noise in a DPSK system [11]. It is reported that the XPM induced 

phase noise becomes as large as SPM induced phase noise in a NZDSF link for 

channel spacing less than 100GHz.  BER degradation is also observed for two channel 

systems as compared to a single channel system. 

 

Sandra et al. (2003) investigated the performance for an uncharged and non-magnetic 

dielectric optical fiber due to higher order dispersion in terms of the pulse broadening 

by solving wave equation [12]. 
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Lijun et al. (2005) investigated the effect of third-order dispersion on pulsating, 

erupting and creeping solitons [13]. It is shown that the effect of third-order 

dispersion will cause asymmetric pulse and lead to the appearance of oscillation on 

the trailing edge of the pulse for the positive third order dispersion. It is found that 

even small third-order dispersion can dramatically alter the behavior of these solitons. 

 

Abdul-Rashid et al. (2006) investigated the performance in WDM Passive optical 

networks in the presence of XPM and GVD both experimentally and theoretically 

[14]. A general expression for electrical average noise power and electrical crosstalk 

level due to XPM and GVD was derived to measure the system performance for N 

number of WDM channels. Using the expression, they have shown that XPM and 

GVD causes crosstalk in the system and imposes a power penalty as the number of 

WDM channels increases for a given channel spacing and modulating frequency. 

 

Sakib et al. (2006) evaluated theoretically the impact of XPM on the performance of a 

2-channel WDM optical transmission system with short-period dispersion-managed 

fiber (SPDMF) in terms of BER [15]. The computed results show that the BER 

performance can be improved considerably by using an SPDMF. 

 

Yasim et al. (2007) theoretically studied the effect of XPM induced crosstalk in 

WDM networks on received power and number of channels for various fiber types 

[16]. System performance is evaluated through determining the cumulative XPM 

induced crosstalk relation with both of the received power and number of channels. 

 

Shaari et al. (2008) theoretically studied the effect of XPM crosstalk in WDM 

networks on received power and number of channels for various fiber types [17]. 

Analytical approach has been used to evaluate BER performance limitation of a 

WDM transmission system imposed by crosstalk due to XPM and the influence of 

changing channel spacing for various fiber types on the BER. Numerical results 

demonstrated the validity of their analysis and theoretical expressions have an insight 

into nonlinear effect under investigation. 
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Bijoy et al. (2009) carried out an analysis to find an expression for pulse broadening 

factor by solving nonlinear Schrodinger equation (NLSE) considering the effects of 

SPM and CD in [18]. 

 

Khayer et al. (2010) investigated the impact of XPM on fiber-optic communication 

systems in presence of first- and second order GVD. They analyzed the system 

performance in terms of crosstalk [19].  

 

Bavithra et al. (2013) analyzed theoretically and experimentally that the anomalous 

group velocity as well as polarization mode dispersion has been effectively 

suppressed through optical nonlinearity in dense WDM [20]. 

 

 Taopin Hu et al. (2013) investigated the modulation instability induced by XPM in 

dispersion decreasing fiber, whose dispersion decreases along the direction of 

propagation [21]. It is solved and analyzed by the perturbation method for the 

extended nonlinear Schrödinger equation, considering the higher order dispersion.  

 

From the above discussion and literature review, we observed that most of the 

research works evaluated the impact of nonlinearity XPM without or with the 

presence of first order GVD in terms of BER, crosstalk, eye diagram.  But at high bit 

rate and long haul system, the second order GVD may have destructive effect on 

optical transmission system.  Only one work is reported about the impact of XPM 

considering the presence of first- and second order GVD together in a WDM system 

in terms of cross talk. Thus, it is essential to study and develop the impact of XPM 

with first- and second order GVD on the performance in WDM system in terms of 

pulse broadening factor analytically and numerically.                                                                                     

  

1.3 Motivation 

With increasing the transmission rates, launched optical powers and link lengths of 

the WDM optical communication systems, the impact of nonlinear effects and 

dispersion on the propagating pulses increases. The nonlinear XPM effect with higher 

order dispersion decreases the system performance to a great extent. So, it is 

necessary to analyze and optimize the XPM effect with higher order dispersion, which 

is the main motivation of this thesis work. 
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Other aspects that have motivated us to analyze the effect of XPM with first- and 

second order GVD are as follows 

 

a) In WDM, the frequency dependence of refractive index leads to an important 

nonlinear phenomenon known as XPM. When two or more optical pulses 

propagate simultaneously, the XPM is always accompanied by SPM and 

occurs because the nonlinear refractive index seen by an optical beam depends 

not only on the intensity of that beam but also on the intensity of other co 

propagating beams. The results of XPM are asymmetric spectral broadening 

and broadening of pulse shape. The nonlinear XPM effect limits the allowable 

input optical power, data rate and system capacity 

 

b) The frequency dependence of the group velocity leads to pulse broadening 

simply because different spectral components of the pulse do not arrive 

simultaneously at the fiber output. At relative high bit rate and long distance, 

first order GVD limits the transmission distance and in a first order GVD 

compensated fiber system, second order GVD further deteriorates the 

performance at high bit rate. 

 

The combination of XPM and dispersion affects the waveform and spectrum of each 

optical pulse during transmission and leads to both temporal and spectral changes of 

pulses. So it is important to analyze the influence of XPM with first- and second order 

dispersion on the propagating pulse for high speed transmission systems. 

 

1.4 Objectives with specific aims and possible outcome 

The goal of this research is to analysis the XPM with first- and second order GVD in 

WDM fiber optic transmission system. To meet the goal, the following objectives 

have been identified: 

 

a) To derive the mathematical expressions for output pulse and pulse 

broadening factor from nonlinear Schrodinger equation (NLSE) 

considering the effects XPM with first- and second order GVD separately. 
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b) To analyze the effects of bit rates, input power and transmission distance 

on output pulse and pulse broadening using analytical derivation. 

 

c) To simulate the NLSE using split-step Fourier method for finding the 

output pulse as well as pulse broadening factor considering XPM with 

first- and second order GVD separately. 

 

d) To compare the analytical findings with numerical results in order to find 

the validity of the analytical expression. 

 

Outcome 

The findings of this research work will be helpful to design high speed long haul 

WDM fiber-optic link. 

 

1.5 Outline of the Thesis 

This thesis consists of five chapters. Brief description of its different chapter is as 

follows. 

 

Chapter 1 introduces optical fiber communication. Related researches regarding an 

elaborate record of previous works on the effect of XPM and GVD in WDM fiber 

optic communication system is described. Motivation, objective with specific aims 

and possible outcome are presented in this chapter. 

 

Chapter 2 describes various types of optical fiber and loss impairments in the fiber 

optic communication system.  An insight on the fiber nonlinearity and GVD effect in 

WDM fiber optic transmission system is provided in this chapter. Emphasis was put 

on XPM and GVD. 

 

Chapter 3 shows the analytical and numerical derivation of normalized output as well 

as pulse broadening factor due to the effects of XPM with first- and second order 

GVD.  
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Chapter 4 provides results of the analytical derivation and numerical simulation.  The 

variations of results are observed considering different values of data rates and input 

powers for SSMF and LEAF. 

 

Chapter 5 concludes the thesis work and also discusses further scope of future 

research. 
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CHAPTER 2 

OPTICAL FIBER COMMUNICATION AND ITS 

VARIOUS IMPAIRMENTS 

 

This chapter introduces the various types of optical fiber and their impairments of an 

optical fiber communication system. These physical phenomena are briefly 

summarized here in order to provide the reader with the necessary background 

knowledge and to set the formalisms and notations that will consistently be used 

throughout this thesis. 

 

2.1 Introduction 

Optical fiber is basically a solid glass rod. The diameter of rod is so small that it looks 

like a fiber. Optical fiber is a dielectric waveguide. The light travels like an 

electromagnetic wave inside the waveguide. The dielectric waveguide is different 

from a metallic waveguide which is used at microwave and millimeter wave 

frequencies. In a metallic waveguide, there is a complete shielding of electromagnetic 

radiation but in an optical fiber the electromagnetic radiation is not just confined 

inside the fiber but also extends outside the fiber. The light gets guided inside the 

structure, through the basic phenomenon of total internal reflection [22]. The optical 

fiber consists of two concentric cylinders; the inside solid cylinder is called the core 

and the surrounding shell is called the cladding.  

