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ABSTRACT

Electromechanical stress distribution 1in a dielgcﬁriQ'
between two circular parallel plates has been Calcﬁlated
using finite element method. First, the space between two
circular parallel plates has been divided into a finite
number of triangular elements. An extremum function in
energy density form has been developed. Then using enery
minimization technique, the potential at different vertices
of the elements are calculated. A computer program has
been developed for calculating fields, electromechanical
stresses developed in both isotropic and anisotropic
dielectrics between paréllel circular piéfeé. Later on,
the same method has been extended to find electromechanical
stress distributions for a non-linear medium like ferro-
electric insulator. Effects of both electrostatic and
alternating fields on the electromechanicai stress distri-

butions *in ferrocelectric materials have been studied.
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LIST OF PRINCIPAL SYMBOLS

Electric streés or field wvector (v/m)

Electric flux density, coulomb/m2

Charge density . coulomb/m3 -
Relative permittivity

Permittivity of free space, farad/m

Potential (Volts}

Extremum function

Element submatrix

Permittivity tensor of anisotropic dielectfic

Radius of upber circular plate, cm

Radius of lower circular plate, cm

Distanée between the two circular-parallel plates,cm
Electromechanical stress tensor

Components of the tensor §

Unit column vector

- Electro-mechanical force, Newton

Unit outward normal to a sufface Oor contour
Polarization in coqlomb#ﬁz
Electro-mechanical stress vector
Remanant polariiation in c0ulornb.-/m2

Dielectric constant at very weak field

Saturation electric field of ferroelectric material'vélt/m.
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CHAPTER 1 -
GENERAL INTRODUCTION

1.1 HISTORICAL REVIEW

Zlectrical insulation-technology has been develoned
gradually and empirically from the beqiﬁing of Electrical
Engineering. It is reéquirxed from the stand-pcint of
sarety and protectiocon from high voltages-and the reduction cof
Sower 1oss and economic operétiOn of power and communication
networks. Tnis will cause the proportional increase
in the size of system apparatus. Improvement and compactness
cf design of system apparatus would have a far-reaching influ-
ence on the'cost reduction and savings of energy resocurces.
So, electrical insulators should be designed to withstand the
highér electro-mechanical stress in order to develop compact

and high voltage egquipments.

In high voltage insulators space charge can leaad toc very
unaesirable conseguences. Various effects of space charge
in inzulators have been sunmarized by Ieda[l}421 . He
showed that the developed_space cha;ge alters the distribu-
tion profile of the field in compéjson with the original field.
it is known that the formation of space charge depends whether

the field is uniform or non-uniform.

Flash<over takes place along the insulator surface if

the tangential field is high enough to sustain a discharge,
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Singer and Weiss [3] éptimized high voltage insulator shape
making tangential field distributions uniform along its

surface., Ariother method to optimize the field stress on HV

insulators has been described by Salam [4 ].

Physicél systems are S0 complex that the analytical
solution of Laplace's or Poisson's eguation is difficult
4s such with the increasing availability of high speed digital
compute&s, various numerical technigques are being extensively .
developed ior the calculation of electrostatic fields in high i)'
voltage systems. Mukherjee and Roy [5] calculated fields ih '
insulators using fictitious point charge method and he was
successful in applying this method for disc insulators.
Takeshi [6] used charge simulation method in combiﬁation with
the method ¢f images to find electric fields in dielectric
multi-layers. Tadasu [7] successfully applied charge simula-
tion method to study the fieldlbehaviour at points on the
boundary of two'dielectriés. Heng Kun LS] suggests that the
field distributicn along the insulator surface is strongly
dependent on the p-~E characteristics and the extension of
ﬁhe semiconductor coating as well as the freéuency of the

operating voltages.

1.2 PRESENT STATE OF ART OF THE PROJECT - : E

Finite element numerical technigue is now being extensively

used to find solution of Laplace's equation encountered in



problems related to c¢ivil, mechanical and electrical engi-
neering. Chang et al.L9] used finite elemeﬁt method to’

, Calculatq'ef%btrical stress distribution within dielectric

- cavitiés. Ahmed [10] used this method to solve waveguide
problems. Monopolar corona equation was solved by Salan [ll]
using modified finite element method. The finite.element
method is a powerful numerical technigue that can be precisely
used to solve boundari vélue problems by piecewise lineari-
" zation-of the potential function over a large number of
discrete spatial elements. It received c¢onsiderable research
interest in designing civil and mechanical engineering |

structures.

1.3 OBJECTIVE OF THE RESEARCH

The objective of this research is to calculate the
eléctromechanical stress distribution in insulators by
finite element method. The purpeose of this analysis is to
predict the points of concentrated stresses and the air-
flash-over voltages of insulators. It is also of interest to
see the eléctrosfrictive effects on the electrostatic

stresses developed in ferroelectric insulators.’

1.4 PROCEDURE AND METHODOLOGY

In electromechanical stress calculation, the insulator

region will be first divided into a finite number of polygonal
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sub-regions called elements. Then using finite element method.
the potential distributions as well as electric stress at
different vertices will be ca{&ui%£ed; A suitable ehergy
distribution fuqction iﬁ variational form will be developed
for the systems under consideration and from the energy
distribution function the desired stress will be obtalined.
Computer programmes will be devéloped to handle boundary
value problems with some-open_boundaries by using f{inite

element variatiocnal technique.

Chapter-2 describes in general manner the finite element
- formulation of Laplaée's equation in isot;opic and anisotro-
pié dielectrics. Potential distribution in a dielectric
between two parallel circular plates is also illustrated

for isotropié and anisotropic cases. Electromechanical. stress
dis£ribﬁtion in dielectric regions between two parallel
circular plates are derived in chapter-3. Chapter-4 discusses
the electrostrictive effects on the stress distribution in
ferroelectric insulators. The thesis is concluded with a-

general discussion in chapter-5.
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CHAPTER 2
FINITE ELEMENT FORMULATION OF THE PROBLEM IN A DIELECTRIC

2.1 LAPLACE'S EQUATION:

The equations satisfied by the field of a stationary
charge distribution follow directly from Maxwell's equations
when all the time derivatives are placed to zero. We have,

then, at all regular points of an electrostatic field E

IxE = 0 (2.1)

v.D = p | (2.2)

Where D is the electric flux density and p is 'the charge
'density. According to (2.1), the line integral of the field
intensity E around any closed path is zero and the field is
conservative. The-conservative nature of the field is a

' necessary and sufficient condilion for the existence of a
scalar potential ¢ whose negative gradient gives the

electrostatic field,

il

=~ V¢ , R (2.3)

For linear isotropic medium we can write

D =¢E = - evVo

where ¢ is the permitivity of the medium,

From (2.2)

V,{=eV¢ ] = -e¥%¢ + Ve.V¢ =p _ .
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Since Ve= 0 for isotropic homogeneous dielectric,
vzq) = —— ) ' PR (2.4)

This is Poisson's equation. At points of the field which

are charge-free (2.4) reduces to Laplace{s eguation, -

vl = 0O v ... (2.5)

2.2 SOLUTION BY FINITE ELEMENT METHOD USING TRIANGULAR
ELEMENTS IN AN ISOTROPIC DIELECTRIC.

The basic requienent of the development of finite
element eguations is to find an extremum function which
can be written in energydensity form. as a first step in
the development of this method, a uniform surface is COnSi—l
dered which is completely filled with homogeneous.ahd isbtropié

dielectric.

J/The extremum_function_for electrostatic field can be

written as

(ST

J(gy == S5 |v¢|? ds e (2.6)

Derivation of egn. (2.6) is given in Appendix -Al.
The finite-element method[];ﬂ-@3]employs a set of
algebfaic functions defined over a subsection of the whole °

cross-section. These subsections may be polygonal in shape

and are called elements. Thus in the finite element method
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the entire domain over which the operator is defined is
divided into a finitefggmber of elements on each of which the
actual'moée;iqncﬁioﬁ i; épproximated hy a set of continuous
algebiaic-functions whiéh are only defined over the particu-
lar element under consideration and arelinearly dependent on

the values of ¢ at the vertices of the element.

Hence,. if an element has n vertices (fbr triangular

element n¥3), the potential ¢ within it may be approximated by

¢({x,y) =
k

[ e R

. N, (x,y)@k” (2.7)

Where ¢T is the value of ¢ at the vertex k and Nk(x,y)
is a predetermined algebraic function which'is uniguely defined
and differentiable over the element and which reduces to zero

outside the element.

|
d
——— L
%
e
L /
ol
o —— 2L

Fig. 1: Division into triangular elements.



An arbitrary isotropic dielectric cross section with

"the scheme. of grading into. elements iibéhown in Fig. 1l.:
Triangular elements. are--considered. here. A typical element
(the eth element) is: described.by the vertices i,j-and m

in cyclic order, Let ¢i, ¢, and ¢m be' the corresponding

]
values of ¢ at the vertices. For the element e .the functional

" depend&nce ©of ¢(x,y) can be written as

¢e(x,y) = a, * aqX +_q2y , e {2.8)

where Gyr

1 and o, are to be‘determinéd.

2
If (Xi'yi) ’ (3j,yj) and(xm,ym) are the co-ordinates
of the verticZi,j and m, then solving for o _, o, and dz,

we obtain

0%y = gy [laghxre v)ef + (agrbxre y)og +
(am;rbmx+cm}’) ¢Ii:l’ . .‘ cen - (2.. 9)
where
a; = xjym - xmyJ Y .o {(2.10)
b, = yj.- Yo
cy; = X 0~ x:I|

A.= area of the triangular element.

o
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“and A = % 1Lox, 0y
1 . .

