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Abstract 
 
Natural convection in open cavities has received considerable attention because of its 

importance in several thermal engineering problems, for example, in the design of 

electronic devices, solar thermal receivers, uncovered flat plate solar collectors having 

rows of vertical strips geothermal reservoirs etc. In this thesis under the title “Finite 

Element Analysis for Steady State Natural Convection in a Square Open Cavity Having 

Partially Heated Circular Cylinder” two problems have been studied. The study as well 

depending on various kinds of cylinder and boundary conditions are abstracted below. 

Firstly, Numerical analysis of two-dimensional laminar steady-state natural convection 

in a tilted square open cavity with a partially heated circular cylinder has been 

investigated. A partially heated circular cylinder is placed at the center of the cavity and 

the opposite wall to the aperture is placed at iso-flux heat source. The other two 

remaining walls were kept cooled with Temperature Tc (Top wall) and heated with 

temperature Th (bottom wall). The fluid is concerned with Prandtl numbers 0.72, 1.0 and 

7.0. The properties of the fluid were assumed to be constant. The physical problems are 

represented mathematically by different sets of governing equations along with the 

corresponding boundary conditions. The non-dimensional governing equations are 

discretized by using Galerkin weighted residual method of finite element formulation. 

The obtained results are presented in terms of streamlines and isotherms, heat transfer 

characteristics Nusselt numbers for Grashof numbers from 103 to 106 and for inclination 

angles of the cavity from 0º to 45º. The obtained results are also presented with the 

variation of different diameter ratios of the cylinder. The results show that the Nusselt 

numbers increase with the increase of Grashof numbers. Also the average Nusselt 

number changes substantially with the inclination angle of the cavity while better 

thermal performance is also sensitive to the boundary condition of the heated wall. The 

computational results also indicate that the average Nusselt number at the hot wall of the 

cavity is depending on the dimensionless parameters.  

Finally, Numerical analysis of two-dimensional laminar steady-state natural convection 

in a tilted square open cavity with a partially heated square cylinder has been 

investigated. A partially heated square cylinder is placed at the center of the cavity and 

remains all of properties unchanged. The obtained results are presented in terms of 

streamlines and isotherms, heat transfer characteristics Nusselt numbers for Grashof 
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numbers from 103 to 106 and cavity angle ranges of 0º to 45º. The obtained results are 

also presented with the variation of different aspect ratios of the square cylinder. The 

results show that the Nusselt numbers increase with the increase of Grashof numbers. 

Also the average Nusselt number changes substantially with the inclination angle of the 

cavity while better thermal performance is also sensitive to the boundary condition of the 

heated wall. The computational results also indicate that the average Nusselt number at 

the hot wall of the cavity depends on the dimensionless parameters.  
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CHAPTER 1 

Introduction and Historical Review 

1.1 Introduction  
Heat transfer is that science which seeks to predict the energy transfer which may take 

place between material bodies as a result of a temperature difference. Thermodynamics 

teaches that this energy transfer is defined as heat. The science of heat transfer seeks not 

merely to explain how heat energy may be transferred, but also to predict the rate at 

which the exchange will take place under certain specified conditions. 

The phenomenon of heat transfer was known to human being even in the primitive age 

when they used to use solar energy as a source of heat. Heat transfer in its initial stage 

was conceived with the invention of fire in the early age of human civilization. Since 

then its knowledge and use has been progressively increasing each day as it is directly 

related to the growth of human civilization. With the invention of steam engine by James 

watt in 1765 A. D., the phenomenon of heat transfer got its first industrial recognition 

and after that its use extended to a great extent and spread out in different spheres of 

engineering fields. In the past three decades, digital computers, numerical techniques and 

development of numerical models of heat transfer have made it possible to calculate heat 

transfer of considerable complexity and thereby create a new approach to the design of 

heat transfer equipment. 

The study of temperature and heat transfer is of great importance to the engineers 

because of its almost universal occurrence in many branches of science and engineering. 

Although heat transfer analysis is most important for the proper sizing of fuel elements 

in the nuclear reactors cores to prevent burnout, the performance of aircraft also depends 

upon the case with which the structure and engines can be cooled. The design of 

chemical plants is usually done on the basis of heat transfer analysis and the analogous 

mass transfer processes. The transfer and conversion of energy from one form to another 

is the basis to all heat transfer process and hence, they are governed by the first as well as 

the second law of thermodynamics. Heat transfer is commonly associated with fluid 

dynamics. The knowledge of temperature distribution is essential in heat transfer studies 

because of the fact that the heat flow takes place only wherever there is a temperature 

gradient in a system. The heat flux which is defined as the amount of heat transfer per 
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unit area in per unit time can be calculated from the physical laws relating to the 

temperature gradient and the heat flux. 

Natural convection in open cavities has received considerable attention because of its 

importance in several thermal engineering problems, for example, in the design of 

electronic devices, solar thermal receivers, uncovered flat plate solar collectors having 

rows of vertical strips, geothermal reservoirs, etc. During the past two decades, several 

experiments and numerical calculations have been presented for describing the 

phenomenon of natural convection in open cavities. Those studies have been focused to 

study the effect on flow and heat transfer for different Rayleigh numbers, aspect ratios, 

and tilt angles.  

Natural convection in an air filled, differentially heated, inclined square cavity with a 

diathermal partition placed at the middle of its cold wall was numerically studied for 

Rayleigh numbers 103 to 105. It was observed that due to suppression of convection, heat 

transfer reductions up to 47 percent in comparison to the cavity without partition by 

Frederick [11]. Laminar natural convection and conduction in enclosures with multiple 

vertical partitions were studied theoretically by Kangni et al. [18]. The study covered 

Rayleigh number Ra in the range 103–107, Pr = 0.72 (air) aspect ratio 5–20, cavity width 

0.1–0.9 and partition thickness 0.01–0.1. They found that the heat transfer decreases with 

increasing partition number at high Rayleigh number for all conductivity ratios Kr and 

heat transfer decreases with increasing partition thickness C at all Ra except in the 

conduction regime where the effect is negligibly small. The offender partitions are less 

effective in decreasing the heat transfer. Nusselt number is also a decreasing function in 

the aspect ratio. Tasnim and Collins [34] determined the effect of a horizontal baffle 

placed on hot (left) wall of a differentially heated square cavity. It has been found that 

adding baffle on the hot wall can increase the rate of heat transfer by as much as 31.46 

percent compared with a wall without baffle for Ra = 104. When Ra = 105 the increase in 

heat transfer is 15.3 percent for the same baffle length and the increases in heat transfer 

is 19.73 percent, when the longest baffle is attached at the middle of the cavity. Bilgen 

and Oztop [2] studied numerically the steady-state heat transfer by natural convection in 

partially open inclined square cavities.  

1.2 Historical Review 
Natural convection in fluid-filled rectangular enclosures has received considerable 

attention over the past several years due to the wide variety of applications that involve 
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natural convection processes. These applications span such diverse fields as solar energy 

collection, nuclear reactor operation and safety, the energy efficient design of building, 

room, and machinery, waste disposal, and fire prevention and safety. The oscillation-

induced heat transport has been studied by a number of researchers due to its many 

industrial applications, such as bioengineering, chemical engineering, and so forth. Kuhn 

and Oosthuizen [19] numerically studied unsteady natural convection in a partially 

heated rectangular cavity. They concluded that as the heated location moves from the top 

to the bottom, the Nusselt number increases up to a maximum and then decreases. 

Lakhal et al. [21] studied the transient natural convection in a square cavity partially 

heated from side. In the first, the temperature is varied sinusoidal with time while in the 

second; it varies with a pulsating manner. The results showed that the mean values of 

heat transfer and flow intensity are considerably different with those obtained in 

stationary regime. Le Quere et al [22] investigated the effect on the flow field and heat 

transfer of the Grashof number as it was varied from 104 to 3x107; the temperature 

difference between the cavity walls and ambient changed from 50 to 500 K, the aspect 

ratio varied between 0.5 and 2, and the inclination angle of the cavity was modified from 

0 to 45o (for 0o the wall opposite the aperture was vertical and the angles were taken 

clockwise). The results of the paper showed that the Nusselt number diminished with the 

increase in the inclination angle, and that the unsteadiness in the flow takes place for 

values of the Grashof number greater than 106 and inclination angles of 0o. Showole and 

Tarasuk [32] investigated, experimentally and numerically, the natural steady state 

convection in a two dimensional isothermal open cavity. They obtained experimental 

results for air, varying the Rayleigh number from 104 to 5.5 x105, cavity aspect ratios of 

0.25, 0.5 and 1.0, and inclination angles of 0, 30o, 45o and 60o (for 0o, the wall opposite 

the aperture was horizontal and the angles were taken clockwise). The numerical results 

were calculated for Rayleigh numbers between 104 and 5.5x105, inclination angles of 0 

and 45o, and an aspect ratio equal to one. The results showed that, for all Rayleigh 

numbers, the first inclination of the cavity caused a significant increase in the average 

heat transfer rate, but a further increase in the inclination angle caused very little increase 

in the heat transfer rate. Another result observed was that, for 0o, two symmetric counter 

rotating eddies were formed, while at inclination angles greater than 0o, the symmetric 

flow and temperature patterns disappear.  
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Mohamad [25] studied numerically the natural convection in an inclined two-

dimensional open cavity with one heated wall opposite the aperture and two adiabatic 

walls. The author analyzed the influence on fluid flow and heat transfer, with the 

inclination angle in the range 10o-90o (for 90o the wall opposite the aperture was vertical 

and the angles were taken clockwise), the Rayleigh number from 103 to 107, and the 

aspect ratio between 0.5 and 2. The study concludes that the inclination angle did not 

have a significant effect on the average Nusselt number from the isothermal wall, but a 

substantial one on the local Nusselt number. Polat and Bilgen [31] made a numerical 

study of the conjugate heat transfer by conduction and natural convection in an inclined, 

open shallow cavity with a uniform heat flux in the wall opposite to the aperture. The 

parameters studied were: the Rayleigh number from 106 to 1012, the conductivity ratio 

from 1 to 60, the cavity aspect ratio from 1 to 0.125, the dimensionless wall thickness 

from 0.05 to 0.20, and the inclination angle from 0 to 45o from the horizontal (for 0o, the 

wall opposite the aperture was vertical and the angles were taken counterclockwise).  

Le Quere et al [22] investigated thermally driven laminar natural convection in 

enclosures with isothermal sides, one of which facing the opening. They used primitive 

variables and finite difference expressions suitable for treating problems with large 

temperature and density variations. The computational domain was an enlarged domain 

comprising a square open cavity and a far field surrounding it. Penot [29] studied a 

similar problem using stream function-vorticity formulation. He also used an enlarged 

computational domain similar to that of Le Quere et al [22] with approximate boundary 

conditions. Chan and Tien [4] studied numerically a square open cavity, which had an 

isothermal vertical heated side facing the opening and two adjoining adiabatic horizontal 

sides. The boundary conditions at far field were approximated to obtain satisfactory 

solutions in the open cavity. Chan and Tien [3] studied numerically shallow open 

cavities and also made a comparison study using a square cavity in an enlarged 

computational domain. They found that for a square open cavity having an isothermal 

vertical side facing the opening and two adjoining adiabatic horizontal sides, satisfactory 

heat transfer results could be obtained, especially at high Rayleigh numbers. In a similar 

way, Mohamad [25] studied inclined open square cavities, by considering a restricted 

computational domain. Different from those by Chan and Tien [4], gradients of both 

velocity components were set to zero at the opening plane. It was found that heat transfer 

was not sensitive to inclination angle and the flow was unstable at high Rayleigh 
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numbers and small inclinations angles. Polat and Bilgen [31] studied numerically 

inclined open shallow cavities in which the side facing the opening was heated by 

constant heat flux, two adjoining walls were insulated and the opening was in contact 

with a reservoir at constant temperature and pressure. The computational domain was 

restricted to the cavity. 

The finite element method is one of the numerical methods that have received popularity 

due to its capability for solving complex structural problems (Cook, [6], 

Zienkiewicz,[37]. The method has been extended to solve problems in several fields such 

as in the field of heat transfer (Lewis et al., [23], Dechaumphai, [8]), electromagnetics 

(Jini, [17]), biomechanics (Gallagher et al., [13]), etc. In spite of the great success of the 

method in these fields, its application to fluid mechanics is still under intensive research. 

