
 

  

 

DYNAMIC RESPONSE OF BATTER PILES  

CONSIDERING SOIL-STRUCTURE 

INTERACTION 

 

 

 

 

MD. YOUSUF PASHA 

 

 

 

 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

BANGLADESH UNIVERSITY OF ENGINEERING AND 

TECHNOLOGY, DHAKA, BANGLADESH 

 

 

 

JULY, 2015  



 

ii 
 

DYNAMIC RESPONSE OF BATTER PILES  

CONSIDERING SOIL-STRUCTURE INTERACTION 

 

 

 

 

by 

MD. YOUSUF PASHA 

 

A thesis submitted to the Department of Civil Engineering of Bangladesh 

University of Engineering & Technology, Dhaka in fulfillment of the 

requirement for the degree  

 

of 

MASTER OF ENGINEERING IN CIVIL ENGINEERING 

(STRUCTURAL) 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 

 

 

JULY, 2015  



 

iii 
 

The thesis titled “Dynamic Response of Batter Piles Considering Soil-Structure 
Interaction”, submitted by MD.YOUSUF PASHA, Student Number- 100604322 F, 
Session October 2006, has been accepted as satisfactory in partial fulfillment of the 
requirement for the degree of Master of Engineering (Civil and Structural) on 28 
July 2015. 

 

       BOARD OF EXAMINATION 

 
 
------------------------------------ 
Dr. Raquib Ahsan                  Chairman 
 Professor        (Supervisor) 
Department of Civil Engineering 
BUET, Dhaka-1000 
 
 
 
 
--------------------------------------- 
Dr. Mehedi Ahmed Ansary                Member 
Professor  
Department of Civil Engineering 
BUET, Dhaka-1000 
 
 
 
--------------------------------------- 
Dr. Syed  Istiaq Ahmad                Member 
Professor  
Department of Civil Engineering 
BUET, Dhaka-1000 
 
 



 

iv 
 

DECLARATION 

 
 
 
I hereby certify that the research work reported in this thesis work has been performed 

by me and this work has not been submitted elsewhere for any other purpose, except 

for except for publication 

 

 

 

Signature of the Candidate 

 

 

 

MD.YOUSUF PASHA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

v 
 

ACKNOWLEDGEMENT 
 
The author wishes to convey his profound gratitude to Almighty Allah for His 

graciousness, unlimited kindness and blessings and for allowing him to complete the 

thesis. 

I wish to express my profound gratitude to my supervisor Dr. Raquib Ahsan, 

Professor, Department of Civil Engineering, Bangladesh University of Engineering 

and Technology. Throughout the duration of the present study, he has given me 

invaluable guidance, criticism, suggestions, and encouragement. His enthusiasm and 

expertise were immersed into any little progress on my research work. For all of this, 

I will always be greatly appreciative.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

ABSTRACT 
 
Batter pile groups application has been increased in recent years due to its 

considerable resistance against lateral loading condition. Actually batter pile groups 

are more appropriate choice to resist lateral forces due to seismic excitations and 

inertial forces, because vertical pile group perform much weaker while seismic 

motions affect these structures. 

The objectives of the present study are to evaluate modal behavior of Batter piles at 

various Batter angles and also to evaluate pier top deformations of Batter pile with 

respect to free field deformations at different batter angle with different frequencies. 

In this study, the pile head stiffness will be determined by the Thin Layered Element 

Method (TLEM) considering semi-infinite layered soil profile. The substructure i,e. 

the pile cap along with the pile soil system will be considered such as pile to pile 

interaction will be ignored. The individual pile stiffness will be considered as 

complex stiffness. Only stiffness and damping properties will be considered from the 

substructure. Modal analysis of a viaduct-pile system will be conducted by 

Mathmatica 5.0 and the kinematic interaction between a viaduct and the pile 

foundation will be investigated by sub-structure method. 

In the present study it has been observed that for low batter angle pier top deformation 

are in phase and pier top rotation & pile top rotation are out-of-phase but for greater 

batter angles, the pier top deformation is out of phase and rotations are in phase and 

anti-clockwise rotations at both pier top and pile cap occur. In the present study it has 

been observed that in lower frequencies pier goes through almost rigid body motion. 

Frequency greater than 3.5 Hz, pier top deformations increase. But the rate of change 

of pier top deformation increases with the increase of batter angle. It has been also 

observed that in lower frequencies pier top deformation are out of phase and in higher 

frequencies the same are in phase. 

 It has been also observed that at resonance frequency there have no significant effect 

of batter angle on phase difference between pier top and pile cap rotation.
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CHAPTER 1 
INTRODUCTION 

 
 
1.1 General 

 

Batter pile is defined as a pile driven at an inclination to the vertical to provide 

resistance to horizontal forces. Batter piles are used to transfer inclined load and 

horizontal forces. In the preliminary design, the load on batter pile is generally 

considered to be axial. The distribution of load between batter and vertical piles in a 

group may be determined graphically or by analytic methods. Due consideration 

should be given to secondary bending as well as pile cap movement, particularly 

when the cap is rigid.  

Batter pile groups application has been increased in recent years due to its 

considerable resistance against lateral loading condition. Actually batter pile groups 

are more appropriate choice to resist lateral forces due to seismic excitations and 

inertial forces, because vertical pile group perform much weaker while seismic 

motions affect these structures.   

Batter piles are usually inclined at an angle of 10° or a slope 1H: 6V. For such mild 

slope, pile head stiffness of a single batter pile may not differ significantly from that 

of a vertical pile. However the orientation of the axial and lateral stiffness of a batter 

pile is inclined by the batter angle. The substructure (i,e. the pile cap along with the 

pile-soil system) may be modelled with axial and lateral springs substituted for the 

piles and soil, if pile-to pile interaction can be ignored. Usually pile to pile interaction 

becomes important for very high frequency. Then pile cap stiffness may be expressed 

in terms of axial and vertical spring stiffness and the batter angle. 

 
1.2 Objectives of the Study 

 

The principal objectives of the present study are: 

 To evaluate modal behaviour of Batter piles at various Batter angles. 

 To evaluate pier top deformations of Batter pile with respect to free field           
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deformations at different batter angle with different frequencies. 

 
 
1.3 Methodology of work   

 
 
The pile head stiffness will be determined by the Thin Layered Element Method 

(TLEM) considering semi-infinite layered soil profile. The substructure i,e. the pile 

cap along with the pile soil system will be considered such as pile to pile interaction 

will be ignored. The individual pile stiffness will be considered as complex stiffness. 

Only stiffness and damping properties will be considered from the substructure. 

Modal analysis of a viaduct-pile system will be conducted by Mathmatica 5.0 and 

the kinematic interaction between a viaduct and the pile foundation will be 

investigated by sub-structure method. 

 
 
1.4 Scope of the Study   
 
 
This study involves the seismic response of the batter pile considering the effect of 

soil-structure interaction. The following are the scopes of the study: 

 Concrete pile is considered in this study but steel pile is not considered. 

 Pile-soil interaction is considered but pile-soil-pile interaction is not 

considered. 

 Linear analysis is considered but nonlinear analysis is not considered. 

 Frequency domain analysis is performed but time-history analysis is not 

performed. 
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CHAPTER 2 

    LITERATURE REVIEW 

 

The contents of this chapter are taken from a study paper of Ahsan et al [7] named 

“Analysis of Axial vibration of Piles in layered soil media and application to Batter 

pile foundations” which is published in  “New Technologies for Urban safety of Mega 

cities in Asia ed: M.H. Ansary and K. Worakanchana, ICUS Report, 2007”.    

 

2.1 Introduction 

A Semi-analytical approach for solving the problem of interaction of pile with semi-

infinite layered soil medium in axial vibration is presented here. The method is similar 

to the Thin layered Element Method which was originally developed for solving pile-

soil interaction problem in lateral vibration. The results are in agreement with other 

available methods. The effect of Poisson ratio on axial vibration of piles is examined. 

Then a simplified expression for pile head stillness is derived and compared with the 

solution of the semi-analytical method for different parameters. Model parameters of 

pier supported by batter poles is studied for different batter angles. A frequency 

domain analysis of the pile-pier system considering the kinematics interaction of the 

poles is performed for horizontal free field motion. Predominant mode of vibration of 

the system is discussed. 

 

 2.2 History about previous studies 

 

In many in land fault induced earthquakes like 1998 Chi-Chi earthquake in Taiwan 

and 1995 Kobe earthquake in Japan, strong vibration in vertical direction was 

reported. In the recent 2007 Piles Earthquake at Peru, although not an in land fault 

induced earthquake rather a near-land tectonic earthquake, strong vertical vibration 

has also been recorded. The behaviour of structures may be significantly influenced 

by interaction of supporting pile foundation and soil in axial vibration. Vibratory 

machines may also induce axial vibration in pole foundations. In the case of batter 
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piles vibration along the axis of a pile may be induced even in the case of horizontal 

vibration of soil. 

Sheikhbahaei et al told [1] nevertheless the application of these pile groups is 

effectively restricted in seismic districts so that some of designer engineers do not 

recommend using batter pile groups in these areas. That is mostly because of large 

forces developed in cap which makes it more insecure for other further constructions. 