 

For the light to propagate inside the fiber through total internal reflections at core-

cladding interface, the refractive index  1n  of the core must be greater than the 

refractive index  2n of the cladding. That is 21 nn  . For extra protection, the cladding 

is enclosed in an additional layer called the coating or buffer. The coating or buffer is 

a layer of material used to protect an optical fiber from physical damage. The material 

used for a buffer is a type of plastic.  

 

2.2 Light Propagation through Optical fiber 

When light wave enters at one end of a fiber in proper conditions, most of it is 

propagated down the length of the fiber and comes out from the other end of the fiber. 
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Simple Ray Model 

A light ray is launched in a plane containing the axis of the fiber.  We can then see the 

light ray after total internal reflection travels in the same plane i.e., the ray is confined 

to the plane in which it was launched and never leave the plane. In this situation the 

rays will always cross the axis of the fiber [22]. These are called the meridional rays 

and depicted in Fig. 2.1. 

 
                                                                          

            

 

 

 

 

 

 

Fig. 2.1: Optical fiber with core, cladding and total internally reflected ray 
 

 

2.3 Types of fibers 

Fibers can be classified according to its core material composition. If the refractive 

index of the core is uniform and changes abruptly at the cladding boundary, then it is 

called as step-index fiber. If the refractive index changes at each radial distance, then 

it is called as graded-index fiber.  

 

These fibers can be divided into single mode and multimode fibers. Single mode 

fibers operate in only one mode of propagation. Multimode fibers can support 

hundreds of modes. Both laser diodes and light emitting diodes (LED) can be used as 

light wave sources in fiber-optical communication systems. When compared to laser 

diodes, LEDs are less expensive, less complex and have a longer lifetime, however, 

their optical powers are typically small and spectral linewidths are much wider than 

that of laser diodes. In multimode fibers different modes travel in different speed, 

which is commonly referred to as intermodal dispersion, giving room to pulse 

spreading. In signle mode fibers, different signal frequency components travel in 

different speed within the fundamental mode and this result in chromatic dispersion. 

Since the effect of chromatic dispersion is proportional the spectral linewidth of the 

source, laser diodes are often used in high-speed optical systems because of their 

narrow spectral linewidth [23]. 

n1  Core 

n2  Cladding 
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2.4 Impairments of Optical Fiber Communication 

The physical impairments of optical fiber transmission can be categorized into two 

main parts irrespective of modulation/detection schemes: linear and nonlinear. Linear 

barriers include fiber loss and dispersion, nonlinear parts comprises nonlinear 

refractive index effects and inelastic scattering effects [24]. 

 

2.4.1 Losses in Fiber Optics 

Attenuation is the decrease in optical power, which is measured in decibels (dB). 

Optical beam power traveling along the fiber decreases exponentially with distance. 

The mechanisms of attenuation may be classified into the following groups: 

 

2.4.1.1 Bending Loss 

The loss which exists when an optical fiber undergoes bending is called bending 

losses. There are two types of bending. 

 

i) Macroscopic bending 

Bending in which complete fiber undergoes bends which causes certain modes not to 

be reflected and therefore causes loss to the cladding. Fig. 2.3 illustrates the power 

loss due to macroscopic bending. 

 

 

Fig. 2.2: Macroscopic bending  

ii) Microscopic Bending 

Either the core or cladding undergoes slight bends at its surface. It causes light to be 

reflected at angles when there is no further reflection. Microscopic bending loss is 

illustrated in Fig. 2.3. 
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Fig. 2.3: Microscopic bending  

2.4.1.2 Scattering 

It occurs due to microscopic variations in the material density, compositional 

fluctuations, structural in homogeneities and manufacturing defects. 

 

i. Linear Scattering 

In this case the incoming signal gets scattering when it is obstructed by impurities. 

The scattered light frequency is same as the incoming frequency and power loss 

occurs due to this effect 

 

a) Rayleigh Scattering Losses 

These losses are due to microscopic variation in the material of the fiber. Unequal 

distribution of molecular densities or atomic densities leads to Rayleigh scattering 

losses. Glass is made up of several acids like SiO2, P2O5 etc. compositions, 

fluctuations can occur because of these several oxides which rise to Rayleigh 

scattering losses. The Raleigh scattering effect is  illustrated in Fig. 2.4. 

 

 

 

 

 

 

Fig. 2.4: Illustration of Rayleigh scattering effect. 

b) Mie Scattering Losses 

These losses results from the compositional fluctuations and structural 

inhomogenerics as well as defects created during fiber fabrications, causes the light to 

scatter outside the fiber. 

Cladding 

Shedding of power 

Core 
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c) Waveguide Scattering Losses 

 It is a result of variation in the core diameter, imperfections of the core cladding 

interface, change in refractive index of either core or cladding. 

 

ii. Nonlinear Scattering 

In this case, a new frequency is generated which is called stokes wave. The new 

frequency may be back propagated or forward depending on its nature. There are two 

types of nonlinear scattering; these are: 

 

a) Stimulated Brillouin Scattering 

b) Stimulated Raman Scattering 

 

2.4.1.3 Absorption 

Absorption of light energy due to heating of ion impurities results in dimming of light 

at the end of the fiber.  

Two types of absorptions are usually present: 

 

Intrinsic Absorption: 

It is caused by the interaction with one or more components of the glass. It occurs 

when photon interacts with an electron in the valence band and excites it to a higher 

energy level near the ultra violet (UV) region. 

 

Extrinsic Absorption: 

It is also called impurity absorption. It results from the presence of transition metal 

ions like iron, chromium, cobalt, copper and from OH ions i.e., from water. 

  

So, one important fiber parameter is a measure of power loss during transmission of 

optical signals inside the fiber. If Po is the power launched at the input of a fiber of 

length L, the transmitted power PT is given by, 

 

                                                      )exp( LPP oT                                                      (2.1) 

where α is the attenuation constant, commonly referred to as the fiber loss. It is 

customary to express the fiber loss in units of dB/km by using the relation   
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The fiber loss depends on the wavelength of light. The fiber exhibits a minimum loss 

of about 0.βdB/km near 1.55 ȝm. The loss is considerably higher at shorter 

wavelengths [25]. Fig. 2.5 illustrates the attenuation in silica optical fiber. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5: Spectral attenuation of a silica optical fiber. 

 

2.4.2 Dispersion in Single-Mode Fibers 

Dispersion is the spreading of light pulse in time as its travels down the length of an 

optical fiber. Dispersion limits the bandwidth or information carrying capacity of a 

fiber [26]. It results short pulses broaden, which leads to significant inter-symbol 

interference (ISI). Therefore severely degrades the performance. Fig. 2.6 shows the 

pulse broadening of input pulse due to the dispersive effect of the fiber. 
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Fig. 2.6: Pulse Spreading Due to Fiber Dispersion 

Fiber Dispersion is categorized in two ways: 

a) Intermodal/Modal dispersion 

b) Intramodal/Chromatic dispersion  

 Waveguide dispersion (optical)  

 Material dispersion  

 

a) Intermodal /Modal Dispersion 

In multimode fiber, different modes travel at different velocities. If a pulse is 

constituted from different modes then intermodal dispersion occurs. Modal dispersion 

is greatest in multimode step index fiber. 

 

b) Intramodal/Chromatic Dispersion 

In single mode fiber intramodal dispersion occurs because different colors of light 

travel through different materials and different waveguide structures at different 

speeds. 

 

Waveguide dispersion 

Waveguide dispersion occurs because the mode propagation constant is a function of 

the size of the fiber's core relative to the wavelength of operation. Waveguide 

dispersion also occurs because light propagates differently in the core than in the 

cladding.  