This is due to the fact that the governing differential equations for general flow problems 

consist of several coupled equations which are inherently nonlinear. Accurate numerical 

solutions thus require a vast amount of computer time and data storage. One-way to 

minimize the amount of computer time and data storage used is to employ an adaptive 

meshing technique (Dechaumphai, [8], Peraire et al., [30]). The technique places small 

elements in the regions of large change in the solution gradients to increase solution 

accuracy, and at the same time, uses large elements in the other regions to reduce the 

computational time and computer memory. 

Goutam Saha et al [14] studied a numerical simulation of two-dimensional laminar 

steady-state natural convection in a square tilt open cavity. The opposite wall to the 

aperture was kept at either constant surface temperature or constant heat flux, while the 

surrounding fluid interacting with the aperture was maintained at an ambient 

temperature. The two remaining walls were assumed to be adiabatic. The fluid concerned 

is air with Prandtl number fixed at 0.71. The governing mass, momentum and energy 

equations are expressed in a normalized primitive variables formulation. A finite element 

method for steady-state incompressible natural convection flows has been developed. 

The streamlines and isotherms are produced, heat transfer characteristics is obtained for 

Rayleigh numbers from 103 to 106 and an inclination angles of the cavity ranges from 0º 

to 60º. 

In experimental studies of Ozoe et al. [26], Arnold et al. [1], Linthorst et al. [24] and 

Hamady et al. (1989) found as the tilt angle changes from 0° to 90°, the heat transfer 

decreases until a minimum point was reached, and then gradually increases again and the 
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minimum point occurs at the angle where flow changes its mode from the three-

dimensional roll pattern caused by the thermal instability to the two-dimensional 

circulation caused by the hydrodynamic effect. Most of these experimental researches 

only studied cavities with small to medium aspect ratios, with the maximum aspect ratio 

15.5. In the study of Elsherbiny et al. [10], six aspect ratios between 5 and 110 were 

examined experimentally to find the influence of the tilt angle and the aspect ratio on the 

heat transfer rate. A correlation for tilt angle 60° was developed, and a suggestion of a 

straight-line interpolation between 60° and 90° was proposed. A lot of numerical studies 

were also performed. Most of them are two dimensional and only studied flow in an 

inclined square cavity, such as Ozoe et al. [27], Chen et al. [5], Kuyper et al. [20] and 

Zhong et al.[26]. However, these two-dimensional numerical studies could not work well 

at small tilt angles close to horizontal position. In the recent paper of Soong et al. [33], 

the same model of square cavity from Ozoe et al. [27] was studied with the imperfect 

constant wall temperature boundary conditions, and the results showed good agreement 

with the experimental curve even at small tilt angles.  

In the present thesis a numerical analysis of two-dimensional laminar steady-state natural 

convection in a square open cavity have numerically been studied. A partially heated 

circular cylinder and square cylinder are placed at the center of the cavity and the 

opposite wall to the aperture is heated by a constant heat flux. The top and bottom walls 

have kept at the cooled with temperature and heated with temperature. The fluid is 

concerned with Prandtl number at 0.72, 1.0 and 7.0. The governing mass, momentum 

and energy equations are expressed in a normalized primitive variables formulation. In 

this thesis, a finite element method for steady-state incompressible natural convection 

flows has been developed. The streamlines and isotherms are produced; heat transfer 

characteristics are obtained for Grashof numbers from 103 to 106 and inclination angles 

of the cavity from 0º to 45º. The results show that the Nusselt number increases with the 

Grashof numbers. Also the Nusselt number has changed substantially with the 

inclination angle of the cavity while better thermal performance is also sensitive to the 

boundary condition of the heated wall. 

1.3 Heat Transfer Mechanism  
Heat is the form of energy that can be transferred from one system to another as a result 

of temperature difference. A thermodynamic analysis is concerned with the amount of 

heat transfer as a system undergoes a process from one equilibrium state to another. The 



CHAPTER 1 

 7 
 

science that deals with the determination of the rates of such energy transfers is the heat 

transfer. The transfer of energy as heat is always from the higher temperature medium to 

the lower temperature one, and heat transfer stops when the two mediums reach the same 

temperature.  

Heat can be transferred in three different mechanisms or modes: conduction, convection 

and radiation. All modes of heat transfer require the existence of a temperature 

difference, and all modes are from the high temperature medium to a lower temperature 

one. In reality, the combined effect of these three modes of heat transfer control 

temperature distribution in a medium. A brief description of convection mode is given 

below. 

1.3.1 Convection 

Convective heat transfer is the heat transfer mechanism affected by the flow of fluids. 

The amount of energy and matter are conveyed by the fluid can be predicted through the 

convective heat transfer. The convective heat transfer bifurcates into two branches; the 

natural convection and the forced convection. Forced convection regards the heat 

transport by induced fluid motion that is forced to happen. This induced flow needs 

consistent mechanical power. But natural convection differs from the forced convection 

through the fluid flow driving force that happens naturally. The flows are driven by the 

buoyancy effect due to the presence of density gradient and gravitational field. The 

density difference gives rise to buoyancy effects due to which the flow is generated. 

Buoyancy is due to the combined presence of the fluid density gradient and the body 

force. As the temperature distribution in the natural convection depends on the intensity 

of the fluid currents that is dependent on the temperature potential itself, the qualitative 

and quantitative analysis of natural convection heat transfer is very difficult. Numerical 

investigation instead of theoretical analysis is more needed in this field. Two types of 

natural convection heat transfer phenomena can be observed in the nature. One is that 

external free convection that is caused by the heat transfer interaction between a single 

wall and a very large fluid reservoir adjacent to the wall. Another is that internal free 

convection which befalls within an enclosure. The thermo-fluid fields developed inside 

the cavity depend on the orientation and geometry of the cavity. Reviewing the nature 

and the practical applications, the enclosure phenomena can be organized into two 

classes. One of these is enclosure heated from the side which is found in solar collectors, 

double wall insulations, laptop cooling system and air circulation inside the room and 
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another one is enclosure heated from below which happens in geophysical system like 

natural circulation in the atmosphere, the hydrosphere and the molten core of the earth. 

Convective heat transfer or, simply, convection is the study of heat transport processes 

affected by the flow of fluids. Convective heat transfer, clearly, is a field at the interface 

between two older fields-heat transfer and fluid mechanics. Before reviewing the 

foundations of convective heat transfer methodology, it is worth reexamining the historic 

relationship between fluid mechanics and heat transfer at the interface. Especially during 

the past 100 years, heat transfer and fluid mechanics have enjoyed a symbiotic 

relationship in their parallel development. Convection is that mode of heat transfer where 

energy exchange occurs between the particles by convection current. It may be explained 

as; when fluid flows over a solid body or inside a channel while temperatures of the fluid 

and the solid surface are different, heat transfer between the fluid and the solid surface 

takes place as a consequences of the motion of the fluid relative to the surfaces; the 

mechanism of heat transfer called convection. In the diversity of the studies related to 

heat transfer, considerable effort has been directed at the convective mode, in which the 

relative motion of the fluid provides an additional mechanism for the transfer of heat and 

materials. Convection is inevitably coupled with the conductive mechanism, since 

though the fluid motion modifies the transport process, the eventual transfer of heat from 

one fluid element to another in its neighborhood is through conduction. 

The convection mode of heat transfer is further divided into two basic processes. If the 

motion of the fluid arises due to an external agent, such as the externally imposed flow of 

fluid stream over a heated object, the process is termed as forced convection. The fluid 

flow may be the results of, for instance, a fan, a blower, the wind or the motion of the 

heated object itself. Such problems are very frequently encountered in technology where 

heat transfer to, or from, a body is often due to an imposed flow of a fluid at a 

temperature different from that of the body. It has wide applications in compact heat 

exchanger, central air conditioning system, cooling tower, gas turbine blade, internal 

cooling passage, chemical engineering process industries, nuclear reactors and many 

other cases. If, on the other hand, no such externally induced flow is provided and the 

flow arises “naturally” simply due to the effect of a density difference, resulting from a 

temperature difference, in a body force field, such as gravitational field, the process is 

termed as natural or free convection. The density deference gives rise to buoyancy 

effects due to which the flow is generated. A heated body cooling in ambient air 
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generates such a flow in the region surrounding it. Similarly, the buoyant flow arising 

from heat rejection to the atmosphere and to other ambient media, Heat transfer by free 

convection occurs in many engineering applications, such as heat transfer from hot 

radiators, refrigerator coils, transmission lines, electric transformers, electric heating 

elements and electronic equipment etc. 

The convection heat transfer that is neither dominated by pure forced nor pure free 

convection, but is rather a combination of the two is referred as combined or mixed 

convection. The buoyancy forces that arise as the results of the temperature differences 

and which cause the fluid flow in free convection also exist when there is a forced flow. 

The effects of these buoyancy forces are however; usually negligible when there is a 

forced flow. In some cases, however, these buoyancy forces do have a significant 

influence on the flow and consequently on the heat transfer rate. In such cases, the flow 

about the body is a combination of forced and free convection; such flows are referred to 

as mixed convection. For example, heat transfer from one fluid to another fluid through 

the walls of pipe occurs in many practical devices. In this case, heat is transferred by 

convection from the hotter fluid to the one surface of the pipe. Heat is then transferred by 

conduction through the walls of the pipe. Finally, heat is transferred by convection from 

the other surface to the colder fluid.  

1.3.2 Conduction 

Conduction is the mode of heat transfer in which energy exchange takes place from the 

region of high temperature to that of law temperature by the kinetic motion or direct 

impact of molecules, as in the case of fluid at rest, and by the drift of electrons, as in the 

case of metals. In a solid which is a good electric conductor, a large number of free 

electrons move about in the lattice, hence materials that are good electric conductors are 

generally good heat conductors (i.e. copper, silver.etc).  

1.3.3 Thermal Conductivity 

Thermal conductivity of a material can be defined as the rate of heat transfer through a 

unit thickness of the material per unit area per unit temperature difference. Therefore the 

thermal conductivity of a material is a measure of the ability of the material to conduct 

heat. A high value for thermal conductivity indicates that the material is a good heat 

conductor, and a low value for thermal conductivity indicates that the material is a poor 

heat conductor or insulator. For example the materials such as copper and silver that are 

good electric conductors are also good heat conductors, and have high values of thermal 
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conductivity. Materials such as rubber, wood are poor conductors of heat and have low 

conductivity values. The rate of heat conduction through a medium depends on the 

geometry of the medium, its thickness, and the material of the medium, as well as the 

temperature difference across the medium. The proportionality constant k is called 

thermal conductivity of the material. 

1.3.4 Thermal Diffusivity 

The time dependent heat conduction equation for constant k contains a quantity α, called 

the thermal diffusivity. Thermal diffusivity represents how fast heat diffuses through a 

material and is defined as  

pCρ
κα =

 

Here the thermal conductivity κ represents how well a material conducts heat, and the 

heat capacity rCp represents how much energy a material stores per unit volume. 

Therefore, the thermal diffusivity of a material can be viewed as the ratio of the heat 

conducted through the material to the heat stored per unit volume. A material that has a 

high thermal conductivity or a low heat capacity will obviously have a large thermal 

diffusivity. The larger thermal diffusivity means that the propagation of heat into the 

medium is faster. A small value of thermal diffusivity means the material mostly absorbs 

the heat and a small amount of heat is conducted further. 

1.3.5 Internal and External Flows 

A fluid flow is classified as being internal or external, depending on whether the fluid is 

forced to flow in a confined channel or over a surface. An internal flow is bounded on all 

sides by solid surfaces except, possibly, for an inlet and exit. Flows through a pipe or in 

an air-conditioning duct are the examples of internal flow. Internal flows are dominated 

by the influence of viscosity throughout the flow field. The internal flow configuration 

represents a convenient geometry for the heating and cooling of fluids used in the 

chemical processing, environmental control, and energy conversion areas. The flow of an 

unbounded fluid over a surface is external flow. The flows over curved surfaces such as 

sphere, cylinder, airfoil, or turbine blade are the example of external flow. In external 

flows the viscous effects are limited to boundary layers near solid surfaces.  
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1.3.6 Boundary Layer 

Since fluid motion is the distinguishing feature of heat convection, it is necessary to 

understand some of the principles of fluid dynamics in order to describe adequately the 

processes of convection. When a fluid flows over a body, the velocity and temperature 

distribution at the immediate vicinity of the surface strongly influence by the convective 

heat transfer. In order to simplify the analysis of convective heat transfer the boundary 

layer concept frequently is introduced to model the velocity and temperature fields near 

the solid surface in order to simplify the analysis of convective heat transfer. So we are 

concerned with two different kinds of boundary layers, the velocity boundary layer and 

the thermal boundary layer. 