Gazetas et al [2] have shown that in particular cases application of batter pile groups 

is very helpful. Also Juran et al [3] conducted a series of centrifuge tests and pseudo 

static analysis on batter pile and micro pile groups and concluded that increase of pile 

inclination angle up to a specified value will cause to significant reduction of both 

deflection and bending moment in cap-pile connection region.  

 

There have been very few studies regarding the effect of axial stiffness of batter piles 

on structures in the event of horizontal vibration. In one of the early papers on the 

dynamic behaviour of batter piles Tazoh et al [4] discussed strain distribution along 

the length and other important features of batter piles through seismic observation and 

analysis. However, they did not discuss about modal parameters.  Ingham et al [5] 

performed nonlinear dynamic analysis of a bridge bent supported with batter piles but 

considered only lateral Winkler type springs acting on the batter piles ignoring the 

coupling effect among the different layers of soil. Rajashree et al [6] also adopted 

Winkler type lateral springs and a vertical spring at the pile tip for their non-linear 

analysis of batter piles. Ahsan et al [7] analyzed a pier of an existing old bridge, 

namely Yanagizawa bridge situated in Shizuoka, Japan with a simple model. Through 

a frequency domain analysis considering the kinematics interaction of the piles, the 

mode of vibration of the pier and pile cap for horizontal free-field vibration was also 

studied. 

Substructure method [8] warrants for  pile head stiffness for analyzing super 

structures, simplified expression of pile head stiffness is also required for 

experimental methods where only the superstructure  is physically modelled and 

reaction of the substructure is fed back into the system. Konagai et al [9] proposed 

simplified expression of pile head stiffness for lateral vibration. Similar expression of 

pile head stiffness for axial vibration is presented in the paper of Ahsan et al [7]. 

There have been very few studies regarding the effect of axial stiffness of batter poles 
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on structures in the event of horizontal vibration. One of the early papers on the 

dynamic behaviour of batter piles is by Tazoh et al. [10]. Tazoh et al. discussed strain 

distribution along the lengthy and other important features of batter pile through 

seismic observation and analysis. However Tazoh et al. did not discuss about modal 

parameters.  Ingham et al. [5] Performed nonlinear dynamic analysis of a bridge bent 

supported with batter piles but considered only lateral Winkler type springs acting on 

the batter piles ignoring the coupling effect among the different layers of soil. 

Rajashree and Sitharam [6] also adopted  Winkler type lateral springs and a vertical 

spring at the pile tip for their non-linear analysis of batter piles. In the paper of Ahsan 

et al [7], a pier of an existing old bridge, namely Yanagizawa bridge situated in 

Shizuoka, Japan has been analyzed with a simple model. The effect of both axial and 

lateral stiffness of batter piles on the modal parameters of the pier was discussed 

there. A pier of an existing old bridge, namely Yanagizawa bridge situated in 

Shizuoka, Japan has been analyzed with a simple model. The effect of both axial and 

lateral stiffness of batter piles on the modal parameters of the pier was discussed 

there. Through a frequency domain analysis considering the kinematics interaction of 

the piles, the mode of vibration of the pier and pile cap for horizontal free-field 

vibration was also studied. 

 
 
2.3 Verification and the effect of Poisson ratio 

Pile head stiff nesses obtained using the present method is verified with the results 

obtained by Nogami and Novak [12].  Nogami and Novak solved axi-symmetric 

equation of vertical motion of a visco-elastic homogeneous medium assuming that 

there is no horizontal displacement. Pile head stiffness for varying ratios of pile length 

to pile outer radius and shear wave velocity to longitudinal wave velocity are 

produced in Figure 2.1. Here Poisson’s ratio of 0.4, the ratio of soil density to pile 

density of 0.6 and damping ratio of 2% is assumed. The curves presented in Fig.2.1 

match with the results obtained by Nogami and Novak. 

An important feature of the pile head stiffness for axial vibration is that bend a certain 

frequency the imaginary part increases with increasing frequency. Below that specific 

frequency the imaginary part remains constant. Around this particular frequency a 

sudden drop of the real part of stiffness also occurs. Nogami and Novak observed that 



 

6 
 

this particular frequency is around the resonant frequency of the soil layer. According 

to their derivation the resonant frequency of soil corresponds to the longitudinal wave 

velocity. However, according to the present method which is more rigorous than 

method of Nogami and Novak as Figures 2.1 and 2.3 show, the frequency at which 

reduction of Poisson’ ratio Figure 2.2 shows the pile head stiffnesses of the same pile 

with soil media having the same longitudinal wave velocity but different Poisson’s 

ratio and thus different shear modulus.  It can be observed from the figure that as the 

Poisson’s ratio increases the frequency at which real part of stiffness drops or the 

imaginary part of stiffness starts increasing deviates from the resonant frequency of 

soil corresponding to longitudinal wave velocity. As the Poisson’s ratio increases the 

media tends to become incompressible and the dilational wave becomes less 

predominant in axi-symmetric vibration. Nogami and Novak mentioned that in 

contrast to plain strain case, Poisson’s ratio does come into play in their solution but 

basically due to change in shear modulus. They did not elaborate on the change of 

mode of wave propagation due to change in Poisson’s ratio. 

Yang and Sato [13] reported that during 1995 Kobe earthquake the predominant 

average vertical wave velocity, as measured in an array site at Port island on the 

southwest side of Kobe city, was very low (around 590m/s). They reasoned that the 

low vertical wave velocity is due to the reduction in P-wave velocity for incomplete 

saturation. However the results of the present analysis indicate that the predominant 

vertical wave velocity may be low since P-wave becomes less predominant in 

saturated soil even in axi-symmetric vibration. Figure 2.3 shows that the change in 

pile head stiffness with frequency is very small for varying Poisson’s ratio and 

subsequently for varying P-wave velocity when the shear modulus of soil is constant. 

 

2.4  Pile head axial stiffness 
 
In order to study the interaction between the superstructure and the substructure of 

embedded pile, the solution of the present method must be combined with the model 

of superstructure. Usually this done by the Method of Sub structuring, where the 

superstructure is modelled numerically or a physical model of superstructure is tested 

and the effect of substructure is introduced with some impedance function. In most of 

the applications this impedance function is preferred to be as possible. 
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      (a) 

 
      (b) 
 

 
 
 
 
Figure 2.1: Variation of normalized pile stiffness with frequency and soil stiffness (a) very short pile, (b) 

moderately slender pile, (c)  slender pile 
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Figure 2.2: Axial pile head stiffness for same longitudinal velocity 

of soil media with different Poisson’s ratio. 

 

 
 
 

Figure 2.3: Axial pile head stiffness for same shear modulus of soil 

with different Poisson’s ratio. 
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This is particularly true for experiments the superstructure is physically 

modelled and the effect of substructure is simulated in real time with a transfer 

function. Some representative cases are shown in figures 2.4-2.10. 

 

 

 
Figure2.4: Variation of axial stiffness of pile head with frequency (μ=2400 tf/m2).  
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Figure 2.5: Variation of axial stiffness of pile head with frequency (μ=9600 
tf/m2).  
 

 
Figure 2.6: Variation of axial stiffness of pile head with frequency (r0= 0.5m) 
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Figure 2.7: Variation of axial stiffness of pile head with frequency (L= 50 m) 

 
 
Figure 2.8: Variation of axial stiffness of pile head with frequency (υ= 0.49) 
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Figure 2.9: Variation of axial stiffness of pile head with frequency (D= 20%) 
 
 

 
Figure 2.10: Variation of axial stiffness of pile head with frequency (E=2.0 x 106 
tf/m2) 
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2.5 Modal analysis of a pile-pier system of the Yanagizawa bridge 
 

The method was applied [7] for the pier-pile system of the Yanagizawa Bridge 

which is located in Tokai region at midway between Tokyo and Osaka in Japan. The 

bridge was designed in accordance to pre-1995 codal provisions. In apprehension of a 

major earthquake in Tokai region Japan Railway intends to both vertical and batter 

piles (Figure 2.11) the piles are steel piles with 254 mm outside diameter and 9 mm 

thickness. Shear wave velocities of soil at different depths at the site are given in table 

2.1. However there is no information available regarding exact length of the piles or 

whether they reached the bed rock. In order to determine the dynamic behavior of a 

typical pier-pile system of the Yanagizawa bridge. Figures 2.12and 2.13 show FFT of 

the records at a pile cap and a cross girder of a pier- along the longitudinal and 

transverse directions respectively. In each of these records two predominant 

frequencies are observed one near 0.6 Hz. in both transverse vibrations. The 0.5 Hz. 

for longitudinal vibration and near 2.4 Hz. for transverse vibration. Frequency of the 

underlying soil and the second peak is is due to the contribution from the 

superstructure. The method of modal analysis described in Section 3.2 can determine 

the modes governed by the dynamical system rather only the stiffness and damping 

properties are considered from the substructure, the predominant mode of vibration of 

the underlying soil and the fundamental frequency of soil vibration are not reflected in 

the present model. The mode of vibration of the pile-pier system at 0.5 Hz. is 

discussed in Section.  
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 Figure 2.11: Typical pier-pile assemblage of Yanagizawa viaduct  
 