3 Y5

L xp  Yp

The values of the other parameters can be obtained

by a cyclic rotation of the suffices i,j,m.

It is importantito note that the functional form of
the potential ¢§%x}y) as described by egn. (2.9) for all the
elements of the entire domain satisfies the continuity rela-
tion throughout the wholé region. This continuity oquis
essential for the wvalidity of the variational expression.
The finite jump in the normal derivativ. will not introduce
any error in the,variétional formulation, because the con-
tribution of this type of discontinuity in the normal
derivative to the net. integrated value of the function J.is

always zero.

When the functional forwm of ¢ as given above is substituted
into egn. (2.6) and the correspcnding integrations are carried
out, J will be a function of the variables ¢k. If there are

in all 4 vertices, then

T(R) = BUOysb,00q wevee  Gy) . (2.11)
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The optimum value of a set of ¢, for a certain func-
tional form of Nk(x,y) may be obtained by minimizing the func-
tion given by edqgn. (2.11) with respect to each of ¢k i.e.,

equating %g— =0 ; for k =1,2,3 ...... M (2.12)

9y

However, in the vicinity of boundaries where constant

potentials are specified

3
3

0

So that at the boundary,

-
-EF

>

b

where_¢b is the value of the potential at the boundary.

Egqn. (2.6) can be written for a two-dimensional case
I S 2
J = 5 Iro|ve|2as

T

- a9 42 29 42
ff [} > )t 3y ):] dx dy

For the eth element.

e e
e_l BQ a 35‘2 2 )
= + e 2.
J 5 ;Ie [( T } { 3y ) dx dy (2.13)
From eqgn. (2.9) taking partial derivative with respect
to x and.y

3. 1 |
o T (bi¢i+ bj¢j + bT¢m) R _ {(2.14)
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~

3¢ 1
and 3y TR ( ciby *t de)j + cmq:»m) (2.15)

Putting the egns. (2.14) and (2.15) into egn. {(2.13)

we get -
) 1 2
J- =~ IJ (b.¢. + b.¢. + b ¢ )
8A2 ei[ ivi itd m' m
4+ (c.d. + Cc.b. +t C_ O 12 |ax dy : (2.16)
. ivi 373 mim e )

The. integrand 1is independent of x & ¥

So, using ffe dx dy = A
i

e _ _1 2 ' 5
J° = 8 &bi¢i+bj¢j+bm¢m) +(ci¢i+cj¢j+cm¢m) ] e, {2.17)

Using eqn. (2.12) for the minimization of J functional

over the element e

(=N
235 1 :
89, 4A [bi(bi¢i+?j¢j+bm¢m) +Ci(ci¢i+cj¢j+cm¢m%

1--%

57 1
29, A by(b;0;+b 0 ¥b o) + Cj(ci¢i+oj¢j+cm¢m}
235 1T ' .
EE; = I bm(bi¢i+bj¢j+bm¢m) + cm(ci¢i+cj¢j+cm¢mq .. (2718)

In matrix form for the element e with nodes  i,J,m

e

el
RN
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B - 1T

e

9J b?+c? b,, . +c.c. b.b +c.c ¢.W

3¢i i 7 ihji Ti7j i“m im ‘ i
e o

ad = | b.b.+c.c. b%+c% b.b +c.c oy

a¢j i73 "i3 J 3 m ] m J

87" g 2, 2

— b.b +c.c b.b +c.c b™+c ¢

8¢m i™m m m m m .m L m

“o (2.19)
e .
or [-——?’le =[se}.[¢e] (2.20)
e
a¢ :
where
s€ is the element sub-matrix and ¢e is a column matrix.
s° is a sqguare symmetric matrix such. that Sijrsii' For

triangular elements, each of tﬁe element sub-matrix is a

3 ®x 3 sguare symmetric matrix. The above equat;ons (2.18) and
hence” (2.19) can be applied to obtain element. sub-matrices
for all the elements .of the domain.:The resultant matrix

will be the sum of all the element sub-matrices generated

by all the elements.
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2.3 FINITE ELEMENT SOLUTION IN ANISOTROPIC DIELECTRIC
BETWEEN TWO PARALLEL CIRCULAR PLATES

Anisotropic property in materials develops due to
nonuniform rate of deformation in different directions.
Systems undergoing plastic deformation are in this category.
In the case of insulators b tween two electrodes the rate
of deformation due to electro-mechanical stress in the
axial direction is expected to be different from that in

the lateral directibns.

-

In isotropic dielectrics, polarization is parallel bé}
with the appli.d fields and is independent of the direction
ofhfield,. For anisotropilc dielectric thié is different.

‘An electric field applied to an anisotropic material along
an axis of an arbitrarily oriented co-ordinate system leads
to polarization which ﬁas components in all c¢o-ordinate

directions. Hence,. Laplace's equation will be modified.

The electric flux density is given by

where Er is the relative permittivity tenscor.

Now , E=-V¢ (2.21)
Since V.D = p (2.22)
Then V.e £ E = p (2.23)
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Let us first consider a medium characterized by the

uniaxially anisotropic dielectric tensor of dimension 3x3.

4 -y
~ 1 0 0]
c =
r
0 1 0 .. (2.24)
i
0 0 k
L R
- -
Now, V.eagrv¢ ¥ - p
- = - Q .
o; vi erv¢ €, .o (2.25)

This is Poisson's equation for anisotropic medium

and the corresponding Laplace's equation is:

V. 8,7¢ =0 . e (2.26)

This takes the forﬁ

-

2 2 a2
V. 8 vy = 204 870 4 ge270 - ce. (2.27)
r 2 2 2
ax ay oz

This equation is vaiid also for a biaxial dielectric having

dielectric tensor of the form

1)
F1 43k o |
. u ’
gr =z |—-jk 1 0
0 0 K’




If we consider a two-dimensional case {X,v plane) and
let the anisotropy be along y direction, then equation-(2.27)

for anisotropic medium will be

2 2 - _
3—%+K'a—% - 0 (2.28)
ax oY

The correéponding variational expression will be

I [(%:%)'2 + K’(.—S—%) -’-] ds = 0 (2.29)

From equation (2.3) the .extremum function will be for

the_eth element

1
Je- S I: (-aﬂ?)z+' K“(i@f)z] dx d (2.30)
=5 . Y 3y V4 . e .

Using eqn. (2.14) to (2.18) we can write the element

sub-matrix for . anisotropic dielectric as

e

3J b2+xe? b.b.+kxc.c. b.,b_+kt.c_- by -
8¢i i i i3 i3] im i m i
53 ' . 2,22 ‘

—_— = b,b.+kc.c. bT+kec?. b.b_+kc.c e
65 13 13 3 Jmo T 3m -3

e - .

8 b.b_+kt.c b.b +ké.c_  b+Ke? b
8¢k i™m im . Jm Jm i m m,

L - L ) i

(2.31)

'hus a finite element solution for an anisotropic dielectric

can be established.
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2.4 POTENTIAL DISTRIBUTION IN AN ISOTROPIC DIELECTRIC
BETWEEN TWO CIRCULAR: {PARATEEL PLATES

This will illustrate the form of finite element
discreti@aq equatibné in a'two—dimensional.bdundary va;ue
prdblem. Assuming the structure symmetrical about Y .
.its cross-sectibﬁ'together with its co-ordinate. system is
shown in figure 2.1. The corresponding,extremum function

can be written over element e - as:

. . e e
3%(4) = 3 f;e[ A2+ 2 )2ildx dy.

-

where ¢e is the potential o?ér the eth element.

In this case, the upper .plate is kept at a certain
potential V énd the lower plate is maintained at zero p&ten-
tial. The space within theserfwo plates has been divided
into 32 triangular elementé and 25 nodes. We assume.a
linear variation of potential over cach. element and follow-
ing the procedure discussed earlier, we obtain a set of
linear algebraic equations. In this case, corresponding_
to 25 nodes we get 25‘linear‘élgebraic equations. Solution
of the above set. of linear equations will give the poten-
tials at different nodes. Later on the space has been

divided into 64 elements. and 45 nodes. and the potential



| Circular piate
1 0 \<— '

Circilar plate

Fig. 2.1. Co-ordinate system of the problem

— e

X
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variation at different levels has been calculated using
finite element method. The results are plotted in Fig.2.2.

The potential function is symmefrical about the level y = h/Z.
That means the.poten£iél fLom‘the top plate gradually decrea-
ses and becomes a constant function of x at the level y = h/2
where ¢ = .5v. Similarly, the potential from the bottom

plate gradually increases to ¢= 0.5v at the level y = h/2
and becomesla constant.function of x. Thus at y = h/2, %% =0
indicating that at this level no lateral field exists. Rather
the field is entirely vertical at the mid level between the
two plates. This is expected because the electric lines of
forces emanating from the top plate will take turn towards
the bottom plate after reaching the mid level. This also
indicates that half of ‘the energy is stored in the upper

ialf region and the rest half in the lower half region as

is expected in a parallel plate capacitor or. in the case of

a dipele,

2.5 POTENTIAL DiSTRIBUTION IN AN ANISOTROPIC DIELECTRIC
BETWEEN TWO PARALLEL .CIRCULAR PLATES

In this séétion; finite element method is used in
determining the potential distribution in the region
between two parallel plates when anisotropic prOperty_prevails
along y direction. Following the derivations in section 2.3,

numerical results of the potential distribution in the
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énisotropic region are obtained for k’= 5.0 and plotted

in Fig. 2.3; The potential function siopes down and slopes
up in a faster rate compared to an isotropic dielectric
indicating higher electric stress developed in the verti-
cal direction and weaker stress in the latera} direction.
This indicates that systems undergoing plastic deformation
will experience enhanced stress in the direction of maximum
deformation and less stréSé”in’the direction of minimum

deformation.

