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Abstract 
In this thesis under the title, “Effects of pressure stress work and viscous dissipation in natural 

convection flows from a horizontal circular cylinder”, we have studied two problems namely 

effects of pressure stress work and viscous dissipation in natural convection flows from a 

horizontal circular cylinder and joule heating effects on magnetohydrodynamic (MHD) natural 

convection flows in presence of pressure stress work and viscous dissipation from a horizontal 

circular cylinder which belongs to two different chapters. 

In chapter two, the steady laminar natural convection flow along the surface of a uniformly 

heated horizontal circular cylinder, taking into account the effects of viscous dissipation and 

pressure stress work, has been studied. The results have been obtained by transforming the 

governing boundary layer equations into a system of non-dimensional equations and by applying 

implicit finite difference method together with Newton’s linearization approximation. Numerical 

results for different values of the viscous dissipation parameter, pressure stress work parameter, 

and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin 

friction co-efficient and the rate of heat transfer have been presented graphically for the effects 

of the aforementioned parameters. 

In chapter three, the joule heating effects on MHD natural convection flow from a horizontal 

circular cylinder in the presence of pressure stress work and viscous dissipation has been 

investigated. The governing boundary layer equations are first transformed into a non-

dimensional form and the resulting nonlinear systems of partial differential equations are then 

solved numerically using finite-difference method. The numerical results of the surface shear 

stress in terms of skin friction coefficient and the rate of heat transfer, velocity as well as 

temperature profiles are shown graphically and discussed for a selection of parameters set 

consisting of joule heating parameter J, magnetic parameter M and the Prandlt number Pr. 
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Chapter one 
 

Introduction 

 
1.1: Overview 
 
Fluid dynamics is one of the oldest branches of applied mathematics. It is also the branch 

in which some of the most significant advances have been made during the last fifty 

years. These advances have been motivated by exciting development in science and 

technology and facilitated by growth of computer capabilities and developments of 

sophisticated mathematical techniques. 

 

An important contribution to the fluid dynamics is the concept of boundary-layer 

introduced by L. Prandtl. The concept of boundary layer is the consequence of the fact 

that flows at high Reynolds numbers can be divided into two unequally spaced regions. A 

very thin layer (called boundary-layer) in the vicinity (of the object) in which the viscous 

effects dominate, must be taken into account, and for the bulk of the flow region, the 

viscosity can be neglected and the flow corresponds to the inviscid outer flow. 

 

Although the boundary layer is very thin, it plays a very important role in the fluid 

dynamics. Boundary-layer theory has become an essential study in analyzing the complex 

behaviors of real fluids. This concept can be utilized to simplify the Navier-Stokes’ 

equations to such an extent that the viscous effects of flow parameters are evaluated, and 

these are usable in many practical problems viz. the drag on ships and missiles, the 

efficiency of compressors and turbines in jet engines, the effectiveness of air intakes for 

ram and turbojets and so on.  

 

There are three distinct modes of heat transfer, namely conduction, convection and 

radiation. In reality, the combined effects of these three modes of heat transfer control 

temperature distribution in a medium. Conduction occurs if energy exchange takes place 

from the region of high temperature to that of low temperature by the kinetic motion or 
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direct impact of molecules, as in the case of fluid at rest, and by the drift of electrons, as 

in the case of metals. The radiation energy emitted by a body is transmitted in the space 

in the form of electromagnetic waves. Energy is emitted from a material due to its 

temperature level, being larger for a larger temperature, and is then transmitted to another 

surface, that may be vacuum or a medium, which may absorb, reflect or transmit the 

radiation depending on the nature and extent of the medium. Considerable effort has been 

directed to the convective mode of heat transfer. In this mode, relative motion of the fluid 

provides an additional mechanism for energy transfer. A study of convective heat transfer 

involves the mechanism of conduction and, sometimes, those of radiation processes as 

well. This makes the study of convective mode a very complicated one. 

 

The convective mode of heat transfer is divided into two basic processes. If the motion of 

the fluid arises due to an external agent such as the externally imposed flow of a fluid 

over a heated object, the process is termed as forced convection. The fluid flow may be 

the result of a fan, a blower, the wind or the motion of the heated object itself. If the heat 

transfer to or from a body occurs due to an imposed flow of a fluid at a temperature 

different from that of the body, problems of forced convection encounters in technology. 

If the externally induced flow is provided and flows arising naturally solely due to the 

effect of the differences in density, caused by temperature or concentration differences in 

the body force field(such as gravitational field) then these types of flow are called ‘free 

convection’ or ‘natural convection’ flows. The density difference causes buoyancy 

effects and these effects act as ‘driving forces’ due to which the flow is generated. Hence 

free convection is the process of heat transfer, which occurs due to movement of the fluid 

particles by density differences associated with temperature difference in a fluid.  

 

The viscous dissipation term is always positive and represents a source of heat due to 

friction between the fluid particles. A variety of expressions are used in the literature for 

this term like viscous heating, shear stress heating and viscous work. The pressure work 

is the work that requires pushing fluid into or out of a control volume. When fluid cross a 

control surface and enters the control volume, it must push’s back the fluid that is already 

inside the control volume. Since that fluid has a pressure, the entering fluid must do work 
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to move it. For example, rising air expands because as it rises there is less atmospheric 

pressure compressing it and as it expands becomes cooler. This phenomenon is called 

adiabatic cooling. The opposite happens when air sinks. This phenomenon is called 

adiabatic heating. For the pressure work terms the expression adiabatic temperature 

gradient, adiabatic gradient and adiabatic heating or adiabatic cooling is used. The 

pressure work term in the energy equation is negative for rising fluid according to the 

above analysis. The viscous dissipation tends to rise the fluid temperature while the 

pressure work tends to lower its temperature in the upward flow examined here. 