 

Material dispersion  

Material dispersion occurs because the spreading of a light pulse is dependent on the 

wavelengths' interaction with the refractive index of the fiber core. Different 
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wavelengths travel at different speeds in the fiber material. Different wavelengths of a 

light pulse that enter a fiber at one time exit the fiber at different times. Material 

dispersion is a function of the source spectral width. The spectral width specifies the 

range of wavelengths that can propagate in the fiber. Material dispersion is less at 

longer wavelengths. 

 

2.4.2.1 Group Velocity Dispersion (GVD) 

The main advantage of single mode fibers is that intermodal dispersion is absent 

simply because the energy of the injected pulse is transported by a single mode. But 

the group velocity associated with the fundamental mode is frequency dependent 

because of chromatic dispersion. As a result, different spectral components of the 

pulse travel at slightly different group velocities, a phenomenon referred to as group-

velocity dispersion (GVD). GVD plays a critical role in propagation of short optical 

pulses since different spectral components associated with the pulse travel at different 

speeds given by
)(n

c
. Mathematically, the effect of fiber dispersion is accounted for 

by expanding the mode-propagation constant ȕ in a Taylor series about the center 

frequency ωo. 
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where, 


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is the first order dispersion 1 , 2
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is the first order GVD 2 , 
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 is the 

second order GVD 3 . Thus the other terms are higher order dispersions. So the 

Taylor series can be expressed as, 
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2.4.2.1.1 First order group velocity dispersion 

When optical pulses propagating in a linear dispersive medium GVD changes the 

phase of each spectral component of the pulse by an amount that depends, on both the 
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frequency and the propagated distance. For first order GVD the frequency changes 

linearly across the pulse, i.e., a fiber imposes linear frequency chirp on the pulse. 

 

Normal Dispersion regime (β 2 >0 or D<0) 

 In this regime longer wavelengths travel faster than the smaller wavelengths or red 

light travel faster than the blue light. On the other hand, we can say law frequency 

component travel faster than high frequency components. In this regime, the nonlinear 

dispersion is magnified by chromatic dispersion. 

 

Anomalous Dispersion regime (β 2 <0 or D>0) 

The opposite occurs in this regime. Dispersion-induced pulse broadening occurs at 

different frequency components of a pulse travel at slightly different speeds along the 

fiber because of GVD. More specifically, red components travel faster than blue 

components in the normal-dispersion regime (ȕ 2 >0), while the opposite occurs in the 

anomalous-dispersion regime (ȕ2 <0). The pulse can maintain its width only if all 

spectral components arrive together. Any time delay in the arrival of different spectral 

components leads to pulse broadening. 

 

2.4.2.1.1 Second order group velocity dispersion  

Although the contribution of first order GVD (β2) term dominates in most cases of 

practical interest, it is sometimes necessary to include the third-order term 

proportional to β3 in this expansion. For example, if the pulse wavelength nearly 

coincides with the zero-dispersion wavelength ȜD, β2 ≈ 0; the β3 term then provides 

the dominant contribution to the GVD effects [27]. For ultra short pulses (width T0 < 

1ps), it is necessary to include the β3 term even when ȕ 2 ≠ 0. 

 

2.4.3 Fiber Nonlinearity 

The term linear and nonlinear, in optics, mean intensity-independent and intensity-

dependent phenomena respectively. The linear and nonlinear effects are illustrated in 

Fig. 2.7. 
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Fig. 2.7: Linear and nonlinear interactions. 

 

When the optical communication systems operated at higher bit rates such as 10Gbps 

and above and/or at higher transmitter powers, it is important to consider the effects 

of nonlinearities. In the case of WDM systems, nonlinear effects can become 

important even at moderate powers and bit rates.  

 

The nonlinearities in optical fibers fall into two categories. One is optical Kerr effect 

and the other is stimulated scattering. The classification of fiber nonlinearity is shown 

as tree form in Fig. 2.8. 

 

 

Fig. 2.8: Nonlinear effects in optical fibers. 
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The power dependence of the refractive index is responsible for the Kerr-effect. 

Depending upon the type of input signal, the Kerr-nonlinearity manifests itself in 

three different effects such as self-phase modulation (SPM), cross-phase modulation 

(XPM) and four-wave mixing (FWM). Stimulated scattering depends on the threshold 

power. If the power carried by the fiber exceed threshold, the stimulated scattering 

effects become effective. There are two types of stimulated scattering such as 

stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS). 

 

Except for SPM and XPM, all nonlinear effects provide gains to some channel at the 

expense of depleting power from other channels. SPM and XPM affect only the phase 

of signals and can cause spectral broadening, which leads to increased dispersion.  

 

2.4.3.1 Self Phase Modulation (SPM) 

Phase modulation of an optical signal by itself is known as SPM. The nonlinear phase 

shift of the optical carrier signal change with respect to time because pulse intensity 

(power) changes over time. Generally, SPM occurs in single-wavelength systems. At 

high bit rates however, SPM tends to cancel dispersion. SPM increases with high 

signal power levels. In fiber plant design, a strong input signal helps overcome linear 

attenuation and dispersion losses. However, consideration must be given to receiver 

saturation and to nonlinear effects such as SPM, which occurs with high signal levels. 

SPM results in phase shift and a nonlinear pulse spread. As the pulses spread, they 

tend to overlap and are no longer distinguishable by the receiver. The damaging effect 

due to SPM depends on power transmitted, the length of the link and bit rate.  

 

2.4.3.2 Cross Phase Modulation (XPM) 

SPM is the major nonlinear limitation in a single channel system. In WDM fiber optic 

transmission the intensity dependence of refractive index leads to a nonlinear 

phenomenon known as XPM. When two or more optical pulses propagate 

simultaneously, the cross-phase modulation is always accompanied by SPM and 

occurs because the nonlinear refractive index seen by an optical beam depends not 

only on the intensity of that beam but also on the intensity of the other co-propagating 

beams [28]. In fact XPM converts power fluctuations in a particular wavelength 

channel to phase fluctuations in other co-propagating channels.  
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In a multi-channel system, the nonlinear phase shift of the signal at the center 

wavelength i is described by,    
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where 2n is the nonlinear refractive index, zn2  is known as optical path length, I  is the 

intensity of light and M is the number of co-propagating channels in the fiber.  The factor 

2 in above equation has its origin in the form of nonlinear susceptibility and indicates 

that XPM is twice as effective as SPM for the same amount of power. The first term 

in above equation represents the contribution of SPM and second term that of XPM. It 

can be observed that XPM is effective only when the interacting signals superimpose 

in time. XPM hinders the system performance through the same mechanism as SPM: 

chirping frequency and GVD, but XPM can damage the system performance even 

more than SPM. XPM influences the system severely when number of channels is 

large. The result of XPM may be asymmetric spectral broadening and distortion of the 

pulse shape. 

. 

When pulses in each channel travel at different group velocities due to dispersion, the 

pulses slide past each other while propagating. Fig. 2.9 illustrates how two isolated 

pulses in different channels collide with each other.  

 

 

 

 

 

 

 

 

 

Fig. 2.9: Illustration of Cross Phase Modulation 
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When the faster traveling pulse has completely walked through the slower traveling 

pulse, the XPM effect becomes negligible. The relative transmission distance for two 

pulses in different channels to collide with each other is called walk-off distance, wL  
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where oT  is the pulse width, gv  is the group velocity, and 1  , 2  are the center 

wavelength of the two channels. D is the dispersion coefficient and 21   . 

 

When dispersion is significant, the walk-off distance is relatively short and the 

interaction between the pulses will not be significant, which leads to a reduced effect 

of XPM. However, the spectrum broadened due to XPM will induce more significant 

distortion of temporal shape of the pulse when large dispersion is present, which 

makes the effect of dispersion on XPM complicated. XPM can be mitigated by 

carefully selecting unequal bit rates for adjacent WDM channels. XPM in particular, 

is severe in long-haul WDM networks and the acceptable norm in system design to 

counter XPM effect is to take into account a power penalty that can be assumed equal 

to the negative effect posed by XPM. However, XPM is effective only when pulses in 

the other channels are synchronized with the signal of interest 

 

2.4.3.3 Four Wave Mixing (FWM) 

FWM is a nonlinear interaction that occurs in the presence of multiple wavelengths in 

a medium, leading to the generation of new frequencies. Thus if light waves at three 

different frequencies 2 , 3 and 4 are launched simultaneously into a medium, the 

same nonlinear polarization that led to a intensity dependence refractive index, leads 

to nonlinear polarization component at a frequency 

 

                                                  2431                                                      (2.7) 

 

This nonlinear polarization, under certain conditions, leads to the generation of 

electromagnetic waves at 1 . This process is referred to as four wave mixing due to 
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the interaction between four different frequencies. In a WDM system carrying 

multiple channels, FWM can cause severe cross talk. It is thus necessary that FWM 

effects are minimized in WDM systems.  