2.6 DISCUSSION

In the above the finite element.method of solving
Laplace's equation in isotropic and anisotropic regions
is presented in a general.manner. An extremum function is
defined by linearization of the potential function on each
element in such a ﬁaﬁner that the conditions of minimum
energy is satisfied with the setup of potential at each node.
The potentiai of each node being reiated to the potentials.
at other nodes, the minimum energy conditicn applied at a
certain node relates: the potentials'of all nodes by a linear
algebraic equation. With the increase of elements which are
triangles for piecewise linearization of the potential
function the number of potential nodes and algebraic eqﬁa—

tions increases. These equations were solved by higher order
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matrix inversion using Gaussian elimination method. The
humerical data were obtained for potential distribution in
isotropic and anisotropic dielectrics between two circular
parallel plates. The results are supported by simple physical-

explanations.
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_ ' CHAPTER 3
ELECTROMECHANICAL STRESS DISTRIBUTION IN INSULATORS

3.1 INTRODUCTION:

.

The first break-down theory for insulators was the thermal
break down theory presented by Wargner [}5]in 1922, In this
theory the dielectric break-down was discussed in terms of the
cendition to b:eak—down the.thermal balance between Joule
heating due to the conduction current and its dissipation
However, there exists low and high temperéture region in the
temperature dependence of electric strengths of solid dielec-
tric. It is difficult to explain the break-down process in the
low temperature regicn by the thermal break-down theory. Later
on electromechanical break-down theory was proposed by StarkEHﬂ
It states that the break-down is caused in insulatcrs by the
mechanical deformation dué to Maxwell ‘stress under the applied
electric field. Allan [lﬂ emphasized the compound nafure of
stress - electrical, mechanical and thermal for insulation'f

systems.

3.2 ELECTROMECHANICAL STRESS ANALYSIS FOR A DIELECTRIC MEDIUM:

The study of electric stress distribution in ‘and around
insulators has been of considerable interests to electrical
engineers for designing eguipments that opefate at very high

voltage levels, There is always stress due to the steady state
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power frequency voltage. Again, there exists méchanical stress
due to mechaﬁical deformation under the applied electric field.
The peak stress value in an insuléting system is an important
parameter because it infleunces discharge initiation and pro-
pagation. There are various numerical techniques that have
been used to calculate this stress distribution in and around
insulators. ﬁith the availability of high speed computers

the finite element method has been found to be very useful to
solve such type of problems. The electrical stress in insulators
i: perhaps the easiest to gquantify. Because of the gecmetry

of most power system components, the electrical fields that
high voltages give rise to are more often than not quite
non-uniform. Rapidly changing transient voltages can tempora-
‘rily cause further extremely non-uniform distribution of
stress. In terms of the scalar potential ¢ the electric field

intensity E is given by

E = - V¢ (3.1)

where ¢ is the potential distribution.

"The theory on Maxwell—Faraday's electro-mechanical
stréss in 'ether' has been widely discussed by Stratton Exﬂ .
We outline below a brief review of the materials covered
therein emphasizing their validity for dielectric subs-

t@nces. Let us suppose that a certain bounded region of



space contains charge distributions, but is free of all

dielectric. The field .is produced in part by the charges

25

within the region and in part by sources which are exterior

to it. At every interior point,

Since E = = V¢ ;, then
YxE = 0

and V.E = £
. €

(3.2)

(3.3)

Let (3.2) be multiplied vectorially be EOE, 50 we

get
€ (VxE) xE = 0
or € i 5
JE JE 3E
—2z . _¥ = -
y az 3z
E E
X Y

Where 1 , j and k are unit

O

directions-respectively.

(3.4)

k
JE 3E JE
2 Y . X =
X X Y
E
2 J

vectors in the x,y and z

‘J\_

o



The x component of the vector (VxE)} xE is given by

. 3E,, 3E_ JE BE_
[7xB) 5B L3 =8, 5F - 5D - By G - gy
9E_ QB 3E 3E_ | _
= EZ (—az—' - ‘a—x—“) - Ey (—lax —'a—ir—-) +'EXV.E - EXV.E
oE BEZ oE ok oL BEZ
= Byix T Eaw T Ey3w tEiw ot y 9y 32
dE
E —2 - E_V.E
zZ 02 X
18 g2 _ 13 .2 _ 132 .2 38 2
© 2 3x Ex 2 9x Ey 2 9x Ez * 0 (ExEy) T 5z EzEx)
. - E_V.E
8 g2 _Llg2zy o, 3 2 - 5
= 3% (Ex > ET) + 3y (ExEy) + "z (EZEX) E V.E
where E2 = E2 + E27+ E2
X Y 2
. ' - 2 _ 1 g2
Now let 511 7 €9 ( B " 32 E™ )
s12 - ?o ExEy
S = e_E_E

26
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Sij in the above transform constitute the tensor whose
components are given in table 3.1. The first three terms on
the right side of (3.5) constitute therefore the x component
of the divergence of a tensor g. The reméining components are

calculated from the y and z components of EO(VXE) XE, such

that we are led to the identity

¢  (VxE)xE = V.ST - ¢ EV.E v (3.6)
0 . 0 :
where T is the unit column vector
_ i
I = j (3.7}
k

Table 3.1: Components Sij of the tensor S in free space

3/k 1 2 3

1 EoEi - E% E2 E:oExEy EoEsz ) |
2 EOEyEx eoEi - E% E2 EoEyEz

3 £ EZEX EOEZEy € Ei - E% E2
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If stationary charge distribution is considered, the
fields are .then independent of time, then taking help of

equation (3.3) , equation (3.6) reduces to

A
V.SI = Ep (3.8)

Equation (3.8) is a felation through which the forces
exerted on elements bf chargé at any point in empty space
is expressed in terms éf the vector E. As the charge density
p is in coulomb/mB, the force distribution given by fhe
right hand side of (3.8) will be in Newton/m3. Let us now
integrate the identity (3.8) over a volume v. The integral
of thé divergence of the tensor throughout v is equal to
the integral of a vector over the surface bounding v. Let
'n be the unit outward normél at a point on the bounding surface.
Then. the total force exerted on the charges enclosed is given

by
F=/7.8T av = J_ Epav cee o (309)
By dive;gence theorem

F = fa {SI) .nda = fvEpdv . . ' .o " (3.10)
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Thus the guantity (SI).n comes out in the form of
forcehper unit area or as a mechanical stress. That means
(gf).ﬁ represents a mechanical stress developed with appli-
cation of the electric stress E. Any neutral body between an
electric potential difference will experience such mechanical
stress in the férm of compression or tension. For free space
between the two pla£es the mechanical stress will work on
.- the potential piateé'only. In light of the above discussion
the analysis for an isotropic dielectric medium surrounding

the charges can be carried out in the following manner.

~Let us multiply edqn. {(3.6) by the relative permittivity

er of the dielectric so that

€5 {VxE) x ErE = g V.SI - ;V.EOQIE f 0 (3.11)

For a dielectric since D = eoerﬁ , then (3.11) can be written

as

e V.51 = Ev.D .. (3.12)

B=B + P . | o (3.13)
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where P is the amount of electric polarization in the
dielectric and 50 = EOE is the unpolarized portion of the

electric flux density D. Then

The unpolarized flux density 50 links the charges and B is the
portion. of the flux. density absorbed in the region in polari-
zing the dipole moments of the dielectric. On the charged

regions P = 0 so that

V.D = V.D_ = p ' cae {3.14)
In the dielectric region p= 0, hence V.EO =0

so that " y.D=v. P _ e (3.15)
Thus equation (3.12) can be written as for charged regions

e, V.85 = Ep . (3.16)

m
<3
>
-]
|
b
<
ol

. (3.17)

Hence the. forces in the charged.and dielectric regions are

giﬁen.respectively as
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F = Er fa SI.n da = fvEpdv . s (3.18)
F=¢ § 8I.nda =/ EV. P (3.19)
r a v

Identical form of the left hand sides of egms. (3.18)
and (3.19) indicates that the electromechanical force is
continuous indicating that in the dielectric regiornp is
'replaceable by the hypothetical charge densitfté; B. Moreover
in the present case all stress elements will be €, times

greater than those for free space.