The velocity boundary layer is defined as the narrow region, near the solid surface, over 

which velocity gradients and shear stresses are large, but in the region outside the 

boundary layer, called the potential-flow region, the velocity gradients and shear stresses 

are negligible. The exact limit of the boundary layer cannot be precisely defined because 

of the asymptotic nature of the velocity variation. The limit of the boundary layer is 

usually taken to be at the distance from the surface, at which the fluid velocity is equal to 

a predetermined percentage of the free stream value,∞U . This percentage depends on the 

accuracy desired, 99 or 95% being customary. Although, outside the boundary layer 

region the flow is assumed to be inviscid, but inside the boundary layer the viscous flow 

may be either laminar or turbulent. In the case of laminar boundary layer, fluid motion is 

highly ordered and it is possible to identify streamlines along which particles move. 

Fluid motion along a streamline is characterized by velocity components in both the x 

and y directions. Since the velocity component v is in the direction normal to the surface, 

it can contribute significantly to the transfer of momentum, energy or species through the 

boundary layer. Fluid motion normal to the surface is necessitated by boundary layer 

growth in the x direction. In contrast, fluid motion in the turbulent boundary layer is 

highly irregular and is characterized by velocity fluctuations. These fluctuations enhance 

the transfer of momentum, energy and species and hence increase surface friction, as 

well as convection transfer rates. Due to fluid mixing resulting from the fluctuations, 

turbulent boundary layer thicknesses are larger and boundary layer profiles are flatter 

than in laminar flow. The thermal boundary layer may be defined (in the same sense that 

the velocity boundary layer was defined above) as the narrow region between the surface 

and the point at which the fluid temperature has reached a certain percentage of ambient 
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temperature∞T . Outside the thermal boundary layer the fluid is assumed to be a heat sink 

at a uniform temperature of∞T .The thermal boundary layer is generally not coincident 

with the velocity boundary layer, although it is certainly dependent on it. If the fluid has 

high thermal conductivity, it will be thicker than the velocity boundary layer, and if 

conductivity is low, it will be thinner than the velocity boundary layer. 

1.3.7 Flow within an Enclosure 

The flow within an enclosure consisting of two horizontal walls, at different 

temperatures, is an important circumstance encountered quite frequently in practice. In 

all the applications having this kind of situation, heat transfer occurs due to the 

temperature difference across the fluid layer, one horizontal solid surface being at a 

temperature higher than the other. If the upper plate is the hot surface, then the lower 

surface has heavier fluid and by virtue of buoyancy the fluid would not come to the 

lower plate. Because in this case the heat transfer mode is restricted to only conduction. 

But if the fluid is enclosed between two horizontal surfaces of which the upper surface is 

at lower temperature, there will be the existence of cellular natural convective currents 

which are called as Benard cells. For fluids whose density decreases with increasing 

temperature, this leads to an unstable situation. 

1.3.8 Slanted Enclosure 

The tilted enclosure geometry has received considerable attention in the heat transfer 

literature because of mostly growing interest of solar collector technology. The angle of 

tilt has a dramatic impact on the flow housed by the enclosure. Consider an enclosure 

heated from below is rotated about a reference axis. When the tilted angle becomes 90º, 

the flow and thermal fields inside the enclosure experience the heating from side 

condition. Thereby convective currents may pronounce over the diffusive currents. When 

the enclosure rotates to 180º, the heat transfer mechanism switches to the diffusion 

because the top wall is heated. 

1.3.9 Boussinesq Approximation 

The governing equations for convection flow are coupled elliptic partial differential 

equations and are, therefore, of considerable complexity. The major problems in 

obtaining a solution to these equations lie in the inevitable variation of density with 

temperature, or concentration, and in their partial, elliptic nature. Several approximations 

are generally made to considerably simplify these equations. Among them Boussinesq 
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approximation attributed to Boussinesq (1903) is considered here. In flows accompanied 

by heat transfer, the fluid properties are normally functions of temperature. The 

variations may be small and yet be the cause of the fluid motion. If the density variation 

is not large, one may treat the density as constant in the unsteady and convection terms, 

and treat it as variable only in the gravitational term. This is called the Boussinesq 

approximation.  

1.4 Dimensionless Parameters 
The dimensionless parameters can be thought of as measures of the relative importance 

of certain aspects of the flow. Some dimensionless parameters related to our study are 

discussed below:  

Grashof number Gr  

The flow regime in free convection is governed by the dimensionless Grashof number, 

which represent the ratio of the buoyancy force to the viscous forces acting on the fluid, 

and is defined as  

( )
2

3

ν
β ∞−

=
TTLg

Gr w  

where g is the acceleration due to gravity, β is the volumetric thermal expansion 

coefficient, Tw is the wall temperature, T∞ is the ambient temperature, L is the 

characteristic length and ν is the kinematics viscosity. The Grashof number Gr plays 

same role in free convection as the Reynolds number Re plays in forced convection. As 

such, the Grashof number provides the main criterion in determining whether the fluid 

flow is laminar or turbulent in free convection. For vertical plates, the critical value of 

the Grashof number is observed to be about 109. Therefore, the flow regime on a vertical 

plate becomes turbulent at Grashof numbers greater than109. 

Prandtl Number Pr  

The relative thickness of the velocity and the thermal boundary layers is best described 

by the dimensionless parameter Prandtl number, defined as 

Pr = Molecular diffusivity of momentum / Molecular diffusivity of heat = υ / α  

It is named after Ludwig Prandtl, who introduced the concept of boundary layer in 1904 

and made significant contributions to boundary layer theory. The Prandtl numbers of 
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fluids range from less than 0.01 for liquid metals to more than 100,000 for heavy oils. 

Note that the Prandtl number is in the order of 7 for water. The Prandtl numbers of gases 

are about 1, which indicates that both momentum and heat dissipate through the fluid at 

about the same rate.  Consequently the thermal boundary layer is much thicker for liquid 

metals and much thinner for oils relative to the velocity boundary layer. 

Nusselt Number Nu 

The Nusselt number represents the enhancement of heat transfer through a fluid layer as 

a result of convection relative to conduction across the same fluid layer, and is defined as  

Nu = hL / k 

where k is the thermal conductivity of the fluid, h is the heat transfer coefficient and L is 

the characteristics length. The Nusselt number is named after Wilhelm Nusselt, who 

made significant contributions to convective heat transfer in the first half of the twentieth 

century, and it is viewed as the dimensionless convection heat transfer coefficient. The 

larger Nusselt number indicates a large temperature gradient at the surface and hence, 

high heat transfer by convection. A Nusselt number of Nu = 1, for a fluid layer represents 

heat transfer across the layer by pure conduction. To understand the physical significance 

of the Nusselt number, consider the following daily life problems. We remedy to forced 

convection whenever we want to increase the rate of heat transfer from a hot object. In 

free convection flow velocities are produced by the buoyancy forces hence there are no 

externally induced flow velocities.  

1.5 Enthusiasm Behind The Selection of Current Work 
From the historical review it is clear that during the past two decades, several 

experiments and numerical calculations have been presented for describing the 

phenomenon of natural convection in open cavities. Those studies have been focused to 

study the effect on flow and heat transfer for different Rayleigh numbers, aspect ratios, 

and tilt angles. Natural convection in open cavities has received considerable attention 

because of its importance in several thermal engineering problems, for example, in the 

design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors 

having rows of vertical strips, geothermal reservoirs, etc.  In the present thesis a 

numerical analysis of two-dimensional laminar steady-state natural convection in a 

square open cavity has numerically studied. A partially heated circular cylinder is placed 

at the center of the cavity and the opposite wall to the aperture by a constant iso-flux heat 
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source. The top and bottom walls have kept at the cooled with temperature and heated 

with temperature. In this thesis, a finite element method for steady-state incompressible 

natural convection flows has been developed. Numerical studies are therefore essential to 

observe the variation in fluid flow and heat transfer due to the above physical changes 

with boundary conditions, which forms the basis of the motivation behind the present 

study. 

1.6 Main Objectives of The Present Study 
The present study has focused on the development of a mathematical model and 

numerical techniques regarding the effects of natural convection flow around a partially 

heated circular cylinder placed in a square open cavity. 

The specific objectives of the present research work are as follows: 

� A mathematical model regarding the effect of natural convection flow around a 

partially heated circular cylinder placed in a square open cavity have been 

developed.   

� To visualize the fluid flow and temperature distribution inside the enclosure in 

terms of streamline and isotherm plots. 

� The analytical model has numerically solved using finite element method. 

�  To investigate the effects of Grashof number and Prandtl number on the heat 

transfer characteristics (Nusselt number). 

� To investigate the effects of diameter ratio of a partially heated cylinder on natural 

convection placed inside an open cavity.  

� To carry out the validation of the present finite element model by investigating the 

effect of natural convection heat transfer in a square open cavity. 

� To examine the effects of inclination angles of the enclosure on the heat transfer 

characteristics.  

1.7 Outline of The Thesis 
This dissertation contains five chapters. In this chapter a brief introduction is presented 

with aim and objective. This chapter also consists of a literature review of the past 

studies on fluid flow and heat transfer in cavities or channels. The different aspects of the 

previous studies have been mentioned categorically. This is followed by the post-mortem 

of a recent historical event for the illustration of fluid flow and heat transfer effects in 

cavities or channels.  
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Chapter 2, the computational technique of the problem have discussed for viscous 

incompressible flow. 

In Chapter 3, a detailed parametric study on Numerical simulation of two-dimensional 

laminar steady-state natural convection in a tilted square open cavity with a partially 

heated circular cylinder is placed at the center. Effects of the major parameters such as 

Grashof number and Prandtl number, and of  different angles of the cavity and different 

diameter ratio of the cylinder have been presented for a better understanding of the heat 

transfer mechanisms in square open cavity. The results of isotherms and streamlines for 

Grashof number, Prandtl number, different angle of the cavity and different diameter 

ratio of the cylinder   with natural convection have been studied. 

In Chapter 4, I have discussed a same type of problem using a partially heated square 

cylinder instead of a partially heated circular cylinder in an open square cavity. I have 

also discussed the result of isotherms and streamlines of different parameters (Grashof 

number Gr and Prandtl number Pr) and different angles of cavity and different aspect 

ratio of the partially heated square cylinder.  

Finally, in Chapter 5 the study is rounded of with the conclusions, comparison of both 

cylinders and recommendations for further study of the present problem are outlined.  
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CHAPTER 2 
COMPUTATIONAL TECHNIQUE 

Computational Technique 
Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past 

several years for technological as well as scientific interests. For many problems of 

industrial interest, experimental techniques are extremely expensive or even impossible 

due to the complex nature of the flow configuration. Analytical methods are often useful 

in studying the basic physics involved in a certain flow problem, however, in many 

interesting problems; these methods have limited direct applicability. The dramatic 

increase in computational power over the past several years has led to a heightened 

interest in numerical simulations as a cost effective method of providing additional flow 

information, not readily available from experiments, for industrial applications, as well 

as a complementary tool in the investigation of the fundamental physics of turbulent 

flows, where analytical solutions have so far been unattainable. It is not expected (or 

advocated), however, that numerical simulations replace theory or experiment, but that 

they be used in conjunction with these other methods to provide a more complete 

understanding of the physical problem at hand. 