 

Many natural phenomena and engineering problems are susceptible to viscous dissipation 

and pressure stress work analysis. It is useful in astrophysics. Geophysicists encounter 

pressure phenomena in the interactions of conducting fluids fields that are presented in 

and around heavenly bodies. Engineers employ MHD principles in the design of heat 

exchangers, pumps and flowmeters, in space vehicle propulsion, control and re-entry, in 

creating novel power generating systems, and in developing confinement schemes for 

controlled fusion. 

 

The motion of an electrically conducting fluid, like mercury, under a magnetic field, in 

general, gives rise to induced electric currents on which mechanical forces are exerted by 

the magnetic field. On the other hand, the induced electric currents also produce induce 

magnetic field. Thus there is a two-way interaction between the flow field and the 

magnetic field; the magnetic field exerts force on the fluid by producing induced currents, 

and the induced currents change the original magnetic field. Therefore, the 

hydromagnetic flows (the flows of electrically conducting fluids in the presence of a 

magnetic field) are more complex than the ordinary hydrodynamic flows. Mathematically 

also, the hydromagnetic equations have three non-linear terms while in hydrodynamics 

we have only one. The numbers of governing equations are also increased. The study of 

hydromagnetic flows is called magnetohydrodynamics (MHD).Two developed branches 

of physics, namely electromagnetic theory and fluid dynamics interact to produce 

hydromagnetics and therefore the field of hydromagnetics is much richer than both the 

parent branches. 
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Magnetohydrodynamics (MHD) is that branch of continuum mechanics, which deals with 

the flow of electrically conducting fluids in electric and magnetic fields, probably the 

largest advance towards understanding of such phenomena comes from the field of 

Astrophysics. Originally, MHD included only the study of strictly incompressible fluid, 

but today the terminology is applied to study ionized gases as well. Other names have 

been suggested, such as magnetofluid-mechanics or magneto-aerodynamics, but original 

nomenclature has persisted. Many natural phenomena and engineering problems are 

susceptible to MHD analysis. It is useful in astrophysics.  

 

1.2 Literature Review 

 

The study of viscous dissipation and pressure stress work on natural convection flow is of 

great importance to the researcher because of their applications in many branches of 

Science and Engineering. Some of the earlier researchers studied the problem related to 

the viscous dissipation and pressure stress work on natural convection flow along a both 

vertical and horizontal flat plate. In almost all natural convection studies, the viscous 

dissipation and pressure stress terms are neglected in the energy equation. The influence 

and importance of viscous stress work effects in laminar flows have been examined by 

Gebhart (1962). But they investigated generally not in a particular case of study. 

Zakerullah (1972) has been investigated the viscous dissipation and pressure work effects 

in axisymmetric natural convection flows. Ackroyd (1974) studied the stress work effects 

in laminar flat plate natural convection flow. Takhar and Soundalgekar (1980) have 

studied the effects of viscous and Joule heating on the problem posed by Sparrow and 

Cess (1961), using the series expansion method of Gebhart (1962). Miyamoto et al. 

(1980) has been investigated the effect of axial heat conduction in a vertical flat plate on 

free convection heat transfer. Joshi and Gebhart (1981) have shown that the effect of 

pressure stress work and viscous dissipation in some natural convection flows. Pozzi and 

Lupo (1988) studied the coupling of conduction with laminar natural convection along a 

flat plate. Effects of pressure stress work and viscous dissipation in natural convection 

flow along a vertical flat plate with heat conduction has been investigated by Alam et al.  

(2006). Recently, Hye et al. (2007) have considered the effects of heat and mass transfer 
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on natural convection flows across an isothermal horizontal circular cylinder with 

chemical reaction. 

 

Free convection around horizontal cylinders has been extensively investigated, both 

analytically and numerically. Exclusively attention has so far been paid to viscous 

dissipation and pressure work noticeable practical interest, as are those relative to 

cylinders. Free convection heat transfer due to the simultaneous action of buoyancy and 

induced magnetic forces is very important in some practical problems.  

 

The aforementioned analysis did not consider the effects of pressure stress work and 

viscous dissipation in natural convection flows from a horizontal circular cylinder. Our 

present work is to incorporate the idea of natural convection flows from horizontal 

circular cylinder. It is found that the free convection heat transfer to liquid metals may be 

significantly affected by the presence of a magnetic field with viscous dissipation and 

pressure work, but that other fields experience very small effects. 

 

Natural convection flow from a horizontal cylinder due to thermal buoyancy was 

analyzed by a number of researchers (1961, 1962) under diverse surface boundary 

conditions (isothermal, uniform heat flux and mixed boundary conditions) using different 

mathematical technique. The conjugate heat transfer process formed by the interaction 

between the conduction inside the solid and the convection flow along the solid surface 

has a significant importance in many practical applications. In fact, conduction within the 

tube wall is significantly influenced by the convection in the surrounding fluid. 