 
 
 
 
 

Depth (m) Shear wave velocity (m/s) 
0-105 113 

1.5-8.0 82 
8.0-19.0 76 

19.0-25.0 61 
25.0-31.0 81 
31.0-41.2 116 

41.2- 510 
 

  Table: 2.1 Soil profile at the site of Yanagizawa bridge 
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A typical pile-pier system of the bridge has been analyzed using the simple model. At 

first the dynamic stiffnesses, both lateral and axial, of a single upright beam have been 

calculated for the specific site characteristics. Lateral and axial impedances of a single 

pile are presented in Figures 2.14 and 2.15. Implementing these pile head impedances 

for each pile for the given pile arrangement. Since the exact length of the piles are 

unknown, it was assumed that the piles extend down to 44 m. The results of the modal 

analysis show that the lowest modal frequency is 1.32 Hz for longitudinal vibration 

and 2.32 Hz. for transverse vibration.  The modes of vibration at these frequencies are 

schematically shown in Figures 2.16 and 2.17. All the displacement and rotational 

degrees of freedom are nearly in-phase. The mode shows greater deformation at the 

pier top and clockwise rotation for rightward motion. The mode is most likely to be 

induced in case of load acting at the pier top e,g, wind load. As has been explained 

earlier these modes actually correspond to the second peaks of the frequency 

spectrums shown in Figures 2.12 and 2.13. However for longitudinal vibration the 

predominant frequency determined by the modal analysis is much lower than the 

second peak of Figure 2.12. Reason is probably the present 2D configuration. Thus 

this 2D model is not appropriate for longitudinal vibration. On the other hand, the 

predominant frequency in the transverse direction as obtained by the modal analysis 

matches very well with the second peak of Figure 2.13. Since the torsion rigidity of 

the deck and longitudinal girders ate insignificant compared to the flexural stiffness of 

the pier, the 2D model could simulate the dynamic behaviour of the system in 

transverse direction. Hence, the present 2D model should be used only to discuss 

vibration. 
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Figure 2.12: Fourier spectrum of the ambient vibration record in 

the longitudinal direction measured at the cross-girder of the 

Yanagizawa Bridge. 

 
 
 

 
 

Figure 2.13: Fourier spectrum of the ambient vibration record in 

the transverse direction measured at the cross-girder of the 

Yanagizawa Bridge. 

 
 



 

17 
 

 
Figure 2.14: Lateral stiffness of a single pile of  Yanagizawa Bridge  

 
 
 

To understand the effect of the inclination of the batter piles in transverse vibration, 

modal analyses have been performed for the same pile-pier system with different 

batter angles of piles. The results have produced in Figure 2.18. From the Figure it is 

evident that the batter angle has very little effect on the predominant frequency of the 

system. The modal deformations i.e. the pile cap deformation. pile cap rotation and 

pier top rotation for unit deformation of the pier top  are normalized with those for all 

vertical pile arrangement and then plotted with increasing batter angle in Figure 2.18. 

The all vertical pile arrangement has similar mode as shown in Figure 2.17 with 

slightly different values of modal deformations. pile inclination has the most 

prominent effect on pile cap deformation. With the increase in batter angle the piles 

cap the pile cap to deform less. For a certain batter angle between 15 ° and 20° the 

pile cap deformation in the first mode of vibration becomes zero. Beyond this 

particular batter angle the pile cap deformation again increases and actually becomes 

out –of- phase with the pier top and pile cap deformations are in phase and rotations at 

both the nodes are out-of-phase with the deformations. Thus a right ward pile cap 

deformation is associated with a right-ward pier top deformation and clockwise 

rotations at both the nodes. For greater batter angles, however, the pier top 
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deformation is out of phase and rotations are in phase with pile cap deformation  and 

anti-clockwise rotations at both pier top and pile cap (Figure 2.20) Thus for higher 

batter angles the mode of vibration induced by a force at the pile cap or ground 

vibration becomes predominant. 

 

 
 

 
 
 

Figure 2.15: Axial stiffness of a single pile of  Yanagizawa Bridge  
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Pile cap

Pier top

Figure 2.16: Fundamental mode shape of a typical pile-pier system of the 

Yanagizawa Bridge (not in scale) 

10 mm

1 m

3o

5.5o

Pile cap

Pier top

 
Figure 2.17: Fundamental mode shape of a typical pile-pier system of the 

Yanagizawa Bridge (not in scale) 
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3.3 Kinematic interaction 

The first peak of Figure 2.13 is due to the predominant frequency of the 

underlying soil and the response of the structure may be discussed by applying pile 

cap vibration in the transverse direction. 

The inability of an embedded pile foundation to conform to the deformation of soil 

causes the motion of the soil structure interface to deviate from the free-field motion. 

The foundation input motion should be modified to incorporate this deviation due to 

the kinematic interaction.  The foundation input motion for the Yanagizawa bridge 

piers is estimated rigorously by the Thin Layered Element Method (1976). Figures 

2.21, 2.22 and 2.23 show the kinematic interaction factors for motions in different 

directions. Thus without the presence of a superstructure, a horizontal free-field 

motion would cause a horizontal displacement and a rotation of the pile head 

producing forces at the pole head.  

 

 

 
 
Figure 2.18: Variation of modal parameters of pile-pier system with batter angle 
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Figure 2.19: Phase difference of modal deformations with respect to pile 
cap deformation. 

 

 
Figure 2.20: First mode of vibration for higher batter angles 
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Figure 2.24 shows the vibration mode of a typical pier-pile system of the Yanagizawa 

Bridge at 0.5 Hz for transverse vibration. At this particular frequency cap as the soil 

deformation occurs to the pile cap rotates counter clockwise; where as the pier top is 

out of phase rotating in clock wise direction with negligible horizontal translation. 

  
With increasing frequency pile cap deformation increases along with pile cap and pier 

top rotations (shown in Figure 2.25) these three quantities are always exactly in phase 

i.e., a right ward pile cap deformation is associated with counter clockwise rotations. 

This fact was also observed by Tazoh et.al. (1988) from their seismic records at a road 

bridge, supported by batter piles, in Kanagawa, Japan. It was also reported that the 

counter clockwise rotation of the footing to a motion to the right continued for the 

entire duration of the 1983 Kanagawa-Yamanashi- Kenzai Earthquake which had 

dominant frequencies between 0.5 Hz. to 5 Hz. Thus the present analysis is in 

agreement with the seismic observation. 

 
 

 
 
Figure 2.21: Kinematic interaction factor in horizontal direction for horizontal 

input motion. 
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 Figure 2.22: Kinematic interaction factor in rotation for horizontal input 
motion. 
 
 

 
 

Figure 2.23: Kinematic interaction factor in vertical direction for vertical 

input motion 
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Figure 2.24: Vibration of a typical pile-pier system at the Yanagizawa 
bridge. 
 

 

 
Figure 2.25: Pile cap deformation and pile cap and pier top rotations at      

      different frequencies. 
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Figure 2.25 shows that pile cap deformation exceeds free –field deformation at 

around 2.5 Hz. The rate of increase of pier top rotation is more than that of pile cap 

rotation and may become significant from serviceability point of view in case of 

higher frequency vibration. pier top deformation is very small compared to pile cap 

deformation (Figure 2.26). In fact the stiffness of the pier is much greater compared to 

the mass that in lower frequency the pier goes through almost rigid body motion. For 

frequencies greater than 3.5 Hz. pier top deformation increases. For lower frequencies 

pier top deformation is out-of-phase with pile cap deformation. As the frequency 

increases the two deformations become more in –phase. 

 
 
 
 

 
 
Figure 2.26: Pier top deformation and its phase difference with pile cap 

deformation at different frequencies. 
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 CHAPTER 3 

         FORMULATION 

 

The contents of this chapter are taken from a study paper of Ahsan et al [7] named 

“Analysis of Axial vibration of Piles in layered soil media and application to Batter 

pile foundations” which is published in  “New Technologies for Urban safety of Mega 

cities in Asia ed: M.H. Ansary and K. Worakanchana, ICUS Report, 2007”. 

  

 3.1 Axial vibration of a pile in semi-infinite layered soil  
 

In this formulation soil is considered horizontally layered and semi-infinite in lateral 

extent (Figure 3.1).  The soil has fixed boundary at the bottom end of the pile length. 

First the stiffness equations for deformation along a cylindrical hollow of the same 

size of a pile in axi-symmetric vibration of soil is formulated. Then axial stiffness of a 

pile is considered assuring that the there is no slip between soil and pile. 

 
 
 

 
Figure 3.1: Pile-soil model 
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If ur and uz are respectively the displacements in radial and vertical directions, wave 

motion equations in cylindrical coordinates for an axi-symmetric problem are given 

by, 
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Where the Lames constants  and G are complex numbers in order to take material 

hysteretic damping into account and ρ is the mass density. The dilation θ and rotation 

o are given by,  

 

z

u
ru

rr
z

r








 )(

1
  

 
 

and   
r

u

z

u zr
o









2                 

 
Let us assume the potential functions for the displacement components of soil as,  
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Where, ω is the frequency of steady state vibration and Hj

(2)  is Hankel function of the 

second kind of order j,  

Substituting the potential functions in 1 and 2 yields, 
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Now, the stresses between the layer soil element boundary are given by, 
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The stresses can be expressed as,  
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since the transformation matrix between  Wandvv zr ,,  (Equation 3.3) and that 

between zzzr  , and 21, (Equation 3.6) is same, Galarkin method can be applied 

for equations 3.4 and 3.5 with stress terms as 21,  

 

Applying Galarkin’s Method yields the following equations of motion for each two 

node layer element with liner shape function. 
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In which H is the thickness of a layer element. 