Mathematical model of physical phenomena may be ordinary or partial differential 

equations, which have been the subject of analytical and numerical investigations. The 

partial differential equations of fluid mechanics and heat transfer are solvable for only a 

limited number of flows. To obtain an approximate solution numerically, we have to use 

a discretization method, which approximated the differential equations by a system of 

algebraic equations, which can then be solved on a computer. The approximations are 

applied to small domains in space and / or time so the numerical solution provides results 

at discrete locations in space and time. Much as the accuracy of experimental data 

depends on the quality of the tools used, the accuracy of numerical solutions depend on 

the quality of discretizations used.Computational fluid dynamics (CFD) computation 

involves the formation of a set numbers that constitutes a practical approximation of a 

real life system. The outcome of computation process improves the understanding of the 

performance of a system. Thereby, engineers need CFD codes that can make physically 

realistic results with good quality accuracy in simulations with finite grids. Contained 

within the broad field of computational fluid dynamics are activities that cover the range 

from the automation of well established engineering design methods to the use of 
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detailed solutions of the Navier-Stokes equations as substitutes for experimental research 

into the nature of complex flows. CFD have been used for solving wide range of fluid 

dynamics problem. It is more frequently used in fields of engineering where the 

geometry is complicated or some important feature that cannot be dealt with standard 

methods. More details are available in Ferziger & Perić [12] and Patankar [28].  

2.1 Elements of Numerical Solution Methods 
Several components of numerical solution methods are available in Ferziger and Perić 

[12], here only the main steps will be demonstrate in the following. 

2.1.1 Mathematical Model 

The starting point of any numerical method is the mathematical model, i.e. the set of 

partial differential equations and boundary conditions. A solution method is usually 

designed for a particular set of equations. Trying to produce a general-purpose solution 

method, i.e. one which is applicable to all flows, is impractical, is not impossible and as 

with most general purpose tools, they are usually not optimum for any one application.  

2.1.2 Discretization Process 

After selecting the mathematical model, one has to choose a suitable discretization 

method, i.e. a method of approximating the differential equations by a system of 

algebraic equations for the variable at some set of discrete locations in space and time. 

2.1.3 Numerical Grid 

The numerical grid defines the discrete locations, at which the variables are to be 

calculated, which is essentially a discrete representation of the geometric domain on 

which the problem is to be solved. It divided the solution domain into a finite number of 

sub-domains (elements, control volumes etc). Some of the options available are 

structural (regular) grid, block structured grid, unstructured grids etc.  

2.1.4 Finite Approximations  

Following the choice of grid type, one has to select the approximations to be used in the 

discretization process. In a finite difference method, approximations for the derivatives at 

the grid points have to be selected. In a finite volume method, one has to select the 

methods of approximating surface and volume integrals. In a finite element method, one 

has to choose the functions and weighting functions. 
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2.1.5 Solution Technique 

Discretization yields a large system of non-linear algebraic equations. The method of 

solution depends on the problem. For unsteady flows, methods based on those used for 

initial value problems for ordinary differential equation (marching in time) is used. At 

each time step an elliptic problem has to be solved. Pseudo-time marching or an 

equivalent iteration scheme usually solves steady flow problems. Since the equations are 

non-linear, an iteration scheme is used to solve them. These methods use successive 

linearization of the equations and the resulting linear systems are almost always solved 

by iterative techniques. The choice of solver depends on the grid type and the number of 

nodes involved in each algebraic equation. 

2.2 Discretization Approaches 
The first step to numerically solve a mathematical model of physical phenomena is its 

numerical discretization. This means that each component of the differential equations is 

transformed into a “numerical analogue” which can be represented in the computer and 

then processed by a computer program, built on some algorithm. There are many 

different methodologies were devised for this purpose in the past and the development 

still continues. In order to short them, we can at first divide the spatial discretisation 

schemes into the following three main categories: finite difference (FD), finite volume 

(FV) finite element (FE) methods, Boundary element (BE) method and Boundary 

volume (BV) method. 

In the present numerical computation, Galerkin finite element method (FEM) is used. 

Detailed discussion of this method is available in Chung [7] and Dechaumphai [9]. 

Finite Element Analysis 

The finite element method (FEM) is a powerful computational method for solving 

problems, which are described by partial differential equations. The fundamental idea of 

the finite element method is to outlook a given domain as an assemblage of simple 

geometric shapes, called finite elements, for which it is possible to systematically 

generate the approximation functions needed in the solution of partial differential 

equations by the weighted residual method. The computational domains with irregular 

geometries by a collection of finite elements makes the method a valuable practical tool 

for the solution of boundary value problems arising in various fields of engineering. The 

approximation functions, which satisfy the governing equations and boundary 
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conditions, are often constructed using ideas from interpolation theory. Approximating 

functions in finite elements are determined in terms of nodal values of a physical field, 

which is required. A continuous physical problem is transformed into a discretized finite 

element problem with unknown nodal values. For a linear problem, a system of linear 

algebraic equations should be solved. Values inside finite elements can be recovered 

using nodal values. 

The finite element method is one of the numerical methods that have received popularity 

due to its capability for solving complex structural problems. The method has been 

extended to solve problems in several other fields such as in the field of heat transfer, 

computational fluid dynamics, electromagnetic, biomechanics etc. In spite of the great 

success of the method in these fields, its application to fluid mechanics, particularly to 

convective viscous flows, is still under intensive research. 

The major steps involved in finite element analysis of a typical problem are: 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation to be 

analyzed. 

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebraic equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 

2.2.1 Mesh Generation 

The area of numerical grid generation is relatively young in practice, although its roots in 

mathematics are old. The arrangement of discrete points throughout the flow field is 

simply called a grid. The determination of a proper grid for the flow through a given 

geometric shape is important. The way that such a grid is determined is called grid 

generation. The grid generation is a significant consideration in CFD. Finite element 

method can be applied to unstructured grids. This is because the governing equations in 

this method are written in integral form and numerical integration can be carried out 

directly on the unstructured grid domain in which no coordinate transformation is 

required. A two-dimensional domain may be triangulated as shown in Figure 2.1. In 
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finite element method, the mesh generation is the technique to subdivide a domain into a 

set of sub-domains, called finite elements. Figure 2.1 shows a domain, Λ  is subdivided 

into a set of sub-domains, eΛ with boundary eΓ . Detailed discussion of this issue is 

available in Anderson and Chung [7].  

 

Figure 2.1: A typical FE discretization of a domain, Reddy & Gartling [32]. 

           

Figure 2.2: Current mesh structure of elements for square open cavity. 

2.2.2 Finite Element Formulation and Computational Technique 

Viscous incompressible thermal flows have been the subject of our investigation. The 

problem is relatively complex due to the coupling between the energy equation and the 

Navier-Stokes equations, which govern the fluid motion. These equations comprise a set 

of coupled nonlinear partial differential equations, which is difficult to solve especially 

with complicated geometries and boundary conditions. The finite element formulation 

and computational procedure for Navier-Stokes equations along with energy equations 

will be discuss in the chapter 3. 

Λ
e 
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2.2.3 Algorithm 

The algorithm was originally put forward by the iterative Newton-Raphson algorithm; 

the discrete forms of the continuity, momentum and energy equations are solved to find 

out the value of the velocity and the temperature. It is essential to guess the initial values 

of the variables. Then the numerical solutions of the variables are obtained while the 

convergent criterion is fulfilled. The simple algorithm is shown by the flow chart below. 
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Figure 2.3: Flow chart of the computational procedure 

Stop 

Initial guess values 
of U*, V*, θ* 

Forming 6x6 matrix 
against an element 

Assemble all 
elements 

Matrix factorization 

Convergence 

Physical model 

Governing equations 

Boundary 
conditions 

Mesh 
generation 

Start 

U, V, θ 

Yes 

No 



CHAPTER 2 

 24 
 

 

2.2.4 Solution of System of Equations 

A system of linear algebraic equations has been solved by the UMFPACK with 

COMSOL MULTIPHYSICS package interface. UMFPACK is a set of routines for 

solving asymmetric sparse linear systems Ax = b, using the Asymmetric MultiFrontal 

method and direct sparse LU factorization. Five primary UMFPACK routines are 

required to factorize A or Ax = b: 

1. Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. 

2. Numerically scales and then factorizes a sparse matrix. 

3. Solves a sparse linear system using the numeric factorization. 

4. Frees the Symbolic object. 

5. Frees the Numeric object. 

Additional routines are: 

1. Passing a different column ordering 

2. Changing default parameters 

3. Manipulating sparse matrices 

4. Getting LU factors 

5. Solving the LU factors 

6. Computing determinant 

UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are 

lower and upper triangular, respectively, P and Q are permutation matrices, and R is a 

diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both P and Q 

are chosen to reduce fill-in (new nonzeros in L and U that are not present in A). The 

permutation P has the dual role of reducing fill-in and maintaining numerical accuracy 

(via relaxed partial pivoting and row interchanges). The sparse matrix A can be square or 

rectangular, singular or non-singular, and real or complex (or any combination). Only 

square matrices A can be used to solve Ax = b or related systems. Rectangular matrices 

can only be factorized. UMFPACK first finds a column pre-ordering that reduces fill-in, 

without regard to numerical values. It scales and analyzes the matrix, and then 

automatically selects one of three strategies for pre-ordering the rows and columns: 

asymmetric, 2-by-2 and symmetric. These strategies are described below. 

One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the 
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matrix can reuse this factorization. Whenever a factorization or decomposition is 

calculated, it is preserved as a list (element) in the factor slot of the original object. In 

this way a sequence of operations, such as determining the condition number of a matrix 

and then solving a linear system based on the matrix, do not require multiple 

factorizations of the intermediate results. 

Conceptually, the simplest representation of a sparse matrix is as a triplet of an integer 

vector i giving the row numbers, an integer vector j giving the column numbers, and a 

numeric vector x giving the non-zero values in the matrix. The triplet representation is 

row-oriented if elements in the same row were adjacent and column-oriented if elements 

in the same column were adjacent. The compressed sparse row (csr) or compressed 

sparse column (csc) representation is similar to row-oriented triplet or column-oriented 

triplet respectively. These compressed representations remove the redundant row or 

column in indices and provide faster access to a given location in the matrix. 

2.3 Chapter Summary 
This chapter has presented an introduction to computational method with advantages of 
numerical investigation. Because numerical method has played a central role in this 
thesis. Various components of numerical method have been also explained. Finally, the 
major steps involved in finite element analysis of a typical problem have been discussed. 

 

b
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CHAPTER 3 
Numerical Analysis of Two Dimentional Laminar Steady-State 
Natural Convection Flow in a Tilted Open Square Cavity 
Having Partially Heated Circular Cylinder 

3.1 Problem Definition 
The heat transfer and the fluid flow in a two-dimensional open square cavity of length L 

was considered, as shown in the schematic diagram of figure3.1. The opposite wall to the 

aperture was first kept to constant heat flux q, while the surrounding fluid interacting 

with the aperture was maintained to an ambient temperature T∞. The other two remaining 

walls were kept cooled with temperature Tc (Top wall) and heated with temperature Th 

(bottom wall). The remaining circular cylinder was assumed to be partially heated. The 

fluid was assumed with Prandtl number (Pr = 0.72, 1.0, 7.0) and Newtonian, and the 

fluid flow is considered to be laminar. The properties of the fluid were assumed to be 

constant.  

 

  

 

 

 

 

 

 

 

Figure-3.1. Schematic diagram of the physical system 

3.2 Mathematical Modeling 
The several steps of the mathematical formulation for the above physical configurations 

are shown as follows  

L 
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3.2.1 Governing Equations 

Natural convection is governed by the differential equations expressing conservation of 

mass, momentum and energy. The present flow is considered steady, laminar, 

incompressible and two-dimensional. The viscous dissipation term in the energy 

equation is neglected. The Boussinesq approximation is invoking for the fluid properties 

to relate density changes to temperature changes, and to couple in this way the 

temperature field to the flow field. The governing equations for steady natural 

convection flow can be written as: 

Continuity Equation  

0
y

u

x

u =
∂
∂+

∂
∂

 (1) 

Momentum Equations  

( )
2 2

2 2

1
sin

u u p u u
u v g T T

x y x x y
γ β

ρ ∞
 ∂ ∂ ∂ ∂ ∂+ = − + + + − Φ ∂ ∂ ∂ ∂ ∂ 

    (2) 

( )
2 2

2 2

1
cos

v v p v v
u v g T T

x y y x y
γ β

ρ ∞
 ∂ ∂ ∂ ∂ ∂+ = − + + + − Φ ∂ ∂ ∂ ∂ ∂ 

  (3) 

Energy Equation  

2 2

2 2

T T T T
u v

x y x y
α  ∂ ∂ ∂ ∂+ = + ∂ ∂ ∂ ∂ 

         (4) 

3.2.2 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

 On the left wall (x = 0): u = v= 0 , 
k

q

x

yT −=
∂

∂ ),0(
   

On the right wall (x = 1): u = v = 0, Tin = T∞ , 0),( =
∂
∂

yL
x

T
 

On the bottom wall (y = 0): u = v = 0, T = Th  
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On the Upper wall (y = 1): u = v = 0, T = Tc  

On the cylinder, 

At the bottom side: u = v = 0, hT T=   

At the upper side:  u = v = 0, T = Tc  

where x and y are the distances measured along the horizontal and vertical directions, 

respectively; u and v are the velocity components in the x- and y-direction, respectively; 

T denotes the temperature; γ and α are the kinematics viscosity and the thermal 

diffusivity, respectively; p is the pressure and ρ is the density; Th ,Tc and T∞  are heated, 

cooled and  ambient temperatures respectively.  