Equation (3.19) does not state thaf the volume force F is
maintained in equilibrium by the force,ergf.ﬁ distributed
.6ver the surface. The eguilibrium must be established with
mechanical forces of some other type and in fact., a charge
distribution can not be maintained in.static equilibrium
under the action of electrical forces alone. For equilibrium

+he determinant of the stress tensor must vanish, 1i.e.

e | €5 (Ey 5 E7) - EOEXEy e EE, ‘
1 2 _
EOEYEX e (B_ - 5 ET)=-x EoEyEz =0
2 1 .2
€oEzEx €oEzEy €O(Ez 2 E7)-A




When expanded and reduced by taking account of the

relation E2 + E2 + E2 = Ez,
X b Z
Egn . (3.20) proves equivalent to
3 2,2 4. .7
8A° + 4EA° - 2E"Af~ el gb =0 oo (3.21)

The roots of (3.21) are, therefore,

e e
= 2B, gyt % £? ... (3.22)

Tt is evident from (3.22) that the stress quadratic has an
axis of symmetry. Let E(a) be a unit vector fixing the direc-
tion of the principal axis associated withlxa. The components

of E(a) with respect to an arbitrary reference system must

satisfy-

& - %) n'®+ 5 En® + 5 E nfd) =g
e e n®y (82 55H)n®s 5 E =0 e (3.23)
Y. X X Y Y. y ¥ 2 - '
e n® 1 EEn®s @ -Hnl? =0
2 X X 2y Y 2 2

From the theory of hbmogeneous'equations it is knewn that

{a) (a)

the ratios of unknowns n o ny P néa)-are the ratiocs of the

minors of the determinant of the system, whence-it is clear
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from {(3.23) that

n(a): n(a): n(a)= E :+ E : E . {3.24)
X Yy z x y Z
The major axis of the mechanical stress quadratic at any
point in the field iS directed along the vector E at that
point. The stress transmitted across an element of surface

whose normal is oriented in this direction is a simple

tension,

) —%—5 g? 5 (&) ... (3.25)

The stress across any element of surface containing the
vector E - i.e., an element whose normal. is at right angles
to the lines of force is also normal but negative, and

corresponds therefore to a compression,

£ £ . [ ' -
Z(B) _ _ _%_;E2 AP gle Lo g2g (€} .. (3.26)

" Now let us write the mechanical stress at any point as

t =c.SI.n .. (3.27)
r \ -
Then tx = er(Sllnx + 512ny + 513n )
ty = g (S?_ln}c + 822 y + 823n2 )
b, = €p(S3n, + S5on + S0, ) ce.  (3.28)
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Where nx,ny and n, are components ot the normal n along
x,y and z directions respectively. Suppose, the normal n

of a surface element in the field is oriented in an arbi-

trary direction. Let the z axis of a co-ordinate system loca-

ted at the point in question be drawn parallel to E and the
x-axis be perpendicular to the plane through E and n. Let

the angle made by n with E be . Then

n., =0, ny = S5ing and n,6 = Cosg,

The stress components by Table 3.1 are:

€ ~E E~E
_ _ _ o°r .2 .. _ Jo"r .2
tX =0, ty > E” Sinsg, tZ 5 E™ Cosg

Hence the angle of the stress with this electric field E is

given by
A eee T(3.29)

The absolute value of. the mechanical stress transmitted
across any surface element, whatever its orientation, 1is

therefore,

|t| = g = £ B.E. (3.30)

- -
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Furthermore t lies in the plane of E and n in a
direction such that E bisects the angle between n and t

as lliustrated in Fig. 3.1.

FFig. 3.1 : Relation of tension E_transmitted across an
elenent of surface in an electrostatic field to

the field intensity E.

\ﬁ(3 ELECTROMECHANICAL STRESS DISTRIBUTION IN AN ISOTROPIC
DIELECTRIC BETWEEN TWO PARALLEL CIRCULAR PLATES.

In order to obtain the electric stress distribution
between two parallel plates by finite element method let
us first consider a general triangular eth element having-

nodes 1i,j,m. ¢i’ ¢j and ¢m being the corresponding node

potentials, Ty
m
e
E—
The electric field compo-
nents are given by
. o —r

~~

— ' Fig. 3.2: A generalized tri-
' angular.element.’
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where ¢e is the potential function over an element. From
equation (2.9) we have the potential variation over the eth

element as

- .d '

. ‘ e (e)
+ (aj + bjx + cjy) d. + | am+ bmx + CmY) ¢m ]

where A = % 1 x4 yl
1 .
*3 Y3
1 xm yrn
_ _ 1 (e}, . (e) (e)] :
Hence EX 5E [jbi¢i + bj¢j + brn ¢m B e (3.3;)
_ 1 [ e, (e (e) 7
Ey = 5% ci¢i + Cj¢j + Cm¢m. .o (3.32)
where the wvalues of ai,bi,ci are given by eqn. no. (2.10).

Applyinglthe ahove two equationé for electric stress over
each element, electric stress distribution.over,the entire
region can be calculated. For determiﬁing the corresponding
mechanical stresses dgveioéed at different levels between
thé two parallel plates, let us consider the unit normal n

in the y-direction. So that n_ = 0 and n, = 0.

Ry
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Hence by using the elements of stress tensor given in

Table 3.1, the mechanical stress components are given by

t. =5 = € e€_EE .o (3.33)

- = L -
t, = 8, =5 £y (EL - E ) (3.34)

The magnitude of the resultant stress is given by

el = ft? 4 t2
VvV oy b
" EZ - E 2 .2
= ¢ c (uﬁ————i )2+.E E
or 2 X 'y
£ & £ ¢
_o'r 2 2 _ _©o'r 2
= —E—-( ET + Ey ) > E
_ 1l ==
= 3 D.E .o (3.35)

The angle O of the mechanical stress produced with x-

axis is given by

_l t
e = tan _.X
m t
: X
-1 ExE
= tan -—2—'Lﬁ
E‘-ES
y x
-1 E
In terms of the angle of electrical stress Be = tan EX
' X
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We get

5 = 2¢g - 90 « o {3.36)

it can be readily checked that the electric field vector
bisects the angle between the normal n and the mechanical stress

t, a fact that has been pointed out in section 3.2.

Fig. 3.3 and 3.4 represent respectively the magni-
tudes of electrical and mechanical stress distributions
calculated by finite element method at different levels of
an isotropic dielectric between two circular parallel
plates of identical size. The corﬁesponding variation of
angles of.these étréss vectors are given in table 3.2.
Both types of stresses are maximum at the edges of the top
and the bottom plates. On the ﬁotehtial plates the mechanical
stress produces a tension which is balanced by the compre-
ssive. electric force. At the edges of the top plate a strong
compressive meéhanical stress is developed in the lateral
direction and at the edges of the bottom plgte the resulting
stress ig a strong tension both in lateral and vertical
directiogs. With the increase of distance from the potential
plates the electromechanical stress decreases ra?idly. The
mid-level at y = %- is subjected to égual and opposite

electromechanical forces in the vertical. However, shear

St |



forces will develop at this level in the lateral direc-

tion. Because fhe lateral mechanical stresses above and below
this level are oppostely directed.’Under critical circums-
tances the electric force between the two plates may not be
sufficient to save the dielectric from lateral fracture due
to these lateral chear forces. While the upper portion of

the dielectric will tend to move to the left, the lower

portion will tend to mbve.té'tﬁé right due to the antiparallel
- lateral stresses in the twd portions of the dielectric.

These phenomena can be clearly visualized from the wvariation
of stress angles given in table 3.2. Perhaps this is the
reason why capacitors brust under untolgrable voltages.

Fig. 3.5 and 3.6 illustrate the electromgchanical stress
distribution'for unequél sizes of the potential plates.
Stresses are invariably maximum at the edges of plates.
Distributions. of electrical and mechanical stress angles

for this case are shown in Table 3.3. Variation of angles

are almost same as the. former case.

.C\.
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————-——= Magnitude of slectric stress | E! volt /cm

0Ly

03vt

0-2vH

0V

i

—_— X (cm)

Fig.33 Electric stress distribution between two parallel circular
: plates in an isotropic dielectric
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Magnitude of mechanical stress |t |

Newton /rn2

18P

16P |

oy
I~
o

12P

0P

8P

6P

4P

2P

e

1 2 3 4 5 6 7
' ——= X (em)
Fig.3.4 Mechanical stress distribution in an isotropic dielectric between
~ two parallel circular plates a different heights




TABLE 3.2: Variation of Electrical and Mechanical stress angles with the horizontal

plane at different levels in an isotropic dielectric between two circular

parallel plates, a=b=h/2 2 cm.
X .
AN 0 1 2 3 4 5 6 7
{(cm)
8, -90° -90° |-44.41° -37.29° | -33.05°| -31.57° | -33.82°]| -52.49°
4
o, +90° +90° |-178.82° |-164.58° | —156.10° | -153.14° | -157.64° |-194.98°
3 0 -88.89° | -84.17° |-66.48° |-63.70° | -62.98° | -63.30° |-65.99° | -77.32°
8., ~267.78°| -258.34°|-222.96° |-217.40° | -215.96° | -216.60° | -221.98° | -244.64°
6, -90.00° | -90° —90° —90° -90° -90° -90° ~90°
2 ie +90.00° | +90° +90° +90° +90° +90° +90° +90°
m
6, ~91.07° | -95.39° | -108.22° -124.4° | -133.86° | -137.57° 1 -135.9° | -118.19°
1 e | +87.86° | +79.22° | +53.56° {+21.20° | +2.28° -5.14° ~1.8° +33.62°
0, -90° -90° ~163.20° | -164.21° | -164.58° | -164.02° | -160.13° | -134.97°
. _ .
5 +90° +90° -56.4° -58.42° | -59.16° | -58.04° | -50.26° | +0.06°

b



vaolt /em

r

Magnitude of electric stress | E |

0.5%
y=nh
" Y
0.4VEH K ey
—of O |fe—
£
:b_h
0-2-‘. 1em
0.3vf - X
-3_ i Ch— b -
Y'Lh
¢=0
_h
m ‘)'-L
02V
- h
Y =3
0V}
1 - L 1
0 } 2 3