Consequently, the conduction in the solid body and the convection in the fluid should 

have to determine simultaneously. Wilks (1976) studied the MHD free convection about 

a semi-infinite vertical plate in a strong cross field. He observed that both the velocity 

profiles and temperature profiles shifted down for increasing value of magnetic parameter 

and that are rise up for increasing value of Joule heating parameter. Miyamoto (1980) 

analyzed the effects of axial heat conduction in a vertical flat plate on free convection 

heat transfer. Miyamoto observed that a mixed-problem study of the natural convection 

has to be performed for an accurate analysis of the thermo-fluid-dynamic (TFD) field if 
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the convective heat transfer depends strongly on the thermal boundary conditions. Takhar 

and Soundalgekar (1980) investigated dissipation effects on MHD free convection flow 

past a semi-infinite vertical plate. Pozzi and Lupo (1988) investigated the entire TFD 

field resulting from the coupling of natural convection along and conduction inside a 

heated flat plate by means of two expansions, regular series and asymptotic expansions. 

Alam et al. (1997) studied the viscous and Joule heating effects on MHD free convection 

flow with variable plate temperature. A considerable amount of research has been done in 

this field.  

 

In this analysis, we have also investigated the joule heating effects on MHD natural 

convection flow from an isothermal horizontal circular cylinder in presence of viscous 

dissipation and pressure work.  

 

Detailed derivations of the governing equations for the flow and the method of solutions 

along with the results and discussions are presented in the next chapters.  
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Chapter two 
 

Effects of pressure stress work and viscous dissipation in natural 
convection flows from a horizontal circular cylinder 

 
 

2.1 Introduction: 
 
Generally in natural convection studies, the viscous dissipation and pressure stress term are 

neglected in the energy equation. This is a valid approximation at an ambient temperature of 

300K. at 1 atm pressure and at terrestrial gravity, for most gases and low and moderate Prandtl 

number liquids. However, for high gravity such as in gas turbine blade cooling applications. 

Where the intensity of the body force may be as large as 104

 

g, viscous dissipation and pressure 

stress effects may affect transport even at small downstream distances from the leading edge. 

Also, the effects on transport may be quite significant at low temperatures for gases and for high 

Prandtl number liquids. Now, we shall discuss both the effects of viscous dissipation and 

pressure stress work. 

2.2 Governing equations of the flow: 
 
This formulation assumes steady, two dimensional vertical natural convection flow. Here x is 

taken to be in the directions of the flow that is along the surface of the cylinder. The temperature 

quiescent ambient fluid ∞T , is taken to be constant for large values of y . However, in the upward 

and downward direction of flows, the velocity is considered zero from the leading edge due to 

natural convection flow. The fluid properties are assumed to be constant, as evaluated at some 

reference temperature. Viscous dissipation and hydrostatic pressure terms have been 

incorporated in the energy equation.  
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Figure 1: The geometry of the problem 

 
The laminar boundary layer free convection flow is then governed by the following system of 
equations: 
Continuity equation  
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∂
∂
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Momentum equation  







−+

∂
∂

=
∂
∂

+
∂
∂

∞ a

x
TTg

y

u

y

u
v

x

u
u sin)(

2

2

βν  
 

(2.2) 

Energy Equation  
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The appropriate boundary conditions are  
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2.3 Transformation of the governing equations:  
 
To solve the equations (2.2) – (2.3) subject to the boundary conditions (2.4), the following 
transformations for the governing equations are 

∞
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The non dimensional form of the equations (2.1)-(2.3) is as follows:  
 
Continuity equation  
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Momentum equation  
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Energy Equation  









−
−+

−







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

∞

∞∞

TT

TTT

C

gu

y

u

yy
v

x
u

W

W

P

)(

Pr

1
2

2

2 θβεθθθ
 

(2.7) 

The appropriate boundary conditions are  
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To solve equation (2.6)-(2.7), subject to the boundary condition (2.8), we assume following 
transformations 

( )yxfx ,=ψ , ),( yxθθ =                                                                                         (2.9) 

            
Where ψ  be the stream function usually defined as 

yu ∂∂= /ψ xv ∂−∂= /ψ  (2.10) 

 
Substituting (2.10) into the equations (2.6)-(2.7), the new forms of the dimensionless equations 
(2.6) and (2.7) are  
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In the above equations the primes denote differentiation with respect to y.  
Here, 
Parameters: 
                                         

The corresponding boundary conditions reduced the form  
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Viscous dissipation parameter :

)(2

2

∞−
=

TTaC

G

wp

rν
λ  

 
Pressure stress parameter :

pC

agβε =  

 
Prandtl number :

κ
µ pc

Pr =  

            
          
2.4 Results and discussion 

 

In the present problem we have investigated the solutions of the nonsimilar boundary layer 

equations governing the laminar free convective flow across an isothermal horizontal cylinder 

with the effects of pressure stress work and viscous dissipation. 

Numerical values for the velocity profiles, temperature profiles, local skin friction coefficients 

and the rate of heat transfer for selected values of viscous dissipation  parameter λ (=0.1, 0.3, 

0.5, 0.9) for the fluids having Prandtl number Pr (=0.72, 0.1, 1.44, 1.74) with Pressure stress 

work parameter ε (=0.1, 0.3, 0.5, 0.9) are obtained. Here the total surface of the cylinder is 

isothermal. The numerical solutions start at the lower stagnation point of the cylinder i.e 

at 0.0≈x , and proceed round the cylinder up to the upper stagnation point π≈x . The values of 

the Prandtl number Pr are taken to 0.72 that corresponds physically the air and 1.0 corresponding 

to electrolyte solutions such as salt water and 1.44, 1.72 are water and Glycerin respectively have 

been used theoretically. 
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Fig. 2(a). Variation of velocity profiles against y 
for varying of viscous dissipation parameter λ  
with Pr=0.72, and 5.0=ε  

Fig. 2(b) Variation of temperature profiles 
against y for varying of viscous dissipation 
parameter λ  with Pr=0.72, and 5.0=ε  



  11 

 

From Fig. 2(a), it is observed that velocity increases as the values viscous dissipation parameter 

λ  increases. Near the stagnation point velocity increases significantly along y and becomes 

maximum and then decreases slowly and finally approaches to zero, the asymptotic value. The 

maximum values of the velocities are 0.32764966, 0.33015290, 0.33267013 and 0.33774648 for 

λ =0.1, 0.3, 0.5 and 0.9 respectively which occurs at y = 1.40347467. Here it is observed that the 

velocity increases by 3.08% as λ  increases 0.1 to 0.9. From Fig.2 (b), it is seen that when the 

values of viscous dissipation parameter λ  increases, the temperature also increases. 