3.2.3 Dimensional Analysis 

The governing equations in non-dimensional form are written as follows: 

Continuity Equation  

0
Y

V

X

U =
∂
∂+

∂
∂

         (5) 

Momentum Equations  

2 2

2 2

1
sin

U U P U U
U V

X Y X X YGr
θ ∂ ∂ ∂ ∂ ∂+ = − + + + Φ ∂ ∂ ∂ ∂ ∂ 

  (6) 

2 2

2 2

1
cos

V V P V V
U V

X Y Y X YGr
θ ∂ ∂ ∂ ∂ ∂+ = − + + + Φ ∂ ∂ ∂ ∂ ∂ 

     (7) 

Energy Equation 

2 2

2 2

1

Pr
U V

X Y X YGr

θ θ θ θ ∂ ∂ ∂ ∂+ = + ∂ ∂ ∂ ∂           (8) 

Equations (5)-(8) were non-dimensional using the following dimensionless scales: 
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,
L

x
X = ,

L

y
Y = ,

oU

u
U = ,

oU

v
V =  ,

2
oU

pp
P

ρ
∞−=

t

TT c

∆
−=θ  

α
ν=�� , 2

3

ν
β Ltg

Gr
∆= , ,

L

D
dr = ),( ch TTt −=∆

k

Lq
t =∆  

Here Gr and Pr are Grashof and Prandtl numbers, respectively. The Grashof number 

represents the ratio of the buoyancy force to the viscous force acting on the fluid. The 

reference velocity Uo is related to the buoyancy force term and is defined as 

( )cho TTLgU −= β . 

The Nusselt number (Nu) is one of the important dimensionless parameters to be 

computed for heat transfer analysis in natural convection flow. Also the Nusselt number 

for free convection is a function of the Grashof number only.  The local Nusselt number 

can be obtained from the temperature field by applying 

dx
x

Nu
)0,(

1

θ
=  

and the average or overall Nusselt number was calculated by integrating the temperature 

gradient over the heated wall as  

dx
x

Nuav ∫=
1

0 )0,(

1

θ  

with the boundary conditions   

On the left wall (X = 0): U = V= 0 , 1
),0( −=

∂
∂

X

Yθ
   

On the right wall (X = 1): U = V = 0, θ(1,Y) = 0 if U < 0 and 0),1( =
∂
∂

Y
X

θ
 if U > 0 

On the bottom wall (Y = 0): U = V = 0, θ = 1 

On the Upper wall (Y = 1): U = V = 0,  θ = 0   
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On the cylinder, 

At the bottom side: U = V = 0, θ = 1 

At the upper side:  U = V = 0, θ  = 0  

3.3 Numerical Analysis 
The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed below. 

3.3.1 Finite Element Formulation and Computational Technique  

The numerical procedure used to solve the governing equations for the present work is 

based on the Galerkin weighted residual method of finite-element formulation.  The non-

linear parametric solution method is chosen to solve the governing equations. This 

approach will result in substantially fast convergence assurance. A non-uniform 

triangular mesh arrangement is implemented in the present investigation especially near 

the walls to capture the rapid changes in the dependent variables.  

The velocity and thermal energy equations (5)-(8) result in a set of non-linear coupled 

equations for which an iterative scheme is adopted. To ensure convergence of the 

numerical algorithm the following criteria is applied to all dependent variables over the 

solution domain  

∑ −− ≤− 51 10n
ij

n
ij ψψ  

where Ψ  represents a dependent variable U, V, P, and T; the indexes i, j indicate a grid 

point; and the index n is the current iteration at the grid level. The six node triangular 

element is used in this work for the development of the finite element equations. All six 

nodes are associated with velocities as well as temperature; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for 

pressure and which is satisfied through continuity equation. The velocity component and 

the temperature distributions and linear interpolation for the pressure distribution 

according to their highest derivative orders in the differential Eqs (5)-(8) as 

( ) αα= UNY,XU  (9) 

( ) αα= VNY,XV  (10) 
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( ),X Y Nα αθ θ=  (11) 

( ) λλ= PHY,XP  (12) 

where α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element interpolation functions for the 

velocity components and the temperature, and Hλ are the element interpolation functions 

for the pressure. 

To derive the finite element equations, the method of weighted residuals (Zienkiewicz, 

[37]) is applied to the continuity Eq. (5), the momentum Eqs (6)-(7), and the energy Eq. 

(8), we get 

0dA
A Y

V

X

U
N =









∂
∂+

∂
∂

α∫  (13) 

2 2

2 2

1
        (sin )

A A

A A

U U P
N U V dA H dA

X Y X

U U
N dA N dA

X YGr

α λ

α α θ

∂ ∂ ∂   + = −   ∂ ∂ ∂   

 ∂ ∂+ + + Φ ∂ ∂ 

∫ ∫

∫ ∫
 (14) 

2 2

2 2

1
    (cos )

A A

A A

V V P
N U V dA H dA

X Y Y

V V
N dA N dA

X YGr

α λ

α α θ

∂ ∂ ∂   + = −   ∂ ∂ ∂   

 ∂ ∂+ + + Φ ∂ ∂ 

∫ ∫

∫ ∫
 (15)

 

2 2

2 2

1

PrA A
N U V dA N dA

X Y X YGr
α α

θ θ θ θ ∂ ∂ ∂ ∂ + = +  ∂ ∂ ∂ ∂   
∫ ∫  (16) 

where A is the element area. Gauss’s theorem is then applied to Eqs (14)-(16) to generate 

the boundary integral terms associated with the surface tractions and heat flux. Then Eqs 

(14)-(16) become, 

0
0

1
sin

A A

xA A S

U U P
N U V dA H dA

X Y X

N NU U
dA N dA N S dS

X X Y YGr

α λ

α α
α αθ

∂ ∂ ∂   + + +   ∂ ∂ ∂   

∂ ∂∂ ∂ + − Φ = ∂ ∂ ∂ ∂ 

∫ ∫

∫ ∫ ∫
 (17) 
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0
0

1
cos

A A

yA A S

V V P
N U V dA H dA

X Y Y

N NV V
dA N dA N S dS

X X Y YGr

α λ

α α
α αθ

∂ ∂ ∂   + + +   ∂ ∂ ∂   

∂ ∂∂ ∂ + − Φ = ∂ ∂ ∂ ∂ 

∫ ∫

∫ ∫ ∫
 (18) 

1

Pr

w

A A

w wS

N N
N U V dA dA

X Y X X Y YGr
N q dS

α α
α

α

θ θ θ θ∂ ∂∂ ∂ ∂ ∂  + + +   ∂ ∂ ∂ ∂ ∂ ∂   
=

∫ ∫

∫
 (19) 

Here (14)-(15) specifying surface tractions (Sx, Sy) along outflow boundary S0 and (16) 

specifying velocity components and fluid temperature or heat flux that flows into or out 

from domain along wall boundary Sw. Substituting the element velocity component 

distributions, the temperature distribution, and the pressure distribution from Eqs (9)-

(12), the finite element equations can be written in the form, 

0VKUK yx =βαβ+βαβ  (20) 

( )1

sin

x y x xx yy

u

K U U K V U M P S S U
Gr

K Q

β γ γ γ µ βαβγ αβγ αµ αβ αβ

αβ β αθ

+ + + +

− Φ =
 (21) 

( )1

cos

x y y xx yy

v

K U V K V V M P S S V
Gr

K Q

β γ γ γ µ βαβγ αβγ αµ αβ αβ

αβ β αθ

+ + + +

− Φ =
 (22) 

( )1

Pr
x y xx yy TK U K V S S Q

Gr
β γ β γ βαβγ αβγ αβ αβ αθ θ θ+ + + =  (23) 

where the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as, 

dAx,N
A

NK x βα=αβ ∫ , (24a) 

dAy,N
A

NK y βα=αβ ∫ , (24b) 

dAx,NN
A

NK x γβα=αβγ ∫ , (24c) 
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dAy,NN
A

NK y γβα=αβγ ∫ , (24d) 

dAN
A

NK βα=αβ ∫ , (24e) 

dAx,N
A x,NS xx βα=αβ ∫ , (24f) 

dAy,N
A y,NS yy βα=αβ ∫ , (24g) 

dAx,H
A

HM x µα=αµ ∫ , (24h) 

dAy,H
A

HM y µα=αµ ∫ , (24i) 

∫ α=α 0
u S 0dSxSNQ , (24j) 

∫ α=α 0
v S 0dSySNQ , (24k) 

w
w wS

Q N q dSα αθ = ∫ . (24l) 

These element matrices are evaluated in closed-form ready for numerical analysis. 

Details of the derivation for these element matrices are omitted herein for brevity. 

The derived finite element equations, Eqs (20)-(23), are nonlinear. These nonlinear 

algebraic equations are solved by applying the Newton-Raphson iteration technique 

(Dechaumphai, [9]) by first writing the unbalanced values from the set of the finite 

element Eqs (20)-(23) as, 

βαβ+βαβ=α VKUKF yxp  (25a) 

1
( ) sin

u x y x

xx yy u

F K U U K V U M P

S S U K Q
Gr

β γ γ γ µα αβγ αβγ αµ

β αβ βαβ αβ αθ

= + + +

+ − Φ −  (25b) 

1
( ) cos

v x y y

xx yy v

F K U V K V V M P

S S V K Q
Gr

β γ γ γ µα αβγ αβγ αµ

β αβ βαβ αβ α
θ

= + +

+ + − Φ −  (25c) 
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( )1

Pr

T x y

xx yy T

F K U K V

S S Q
Gr

β γ β γα αβγ αβγ

βαβ αβ α

θ θ

θ

= + +

+ −  (25d) 

This leads to a set of algebraic equations with the incremental unknowns of the element 

nodal velocity components, temperatures, and pressures in the form, 

0
0 0

uuu uv u up

v
vu vv v vp

Tu v

p
pu pv

K K K K Fu
FK K K K v
FK K K

p FK K

θ

θ

θ
θ θθ

α

α

α

β

θ

   ∆       ∆ =−     ∆     ∆      

 (26) 

where  

( )yyxxyxx SS
Gr

VKUKUKKuu αβαββαβγγαγβγαβγ ++++= 1
 

γαβγ= UKuvK y ,  

sinuK Kθ αβ= − Φ , 

xMupK αµ= , 

γαβγ= VKvuK x , 

( )yyxxyyx SS
Gr

VKVKUKK vv αβαβγαβγγαγββαβγ ++++= 1
 

cosvK Kθ αβ= − Φ , 

yMvpK αµ= , 

xuK Kθ αβγ θγ= , 

yvK Kθ αβγ θγ=  

( )1

Pr
x y xx yyK K U K V S S

Gr
θθ β βαβ γ αβγ αβ αβ= + + +  
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0pKθ = , xKpuK αβ= , yKpvK αβ=  and 0p ppK Kθ = = . 

The iteration process is terminated if the percentage of the overall change compared to 

the previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of matrix, the 

Newton-Raphson iteration technique has been adapted through PDE solver with 

COMSOL MULTIPHYSIS interface.  

3. 3.2 Grid Independence Test 

Preliminary results are obtained to inspect the field variables grid independency 

solutions. Test for the accuracy of grid fineness has been carried out to find out the 

optimum grid number. 