———= X [cm)

Fig.3.5. Electric stress distribution between two unequal parallei
circular plates -
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1

6P

—— = Magnitude of mechanical stress Newton/m?<

8P

1P

12P

-t
o
U

[=-]
vl

o
T

P

2P

1 2 3 SR/
= X (cm)

Fig.3.6 Mechanical stress distribution between two unequal circular
parallel plates -
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Table 3.3: Vvariation of electrical and mechanical stress angles at

different points between two une

- plates in isotropic dielectric

qual parallel circular

a = > 7 1l cm.
= s
(cm) _
: 1 2
| y 0 3 4 5 6 7
(cm)
. |-90° -43.2° | -35.28° | -31.08° | -29,58° | -29.78° | —32.95° | -52.2¢°
2 4 o o o o o) o o) o)
6, |+90 ~176.4 -160.56" | -152.16° | -149.16°| -147.56°| -155.9 -194
fi . . . )
}gf 0 o o l o o o) ' o o o
i o |~83.68° ‘| -61.88 -60.45 -60.82 -61.45° | -62.48 -65.57 -77.19
3 o] @] O Q O Q [&] 3
® |+102.647 | +146.24° | 149.1 148.4 147.1 +145 1139 +116°
e, -86.63° | -80.05° | -84.69° | -86.72° | -87.99° | -gg.52° -89.36° | -g9.74°
2 6 +96,74° | +110° +100.62° | 96.56° 1 94° 92.36° 91.28° | 90.42°
8, -89.67° | -91.53° | -105.54° | -120.98°|-131.84° | -135.5° -134.8% {-117.7°
1 Q (8] Q Q @] (@] @] @]
Gm 90.66 86.94 58.92 28.04 6.32 ~-1.6 0.4 34.6
9 -90° ~90° -162.85° | -163.89°] -164.37°|-163.89° | -160.1° |-134.98°
0 6, | +90° +90° -55.7° . | -57.78° | -58.74° |-57.78° | -50.2° l40.04°

SF



3.4 ELECTROMECHANICAL STRESS DISTRIBUTION IN AN
ANISOTROPIC DIELECTRIC BETWEEN TWO CIRCULAR PARALLEL

PLATES.

-In section 3.2 the mechanical stress tensor developed
from electric forces has been derived for an isotropic
dielectric. Let us now extend the analysis for anisotropic
dielectric of which the anisotropy is characterized by the

relative permittivity tensor.

A —
€. = Er 1 0 0
0 1 0 (3.37)
0 0 k!
we have )

Then .VXE = (3.39)

For obtaining the electromechanical stress tensor let

us study the identity

(VXE) X grﬁ = - ) J k
QEZ ) EEZ BEX _ aEz 8Ey__8Ex
3y 3z 3z 9x gX gy
e E . e B e K'E
r x ry r z




X,y¥ and z components of this vector are respectively

vaﬁ) x & E ] I=e, [JL (2

+ 9 (K'EZEX)] - E

- - ..7_ i
ﬁ?xE) X IE ].j €, [ax (ExEy) +

[(VxE) X Erﬁ}-.i :Er[ 2 _(EE)

vhere E'2 = E2 + E2 + k'E
X Y :

Thus we can write

- ~ -— -—
e, (VxE) x £ E=wv.8'T -¢ E 7.

r e

~ .
where §' is the tensor

g1 = 11 S
521 S22

[
S31 S32

N
IS

=

E
r

.S|

13
523

33

d

9y

(E2 - E'
y

47

(3.40)
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and I is the unit column vector defined in egn. (3.7).

M
The elements ¢f the tensor S' are given by

2 1 2
1 —_ - = ] 1 =
Sll £ _E (EX 5 E'%y , 512 £ erEyEX '
1 = ()
5 13 Eo€rk EzEx
S' = ¢ € EE S'. =¢e ¢ (B -EE'?), st = ¢ c K'EE
21 orx vy’ 22 o Y ’ 23 T Z
S' = e ¢ EE ,S'.=¢eeEE , S =¢cc (k'E°-:E'?
31 o r xz ' T32 oryz " 733 r
By taking volume integral over egn. (3.40)
We get
A - P —_ .
(v.s'T av = /_ EV.e ¢ E av. = .. (3.41)
v -V O r

By divergence theorem

since D=¢e¢ £E =c¢cE+pP

where P is the polarization in the dielectric.

Then V.D = V.e
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Hence (3.41) can ke written as

» a = S . P)dv (3.42)

$ g'i.n da = [ Ep av
.a v

™
|

On the charged region P = 0 so that . kl
l
i
Quitside. the charged. region p = 0, then \
[

fa $'l.nda = J EV. P e (3.43) i}

The right hand side of this equation represents the force i

exerted on the dipole moments. From the left hand side it

”~
is evident that §' represents the mechanical stress tensor.

The mechanical stress t is given by

ctl
Il
m>
i
5

PN (3.44)

Let us now apply the theory to the problem ¢f an anisotro-
pic dielectric between two pafallel circular plates. Consi-
dering the axis of the plates along the z- direction experiencing -
the effect of anisotrdpy ‘we éan_from symmetry analyze the
problem in the y-z system. Let.the unit normal n be parallel
to the z-axis being perpendicular to the potentiai plates.

Then E =0, n =0, n. =0 and n_ = 1
X X Yy - z

Thus the y- component of the stress becomes

= 8! =¢¢€ k'E .
ty 523 Eo?rk yEZ (3.45)
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= 1 = - 1 --J-'- '2
tz 533 €5Ep (k Ez 2.E } .o (3.46)

The resulting stress is given by

A, _ /,2 2 2 1 .22
lt] = by * b, T Eoe  K'EL B, 4 (k'EJ - 5 E'7)
_ //,2 2 _2 il _ @l 42
€6 k By E, + (k'Bj - E_ )
2

E
_ o 2 fml oy 2
== €, /QEY.+ k'E )

€o 2 2 1 A= o= S
I — t =

5 €y ‘Ey,+ k Ez ) 5 EoerE.E .o (3.47)

Thus for linear isotropic and anisotropic dielectrics the
magnitude of the electro-mechanical stress can be calculated

readily from
lel= 2 B.E (3.48)

The angle of the stress with the y-axis is given by

t
_ -1 z
Bm = tan T
Y
k'E2 - E2
= tan“l 2
1
2k EyEz
! -1 Ez
In terms of the angle of the electric field ee = tan 5
: Y
We get
g -1 k! tan26 -1 ,
Bm = tan = . . {3.49)

¥
2k tanee
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volt/cm

———a  Magnitude of electric stress | E |

0.5v

0.4V

0.3v

o
%]
-

0av

1 1 \--__ d

= icm

1 2 3 p 5 6

—— = ¥ (em])

Fig. 3.7 Electric stress distribution in an anistropic dielectric
between two circular parailel plates.
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2)

Magnitude of mechanical stress [Newton /m

—_— -
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. -
l b =V
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u:b:% =1em
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T < Er .
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Fig.3.8. Mechanical stress distribution between two circular paraliel
plates at different heights in an anistropic dielectric

-

o




Table 3.4: Variation of Mechanical and Electrical stress angle with the
horizontal plane at different levels in an anisotropic dielectric
between two parallel circular plates with

'=5.0, a=b= h/2 = 2 cm.

{cm)
z 0 1 2 3 4
(cm)
5, |790° -33.17° | -24.42° | -21.47° | -20.73° [-90° -90° ~90
4
fm |+90° | -189.86° | -180.39°( -176.7° | -175.72%{+90° +90° +90
5, |-86.93° |-53.26° | -52.10° -51.89° | -51.96° |-90° -90° -90
3
o, |+96.13° | -210.76°| -209.44°%| -209.2° ~209.28° |+90° +90° +90
oo |-90° -90° ~90° ~90° -90° ~90° -90° -90
2 g |+90° +90° . +90° +90° +90° +90° +90° +90
0o |-93° ~123.26° | -144.07°] -150.21°| -151.86°|-90° ~90° -90
l *+
o, |+84-01° | +34.86° | +12.64° | +6.36° | +4.6°  |+90° +90° +90
8y | ~90° ~175.31°| -175.44°| -175.48°] -175" 48°|-90° ~90° -90
0 C o C 8] :
8, |+90 -49.67 -50.52° | -50.78 -50.78° |+90° +90° +90

[=h

i
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Evidently in an anisotropic dielectric the

field vector does not generally bisect the angle\
normal and the mechanical stress on a surface elem

it special cases it happens so when ee = 0% and —90%m‘

Fig. 3.7 and Fig. 3.8 indicates the electro-mechanical
stress distribution in an anisotropic dielectric between two
circular parallel plates. The corresponding stress éngles.are
shown in_Table 3.4. It is observed that the peak values of
both electric and mechanical stresses rise .with the.develop-
ment of anisotropy in the dielectric. But like the isotropic
case, here the peak stress value occurs at the edge of the
upjrer plate. As the distance increases from-the edge of the
parallel plates, the electromechanical stress die out more
rapidly than the isotropic case. At the level z = % the
electro-mechanical stresses are oppositely directed and have
only normal components. Above and below this plane, both
electric and mechanical stresses have lateral components. At
the edgé of the upper plate the meéhanical stress is highly

compressive. Tensile stresses are developed in the lower plate

producing intensified shear stress in the plane 2z = % .