 

2.4.3.4 Stimulated Brillouin Scattering (SBS) 

The nonlinear phenomenon which occurs at the lowers power, as low as a few mW in 

the small core of a single mode fiber, is SBS. It occurs when an optical power reaches 

the level that can generate acoustic vibration in a nonlinear medium. The acoustic 

waves generated by the optical power affect the density material and thus change its 

refractive index. This refractive index fluctuation can scatter light, this effect is called 

brillouin scattering. Since the light wave being scattered itself also generates the 

acoustic waves, this process in a fiber called SBS. SBS generates stokes wave whose 

frequency is downshifted from an incident light by the amount set by the nonlinear 

medium.  

 

SBS is strongest when the pulse width is long and the linewidth of the laser source is 

very narrow.  It is typically harmful because it reduces signal strength by directing 

some portion of the light back toward the transmitter, effectively increasing 

attenuation.  

 

2.4.3.5 Stimulated Raman Scattering (SRS) 

When light propagates through a medium, the photons interact with silica molecules 

during propagation. The photons also interact with themselves and cause scattering 

effects, such as SRS, in the forward and reverse directions of propagation along the 

fiber. This results in a sporadic distribution of energy in a random direction. SRS 

refers to lower wavelengths pumping up the amplitude of higher wavelengths, which 

results in the higher wavelengths suppressing signals from the lower wavelengths. 

One way to mitigate the effects of SRS is to lower the input power. 

 

2.5 Wavelength Division Multiplexing (WDM) 

Wavelength division multiplexing is a technique where optical signals with different 

wavelengths are combined, transmitted together, and separated again. It is mostly 

used for optical fiber communications to transmit data in several (or even many) 
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channels with slightly different wavelengths. In this way, the transmission capacities 

of fiber-optic links can be increased strongly, so that most efficient use is made not 

only of the fibers themselves but also of the active components such as fiber 

amplifiers. Apart from telecom, wavelength division multiplexing is also used for, 

e.g., interrogating multiple fiber-optic sensors within a single fiber. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10: Block diagram of WDM optical system. 

 

Block diagram of a WDM optical system is shown in Fig. 2.10. The essential 

components of a WDM system include a tunable laser used at the transmitting side of 

the system to generate the different wavelengths. Wavelength multiplexer and 

demultiplexers are used to combine and separate channels in and out of the fiber 

respectively. A post-amplifier is used to counteract the insertion loss of the 

multiplexer at the transmitter. Similarly, a pre-amplifier is used to increase the 

sensitivity of the receiver. It is also customary to include an in-line amplifier to cater 

for the attenuation of the fiber. As for any other system, it is important that the system 

is transparent. In order to do so, international standard organizations such as (ITU-T) 

define standard wavelength channels for optical systems. A common standard is the 

laser wavelength spacing of 100 GHz between channels. This standard applies to 

systems that use 4, 8, 16 or 32 channels. In order to gain a better understanding of 

WDM systems, one needs to consider the functionality of each component in the 

system. 
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2.5 Large Effective Area Fiber (LEAF) 

LEAF is an optical fiber which is developed by Corning and designed to have a large 

area in the core. A typical refractive index profile of LEAF is shown in the following 

figure. 

 

 

 

 

 

 

 

 

Fig. 2.11: Refractive index profile of LEAF  

 

The core region consists of three parts. In the innermost part, the refractive index has 

a triangular variation. In the annular (middle) part, the refractive index is equal to that 

of the cladding. This is surrounded by the outermost part of the core, which is an 

annular region of higher refractive index. The middle part of the core, being a region 

of lower refractive index, does not confine the power, and thus the power gets 

distributed over a large area. This reduces the peak power in the core and increases 

the effective area of the fiber [33]. 

Effective area of the fiber is defined by 
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where DiameterFieldModeo 2 . The nonlinear characteristic of an optical 

fiber by the coefficient Ȗ is given by 

                                                       

eff
A

nok
2                                                            (2.9) 

where ook  /2  and n2 is the nonlinear refractive index. Thus the effect of 

nonlinearities can be reduced by designing a fiber with a large effective area. 
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2.6 Conclusion 

This chapter briefly gives an overview of optical fiber communication and includes 

signal propagation principles, different types and impairments of optical fiber. 

Dispersion and nonlinearities are the main impairments of optical fiber 

communication. For WDM fiber optic communication system, XPM is the important 

nonlinear impairments that causes interference through intensity-dependent phase 

shifts between two optical fields. At high bit rate XPM always accompanied by first- 

and second order GVD. 

 

The following chapter introduces the theory of fiber optic pulse propagation for XPM 

with GVD and its compressive behavior is studied both analytically and numerically. 
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CHAPTER 3 

THEORETICAL ANALYSIS 

 

This chapter introduces the mathematical formalism of optical pulse propagated 

through a nonlinear dispersive medium.  The pulse broadening factor is used as 

performance metric. The expression of pulse broadening factor due to the effect of 

XPM with first-and second order GVD has been derived by solving nonlinear 

Schrödinger equation (NLSE). 

 

3.1 Introduction 

Optical fiber is a physical transmission medium applied for high speed and long 

distance data communications. With increasing channel capacity, bit rates rates, 

launched optical powers and wavelength channels of the WDM systems, the XPM has 

become the most important nonlinear effect and limits the system performance 

significantly [29]. The XPM produced spectral changes without the significant change 

in the pulse shape.  On the other hand, the GVD is one of the one of the linear effect 

that also restricts bit rates. The first order GVD is one of the most relevant factors that 

limit transmission length in high bit rate optical communication systems. As the 

transmission speed is increased, the influence of higher-order GVD is greater. The 

second-order GVD is an important limiting transmission factor [16]. It is determinant 

on the pulse shape, pulse amplitude, pulse broadening and consequently in inter-

symbol interference [15]. In high bit rate and first-order GVD compensated system, 

the effect of second order GVD become significant and also play a critical role in 

limiting the system performance. The second order GVD affects the waveform and 

spectrum of each optical pulse during transmission and leads to both temporal and 

spectral changes of pulses [30]. As a result, the combined effects of XPM with first- 

and second order GVD cause deterioration of transmission in a WDM system.  

 

In this work, the influence of XPM with first-and second order GVD on the system 

performance is analyzed in terms of pulse broadening factor. The expression of pulse 

broadening factor due to the effect of XPM with first-and second order GVD has been 

derived by solving NLSE analytically. For checking the results of analytical 
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technique, a numerical solution of NLSE are done using split step Fourier method 

(SSFM).  

 

3.2 Nonlinear Schrödinger Equation (NLSE) for Nonlinear Dispersive 

Medium 

The NLSE can describe propagation of electric field of optical pulse in the fiber for 

the case in which the two pulses propagate in the fiber. The first- and second order 

GVD effects can be included by adding second- and third order derivative terms on 

the left hand side on equation respectively. 

 

The NLSE which takes into account both dispersion and nonlinearity can be written 

as [31] 

 

 

                  (3.1) 

 

 

where ),(1 tzA  and ),(2 tzA are the time retarded slowly varying complex amplitude of  

the fields, z is the propagation direction, t is the retarded time, i is the imaginary 

vector, α is the attenuation coefficient,  2  is the first order GVD, 3  is the second 

order GVD, 

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effCA

n 02

1

 is a  nonlinear parameter, 2n is the nonlinear refractive 

index, 0  is the carrier frequency, C is the velocity of light and effA is the effective 

cross section area of fiber. The last two terms on the right hand side of equation (3.1) 

results from the fiber nonlinearity. The first term leads to SPM, while the second term 

is responsible for XPM. The XPM term couples the two pulses. 