 

Figure 3.2 Convergence of average Nusselt number with grid refinement for Gr 
= 106 and dr = 0.2 

In order to obtain grid independent solution, a grid refinement study is performed for a 

square open cavity with Gr = 106 and dr = 0.2. Figure 3.2 shows the convergence of the 

average Nusselt number, Nuav at the heated surface with grid refinement. It is observed 

that grid independence is achieved with 13984 elements where there is insignificant 

change in Nu with further increase of mesh elements. Six different non-uniform grids 

with the following number of nodes and elements were considered for the grid 

refinement tests: 28442 nodes, 4616 elements; 50346 nodes, 7865 elements; 64240 
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nodes, 10451 elements; 69887 nodes, 11512 elements; 82584 nodes, 12466 elements; 

92573 nodes, 13948 elements, 98388 nodes, 15052 elements. From these values, 92573 

nodes, 13984 elements can be chosen throughout the simulation to optimize the relation 

between the accuracy required and the computing time. 

 

Nodes 

(elements) 

28442 

(4616) 

50346 

(7865) 

64240 

(10451) 

69887 

(11512) 

82584 

(12466) 

92573 

(13948) 

98388 

(15052) 

Nu 3.80956 3.81324 3.81344 3.81354 3.81366 3.81424 3.81426 

Time (s) 283.610 300.43 337.51 444.21 455.56 551.61 1007.65 

 

Table 3.1: Grid Sensitivity Check at Pr = 0.72, dr = 0.2 and Gr = 106. 
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3.4 Results and Discussion 
Two-dimensional laminar steady state natural convection flow in a square open cavity 

with the left vertical wall at iso-heat flux has been studied numerically, as shown in 

Figure 3.1. A partially heated circular cylinder is placed at the center of the cavity and 

the opposite wall to the aperture is heated by iso-flux heat source. The other two 

remaining walls are kept cool with Temperature Tc (Top wall) and heated with 

temperature Th (bottom wall). Two-dimensional forms of Navier-Stokes equations along 

with the energy equations are solved using Galerkin finite element method. Results are 

obtained for a range of Grashof number from 103 to 106 at Pr = 0.72, 1.00 and 7.00 with 

constant physical properties. The parametric studies for a wide range of governing 

parameters show consistent performance of the present numerical approach to obtain as 

stream functions and temperature profiles. The computational results indicate that the 

heat transfer coefficient is strongly affected by Grashof number. The use of Nusselt 

number and Grashof number develops an empirical correlation. Obviously for high 

values of Grashof number the errors encountered are appreciable and hence it is 

necessary to perform some grid size testing in order to establish a suitable grid size. Grid 

independent solution is ensured by comparing the results of different grid meshes for Gr 

= 106, which has been the highest Grashof number. The total domain is discretized into 

13948 elements that results in 92573 nodes.  

The effect of inclination angle is examined for Φ = 0º, 15º, 30º, 45º with aspect ratio A = 

1. A comparison between the steady-state patterns of streamlines from Grashof numbers 

of 103 to 106 with different angles is presented in Figure 3.3 – 3.12. Also a comparison 

between the steady-state patterns of isotherms from Grashof numbers of 103 to 106 with 

different angles is presented in Figure 3.3 – 3.12.  For the isotherm, the figures show that 

as the Grashof number and the inclination angle increase, the buoyancy force increases 

and the thermal boundary layers become thinner. We observe that the heat transfer in the 

cavity is qusi-conductive at Gr = 103 and becomes dominated by convective regime as 

Gr increases to 106 in fig: 3.3-3.19. As Gr is increased to 106, the isotherms show that the 

cold fluid penetrates right to the heated wall, where steep temperature gradients exit. At 

Gr = 105 and 106 from the figure, shows that heat transfer rate increases and flow is 

boundary layer type-specially left and cold wall. The cold fluid penetrates to the heated 

wall and the heated cylinder. Then the isotherms and streamlines become more packed to 

the cold wall. This suggests that the flow moves faster as natural convection is rigorous. 
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Flow of the hot fluid from the opening is choked, as a result of which the fluid velocity is 

increased and boundary layer becomes thinner. For the streamlines, the figures show that 

the fluid enters from the bottom of the aperture, circulates in a clockwise direction 

following the shape of the cavity, and leaves toward the upper part of the aperture. At Gr 

= 103 and 104 , the stream lines in the cavity show that for quasi-conductive regime 

entrance and exit sections of the fluid at the opening are unequal. The discharging fluid 

from the upper part of the cavity occupies smaller and smaller sections of the opening. 

The velocity of the air flow moving toward the aperture increases, and the area that is 

occupied by the leaving hot fluid decreases, compared with that of the entering fluid. 

Streamlines show that as the inclination angle of the heated wall increases, the velocity 

gradient increases at heated wall, and also the strength of the circulation increases. The 

results are presented in terms of streamlines and isotherm patterns. The variations of the 

average Nusselt number are also highlighted. The results in the steady state are obtained 

for a Grashof range from 103 to 106and for a range of 0o-45o for the inclination angles of 

the cavity. The results show that for high Grashof numbers, the Nusselt number changes 

substantially with the inclination angle of the cavity. The numerical model predictes 

Nusselt number oscillations for low angles and high Grashof numbers. 

In order to validate the numerical code, pure natural convection with Pr = 0.72 in a 

square open cavity was solved, and the results were compared with those reported by 

Hinojosa et al. [16], obtained with an extended computational domain. In Table 3.2, a 

comparison between the average Nusselt numbers are presented. The results from the 

present experiment are almost same as Hinojosa et al. 

Table 3.2: Comparison of the results for the constant surface temperature with Pr = 0.71. 

Nuav  

Gr Present work         Hinojosa et al. 

(2005) 

103 1.33 1.30 

104 3.42 3.44 

105 7.40 7.44 

106 14.41 14.51 
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3.4.1 Effects of Inclination Angle 

With the increase of the Grashof number, complex flow pattern characteristics were 

found for some inclination angles. To show this, the profiles of isotherm and streamline 

and inclination angles of 0o, 15o, 30o and 45o are presented in Fig. 3.3 to 3.8. For 

inclination angles of the cavity from 0o to 45o, the steady state become unstable; the 

pictorial diagram show that the fluid enters and leaves in a very asymmetrical way, 

indicating an unsteady convection. The cold fluid enters by the lower section of the 

aperture plane, without symmetry, and the hot fluid leaves by the upper section. The 

velocity magnitude of the leaving fluid is greater than the incoming fluid, and thus the 

thermal boundary layer at the top wall becomes much thinner. For the tilted angle of 45o, 

the air flow entering and leaving the cavity decreases its velocity considerably. 

In Table 3.3, average Nusselt number for different cavity angles and Grashof numbers, 

obtained with the present model for Pr = 0.72 and dr = 0.2 are presented. Table 3.3 

presents the average Nusselt numbers for four Grashof numbers (103, 104, 105 and 106) 

for a range of 0o - 45o for the tilted angles of an open square cavity. For different angles 

and Gr numbers, mainly for lower angles and for higher Gr, the average Nusselt number 

increases. Therefore, in Table 3.3, the average Nusselt numbers are reported. 

In Fig.3.13, we observe that the heat transfer rate Nu increases with the increase of 

inclination angles and Grashof number.  

Table 3.3: Average Nusselt number Nu for different cavity’s inclination angles Φ 
and Grasof numbers for Pr =0.72 and dr = 0.2. 

  Nuav   

Φ Gr=103 Gr=104 Gr=105 Gr=106 

0o 3.795779 4.608153 6.373589 9.947833 

15o 3.943523 4.528235 6.345305 10.062273 

30o 4.117558 4.020996 5.791963 9.583794 

45o 4.893168 4.48368 6.500447 11.429212 
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3.4.2 Effects of Prandtl Number 

A study of Pr = 0.72, 1.00 and 7.00 has been done for investigating the effects of Prandtl 

number on the flow and heat transfer characteristics. The predicted isotherms and stream 

lines are shown in figure 3.9 and 3.10. It is seen that the fluid that moves clock wise 

around the cylinder creates vortices in the cavity.  

In 3.4, average Nusselt numbers for different Prandlt numbers ( Pr = 0.72, 1.00 and 7.00) 

and Grashof numbers, obtained with the present model for angle Φ = 0o and diameter 

ratio dr = 0.2 are presented. 

 Figure 3.16 shows the average Nusselt number variation for different Prandtl numbers 

while Pr = 0.72, 1.00, 7.00. In Fig.3.16, we observe that average Nusselt number Nu 

increases with the increasing of Grashof number Gr and decreases with the increasing of 

Prandtl number Pr. The similar behavior is observed in Fig.3.17, 3.18 and 3.19. Heat 

transfer characteristics become low for higher Prandtl number Pr = 7 and high for lower 

Pr = 0.72. So the results show insignificant for different angles. 

We observe that the flow patterns become more of a boundary layer type at the walls for 

Gr = 105 and 106 with the increase of prandtl number Pr. This implies that the flow 

becomes slower and velocity gradient decreases as natural conduction is intensified. It is 

also seen that the region between cylinder and cavity wall is dominated by a slow 

moving stratified cellular pattern.    

The temperature is superior in the case of Pr = 7.0 than in the case of Pr = 0.72. This is 

because, the fluid with Pr = 7.0 has a lower thermal diffusivity than that of the fluid with 

Pr = 0.72. Hence, the fluid with Pr = 7.0 will tend to exchange less heat with 

surrounding fluid by diffusion. 

Table 3.4: Average Nusselt numbers for different Prandtl number while Pr = 0.72, 
1.00 and 7.00, angle Φ= 0o and dr = 0.2. 

  Nuav   

Pr Gr=103 Gr=104 Gr=105 Gr=106 

0.72 3.795779 4.608153 6.373589 9.947833 

1.0 3.615149 4.135585 5.788313 9.260708 

7.0 3.274197 1.944154 3.326285 5.488287 
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3.4.3 Effects of Diameter Ratio 

In Table 3.5, average Nusselt numbers for different diameter ratios (dr = 0. 2, 0.3 and 

0.4)  and Grashof numbers, obtained with the present model for angle Φ = 0o and Prandlt 

number = 0.72 are presented. Figure 3.20 shows average Nusselt number decreases with 

increasing of diameter ratio of the cylinder for Gr = 103 to 105. Again average Nusselt 

number increases with the increasing of diameter ratio of the cylinder for Gr = 106.At Gr 

= 103 – 105, thermal boundary layer increases along with the increase of diameter ratio 

(dr) because of the restriction of heat flow from bottom to upper in the cavity. But at Gr 

= 106, the thermal boundary layer decreases with the increase of diameter ratio due to the 

increase of convective heat transfer. For stream line, velocity gradient decreases with 

diameter ratio at heated wall. Entering fluid flow patterns become flat and create more 

vortices with the increase of diameter ratio. At  Gr = 104 , fluid flow more packed at 

diameter ratio dr = 0.4 than other diameter ratio dr and the flow type is boundary layer. 

 

Table 3.5: Average Nusselt numbers for different diameter ratios while dr = 0. 2, 0.3 
and 0.4, angle Φ = 0o and Pr = 0.72. 

  Nuav   

dr Gr=103 Gr=104 Gr=105 Gr=106 

0. 2 3.795779 4.608153 6.373589 9.947833 

0.3 3.341359 4.392743 5.846771 9.963084 

0.4 3.199761 5.51039 5.61039 10.244008 
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3.5 Chapter Summary 
Two-dimensional laminar steady state natural convection flow in a square open cavity 

with the left vertical wall at iso-heat flux has been studied numerically. A finite element 

method for steady-state incompressible natural convection flow is presented. The finite 

element equations derived from the governing flow equations that consist of the 

conservation of mass, momentum, and energy equations. The derived finite element 

equations are nonlinear requiring an iterative technique solver. The Newton-Raphson 

iteration method has been applied to solve these nonlinear equations for solutions of the 

nodal velocity component, temperature, and pressure by considering Prandtl numbers of 

0.72, 1.00 and 7.00 and Grashof numbers of 103 to 106. The results show the following 

aspects: 

� Heat transfer depends on Prandtl number and heat transfer rate decreases for higher 

Prandtl number. 

� Thermal boundary layer thickness is thinner due to the increasing of Grashof 

number.  

� The heat transfer rate increases for Grashof number 103 to 106 gradually but 

different behavior is found for angle 300.  

� The heat transfer rate Nuav increases with the increase of inclination angles for 

Grashof number 103 and it varies for rest of Gr. 