Assembling the global matrices, one gets 
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Tajimi and Shimomura [11] derived exactly similar equations for their transformed 

displacements in lateral vibration. Hence there is a direct analytical correspondence            

between transformed displacements of zonal and lateral vibrations. The above 

equations are solved in the manner of an exigent-value problem. There exist a total of 

4N solutions of a. Imposing radiation condition, the number of appropriate eigen-

values will be 2 N. 

A foundation with a circular cross-section is assumed to be obtained on the wall of the 

cylindrical hollow. The boundary displacement components in radial and vertical 

direction are respectively expressed as, 

 

   qrH
aV a

r

)){0(
1

)2(
  

 

   qWrH
aV a

z

)){(
0

)2(
0


  

where q� is the effective contribution corresponding to a. 

Modal matrices can be defined as,  
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Where,  
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The vertical stress on the boundary of hollow cylinder is given by, 
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Integrating the stress over the whole circumference would give, 
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The nodal forces can be obtained as,  
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The global force vector can be expressed as, 
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From 9 and 10, 
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Ignoring the coupling with rV  , 
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The pile force-displacement relationship can be expressed as, 
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}{
pzP  = [K] {w} 

 
where the pile axial stiffness matrix, 
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The equation of mition will then be given by, 
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Where [Mz] is the pile mass matrix. 

Considering compatibility, from 3.11 and 3.12 we get, 
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3.2 Simplified expression of pile head axial stiffness 
 
In order to study the interaction between the superstructure and the substructure of 

embedded pile, the solution of the present method must be combined with the model 

of superstructure. Usually this done by the Method of Sub structuring, where the 

superstructure is modeled numerically or a physical model of superstructure is tested 

and the effect of substructure is introduced with some impedance function. In most of 

the applications this impedance function is preferred to be as possible. 
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This is particularly true for experiments the superstructure is physically modeled and 

the effect of substructure is simulated in real time with a transfer function. 

 
In order to derive a simplified expression of pile head axial stiffness. let us first 

consider the equation of vertical motion   (r, z, t) of an elastic medium neglecting 

the horizontal displacement.  
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Now, Konagai et.al. (2000) Proposed that in lateral vibration the pile deforms only 

down to some active pile length which is closely related to the following 

parameter lL0  : 
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where EI is the bending stiffness of pile and   is the shear modulus of soil. 

 
 

Analogously, for axial vibration here the relative pile stiffness to soil stiffness is 

represented by a length parameter aL0 : 



AE
L a 0           (3.14) 

 
 
 
where AE is the axial stiffness of pile. Then the active length for axial vibration may 

be given as: 

 

aaa LaL 00                      (3.15) 

 
 

Now, assuming the axial deformation of pile occurs within the active pile length, the 

Independent variables of vertical deformation may be separated as:  
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where, i  represents a mode shape. 

Substituting   in Equation. 3.13 with the expression of Equation 3.16. 
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Multiplying with n  and integrating over the whole depth of active length, 
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Figure 3.2: Infinite soil –extent in plane strain condition supported 

by Winkler type springs with embedded pile 

 
 
 
 
 
 
 
Considering orthogonally of mode shapes one obtains, 
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Expressing  
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Integrating the first term of the above equation by parts and assuming the bottom end 

of the soil pile assemblage as fixed and the top as free from stresses one can write, 
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The governing equation of a plane strain formulation with an embedded disk in 

vertical vibration is given by, 
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It can be observed that the first term of Equation. 3.17 is a term additional to the plane 

strain formulation of Equation. 18. This term represents additional stiffness to the 
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Thus an axi-symmetric formulation can be modeled as an infinite soil extent in plane 

strain condition supported by Winkler type springs (Figure 3.2). 
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Let us introduce 
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Comparing Equations 3.18 and 3.20, it is evident that the solution of Equation. 3.20 

will be similar to the solution of Equation. 3.18. According to Novak et.al. (1978) the 

expression of soil stiffness derived from Equation.3.18.is given by, 
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Hence the expression of stiffness for soil as derived from Equation. 3.20 would be, 
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For a homogeneous soil profile one can write μz = μ�1Laa and kz = μγ(υ)α2/Laa  

where = , = ,    

where α3 is a function of the deformed shape and Poisson’s ratio. 

  =   

 
From Equation. 3.21, 
 

      (3.22) 

 
For the dynamic case ω→∞  and  →1 Thus, 
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From Equation .3.21, 

        (3.23) 

 

Considering soil as a visco-elastic medium, from Equations 3.22 and 3.23 soil 

stiffness may be approximated as, 

                                            (3.24) 

The stiffness of the pile itself is given by, 

 
 
 
 

 

From Equations 3.14 and 3.15 the stiffness can be expressed as, 

=            (3.25) 

 

The  contribution of the pile mass to the stiffness is given by, 
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where. 
p

p
p r  , 

 
 

Then the overall stiffness   zzK  of the pile cap for vertical motion can be written as,  
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Using Equations 3.24, 3.25 and 3.26, equation.3.27 can be written as: 
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Substituting  aL0  in place of   aaL  using Equation.3.14. 
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Hence the system can be modeled as a simple oscillator, 
 

2
000  micKK zz         (3.29) 
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and , 

1041033

0

2
102311 2,8.0,2 




  andccccc  

Here the parameters 321 ,, ccc  and 4c  basically depend on the predominant mode n  of 

axial pile deformation and the relation between the parameter aL0 , and the active pile  

length for axial vibration (Equation.3.15). In addition C3and as such C1 depends on 

Poisson’s ratio too. 
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In addition to the parameters μ and Loa, the stiffness term k0 depends on r0 and 

υ and mass term depends on . In the derivation of Equation. 3.29 many 

simplifications have been adopted. Hence the applicability of the equation has been 

checked by comparing it with the results obtained from more rigorous solution of 

TLEM. The parameters c1, c2, c3, and c4 are then obtained in such a way that the 

overall error is minimized for the variety of soil and pile parameters. The parameters 

that have been considered are pile parameters such as radius, length and modulus of 

elasticity and soil parameters such as shear modulus, Poisson’s ratio and damping 

ratio. In this discussion only a homogeneous soil profile and solid cross-section of pile 

is considered. The best fit of the values from Equation. 3.29. to rigorous solution of 

kzz is obtained by setting c1, c2, c3, and c4 at π, 2π/5, 2π/3 and π/300 respectively.  

The material damping of soil may be considered in the simple expression of 

kzz by replacing shear modulus μ with complex modulus μ̍̍̍̍ (1+ i D). Introduction of 

complex modulus however causes the stiffness and damping parameters k0 and c0 in 

Equation. 

 

 =  -         (3.30) 

 

 =       (3.31) 

 
When the effect of D cannot be ignored in Equation. 3.30 and 3.31 the most 

predominant frequency a  should be used in calculating k0 and c0. 

 
3.3 Modal Analysis of a pier with batter piles 

Axial pile head stiffness plays an important role for batter piles even for horizontal 

vibration. Batter piles are usually inclined at an angle of 10° or a slope 11H: 6V. For 

such mild slope, pile head stiffness of a single batter pile may not differ significantly 

from that of a vertical pile. However the orientation of t he axial and lateral stiffness 

of a batter pile is inclined by the batter angle. Thus as show in Figure 3.3 the 

substructure (i,e, the pile cap along with the pole-soil system) may be modeled with 

axial and lateral springs substituted for the piles aus soil, if pile-to pile interaction can 

be ignored. Usually pile to pile interaction becomes important for very high 

frequency. Then pile cap stiffness may be expressed in terms of axial and vertical 

spring stiffness and the batter angle. 
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                                         =    

 
 
 
Where, 
     =    +   

 
 
                                 =         = ) sin cos  

 
 
    =     =    +   

 
    =    +   

 
 
    =         = ) sin cos  

 
    =   (  + ) 

 
 
The superstructure is modeled as a single mass supported by a Bernoulli- Euler beam. 

The stiffness equation for the superstructure may be written as, 

 

   =       

  

=        (3.32) 
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If the mass terms corresponding to the degrees of freedom of Equation 3.32 are 

represented by the vector   =  the 

homogenous equation of motion for the combined pier –pile system can be expressed 

as: 

 

    +     =  

 
 

  =  (3.33) 

 
 

 
 

Figure 3.3 : Simple spring model of piles  
 

  
 
 
The solution of the eigen-value problem of Equation 3.33 would yield the eigen 

frequencies and corresponding normal modal vectors of the system. 
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3.4 Kinematic interaction 

Instead of solving the eigen-value problem expressed by Equation. 3.33. forces 

that would be produced at the pile cap due to deformation of soil may be applied. 

Thus the following non-homogeneous equation may be solved in frequency domain. 