 

The equation (3.1) has been solved to derive the equations of pulse broadening factor 

for the effects of XPM with first- and second order GVD in WDM system in the 

following sections.  
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3.3 Pulse Broadening Factor due to the Effects of XPM with First   

Order GVD 

In this section, the expression of pulse broadening factor due to the effects of XPM 

with first order GVD has been derived by solving NLSE as follows. 

  

For an optical pulse width 0T , the walk of length WL  and dispersion length DL and 

fiber length L if LLW   and LLD  , both GVD and XPM play a significant role and 

XPM affect both the pulse shape and the spectrum. Now considering DLL   

LLW  , so neglecting the effect of attenuation constant and dispersion terms, the 

equation (3.1) becomes  

 

                                             (3.2) 

 

 

 

The NLS equation (3.2) has the exact solution 
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where 0z  is the point at which both fields are launched,   )(),0(,0 1011 tftAtA  , 

  )(),0(,0 2022 tftAtA  , 01A  and 02A  represent the  pulse amplitude, )(1 tf and )(2 tf  

represent the  pulse shape, effm LAi
2

0111   ,  effm LAi
2

0212    and 
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z

z
Leff
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is the effective length of fiber and attenuation coefficient. Thus the modulated pulse 

has two contributions. The first term in the equations (3.3) is due to SPM and the 

second term is due to XPM. The contribution of XPM changes along the fiber length 

because of the group velocity mismatch.  Equations (3.2) and (3.3) generalize 

naturally to launching and receiving fields and different locations.  

 

To add the effect of first order GVD on pulse propagation  
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So the field equation in frequency domain at a distance z for the effects of XPM with 

first order GVD can be given by Fourier transform  
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For both fields, Gaussian pulse has been considered as input such that        
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Therefore, the field equation (3.5) becomes 
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Let spectral width,  
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It represents the spectral width of the pulse that encounters the effects of XPM. 

And 
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So, Equation (3.6) can be written      
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the RMS band width of the pulse is given by 
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By using Fourier transform properties, the above frequency domain equation can be 

written in time domain as follows 
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Equation (3.12) becomes 
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Now, to compute the value of  2   in equation (3.13),     tdt
 2  and 
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So the equation (3.13) becomes 
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So, the field equation (3.9) has been solved in frequency domain as 
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The field in the time domain can be obtained by inverse Fourier transform of equation 

(3.20) 
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To simplify the equation (3.23), consider,  
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Thus, equation (3.23) can be written as,   ),().,(,1 tzhtzQtzA                          (3.26) 

 

where  tzQ ,  represents the amplitude of the pulse at distance z and  tzh ,  represents 

the shape of the pulse at distance z, that encounters the effects of XPM and first order 

GVD simultaneously. 

RMS value of pulse width at distance z, 
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Now, to compute the value of RMS value of pulse width at distance z, the following 

calculations have been done. 
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So, equation of RMS value of pulse width at a distance z becomes 
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RMS value of pulse width at z=0, i.e. initial pulse width 
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The equation (3.43) describes the pulse broadening factor for an initial Gaussian pulse 

experience the effects of XPM with SPM and first order GVD simultaneously during 

propagation through a WDM optical fiber transmission system.  
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3.4 Pulse Broadening Factor due to the Effects of XPM with First- 

and Second Order GVD  

To calculate the pulse broadening factor due to the effects of XPM with first- and 

second order GVD, it is necessary to add the first- and second order GVD in the 

propagating field equation. 

                    Now 

 

 

 

 

                                                       (3.44) 

 

Thus the field equation in the time domain for the effect of XPM with first- and 

second order GVD can be expressed using equation (3.20) as follows 
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This integral is so complex to solve. So it tries to simplify as follows 
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Considering ),(1 zF as the Fourier transform of a function denominated ),(1 zf and  

),(2 zF As the Fourier Transform of a function denominated ),(2 tzf , using the 
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This last expression was obtained by Matlab, solving ))(exp( 3jaifourier   
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This integral has to solve numerically.  So, the pulse broadening factor due to the 

effects of XPM with first- and second order GVD has been obtained by solving NLSE 

numerically using the split step Fourier method in Matlab in the following section. 

 

3.5 Split Step Fourier Method (SSFM) for Solving NLSE Numerically 

due to the Effects of XPM with First- and Second Order GVD 

The SSFM is a pseudo-spectral numerical method used to solve the NLSE 

numerically due to the effects of XPM with first- and second order GVD. The key 

idea behind SSFM is to apply the effects of dispersion and fiber nonlinearities 

separately in small partitions of propagation distance such that it approximates the 

actual pulse propagation under the simultaneous influence of the two effects [32]. 

The NLSE is described as 
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where, the linear operator L


accounts for dispersion and absorption in a linear 

medium, and N


is a nonlinear operator that governs the effect of fiber nonlinearities 

on pulse propagation 

The operators are given by 
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When the electric field envelope, ),(1 ztA , has propagated from z to z+Δz, the 

analytical solution of equation(3.54) will have a form of 
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In the SSFM, it is assumed that the two operators commute with each other. That is 

 

                                            ),(expexp),( 11 ztANLzzztA
                          (3.59) 

 

The exponential operator  Lz
exp  is evaluated in the Fourier domain using 
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The accuracy of the SSFM can be improved by adopting a different procedure to 

propagate the optical pulse over one segment from z to z+Δz. In this procedure 

equation (3.59) is replaced by 
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The accuracy of the SSFM can be further improved by approximating the integral of 

equation (3.61) by 
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In iterative and symmetric SSFM the fiber length is divided into large number of 

segments that need not to be spaced equally. The optical pulse is propagated from 

segment to segment using the prescription of equation (3.61). More specifically, the 

optical field A1(t, z) is first propagated for a distance Δz/2 with dispersion only using 

the FFT algorithm and equation (3.62). At the mid-plane z + Δz/2, the field is 

multiplied be a nonlinear term that represents the effect of nonlinearity over the whole 

segment length Δz. Finally, the field is propagated remaining distance Δz/2 with 

dispersion only to obtain A1(t, z+ Δz/2) [17]. The symmetric SSFM is illustrated in the 

Fig. 3.1.  
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Fig. 3.1: Illustration of symmetric split step Fourier method  

 

 

 

According to the flow chart of SSFM in Fig. 3.2, the pulse broadening factor due to 

the effects of XPM with first- and second order GVD has been determined by using 

Matlab program. The pulse broadening factor due to the effects of XPM with second 

order GVD could be determined when the first order GVD is absent (i.e. 02  ). 
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Flow Diagram of Split-Step Fourier Method to Determine Pulse Broadening Factor  

 

Fig. 3.2: Flow chart to determine Pulse Broadening factor using split-step Fourier method 
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3.6 Conclusion 

In this chapter the expression of pulse broadening factor due to the effects of XPM 

with SPM and first order GVD has been derived analytically from NLSE in WDM 

fiber optic communication system.  For obtaining pulse broadening factor due to the 

effects of XPM with first and second order GVD, NLSE has been solved numerically 

using SSFM. The pulse broadening factor due to the effects of XPM with second 

order GVD has been determined at high bit rate when the first order GVD is absent. 

The SSFM method is also used to achieve the full numerical simulation to validate the 

accuracy of proposed analytical model. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

 

4.1 Introduction 

Following the theoretical analysis presented in chapter 3, performance results of an 

optical transmission system are presented in this chapter. The performance result is 

carried out in terms of the pulse broadening factor for a Gaussian pulse input that 

encounters the effect of XPM with first- and second order GVD. The results are 

evaluated at different bit rates and input powers for standard single mode fiber (SSMF) 

and LEAF fiber. Different system parameters of SSMF and LEAF fibers are shown in 

Table 4.1. 