� The heat transfer rate Nuav decreases with the increase of diameter ratio for 103 − 

105 and increase for Grashof number Gr6.  

� Various vortices entering the flow field and a secondary vortex at the center and 

bottom wall of the cavity are seen in the streamlines. 
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Fig 3.3: Streamline patterns for different angles with dr = 0.2 and Pr = 0.72  
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Fig 3.5: Streamline patterns for different angles with dr = 0.2 and Pr = 1.00  
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Fig 3.6: Isotherm patterns for different angles with dr = 0.2 and Pr = 1.00  
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Fig 3.7: Streamline patterns for different angles with dr = 0.2 and Pr = 7.00  
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Fig 3.8: Isotherm patterns for different angles with dr = 0.2 and Pr = 7.00  
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Fig 3.9: Streamline patterns for different angles with dr = 0.2 and Pr = 0.72  
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Fig 3.10: Isotherm patterns for different Pr with dr = 0.2 and Φ = 00  
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Fig 3.11: Streamline patterns for different dr with Pr = 0.72 and Φ = 00  
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Fig 3.12: Isotherm patterns for different  dr with pr = 0.72 and Φ = 00  
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Fig.3.13: Effect of inclination angle on average Nusselt number and Grashof 
number while Pr = 0.72, dr = 0.2. 
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Fig.3.14: Effect of inclination angle on average Nusselt number and Grashof 
number while Pr = 1.0, dr = 0.2. 
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Fig.3.15: Effect of inclination angle on average Nusselt number and Grashof 
number while Pr = 7.0, dr = 0.2. 
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Fig.3.16: Effect of Prandtl number on average Nusselt number and Grashof 
number while Pr = 0.72, 1.0 and 7.0, angle 0o and dr = 0.2. 
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Fig.3.17: Effect of Prandtl number on average Nusselt number and Grashof 
number while Pr = 0.72, 1.0 and 7.0, angle 15o and dr = 0.2. 
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Fig.3.18: Effect of Prandtl number on average Nusselt number and Grashof 
number while Pr = 0.72, 1.0 and 7.0, angle 30o and dr = 0.2. 
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Fig.3.19: Effect of Prandtl number on average Nusselt number and Grashof 
number while Pr = 0.72, 1.0 and 7.0, angle 45o and dr = 0.2. 
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Fig.3.20: Effect of diameter ratio on average Nusselt number and Grashof 
number while Pr = 0.72, 1.0 and 7.0, angle 0o. 
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CHAPTER 4 

Numerical Analysis of Two Dimentional Laminar Steady-State 
Natural Convection Flow in a Tilted Open Square Cavity 
Having Partially Heated Square Cylinder 

4.1 Problem Definition  
The heat transfer and the fluid flow in a two-dimensional open square cavity of length L was 

considered, as shown in the schematic diagram of figure 4.1. The opposite wall to the aperture 

was first kept to constant heat flux q, while the surrounding fluid interacting with the aperture 

was maintained to an ambient temperature T∞. The other two remaining walls were kept cooled 

Temperature Tc (Top wall) and heated temperature Th (bottom wall). The square cylinder was 

assumed to be partially heated. The fluid was assumed with Prandtl number (Pr = 0.72, 1.0, 7.0) 

and Newtonian, and the fluid flow is considered to be laminar. The properties of the fluid were 

assumed to be constant.  

 

 

 

 

 

 

 

 

 

Figure - 4.1 Schematic diagram of the physical system 

4.2 Mathematical Modeling 

The several steps of the mathematical formulation for the above physical configurations 

are shown as follows  
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4.2.1 Governing Equations 

The governing equations for steady natural convection flow have been discussed in previous 

chapter: 

4.2.2 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

On the left wall (x = 0): u = v= 0 , 
k

q

x

yT −=
∂

∂ ),0(
   

On the right wall (x = 1): u = v = 0, Tin = T∞ , 0),( =
∂
∂

yL
x

T
 

On the bottom wall (y = 0): u = v = 0, T = Th  

On the Upper wall (y = 1): u = v = 0, T = Tc  

 

On the cylinder, 

At the bottom and left side: u = v = 0, hT T=   

At the upper and right side:  u = v = 0, T = Tc  

 where x and y are the distances measured along the horizontal and vertical directions, 

respectively; u and v are the velocity components in the x- and y-direction, respectively; T 

denotes the temperature; γ and α are the kinematic viscosity and the thermal diffusivity, 

respectively; p is the pressure and ρ is the density; Th ,Tc and T∞  are heated, cooled and  ambient 

temperatures respectively.  

4.2.3 Dimensional Analysis 

The governing equations in non-dimensional form are written in early chapter. 

The following dimensionless scales have used in the non-dimensional Equations (5)-(8): 

,
L

x
X = ,
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y
Y = ,

oU
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Here Gr and Pr are Grashof and Prandtl numbers, respectively. The Grashof number represents 

the ratio of the buoyancy force to the viscous force acting on the fluid. The reference velocity Uo 

is related to the buoyancy force term and is defined as 

( )cho TTLgU −= β . 

The Nusselt number (Nu) is one of the important dimensionless parameters to be computed for 

heat transfer analysis in natural convection flow. Also the Nusselt number for free convection is 

a function of the Grashof number only.  The local Nusselt number can be obtained from the 

temperature field by applying 

dx
x

Nu
)0,(

1

θ
=  

and the average or overall Nusselt number was calculated by integrating the temperature gradient 

over the heated wall as  

dx
x

Nuav ∫=
1

0 )0,(

1

θ  

with the boundary conditions   

On the left wall (X = 0): U = V= 0 , 1
),0( −=

∂
∂

X

Yθ
   

On the right wall (X = 1): U = V = 0, θ(1,Y) = 0 if U < 0 and 0),1( =
∂
∂

Y
X

θ
 if U > 0 

On the bottom wall (Y = 0): U = V = 0, θ = 1 

On the Upper wall (Y = 1): U = V = 0,  θ = 0   

On the cylinder, 

At the bottom and left side: U = V = 0, θ = 1 

At the upper and right side:  U = V = 0, θ  = 0  

4.3 Numerical Analysis 
The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed in previous 

chapter. 
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4. 3.1 Grid Independence Test 

Preliminary results are obtained to inspect the field variables grid independency solutions. Test 

for the accuracy of grid fineness has been carried out to find out the optimum grid number. 

Grid Test
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Figure 4.2 Convergence of average Nusselt number with grid refinement for Gr = 106 and lr 
= 0.2 
In order to obtain grid independent solution, a grid refinement study is performed for a square 

open cavity with Gr = 106 and lr = 0.2. Figure 4.2 shows the convergence of the average Nusselt 

number, Nuav at the heated surface with grid refinement. It is observed that grid independence is 

achieved with 4803 elements where there is insignificant change in Nu with further increase of 

mesh elements. Five different non-uniform grids with the following number of nodes and 

elements were considered for the grid refinement tests: 29808 nodes, 4497 elements; 41300 

nodes, 6265 elements; 48840 nodes, 7432 elements; 54557 nodes, 8304 elements; 72408 nodes, 

10065 elements. From these values, 54557 nodes, 8304 elements can be chosen throughout the 

simulation to optimize the relation between the accuracy required and the computing time. 

 

Nodes 

(elements) 

29808 

 (4497) 

41300 

(6265) 

48840 

(7432) 

54557 

(8304) 

72408 

(10065) 

Nu 0.605032 0.60628 0.60641 0.60641 0.60642 

Time (s) 243.406 303.938 476.719 737.656 993.125 

Table 4.1: Grid Sensitivity Check at Pr = 0.72, lr = 0.2, and Gr = 106. 
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4.4 Results and Discussion 
The proposed problem in a square open cavity with the left vertical wall is at iso-heat 

flux has been studied numerically, as shown in Figure 4.1. A partially heated square 

cylinder is placed at the center of the cavity and the opposite wall to the aperture is 

heated by iso-flux heat source. The other two remaining walls were kept cooled with 

Temperature Tc (Top wall) and heated with temperature Th (bottom wall). The Navier-

Stokes equations along with the energy equations in two dimensional formed are solved 

using Galerkin finite element method. Results are obtained for a range of Grashof 

number from 103 to 106 at Pr = 0.72, 1.00 and 7.00 with constant physical properties. The 

parametric studies for a wide range of governing parameters show consistent 

performance of the present numerical approach to obtain as stream functions and 

temperature profiles. The computational results indicate that the heat transfer coefficient 

is strongly affected by Grashof number. Obviously for high values of Grashof number 

the errors encountered are appreciable and hence it is necessary to perform some grid 

size testing in order to establish a suitable grid size. Grid independent solution is ensured 

by comparing the results of different grid meshes for Gr = 106, which was the highest 

Grashof number. The total domain is discretized into 8304 elements that result in 54557 

nodes.  

In figure 4.3 – 4.12, a comparison between the steady-state patterns of streamlines and 

isotherms from Grashof numbers of 103 to 106 alone with different angles of cavity, 

different Prandtl number (Pr) and different length ratio (dr) are presented. we observe 

that the heat transfer in the cavity is quasi-conductive at Gr = 103 and becomes 

dominated by convective regime as Gr increases to 106. The figures show that as the 

Grashof number and the inclination angle increases, the buoyancy force increases and the 

thermal boundary layers become thinner gradually for isotherm .The isotherms pattern 

show that the cold fluid penetrates right to the hated wall as increases of Gr = 103 to 106 

where the temperature gradient is more steep. The fluid penetrates to heated wall and the 

isotherm become more packed to cold wall which suggest that the flow moves faster as 

natural convection is intensified. For the streamlines, the figures show that the fluid 

enters from the bottom of the aperture, circulates in a clockwise direction following the 

shape of the cavity, and leaves toward the upper part of the aperture. The streamline 

patterns is very similar for last one Grashof number and the inclination angle, but the 

fluid moves faster and created vortices for Gr of 103 to105. From the figure 4.3 – 4.12, 
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the velocity gradient increases at lower heated wall and the strength of the circulation 

increases with the increase of inclination angle of the heated wall. The results in the 

steady state are obtained for Grashof number 103 to 106 and the inclination angles of  0o- 

45o of the cavity. The Nusselt number changes substantially with the inclination angle of 

the cavity for high Grashof numbers. The numerical model predicted Nusselt number 

oscillations for low angles and high Grashof numbers. 

4.4.1 Effects of Inclination Angle 

Complex flow pattern characteristics are found for some inclination angles with the 

increase of the Grashof number. The profiles of isotherm and streamline are presented in 

Fig. 4.3 to 4.8 with inclination angles of 0o- 45o. The steady state can not be secured with 

the increase of angles of the cavity. In figure 4.3 – 4.8, we observe that the fluid enters 

and leaves in a very irregular way which indicates an unsteady convection. In the cavity, 

the cold fluid enters by the lower sections and the hot fluid leaves by the upper sections 

without regularity. The thermal boundary layer at the top wall becomes much thinner 

because of the velocity magnitude of the leaving fluid and it is greater than the incoming 

fluid. The average Nusselt number for different cavity’s inclination angles and Grashof 

numbers, obtained with the present model for Pr = 0.72 and lr = 0.2 is presented in table 

4.2. This presents the average Nusselt numbers for different Gr and different angle of 

cavity. The average Nusselt number increases with Grashof number at different angle. 

Therefore, in Table 4.2, the average Nusselt numbers are reported. In Fig.4.13- 4.15, we 

observe that the heat transfer rate increasing with Grashof number and the increase of 

inclination angles.  

Table 4.2: The Average Nusselt number Nuav for different cavity’s inclination angles Φ 

and Grashof numbers for Pr = 0.72 and lr = 0.2. 

  Nuav   

Φ Gr=103 Gr=104 Gr=105 Gr=106 

0o 
0.607032 1.279575 2.466157 4.465709 

15o 0.846723 1.743181 3.411222 6.168179 

30o 0.594534 1.257437 2.472528 4.625688 

45o 0.607886 1.285933 2.54265 4.868601 
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4.4.2 Effects of Prandtl Number 

The flow patterns and heat transfer characteristics affected by different Prandtl number 

Pr( 0.72, 1.00 and 7.00) are shown. It is seen that fluid moves clock wise around the 

square cylinder and the pattern of isotherms and stream lines are shown in figure 4.9 to 

4.10. 