3.5 DISCUSSION

In this chapter, electromechanical stress distributions

in both isotropic and anisotropic dielectrics between two
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g

circular parallel plates have been studied. In section 3.2,
generalized equation for the calculation of electromechanical
stresses for both free space and dielectric media has been
developed. In section 3.3, the electromechanical stress distri-
butions have been calculated between two circular parallel
platés in an isotropic ‘dielectric. Both magnitudes and angles
of stress values at different points are calculated.Peak value of
'stresses.oécur.at-tﬂgmédge' of the upper plate and is inde-
pendent of the size of the plates. It is also observed that

for isotropic dielectric, the electric stress bisects the

angle between the normal n and the mechanical stress. At

the edge of the plates lateral stresses become domin;nt and the
stress is almost normal at the mid-level. The high lateral
stress at the uppper and lower plates may cause dieleétric
breakdown. With the increase of anisotropy in the mediudm, peak
value of both the electric and mechanical stresses rises and
also the lateral component of stress increases. Again, it 1is
observed that beyond the plates, the stresses die out more
rapidly in the¢anisot;3pic case compared to the isotropic case.
But like the iéotrbéic media, here the electric stress does

hot always bisect the angle between the normal and the mecha-

nical stress.
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CHAPTER 4

ELECTROMECHANICAL STRESS DISTRIBUTION IN FERROELECTRIC
INSULATORS.

4.1 INTRODUCTION:

In aielectric materials discussed so far, the polariza-
tion is a linear function of the applied field. There are,
however, a number of substances fér which £he polarization
of a specimen is not a linear function of the field strength.
These materials exhibit hysteresis effects like the ferroma-
gnetic materials. These are called'ferroelectric materials.
Electromechanical stress analysis in such media has not yet |

been reported.

An applied electric field induces dipole moments in
atoms or ions, and generaily displaces icns relative to each
other. Consequently, the dimensions of a specimen uhdergo
slight changes. So,in most materials dielectric polarization
produces a mechanical distortion, but a mechanical dist%rtion
does not produce polarization. This electrOmechaniéal effect,
which is present in all materials, 1is calléd electrostriction.
there are various types of ferroelectric materials fhét are

used in high.voltage insulators because of their very high

relative permittivity.

Y
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4.2 REVIEW OF THE PROPERTIES OF FERROELECTRIC MATERIALS:

Barium titanate (BT} materials are commonly uéed in
the fabrication of capacitors (insulators) with a multilayered
structure. This is a very important-ferroelectric material for
the high voltage insulator. Théir high permittivity enableé
fabrication ©of capacitors whiéh.have high capacitance but are
Hsmall in size.-There are fhree types of BT materials commonly
used in insulators. These are: NPO (€r~60)’ x 7R (er”lBOO)
and Z5u (er~9005). As discussed in section 4.1, hysteresis

effects are present in ferroelectric materials.

Pr

Fig.4.9 The hysteresis curve of ferroelectric material
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When an electric field is applied tb a virgim specimen, the
polarization increases along the curve OAC as shown in Fig.
4,1. If the field is reduced to zero, it is found that for
E=0, a certain amount of polarization Pr remains known as
remanant pblarization. Thus the material is spéntaneously
polarized. For polarization experiencing hysteresis curve

the magnitude of the electric fiux density as a function of

the electric field can be well approximated as
D = ¢ (€n§ - kKET) . . (4.1)

where £ € = =

£ is therefore the dielectric constant at very weak field.

K is a constant. Again we have

-

D=c¢ E + (4.2)

where P accounts for the amount of polarization. Ejuating

(4.1 and (4.2) we get

P o= eo[}ero—l).E-kEBJ fee (4.3)"
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" The effective relative permittivity €, is cobtained from
e (e. - 1) = == ... {4.4)
“Substituting (4.3) into (4.4)
e (e_ =1y = e |le - 1) - 3kE2
o ro

. . , ’
or €. = € o~ 3kE .. {4.5)
Saturated polarization takes place when E:ES

aP
4dE

1

where = 0 , so that at saturation ¢ 1. Hence by

{4.5) the cocnstant k is determined as

€ro 1
K = —— : .o {4.6)
3E
S

The relative permittivity versus the applied field strength

itakes the form shownin fig. (4.2).

Er

Ero

1

1 - E
D .

Fig.4.2 Variation of relative permittivity with the applied field
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After saturation the field leaks out into the medium

surrounding the ferroelectric material. From equation (4.5)

it is evident that as the field strength increases the rela-

tive permittivity of the material decreases causing leakage

of flux ocutside the ferroelectric material. The ferrcelectric

material behaves as a non-linear medium Flash-over arround

insulators takes place with the air breakdown at which the

5

field strength is 15x10° v/m. We choose E .axlSXlOSV/m,:losxdm.
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Ero = 2,000 for ceramic.

Laplace's equation in a charge-free region is given in

rectangular co-ordinates as

aD aD aD
“'_E'F .—'—X+ z:o
ax 3y 9z
From egn. (4.1) for ferrocelectric materials
_ 3
D =¢_ (e E _ - kE. ) .
X e} ro x X
D =¢ (e E - kE ) ..
N o) o’y Y
_ 3
P, = & (Ero z kES )

Substitutihg (4.8) — (4.10) into (4.7).

(4.7)

(4.9)

(4.10)
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9E_ .BEy JE 5 aEx 5 JE
€ro ¢ X +\By N dz ) - 3K Ex ax B 9y
dE
2 Z _
TEyz ) =0
2 BEX 2 JE 2 BEz
or (Ero - 3kEX ) S;— + (arO—BkEy ) §§X + (ero—3kEi)§;-: 0
2 2 2 2 2
cro- TR+ 2 e 28 ) Lo [ (302 20 (22,2 29
3x ay 0z ax ay

2
yo 62 B } 0 (4.11)
dz
32
Now if finite element method is applied the potential function
9 with piecewise linearization on each triangular element

satisfies the above equaticn.

4.3 ELECTROMECHANICAL STRESS ANALYSIS IN FERROELECTRIC INSULATORS

Ferrocelectric materials undergo non-linear polarization.
Moreover with the application of an A.C, field these materials
undergo hysteresis effects arising from remanent polarization.

For D.C. fields the electric flux density can be. given by

D = (¢ E - kE>) | (4.12)

(4.13)
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- 3
DZ = €, (Ero EZ kEz ) (4.14)
With E = ~V¢ let us consider the identity
- i ] k
(VXE) xDb =
' ' E E
8p | 2y 2Bk 3E, BBy BBy
oY 02 3z g X 0y
D D D
X y 2
.. (4.16)

Inlthe above the

_ given by

X,¥ and 2z components of the vector are

_ X ‘Tz
Dz (az ax
dE _ aEx )
X 3X oY
JFE JdE
= ( =2 - Xy -
Yy 3x . 02
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The above equations can be
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arranged by adding equal

quantities on both sides such as

3B, OE
Dz ( az - Bx > - Dy

. aE aEX
D ('—'—y-ax _8__';7_)_]3

: aEz .aE
-Dy ( Qy - az ) - Dx

sk
A
9x

aE

- aEX _— —
3-—-~) +EX\7' .D=ExV.D
(4.20)
dFE _ _
——zaz }o+ Ey v.D = Ey v.D
. (4.21)
OE B _
—2 ) + E V.D =1 V.D
ax z z

e {(4.22)

The above three equations can be arranged in tensor form

v.ST =E 9.0
where § is the stress tensor
' S S
~
S - 11 12
Sa1 S22
531 S32

13

23

33

.o (4.23)

(4.24)
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I is the column vector

— -

el

3 ... (4.25)

L .

The elements Sij of the tensor elements are given by

_ 2 1 .2 k.4 4 .4 ——
S EOE:rO (), - 5 EY) + 3 (E_ + E, - 3E )] ce. (4.26)
S . =¢ (e E - kE> ) E (4.27)
12 o ro’y Y X o )
S..=¢ (¢ - kB> ) E (4.28)
13 o) ro 2z z X
S..=¢ (e E - KE>) E (4.29)
21 O ro x b 4 y

_ 2 1 2 k .4 4 _ . 4
S,, = Eo[ero (Ey -5 E) + 7 (E, + E_ 3E, )] oo (4.30)
S..=¢ (e E -kES) E | (4.31)
23 e} Tro g Z y . o e .
S.. =¢ (e E ~KkE> ) E (4.32)
31 o - ro x "X z . ) et *
S.=¢ (¢ E - kE°) E ‘ © (4.33)
32 o ro’y y z e ’

S . = ¢ [e (Ez—%E?’) + (Ei+E -—3E‘Z )] (4.34)
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Derivation of the stress elementsij is given in the

appendix A.Z.

where E = /%i + B + E

The resulting electromechanical force equation

is given by taking volume integral over (4.23).

f,V.8Tav=1/_ EUV.bav (4.35)

or § gf.ﬁ da = I E V.D dv Ce (4.36)

vl
)
o
o,
<]
)
I
©

using D =D +

.
>
HI
la R}
o
fu

I

IV ﬁp dv on the charged regions.

6SI.nda =.J E v. P Av. in the insulator.

4.4 ELECTROMECHANICAL STRESS DISTRIBUTION IN A FERROELECTRIC
INSULATOR BETWEEN TWO CIRCULAR PARALLEL PLATES

For a linear medium we have flux density

X0 o rQ} "xo

and Dyo = €E6€ro Eyo
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where , € _ is the dielectric constant for a very weak field

in ferroelectric materialj E , E are the field components

X0 yO

for linear polarization. These field components can be readily

determined by finite element method.