 

Figs. 3(a) and 3(b) display results for the velocity and temperature profiles for different values of 

pressure work parameter ε  ( =ε 0.1, 0.3 0.5 0.9) plotted against y having Prandtl number 

Pr=0.72, 5.0=λ . It is observed that, as the pressure work parameter ε  increases, the velocity 

profiles decreases between 5.70 ≤≤ y  and then increases with very small difference and finally 

approaches to zero along y direction. The temperature profile increases with increasing pressure 

work parameterε . The maximum values of the velocity are recorded as 0.34949139, 

0.33814515, 0.32764966 and 0.30893520 for =ε 0.1, 0.3 0.5 and 0.9, respectively which occurs 

at y =1.40. It is found that the velocity decreases by 11.60% as the pressure work parameter ε  

increases from 0.1 to 0.9. 
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Fig. 3(a). Variation of velocity profiles against y 
for varying of pressure stress work parameter ε  
with Pr=0.72, and 5.0=λ  

Fig. 3(b). Variation of temperature profiles 
against y for varying of pressure stress work 
parameter ε  with Pr=0.72, and 5.0=λ  
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Fig. 4(a). Variation of velocity profiles against y 
for varying of Prandtl number Pr with 5.0=λ  
and 5.0=ε  

Fig. 4(b). Variation of temperature profiles 
against y for varying of Prandtl number Pr with 

5.0=λ  and 5.0=ε  
 

Figs. 4(a) and 4(b) indicate the effects of the Prandtl number Pr with 5.0=λ and 5.0=ε  on the 

velocity profiles and the temperature profiles. From Fig. 4(a) it is observed that the increasing 

values of Prandtl number Pr leads to the decrease in the velocity profiles. The maximum values 

of the velocity are 0.360475529, 0.32498678, 0.29275551 and 0.27574108 for Pr = 0.72, 1.00, 

1.44 and 1.74 respectively which occur at y = 1.45, 1.56, 1.38, 1.30 for first, second, third and 

forth maximum value respectively. Here it is depicted that the velocity decreases by 23.50% as 

Pr increases from 0.72 to 1.44. Again from Fig. 4(b) it is observed that the temperature profiles 

decreases with the increasing values of Prandtl number. 

 

It can easily be seen that the effect of viscous dissipation parameter λ  leads to an increase in the 

local skin friction coefficient xCf  and a decrease in the rate of heat transfer xNu  which are 

shown in fig. 5(a) and 5(b) respectively. This phenomenon can easily be understood from the 

fact that the viscous dissipation parameter slightly increases the skin friction in presence of stress 

work parameter. Owing to increasing the viscous dissipation parameter in presence of stress 

work parameter, the fluid temperature within the boundary layer slightly increases and the 

associated thermal boundary layer becomes thicker. For increasing fluid temperature, the 

temperature difference between fluid and surface decreases and the corresponding rate of heat 

transfer decreases.  

 

 



  13 

 

 

 

The variation of reduced local skin friction coefficient and the local rate of heat transfer for 

different values of stress work parameter ε  ( =ε 0.1, 0.3 0.5 0.9) are illustrated in Figs. 6(a) and 

6(b) while Pr = 0.72 and 5.0=λ . From the fig.6 (a) it can be easily seen that the stress work 

parameter leads to a decrease in the local skin friction coefficient xCf and an increase in the local 

Nusselt number xNu . This are expected, since the stress work mechanism decreases fluid 

temperature, the temperature difference between fluid and surface increases and the regarding 

rate of heat transfer increases. In order to decreasing temperature, the viscosity of the fluid 

decreases and the corresponding local skin friction xCf decreases by 9.90%. 
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Fig.5 (a). Variation of skin friction against x for 
varying of viscous dissipation parameter λ  with 
Pr=0.72, and 5.0=ε  

Fig.5 (b). Variation of heat transfer against x for 
varying of viscous dissipation parameter λ  with 
Pr=0.72, and 5.0=ε  
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Fig. 6(a). Variation of skin friction against x for 
varying of pressure stress work parameter ε  
with Pr=0.72, and 5.0=λ  

Fig. 6(b). Variation of heat transfer against x for 
varying of pressure stress work parameter ε  
with Pr=0.72, and 5.0=λ  
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Fig. 7(a). Variation of skin friction against x for 
varying of Prandtl number Pr with 5.0=λ  and 

5.0=ε  

Fig. 7(b). Variation of heat transfer against x for 
varying of Prandtl number Pr with 5.0=λ  and 

5.0=ε  
 

The local skin friction coefficient and the local rate of heat transfer for different values of Prandtl 

nimber Pr (Pr = 0.72, 1.00, 1.44 and 1.74) are illustrated in Figs.7(a) and 7(b) while 

5.0=ε and 5.0=λ . From these two figures it can be easily seen that for the higher Prandtl 

number local skin friction coefficients xCf decrease and there is an increase in the local Nusselt 

number xNu . This is expected because the higher Prandtl number has a lower skin friction. 