 

  =     (3.34) 

 
 
However, the inability of an embedded pile foundation to conform to the deformation 

of soil causes the motion of the soil structure interface to deviate from the free-field 

motion uf. The foundation input motion should be modified to incorporate this 

deviation (us) due to the kinematic interaction.  The foundation input motion for the 

Yanagizawa bridge piers is estimated rigorously by the Thin Layered Element 

Method (1976). The kinematic interaction factors, Te =    for motions in different 

directions. Thus without the presence of a superstructure,  a horizontal free-field 

motion of uf,x. would cause a horizontal displacement of Te,x, uf,x and a rotation of 

Te,�x,uf,x  of  

 
Figure 3.4: First mode of vibration for higher batter angles 
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the pile head producing the following forces at the pole head:  
 

  =            (3.35) 

 
 
In case of a vertical free-field motion of uf,z , the pile head would experience a vertical 

displacement of Te,z, uf,z and the forces on the pile head would be: 

 
 

  =                                       (3.36) 

 
In either case, the forces on the pile cap, including the additional moment due to the 

vertical force at each pile head, would be: 

 
 
 

  =         +                                                   (3.37) 

 
Now solving Equation 3.35 with forces from equation 3.37 will provide 

displacements and rotations of pier top and pile cap considering both inertial and 

kinematic interaction at a particular excitation frequency.  
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3.5 Parameter of the Present Study 

The pile head stiffness will be determined by the Thin Layered Element Method 

(TLEM) considering semi-infinite layered soil profile. The substructure i,e. the pile 

cap along with the pile soil system will be considered such as pile to pile interaction 

will be ignored. The individual pile stiffness will be considered as complex stiffness. 

Only stiffness and damping properties will be considered from the substructure. 

Modal analysis of a viaduct-pile system will be conducted by Mathmatica 5.0 and the 

kinematic interaction between a viaduct and the pile foundation will be investigated 

by sub-structure method. 
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CHAPTER 4 

  RESULTS AND DISCUSSIONS 

In this chapter it has been discussed the findings of the present study which are 

summarized as follows: 

i) In the previous study it has been shown that for a certain batter angle between 15 ° 

and 20° the pile cap deformation in the first mode of vibration becomes zero. Beyond 

this particular batter angle the pile cap deformation again increases and actually 

becomes out –of- phase with the pier top deformation. From fig 4.1 it can be observed 

that for low batter angle pier top deformation are in phase and pier top rotation & pile 

top rotation are out-of-phase. That means a right ward pier top deformation and 

clockwise pier top & anti-clockwise pile top rotations occur at low batter angles. Fig 

4.1 also shows that for greater batter angles, the pier top deformation is out of phase 

and rotations are in phase and anti-clockwise rotations at both pier top and pile cap 

occur. It also observed that phase are changed at 17° batter angle.  

ii)  Modal behavior of pier top deformation, pier top rotation & pile top rotation has 

also been observed by considering half of the pier length where other data remain 

unchanged (fig. 4.2). From this fig. it can be observed that for low batter angle pier 

top deformation are also in phase and pier top rotation & pile top rotation are also out-

of-phase. But a certain batter angle between 10 ° and 15° the phases are changed. 

ii) Fig. 4.3 shows that in lower frequencies pier goes through almost rigid body 

motion. Frequency greater than 3.5 Hz, pier top deformations increase. But the rate of 

change of pier top deformation increases with the increase of batter angle. The fig. 
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also shows that in lower frequencies pier top deformation are out of phase and in 

higher frequencies the same are in phase. 

iii) Fig. 4.4 shows that resonance frequency occurs at frequency of 2.4 Hz. There have 

no significant effect of batter angle on phase difference between pier top and pile cap 

rotation. 

0 5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
h
a
s
e
 d

if
fe

re
n
c
e
 w

.r
.t
 p

ile
-c

a
p
 d

e
fo

rm
a
tio

n
,r

a
d
ia

n

Batter angle,degree

 Pier-top deformation
 Pier-top rotation
 Pile-top rotation

Figure 4.1: Phase difference of modal deformations w, r, t pile cap deformations in 
radian at various Batter angle where pier length 12.5 m  
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Figure 4.2: Phase difference of modal deformations w, r, t pile cap deformations in 
radian at various Batter angles considering 6 m pier length 
 



 

47 
 

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
ie

r 
to

p
 d

e
fo

rm
a
tio

n
 f
o
r 

1
m

 f
re

e
-f

ie
ld

 d
e
fo

rm
a
tio

n
, 
m

m

Frequency, Hz 

 0 deg.
 5 deg.
 10 deg.
 15 deg.
 20 deg.

 
 
Figure 4.3: Pier top deformations for 1 m free field deformations in mm at different  

Batter angle at different frequencies. 
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Figure 4.4: Phase difference between pier top and pile cap deformations w, r, t various 

frequencies in radians at different Batter angle. 
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CHAPTER 5 

                 CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 General 

 

The main objective of the present study is to evaluate modal behaviour of Batter piles 

at various Batter angles and To evaluate pier top deformations of Batter pile with 

respect to free field deformations at different batter angle with different frequencies. 

The pile head stiffness will be determined by the Thin Layered Element Method 

(TLEM) considering semi-infinite layered soil profile. The substructure i,e. the pile 

cap along with the pile soil system will be considered such as pile to pile interaction 

will be ignored. The individual pile stiffness will be considered as complex stiffness. 

Only stiffness and damping properties will be considered from the substructure. 

Modal analysis of a viaduct-pile system will be conducted by Mathmatica 5.0 and 

the kinematic interaction between a viaduct and the pile foundation will be 

investigated by sub-structure method. 

 

5.2 Conclusions 

 

Findings of the study as presented in the previous chapters are summarized bellows: 

i)  In the present study it has been observed that for low batter angle pier top 

deformation are in phase and pier top rotation & pile top rotation are out-of-phase. 

That means a right ward pier top deformation and clockwise pier top & anti-clockwise 

pile top rotations occur at low batter angles.  It has been also observed that for greater 

batter angles, the pier top deformation is out of phase and rotations are in phase and 

anti-clockwise rotations at both pier top and pile cap occur. 
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ii)  In the present study it has been observed that in lower frequencies pier goes 

through almost rigid body motion. Frequency greater than 3.5 Hz, pier top 

deformations increase. But the rate of change of pier top deformation increases with 

the increase of batter angle. It has been also observed that in lower frequencies pier 

top deformation are out of phase and in higher frequencies the same are in phase. 

iii)  It has been also observed that at resonance frequency there have no significant 

effect of batter angle on phase difference between pier top and pile cap rotation. 

. 

5.3 Recommendation 

 

  In the study, same soil conditions were selected. Different type of soil conditions 

can also be selected. 

 In the study, same number pile was selected. Different number of pile can also be 

selected. 

 The results may also be varied due to type of foundations. 

 The results may also be varied due to parameter of the structure. 
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APPENDICES 

                APPENDIX-A 

SL. No. Batter angle Phase difference w, r, t pile cap deformations in radian at 
various Batter angle 
Pier-top 
deformation 

Pier-top 
rotation 

Pile-top 
rotation 

01 
 0.086 3.027 3.111 

02  0.076 3.038 3.122 

03  0.048 3.066 3.150 

04  0.022 3.093 3.176 

05  0.034 3.149 3.232 

06  0.241 2.926 2.843 

07  2.332 0.764 0.753 

08  2.831 0.336 0.254 

09  2.915 0.131 0.051 

10  2.949 0.144 0.136 

11  2.934 0.197 0.118 

12  2.981 0.184 0.106 

13  2.990 0.159 0.082 
 
 
       Table 1: Phase difference of modal deformations w, r, t pile cap deformations in radian 
                      at various Batter angle 
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APPENDIX-B 
 

SL. No. Batter angle Phase difference w, r, t pile cap deformations in radian at 
various Batter angle 
Pier-top 
deformation 

Pier-top 
rotation 

Pile-top 
rotation 

01 10° 0.054 3.236 3.118 

02 15° 3.256 0.152 0.036 

03 20° 2.934 0.242 0.127 

04 25° 2.959 0.215 0.103 

 
        Table 2: Phase difference of modal deformations w, r, t pile cap deformations in radian 
                      at various Batter angle considering 6m pier length 
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APPENDIX-C 

 
 

SL.NO. Frequency Pier top deformations for 1 m free field deformations in mm at 
different Batter angle  

     

 
 
01 

 
 
0.5 0.7 0.8 0.8 0.9 1.0 

 
 
02 

 
 
1.0 0.7 0.7 0.8 0.8 0.9 

 
 
03 

 
 
2.0 0.5 0.5 0.5 0.5 0.6 

 
04 

 
2.5 0.5 0.3 0.3 0.4 0.4 

 
 
 
05 

 
 
 
3.0 0.2 0.3 0.3 0.3 0.4 

 
 
 
06 

 
 
 
3.5 0.3 0.3 0.3 0.3 0.4 

 
 
 
07 

 
 
 
4.0 1 1 1.2 1.3 1.6 

 
 
 
08 

 
 
 
5.0 2.7 3 3.6 4.3 5.3 

 
 