Let the corresponding fields be Ex and Ey which will
maintain the same flux density in ferroelectric material =

exhibitingnon-linear polarization.

50, we get,

- - owpd -
Dx = EIOEX knx ErOExO . (4.37)
D. =% E_ - kKBS = ¢ E ce {4.38)
Ty ro’y Y ro.yo :

Solving these cubic éqns. for Ex and EY in terms of
Exo and Eyo' We will get'Fhe electric¢ fields in ferroele?tric
materials. The method of obtaining the nonlinear solution from
the_lineaf one as discussed above can be graphically explained

with the aid of Fig. 4.3.



oo

Fig.4.3 Graphical method of obtaining non-linear field solution
from the linear solution -

The linear variation of D with E is represented by the straight
line 1. The non-linear variation is represented by the curve 2.
Now for constant flux density, D = DO so that E can be readily
obtained from EO. Similarly considering the hysteresis effects
for alternating fields, E+ and E- can be graphically'déter—‘
mined. If we take the case of two circular parallel platés

symmetrical about the y=-axis, then in egn. (4.36).

n = 0, n£=0 and ny =1

and E =0

s

So, the x component of the mechanical stress will be

tg =»512 and the y component of the mechanical stress will be
ty = 822. Hence from equation {4.15) and (4.18) we get
t, = 8 = e (¢ - kE? ) E_E “on (4.39)

b4 12 o' xro Y X'y
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]

t =, /t° + t° - _ (4.41)

D.E for a non-

r—

It can be readily checked that t #

linear medium.

For alternating fields ekperiencing hysteresis effects
the electric field components in the above expression must
be changed as & + ES/2 respectively for alternation from
negative maximum to positive maximum and positive maximum
to negative maximum. Here ES/anepresents the assumed magni-

tude of the field strength with the remanant polarization.

Béth electric and mechanical stress has been calculated
il ferroelectric insulator between two parallel plates. If
an electrostatic potential is applied, then it is found that -
maximum electric stress occurs at the edge of the upper
plate at y = h. As the distance from the edge of the plate
increases, the electric stress-drops off rapidly. Again
the stress at the 1ower.p1até i.e.aty = 0 is higher than at

a level between the plates. The stress at y = % becomes
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‘distance x increases. Compared to the former two cases, it is

maximum on the edge ¢of the lower plate, These are shown
in figs. ( 4.4-5 ) . . If the field is alternating, then
some different nature of the stress curve is observed. In the

cycle when the applied voltage alternates from +ve max" to

Ve maximum, then the stress distribution takes the forms

shown figs. 4.6-7. The corresponding variation of stress angles
is shown in table 4.2, Like the electrostatic case, here also
the maximum stress occurs at the edge (i.e. x=a). The lower
plate here attains minimum stress level. As the distance increa-
ses, the stress curves converges to a constant value which

is attributed to the remanent polarization. Here-the peak
stress valuevis larger than the electrostatic case. But for.

the case when the applied potential alternates from <ve maxi-
mum to #ve theﬁ a different type of stress variation takes

place as shown in figs. 4.8-9 with the angle variation shown
table 4.3, Unlike the previcus cases the peak stress here occurs
at the edges of lower plate and the upper plate is at minimum

stress. The stress curves attain. constant stress value as the

evident that the peak stress value is maximum for the present
case. SO0, for alternating veoltages, the insulator should be

so'désignéd as to withstand the peak stress at the two plates

. in the form of compression or tension.
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Magnitude electric stress { MV/m}

0.4

e
V]

<
~
o

o
~
o

0as

010}

005}

# = 11 KY

Es = 10% v/m

ST s I
u-b-L_lcm

= Ero = 2000

Fig.4.4. Electric stress distribution in ferroelectric
different heights under static case

insulators at
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Z)

e w Mechanical stress [KN/m

1-8

1.6 }
y
| = 1KV
14 _ i 6
_"__O__]._ Es = 10" V/m
T I
u-b-L-‘lcm
12
Ero = 2000
1.0 - X
.
¢ -0
0.8
0.6}
04
02t
0 1 2 3 - 4 5 3
X
——— s -—uI-

Fig. L.5. Mechanical stress distribution in ferrcelectric insulator at
different heights (static case)




Table 4.1: Variation of Electrical and Mechanical angles at different points

between two parallel plates in Ferroelectric media.

{For static case) € o = 2000.0
X
(cm)
Y e 1 2 3 4 5 6 7
{(cm) - ‘
O
9, -90.05° -44.59°4 -37.33° |-32.96° -30.93° | -30.64° | -33.45° | -52.37°
4
8 +69.96° | -178.18° | ~164.57°|-155.87° |-151.82° |-151.24° | -156.86°] -194.7°
0, -85.51° | -66.68° | -63.80° | -62.87° | -62.66° | -63.17° | -65.92° | -77.27°
3 (@] o Q (@] . Q Q (@]
8- | -260.88° | ~222.87° | ~217.4 -215.65°|-215.26° |-216.29 -221.8 -244.5
0, | =-90.04° | -90.04% |.-90.04° | -90.04° |-90.04° |-90.04° |-90.03° ~90.03°
2 o +90.04° | +90.04° | +90.04° | +90.04° {+90.04° [+90.04° 90.04° +90.04°
8 _ ~93.87° | -107.77° | -124.08°| -133.88°|-138.28° |-139.45% | -136.68° |-118.48°
. |
8 82.09° 53.78° | 21.70° 2.19° | -6.60° |~-8.94° ~3.40° +32.99°
6, |-90.05° | -163.22°| -164.3° | 164.76° | 164.82° |-164.10° |-160.13° |-134.99°
0 Q | Q o} (o] O - - O O
6_ | +90.04 -56.07 ~58.59 -59.55° | -59.69 -58.25 -50.32 ~0.02

ZL



73

electric stress (MV/m)

Equivalent
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Fig. &.6. Electric stress. variation

X
a
in ferroelectric insulators when the
applied voltage alternates -from .+ ve maximum to -ve max.
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— e Mechanical stress KN/m?2

6.
5
A
3
0=b'=% = lcm i
Ero = 2000
Es = 100 v/m
@ = 1KYV
2
1 1 N L 1 5 L [ A
0 1 2 3 4 5 6 7

X
— —
. T
Fig.4.7. Mechanical stress distribution in ferroelectric insulator at different
heights: when the applied voltage alternates from eve max. to +ve max.

{ E
v




Table 4,2:

Distribution of mechanical and electrical stress angles at
different points when the applied potential alternates E —lO v/m
from +ve maximum to -ve m&mimum
X
(cm)
0 1 2 3 4 5 7
Y
(cm)
ee 21.10 . 12.52 32.72 39.92 42.75 43,98 44,55 44.84
4
em -44.91 -62.40 -24.,59 -11.83 -6.75 -4.51 -3.46 ~-2.93
ee 25.09 23.68 32,95 39.02 42.14 43.65 44,38 44,72
3 em -38.99 -41.39 -24.18 -13.27 -7.72 -5.03 -3.75 ~3.13
ee 25.98 27.83 36.26 40.90 43.09 44.11 44,57 44.78
2
6, -37.35. ~-33.80 -18.09 -%.76 -5.93 -4.17 -3.37 -3.03
6o 22.94 24.65 42.88 44.94 45.13 45.09 45.03 44.98
1
Bm -43.33 -40.23 -5.78 -2.38 -2.23 ~-2.40 -2.54 -2.67
Ge 20,07 66.22 51.28 47.50 46.11 45.50 45,21 45.02
0 . .
em. -48.91 41.00 10.02 2.34 -0.45 ~1.65 -2.24 -2.59

SL
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Fig.4.9. Mechanical stress distribution in ferroelectric insulator when the

applied voltage alternates from - ve maximum to +ve maximum .
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Table 4.3: Angle of Electrical and mechanical stress distribution
(Ferro electric material) Applied potential goes from =-ve maximum

to +ve maximum. h 6
€ro = 2000 a=b= 7= 1 cm., ES:lO v/m.
0 1 2 3 4 5 6 7
ee :
em
-=122.07 -102.23 -121.93 -129.67 -132.65 |-133.92 -134.5 -134.8
17.16 61.38 21.89 7.22 l.68 -0.67 -1.74 -2.28
-122.35 -118.37 | =124.4 -129,3¢ ~-132.19. |-133.63 -134.34 ~-134.68
17.69 26.65 16.18 7.38 2.35 -0.21 ~1.47 -2.08
-123.43 -124.16 ~-128.26 -131.38 -133.17 |{~134.09 -134.54 -134.73
15.44 14.46 8.42 3.43 0.46 -1.09 -1.85 -2.19
-123.11 -126.34 -133.43 -134.91 -135.08 [-135.04 -134.99 -134.93
14.99 7.78 -0.97 ~-2.89 -2.97 -2.81 -2.66 ~2.54
-121.42 ~144 -139.48 -137.13 -135.99 [~135.44 -135.16 -134.98
17.92 -19.54 -11.35% -6.82 -4.¢€1 -3.52 -2.97 -2.62

8L
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4.5 DISCUSSION

In the above, electromechanical stress distributions
in ferroelectric insulators have been studied. Section 4.3
gives the general form of stress analﬁsis in ferroelectric
insulators; In section 4.4, electromechanical stress has
been calculated and investigated between two parallel plates.
Fir;t cf all, we have taken the case of electrostatic voltage
applied to the plates. For this case, the electromechanical
stress distributions are given in Figs. 4.3-4. Corresponding
ancle variations are shown in table 4.]1. Peak stress wvalue
has been found to occur at the edge ¢of the top plate. Since
the medium is non-linear here, to maintain the same flux
density the electric fields are higher in this case. Angle
variation is almost same as the isotropic case. At y = %
the_electromeéhanical stresses have only normal components
and they are equal and copposite. But at the edge of *op and
bottom plates, the angle variations_is such-that_theyﬁgive

rise to lateral components of stress.