 

In order to verify the accuracy of the present work, the numerical values of skin friction 

coefficient xCf  for 0.0=λ , 0.0=ε  and Pr = 1.00 in different position of x are compared with 

those reported by Merkin (1976),  Nazar et al.(2002) and  Hye et al. (2007) as presented in table 

2. 1. The results are found to be in excellent agreement. 

Table 2.1:  

 
 
 
 
 
 
 
 
 
 
 

Compare the numerical values of xCf  for different values of x while Pr=1.0 0.0=λ  and 

0.0=ε  
x Merkin (1976) Nazar et 

al.(2002)  
Hye et al. 

(2007) 
Present(2010) 

0.0 0.0000 0.0000 0.0000 0.0000 
π/6 0.4151 0.4148 0.4145 0.4139 
π/3 0.7558 0.7542 0.7539 0.7528 
π/2 0.9579 0.9545 0.9541 0.9526 
2π/3 0.9756 0.9698 0.9696 0.9678 
5π/6 0.7822 0.7740 0.7739 0.7718 
π 0.3391 0.3265 0.3264 0.3239 
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2.5 Conclusion 
 
The effects of pressure stress work and viscous dissipation in natural convection flows from a 

horizontal circular cylinder has been investigated numerically. The governing boundary layer 

equations of motions are transformed into a non-dimensional form and the resulting non-linear 

systems of partial differential equations are reduced to local non-similarity boundary layer 

equations, which are solved numerically by using implicit finite difference method together with 

the Keller- box scheme. From the present investigation the following conclusions may be drawn: 

• With effect of viscous dissipation parameter λ  the local skin friction coefficient xCf  

slightly increases and the rate of heat transfer xNu decreases. 

• An increase in values of viscous dissipation parameter λ  slightly increases velocity 

profiles and temperature distributions. 

• For increasing values of stress work parameter ε  the skin friction coefficient decreases 

but Nusselt number increases. 

• With the effect of stress work parameter both the velocity and temperature distributions 

decreases significantly the thickness of the thermal boundary layer. 

• An increasing value of Prandtl number Pr leads to decrease in the velocity and the 

temperature distributions. 
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Chapter three 
 

Joule heating effects on MHD natural convection flows in presence of 
pressure stress work and viscous dissipation from a horizontal 

circular cylinder 

  
 
3.1 Introduction 
 
 
In the traditional area of thesis research, it has been seen that heat transfer in a fluid flow with the 

viscous dissipation and pressure stress work assumed in a vertical plate. In this case it is usual to 

prescribe with the viscous dissipation and pressure stress work a considerable amount of research 

has done in order to understand the heat transfer characteristics and temperature profile over a 

wide range of flow configurations and fluid properties. However in many real engineering 

systems with the viscous dissipation cannot be neglected and able to significantly affect the fluid 

flow and the heat transfer characteristics of the fluid in the surface of the wall. In order to take 

account of physical reality, there has been a tendency to move away from considering 

mathematical problems in which the surface is considered to be isothermal. Thus the velocity 

and temperature profile in the fluid should be determined simultaneously.  

 

In this thesis, the MHD-conjugate free convection flow from an isothermal horizontal circular 

cylinder with Joule heating effects in presence of viscous dissipation and pressure stress work 

has been investigated. The governing boundary layer equations are transformed into a non 

dimensional form and the resulting non linear partial differential equations are solved 

numerically using the implicit finite difference method together with the Keller box technique. 

The temperature distributions, velocity profiles, skin friction coefficients and the heat transfer 

rates are presented graphically. 

3.2 Governing equations of the flow: 

 

Let us consider a steady natural convection flow of a viscous incompressible fluid from an 

isothermal horizontal circular cylinder of radius a placed in a fluid of uniform temperature. A 
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uniform magnetic field having strength 0B  is acting normal to the cylinder surface. The effects 

of pressure stress work, viscous dissipation and joule heating in the flow region and conduction 

from surface considered in the present study. Under the balance laws of mass, momentum and 

energy and with the help of Boussinesq approximation for the body force term in the momentum 

equation, the equations governing this boundary-layer natural convection flow can be written as:  

Continuity equation  
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∂
∂
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Energy Equation  
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The appropriate boundary conditions are  
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3.3 Transformation of the governing equations 
 
To solve the equations (3.2) – (3.3) subject to the boundary conditions (3.4), the following 
transformations for the governing equations are, 
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The non dimensional form of the equations (3.1)-(3.3) is as follows:  
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Energy Equation  
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The appropriate boundary conditions are  



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(3.8) 

 
Where )/()( 2/12

0
2 GrBaM ρνσ= is the magnetic parameter, ( )}/{)( 2/12

0 ∞−= TTcGrBJ wpρσν  is 

the joule heating parameter and κµ /pcPr =  is the Prandtl number.  

To solve equation (3.5)-(3.7), subject to the boundary condition (3.8), we assume following     
transformations     

( )yxfx ,=ψ , ),( yxθθ =                                                                                         (3.9) 

 
Where ψ  is the stream function usually defined as 

yu ∂∂= /ψ xv ∂−∂= /ψ  (3.10) 
Substituting (3.10) into the equations (3.5)-(3.7), the new forms of the dimensionless equations 
(3.6) and (3.7) are 
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In the above equations primes denote differentiation with respect to y.  

 
Parameters:  
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3.4 Method of Solution: 

To get the solutions of the parabolic differential equations (3.11) and (3.12) along with the 

boundary condition (3.13), we shall employ implicit finite difference method together with 

Keller- box elimination technique.  