Table 3: Pier top deformations for 1 m free field deformations in mm at different  
               Batter angle at different frequencies. 
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APPENDIX-D 

 
 

SL.NO. Frequency Phase difference between pier top and pile cap deformations in 
radians at different Batter angle  

     

 
 
01 

 
 
0.5 3.04725 3.053179 3.059921 3.067778 3.076508 

 
 
02 

 
 
1.0 3.002284 3.027139 3.054333 3.083841 3.115095 

 
 
03 

 
 
2.0 2.663402 2.667318 2.667762 2.665317 2.65973 

 
04 

 
2.5 2.663402 0.040063 0.017757 -0.00925 -0.03737 

 
 
 
05 

 
 
 
3.0 0.693896 0.690039 0.65354 0.592079 0.516476 

 
 
 
06 

 
 
 
3.5 0.384611 0.383074 0.360206 0.321444 0.273778 

 
 
 
07 

 
 
 
4.0 -0.0847 -0.48995 -0.09369 -0.09987 -0.10651 

 
 
 
08 

 
 
 
5.0 -0.26676 -1.07573 -0.26107 -0.25667 -0.25178 

 
Table 4: Phase differences between pier top and pile cap deformations w, r, t various  
                frequencies in radians at different Batter angle. 
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APPENDIX-E 
Programming by Mathematica 5.0 

In this study, pier-top deformation, pier-top rotation and pile-top rotation have been conducted at different Batter angles such as 00, 50, 

100, 120, 140, 160, 180 and 200 using Mathematica 5.0 software. Programming for 100 is as follows:  

[This is a program to calculate Eigenvalues and Eigenvectors for a dynamic system with non-proportional damping. 
This program has been developed for the particular application of a Pier-Pile Model. 
The program was developed by Raquib Ahsan on July 12, 2007] 

Input Parameters (The cells with grey boxes need input from the user. There are also two input boxes in the 
Calculations section) 
Pile Parameters 
 Pile Positions {Distances from the centroid} 

x = {-3.6, -3.6, -3.6, -2.6, -2.6,-1.5, -1.5, -1.5, 0, 0, 1.5, 1.5, 1.5, 2.6, 2.6, 3.6, 
3.6, 3.6}; 
 Batter Angles 

 = {-10, -10, -10, -10, -10, -10, -10, -10, 0, 0, 10, 10, 10, 10, 10, 10, 10, 
10}*Pi/180; 
 Lateral Stiffness of a single pile (can be a function of frequency) 

kx=13800+ I 200 ; 
 Axial Stiffness of a single pile (can be a function of frequency) 

kz=23200 +I 300 ; 
Pier Parameters 
 Height of the pier 

l = 12.55; 
 Axial Stiffness 

ae = 3.6* 2.5 10^6; 
 Lateral Stiffness 

ei = 12.5*2.5 10^6; 
Mass Matrix 
 Mass corresponding to the {vertical comp. of Pier-top, lateral comp of Pier-top, rotation of Pier-top, vertical comp of Pile-cap, lateral comp of Pile-cap, 
rotation of Pile-cap} 
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m=DiagonalMatrix[{30,30,3000,20,20,1000}]; 

Calculations 
Number of Piles 
 n = Length[]; 
Pile-Cap Stiffness 
 kcap11=Sum[kx (Sin[[[i]]])^2 + kz (Cos[[[i]]])^2, {i,1,n}]; 
 kcap12=Sum[(kx  - kz) (Sin[[[i]]]) (Cos[[[i]]]), {i,1,n}]; 
 kcap13 = Sum[x[[i]] (kx (Sin[[[i]]])^2 + kz (Cos[[[i]]])^2), {i,1,n}]; 
 kcap21 = kcap12; 
 

General ::spell1  : Possible spelling error : new symbol name "kcap21 " is similar to existing symbol "kcap12 ". More…  
 kcap22 = Sum[kx (Cos[[[i]]])^2 + kz (Sin[[[i]]])^2, {i,1,n}]; 
 kcap23 = Sum[x[[i]] (kx - kz) Sin[[[i]]] Cos[[[i]]], {i,1,n}]; 
 kcap31 = kcap13; 
 

General ::spell1  : Possible spelling error : new symbol name "kcap31 " is similar to existing symbol "kcap13 ". More…  
 kcap32 = kcap23;; 
 

General ::spell1  : Possible spelling error : new symbol name "kcap32 " is similar to existing symbol "kcap23 ". More…  
 kcap33 = Sum[(x[[i]])^2 (kx (Sin[[[i]]])^2 + kz (Cos[[[i]]])^2), {i,1,n}]; 
 kcap= {{kcap11, kcap12, kcap13}, {kcap21, kcap22, kcap23}, {kcap31, kcap32, kcap33}}; 
 MatrixForm[Simplify[N[kcap]]] 
 







413065.0.  5351.75   0. 2.0354 1011 0. 2.63775 1013 

0. 252935.  0.3648.25  65907.3 0. 701.141 

2.0354 1011 0. 2.63775 1013  65907.3 0. 701.141   2.71103 106 0.35133.3 






 

Pier Stiffness 
 kcol11 = {{ae/l, 0, 0}, {0, 12 ei/l^3, 6 ei/l^2}, {0, 6 ei/l^2, 4 ei/l}}; 
 kcol12 = {{-ae/l, 0, 0}, {0, -12 ei/l^3, 6 ei/l^2}, {0, -6ei/l^2, 2ei/l}}; 
 kcol21 = {{-ae/l, 0,0}, {0, -12 ei/l^3, -6 ei/l^2}, {0,6ei/l^2, 2 ei/l}}; 
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General ::spell1  : Possible spelling error : new symbol name "kcol21 " is similar to existing symbol "kcol12 ". More…  
 kcol22 = {{ae/l, 0, 0}, {0, 12 ei/l^3, -6 ei/l^2}, {0, -6 ei/l^2, 4 ei/l}}; 
 kcol={{kcol11, kcol12}, {kcol21, kcol22}}; 
 MatrixForm[kcol] 

 













717131. 0 0

0 189714. 1.19046106

0 1.19046106 9.96016106













717131. 0 0

0 189714. 1.19046106

0 1.19046 106 4.98008106













717131. 0 0

0 189714. 1.19046 106

0 1.19046106 4.98008106













717131. 0 0

0 189714. 1.19046 106

0 1.19046 106 9.96016 106












 

Combined Stiffness 
 k=Array[kij,{6,6}]; 
 Do[kij[i,j]=kcol11[[i,j]],{i,3},{j,3}] 
 Do[kij[i,j+3]=kcol12[[i,j]],{i,3},{j,3}] 
 Do[kij[i+3,j]=kcol21[[i,j]],{i,3},{j,3}] 
 k22 = kcol22 + kcap; 
 MatrixForm[Simplify[N[k22]]] 
 






1.1302106 0.  5351.75  0. 2.0354 1011 0. 2.63775 1013 

0. 442649.0. 3648.25  1.25636106  0. 701.141 

2.0354 1011 0. 2.63775 1013  1.25636106  0. 701.141  1.26712 107 0.35133.3 






 

 Do[kij[i+3,j+3]=k22[[i,j]],{i,3},{j,3}] 
Dynamic Stiffness (i.e., including inertia) 
 dynk=k-m ^2; 
Eigenvalue Solution 
 Determinant of the Dynamic Stiffness 

 cheqn=Det[dynk]; 
 Eigenvalues 
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 freq=Solve[cheqn==0,] 
 {{-218.507+91.0289 },{-148.622+42.2174 },{-83.5602+42.7649 },{-
82.5748+59.1152 },{-58.0513+6.52529 },{-14.5608+0.914899 },{14.5608 +0.914899 
},{58.0513 +6.52529 },{82.5748 +59.1152 },{83.5602 +42.7649 },{148.622 
+42.2174 },{218.507 +91.0289 }} 
 Fundamental Frequency 

freq[[7]] 
 {14.5608 +0.914899 } 
 Dynamic Stiffness for the Fundamental Frequency 

stiff1=dynk/.freq[[7]]; 
 Eigenvector for the Fundamental Frequency 

 mShape=NullSpace[stiff1] 
 

7.886351017 1.224741017 , 0.9852760.129754,

0.0946145  0.0150548, 7.815321017 1.22271 1017, 0.0105994 0.000877685, 0.05555610.00413114  
 Modal Amplitudes of the degrees of freedom at the Fundamental Frequency 

 Abs[mShape] 

 7.9808910
17, 0.993783, 0.0958048, 7.910391017, 0.0106357, 0.0557095  

 Phase angles of the degrees of freedom at the Fundamental Frequency 

 Arg[mShape] 
 {{-0.154068,0.130939,-2.9838,-0.155192,0.0826166,-3.06737}} 
 statStiff=k/.->0 
 
717131., 0, 0, 717131., 0, 0, 0, 189714., 1.19046106, 0, 189714., 1.19046106,

0, 1.19046106, 9.96016106, 0, 1.19046106, 4.98008106, 717131., 0, 0, 1.1302106, 0, 2.03541011,

0, 189714., 1.19046 106, 0, 442649., 1.25636 106, 0, 1.19046106, 4.98008 106, 2.03541011, 1.25636106, 1.26712107  
 LinearSolve[statStiff,{0,1000000,0,0,0,0}] 