In Table 4.3, the average Nusselt numbers obtained for different Prandlt numbers while 

Pr = 0.72, 1.0 and 7.0 and Grashof numbers is presented. 

 The average Nusselt number variation for different Prandtl numbers Pr = 0.72, 1.00, 

7.00 with different angle are shown in fig. 4.16 – 4.19. From these figure, we observe 

that average Nusselt number Nuav increases with increasing of Grashof number Gr. In 

fig. 4.17 and 4.18, we also see that heat transfer rate decrease with increasing Prandtl 

number Pr. Heat transfer characteristics become low for higher Prandtl number Pr = 7 

and high for lower Pr = 0.72. So the results show insignificant for different angles. 

Table 4.3: Average Nusselt numbers for different Prandtl number while Pr = 0.72, 1.0 

and 7.0, angle Φ= 0o and lr = 0.2. 

  Nuav   

Pr Gr=103 Gr=104 Gr=105 Gr=106 

0.72 0.607032 1.279575 2.466157 4.465709 

1.0 0.497109 1.104225 2.172888 3.942645 

7.0 0.68205 1.432603 2.817915 5.31084 

4.4.3 Effects of Length ratio 

The average Nusselt numbers for different length while lr = 0.2, 0.3 and 0.4 and Grashof 

numbers, obtained with the present model for angle Φ= 0o and Prandlt number Pr = 0.72 

is presented in table 4.4. Figure 4.20 shows average Nusselt number increases with 

increasing of length ratio of the square cylinder for Gr of 103 to 106 expect lr = 0.2. This 

cause, the heated portion is extended of the square cylinder. At 106 the average Nusselt 

number is more for lr = 0.2.  At 106 the Nuav is more for lr = 0.2 and average Nusselt 

number increases with increasing of Grashof number.  

Table 4.4: Average Nusselt numbers for different diameter ratios while lr = 0.2, 0.3 
and 0.4, angle Φ = 0o and Pr = 0.72. 
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  Nuav   

lr Gr=103 Gr=104 Gr=105 Gr=106 

0.2 0.607032 1.279575 2.466157 4.465709 

0.3 0.806891 1.450436 2.619125 4.504048 

0.4 0.8038 1.462845 2.565466 4.193945 

4.5 Chapter Summary 
Numerical calculation has been presented for steady state laminar natural convection 

flow in a square open cavity with the left vertical wall is at iso-heat flux. Here we 

consider the range of  Prandtl numbers ( 0.72, 1.00 and 7.00) and Grashof numbers (103 

to 106). The calculation of the mean Nusselt number as a function of Pr, length ratio lr 

and angle of inclination of the cavity has been presented.  The results show: 

� Heat transfer depends on Prandtl number and heat transfer rate increases 

for higher Prandtl number for angle 00 and 450.Again heat transfer rate 

decreases for higher Prandtl number and increase for lower Prandtl number at 

angle 150 and 300.  

� Thermal boundary layer thickness is thinner with increasing of Grashof 
number.  

� The heat transfer rate increases for increasing Grashof number.  

� The heat transfer rate Nuav changes with the increase of inclination angles, 

and average Nusselt number increases with increasing Grashof number. 

� The heat transfer rate Nuav increases with the increase of length ratio lr but 

decreases when lr = 0.4 for Grashof number 106. 

� Various vortices enter the flow field and secondary vortex exist at 

different places in the cavity.  
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Fig 4.3: Streamline patterns for different angles with lr = 0.2 and Pr = 0.72  
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Fig 4.4: Isotherm patterns for different angles with lr = 0.2 and Pr = 0.72  
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Fig 4.5: Streamline patterns for different angles with lr = 0.2 and Pr = 1.00  
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Fig 4.6: Isotherm patterns for different angles with lr = 0.2 and Pr = 1.00  
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Fig 4.7: Streamline patterns for different angles with lr = 0.2 and Pr = 7.00  
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Fig 4.8: Isotherm patterns for different angles with lr = 0.2 and Pr = 7.00  
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Fig 4.9: Streamline patterns for different Pr with lr = 0.2 and Φ= 0o  

 

 



Chapter 4:  Results and Discussion 
 

 72 
 

 

 

 

103 

 

1.12

1.28

1.62

5.00

10.0015.0020.00
30.0045.00

10.00

1.62
1.28

1.28

5.00

5.00

 

 

1.06

1.13

1.27
1.13

5.00

10.00

20.00

35.00
5.00

10.00

5.00

5.00  

 

300.00

299.94

320.00

340.00

360.00

240.00
100.00 40.00

120.00
180.00

120.00

1
80

.0
0 299.94

220.00

320.00

280.00

299.94

 

104 

1.00

1.011.00

1.15

1.86

5.00

25.00

10.00
5.00

5.00

1.15

1.86

1.15
1.00

 1.00
1.02

1.00
1.00

1.00

2.00

4.00

6.00

14.00 6.00

10.00
6.00

2.00

1.00

2.00

 
300.00301.74

20.00

340.00 301.74 280.00

140.00

300.00

200.00 200.00

300.00

301.74

 

105 

1.001.00
1.01 1.00

1.00

0.79

1.00

2.00
4.006.00

8.00

1.01
1.00

 

1.
00

1.00
1.00

2.
00

2.00
10.00

4.00
2.00

1.01

0.690.29

 300.04
300.87

307.63

320.00

300.04

299.99

200.00200.00

299.99
299.9

299.99

200.00

 

106 

1.04
1.00

1.00

1.00

0.77 0.94

1.00

0.62

1.04
4.00

2.00

 1.03
1.00

1.03
2.00

1.03

0.66
1.00

 
309.24 302.53 299.87

299.87

220.00

220.00

299.87
299.87

300.00

02.53
300.00

299.87

299.87

10.79

280.00

 

Gr Pr = 0.72 Pr = 1.00 Pr = 7.00 

Fig 3.10: Isotherm patterns for different Pr with lr = 0.2 and Φ = 00  
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Fig 4.11: Streamline patterns for different lr with Pr = 0.72 and Φ = 00  
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Fig 4.12: Isotherm patterns for different  lr with pr = 0.72 and Φ = 00  
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Fig.4.13: Effect of inclination angle on average Nusselt number and Grashof number 
while Pr = 0.72, lr = 0.2. 
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Fig.4.14: Effect of inclination angle on average Nusselt number and Grashof number 
while Pr = 1.0, lr = 0.3. 
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Fig.4.15: Effect of inclination angle on average Nusselt number and Grashof number 
while Pr = 7.0, lr = 0.4. 
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Fig.4.16: Effect of Prandtl number on average Nusselt number and Grashof number 
while Pr = 0.72, 1.0 and 7.0, angle 0o and lr = 0.2. 
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Fig.4.17: Effect of Prandtl number on average Nusselt number and Grashof number 
while Pr = 0.72, 1.0 and 7.0, angle 15o and lr = 0.2. 
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Fig.4.18: Effect of Prandtl number on average Nusselt number and Grashof number 
while Pr = 0.72, 1.0 and 7.0, angle 30o and lr = 0.2. 
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Fig.4.19: Effect of Prandtl number on average Nusselt number and Grashof number 
while Pr = 0.72, 1.0 and 7.0, angle 45o and lr = 0.2. 
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Fig.4.20: Effect of length on average Nusselt number and Grashof number while Pr = 
0.72, 1.0 and 7.0, angle 0o. 
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CHAPTER 5 
 

5.1 Summary of Major Out Comes 

The study has been confined to cases of partially heated circular cylinder and square 

circular in an open square cavity. In cases of partially heated circular cylinder, the stream 

line of flow and thermal fields as well as characteristics of heat transfer process 

particularly its expansion has been evaluated in chapter 3. On the basis of the analysis 

the following conclusions have been drawn: 

(i) The partially heated square cylinder has significant effect on the flow and thermal 

distributions in an open square cavity. The average Nusselt number (Nu) at the hot 

wall is the highest for the angle 450 when Grashof number 106, whereas the lowest 

heat transfer rate for the angle 00 when Grashof number 103. Moreover, the average 

Nusselt number, when circular cylinder is considered is higher than those obtained 

with square cylinder for different angle. 

(ii)  The heat transfer rate Nuav decreases with the increase of diameter ratio for Gr3 - Gr5 

and increase of Grashof number Gr6.  

(iii)  Heat transfer depends on Prandtl number and heat transfer rate decreases for higher 

Prandtl number but increase for lower prandtl number. 

(iv)  Thermal boundary layer thickness is thinner for increasing of Grashof number. The 

heat transfer rate increases for Grashof number 103 to 106 gradually. 

(v) Various vortices entering into the flow field and a secondary vortex at the center and 

bottom wall of the cavity is seen in the streamlines.  

In cases of partially heated square cylinder, the stream line of flow and thermal fields as 

well as characteristics of heat transfer process particularly its expansion has been 

evaluated in chapter 4. On the basis of the analysis the following conclusions have been 

drawn: 

(i) The effect on the flow and thermal distributions in an open square cavity for 

partially heated square cylinder. The average Nusselt number (Nu) at the hot wall is 

the highest for the angle 150 when Grashof number 106, whereas the lowest heat 

transfer rate for the angle 300 when Grashof number 103 . 
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(ii)  The heat transfer rate Nuav closely ups and down with the increase of inclination 

angles and average Nusselt number increases with increasing Grashof number. 

(iii)  Prandtl number influnces isotherms, streamlines  and heat transfer rate in the cavity.The 

heat transfer rate increases with increase of Pr. The average Nusselt number (Nuav) is more 

for higher Prandtl number at angle 00 and 450.Again heat transfer rate decreases for  

 higher Prandtl number and increase for lower Prandtl number at angle 150 and 300.  

(iv) The heat transfer rate Nuav increases with the increase of length ratio lr = 0.2 to 0.3 but 

 decreases when lr = 0.4 for Grashof number. Thermal boundary layer thickness is thinner for 

increasing of Grashof number. 

(v)  Various vortices entering into the flow field and a secondary vortex at different place in the 

cavity.   

5.2 Comparison of Partially heated circular cylinder (PHCC) 
and square cylinder (PHSC) 

The isotherms and streamlines have been influenced by PHCC and PHSC in an open 
square cavity. The heat transfer rate is higher for PHCC than PHSC at different Gr 
because of the shape of cylinder. The average Nusselt number increases with the 
increases of Grashof number Gr = 103 -106 for both cylinders. In order to validate the 
numerical code, pure natural convection with Pr = 0.72 in a square open cavity has been 
solved. The results are compared with PHCC and PHSC. In table 5.1, a comparison 
between the average Nusselt numbers are presented for both cylinders. The results of 
both cylinders are almost same. We see that the difference of Nuav are in table 5.1, it 
shows that the highest difference of Nuav is 1.695381 at Gr = 106, the lowest is 0.293443 
at Gr = 104, with an average difference is 0.705905. The reason for the large difference at 
high Gr = 106 is explained by the fact that the heat transfer is dominated by convection 
regime.  

Table 5.1: Comparison of the results of PHCC and PHSC for the constant surface temperature 

with Pr = 0.72. 

Nuav   Gr 

PHCC         PHSC Difference 

103 3.795779 3.449382 0.346397 

104 4.608153 4.314710 0.293443 

105 6.373589 5.885192 0.488397 

106 9.947833 8.252452 1.695381 
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 5.3 Extension Works 

The consequent can be ahead for the additional works on the base of the present research 

as. 

� In the future, the study can be extended by dissimilar physics like radiation effects, 

heat generation and tube effects.  

� Effect of conduction on mixed convection flow in a square open cavity with a heat 
conducting square cylinder.  

� Effect of conduction on mixed convection flow in a square open cavity with a heat 
conducting circular cylinder.  

� The study can be extended for non-uniform surface temperature using different fluids 

� The study can be performed by using magnetic cylinder instead of partially heated 

rectangular cylinder. 

� Investigation can be performed by using magnetic fluid within the porous medium 

and changing the boundary conditions of the cavity’s walls. 

� Investigation can be performed by using inlet-outlet  with various place in the cavity. 

� Two-dimensional fluid flow and heat transfer has been analyzed in this thesis. So this 

consideration may be extended to three-dimensional analyses to explore the effects of 

parameters on flow fields and heat transfer in cavities. In addition, the problem of 

fluid flow and heat transfer along with heat generating cylinder may be studied in 

three-dimensional cases. 
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