 
3.5 Results and discussion 
 
Joule heating effects on magnetohydrodynamic natural convection flow in presence of pressure 

stress work and viscous dissipation from a horizontal cylinder has been investigated. The 

velocity profiles, temperature distributions, local skin-friction and the local rate of heat transfer 

obtained by the finite difference method for various values of the governing parameters. The 

aims of the figures are to display how the profiles vary with x, the scaled stream wise coordinate. 

From Fig. 8(a), it is observed that the velocity increases as the values of the Joule heating 

parameter J increase. The velocity increases significantly along y and becomes maximum and 

then decreases slowly and finally approaches to zero, the asymptotic value. The maximum values 

of the velocity are 0.32931258, 0.33958319 and 0.36033431 for J = 0.1, 0.3, 0.5 and 0.9 

respectively which occur at y= 1.80 for first, second maximum values, at y = 1.45 for third and 

fourth maximum values. Here it is observed that the velocity increase by 15.23% as J increases 

from 0.1 to 0.9. From Fig. 8(b), it is seen that when the values of joule heating parameter J 

increase, the temperature also increases. 
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Fig.8 (a). Variation of velocity profile against y 
for varying of J with M = 0.1, 5.0=λ , 5.0=ε  
and Pr =1.0. 

Fig.8 (b). Variation of temperature against y for 
varying of J with M = 0.1, 5.0=λ , 5.0=ε  and 
Pr=1.0. 
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Fig.9 (a). Variation of velocity profile against y 
for varying of M with J = 0.1, 5.0=λ , 5.0=ε  
and Pr=1.0. 

Fig.9 (b). Variation of temperature against y for 
varying of M with J = 0.1, 5.0=λ , 5.0=ε  and 
Pr=1.0. 

 

Figs. 9(a) and 9(b) display results for the velocity and temperature profiles for different values of 

magnetic parameter M (M = 0.1, 0.3, 0.5, 0.9) having Prandtl number Pr = 1.0, J = 0.1 5.0=λ , 

5.0=ε . It is observed that, as the magnetic parameter M increases, the velocity profile decreases 

between 50 ≤≤ y and then increases with very small difference and finally approaches to zero 

along y direction. The temperature profile increases with increasing magnetic parameter M. The 

maximum values of the velocity are recorded as 0.36033401, 0.32258730, 0.29037867 and 

0.263928080 for M = 0.1, 0.3, 0.5 and 0.9 respectively which occur at y = 1.43 for 1st, 2nd, 3rd 

and 4th maximum values. It is found that the velocity decreases by 26.75% as the magnetic 

parameter M increases from 0.1 to 0.9. 
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Fig.10 (a). Variation of velocity profile against y 
for varying of Pr with M= 0.1, 5.0=λ , 5.0=ε  
and J=0.1. 

Fig.10 (b). Variation of temperature profile 
against y for varying of Pr with M =0.1, 5.0=λ ,  

5.0=ε  and J=0.1. 
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Figs. 10(a) and 10(b) indicate the effects of the Prandtl number Pr with M = 1.0, 5.0=λ  J = 0.1 

and 5.0=ε on the velocity profiles and the temperature profiles. From Fig. 10(a) it is observed 

that the increasing values of Prandtl number Pr leads to the decrease in the velocity profiles. The 

maximum values of the velocity are 0.34181852, 0.31031986, 0.27675142 and 0.26104378 for 

Pr = 0.72, 1.0, 1.44 and 1.74 respectively which occur at y = 1.43, y = 1.36, y = 1.30 and y = 

1.26 for the first, second, third and forth maximum value. Here it is depicted that the velocity 

decreases by 23.63% as Pr increases from 0.72 to 1.74. Again from Fig. 10(b) it is observed that 

the temperature profiles decreases with the increasing values of Prandtl number Pr. 
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Fig. 11(a). Variation of skin friction against x for 
varying of M with J = 0.1, 5.0=λ , 5.0=ε  and 
Pr=1.0. 

Fig.11 (b). Variation of heat transfer against x for 
varying of M with J= 0.1, 5.0=λ , 5.0=ε  and  
Pr=1.0. 

 

It can easily be seen that the effect of the magnetic parameter M leads to a decrease in the local 

skin friction coefficient xCf and the local Nusselt number xNu  in Fig. 11(a) and 11(b). This 

phenomenon can easily be understood from the fact that the magnetic parameter M opposes the 

flow, therefore decreases the velocity gradient and hence the local skin friction coefficient 

xCf decreases. Owing to increasing values of M in the presence of viscous dissipation and 

pressure stress work, the fluid temperature with in the boundary layer increases and the associate 

thermal boundary layer becomes thicker. For increasing fluid temperature, the temperature 

difference between fluid and surface decreases and the corresponding rate of heat transfer 

decreases. 
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Fig.12 (a). Variation of skin friction against x 
for varying of J with M = 0.1, 5.0=λ , 5.0=ε  
and Pr=1.0 

Fig. 12(b). Variation of heat transfer against x for 
varying of J with M = 0.1, 5.0=λ , 5.0=ε  and 
Pr=1.0. 
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Fig.13 (a). Variation of skin friction against x 
for varying of Pr with M = 0.1, 5.0=λ , 

5.0=ε , and J=0.1  
 

Fig.13 (b). Variation of heat transfer against x for 
varying of Pr with M = 0.1, 5.0=λ , 5.0=ε , 
and J=0.1  

 

The variation of the reduced local skin friction coefficient and the local rate of heat transfer for 

different values of the joule heating parameter J (J = 0.1, 0.3, 0.5, 0.9) are illustrated in Figs. 