 

 
Table 4.1: Parameter values used for theoretical calculations 

 

 

 

 

 

 

 

Parameters(unit) Values 

SSMF LEAF 

Non-linear refractive index,  wmn /2

2  
201035.2   201035.2   

Bit rate,  sGbB /  4010  4010  

Wavelength, )(nm  1550  1550  

Attenuation coefficient, )/( kmdB  25.0  25.0  

Power, )(2

011 mWAP   9010  9010  

Power, )(2

022 mWAP   9010  9010  

Effective area,  Power, )( 2
mA  11105.5   11102.7   

First order GVD, )/( 2
2 nmps  0.206 0.3349 

Second Order GVD, )/( 3
3 nmps  0.192295 0.1957 

Fiber length, )(km  varied varied 
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4.2 Effect of XPM with SPM and First Order GVD on Pulse 

Broadening in SSMF Fiber 

Using the derived analytical expressions, pulse broadening factor caused by the effect of 

XPM with SPM and first order GVD for SSMF is visualized using Matlab. We have 

observed the variation of pulse broadening factor for various data rates and input powers. 

 

Fig. 4.1 shows the plots of analytical pulse broadening factor caused by the effect of 

XPM with SPM and first order GVD versus fiber length at the data rates 10Gbps and 

40Gbps. While the input powers are kept constant.  

 

Fig. 4.1: Plots of analytical pulse broadening factor versus fiber length at the data rates 10 

Gbps and 40 Gbps in SSMF. 

 

From figure it is observed that at bit rate 40 Gbps the pulse broadening factor is almost 

constant up to distance 0.5 km and then increases rapidly. At 10 Gbps, this factor 

increases rapidly after 13km.  Thus it can be said that as the data rates increases, pulse 
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broadening factor caused by the effect of XPM with SPM and first order GVD increases 

and limits the transmission distance.  

 

Fig. 4.2 shows the plots of pulse broadening factor versus fiber length at input powers 

p1=90mW, p2=60mW and p1==60mW, p2=30mW. 

 

Fig. 4.2: Pulse broadening factor with varying input powers P1 and P2 for SSMF fiber 

operating at data rate 10 Gbps 

 

 

Here data rate is kept constant at 10 Gbps. It has been observed that for input powers 

P1=60mW, P2=30mW, the pulse broadening factor initially decreases from 1 with fiber 

length. The minimum value of the factor is approximately 0.66 and occurs at 10.5km. 

Then the factor increases to 1 at 12 km and then keeps on increasing. The decreasing 

indicates compression of pulse.  For P1=90mW, P2=60mW, the minimum value of the 

factor is 0.5 at 10km and the value is 1 at 11.1km.  Thus the pulse compression and 

broaden increase with increase input powers. 
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From the above discussion the following conclusion can be drawn about the effect of 

XPM with first order GVD on pulse broadening 

 

i. As, the bit rate increases the amount of pulse broadening increases. The 

broadening of the frequency spectrum of the pulse caused by the effect of XPM 

with first order GVD increases the temporal spreading of the pulse in SSMF. 

 

ii. Pulse broadening factor increases slightly with an increase of input powers. The 

effect of input powers is less effective on the pulse broadening factor. 

 

iii. The increase of fiber length increases pulse broadening. 

 

4.3 Effect of XPM with SPM and First Order GVD on Pulse Broadening 

in LEAF Fiber 

Fig. 4.3 shows the plots of pulse broadening factor due to the effect of XPM with SPM 

and first order GVD versus fiber length at the data rates 10Gbps and 40Gbps in LEAF. 

While the input powers are kept constant.  

Fig. 4.3: Plots of pulse broadening factor versus fiber length at the data rates 10 Gbps and 

40 Gbps in LEAF. 
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It is found from Fig. 4.3 that as the data rates increases, pulse broadening factor caused 

by the effect of XPM with SPM and first order GVD increases and limits the 

transmission distance. 

 

Fig. 4.4 shows the plots of pulse broadening factor versus fiber length at input powers 

p1=90mW, p2=60mW and p1==60mW, p2=30mW. 

 

Fig. 4.4: Pulse broadening factor with varying input powers P1 and P2 for LEAF fiber 

operating at data rate 10 Gbps 

 

It is found from Fig. 4.4 that as the change of input powers is less effective on the pulse 

broadening factor in presence of the effect of XPM with SPM and first order GVD in 

LEAF.  
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4.4 Comparison between the Effect of XPM with First Order GVD and 

the Effect of SPM with CD on Pulse Broadening in SSMF 

In this section the present work is compared with previous work Bijoy et al. (2009) 

analyzed the effects of SPM and CD on the pulse broadening factor in [18]. Pulse 

broadening factor due to the effect of XPM with first order GVD and that due to the 

effect of SPM with CD are visualized and compared here. The variation of pulse 

broadening factors due to the both effects have been observed for various data rates and 

input powers in Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8. 

 

Fig. 4.5 shows the comparison between pulse broadening factor due to the effect of XPM 

with first order GVD and that due to SPM with CD at the data rate 10 Gbps. 

 

 

Fig. 4.5: Comparison between pulse broadening factor due to the effect of XPM with first 

order GVD and that due to SPM with CD at the data rate 10 Gbps. 



 48 

It is found from Fig. 4.5 that the pulse broadening factor due to the effect of SPM with 

with CD remains constant at 1 up to the fiber length 12km and then increases with fiber 

length. But due to the effect of XPM with first order GVD, the pulse broadening factor 

initially decreases from 1 with fiber length then increases to 1 at 11.5km and continue 

rapidly increasing. Thus the amount of pulse compression and broaden due to effect of 

XPM with first order GVD is more than SPM with CD. In can also say that the XPM 

with GVD is more effective on the transmission distance than SPM with CD. 

 

Fig. 4.6 shows the comparison between pulse broadening factor due to the effect of XPM 

with first order GVD and that due to the SPM with CD at the data rate 40 Gbps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6: Comparison between pulse broadening factor due to the effect of XPM with first 

order GVD and that due to the SPM with CD at the data rate 40 Gbps 

 

By comparing Fig. 4.5 and Fig. 4.6, it is found that as the data rate increases, broadening 

factor for both effects increases. It is also noticed that as the data rate is increased from 

10Gbps to 40Gbps, the pulse compression due to the effect of XPM with first order GVD 

has been decreased significantly.  
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Fig. 4.7 and Fig. 4.8 show the  pulse broadening factor due to the effect of XPM with first 

order GVD and that due to the effect of SPM with CD at input powers p1=30mW, 

p2=30mW and p1==60mW, p2=60mW respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7: Comparison between pulse broadening factor due to the effect of XPM with first 

order GVD and that due to the SPM with CD at input powers, P1=30mW, P2=30mW. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8: Comparison between pulse broadening factor due to the effect of XPM with first 

order GVD and that due to the SPM with CD at the input powers, P1=60mW, P2=60mW. 
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It has been noticed from Fig.4.7 and Fig.4.8 that the pulse broadening factor due to the 

effect of XPM and GVD remain approximately same for changing input powers from 

P1=30 mW, P2=30 mW to P1=60 mW, P2=60mW. Similarly, the pulse broadening 

factor due to the effect of SPM with CD remain approximately same for changing input 

powers from P1=30 mW, P2=30 mW to P1=60 mW, P2=60mW. Thus the input powers 

have very small effect on the effects of XPM with GVD, SPM with CD and hence on 

pulse broadening factor at fixed data rate. 

 

So, from the comparison between the effect of XPM with first order GVD and SPM with 

CD on pulse broadening factor, the important results can be summarized as follows: 

 

i. For the same fiber as the data rate increases the broadening factor for both effect 

increases. 

 

ii. The input power has very small effect on pulse broadening factor.  

 

iii. The effect of XPM with first order GVD is always greater than the effect of SPM 

with CD on pulse broadening. Because the phase of optical pulse modified not 

only by itself but also of other co-propagating pulses. Hence we can say that, 

XPM is twice as effective as SPM for same amount of power. 
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4.5 Comparison of Analytical derivation with Numerical Results for 

XPM with first order GVD 

The analytical expression of pulse broadening is derived by mathematical analysis of 

NLSE considering the effects of XPM and first order GVD. The analytical results are 

obtained by visualization of the analytical expression using Matlab. The numerical results 

are obtained by solving nonlinear Schrödinger equation with split step Fourier method 

and Matlab. The analytical and numerical results for SSMF fiber are compared in order to 

investigate the accuracy of the derived analytical formulas. 