 2.2479610
16, 81.1026, 7.08206, 2.247961016, 2.76486, 4.56202  

 
Similar process are followed for Batter angles such as 00, 50, 120, 140, 160, 180 and 200. 
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        APPENDIX-F 
Programming by MATLAB 

In this study, pier-top deformation and pile-cap deformation have been conducted for 

various frequencies at different Batter angles such as 00, 50, 100, 150, and 200 using 

MATLAB software. Programming for 50 is as follows:  

 

 

 

% batter_in 
  
omega = 2*pi; %frequency 
  
%Pile parameters 
  
k_x = 13770+i*2801; 
k_z = 22160+i*1541; 
k_xphi = 23348+i*3604; 
k_phi = 148064+i*7452; 
  
npile = 18; 
x = [-3.6; -3.6; -3.6; -2.6; -2.6; -1.5; -1.5; -1.5; 0; 0; 1.5; 1.5; 
1.5; 2.6; 2.6; 3.6; 3.6; 3.6]; 
theta = pi/180*[-5; -5; -5; -5; -5; -5; -5; -5; 0; 0; 5; 5; 5; 5; 5; 
5; 5; 5]; 
  
%Pier parameters 
  
l = 12.3; 
ea = 3.96*2.1*10^6; 
ei = 24.17*2.1*10^6; 
m = [30, 30, 3000, 20, 20, 1000]; 
  
  
%kinematic interaction factors 
  
te_z = 0.9968+i*6.15*10^(-4); 
te_x = 1.029-i*0.00314; 
te_xphi = 0.01959-i*0.00257; 
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% batter_kine 
  
batter_in 
  
if length(x)~=npile || length(theta)~=npile  
    error('length of x and theta must be equal to npile') 
end 
  
sub_stiff 
  
super_stiff 
  
kine_interact 
  
 
 

 

%kine_interact 
  
fcap_x = zeros(3,1); 
fcap_z = zeros(3,1); 
  
for ipile=1:npile 
    fp1_x = [(k_x-k_z)*sin(theta(ipile))*cos(theta(ipile)) 0; ... 
            k_z*sin(theta(ipile))^2+k_x*cos(theta(ipile))^2 
k_xphi*cos(theta(ipile)); k_xphi*cos(theta(ipile)) k_phi]*[te_x; 
te_xphi]; 
    fp1_z = te_z*[k_z*cos(theta(ipile))^2+k_x*sin(theta(ipile))^2; 
... 
            (k_x-k_z)*sin(theta(ipile))*cos(theta(ipile)); 
k_xphi*sin(theta(ipile))]; 
    fcap_x = fcap_x + fp1_x; 
    fcap_x(3) = fcap_x(3) + x(ipile)*fp1_x(1); 
    fcap_z = fcap_z + fp1_z; 
    fcap_z(3) = fcap_z(3) + x(ipile)*fp1_z(1); 
end 
  
f_x = zeros(6,1); 
f_z = zeros(6,1); 
f_x(4:6) = fcap_x; 
f_z(4:6) = fcap_z; 
  
u_x = k\f_x; 
u_xmod =abs(u_x) 
u_xphase = angle(u_x)*180/pi 
u_z = k\f_z; 
u_zmod = abs(u_z); 
u_zphase = angle(u_z)*180/pi; 
  
u_cap = kcap\fcap_x; 
u_capmod = abs(u_cap) 
u_capphase = angle(u_cap)*180/pi 
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%kine_solve 
  
f_super = -k(7:end,7:end)*u_p2; 
  
u_super = k(1:6,1:6)\f_super 
 

 

function k = kp(kx,kz,kxp,kp,theta) 
  
  
kp = [kx*(sin(theta))^2+kz*(cos(theta)^2) (kx-
kz)*sin(theta)*cos(theta) kxp*sin(theta); ... 
        (kx-kz)*sin(theta)*cos(theta) 
kx*(cos(theta)^2)+kz*(sin(theta)^2) kxp*cos(theta); ... 
        kxp*sin(theta) kxp*cos(theta) kp]; 
 
 

 

 

% sub_stiff 
  
kcap=zeros(3); 
  
for ipile=1:npile 
    kp = [k_x*sin(theta(ipile))^2+k_z*cos(theta(ipile))^2 (k_x-
k_z)*sin(theta(ipile))*cos(theta(ipile)) k_xphi*sin(theta(ipile)); 
... 
        (k_x-k_z)*sin(theta(ipile))*cos(theta(ipile)) 
k_x*cos(theta(ipile))^2+k_z*sin(theta(ipile))^2 
k_xphi*cos(theta(ipile)); ... 
        k_xphi*sin(theta(ipile)) k_xphi*cos(theta(ipile)) k_phi]; 
  
    kcap = kcap+kp; 
    kcap(1,3) = kcap(1,3) + x(ipile) * (k_x*sin(theta(ipile))^2 + 
k_z*cos(theta(ipile))^2); 
    kcap(3,1) = kcap(1,3); 
    kcap(2,3) = kcap(2,3) + x(ipile) * (k_x-
k_z)*sin(theta(ipile))*cos(theta(ipile)); 
    kcap(3,2) = kcap(2,3); 
    kcap(3,3) = kcap(3,3) + x(ipile)^2 * (k_x*sin(theta(ipile))^2 + 
k_z*cos(theta(ipile))^2); 
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end  
  
kcap 
 

%super_stiff 
  
kcol = [ea/l 0 0 -ea/l 0 0; 0 12*ei/l^3 6*ei/l^2 0 -12*ei/l^3 
6*ei/l^2; 0 6*ei/l^2 4*ei/l 0 -6*ei/l^2 2*ei/l; ... 
        -ea/l 0 0 ea/l 0 0; 0 -12*ei/l*3 -6*ei/l^2 0 12*ei/l^3 -
6*ei/l^2; 0 6*ei/l^2 2*ei/l 0 -6*ei/l^2 4*ei/l] 
  
k = kcol; 
  
k(4:6,4:6) = k(4:6,4:6)+kcap 
  
k = k - omega^2 * diag(m,0) 
Out put by MATLAB at 05 º 
 
 
 
>> batter_kine (0.5 Hz) 
 
 
kcap = 
 
  1.0e+006 * 
 
   0.4128 + 0.0234i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
   0.0000 - 0.0000i   0.2352 + 0.0220i   0.3591 + 0.0194i 
  -0.0000 + 0.0000i   0.3591 + 0.0194i   5.4119 + 0.2131i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0109 + 0.0002i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0056 + 0.0002i  -0.0165 + 0.0002i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0165 + 0.0002i   0.2192 + 0.0021i 
 
 
k = 
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1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1648                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0109 + 0.0002i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0056 + 0.0002i  -0.0165 + 0.0002i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0165 + 0.0002i   0.2191 + 0.0021i 
 
 
u_xmod = 
 
    0.0000 
    0.0008 
    0.0385 
    0.0000 
    0.4710 
    0.0382 
 
 
u_xphase = 
 
  -18.2498 
 -174.7817 
    0.0822 
  -18.2498 
    0.0738 
    0.0822 
 
 
u_capmod = 
 
    0.0000 
    1.0118 
    0.0021 
 
 
u_capphase = 
 
  176.7129 
   -0.1119 
   -8.1695 
 
>> batter_kine (1.0 Hz) 
 
 
kcap = 
 
  1.0e+006 * 
 
   0.3979 + 0.0279i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
   0.0000 - 0.0000i   0.2489 + 0.0503i   0.3890 + 0.0691i 
  -0.0000 + 0.0000i   0.3890 + 0.0691i   5.2791 + 0.3176i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
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   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0107 + 0.0003i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0058 + 0.0005i  -0.0162 + 0.0007i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0162 + 0.0007i   0.2179 + 0.0032i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0067                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1639                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0107 + 0.0003i   0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0058 + 0.0005i  -0.0162 + 0.0007i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0162 + 0.0007i   0.2175 + 0.0032i 
 
 
u_xmod = 
 
    0.0000 
    0.0007 
    0.0470 
    0.0000 
    0.5686 
    0.0456 
 
 
u_xphase = 
 
  -52.5245 
 -171.8654 
    1.5071 
  -52.5245 
    1.4985 
    1.5069 
 
 
u_capmod = 
 
    0.0000 
    1.0485 
    0.0085 
 
 
u_capphase = 
 
  174.3503 
   -0.3606 
   -8.8313 
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>> batter_kine (2.0 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.3879 + 0.0872i        0 - 0.0000i   0.0000 - 0.0000i 
        0 - 0.0000i   0.2493 + 0.0676i   0.4051 + 0.0808i 
   0.0000 - 0.0000i   0.4051 + 0.0808i   5.2425 + 0.7330i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0106 + 0.0009i        0 - 0.0000i   0.0000 - 0.0000i 
        0            -1.4856            -0.0201                  0 - 0.0000i   0.0058 + 0.0007i  -0.0161 + 0.0008i 
        0             0.0201             0.0825             0.0000 - 0.0000i  -0.0161 + 0.0008i   0.2175 + 0.0073i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0067                  0                  0            -0.0068                  0                  0           
        0             0.0032             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1603                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0106 + 0.0009i        0 - 0.0000i   0.0000 - 0.0000i 
        0            -1.4856            -0.0201                  0 - 0.0000i   0.0057 + 0.0007i  -0.0161 + 0.0008i 
        0             0.0201             0.0825             0.0000 - 0.0000i  -0.0161 + 0.0008i   0.2159 + 0.0073i 
 