12(a) and 12(b) while with M = 1.0, 5.0=λ  and 5.0=ε and Prandtl number Pr = 1.0. From the 

figures it can be seen that the increase of the joule heating parameter J   leads to an increase in 

the local skin-friction coefficient xCf and a decrease in the local Nusselt number xNu . These are 

expected, since the joule heating mechanism in presence of viscous dissipation and pressure 

stress work creates a layer of hot fluid near the surface, and finally the resultant temperature of 
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the fluid exceeds the surface temperature. For this reason the rate of heat transfer from the 

surface decreases. Owing to the enhanced temperature, the viscosity of the fluid increases and 

the corresponding local skin-friction coefficient increases.  

 

In order to verify the accuracy of the present work, the numerical values of the local Nusselt 

number xNu  for M = 0.0, J = 0, 0.0=λ , 0.0=ε  and Pr = 1.00 in different position of x are 

compared with those reported by Merkin (1976),  Nazar et al.(2002) and  Hye et al. (2007) as 

presented in table 3.1. The results are found to be in excellent agreement. 

 
Table 3.1  
 
 
Compare the Numerical values of    xNu  for different values of x while Pr=1.0, J=0 .0,  

M = 0.0 0.0=λ  and 0.0=ε  
 

x Merkin (1976) Nazar et 
al.(2002)  

Hye et al. 
(2007) 

Present(2010) 
0.0 0.4214 0.4214 0.4241 0.4216 
π/6 0.4161 0.4161 0.4161 0.4163 
π/3 0.4007 0.4005 0.4005 0.4006 
π/2 0.3745 0.3741 0.3741 0.3741 
2π/3 0.3364 0.3355 0.3355 0.3355 
5π/6 0.2825 0.2811 0.2811 0.2811 
π 0.1945 0.1916 0.1916 0.1912 

 
3.6 Conclusion 
 
We have studied the joule heating effects on magneto-hydrodynamic (MHD) natural convection 

flow cylinder in presence of viscous dissipation and pressure stress work from a horizontal 

circular. The transformed non-similar boundary layer governing equations of the flow together 

with the boundary conditions were solved numerically using implicit finite difference method 

together with Keller box scheme. The coupled effect of natural convection that the temperature 

and the rate of heat transfer is continuous at the surface. From the present investigation, the 

following conclusions may be drawn: 

 The local skin friction coefficients and the rate of heat transfer along the surface of the 

cylinder decrease for the increasing value of magnetic parameter M. 

• An increase in values of M leads to decrease the velocity distribution but slightly increase the   
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   temperature distribution. 

• For increasing values of Joule heating parameter J, the skin-friction coefficient increases but    

  the Nusselt number decreases significantly within the boundary layer. 

• With the effect of Joule heating parameter J, both the velocity and temperature distributions  

   increase significantly the thickness of the thermal boundary layer. 

• An increasing value of Prandtl number Pr leads to decrease in the velocity and the temperature  

   distributions. 
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Appendix 
 

Numerical Solution with Newton’s Method 

 

A.1 Finite difference method 

 

To get the solutions of the differential equations (2.11) and (2.12) along with the boundary 

condition (2.13) , we shall employ a most practical, an efficient and accurate solution technique, 

known as implicit finite difference method together with Keller-box elimination technique. 

 

To apply the aforementioned method, we first convert the equations (2.11) and (2.12) into the 

following system of first order differential equations with dependent variables ),( ηξu , ),( ηξv  

and ),( ηξp  where (x, y) denoted as ),( ηξ along with the boundary condition (2.13) as 

uf =/  (A.1) 

vu =/  (A.2) 

p=/θ  (A.3) 
Equations (2.11) and (2.13) transform to  



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−
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=+−+
ξξ

ξθ f
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21
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=+++++
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θξθ f
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2
61

/

Pr

1
 (A.5) 

Where  

,,,,
sin

,1,1 87
2

6321 εελ
ξ
ξ

xpTxpxpppp r ======  (A.6) 

 

The boundary conditions are:  

∞====

====

yatuf

yatuf

0,0

01,0
/

/

θ

θ
 (A.7) 

 
We now consider the net rectangle on the (• , η ) plane shown in the figure (A.1) and denote the 

net points by 
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Here ‘n’ and ‘j’ are just sequence of numbers on the (• , η  ) plane , kn and hj 

             

                            

are the variable 

mesh widths.                                             

 

  

 
 

 
 
      
 
 
 
 
 
     
 
 
Figure A.1: Net rectangle of the difference approximation for the Box scheme. 
 
 
. 
We approximate the quantities (f, u, v, p) at the points (•n , η j

n
jf ) of the net by( , n

ju  n
jv , n

jp )

n
jg

 

which we call net function . We also employ the notation  for the quantities midway between 

net points shown in figure (A.1) and for any net function as  
 

)(
2
1 12/1 −− += nnn ξξξ  (A.9a) 

)(
2
1

12/1 −− −= jjj ηηη  (A.9b) 

)(
2

1 12/1 −−
+= n

j
n

j

n

j θθθ  (A.9c) 

)(
2

1
12/1

n
j

n
j

n
j −− += θθθ  (A.9d) 

 

    hj 

kn 

η j-1/2 

η j 

η j-1 

• n-1 
• n-1/2 • n 

P1 P4 

P3 P2 
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Now we write the difference equations that are to approximate the three first order ordinary 
differential equations (2.1)-(2.3) according to Box method by considering one mesh rectangle. 
We start by writing the finite difference approximation of the above three equations using central 
difference quotients and average about the mid-point ( 21, −j

n ηξ ) of the segment P1P2 

21
21 , −

−
j

n ηξ

shown in 

the figure (A.1) and the finite difference approximations to the two first order differential 
equations (2.4)-(2.5) are written for the mid point ( ) of the rectangle P1P2P3P4

2
)( 1

2/11
1

n
j

n
jn

j
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j
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jj

uu
uffh
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procedure yields.  
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Again from the equation (A.14) we get  
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The boundary conditions become 
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Here the coefficients js )( 9  and js )( 10 , which are zero in this case, are included here for the 

generality. 
 