As the applied potential alternates from +ve maximum

‘to -ve maximum, some changes of stress distributions are

observed as shown in Figs. 4.6~7. In this case, the maximum
stress develops at the edge of upper plate and electro-

mechanical stresses are higher than the static field case.
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At the edges of upper and lower plates the angle variation

is such that the dielectric between the plates undergoc

=

compressive stress. This angle variation is shown in

Table 4.2. 'For the case when'théiappiied potential alte;nates
from -ve maximum to +ve maximum, the type of electromecha-
nical stress distribution is shown in Figs. 4.8 and 4.9. The
corresponding angle variations are shown in Table 4.3. The
peak value of both electrical ‘and mechanical stresses are
higher than the above two casés but it oécurs at the lower
nlate. Here the mechanical stress angles are such that the
dielectric is subjected to tension. Thus as the applied
potential alternateé, the ferroelectric material within the
two parallei plates is subjected to alternate compressibn

and tension. In both the cases high lateral stresses are

developed in the radially outward direction.

AT T
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_ CHAPTER 5
GENERAL DISCUSSION AND CONCLUSION

A compute;.program‘has been developed for calculating
the-electromééhanicaldstress diét;ibution in.insulatofs by
finite elémeht method. It'invoives rapia calculation of pot-
ential at different nodes, the electrical.énd mechanical
stresses over.difﬁerent elements . for béth ;inear and non

linear media.

To get an,idea about-the.electro—mechanical'stress
over a QEgion, it is first necessary té know the potential
distribution over the region. The space between two cir-
~ cular parallei plates has been divided -into a finite
nunber of triangular elements. Then assuming linear depen-
d%nce,of potential. over ﬁhe elementsb'Laplacefs equatibn
has been.solved to get. the potential at different.nodes;

It is Observeduthat'in an isotropic dielectric'between two;
circular parallel piates, the_potentials at different‘nédés
converge to the potential at the mid level between the
parallel plates‘as the disténce_from-the axis.of the
parallel plates increases. The abo%e convergence -0f po-
tentials becomes,faster with the development of anisotropy
'in the dielectric. Potential distributions have been shown .

in Figﬁb 2.2 and Fig. 2.3 for the above two media.
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Chapter 3 discusses the electromechanical stress
analysis for both isotropic and anisotropic dielectrics
between two circular parallel plates. In an isotropiq
dielectric the magnitudes of electromechanical stressgé"
are plotted in Figs. 3.3 and 3.4 and corresp0ndin§ stress
angles are given in Table 3.2. For anisotropic case, the above
results are shown in Figs. 3.7 and 3.8 and Table 3.4 respect-
ively. It is understood from these plo£s that the peak wvalue
Of electromechanical étress always occurs at the edge cf the
upper plate and the peak value rises with +he increase of
axial anisbtropy.in the dielectric. In the anisotropic case,
the stress value dies out more rapidly as the distance from
the axis of the plates increases. At the mid-level stresses
are purely vertical but the lateral stresses in the upper and
lower portions are oppositely directed giving rise to shear.

For anisotropic case, this shear is intensified.

N

Since ferroelectric ﬁaterials are extensively used in
fabrication of high voltage insulators because of their
high relative'permittivity, a study has been given to the
electromechanical stress distribution in such materials.
Because oflthe nonlinearity in the medium, the stresses
can not be calculated in a direct manner. The finite ele--

ment method enablezus to linearize the medium in a piecewise



83

manner and evaluate the effective non-linear characteristics.
In view of the hysteresis curve of polarization of ferro-
electric ma;e;i&ié, three cases were investigated. These
are;(if-in§ﬁlator‘subjected to a d.c. voltage (2) insulator
subjected to an a-c voltage and the applied voltage goes
from +ve maximum to -ve maximum and (3) when the applied
voltage goes from the -ve maximum to +ve maximum. Peak

value of the electromechanical stress takes place at the

edge of parallel plate.

For the first two cases, the maximum stress occurs at
the edge of the upper plate, but for the third case the
maximum stress value occurs at the lower plate. It is also
observed that the peak ﬁalue'of both electrical.and mechani-
cal stress rises if an alternating potential is applied.
‘But the most severe case is when the applied potential goes
from -ve maximum to +ve maximum. Here electromechanical
stresses exceed the former two cases. These are illustrated
in Figs. 4.4-4.9, For an a;ternating field, the electro-
mechanical stresses converge to a constant value as the
distance from the edge of parallel plates increases. This
constant value of stress is due to the remanant polariza-
tion with the withdrawal of external field. Again from
tables 4.2 and 4.3 of electromechanical stress angles, it
is observed that during the time when the applied potential

goes from +ve maxXimum to -ve maximum, the material between



the two parallel plates is subjected to compressive stress
and when the applied potential goes fram-ve maximum to +ve
\m@%fﬁﬁm, the material is subjected to a tensile stress.
xHowever, lateral stress in the radially outward direction

is present in all the cases. Thus as the applied potential
fluctuates, the dielectric materidl is subjected to repeated
compression and expansion in the axial direction with a

constant expanding tendency in the radial direction.

The finite element method is very useful technigue
for solving such type of boundary value problem whefe exac£
analytical solution is formidable. Energy calculation in
insulators having different shapes and to find the optimum
shape ©of insulators in light of the electromechanical stress
analysis discussed above is of considerable interest. Hernce
the analysis may be extended to computer aided design of

insulators.
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APPENDIX - A

A.l1 Laplace's egquation for a charge free region is given by

Vi = 0 _ e (1) ~

In variational form, the above eqn. (1) reduces to

I
o
<

 JIV2¢8¢ as (2)
or JJ8¢Vip ds = ¢ .o (3)

Now, let us consider the identity
V.{(aVb) = a¥?b + Va.Vb . . (4}

Let us put, a = 6¢ and b = ¢ in (4)

Sc, we get-

§¢Vi¢ = V. 66V9) - VEoVo
2 1 L2
or 6¢V6 = V. (6¢V9 ) - 5 6(V! ce (5}

Let us now take a surface S enclosed by the contour C and

k-

let n be the normal the surface shown in Fig. 1

c n

Fig.
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Applying Gauss's Theorem over surface
L2plying

r

o V- (8079 ) ds = [ N.V¢so dl

(6)

(7)
Now -applying relations .(5) and (7), Laplace's eqgquation in
variational form (3) reduces to

1 2
I [- 5 §(79)

or §{

]ds+ s 3286541 = g

C oan

(8)
15 [(v¢)2]ds} -5 %%w dr = 0

Y
2

Let us now put the limiting conditions

{1) ¢= constant on the surface .C giving

d¢= 0 (Dirichlet )

on surface C (Neumann)
Then eqn.. (9) reduces to’

5{ % ff[(\?q:)2j ds } = 0

(10}
Let us now suppose that the extremum functional be J
such that &§J

0.
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50, we get ' :

3y =5 1 [00)?] as cee (1D

A.2 Determination of the tensor elements Sij for ferroelectric

insulatcors:

We have, i
3B, 3E_ 3B, OE,
Dz { o T hx )} - Dy ( EEX - "§_ ) + E V.D
JE BEZ aE BEX
=P, 3z T Yz ax ~Dbyax T Py 3y
BDX aD aDz
* Ex ax * Ex ay - Ex 2z (1)
IE, 3E 3D , ;
=D, 3 - D, o Y By an T ooy By T 3z (DB
. (2)
Now, 9E_ , 9,
-D,3x T T % (Erd E, - kEz ) ax
3 “ro _2 k 4
=-¢ .7 (=" E - % Ez' ) v (3)
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Similarly

) 3 dE
Py a7 T g (B By = KEYT) 3%
= _ 9 ( E.I_P_ E2 -3 k .E4 ) (4)
h o Bx 2 y 4 Y e
aD £
X 3 ro .2 _ 3 -y
E 3% %o Tx ( 2 By T 7K Lx ) U (5)

Adding (3), .{4) and (5) we get

5E 3E 8D
- —_— - ._.X+E...._x
zZ 90X Y 3y X 33X
. S [-fxeg2 kg4 | frop2 k4
- Fo % 2 Tz 4z 2 Ty 4Ty
Ero _2 3 4
+ 5 Ex 7 kE }
-3 2 1 .2 k 4
- C ce— } E - = = -
o Tm [ ro {E > E” ) + = (E] + Ez + E 3E. )
. {(6)
L 2 2 2
= + +
where E /éx E E
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S13

Similarly

21

22

23

31

32

33

il

Eny = Eo(ero y
P2Ey = %% (.Er
DxEy = €y (Ero
o[-
DZEY = €, { € o
Dsz = g5l ®ro
DyEz =g Ceg
co [orots? - 3

89

{8)

(9)

(12)

{13)

(14)

.. (15)
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