 
u_xmod = 
 
    0.0000 
    0.0005 
    0.0729 
    0.0000 
    0.8445 
    0.0645 
 
 
u_xphase = 
 
  145.5249 
 -156.0499 
   -3.2854 
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  145.5249 
   -3.3008 
   -3.2868 
 
 
u_capmod = 
 
    0.0000 
    1.1588 
    0.0325 
 
 
u_capphase = 
 
  140.5136 
   -0.0603 
  -12.7393 
 
>> batter_kine(2.5 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.4029 + 0.1078i   0.0000 - 0.0000i        0 + 0.0000i 
   0.0000 - 0.0000i   0.2498 + 0.0755i   0.4140 + 0.0875i 
        0 + 0.0000i   0.4140 + 0.0875i   5.3563 + 0.8820i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0108 + 0.0011i   0.0000 - 0.0000i        0 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0058 + 0.0008i  -0.0160 + 0.0009i 
        0             0.0201             0.0825                  0 + 0.0000i  -0.0160 + 0.0009i   0.2186 + 0.0088i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0067                  0                  0            -0.0068                  0                  0           
        0             0.0032             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1577                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0107 + 0.0011i   0.0000 - 0.0000i        0 + 0.0000i 
        0            -1.4856            -0.0201             0.0000 - 0.0000i   0.0057 + 0.0008i  -0.0160 + 0.0009i 
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        0             0.0201             0.0825                  0 + 0.0000i  -0.0160 + 0.0009i   0.2162 + 0.0088i 
 
 
u_xmod = 
 
    0.0000 
    0.0003 
    0.0799 
    0.0000 
    0.8944 
    0.0655 
 
 
u_xphase = 
 
 -125.1110 
    1.3412 
    3.6357 
 -125.1110 
    3.6350 
    3.6356 
 
 
u_capmod = 
 
    0.0000 
    0.7247 
    0.0655 
 
 
u_capphase = 
 
 -121.6256 
    8.5694 
    1.8903 
 
>> batter_kine (3.0 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.4142 + 0.1193i  -0.0000 - 0.0000i   0.0000 - 0.0000i 
  -0.0000 - 0.0000i   0.2527 + 0.0923i   0.4199 + 0.1022i 
   0.0000 - 0.0000i   0.4199 + 0.1022i   5.4349 + 0.9676i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
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   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0109 + 0.0012i  -0.0000 - 0.0000i   0.0000 - 0.0000i 
        0            -1.4856            -0.0201            -0.0000 - 0.0000i   0.0058 + 0.0009i  -0.0159 + 0.0010i 
        0             0.0201             0.0825             0.0000 - 0.0000i  -0.0159 + 0.0010i   0.2194 + 0.0097i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0067                  0                  0            -0.0068                  0                  0           
        0             0.0032             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1544                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0108 + 0.0012i  -0.0000 - 0.0000i   0.0000 - 0.0000i 
        0            -1.4856            -0.0201            -0.0000 - 0.0000i   0.0057 + 0.0009i  -0.0159 + 0.0010i 
        0             0.0201             0.0825             0.0000 - 0.0000i  -0.0159 + 0.0010i   0.2159 + 0.0097i 
 
 
u_xmod = 
 
    0.0000 
    0.0003 
    0.1170 
    0.0000 
    1.2534 
    0.0868 
 
 
u_xphase = 
 
   73.1408 
  -42.6751 
   -3.1496 
   73.1408 
   -3.1574 
   -3.1513 
 
 
u_capmod = 
 
    0.0000 
    1.1956 
    0.0651 
 
 
u_capphase = 
 
   64.6621 
    3.3771 
   -7.8923 
 
>> batter_kine (3.5 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.4239 + 0.1285i   0.0000            -0.0000 - 0.0000i 
   0.0000             0.2592 + 0.1008i   0.4309 + 0.1112i 
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  -0.0000 - 0.0000i   0.4309 + 0.1112i   5.5103 + 1.0183i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0110 + 0.0013i   0.0000            -0.0000 - 0.0000i 
        0            -1.4856            -0.0201             0.0000             0.0059 + 0.0010i  -0.0158 + 0.0011i 
        0             0.0201             0.0825            -0.0000 - 0.0000i  -0.0158 + 0.0011i   0.2202 + 0.0102i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0066                  0                  0            -0.0068                  0                  0           
        0             0.0031             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1506                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0109 + 0.0013i   0.0000            -0.0000 - 0.0000i 
        0            -1.4856            -0.0201             0.0000             0.0058 + 0.0010i  -0.0158 + 0.0011i 
        0             0.0201             0.0825            -0.0000 - 0.0000i  -0.0158 + 0.0011i   0.2153 + 0.0102i 
 
 
u_xmod = 
 
    0.0000 
    0.0003 
    0.1268 
    0.0000 
    1.2858 
    0.0822 
 
 
u_xphase = 
 
   48.3069 
  -25.7947 
   -3.8553 
   48.3069 
   -3.8602 
   -3.8568 
 
 
u_capmod = 
 
    0.0000 
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    1.1947 
    0.0512 
 
 
u_capphase = 
 
   51.1013 
    1.3872 
   -4.8342 
 
>> batter_kine (4.0 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.4323 + 0.1360i        0            -0.0000 + 0.0000i 
        0             0.2631 + 0.1072i   0.4418 + 0.1173i 
  -0.0000 + 0.0000i   0.4418 + 0.1173i   5.5738 + 1.1101i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0111 + 0.0014i        0            -0.0000 + 0.0000i 
        0            -1.4856            -0.0201                  0             0.0059 + 0.0011i  -0.0157 + 0.0012i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0157 + 0.0012i   0.2208 + 0.0111i 
 
 
k = 
 
  1.0e+008 * 
 
   0.0066                  0                  0            -0.0068                  0                  0           
        0             0.0031             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1461                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0110 + 0.0014i        0            -0.0000 + 0.0000i 
        0            -1.4856            -0.0201                  0             0.0058 + 0.0011i  -0.0157 + 0.0012i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0157 + 0.0012i   0.2145 + 0.0111i 
 
 
u_xmod = 
 
    0.0000 
    0.0010 
    0.1631 
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    0.0000 
    1.5467 
    0.0882 
 
 
u_xphase = 
 
  -32.2747 
    0.8584 
   -4.2139 
  -32.2747 
   -4.2101 
   -4.2122 
 
 
u_capmod = 
 
    0.0000 
    1.0102 
    0.0706 
 
 
u_capphase = 
 
  -29.2162 
    6.0566 
   -3.4960 
 
>> batter_kine (5.0 Hz) 
 
kcap = 
 
  1.0e+006 * 
 
   0.4464 + 0.1492i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 
  -0.0000 - 0.0000i   0.2676 + 0.1247i   0.4599 + 0.1271i 
  -0.0000 + 0.0000i   0.4599 + 0.1271i   5.6853 + 1.2286i 
 
 
kcol = 
 
  1.0e+008 * 
 
    0.0068         0         0   -0.0068         0         0 
         0    0.0033    0.0201         0   -0.0033    0.0201 
         0    0.0201    0.1651         0   -0.0201    0.0825 
   -0.0068         0         0    0.0068         0         0 
         0   -1.4856   -0.0201         0    0.0033   -0.0201 
         0    0.0201    0.0825         0   -0.0201    0.1651 
 
 
k = 
 
  1.0e+008 * 
 
   0.0068                  0                  0            -0.0068                  0                  0           
        0             0.0033             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1651                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0112 + 0.0015i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201            -0.0000 - 0.0000i   0.0059 + 0.0012i  -0.0155 + 0.0013i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0155 + 0.0013i   0.2219 + 0.0123i 
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k = 
 
  1.0e+008 * 
 
   0.0065                  0                  0            -0.0068                  0                  0           
        0             0.0030             0.0201                  0            -0.0033             0.0201           
        0             0.0201             0.1355                  0            -0.0201             0.0825           
  -0.0068                  0                  0             0.0110 + 0.0015i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 
        0            -1.4856            -0.0201            -0.0000 - 0.0000i   0.0058 + 0.0012i  -0.0155 + 0.0013i 
        0             0.0201             0.0825            -0.0000 + 0.0000i  -0.0155 + 0.0013i   0.2120 + 0.0123i 
 
 
u_xmod = 
 
    0.0000 
    0.0030 
    0.2880 
    0.0000 
    2.2753 
    0.0815 
 
 
u_xphase = 
 
  -77.7110 
   -0.9292 
  -16.0967 
  -77.7110 
  -16.0731 
  -16.0721 
 
 
u_capmod = 
 
    0.0000 
    0.7325 
    0.0601 
 
 
u_capphase = 
 
  -65.6415 
    7.2140 
    1.0610 
 

 
Similar process are followed for various frequencies at Batter angles such as 00, 

100, 150, and 200
 