 
Similarly by using the equations (A.19) to (A.23) in the equation (A.17) we get the following 
form:  
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The boundary conditions (A.18) become  
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Which just express the requirement for the boundary conditions to remain during the iteration 
process.  
 
Now the system of linear equations (A.24) - (A.30), (A.41), (A.42) and (A.53) together with the 
boundary conditions (A.54) can be written in a block matrix from a coefficient matrix, which are 
solved by modified ‘Keller Box’ methods 
 
The solutions of the above equations together with the boundary conditions enable us to calculate 
the skin friction xCf  and the rate of heat transfer xNu   at the surface in the boundary layer from 
the following relations: 
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A.2. The important dimensionless parameters related to the problem: 
 
The governing equations of the fluid flow are discussed at the previous sections in this chapter. 

These equations contain a number of variables. It is difficult to study the effect of each variable 

on the process. Moreover these equations are nonlinear. There is no general method to find the 

solution of these nonlinear equations. In order to bring out the essential features of flow, it is 

necessary to find important dimensionless parameters, which characterize the flow. These 

parameters are very useful in the analysis of experimental results. Some non-dimensional 

parameters related to our problems are discussed below: 

 

Reynolds number Re

 
  

Reynolds number is the most important non-dimensional parameter of the fluid dynamics of a 

viscous fluid. It represents the ratio of the inertia force and the viscous force. It is denoted by Re. 

 

       Re
forceViscous

forceInertia
 =    

            =   
areasectionalCrossstressShear

onAcceleratiMass

×
×

  

            =  
areasectionalCrossstressShear

Time)(Velocity/DensityVolume

×
××

 

                                                 

=
areasectionalCrossstressShear

Time)(Velocity/DensitydimensionLinearareasectionalCross

×
×××

 

            =
νµ

ρ LV

VL

LV
=

22

 

where, ρ,, LV  and  µ  denote the characteristic velocity, the characteristic length, the density 

and the coefficient of viscosity of the fluid flow respectively. Here 
ρ
µν =  is the kinematic 

viscosity. This result implies that viscous forces are dominant for small Reynolds numbers and 

inertia forces are dominant for large Reynolds numbers. The Reynolds number is used as the 

criterion to determine the change from laminar to turbulent flow. 
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 Prandtl number Pr

force Thermal

 forceViscous

  

 

Prandtl gave an important number known as Prandtl number. The Prandtl number is a 

dimensionless parameter of a convective system that characterizes the regime of convection. It is 

the ratio of viscous force to the thermal force and is defined as follows: 

                          Pr =  

                          = 
ydiffusivitThermal

viscosityKinematic
 

                          = 
α
ν

ρκ
ρµ

=
pC/

/
 

The Prandtl number is large when thermal conductivity is small and viscosity is large, and small 

when viscosity is small and thermal conductivity is large. For small value of ν , a thin region will 

be affected by viscosity, which is known as boundary layer region. For the small value 

of pCρκ / , a thin region will be affected by heat conduction which is known as the thermal 

boundary layer. Prandtl number also gives the   relative importance of viscous dissipation to the 

thermal dissipation. Thus it represents the relative importance of momentum and energy 

transport by the diffusion process. Usually for gases 1Pr ≅ , the transfer of momentum and energy 

by the diffusion process is comparable. For oils, 1Pr〉〉 , hence the momentum diffusion is much 

greater than the energy diffusion; but for liquid metals, 〈〈Pr 1 and the solution is reversed.  

 
Grashof number Gr  
 
The Grashof number gives the relative importance of buoyancy force to the viscous forces and is 

defined as                                                 

                                          
( )

2

3

ν
β wTTLg

Gr
−

=  

 
where g is the acceleration due to gravity, L the characteristic length of the problem, β   the 

coefficient of volume expansion, and wTT −   is the excess temperature of the fluid over the 

reference temperature 0T . This number is of great importance and plays a similar role in free 
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convection as does the Reynolds number in forced convection. A critical value of the Grashof 

number is used to indicate transition from laminar to turbulent flow in free convection. 

 

Joule heating parameter J:  

 

In electronics and in physics more broadly, Joule heating or Ohmic heating refers to the increase 

in temperature of a conductor as a result of resistance to an electrical current flowing through it. 

At an atomic level, Joule heating is the result of moving electrons colliding with atoms in a 

conductor, where upon momentum is transferred to the atom, increasing its kinetic energy. Joule 

heating is named for James Prescott Joule, the first to articulate what is now Joule's law, relating 

the amount of heat released from an electrical resistor to its resistance and the charge passed 

through it. In our problem we used a dimensionless parameter J =
)(

2

1
2
0

∞−TTc

dH

wpρ
νσ

, which is Joule 

heating parameter. 
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Extension of this work 

 

Some proposals related to this problem are given below: 

 Effect of atmospheric pressure on the fluid flow can be shown. 

 It can be considered time dependent flow of the fluid. 
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