Fig. 4.9 shows the comparison between analytical and numerical results for SSMF fiber. 

 

 Fig 4.9: Pulse broadening factor for the input powers, P1=20 mW, P2=10 mW and 

data rate=10Gbps and 40Gbps in SSMF. 

 

The effect of XPM with first order GVD on pulse broadening with the variation of bit 

rate is shown in Fig. 4.9. It is observed that the analytical prediction is supported by the 

numerical results. 
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4.6 Effect of XPM with Second Order GVD on Pulse Broadening in 

SSMF Fiber 

The pulse broadening factor due to the effect of XPM with second order GVD for SSMF 

is obtained by solving nonlinear Schrödinger equation numerically with split step Fourier 

method and Matlab. 

 

Fig. 4.10 shows the plots of pulse broadening factor due to the effect of XPM with 

second order GVD versus fiber length for the input powers, P1=30 mW, P2=10 mW and 

data rate=10 Gbps. 

 

 

Fig 4.10: Pulse broadening factor for the input powers, P1=30 mW, P2=10 mW and 

data rate=10 Gbps in SSMF. 

 

From Fig. 4.10, it is found that the spectral broadening of pulse occurred due to the 

combined effects of XPM with second-order GVD. It is observed in Fig.4.10 that at fiber 
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length 0.2 km, pulse broadening factor is 40, then pulse broadening factor increases 

rapidly with fiber length up to 12 km. After 12 km, the curve oscillates and creates 

multiple ripples. Thus from these observations and analysis, we can say that the 

combined effects of XPM and second-order dispersion on the transmitting pulse increases 

with fiber length and thus limits transmission distance. After transmitting certain 

distance, pulse broadening factor oscillates and create multiple ripples. The oscillation 

ripples indicate asymmetric spectral broadening of transmitting pulse.  

 

However, when second order GVD is present, different parts of the prove pulse propagate 

at different speed because of the XPM-induced chirp imposed on the probe pulse. This 

results in an asymmetric shape with considerable structure. The probe pulse develops 

rapid oscillation near the trailing edge while the leading edge is largely unaffected.  

 

The physical origin of temporal oscillation is related to optical wave breaking 

mechanism. Both GVD and XPM impose frequency chirp on the pulse as it travel down 

the fiber. The GVP-induced chirp is linear with time but the XPM-induced chirp is far 

from being linear across the entire pulse. 

 

Because of the nonlinear nature of the composite chirp, different parts of the pulse 

propagate at different speeds. In the case of normal GVD the red-shifted light near the 

leading edge travels faster and overtakes the un-shifted light in the forward tail of the 

pulse. The opposite occurs for the blue shifted light near the trailing edge. In both cases, 

the leading and trailing region of the pulse contain light at two different frequencies that 

interfere. So, oscillation occurs near the pulse edge, result of such interference. 
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Fig. 4.11 shows the pulse broadening factor due to the effect of XPM with second order 

GVD for input powers P1=30 mW, P2=10 mW and bit rate 40 Gbps. 

Fig 4.11: Pulse broadening factor for the input powers, P1=30 mW, P2=10 mW and data 

rate=40 Gbps in SSMF. 

 

The effect of change in the data rates on the pulse broadening factor have been 

investigated and analyzed characterized by comparing Fig.4.10 and Fig. 4.11. It is 

observed from this comparison that for data rate 40Gbps, pulse broadening factor is 530 

at fiber length 0.2 km , while for bit rate 10 Gbps, pulse broadening factor is 40 at fiber 

length 0.2 km. Thus the pulse broadening factor due to the combined effect increases 

with increasing data rates. The change of data rate is very effective on the pulse 

broadening factor due to the effect of XPM with second order GVD.  

 

Fig. 4.12 shows the pulse broadening factor for a SSMF fiber for input powers P1=60 

mW, P2=30 mW and data rate 40 Gbps. 
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Fig 4.12: Pulse broadening factor for the input powers, P1=60 mW, P2=30 mW and 

data rate=40 Gbps 

 

The effect of change in the input powers on the pulse broadening factor have been 

investigated and characterized by comparing Fig.4.11 and Fig. 4.12. From these 

comparisons, it is observed that as the input power P1 is changed from 30mW to 60mW 

and P2 is changed from 10mW to 30mW, the pulse broadening factor remain 

approximately same for fixed data rate. Thus the change in the input powers is less 

effective on the transmitting pulse and the pulse broadening factor with the present of 

XPM and second order GVD in the WDM transmission system. 

 

From the above discussion the following conclusion can be drawn about the effect of 

XPM with second order GVD on pulse broadening 

 

i. The increase of data rate increases pulse broadening. 

ii. The change of input powers has low affect on pulse broadening factor in presence 

of XPM with second order GVD. 
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4.7 Effect of XPM with Second Order GVD on Pulse Broadening in 

LEAF Fiber 

Fig. 4.13 and Fig. 4.14 show the pulse broadening factor due to the effect of XPM with 

second order GVD for data rate 10 Gbps and 40 Gbps respectively. 

Fig. 4.13: Pulse broadening factor due to the effect of XPM with second order GVD for 

input powers P1=30 mW, P2=10 mW and data rate 10 Gbps in LEAF. 

Fig. 4.14: Pulse broadening factor due to the effect of XPM with second order GVD for 

input powers P1=30 mW, P2=10 mW and data rate 40 Gbps in LEAF. 
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By comparing Fig. 4.13 and Fig. 4.14 it is found that as the data rate increases the pulse 

broadening factor due to XPM with second order GVD increases in LEAF fiber. 

 

Fig. 4.15 shows the pulse broadening factor due to the effect of XPM with second order 

GVD for input powers, P1=60mW and P2=30mW. 

Fig. 4.15: Pulse broadening factor due to the effect of XPM with second order GVD for 

input powers P1=60 mW, P2=30 mW and data rate 40 Gbps in LEAF. 

 

It is observed by comparing Fig. 4.14 and Fig. 4.15 that the change of input power is less 

effective on the pulse broadening factor in LEAF fiber in presence of XPM with second 

order GVD. 
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4.8 Comparison of XPM with First Order GVD and XPM with Second 

Order GVD on Pulse Broadening Factor in SSMF 

Pulse broadening factor due to the effect of XPM with first order GVD and that due to 

the effect of XPM with Second Order GVD for the same data rate and input powers are 

visualized and compared in the following Fig. 4.16. 

 

Fig 4.16: Pulse broadening factor due to XPM with first order GVD and that due to XPM 

with second Order GVD in SSMF 

 

By comparing the two curves, it is observed that up to fiber length 10 km, pulse 

broadening factor due to XPM with second order GVD increases very much with fiber 

length while that due to XPM with first order GVD remains almost constant with fiber 

length.  At fiber length 10 km, the pulse broadening factor due to the effect of XPM with 

second Order GVD is 600 while that due to XPM with first order GVD is about 1.  After 

10 km, the broadening factor due to the effect of XPM with Second Order GVD oscillates 

and creates multiple ripples while that due to XPM with first order GVD increases 
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nonlinearly with fiber length. Thus, XPM with second order GVD is very much effective 

than XPM with first order GVD on the pulse broadening factor.  The oscillation ripples 

that indicate asymmetric pulse broadening are introduced by the effect of XPM with 

Second Order GVD.   

 

4.9 Effect of XPM with First- and Second order GVD on Pulse 

Broadening in SSMF 

The pulse broadening factor due to the effect of XPM with first- and second order GVD 

are visualized for various data rates and input powers. 

Fig. 4.17 shows the plot of pulse broadening factor due to the effect of XPM with first- 

and second order GVD versus fiber length for the input powers, P1=30 mW, P2=10 mW 

and data rate=10 Gbps. 

Fig 4.17: Pulse broadening factor for the input powers, P1=30 mW, P2=10 mW  

and data rate=10 Gbps . 
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It is observed from Fig. 4.10 and Fig. 4.17 that pulse broadening factor due to the effect 

of XPM with first- and second order GVD is almost same to that due to the effect of 

XPM with first- and second order GVD for the same data rate and input powers. Thus at 

high data rate the impact of second order GVD is dominant on the first order GVD in 

presence of XPM. 

 

Fig. 4.18 shows the plot of pulse broadening factor due to the effect of XPM with first- 

and second order GVD versus fiber length for the input powers, P1=30 mW, P2=10 mW 

and data rate=40 Gbps. 

 

 

Fig 4.18: Pulse broadening factor due to XPM with first- and second order GVD for the 

input powers, P1=30 mW, P2=10 mW and data rate=40 Gbps 

 

The change of data rates on the pulse broadening factor due to the effect of XPM with 

first- and second order GVD have been investigated by comparing Fig.4.17 and Fig. 4.18.  

It has been observed that at fiber length 5.0 km, pulse broadening factor is 600 for data 
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rate 40Gbps while is 140 for bit rate 10Gbps. Thus pulse broadening factor due to the 

combined effect of XPM with first- and second order GVD increases with increasing data 

rates. The change of data rate is very effective on the pulse broadening factor due to 

XPM with first- and second orders GVD. 

 

4.10 Effect of XPM with first order GVD on Pulse Compression Factor 

Fig. 4.19 shows the plots of pulse compression factor due to the effect of XPM with first 

order GVD versus fiber length for various input powers. 

 

Fig. 4.19: Plots of pulse compression factor due to the effect of XPM with first order 

GVD versus fiber length for various input powers 

 

Since the pulse fluctuation introduced by XPM is intensity dependent, different parts of 

the pulse undergo different phase shift. This leads frequency chirping, in which the 

leading edge experience down shift (red shift) and trailing edge up shift (blue shift). On 

contrary, chirping introduce by GVD in the anomalous-dispersion regime is up shift in 

the leading edge and down shift in the trailing edge. The two chirping are opposite in sign 
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and cancel each other at some distance. The pulse shape adjusts itself during propagation 

to make such cancellation as complete as possible. At relatively shorter distance XPM 

induced chirping is higher than GVD induced chirping. As a result, the pulse get 

compressed due to the interplay of XPM and GVD up to a particular distance and gets its 

minimum width which is shown in Fig. 4.19, after this distance the pulse width further 

broadens. From the plots, it is revealed that as the input power increases, the amount of 

pulse compression also continues up to certain length. 

 

4.11 Effect of XPM with First- and Second Order GVD on Output Pulse  

The input Gaussian pulse shown in Fig. 4.20 is launched into fiber to transmit. In Fig. 

4.21 it is observed that the transmitting pulse is broadened due to the effect of XPM with 

first order GVD. Fig.4.22 shows the transmitting pulse due to the combined effect of 

XPM with second order GVD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20: Visualization of an input Gaussian pulse. 
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Fig. 4.21: Visualization of output pulse in presence of XPM with first order GVD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22: Visualization of output pulse in presence of XPM with second order GVD 

 

It has been observed that at high data rate the second order GVD can dramatically change 

the behavior of the transmitting pulse as well as transform Gaussian pulse into multiple-

shaped pulses in presence of XPM. Asymmetric spikes have been created on the output 

pulse. 



 64 

4.12 Comparison between SSMF and LEAF Fiber in presence of XPM 

with First- and Second Order GVD 

The plots of pulse broadening factor versus fiber length in presence of the effect of XPM 

with first order GVD are shown in Fig. 4.23 for SSMF and LEAF Fiber.  

 

Fig. 4.23: Comparison between SSMF and LEAF fiber due to XPM with first order GVD 

 

 

It is found from Fig. 4.23 that the pulse broadening factor for a SSMF fiber remains 

constant up to fiber length 0.2 Km and then increases with fiber length. For LEAF fiber 

this factor remains constant up to 11 Km and then increases with fiber length.  

 

The plots of pulse broadening factor versus fiber length in presence of the effect of XPM 

with second order GVD are shown in Fig. 4.24 for SSMF and LEAF fiber.  

 

 

 



 65 

Fig. 4.24: Comparison between SSMF and LEAF fiber due to XPM with second order 

GVD 

 

It is observed in Fig.4.24 that after fiber length 0.2km, the pulse broadening factor is 400 

for a SSMF fiber while that for LEAF fiber is 530  In SSMF the curve oscillates and 

creates multiple ripples after 10 km and in LEAF fiber this oscillation and multiple ripple 

creation occur after 12 km.  

 

For the same data rates and input powers, the amount of pulse broadening for two 

different fibers is different since they have different dispersion profile. The pulse 

broadening factor in SSMF fiber is more than LEAF fiber because the effect of XPM 

with first- and second orders GVD in SSMF fiber is more than the LEAF fiber.  
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4.13 Conclusion 

The visualization of pulse broadening factor versus fiber length for SSMF and LEAF is 

done and analyzed. The variation of this factor due to effect of XPM with first- and 

second order GVD has been observed for various data rates and input powers. It is found 

that the impact of data rate and fiber length on the pulse broadening factor is more than 

input power. The amount of pulse broadening factor due to the effect of XPM with SPM 

and first order GVD is higher than that of SPM with CD. 

 

It is observed that at high bit rate the effect of second order GVD becomes significant and 

limits the system performance. It is also found that XPM with first- and second order 

GVD is more effective in SSMF than that of LEAF fiber. 
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CHAPTER 5 

CONCLUSION  

 

In this chapter, the conclusion is summarized that can be drawn from the researcher 

formed for this dissertation, then provide suggestions for future research. 

 

5.1 Conclusion 

At high data rate, channel capacity and launched optical powers, the effect of XPM effect 

with GVD limits the system performance significantly in WDM system. So, the main 

motivation of this research work is to study the effect of XPM in presence of first– and 

second order GVD to optimize system performance. A detailed analysis has been carried 

out analytically and numerically to obtain pulse broadening factor for a pulse that is 

affected by the effects of XPM with first– and second order GVD in WDM optical fiber 

communication system. 

  

The findings of this research work are given below: 

 

i. The spectral broadening of pulse is strongly dependent on the effect of XPM with first 

order GVD in WDM system. It is observed that the broadening factor increases with 

increase of data rates, fiber length and input powers. But the data rate and fiber length 

have higher impact on the pulse broadening factor than the input powers. 

 

ii. At high data rate, the impact of second order GVD is significant on the system 

performance. Asymmetric pulse broadening as well as multiple ripples is occurred due to 

the effect of XPM with second order GVD. The effect of XPM with second order GVD 

on pulse broadening factor increases with increase data rate and fiber length. 

 

iii. The XPM with second order GVD is very much effective and shows different 

behavior on pulse broadening factor than XPM with first order GVD. 
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iv. The effect of XPM with first- and second order GVD on pulse broadening factor is 

almost same to the effect of XPM with second order GVD because at high data rate the 

impact of second order GVD is dominant on first order GVD in presence of XPM.  

 

v. The output pulse broadens as well as creates multiple ripples due to the effect of XPM 

with second order GVD while the output pulse only broadens due to the effect of XPM 

with first order GVD. The ripples in the pulse represent asymmetrical behavior of second 

order GVD in presence of XPM. 

 

vi. XPM with first- and second order GVD is very effective in SSMF fiber than LEAF 

fiber. 

vii. XPM with first order GVD on the pulse broadening is more effective than SPM with 

CD. 

 

5.2 Recommendations for Future Work 

Research work is a continuous process. So it is important to think about the scope of 

further extension of this work. We have analyzed a WDM system with inter-channel 

XPM considering two channels only. Further research may be carried a large number 

(>16) of channels with various channel spacing even as small as 0.1 nm and considering 

the intra-channel XPM effect. It is also important to look into the methods and techniques 

for compensate the XPM impairment. Other nonlinear effects may be also considered to 

reflect the true performance limitations due to nonlinear phenomenon. 
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